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 Exposure to ambient fine particulate matter (PM2.5) is associated with multiple 

negative health outcomes. Studies investigating these associations commonly use PM2.5 

concentrations measured at outdoor, central-site monitors to estimate exposure. Because 

people spend the majority of time indoors, however, the variable efficiency with which 

ambient PM2.5 penetrates and persists indoors is a source of error in epidemiologic 

analyses. This error generally results in an underestimation of health effects, hampering 

the detection of associations between ambient PM2.5 exposures and the risk of health 

outcomes. To reduce this error, practical methods to model indoor concentrations of 

ambient PM2.5 are needed.  

 This dissertation contributes to exposure science by advancing existing models of 

residential exposure to ambient PM2.5 and by improving the robustness and accessibility 

of these tools. First, drivers of variability in the fraction of ambient PM2.5 found indoors 

(F) are identified and the potential for this variability to explain observed heterogeneity 

in PM-mediated health-effect estimates is explored. Next, a physically-based mass-

balance model and modeling tools that account for variability in human activity patterns 

(e.g. time spent in various indoor and outdoor environments) are used to compute 

ambient PM2.5 exposures that account for the modification of PM2.5 with outdoor-to-
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indoor transport in order to explore whether the use of these refined exposure surrogates 

reduces error and bias in epidemiologic analyses. Subsequently, this outdoor-to-indoor 

transport model is evaluated and refined using measured indoor and outdoor PM2.5 

concentrations and air exchange rates, providing a practical and robust tool for reducing 

exposure misclassification in epidemiologic studies. Finally, the volatility basis set is 

used for the first time to study shifts in the gas-particle partitioning of ambient organics 

with transport indoors.  

 This dissertation provides guidance regarding measurements and data most 

critically needed to facilitate the prediction of refined exposure surrogates in large 

epidemiological studies and, thus, informs the design of future sampling campaigns and 

epidemiologic studies. It enables a better accounting of ambient particle penetration into 

and persistence in the indoor environment and constitutes an important advancement in 

the efforts to reduce exposure error in epidemiologic studies and to elucidate 

relationships between PM2.5 exposure and adverse health outcomes.  
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Chapter 1. Introduction 

1.1 Motivation 

1.1.1 Ambient PM2.5 and Negative Health Outcomes 

 Chronic and acute exposures to particulate air pollution are associated with 

multiple negative health effects including airway inflammation, aggravation of asthma, 

myocardial infarction (MI) , pulmonary disease, and cancer.
1
 Recent attention has focused 

on fine particulate matter (PM2.5), defined as particles with aerodynamics diameters 

smaller than or equal to 2.5 µm, because such particles penetrate efficiently into the air 

exchange regions of the lung
2
 and estimates of risk of morbidity or mortality associated 

with exposure to PM2.5 are greater than those for PM10, which includes larger, coarse-

mode particles.
1
 Notably, fine and coarse-mode particles are derived from different 

sources and formation mechanisms and, as a result, they have distinctly different 

physiochemical chemical properties. The fine mode, for example, is formed through 

combustion, nucleation, and gas-to-particle conversion processes, while the coarse mode 

is formed through mechanical processes (e.g. the breakup of larger material by 

construction activity or wind).
1
 Due to these differences between PM2.5 and PM10-2,5, the 

factors that influence human exposure to these pollutants, the health-effects associated 

with these exposures, and the strategies implemented to mitigate these exposure differ.
1
 

This dissertation is focused on improving estimates of ambient PM2.5 exposure and aims 

to increase understanding of the health effects associated with that exposure.  

 Increases in exposure to ambient PM2.5 are associated with increased morbidity 

and mortality. A recent meta-analysis, for example, reported a 2.5% increase in the risk 

of MI with each 10 µg/m
3
 increase in the ambient PM2.5 concentration in the 24 hours 
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preceding the MI.
3
 Each 10 µg/m

3 
increase in the annual average ambient PM2.5 

concentration was associated with a 10.9 and a 20.8% increase in all-cause mortality for 

participants in an American Cancer Society study and the Harvard Six Cities Study, 

respectively.
4
 Research has also shown associations between certain health effects and 

PM2.5 derived from specific sources or of specific chemical makeup. Multiple studies 

have reported increased risks of adverse health outcomes when ambient PM2.5 is enriched 

in primary combustion tracers
5-8

 and with residential proximity to a major roadway.
9-11

 

Other studies have provided evidence for an increased risk of morbidity and mortality 

when PM2.5 is enriched in chemical species formed through atmospheric chemistry (i.e. 

secondary PM2.5).
12-15

   

1.1.2 Exposure Error and Bias in Air Pollution Epidemiology 

 The vast majority of studies investigating relationships between ambient PM2.5 

exposure and negative health outcomes use PM2.5 concentrations measured at outdoor, 

central-site (community-scale) monitors as surrogates for human exposure to ambient 

PM2.5. However, this exposure is largely dependent on human activity patterns. More 

specifically, exposure is a function of the time spent in various microenvironments (e.g. 

in the home, at a restaurant, in a vehicle) and the ambient PM2.5 concentrations in each of 

those microenvironments. The use of PM2.5 concentrations measured at outdoor, 

stationary monitors to estimate exposure does not take human activity patterns into 

account. Notably, people spend the majority of their time indoors (85-90%), and most of 

that time in their homes.
16

 While ambient PM2.5 concentrations can be higher at other 

microenvironments (e.g. at a bus stop), the large amount of time spent in the residence 

makes it an important venue for exposure to ambient PM2.5.
16
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 The use of central-site PM2.5 concentrations as exposure surrogates inherently 

assumes that indoor and outdoor ambient PM2.5 concentrations and compositions are well 

correlated. As is discussed in detail below, however, the fraction of ambient PM2.5 that 

penetrates and persists indoors (F) varies within and across homes
17,18 

and is different for 

different chemical components of the PM2.5 mixture.
19-22

 This variability has been 

identified as a source of exposure error in epidemiologic studies that use central-site 

PM2.5 concentrations as exposure surrogates. This error is likely to bias health effect 

estimates towards the null (i.e. result in an underestimation of health effect),
23,24 

hampering the detection of statistically significant associations between increased 

ambient PM2.5 exposures and the risk of negative health outcomes. In order to reduce the 

exposure error and bias associated with variability in F, practical methods to predict 

indoor concentrations of ambient PM2.5 in large epidemiologic studies are needed. The 

research presented in this dissertation is designed to address this need. 

There is evidence that supports the hypothesis that the variability in F contributes 

to observed heterogeneity in health-effect estimates. Multiple studies have reported a 

lower risk of morbidity or mortality associated with ambient PM2.5 in communities with a 

higher prevalence of central air conditioning (AC), compared to risk estimates among 

communities with lower AC prevalence.
25-28

 Notably, homes with central AC in use tend 

to have lower F values because indoor air is filtered as it is re-circulated, thus increasing 

particle losses indoors.
29-31

 When F values are lower, the difference between central-site 

PM2.5 concentrations and actual ambient PM2.5 exposure is greater, resulting in 

proportionally more exposure misclassification and larger bias towards the null (i.e. a 

greater underestimation of effect), likely contributing to the lower effect estimates 
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observed for homes with AC use. Work conducted as part of this dissertation and 

concurrent work conducted by Chen C. et al.
32,33

 and Chen R. et al.
34

 provide more 

comprehensive estimates of F and use these to explore the hypothesis that variability in 

factors that influence F contributes to exposure error and bias in epidemiologic studies. 

A better accounting of ambient particle penetration and persistence in the indoor 

environment is needed to reduce exposure error in epidemiologic studies and to further 

elucidate relationships between PM2.5 exposure and adverse health outcomes. Toward 

this goal, this dissertation advances existing methods to predict indoor concentrations of 

ambient PM2.5, increases the robustness and accessibility of these modeling tools, and 

explores the ways in which accounting for (and not accounting for) variability in F 

influences health-effect estimates derived from epidemiologic studies. This research also 

provides insights regarding the measurements and data most critical to the prediction of 

residential ambient PM2.5 exposures and, thus, will inform the design of future sampling 

campaigns and epidemiologic studies. 

1.2 Background 

1.2.1Ambient PM2.5 

 Ambient PM2.5 is a complex mixture of locally- and regionally-generated 

pollutants. Regionally-generated PM2.5 is formed through atmospheric processing of gas-

phase pollutants during transport. For example, sulfur dioxide emitted from coal-fired 

power plants in the Ohio River Valley is oxidized during transport, resulting in 

ubiquitous and abundant sulfate aerosol in the eastern United States. The majority of this 

sulfate is formed through aqueous-phase oxidation reactions in cloud droplets, while a 

lesser amount can be attributed to the homogenous gas-phase oxidation of sulfur 
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dioxide.
35,36

 Particle-phase nitrate is formed in the atmosphere through gas-particle 

partitioning following the uptake of ammonia by nitric acid. Like sulfate, secondary 

organic aerosol (SOA) is formed through both gas- and aqueous-phase oxidation 

processes (SOAgas and SOAaq).
36-38

 Both SOAgas and SOAaq formation processes begin 

with the gas-phase oxidation of volatile organic compounds emitted from anthropogenic 

and biogenic sources. SOAgas is formed when these oxidation reactions result in products 

with low enough vapor pressures that they partition to existing organic matter.
36,39

 In the 

case of SOAaq, smaller, more water-soluble gas-phase oxidation products partition into 

cloud and fog droplets or the liquid water associated with atmospheric aerosols. They 

then undergo further oxidation in the aqueous phase, resulting in lower volatility products 

that remain in the particle phase following the evaporation of water from the droplet or 

wet particle.
37,38

 Locally-generated PM2.5 is dominated by primary emissions from local 

sources. Concentrations of regionally-generated, secondary PM2.5 tend to be more 

uniformly distributed across an air shed, while primary PM2.5 concentrations are 

enhanced in close proximity to sources (i.e. on urban and neighborhood scales)
1
 and 

diluted with distance downwind.  

 The size distribution and chemical composition of ambient PM2.5 are functions of 

PM sources and formation mechanisms. As a result, PM2.5 concentrations and 

characteristics vary temporally and spatially with source mix, as well as with 

meteorological factors such as precipitation, boundary layer mixing height, wind 

direction and actinic flux.
1,39

 As is discussed in detail below, particle size and the 

volatility of particle-phase components are important determinants of F.
20,21,40,41

 

Modeling tools that account for variability in F with particle size and composition are 
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crucial for improving ambient PM2.5 exposure estimates. That research need is addressed 

in this dissertation 

1.2.2 The Physics and Chemistry of Outdoor-to-Indoor Transport  

The fraction of ambient PM2.5 that penetrates into and persist in indoor air (F) is a 

function of residential air exchange rate (AER), the efficiency with which ambient 

particles penetrate across the building envelope (P), the rate of indoor particle losses due 

to deposition in indoor air (kdep), and, for semi-volatile species, losses or gains in mass 

resulting from phase changes in indoor air.
19,20,40-42

 In the following paragraphs, the 

current understanding and outstanding research needs for each of these determinants of F 

are discussed. 

Air Exchange Rate ï The rate at which air in a home is exchanged with outdoor 

air is the sum of two processes: (1) leakage through cracks in the building shell driven by 

indoor-outdoor pressure differences and (2) air flow through open doors/windows.
43,44

 

Air exchange rates are commonly measured using a tracer gas method, in which a non-

toxic, inert gas (e.g. sulfur hexafluoride, a pefluorocarbon tracer) is released at a known 

emission rate and is collected with a passive sampler. Because the emission rate of the 

tracer gas is known, the measured concentration in the home serves as an indicator of the 

rate at which air in the home is exchanged with outdoor air.
43,45,46

 Notably, only a small 

fraction of AER studies have included a large number of homes. Pandian et al.
47,48

 

aggregated AER measurements from approximately 100 studies and generated summary 

statistics and frequency distributions of AERs for this subset of U.S. homes. Yamamoto 

et al.
49

 conducted 593 AER measurements in about 100 homes in each of three 

climatically and geographically diverse regions of the United States (Houston, TX, Los 
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Angeles County, CA, and Elizabeth, NJ) as part of the Relationships of Indoor, Outdoor, 

and Personal Air (RIOPA) study. These studies have demonstrated that AERs vary 

spatially with housing characteristics (e.g. construction material, home age) and both 

spatially and temporally with meteorological conditions and home ventilation conditions 

(e.g. wind speed, indoor-outdoor temperature differences, opening/closing of windows, 

use of heating or cooling systems). This heterogeneity in AER contributes to geographic 

and temporal variability in F. Notably, the homes for which AER measurements have 

been conducted are limited in their spatial and temporal extent and are not statistically 

representative of the complete United States Housing stock. Generalizing these 

measurements to the broader population of U.S. homes is further complicated by the fact 

that, in addition to home construction characteristics, AER varies with the meteorological 

conditions and the human activities related to home ventilation discussed above. 

Due to their practical applications for the weatherization and energy-efficiency 

auditing industries, measurements of the effective leakage area of homes (ELA; the sum 

of all cracks and spaces through which air can flow)
44

 are more common than AER 

measurements. However, like AER, ELA measurements have not been conducted for a 

representative sample of U.S. homes.
44

 Chan et al.
44

 utilized a database of about 70,000 

air leakage measurements to explore the relationship between ELA and common housing 

characteristics with the objective of developing a statistical model that could be used to 

calculate ELA for the broader population of homes. Calculations of ELA require data 

readily available from the American Housing Survey and the U.S. Census.
44

 Chan et al.
44

 

demonstrated that home age and floor area are the most significant predictors of ELA and 

that model-measurement agreement was maximized when separate models were used 
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depending on household poverty status because home leakiness varies with household 

income (with lower income homes tending to be leakier). 

Modeling tools have been developed to predict AER from ELA and such tools 

provide a means to calculate AER for a broader sample of homes than those for which 

AER measurements are available. The Lawrence Berkeley National Laboratory (LBNL) 

Infiltration model, for example, predicts AER distributions for single-family, closed 

homes (i.e. windows and doors closed) based on normalized leakage area (ELA 

normalized by floor area), certain house characteristics, and meteorological 

conditions.
50,51

 The data required to generate AER distributions with the LBNL 

Infiltration model are readily available from the U.S. Census (www.census.gov), the 

American Housing Survey (www.census.gov/housing/ahs), and the National Climate Data 

Center (www.ncdc.noaa.gov). The LBNL Infiltration model is an important tool for 

generating AER distributions for the purpose of modeling indoor concentrations of 

ambient PM2.5. This dissertation advances the LBNL Infiltration model by exploring the 

extent to which certain human activities and housing characteristics contribute to model-

measurement disagreement and by elucidating refinements to the LBNL Infiltration 

model. These analyses informed the development of a  refined version of the LBNL 

Infiltration model, by Dr. Melissa M. Lunden, which was applied in Chapter 3 of this 

dissertation to calculate refined estimates of exposure to ambient PM2.5 in an 

epidemiologic study investigating the relationship between ambient PM2.5 exposure and 

myocardial infarction. 

 Particle Penetration Efficiency ï Particle penetration efficiency (P) describes the 

fraction of outdoor-generated particles that remain suspended following their infiltration 



9 
 

 

through the building envelope.
41,43

 Particle losses to the sides of building cracks during 

infiltration are the result of Brownian diffusion, gravitational settling, interception and 

impaction.
52

 Brownian diffusion dominates particle losses for particles with diameters 

smaller than about 0.1 ˃m.
36

 For larger particles, interception, impaction and 

gravitational settling are the dominant loss processes.
36

 Penetration efficiency describes 

the fraction of particles that are not removed by the combination of these mechanisms 

during passage across the building shell. Sampling and laboratory studies have measured 

P for particles of various sizes.
52-54

 Such studies have demonstrated that the penetration 

efficiency curve is relatively constant across the accumulation mode, but increases 

rapidly for larger (super-micron) and smaller (ultrafine) particles due to size-dependence 

of the particle loss processes described above.
40,41

 Values of P for particles in the size 

range considered in this work have been observed to range from 0.6 to 1.0.
55

  

 Values of P, and thus F, vary with building ventilation conditions and the 

characteristics of cracks in the building shell.
52,55

 While it is known from laboratory 

studies that complex crack geometry and increased roughness of crack surfaces result in 

lower P values, the characteristics of cracks in buildings are not well known and are 

likely to be highly varied within and across buildings.
52,55

 Furthermore, human activities 

contribute to variability in P. For example, P values approach 1.0 for homes with open 

windows. As a result, there is substantial uncertainty in P. While this dissertation does 

not reduce this uncertainty, sensitivity analyses were conducted to evaluate the effect of 

this uncertainty on modeled F values and adjustments were made for the effect of certain 

human activities on P (e.g., opening windows) in the model of outdoor-to-indoor 

transport applied herein. 
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 Depositional Losses - The same physical loss mechanisms that govern penetration 

are also important drivers of particle deposition in the indoor environment.
17,40,42,54

 

Deposition loss rates (kdep) are a strong function of particle size. Depositional losses in 

residences have been determined empirically from simultaneous indoor and outdoor 

PM2.5 concentration measurements.
22,53,54,56

  For examples, Ozkaynak et al.
53

 measured 

indoor and outdoor PM2.5 concentrations at 60 residences in Riverside, CA. Values of kdep 

and P were then calculated with non-linear least squares regression. A major limitation of 

the majority of studies aimed at measuring P and kdep is that because both P and kdep are 

unknown, the individual effects of each of these variables on indoor ambient PM2.5 

concentrations cannot be separated. In other words, a single, unique value for P or kdep 

can only be determined if one of the variables is known.
54,57

 Thatcher et al.
54

 took 

specific measures in their experimental methods to separate the effects of P and kdep. 

Simultaneous indoor and outdoor PM concentrations were measured at an unoccupied 

home and values of kdep for sulfate, nitrate, and organic and elemental carbon were solved 

for using a transient solution to the mass balance equation. Particle concentration 

measurements were performed under two very distinct conditions in order to separate the 

effects of P and kdep. First, particle levels were artificially elevated through resuspension 

activities. Because indoor concentrations are forced to relatively high values through this 

process, changes in indoor concentrations are driven by depositional losses and increases 

in indoor particle concentrations due to penetration from outside is negligible. Under the 

second scenario, which was implemented to reduce the influence of depositional losses, 

recovery of particle concentrations was measured after indoor particles concentrations 

were reduced to near zero through pressurization of the home with HEPA filtered air. 
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Riley et al.
40

 combined a physical particle deposition model with a polynomial fit to 

empirically determined kdep values from studies like those described above to provide kdep 

values for a wide range of particle sizes.  

 These studies verify that depositional losses depend strongly on particle size. 

However, it is not well understood how depositional losses vary geographically and 

temporally with heterogeneity in PM2.5 sources, formation mechanisms, and chemical 

composition (all of which are related to particle size). This dissertation explores the 

extent to which heterogeneity in these factors contributes to variability in kdep and, thus, 

to variability in F. As part of this dissertation, a comprehensive assessment of PM2.5 

species size distributions is conducted in order to provide robust estimates of particle-size 

dependent model inputs such as kdep. 

 Gas-Particle Partitioning - In addition to the physical losses discussed above, 

shifts in the gas-particle partitioning of semi-volatile ambient PM2.5 species can occur 

with outdoor-to-indoor transport due to indoor-outdoor differences in temperature and 

environmental characteristics such as the availability of surface area or particulate 

organic matter for sorption.
20,58,59

 Recent studies have demonstrated that such phase 

changes can have a substantial impact on F.
19,20,22,42

 Sarnat et al.
22

 estimated F as the 

indoor-outdoor ratios of PM2.5 concentrations measured inside and outside 17 Los 

Angeles area homes during periods when indoor sources were absent. Median F for black 

carbon (BC), which is non-volatile, was 0.84. The median F for ammonium nitrate, 

which is semi-volatile, was 0.18. When the authors compared the results from Los 

Angeles to other study areas, they found that F for PM2.5 mass increased as the mass 

fraction of outdoor ammonium nitrate decreased. In other words, a greater fraction of 



12 
 

 

outdoor-generated PM2.5 penetrates into and persists in indoor air in regions where 

concentrations of semi-volatile nitrate are lower. Lunden et al.
20

 measured ammonium 

nitrate PM2.5 inside and outside of an unoccupied home in Clovis, CA. The dramatic 

differences between indoor and outdoor particulate nitrate concentrations could not be 

explained by only losses with penetration through the building envelope and physical 

deposition indoors. When a mass balance model that included penetration efficiency, 

physical deposition, and evaporative losses was applied, however, modeled and measured 

indoor ammonium nitrate showed good agreement.
20

  

 Shifts in gas-particle partitioning with outdoor-to-indoor transport have also been 

observed for semi-volatile organic compounds (SVOCs).
21,22,58,59

. Lunden et al.
21

 

observed a lower F value for organic carbon (OC; F=0.47) than for elemental carbon 

(EC; F=0.61) in an unoccupied home. The greater OC losses were attributed to the 

depletion of gas-phase organics as they sorbed to indoor sources followed by shifts in the 

partitioning of SVOCs from the particle phase towards the gas phase in order to reach a 

new equilibrium. In contrast, it was concluded that, in occupied homes, incoming 

organics from outdoors can shift from the gas phase toward the particle phase as they 

sorb to particulate organic matter emitted by indoor sources.
58-60

 

 The gas-particle partitioning of SVOCs in the atmosphere has been parameterized 

with a partitioning coefficient, Kp
61

 and, as an extension of this concept, mapped into a 

volatility basis set (VBS).
62

 Kp describes the ratio of mass of a specific SVOC in the 

particle phase (normalized by the total particle mass) to the mass in the gas phase. In the 

rare case that the particle composition and the properties of a partitioning organic 

compound are known, the gas-particle partitioning of that compound can be predicted 
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from the temperature, the compoundôs subcooled liquid vapor pressure, and the 

concentration and properties of the particulate OC.
61

 However, because the atmosphere 

contains thousands of organics, atmospheric models rely on parameterizations of this 

process. The VBS treats ambient organics as a distribution of compounds binned by their 

volatilities and is used to describe the gas-particle partitioning of organics in the 

atmosphere as a function of temperature and organic aerosol loading.
62

 

 Organics account for 20 to 90% of ambient PM2.5 mass.
63

 It is accepted that phase 

changes of organics impact F. However, changes in the gas-particle partitioning of total 

ambient PM2.5 organic matter with outdoor-to-indoor transport have not been 

quantitatively predicted. This dissertation expands current knowledge of ambient organic 

PM2.5 exposure in part by investigating the extent to which variability in indoor ambient 

OC concentrations can be attributed to shifts gas-particle partitioning and by exploring 

the VBS as a tool for modeling the partitioning behavior of ambient organics with 

outdoor-to-indoor transport.  

1.2.3 Quantifying F 

 Multiple methods have been used to quantify the fraction of ambient PM2.5 that 

penetrates and persists indoors. In homes for which indoor sources of ambient PM2.5 are 

not present, F is commonly estimated as the ratio of ambient PM2.5 concentrations 

measured indoors to those measured outdoors.
55

 Sarnat et al.,
22

 for example, utilized 

indoor and outdoor PM2.5 concentration measurements from overnight periods (i.e. times 

when home occupants were sleeping and indoor PM2.5 sources were minimized) to 

calculate F values for ambient PM2.5 and PM2.5 species. Note that this method provides 

and upper bound for F and could be biased high for species that are emitted or formed 
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indoors (e.g. EC and OC). Statistical methods, in which measured indoor PM2.5 

concentrations are regressed on measured outdoor concentrations have been used for 

homes or time periods for which indoor sources were present to estimate the fraction of 

indoor PM2.5 that could be attributed to outdoor sources.
18,59,64

 The intercept of the 

resulting regression model indicates an average indoor source strength, while the slope of 

the regression model is an average value of F.
18,64

 A regression method that down-

weights outliers (e.g. robust regression) has the advantage of reducing the influence of 

indoor sources of ambient PM2.5 when estimating F because such outliers are likely 

indicative of a strong indoor source.
18

 These statistical methods assume that the indoor 

environment is well mixed and that indoor and outdoor sources are independent.
18

 

 Mass balance models can also be used to calculate the indoor concentration of 

ambient PM2.5.
55,65,66 

Alzona et al.
65

 and Koutrakis et al.
66

 demonstrated that a simple, 

single-compartment mass balance model could be used to predict indoor concentrations 

and residential exposures to ambient PM2.5. Hering et al.
42

 expanded on this work by 

pairing modeled AERs with central site PM2.5 concentration data to estimate indoor 

concentrations of ambient PM2.5 for an unoccupied home. Indoor concentrations were 

calculated with a forward-stepping solution to a single compartment mass balance 

equation. Evaporative losses of ammonium nitrate were modeled based on the results of 

Lunden et al.
20

 discussed above. Because species-resolved size distribution data were not 

available, a constant kdep value of 0.2 h
-1

 was assumed for all species. However, as noted 

above, kdep is highly particle-size dependent and is likely to vary with chemical 

composition. Region- and species-specific characterization of PM2.5 particle size 

constitutes a major gap in current knowledge and is needed to accurately account for 
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ambient particle penetration and persistence in the indoor environment. Species- and size-

resolved characterization of PM2.5 in different regions of the United States will allow for 

more accurate estimates of penetration and loss rate coefficients and, subsequently, the 

indoor concentration of outdoor-generated particles; these are crucial inputs for next-

generation PM2.5 exposure and health studies. As noted above, this dissertation provides 

estimates of such model inputs. The Hering et al.
42

 model laid the framework for 

estimating indoor concentrations of outdoor-generated PM2.5 by making use of PM 

species data. The research presented in this dissertation expands on and refines this model 

by addressing the research needs discussed above. 

1.3 Hypotheses and Dissertation Objectives 

 A central theme of this dissertation is to develop and implement a simple, 

practical method that can be applied in large epidemiologic studies to predict residential 

exposures to ambient PM2.5. It is hypothesized that exposure surrogates that account for 

the effects of outdoor-to-indoor transport will provide more accurate estimates of ambient 

PM2.5 exposures than central-site PM2.5 concentrations. Thus, accounting for variability in 

F in ambient PM2.5 exposure estimates will reduce exposure misclassification and will 

result in less bias in health effect estiamtes and smaller confidence intervals in 

epidemiologic studies. For this reason, this research described in this dissertation: 

1. Identifies major drivers of spatial and temporal variability in the fraction of ambient 

PM2.5 found in indoor air and evaluates whether observed heterogeneity in health-effect 

estimates can be attributed, in part, to variability in these factors. 

2. Compares health-effect estimates derived from epidemiologic analyses in which 

variability in F is and is not accounted for in estimates of ambient PM2.5 exposure and 
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discusses circumstances and epidemiologic study designs for which variability in F is 

more and less likely to be a major contributor to exposure error. 

3. Identifies data and measurements most critical to the prediction of residential 

exposures to ambient PM2.5 and, thus, informs the design of future sampling and 

epidemiologic studies.  

4. Explores the magnitude and direction of shifts in the gas-particle partitioning of 

ambient organics with outdoor-to-indoor transport. 

1.4 Dissertation Overview 

 This research described herein contributes to the field of exposure science by 

advancing existing models of residential exposure to ambient PM2.5 and by improving the 

robustness and accessibility of these tools. This work begins by examining drivers of 

geographic and spatial variability in F and identifying the potential for this variability to 

explain, at least in part, the heterogeneity in PM-mediated health effect estimates 

(Chapter 2). Next, (1) a physically-based mass balance model and (2) modeling tools that 

account for variability in human activity patterns (e.g. time spend in various indoor and 

outdoor environments) are used to compute ambient PM2.5 exposures that account for the 

modification of PM2.5 with outdoor-to-indoor transport. These refined exposure 

surrogates are used to calculate the risk of myocardial infarction associated with ambient 

PM2.5 exposure and to explore whether the use of these refined exposure surrogates 

reduces exposure error and bias in epidemiologic analyses (Chapter 3).  Subsequently, in 

Chapter 4, this outdoor-to-indoor transport model is validated and refined using data from 

the RIOPA study, providing a practical and robust tool for reducing exposure 

misclassification in epidemiologic studies. The work of Chapter 4 identified shifts in gas-
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particle partitioning as a remaining source of exposure error and thus led to the work of 

Chapter 5. For the first time, the volatility basis set is applied to study shifts in the gas-

particle partitioning of ambient organics with transport into the indoor environment 

(Chapter 5). Finally, the research contained in this dissertation provides guidance 

regarding measurements and data most critically needed to facilitate the prediction of 

refined exposure surrogates in large epidemiological studies and, thus, contributes to the 

design of future sampling campaigns and epidemiologic studies. This work enables a 

better accounting of ambient particle penetration into and persistence in the indoor 

environment and constitutes an important advancement in the efforts to reduce exposure 

error in epidemiologic studies and to elucidate relationships between PM2.5 exposure and 

adverse health outcomes.  

 In Chapter 2, F was modeled using a mass balance approach for several scenarios 

across which heterogeneity in effect estimates has been observed: with geographic 

location of residence, residential roadway proximity, socioeconomic status, and central 

air conditioning use. Calculated values of F are higher in close proximity to primary 

combustion sources (e.g. proximity to traffic) and for lower income homes. F is lower 

when PM2.5 is enriched in nitrate and with central air conditioning use. As a result, 

exposure error resulting from variability in F will be greatest when these factors have 

high temporal and/or spatial variability. The circumstances for which F is lower in these 

calculations correspond to circumstances for which lower effect estimates have been 

observed in epidemiological studies and higher F values correspond to higher effect 

estimates. These results suggest that variability in exposure misclassification resulting 
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from variability in F is a possible contributor to heterogeneity in PM-mediated health 

effect estimates.  

 The hypotheses generated in Chapter 2 were tested in Chapter 3. Using a case-

crossover study design and conditional logistic regression, the relative odds of transmural 

(full -wall) myocardial infarction (MI) calculated using exposure surrogates that account 

for human activity patterns and the indoor transport of ambient PM2.5 were compared with 

those calculated using central-site PM2.5 concentrations to estimate exposure to PM2.5 of 

outdoor origin (exposure to ambient PM2.5). Because variability in human activity and 

indoor PM2.5 transport contributes exposure error in epidemiologic analyses when central-

site concentrations are used as exposure surrogates, surrogates that account for this 

variability are referred to as "refined" surrogates. As an alternative analysis, whether the 

relative odds of transmural MI associated with increases in ambient PM2.5 is modified by 

residential air exchange rate (AER), a variable that influences the fraction of ambient 

PM2.5 that penetrates and persists indoors, was evaluated. Use of refined exposure 

surrogates did not result in larger health effect estimates (ORs = 1.10 - 1.11 with each 

interquartile range increase.), narrower confidence intervals, or better model fits 

compared to the analysis that used central-site PM2.5. However, evidence for 

heterogeneity in the relative odds of transmural MI with residential AER (effect-

modification) was observed, with residents of homes with higher AERs having larger 

ORs than homes in lower AER tertiles. For the level of exposure-estimate refinement 

considered here, these findings add support to the use of central-site PM2.5 concentrations 

for epidemiological studies that employ similar case-crossover study designs. In such 

designs, each subject serves as his or her own matched control. Thus, exposure error 
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related to factors that vary spatially or across subjects should only minimally impact 

effect estimates. It is possible that factors that influence the fraction of ambient PM2.5 in 

indoor air (e.g., AER) could possibly bias health effects estimates in study designs for 

which a spatio-temporal comparison of exposure effects across subjects is conducted. 

 The epidemiologic modeling in Chapter 3 was conducted by Dr. David Rich and 

Kelly Thevenet-Morrison from the University of Rochester School of Medicine and 

Dentistry and Dr. Pamela Ohman-Strickland from the University of Medicine and 

Dentistry of New Jersey. Modeling with the Stochastic Human Exposure and Dose 

Simulation (SHEDS) model to produce Tier 2a exposure estimates was conducted by Dr. 

Lisa Baxter and colleagues Drs. Janet Burke and Halûk Özkaynak at the United States 

Environmental Proectection Agency National Exposure Research Laboratory. My 

contribution includes the determination of the mass-balance model inputs that were used 

by Dr. Melissa Lunden of Lawrence Berkeley National Laboratory to generate the refined 

exposure estimates that accounted for the indoor transport of ambient PM2.5, as well as 

the analysis and interpretation of the epidemiologic-study results and manuscript 

preparation.  

 Chapter 4 provides a partial validation of the exposure estimates used in Chapter 

3, while also providing new insights that are used to refine the outdoor-to-indoor 

transport model. Toward the goal of providing practical methods to model indoor 

concentrations of ambient PM2.5, the mechanistic outdoor-to-indoor transport model was 

evaluated and refined using measured indoor and outdoor PM2.5 species concentrations 

and air exchange rates from the Relationships of Indoor, Outdoor, and Personal Air 

Study. Chapter 4 presents model evaluation results, discusses what data are most critical 
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to prediction of residential exposures at the individual-subject and populations levels, and 

makes recommendations for the application of the model in epidemiologic studies. This 

study demonstrates that not accounting for certain human activities (air conditioning and 

heating use, opening windows) leads to bias in predicted residential PM2.5 exposures at 

the individual-subject level, but not the population level. The analyses presented also 

provide quantitative evidence that shifts in the gas-particle partitioning of ambient 

organics with outdoor-to-indoor transport contribute significantly to variability in indoor 

ambient organic carbon concentrations and suggest that methods to account for these 

shifts will further improve the accuracy of outdoor-to-indoor transport models. 

 Chapter 5 presents the first study to address the need for a method to predict shifts 

in the gas-particle partitioning of total ambient organics with transport into the indoor 

environment. Here, the change in the gas-particle partitioning of ambient organics with 

outdoor-to-indoor transport was calculated for 167 homes using measured temperatures, 

particulate organic matter concentrations, and published organic aerosol (OA) volatility 

basis sets (VBS). To evaluate the sensitivity of these calculations to uncertainties in the 

thermodynamic properties of ambient OA, partitioning shifts were calculated assuming 

enthalpies of vaporization (ȹHvap) of 100 and 50 kJ/mol. Volatility distributions 

constructed for OA components derived from factor analysis of aerosol mass spectra 

were used in an alternative analysis. Partitioning shifts were sensitive to ȹHvap 

assumptions and resulted in changes in indoor concentrations of ambient OA of 11 - 

27%, on average, depending on the assumed ȹHvap and whether OA was treated as a 

single entity or as a mixture of chemically-distinct OA components. Hydrocarbon-like 

OA was most sensitive to outdoor-to-indoor changes in temperature and OA loading. 
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Outdoor-to-indoor transport did not induce shifts in partitioning for low-volatility 

oxygenated OA. The calculations indicate that phase changes are important determinants 

of residential ambient OA exposure. To account for these phase changes in predictive 

models, indoor temperatures and estimates (or distributions) of indoor OA emission rates 

are needed. 

 Conclusions, future directions, and the broader impacts of this research are 

discussed in Chapter 6. This work identifies the factors that drive variability in the 

fraction of ambient PM2.5 in indoor air, as well as the geographic locations, seasons, and 

temporal and spatial scales for which outdoor-to-indoor transport is (and is not) a 

substantial source of exposure error in PM epidemiology. Modeling tools to address this 

error are presented and the data and measurements most critical to predicting residential 

ambient PM2.5 exposures are highlighted. In addition, this research evaluates which 

epidemiologic study designs are (or are not) robust to the type of error introduced by 

indoor transport of ambient PM2.5. This information will be useful in the design of 

measurement strategies for future exposure and health studies that make use of refined 

exposure surrogates. Future applications of the tools presented here will  help to elucidate 

relationships between PM2.5 exposure and adverse health outcomes and have the potential 

to aid in the development of strategies to mitigate this exposure. 
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Chapter 2. Variability in the Fraction of A mbient Fine Particulate Matter Found 

Indoors and Observed Heterogeneity in Health Effect Estimates 

Material in this chapter has been published previously as:  

Hodas, N.; Meng, Q. Y.; Lunden, M. M.; Rich, D. Q.; Özkaynak, H.; Baxter, L. K.; 

Zhang, Q.; Turpin, B. J., Variability in the fraction of ambient fine particulate matter 

found indoors and observed heterogeneity in health effect estimates. J. Exposure Sci. 

Environ. Epidemiol. 2012, 22, 448 - 454. 

2.1 Abstract  

 Exposure to ambient (outdoor-generated) fine particulate matter (PM2.5) occurs 

predominantly indoors. The variable efficiency with which ambient PM2.5 penetrates and 

persists indoors is a source of exposure error in air pollution epidemiology and could 

contribute to observed temporal and spatial heterogeneity in health effect estimates. 

Using a mass balance approach, F was modeled for several scenarios across which 

heterogeneity in effect estimates has been observed: with geographic location of 

residence, residential roadway proximity, socioeconomic status, and central air 

conditioning use. Calculated values of F are higher in close proximity to primary 

combustion sources (e.g. proximity to traffic) and for lower income homes. F is lower 

when PM2.5 is enriched in nitrate and with central air conditioning use. As a result, 

exposure error resulting from variability in F will be greatest when these factors have 

high temporal and/or spatial variability. The circumstances for which F is lower in these 

calculations correspond to circumstances for which lower effect estimates have been 

observed in epidemiological studies and higher F values correspond to higher effect 

estimates. These results suggest that variability in exposure misclassification resulting 
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from variability in F is a possible contributor to heterogeneity in PM-mediated health 

effect estimates.  

2.2 Introduction  

 Multiple epidemiologic studies have reported spatial and temporal heterogeneity 

in PM-mediated health effect estimates. Notably, larger effects have been observed for 

the eastern U.S. compared to the western U.S.
1-4

 Several studies report larger risks of 

adverse health outcomes when PM2.5 is enriched in primary combustion tracers
4-7

 and 

with proximity to roadway.
8-11

 Low socioeconomic status has also been identified as a 

predictor of susceptibility to PM-related health effects.
12

 Various factors have been 

explored to explain this variability. Bell et al.
5
 concluded that as much as 37% of spatial 

and seasonal heterogeneity in relative risk of cardiovascular hospital admissions could be 

explained by variability in exposure to specific PM2.5 species. Sacks et al.
12

 identified 

disparities in access to health care as one possible contributor to variability in effect 

estimates by socioeconomic status. This work explores whether variability in the fraction 

of ambient PM2.5 that penetrates into and persists in the home is also a possible 

contributor to observed heterogeneity in fine-PM-mediated health effect estimates.  

 Central site PM2.5 is commonly used as a surrogate for exposure to ambient 

(outdoor-generated) PM2.5 in epidemiology. However, people spend the majority of their 

time indoors (85-90%), and most of that time in their homes.
13

 As a result, exposure to 

ambient PM2.5 mostly occurs in the indoor environment and, specifically, within the 

residence. Importantly, the fraction of ambient PM2.5 that penetrates and persists indoors 

(F) varies temporally
14

 and spatially
15

 and is different for different components of the 

PM2.5 mixture.
16

 Exposure metrics that rely on central site concentrations do not account 
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for this variability, nor do they account for changes in PM2.5 properties (i.e., composition 

and size distribution) that result from outdoor-to-indoor transport.
15

  Variability in F has 

been identified as a potential source of non-Berksonian exposure error that could lead to a 

downward bias and underestimation of effects derived from epidemiological analyses
17-19 

when central-site PM2.5 is used as an estimate of ambient PM2.5 exposure.  Several studies 

are underway which will apply refined exposure surrogates that account for the effects of 

indoor transport to health studies.  This paper articulates the motivation for those studies.  

 There is evidence that F can influence health effect estimates in epidemiological 

studies. Several studies show a reduced risk of mortality or morbidity associated with PM 

when the prevalence of air conditioning (AC) is higher.
2,20-22

 Bell et al.
22

 reported a 43% 

decrease in risk of cardiovascular hospitalization associated with each 10 µg/m
3 

increase 

in PM2.5 for every additional 20% of households with central AC. Central AC prevalence 

explained 17% of between-community variability in PM2.5 effect estimates. The use of 

AC increases particle losses indoors and, therefore, decreases F and exposure to ambient 

PM2.5.
23,24

 Further, homes with AC in use are more likely to have their windows closed 

and, therefore, have lower air exchange rates (and F) compared to homes with open 

windows.
25

 Certainly, the use of AC varies seasonally and geographically, leading to 

heterogeneity in F across regions of the U.S. and across seasons.  

  There are additional factors besides AC that have a dramatic impact on F. F 

depends on the rate at which air within the building is exchanged with outdoor air (air 

exchange rate; AER), the efficiency of particle penetration across the building envelope, 

depositional losses in indoor air, and, for semi-volatile species, particle losses or gains 

due to phase changes. These parameters vary temporally and spatially with factors such 
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as meteorological conditions, building characteristics, human activities, and PM2.5 source 

mix.
26,27

   

 This paper explores whether variability in F could contribute to the observed 

heterogeneity in effect estimates with geographic location of residence, residential 

proximity to roadways, air conditioning use, and socioeconomic status. It is hypothesized 

that regions and circumstances for which lower effect estimates have been observed in 

epidemiological studies (i.e., with AC use and residence in the western U.S.) have lower 

F values and that regions and circumstances with higher effect estimates (i.e., residence 

in the eastern U.S., close proximity to roadways, and low socioeconomic status) have 

higher F values. While other factors undoubtedly also contribute to differences in effect 

estimates, it should be noted that when F is lower, the non-differential exposure 

misclassification that results when central-site PM2.5 concentrations are used to estimate 

exposure is greater, resulting in larger bias towards the null and underestimation of 

effects.   

2.3 Methods 

2.3.1 Main Analysis 

 To identify situations for which variations in F may contribute substantially to 

exposure error, a mass balance approach was used to model F under a variety of 

scenarios related to the conditions under which heterogeneity in effect estimates has been 

observed (i.e., with geographic location of residence, residential roadway proximity, 

socioeconomic status, and air conditioning use). Specifically, F was modeled for two 

homes, a ñtypicalò home and a low-income home, under a variety of conditions: location 



33 
 

 

in the eastern U.S. and the western U.S., in close proximity and further from a roadway, 

and with and without central AC in use.  

 For non-volatile species, the mass balance model describes the concentration of 

PM2.5 species j in indoor air (Cin,j) as a function of its outdoor concentration (Cout, j), 

residential air exchange rate (AER), the efficiency of particle penetration across the 

building envelope (Pj), and the rate of indoor loss by deposition (kdep, j):  

  
ȟ  ὅ ὖ ὃὉὙ ὅ ȟὯ ȟ ὃὉὙ                             (1a) 

For nitrate, which is semi-volatile and can undergo phase changes, the model includes the 

rate of indoor loss by evaporation (Ὧ ȟ ):             

        
ȟ

 ὅ ȟ ὖ ὃὉὙ ὅ ȟ Ὧ ȟ ὃὉὙ Ὧ ȟ          (1b) 

The steady state solution to Equations (1a) and (1b) was used in the calculations below to 

solve for Cin,j: 

ὅ ȟ ὅ ȟ
ȟ

                                                 (2a) 

ὅ ȟ ὅ ȟ
ȟ  

                                    (2b) 

Summing Cin,j over all major particle species provides the indoor concentration of 

ambient PM2.5, since no indoor sources are included in the model. Without indoor 

sources, F is the ratio of the PM2.5 concentration indoors to outdoors:  

Ὂ                                                                                   (3) 

 A version of the model used in this analysis has been previously validated with 

real-time particle species and AER measurements made inside and outside of an 

unoccupied (closed) house in California.
28,29

 Calculated indoor concentrations captured 
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well the attenuation of the outdoor concentrations and were highly correlated with indoor 

measurements (R
2
 = 0.8-0.93).29  

 Using this mass balance model, the indoor concentrations and composition of 

ambient PM2.5 were predicted for several scenarios representative of conditions for which 

variability in effect estimates has been observed. First, PM2.5 composition and size 

distributions were varied in calculations of F to capture variability across geographic 

location in the U.S. and with roadway proximity. For this analysis, the major contributors 

to PM2.5 mass (sulfate, nitrate, elemental carbon (EC), organic carbon (OC), and soil) 

were considered and residential outdoor composition measurements from the 

Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study
30

 and species-specific 

size distributions from an Aerosol Mass Spectrometer (AMS)
31,32

 were used. Certainly 

disparities in health effects could result from differences in concentrations of other PM2.5 

species (e.g., metals), but these species comprise a very small fraction of total fine 

particle mass and will not affect F in a measureable way. The RIOPA OC measurements 

are artifact corrected and were converted to organic matter (OM) using a factor of 1.4.
30

 

It should be noted that in the RIOPA study, all major fine particle species were measured, 

with the exception of nitrate and water. For the calculations presented here, it was 

assumed that nitrate completes the species mass balance, providing an upper bound 

estimate for nitrate.  

 PM2.5 composition for each scenario is shown in Figure 2-1. Scenario (a) 

represents a typical northeastern U.S. PM2.5 composition; it is the mean composition 

measured outside Elizabeth, NJ homes during the RIOPA study.
30

 Scenario (b) represents 

a high PM2.5 episode in the southwestern U.S; it is enriched in nitrate. Scenario (b) has 
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the mean composition of the top 25th percentile PM2.5 mass concentration days from the 

Los Angeles County RIOPA measurements.
30

 Scenario (c), which represents a 

northeastern U.S. near roadway scenario, is enriched in OC and EC based on the near-

roadway measurements of Lena et al.
33 

 

 Particle composition is taken into account in the calculations of F through the use 

of species-specific deposition loss rates and by accounting for the semivolatile nature of 

nitrate. The value for kevap,NO3- is from the work of Lunden et al.
34

 and Hering et al.
29

 and 

involves the temperature-dependent equilibrium constant for ammonium nitrate 

dissociation (Appendix A). Other PM components, including organic PM, were treated as 

non-volatile. Size-resolved kdep values were fit based on species-resolved size 

distributions as described below.  Thus, changes in PM2.5 composition result in changes 

in kdep and changes in F. 

 Because particle size distributions are driven by formation mechanisms, ambient 

species-specific size distributions are less variable than size distributions for total particle 

mass (Appendices A1, A2). Therefore, a kdep value was assigned for each of the major 

PM2.5 species based on species-resolved size distributions measured with the Aerodyne 

Aerosol Mass Spectrometer (AMS), which measures vacuum aerodynamic diameter.
35

 

For the northeastern United States composition scenarios, species-specific size 

distributions measured in Queens, NY in August 2001
31

 were used. Species-specific size 

distributions measured in Fresno, CA in January 2010
32

 were used to represent the 

southwestern U.S.  

 Hourly, campaign-averaged species-resolved size distributions (Appendix A) 

were examined to determine the number and frequency of modes, the mass median 
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diameter (MMD) and geometric standard deviation of each mode, and the fraction of total 

mass in each mode when distributions were bimodal. The most frequently observed 

distribution was chosen as representative of each species (Figure 2-2). For all 

composition scenarios, a mass median diameter of 2.0 µm was assumed for soil. It was 

also assumed that the smaller diameter mode observed for OC in New York was 

representative of EC (The AMS does not measure EC).  For scenario (c), the near 

roadway scenario, both EC and OC were assumed to be entirely in the smaller diameter 

mode, as is likely for fresh, primary PM2.5.  

 Values of kdep for the MMD of each species were assigned using the deposition 

curve presented in Riley et al.,
26

 which combines a physical particle deposition model 

with empirically determined kdep values from several sampling studies. Results are 

summarized in Table 2-1. For all calculations and species, a constant Pj value of 0.8, the 

median of the range of measured P values reported in the literature for particles in the 

size range examined here (P = 0.6 -  1.0),
36

 was assumed. 

 For the northeastern U.S. mean composition scenario, the effects of central air 

conditioning on F were also considered (scenario d). As noted above, air conditioning 

increases particle losses indoors by filtering re-circulated air. To account for this, a 

species-specific filter penetration efficiency term (Pfilter) was added to the model based on 

the particle-size-resolved filter efficiency curve presented in Riley et al.
26

 for residential 

buildings using the same MMDs as were used to assign kdep values. Values of Pfilter for 

each species are given in Table 2-1. 

 For each scenario described above, F was calculated for two AERs. AERs from 

the literature were used to represent typical U.S. homes and low-income residences, 
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respectively, in order to illustrate how F varies with the socioeconomic status of the 

residents. The median measured AER from an aggregation of AER measurement studies 

that spanned all climatic regions of the U.S. was used to represent typical U.S. housing 

stock (0.45 h
-1

).
37

 The geometric mean of AERs measured in 255 low-income homes 

(0.90 h
-1

)
37

 was used to represent low-income residences. AER also varies within homes 

with meteorological conditions, season, and human activity patterns (e.g., opening 

windows). 

2.3.2 Sensitivity Analyses 

 The sensitivity of the mass balance model to uncertainty in PM2.5 species size 

distributions was evaluated. For scenario (a), F was calculated for total PM2.5 by fitting 

kdep values based on the size distribution for  total PM2.5 mass (i.e., the sum of the 

measured species). The total PM2.5 mass size distribution is bimodal with a smaller mode 

MMD near 0.08 ɛm and a larger mode MMD near 0.4 ɛm, which correspond to kdep 

values of 0.05 and 0.07 h
-1

, respectively. Because PM2.5 mass is not broken down by 

species here, evaporative losses of nitrate with transport indoors are not accounted for in 

this calculation. To separate the effects of not accounting for the evaporative losses of 

nitrate and not accounting for the variability in kdep across species, F was also 

recalculated for scenario (a) neglecting evaporative losses of nitrate. In this case, 

variability in kdep across species is accounted for, but nitrate is treated as non-volatile. 

 The sensitivity of the model to variations in species-specific size distributions 

across season and location was also evaluated. Size- and species-resolved PM2.5 

concentration data are available for only a limited number of cities and, where they are 

available, are generally limited in their temporal scope. Thus, it is important to evaluate 
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how temporal and spatial variability in PM2.5 species size distributions might contribute 

to uncertainty in the methods illustrated here. F was recalculated for scenarios (a) and (d) 

using kdep and Pfilter values fit based on the Fresno size distribution data in place of the 

New York size distribution data. F was also recalculated for scenarios (a) and (d) with 

kdep and Pfilter values fit using size distributions measured in New York during the 

winter.
31

 Winter size distributions were analyzed in the same manner as described above. 

During the winter sampling campaign, particulate sulfate, nitrate and organics had size 

distributions that could be characterized by a single mode with an MMD near 0.3 µm. EC 

and Soil MMDs were held constant at the values used in the main analysis. This 

calculation was done for both scenarios (a) and (d) because, for the particle size ranges 

considered here, the filter efficiency curve is more sensitive to changes in particle 

diameter than the deposition-rate curve.
26 

 

 To evaluate the sensitivity of the model to uncertainty in size distribution 

measurement, the MMD of sulfate and nitrate were varied between 0.5 and 0.7 ɛm in the 

calculations of F. Previous studies have reported an MMD of 0.7 µm for nitrate and 

sulfate size distributions when measurements are resolved to account for sampler 

collection efficiencies.
e.g. 38,39

 The impact of uncertainty in EC size distributions was also 

considered. Notably, the AMS does not measure EC size distributions. In the main 

analyses, it was assumed that EC was represented by the smaller mode of the bimodal OC 

size distribution measured in New York. Here, we recalculated F for scenario (a), 

assuming EC has the same bimodal distribution as OC, as might be expected for an air 

mass characterized by a mix of primary and regionally-transported, aged PM2.5.  
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 Uncertainty in particle size distributions also contributes to uncertainty in Pj 

because, like deposition, the loss mechanisms that govern penetration efficiency are 

particle-size dependent. Pj also varies with building ventilation conditions and the 

geometry of cracks in the building shell.
36,40,41

 While it is known from laboratory studies 

that complex crack geometry and increased roughness of crack surfaces result in lower P 

values, the characteristics of cracks in buildings are not well known and are likely to be 

highly varied within and across buildings.
36,40

 Furthermore, size-resolved measurements 

of Pj under a variety of ventilation conditions and building characteristics are limited. As 

a result, there is substantial uncertainty in Pj. Chen and Zhao
36

 reported that P values 

measured in real buildings generally range from 0.6 to 1.0 for particles in the size range 

considered here. Williams et al.,
41

 however, reported a minimum P value of 0.11 

measured during the Research Triangle Park Particulate Matter Panel Study. The effect of 

uncertainty in Pj was evaluated by calculating the change in F if Pj was 0.6, 1.0 and 0.11, 

rather than 0.8 for all species.   

2.4 Results 

2.4.1 Main Analysis 

 Outdoor-to-indoor transport reduced ambient PM2.5 concentrations to roughly 

one-half of their outdoor values, on average, in the modeling scenarios, depending on 

AER, PM2.5 composition, and air-conditioning use (Figure 2-3). Variations in F due to 

variations in PM2.5 composition alone and AER alone were comparable. When 

considering variations in PM2.5 composition alone (i.e., comparing scenarios (a) ï (c) at a 

fixed AER), F changed by between 7 and 32%. When considering variations in AER 

alone (i.e. comparing each scenario across AERs), F changed by between 13 and 22%. It 
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was higher for the ñnear roadwayò scenario and at the ñlow incomeò AER of 0.90 h
-1

 and 

it was lower for the ñhigh nitrateò scenario and with air conditioning. Notably, F was 

nearly a factor of two greater for the ñnear roadwayò scenario at the ñlow incomeò AER 

(F=0.62) than for the high nitrate scenario at the ñtypicalò AER (F=0.36). This suggests 

heterogeneity in F between low income urban residents and higher income suburban 

residents in the southwestern U.S., for example. The semi-volatile nature of nitrate was 

responsible for the largest compositional effects. At an AER of 0.45 h
-1

, ambient 

particulate nitrate indoors was only 12% of its outdoor concentration; in contrast F was 

0.67 for sulfate. Increased particle losses due to the filtration of re-circulated air in central 

air conditioning systems had the largest overall impact on F. Compared to the natural 

ventilation scenario with the same PM2.5 composition and size distribution, air 

conditioning decreased F by 34 and 35% at AERs of 0.45 and 0.90 h
-1

, respectively. 

Calculated values of F (Figure 2-3) are in agreement with the range of F values 

reported by several studies (F= 0.32-0.8).
36

 Sarnat et al.
42

 and Lunden et al.
43

 observed 

higher values of F for EC (0.84 and 0.64, respectively) compared to other species.  This  

is consistent with the higher F values we calculated for EC (0.71, 0.75 for AERs of 0.45 

and 0.90 h
-1

, respectively) and the higher F values we calculated for the high 

carbonaceous aerosol (near roadway) scenario.  

2.4.2 Sensitivity Analyses 

 F increased substantially when PM2.5 mass was treated as a single entity, rather 

than a mix of separate species with distinct loss rates. Using kdep values fit for total PM2.5 

mass, F values of 0.69 and 0.74 were obtained for AERs of 0.45 and 0.90 h
-1
, 

respectively. This is an increase in F of 30 and 23% over the values obtained for scenario 
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(a) in the initial analysis. Not accounting for variability in kdep across species and not 

accounting for the evaporative losses of nitrate both contributed to this increase in F. 

Accounting for variability in kdep across species, but not evaporative losses of nitrate 

resulted in F values of 0.66 and 0.72 at AERs of 0.45 and 0.90 h
-1

, respectively. 

 The model showed little sensitivity to changes in kdep with variations in species-

specific size distributions across season and location; it was more sensitive to changes in 

Pfilter. The overall F value for scenario (a: NE composition) did not change when kdep 

values fit based on the Fresno species-specific size distributions were used rather than the 

New York City size distributions. Similarly, F values changed by less than 2% when kdep 

values were selected based on the winter New York size distributions rather than the 

summer values. Using Fresno size distributions in place of New York Size distributions 

to fit kdep and Pfilter for scenario (d) resulted in an increase in F of only about 3%, but 

using winter New York size distributions to fit kdep and Pfilter rather than summer values, 

resulted in an increase of F of 15 ï 17%, depending on AER. 

 Varying the sulfate MMD between 0.7 and 0.5 ɛm changed F by less than 3% (F 

for sulfate is 0.62 assuming a MMD of 0.7 ɛm and 0.67 assuming a MMD of 0.5 ɛm, for 

an AER of 0.45 h
-1

). Varying the MMD for nitrate over the same range had a negligible 

effect on F because evaporation, not deposition, is the dominant loss mechanism. Using 

kdep values fit assuming EC was bimodal for scenario (a) had no effect on F. 

F is sensitive to uncertainty in P. Varying Pj between 0.6 and 1.0, the range 

reported by Chen and Zhao et al.,
36

 changed F by as much as 25% compared to our 

calculations that assumed a Pj value of 0.8 for all species. A P value of 0.11, the 

minimum reported by Williams et al.,
41

 reduced F by about 86%.  
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2.5 Discussion 

2.5.1 Implications for Epidemiology 

The results of this study suggest that variability in the fraction of ambient PM2.5 

that penetrates into and persists in indoor air is a possible contributor to the observed 

heterogeneity in PM-mediated health effect estimates. As hypothesized, lower values of 

F correspond to the conditions for which lower PM-mediated effect estimates have been 

observed. The ñscrubbingò of nitrate from indoor-transported aerosol is a source of non-

differential exposure misclassification when outdoor PM2.5 concentrations are used as 

exposure surrogates. As a result, there is greater exposure misclassification in regions 

where nitrate is a large and variable fraction of the PM2.5 mass. There are large 

geographic differences in PM2.5 composition across the United States, with nitrate 

comprising a larger and more variable fraction of ambient PM2.5 mass in the western 

United States compared to the eastern United States.
44

 Thus, the lower F value calculated 

for the southwestern U.S., high nitrate scenario is consistent with the lower risk estimates 

for PM-associated morbidity/mortality in the western U.S.
1-4

 Similarly, F was greatly 

reduced in these calculations by the addition of a term to account for filtration losses in 

air conditioning systems. This is consistent with the lower effect estimates observed for 

communities with a higher prevalence of central AC.
2,20-22 Variability in air conditioning 

use with season and meteorological conditions may also contribute to temporal 

heterogeneity in effect estimates. 

When F is larger and less variable, ambient PM2.5 exposures are more similar to 

and more highly correlated with central-site PM2.5 concentrations. As a result, biases not 

attributable to Berkson's fallacy are smaller. A higher F value was observed for the near 
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roadway scenario, which is consistent with several studies that report larger risks of 

adverse health outcomes when PM2.5 is enriched in primary combustion tracers
4-7 

and 

with proximity to roadway.
e.g. 8-11

While PM2.5 components associated with primary 

combustion sources might be more toxic than others, these results suggest that fresh 

combustion particles also penetrate and persist indoors with higher efficiency than 

secondary sulfate due to their smaller depositional losses. Low socioeconomic status, a 

predictor of susceptibility to PM-related health effects,
12

 affects F because low income 

residences tend to have higher AER values and are more likely to be in close proximity to 

busy roadways. The results of this study suggest that both factors enhance exposure to 

ambient PM2.5. Note F values were as much as 22% greater at an AER of 0.90 h
-1

 

compared to an AER of 0.45 h
-1 

for the scenarios studied. Disparity in exposure 

misclassification, in addition to factors such as access to health care, could contribute to 

differences in health effect estimates for these populations.  

While the focus of this analysis was on spatial variability, parameters considered 

in this analysis also vary temporally. For example, AERs vary with meteorological 

conditions (e.g., wind, indoor-outdoor temperature difference) and home ventilation 

conditions (e.g., open windows versus closed windows). The physical and chemical 

properties of ambient PM2.5 also vary temporally with variations in primary emissions, 

atmospheric stability, relative humidity, and photochemical activity. Certainly, AC use 

varies temporally with outdoor temperature. Thus, variability in F could contribute to 

exposure misclassification in time-series epidemiology, as well as to the observed 

geographic differences in PM-mediated health effect estimates.  

2.5.2 Refined Exposure Surrogates 
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This study suggests that refined exposure surrogates that account for the outdoor-

to-indoor transport of PM2.5 could reduce exposure error in PM2.5 epidemiology. Tools for 

modeling indoor concentrations of ambient PM2.5 exist, are being refined, and are being 

incorporated into population exposure models such as the Stochastic Human Exposure 

and Dose (SHEDS) model.
45

 Such models show promise for the development of exposure 

surrogates for epidemiology that account for modifications of ambient PM2.5 with 

outdoor-to-indoor transport. This paper illustrates a method to predict the indoor 

concentration and composition of ambient PM2.5 ï a method that makes use of readily 

available data and is computationally inexpensive.  It is proposed that this approach could 

be used to provide refined exposure surrogates for population-based epidemiologic 

analyses. In the following paragraphs, recommendations for the use of this method to 

generate refined exposure estimates are made and important refinements are discussed.  

The sensitivity analysis presented above demonstrates the importance of 

accounting for species-specific losses in indoor air when predicting indoor concentrations 

of ambient PM2.5. Treating ambient PM2.5 as a single entity resulted in a substantial 

increase in F over the calculation that accounted for differences in depositional losses 

across species and phase changes of nitrate. Thus, the potential benefits from use of 

refined exposure surrogates may not realized if F is calculated based on total PM2.5 mass 

rather than PM2.5 composition and species-resolved size distributions. Notably, particle 

species size distributions are not frequently measured. Most species size distribution 

measurements have been made during intensive sampling campaigns in remote locations 

for the purpose of visibility research. It is expected that broad generalizations can be 

made about species size distributions based on source proximity and atmospheric 
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chemistry.  However, a systematic analysis backed by measurements has not been 

performed to support the application of the methods demonstrated here to other locations. 

An improved understanding of the variability of PM2.5 species size distributions would 

help facilitate the use of this model elsewhere.  

The sensitivity analysis also illustrates the importance of accounting for phase 

changes of semivolatile species. F decreased by as much as 25% when the evaporative 

losses of nitrate were accounted for. A limitation of this method is that organic PM2.5 is 

treated as non-volatile, when in fact it is semi-volatile.
46

 Sampling studies have 

demonstrated that phase changes of organics can impact F. Lunden et al.
43

 concluded that 

a lower F for OC (F=0.5) than for EC (F=0.61) in an unoccupied home was due to 

evaporation of some particulate organic matter as organic gases sorbed to indoor 

surfaces. However, it has also been suggested that ambient organic matter shifts from the 

gas into the particle phase by sorption into indoor-generated PM in occupied homes.
47

 

This has been demonstrated for polycyclic aromatic hydrocarbons.
48

 Accounting for 

phase changes of ambient organics with outdoor-to-indoor transport to further refine 

ambient PM2.5 exposure prediction is an area of future research. 

Particle loss mechanisms are influenced by many factors in addition to particle 

size and composition, including home ventilation conditions, air flow characteristics, and 

building construction.
16,23,2649,50

 For example, P values are likely to differ for homes 

above and below the poverty line, with homes below the poverty line (which tend to be 

leaker)
51

 having higher P values. Thus, the disparity in F values for homes above and 

below the poverty line could be larger than demonstrated here. It should be noted that 

sampling from particle size distributions to generate distributions of kdep, P, and Pfilter 
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values (e.g. Monte Carlo methods) representative of each PM2.5 species would better 

capture the distribution of PM2.5 exposures over a wider range of conditions than the use 

of a single value for each PM2.5 species, as done in this demonstration. This refinement is 

recommend when using the methods demonstrated here to generate exposure 

distributions. Distributions of these model parameters reflecting each PM2.5 species size 

distribution (i.e. Figure 2-2) can be obtained using distributions of P, kdep, and Pfilter 

available for a range of particle sizes and under a variety of conditions.
e.g.

 
16,26,50

  

While AER values in this work were taken from the literature, AER distributions 

for a study population can be modeled. The Lawrence Berkeley National Laboratory 

(LBNL) infiltration model
52,53 

has the potential to provide AER estimates that could be 

used in mass balance models to generate refined estimates of exposure to ambient PM2.5. 

Currently, the LBNL infiltration model predicts AER distributions for closed (i.e. 

windows and doors closed) housing stock using housing-characteristics data that are 

readily available from sources such as the Census and American Housing Survey and 

meteorological data available, for example, from the National Climate Data Center.
51,52,54 

The LBNL infiltration model must be adapted to account for natural ventilation (i.e. air 

flow through open windows/doors). This is an active area of research.
e.g. 25

  As is 

recommended for kdep, P, and Pfilter, sampling from the distribution of AERs generated 

with the LBNL Infiltration Model is recommended when calculating exposure 

distributions. 

 The method presented here does not account for exposure to ambient PM2.5 in 

environments other than the home. In addition, the methods presented in this work are 

meant only to predict the indoor concentrations of ambient PM2.5 in single family, 
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detached homes. While people do spend the majority of their time in their homes (near 

70%), they also spend time in other indoor environments, outdoors and in transit.
13

 

Exposure to ambient PM2.5 in these environments also contributes to total ambient PM2.5 

exposure. Prediction of the concentrations of ambient PM2.5 in these other environments 

and in multi-family residences is also needed. 

2.6 Conclusions 

Variability in the fraction of ambient PM2.5 that penetrates and persists indoors 

can be substantial and may contribute to the heterogeneity in effect estimates of PM-

related health outcomes. This work suggests that F is higher in close proximity to 

primary combustion aerosol (e.g. proximity to traffic) and with increased prevalence of 

poverty. F is lower when PM2.5 is enriched in nitrate and with AC use. As a result, 

exposure error resulting from variability in F will be greatest when these factors have 

high temporal and/or spatial variability. Analyses of the relative sizes of the temporal and 

spatial errors in exposure estimates are needed in order to understand which types of 

epidemiological study designs are more, versus less affected by this type of exposure 

error.  Certainly case-crossover designs, in which each subject acts as their own control, 

can avoid errors associated with location of residence, proximity to sources, 

socioeconomic status, and residential construction. The methods described here have the 

potential to reduce exposure misclassification for the study designs for which this 

variability is not inherently controlled for.   
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 Sulfate Nitrate  Elemental 

Carbon 

Organic 

Carbon 

Soil 

Queens, NY      

MMD
1
 (µm) 0.5 0.5 0.07 0.07, 0.4 2.0 

kdep
2
 (h

-1
) 0.09 0.09 0.06 0.06, 0.07 0.58 

Pfilter
2
 0.60 0.60 0.85 0.85, 0.70 0.00 

Fresno, CA      

MMD
3
 (µm) 0.5 0.4 0.07 0.3 2.0 

kdep
2
 (h

-1
) 0.09 0.07 0.06 0.06 0.58 

Pfilter
2
 0.60 0.70 0.85 0.78 0.00 

 

 

 

 

 

Table 2-1. Mass median diameter (MMD) and associated kdep and Pfilter  values used 

for particulate soil, sulfate, nitrate, elemental carbon, and organic carbon. Values of 

kdep and Pfilter are from Riley et al. 
26 

 

  

1
 Drewnick et al. (2004) 

2
 Riley et al. (2002) 

3
 Ge et al. (2012) 
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Figure 2-1. Three PM2.5 composition scenarios. (a) ñnortheastern mean compositionò.  

(b) ñsouthwestern high nitrateò composition (c) ñnear roadwayò composition.  Scenario 

(d) uses the ñnortheastern mean compositionò with air conditioning. 
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Figure 2-2.  Most frequently observed size distributions for major PM 2.5 species 

(sulfate, nitrate, organic matter). (a) in Queens, NY in August 2001 (Drewnick et al., 

2004) and (b) Fresno, CA in January 2010 (Ge et al., 2012). 
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Figure 2-3. Outdoor and indoor concentrations of ambient PM2.5 and the fraction of 

outdoor PM2.5 that penetrates and persists indoors (F) for the scenarios described in 

Figure 2-1 and Table 2-1.  Note the ñNE mean compositionò and ñair conditioningò 

scenarios have the same composition and species-specific size distributions.  Data labels 

are F values for each scenario. (a) typical residential U.S. air exchange rate of 0.45 h
-1

 

and (b) air exchange rate for low income residence of 0.90 h
-1

.
37 
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Chapter 3. Refined Ambient PM2.5 Exposure Surrogates and the Risk of Myocardial 

Infarction  

Material in this chapter has been published previously as: 

Hodas, N.; Turpin, B. J.; Lunden, M. M.; Baxter, L. K.; Özkaynak, H.; Burke, J.; Ohman-

Strickland, P.; Thevenet-Morrison, K.;  Rich, D. Q., Refined ambient PM2.5 exposure 

surrogates and the risk of myocardial infarction. J. Exposure Sci. Environ. Epidemiol. 

2013, 23, 573 - 580. 

3.1 Abstract 

 Using a case-crossover study design and conditional logistic regression, the 

relative odds of transmural (full -wall) myocardial infarction (MI) calculated using 

exposure surrogates that account for human activity patterns and the indoor transport of 

ambient PM2.5 were compared with those calculated using central-site PM2.5 

concentrations to estimate exposure to PM2.5 of outdoor origin (exposure to ambient 

PM2.5). Because variability in human activity and indoor PM2.5 transport contributes 

exposure error in epidemiologic analyses when central-site concentrations are used as 

exposure surrogates, surrogates that account for this variability are referred to as 

"refined" surrogates. As an alternative analysis, whether the relative odds of transmural 

MI associated with increases in ambient PM2.5 is modified by residential air exchange rate 

(AER), a variable that influences the fraction of ambient PM2.5 that penetrates and 

persists indoors, was evaluated. Use of refined exposure surrogates did not result in larger 

health effect estimates (ORs = 1.10 - 1.11 with each interquartile range increase.), 

narrower confidence intervals, or better model fits compared to the analysis that used 

central-site PM2.5. Evidence for heterogeneity in the relative odds of transmural MI with 
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residential AER (effect-modification) was observed, with residents of homes with higher 

AERs having larger ORs than homes in lower AER tertiles. For the level of exposure-

estimate refinement considered here, these findings add support to the use of central-site 

PM2.5 concentrations for epidemiological studies that employ similar case-crossover 

study designs. In such designs, each subject serves as his or her own matched control. 

Thus, exposure error related to factors that vary spatially or across subjects should only 

minimally impact effect estimates. These findings also illustrate that variability in factors 

that influence the fraction of ambient PM2.5 in indoor air (e.g., AER) could possibly bias 

health effects estimates in study designs for which a spatio-temporal comparison of 

exposure effects across subjects is conducted. 

3.2 Introduction  

 A recent meta-analysis, which reported a statistically significant 2.5% increase in 

the risk of myocardial infarction (MI) associated with each 10 µg/m
3
 increase in ambient 

(outdoor-generated) PM2.5 concentration lagged one day, concluded that acute increases 

in PM2.5 may trigger MI.
1
 A previous study, which was included in this meta-analysis, 

reported an increased risk of transmural (full wall) MI, but not non-transmural 

(subendocardial) MI, associated with increased PM2.5 concentration in the 24 hours 

before emergency department admission for that infarction.
2
 The work presented here 

builds on this "initial" analysis. In all of these studies, PM2.5 measured at one or more 

nearby (within 10 km) central-site monitors was used as a proxy for a subjectôs exposure 

to PM2.5 of outdoor origin (i.e., exposure to ambient PM2.5). This likely resulted in 

exposure error due, in part, to proximity to local sources, human activity patterns (e.g., 

time spent in various locations) and temporal and spatial variability in the efficiency with 
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which ambient PM2.5 penetrates into and persists in the indoor environment. While other 

air pollution studies have explored exposure refinements that account for spatial 

variability in ambient PM2.5 due to local sources,
e.g. 3-6

 the variable effects of human 

activity patterns and ambient PM2.5 losses with outdoor-to-indoor transport are largely 

unexplored. 

 The fraction of ambient PM2.5 that penetrates and persists indoors (F) varies with 

multiple factors including particle size and chemical composition, housing characteristics 

(e.g., home age), meteorological conditions (e.g., wind speed and temperature),
7,8

 and 

human activities (e.g., opening windows or using air conditioning).
9
 Variability in the 

time spent in various locations (e.g., outdoors, indoors, or in a vehicle) also influences 

personal exposure to PM2.5 of outdoor origin due to spatial variability in both outdoor 

PM2.5 concentrations and the indoor transport of ambient PM2.5. This exposure error is 

likely a combination of Berkson and classical errors, which would bias effect estimates 

towards the null and/or inflate variances,
10,11

 hampering the detection of statistically 

significant associations between increased ambient PM2.5 exposures and the risk of MI. 

Therefore, ambient PM2.5 exposure surrogates that account for these factors could offer 

improvement over the direct use of central-site monitor PM2.5 concentrations in air 

pollution epidemiology studies. 

 Exposure errors associated with variability in F and human activity patterns may 

modify ambient-PM-mediated health effect estimates. Multiple studies have reported a 

lower risk of morbidity or mortality associated with increases in PM2.5 concentration in 

communities with a high prevalence of central air conditioning (AC), compared to risk 

estimates among communities with lower AC prevalence.
12-16

 Central AC use reduces F 
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because indoor air is filtered as it is re-circulated, thus increasing particle losses 

indoors.
17-19

 In Chapter 2, it is reported that conditions resulting in lower calculated 

values of F (due to spatial variability in PM2.5 composition and/or residential AER) 

corresponded to circumstances under which lower effect estimates had been observed in 

previous epidemiological studies. It was concluded that exposure misclassification due to 

variability in F could partially explain this observed geographic heterogeneity in 

ambient-PM-mediated health effect estimates.
20 

 Using a case-crossover study design, herein the relative odds of transmural MI 

associated with increased ambient PM2.5 exposure in the previous 24 hours were 

estimated using three different PM2.5 exposure metrics that account for variability in 

human activity patterns and/or the indoor transport of ambient PM2.5: (a) a stochastic 

human exposure model that simulates the ambient PM2.5 concentration and  time spent in 

each of several locations (i.e. outdoors, indoors, in a vehicle) to estimate population 

distributions of ambient PM2.5 exposure, (b) a deterministic mass-balance model that 

estimates residential, indoor concentrations of ambient (outdoor-generated) PM2.5 using a 

more refined treatment of residential air exchange rates (AERs) and PM2.5 penetration 

and losses with indoor transport, and (c) a hybrid of these two models.
21

 As noted above, 

variability in human activity patterns and the indoor transport of ambient PM2.5 can 

contribute to exposure error in epidemiologic analyses when central-site concentrations 

alone are used to estimate exposure to ambient PM2.5 and, thus, the exposure surrogates 

that account for this variability are referred to as "refined" exposure surrogates in the 

following text. It was hypothesized that these refined ambient PM2.5 exposure surrogates 

would have less non-differential exposure error (which tends to bias effect estimates 
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towards the null) and, thus, would result in larger health effect estimates, narrower 

confidence intervals, and better model fits compared to the analysis that used central-site 

PM2.5 concentrations alone as surrogates for ambient PM2.5 exposures. As an alternative 

analysis, whether the association between ambient PM2.5 and transmural MI is modified 

by residential AER was evaluated. For this analysis, it was hypothesized that effect 

estimates would be smaller for low AERs because a smaller fraction of ambient PM2.5 

penetrates and persists indoors. Thus, at low AERs, the difference between central-site 

PM2.5 concentrations and actual ambient PM2.5 exposure is greater, resulting in 

proportionally more non-differential exposure misclassification and larger bias towards 

the null (i.e. greater underestimation of effect). 

3.3 Methods 

3.3.1 Study Population and Outcome Definition  

 The study population and definition of transmural infarction used in this study 

have been described previously.
2
 Briefly, all unscheduled hospital admissions with a 

primary diagnosis of acute myocardial infarction (International Classification of Diseases 

9th Revision [ICD-9] code 410.01, 410.11, 410.21, 410.31, 410.41, 410.51, 410.61, 

410.71, 410.31, 410.91) were extracted from the Myocardial Infarction Data Acquisition 

System (MIDAS), a New-Jersey-wide database of hospital discharges and death 

certificate registrations.
22,23

 Only those patients who were admitted between January 

2004 and December 2006, were Ó18 years of age, were residents of New Jersey at the 

time of their MI, and had no previous diagnosis of MI were inlcuded. These subjects (n = 

1563) were primarily male (63%) and white (69%) and had a median age of 62. Only 

subjects who resided within 10 km of a central-site monitor at the time of their MI were 
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included in this study. This study was approved by the Institutional Review Boards of the 

University of Medicine and Dentistry of New Jersey and Rutgers, The State University of 

New Jersey and the University of Rochester Research Subjects Review Board. MIDAS 

was also approved by the New Jersey Department of Health and Senior Services 

Institutional Review Board.  

3.3.2 Exposure Surrogates 

 Four different exposure surrogates generated from central-site monitor 

concentrations were used to estimate personal exposure to PM2.5 of outdoor origin (i.e., 

exposure to ambient PM2.5). Because a significantly increased relative odds of transmural 

MI associated with average PM2.5 concentrations in the 24 hours preceding emergency 

department admission was observed in the initial analysis,
2
 here, hourly ambient PM2.5 

exposures were computed and averaged over that 24 hour period for each exposure 

metric. Detailed descriptions of each exposure surrogate and comparisons between them 

are available elsewhere.
21

 In the following paragraphs, a brief description of each 

exposure metric is provided. The exposure surrogates are labeled based on their level of 

refinement and complexity, with higher-numbered Tiers corresponding to a greater 

degree of refinement. 

Tier 1. Central-site PM2.5 Concentrations. For Tier 1, hourly ambient PM2.5 

concentrations for the study period (January 2004 - December 2006) measured at 7 New 

Jersey Department of Environmental Protection monitors were retrieved from the United 

States Environmental Protection Agency website.
24

 The zip code of each patientôs 

residence at the time of MI was extracted from MIDAS and subjects were assigned 24 

hour average PM2.5 concentrations, for all case and control periods, from the monitor 
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closest to their residence.
2
 Tier 1 exposure estimates varied temporally within and across 

central-site-monitor regions with ambient PM2.5 concentrations. Because subjects residing 

within 10 km of the same monitor were assigned the same exposure value for a given 24-

hour case or control period, there was no geographic variability in exposure estimates 

within that 10 km radius. Within a given case or control period, however, exposure 

estimates did vary across monitoring locations.  

Tier 2a. SHEDS ï In Tier 2a, the exposure-modifying effects of human activity 

patterns and the indoor transport of ambient PM2.5 were taken into account using the 

Stochastic Human Exposure and Dose Simulation (SHEDS) model.
25

 Distributions of 

ambient PM2.5 exposures were generated for a simulated population representative of the 

study population. For each census tract within 10 km of a central-site monitor, 10,000 

representative individuals were simulated by sampling from census-tract level 

demographic data (gender, age, and employment status) from the 2000 U.S. Census. For 

each simulated individual, a time series of human activity patterns was simulated using 

diary data from the Consolidated Human Activity Database
26

 matched by age, gender, 

season, and day of week. Hourly central-site PM2.5 concentrations (Tier 1) were used as 

inputs, and personal exposure to PM2.5 of outdoor origin was calculated as a time-

weighted average of the ambient PM2.5 concentrations in each microenvironment (e.g. 

home, office, outdoors). Note, indoor PM2.5 sources were set to zero to estimate the 

distribution of exposures to PM2.5 of outdoor origin only (i.e., ambient PM2.5 exposures) 

in each census tract. For residential microenvironments, SHEDS sampled from a 

representative distribution of housing types, AERs, particle penetration efficiencies, and 

indoor particle deposition rates (Appendices B1, B2). It should be emphasized that the 
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AERs used in this version of SHEDS vary seasonally, but not spatially within the study 

domain. From the distribution of ambient PM2.5 exposures generated for each hour during 

the study period, the median was used to calculate 24 hour mean exposures for each case 

and control period. The 24 hour mean exposures calculated for each census tract were 

then averaged over the 10 km region surrounding each central-site monitor. 

Tier 2b. The Aerosol Penetration and Persistence Model ï Hourly PM2.5 

concentrations measured at the central-site monitors (Tier 1) were modified to account 

for the effects of outdoor-to-indoor transport using the Aerosol Penetration and 

Persistence (APP) model
8,27,28 

and the Lawrence Berkeley National Laboratory (LBNL) 

Infiltration model.
29,30

 The APP model is a deterministic mass balance model that 

predicts the indoor concentration of ambient PM2.5 based on AER, outdoor PM2.5 

concentrations, the efficiency of particle penetration into the home, the rate of 

depositional losses in indoor air, and, for ammonium nitrate, phase changes in the indoor 

environment.
8,27,28

 The equations that form the APP model are provided in Chapter 2 

(Equations 1a and 1b). In addition to accounting for the semi-volatile nature of 

ammonium nitrate, daily variations in particle chemical composition were taken into 

account through the use of particle-size-resolved deposition loss rates specific to the size 

distributions of the major PM2.5 species (sulfate, nitrate, elemental carbon, and organic 

carbon; Appendix B3). Central-site PM2.5 composition data from the EPA Speciation 

Trends Network (STN) is available for every third day and was downloaded from the US 

EPA website for this purpose.
24

 For days without measurements, PM2.5 species mass 

fractions were interpolated using a weighted average of the two nearest mass fraction 

measurements. Subjects were excluded if there was a period of more than nine days 
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between STN measurements for the case period or all control periods. Because speciation 

measurements were not available for all central-site-monitor locations, values for the 

New Brunswick monitoring station, which were most highly correlated with data from 

other monitors across the state (Appendix B4), were used. With this approach, particle 

losses indoors varied daily with variations in PM2.5 composition. Note, however, that 

deposition loss rates did not vary spatially in this work. 

 AERs calculated with the LBNL Infiltration model, which was modified to 

include air flow through open windows (Appendix B), were used as inputs to the APP 

model. The LBNL infiltration model predicts AER for single-family homes based on 

normalized leakage rates (which describe the effective area of openings in the building 

shell through which air can flow, normalized by home floor area and a parameter 

accounting for building height and validated against measurements in 70,000 closed 

homes) and meteorological conditions.
29,30

 Meteorological data were gathered from four 

airports in New Jersey (Newark, Caldwell, Somerset, and Trenton) and subjects were 

assigned the weather data from the monitor nearest their residence at the time of MI. The 

normalized leakage area was calculated using a model resulting from a statistical analysis 

relating leakage to housing characteristics (home age, floor area)
31

 using census-tract 

level housing data from the 2000 U.S. Census and the American Housing Survey. 

Notably, the model used to calculate normalized leakage rate differs for homes above and 

below the poverty line because home leakiness varies with resident poverty status, with 

low-income homes tending to be leakier.
31

 Thus, variations in calculated AERs arise from 

temporal and spatial variability in meteorological conditions and with spatial variability 

in housing stock. Unlike Tier 2a, detailed human activity patterns are not accounted for in 
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this metric, but Tier 2b provides a more refined treatment of residential AER and PM2.5 

penetration and losses with indoor transport. Census-tract-level ambient PM2.5 exposures 

were averaged over the 10 km area around each central-site monitor. 

Tier 3. SHEDS and APP Hybrid - The final exposure metric combined the refined 

treatment of human activity patterns from Tier 2a, with the more temporally- and 

spatially-resolved estimates of residential AER from Tier 2b (but without variations in 

PM2.5 deposition rates with variations in PM2.5 composition). PM2.5 exposures were 

estimated with SHEDS as described above, but using residential AERs estimated with the 

LBNL Infiltration model. 

3.3.3 Statistical Analyses  

Study Design: For each ambient PM2.5 exposure surrogate (tier), the same time-

stratified case-crossover design
32,33 

as in the initial analysis
2
 was used to estimate the 

relative odds of a transmural infarction associated with increased exposure in the 

previous 24 hours. In this design, each patient contributed information both as a case 

during the period immediately before the MI, and as a matched control during times 

when a MI did not occur. Since each subject serves as their own control, factors that 

differ only across subjects are controlled by design. Case periods were defined as the 24 

hour period before emergency department admission for MI. Control periods (3-4 per 

case depending on the number of days in the calendar month), defined as 24 hour periods 

in which no MI occurred, were matched to the case period by day of the week, time of 

day, year, and calendar month. Central-site PM2.5 concentrations (Tier 1) and modeled 

ambient PM2.5 exposures (Tier 2a, 2b, 3) corresponding to these case and control periods 

were then contrasted in the statistical analyses.  
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Modeled Exposure Tier Analyses: The same conditional logistic regression model 

as in the initial analysis,
2
 stratified by study subject, was used to examine the 

multiplicative interaction between ambient PM2.5 exposure and transmural MI: 

                 ὰέὫ     ‌ ὖὓ ὪὝὩάὴȠ‎                                 (1) 

 Case-control status (i.e., case period = 1, control period = 0) was regressed against the 

mean estimated ambient PM2.5 exposure in the 24 hour period before emergency 

department admission for the index infarction or the corresponding control period. A 

natural spline (3 degrees of freedom) of the mean apparent temperature,
34,35

 from the 

same 24 hour period, was also included to estimate each subjectsô perceived ambient air 

temperature. Hourly temperature and relative humidity data used to calculate apparent 

temperature were gathered from the same airports as the data used to calculate AER in 

Tiers 2b and 3. The relative odds of transmural MI was estimated using each exposure 

surrogate (Tier 1, 2a, 2b, or 3) scaled to the Tier-specific interquartile range (IQR) 

increase in the ambient PM2.5 exposure. For each Tier, the odds ratio (OR), its 95% 

confidence interval, and its Akaikeôs Information Criterion (AIC) value, which was used 

to compare the fit of these non-nested models to Tier 1, are presented.  

Whether the refined exposure estimates (Tiers 2a, 2b, 3) added explanatory power 

over the Tier 1 estimate was also examined. In other words, whether the refined exposure 

estimates provided supplementary exposure information beyond that accounted for in the 

Tier 1 estimates and whether including that information in effect-estimate calculations 

resulted in additional MI risk over that associated with the central-site PM2.5 

concentrations (Tier 1 estimates) alone was evaluated. For each case and control time 

period, the Tier 1 exposure estimate and each of the refined exposure estimates were 
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converted to z-scores based on their respective means and standard deviations. The 

conditional logistic regression model described above was run again with the Tier 1 z-

score and the z-score difference (e.g., the difference between the Tier 1 z-score and the 

Tier 2a z-score) as covariates. Z-scores were used in order to create scale- and location-

invariant versions of the exposure metrics. Given that variables that differ only by scale 

and location may contribute equivalently to explaining a response in the context of linear 

modeling, entering the difference (between the refined and the original z-scores) into a 

linear model in addition to the original represents the additional contribution that the 

refined variable can make over the original in explaining the response in a linear model. 

The regression coefficient for the Tier 1 z-score, times the observed IQR, estimated the 

increase in log-odds of transmural infarction associated with each IQR increase in the 

Tier 1 PM2.5 concentration, while the regression coefficient for the ñz-score differenceò 

provided an estimate of the additional increase in log-odds of a transmural infarction 

associated with each IQR increase in the refined PM2.5 exposure estimate, independent of 

the Tier 1 PM2.5 concentration. A significance test of the ñz-score differenceò regression 

coefficient provides a test of whether the refined Tier adds any statistically significant 

relative odds beyond what is provided by Tier 1. This same model was run separately for 

each refined metric (Tiers 2a, 2b, and 3). 

 AER Effect Modification Analyses: Whether residential AER alone, without the 

other components contributing to the refined exposure surrogates, modified the 

association between the Tier 1 exposure surrogate and transmural infarction was also 

explored. This was done because AER estimates have smaller uncertainties than the more 

expansive exposure models and are important predictors of the fraction of ambient PM2.5 
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that penetrates and persists indoors. However, as explained below, this approach also 

differs from the main analysis in that it introduces a spatial comparison. 

 AERs from the Tier 2b exposure estimates were ranked into tertiles (high AER, 

middle AER, and low AER). See Appendix B7 for summary statistics of AERs in each 

tertile. The Tier 1 conditional logistic regression analysis was then re-run adding two 

interaction terms to the model, as well as indicator variables for AER.  The base model is 

     ὰέὫ     ‌ ‍ὃὉὙȟ ‍ὃὉὙ ȟ ‍ὃὉὙȟ ὖὓ ‍ὃὉὙ ȟ ὖὓ

       ‍ὃὉὙ ȟ ὖὓ ὪὝὩάὴȠ‎                                                                                                                             (2) 

where ὣ equals one if the j
th
 period for the i

th
 subject is a case and zero if control. 

Further, ὃὉὙȟ, ὃὉὙ ȟ and ὃὉὙ ȟ are indicator variables equal to one if subject i 

has a low, middle or high AER and zero otherwise. The term ὪὝὩάὴȠ‎ represents the 

natural spline that is added to adjust for apparent temperature and ‌ represents the sum 

of a random intercept for subject i as well as any between-subject variables. Upon 

conditioning on subject, ‌ becomes a nuisance parameter which cancels out of the 

conditional logistic likelihood and is not estimated. From this model, the relative odds of 

a transmural infarction and its 95% confidence interval associated with an 10.3 µg/m
3
 

(IQR) increase in Tier 1 PM2.5 concentration was estimated within each tertile of AER. 

This was done for the cool (November to April) and warm (May to October) seasons 

separately because PM2.5 concentrations and composition are distinctly different over 

these two periods (Appendix B8).
36

 

 In this alternative analysis using interaction terms to estimate the relative odds of 

a transmural MI associated with increased PM2.5 concentration within the low, middle, 

and high AER groups, the case-crossover analysis described above was essentially 
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stratified by modeled residential AER and estimates of the relative odds of transmural MI 

across AER tertiles were compared. In contrast with the ñModeled Exposure Tier 

Analysisò, which was strictly a within-subject, temporal analysis, this ñAER Effect 

Modification Analysisò is a spatio-temporal comparison of exposure effects across AER 

tertiles and, thus, across subjects.  This analysis also focused on a single parameter that 

influences the indoor transport of ambient PM2.5 in order to reduce the number of 

assumptions and associated uncertainty in comparison to the more complicated refined 

exposure surrogates explored above.  

 To evaluate whether spatially varying factors in addition to AER (e.g. PM2.5 

chemical composition, study population characteristics) could contribute to variability in 

relative risk of MI across AER tertiles, a case-crossover analysis stratified by monitoring-

site community was also conducted and study population characteristics were compared 

across AER tertiles. All data sets were constructed using SAS software (version 9.1.3; 

SAS Institute Inc., Cary, NC), and all analyses were conducted using R (version 2.6.1; R 

Foundation for Statistical Computing, Vienna, Austria). 

3.4 Results 

3.4.1 Modeled Exposure Tier Analyses  

 The summary statistics for Tiers 1, 2a, 2b, and 3 ambient PM2.5 exposure 

estimates have been described previously
2,21

 and are provided in Appendix B6. While the 

refined ambient PM2.5 exposure concentrations (Tiers 2a, 2b, 3) for each case and control 

period were approximately half of Tier 1 (central-site) values on average, they were all 

highly correlated with the Tier 1 concentrations (r = 0.98, 0.98, and 0.98 for Tiers 2a, 2b, 

and 3, respectively). All relative odds estimates reported below were scaled to the IQR 
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increase of each Tier: Tier 1 (10.3 µg/m
3
), Tier 2a (5.4 µg/m

3
), Tier 2b (5.4 µg/m

3
), and 

Tier 3 (5.4 µg/m
3
).  

Each 10.3 µg/m
3
 increase in the Tier 1 PM2.5 concentration was associated with a 

significant increase in the odds of transmural MI (OR = 1.10, 95% CI = 1.01, 1.19). Each 

IQR increase (5.4 µg/m
3
) in the Tier 2a, Tier 2b, and Tier 3 PM2.5 concentrations was 

associated with the same size increase in the relative odds of a transmural MI with similar 

95% confidence intervals across exposure tiers (Tier 2a:  OR = 1.10, 95% CI = 1.01, 

1.20; Tier 2B: 1.10, 95% CI = 1.01, 1.20; Tier 3: 1.11, 95% CI = 1.02, 1.20; Table 3-1). 

Similarly, model fits, as measured by the AIC value, were not substantially different 

across exposure tiers (Table 3-1). Further, using the z-score method, no additional 

significant relative increase in odds of transmural MI associated with the refined 

exposure estimates in addition to that associated with Tier 1 PM2.5 concentrations was 

found (Table 3-2). For example, each IQR (1.22 µg/m
3
) increase in the z-score for Tier 1 

PM2.5 concentration was associated with a significant increase in the relative odds of a 

transmural infarction (OR = 1.11, 95% CI = 1.00, 1.23), but an IQR (0.21 µg/m
3
) 

increase in the Tier 2a z-score difference was associated with only a small, non-

significant increase in the relative odds (OR = 1.03, 95% CI = 0.90, 1.18). Similarly, 

increases in the relative odds of MI associated with IQR increases in Tier 2b and Tier 3 z-

score differences (0.21 and 0.28 µg/m
3
, respectively) were small and not statistically 

significant (Table 3-2) and, thus, added no explanatory power over the Tier 1 estimate.  

3.4.2 AER Effect Modification Analyses 

As an alternative analysis, whether modeled residential AERs in the 24 hour 

period immediately before emergency department arrival modified our estimate of the 
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relative odds of a transmural MI associated with each 10.3 µg/m
3
 (IQR) increase in the 

Tier 1 PM2.5 concentration was evaluated. MIs were evenly distributed between the warm 

(May to October) and cool (November to April) seasons. Summary statistics of the AER 

distributions for the warm and cool seasons are shown in Appendix B7.  

Heterogeneity in the relative odds of transmural MI across AER tertiles was 

observed, with homes in higher AER tertiles having larger ORs than homes in the low 

AER tertile. In the warm season, each 10.3 µg/m
3
 increase in the Tier 1 PM2.5 

concentration was associated with increased relative odds of a transmural MI in the 

middle AER tertile (OR = 1.16, 95% CI = 0.96, 1.39) and high AER tertile (OR = 1.15, 

95% CI = 0.98, 1.35), but not the low AER tertile (OR = 0.96, 95% CI = 0.74, 1.25) 

(Figure 3-1). When the model was run again with the middle and high AER tertiles 

combined, each 10.3 µg/m
3
 increase in Tier 1 PM2.5 was associated with a significant 

increase in relative odds of a transmural MI for the middle and high AER tertiles, 

combined (OR = 1.15, 95% CI = 1.02, 1.31). Similarly, in the cool season, an increase in 

the relative odds of a transmural MI associated with each 10.3 µg/m
3
 increase in Tier 1 

concentrations was observed for the middle and high AER tertiles (both individually and 

combined), but not for the low AER tertile (Figure 3-1). 

To further explore the apparent effect-modification by AER, whether AER was 

actually a surrogate for another spatially-varying factor that might explain the observed 

variability in relative odds of transmural MI across AER tertiles was assessed. First, the 

distribution of monitoring sites to which MI patients were assigned within each AER 

tertile was evaluated and a case-crossover analysis stratified by monitoring-site 

community was conducted. In the low AER tertile, the majority of study subjects were 
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residents of the New Brunswick monitoring-site community. In the high AER tertile, the 

majority of subjects were residents of the Elizabeth monitoring-site community 

(Appendix B9). Each monitor-specific IQR increase in ambient PM2.5 concentration was 

associated with a non-statistically-significant increase in the relative odds of transmural 

MI in both New Brunswick (OR = 1.15, 95% CI = 0.95, 1.39) and Elizabeth (OR = 1.11, 

95% CI = 0.97, 1.27; Table 3-3). For the other 5 monitors, ORs ranged from 0.78 in 

Millville to 1.23 in Rahway. However, given the sample sizes, ORs, and 95% confidence 

intervals within each monitoring location (Table 3-3), there is no clear difference in the 

relative odds of transmural MI associated with each IQR increase in PM2.5 concentration 

across monitors.   

3.5 Discussion 

 In this case-crossover study of transmural myocardial infarction, use of refined 

surrogates of personal exposure to PM2.5 of outdoor origin that account for the exposure-

modifying effects of human activity patterns and/or the indoor transport of ambient 

PM2.5, did not result in larger estimates of the relative odds of a transmural infarction 

associated with each IQR increase in PM2.5 concentration in the previous 24 hours, 

smaller confidence intervals, nor better model fits compared to analyses that used PM2.5 

concentrations measured at central-site monitors. However, effect modification of this 

relative odds estimate by estimated residential AER was observed. This may be 

attributable to a greater degree of exposure error and resulting bias towards the null in the 

low AER tertile (less penetration of ambient PM indoors, and therefore more error in 

estimating oneôs personal exposure to PM2.5 of outdoor origin) compared to the higher 
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AER tertiles (more penetration of ambient PM indoors and therefore less exposure error), 

or residual confounding by some unmeasured factor.  

Spatial variability, time activity, and losses with outdoor-to-indoor transport are 

all sources of exposure error in epidemiologic analyses that use central site monitor 

concentrations as surrogates for exposure to ambient (outdoor-generated) PM2.5. Several 

recent studies have reported larger effect estimates and/or smaller confidence intervals 

when exposures were estimated using models that account for spatial variability in 

outdoor air pollutant concentrations on local scales (e.g. interpolation methods, land use 

regression) in place of concentrations measured at a single monitor or averaged over all 

monitors in a region.
e.g. 3-6

 However, at the time the work herein was published, none had 

directly compared central-site PM2.5 with models accounting for human activity patterns 

and the indoor transport of ambient PM2.5 in a large epidemiologic study. Ebelt et al.
37

 

estimated individual-level ambient PM2.5 exposure in a panel study of 16 subjects using 

individual-level time-activity diaries (to estimate time spent indoors) and indoor PM2.5 

concentrations estimated using a mass balance model. Associations between 

cardiopulmonary outcomes (e.g., heart rate variability, forced expiration volume) and 

ambient PM2.5 exposure were calculated with this exposure metric, as well as ambient 

PM2.5 concentrations measured at central-site monitors. Contrary to the findings presented 

in this study, the Ebelt et al.
37

 analyses that used individual-level information to model 

ambient PM2.5 exposures resulted in larger health effect estimates and smaller confidence 

intervals compared to the analyses that used central-site ambient PM2.5 concentrations.  

Multiple factors could have contributed to the differences between the findings 

presented here and those of Ebelt et al.
37

 One possibility is that many of the factors that 
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are accounted for in the refined exposure estimates would not be expected to contribute to 

exposure error (or bias) in the case-crossover design. Because cases serve as their own 

controls in this design, factors that differ across subjects, but are largely constant within 

subjects (e.g., proximity to local PM2.5 sources and differences in AERs or particle losses 

that stem from differences in housing stock, air conditioning prevalence or human 

activity patterns) would be expected to have a minimal impact on effect estimates. 

Similarly, with the case-control period confined to one calendar month, any factors that 

vary on time-scales longer than a month (e.g., seasonal variability in AER driven by 

indoor-outdoor temperature differences, natural ventilation, or air conditioning use) 

would be expected to have little or no effect on the relative odds estimates. Control 

periods are also matched to case periods by weekday, calendar month, and hour of the 

day, likely reducing the influence of much of the within-subject variability in human 

activity patterns occurring on these time-scales. Although not directly evaluated in this 

study, time-series analyses, which are also temporal contrasts of daily pollutant 

concentrations and daily counts of health outcomes, may also be only minimally 

impacted by these factors.  

 In addition, the refined exposure estimates used in Ebelt et al.
37

 were based on 

subject-level time-activity diaries and home-specific penetration and persistence of 

ambient PM2.5, while here, human activities and the indoor transport of ambient PM2.5 

were modeled using census-tract level data and were then averaged over the area within a 

10 km radius of each central-site monitor. For example, human activity patterns 

simulated with SHEDS for Tier 2a exposure estimates were estimated based on census-

tract level demographic data. Similarly, modeled AER distributions for each census tract 
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were used in the calculation of Tier 2b APP and Tier 3 exposure surrogates, rather than 

individual-level AERs. Further, species mass fractions were not available in every 

monitoring area and were estimated as the mass fractions measured at the New 

Brunswick monitor, which was most highly correlated with the other monitors across the 

state. These were used with local mass concentrations. The spatial resolution of data used 

to calculate the refined exposure estimates is a limitation of this study. Uncertainty 

resulting from these limitations could have contributed to exposure error in the refined 

exposure surrogates and, thus, the potential benefits of the refined exposure surrogates 

may not have been fully realized.
38

 However, when exposures were estimated at the zip-

code level, rather than averaging over 10 km (Appendix B10), no increase in ORs, 

reduction in 95% CIs, nor improved model fits were observed. The potential for 

uncertainty due to averaging and the associated exposure error and bias was likely 

reduced in the "AER Effect Modification" analyses because a single parameter was 

focused on, requiring fewer assumptions and, thus, reduced possibility of compounding 

of exposure prediction errors. It is possible that simpler methods to account for variability 

in exposure to PM2.5 of outdoor origin resulting mostly from variability in the indoor 

transport of ambient PM2.5 (e.g., including AER as an interaction term in the conditional 

logistic regression model) may more accurately capture variability in effect than these 

more complicated exposure models, which could be subject to greater uncertainty. 

 The differences in the results of the "Modeled Tiered Exposure" and "AER 

Effect Modification" analyses may also be explained, in part, by differences in study 

design. In the tiered exposure analysis, the relative odds of transmural MI within different 

time periods during each subjectôs person-time were essentially compared. Therefore, 
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non-time varying confounders such as subject characteristics (age, health history, etc.), 

residential location (and any potential differences in the pollutant mixture due to different 

pollution sources, source proximity), and housing characteristics (leakage) were 

controlled by design. In the effect modification analysis, each relative odds estimate 

within each AER tertile also has this feature. However, when these AER-tertile-specific 

relative odds estimates were then contrasted, different subjects with their inherent 

differences in these characteristics were compared. Thus, these characteristics may now 

act as confounders in this analysis. As a result, differences in these AER-tertile-specific 

relative odds estimates could be due, in part, to differences in AER, as well as differences 

in subject characteristics (e.g. age, co-morbidity, proximity to sources, housing stock, 

access to healthcare, smoking status, etc.) if those characteristics are covariant with AER. 

For example, low socio-economic status (SES) has been identified as a predictor of 

susceptibility to negative health outcomes associated with PM exposure.
39

 Further, low 

income residents tend to live in homes with higher AERs and, therefore, are exposed to a 

larger fraction of ambient PM2.5 (and smaller fraction of indoor emissions) than residents 

with higher SES.
40,41

 In fact, because SES is a predictor of AER, poverty status is 

included in the residential AER model (Appendix B).
31

 Thus, it is conceivable that the 

results showing effect modification of the PM2.5-MI association by AER could actually 

reflect effect modification by SES or a combination of AER and SES. It is also possible 

that higher AERs, in addition to access to health care and other factors, help to explain 

the associations between low SES and adverse health outcomes observed in previous 

studies. Notably, differences in age, gender, race/ethnicity, and co-morbidities by AER 

tertile were not observed (Appendices B8, B9). Further, if location-specific factors other 
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than AER were contributing to these findings, an increased relative odds of transmural 

MI in the monitoring-site community in which the majority of subjects were assigned to 

the high-AER tertile (i.e., Elizabeth) and a smaller effect estimate in communities in 

which the majority subjects were assigned to the low-AER tertile (i.e. New Brunswick) 

would be expected. Instead, larger relative odds of transmural MI were observed in New 

Brunswick compared to Elizabeth (Table 3-3), which suggests that the observed effect 

modification is related to variability in AER. 

The modification of MI risk by community-average AER is consistent with the 

results of concurrently conducted studies that found that percent increases in short-term 

mortality associated with given increases in outdoor ozone and PM10 concentrations were 

larger for cities with higher annual average AERs compared to those with smaller 

AERs.
42,43

 Previous studies have also shown that home-ventilation conditions (e.g., 

infiltration through cracks in the building shell, air flow through open windows) and 

activities that affect particle losses indoors (e.g., AC use) impact ambient PM2.5 

exposures.
e.g. 9,44

 Sarnat et al.
44

 concluded that ambient monitors were good surrogates for 

exposure in well-ventilated homes, but were poor exposure surrogates in homes with 

windows and doors closed. The results presented here are also consistent with studies that 

have demonstrated a reduced risk of morbidity and mortality with increased prevalence of 

central AC.
12-16

 As noted above, F tends to be lower for homes with central AC in use 

due to increased particle losses in AC filters.
17-19

 Further, AERs tend to be lower for 

homes with AC in use compared to those with open windows,
45

 which also contributes to 

lower F values. 

3.6 Conclusions 
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 Use of refined exposure surrogates that account for human activity patterns and/or 

the indoor transport of ambient PM2.5 in this case-crossover study did not result in larger 

health effect estimates, narrower confidence intervals, or better model fits compared to 

the analyses that used central-site PM2.5 concentrations to estimate PM2.5 exposure. For 

the level of exposure-estimate-refinement considered here, these findings add support to 

the use of central-site PM2.5 concentrations for epidemiological studies that employ 

similar case-crossover study designs and other similar temporal analytic methods. These 

findings also illustrate that variability in factors that influence the fraction of ambient 

PM2.5 in indoor air (e.g., AER) can bias health effects estimates in study designs for 

which a spatio-temporal comparison of exposure effects across subjects is conducted. 
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Table 3-1. Relative increase in odds of a transmural infarction associated with an 

IQR increase in PM2.5 concentration, by exposure Tier  

Tier  IQR N AIC  OR 95% CI p-value 

Tier 1 10.3  4397.4 1.10 1.01, 1.19 0.03 

  1561     

Tier 2A 

SHEDS 
5.4  4397.2 1.10 1.01, 1.20 0.03 

Tier 1 10.3  4367.7 1.09 1.01, 1.19 0.04 

  1552
*
     

Tier 2B  

APP 
5.4  4366.8 1.10 1.01, 1.20 0.02 

Tier 1 10.3 
 

4396.4 1.10 1.01, 1.19 0.03 

  1561     

Tier 3 

HYBRID 
5.4 

 
4396.1 1.11 1.02, 1.20 0.01 

*
 
Subjects were excluded if there was a period of more than nine days between STN 

PM2.5 species concentration measurements for the case period or all control periods
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Table 3-2. Relative increase in odds of a transmural infarction associated with each 

IQR increase in PM2.5 concentration, by exposure Tier. Z-score method.  

 
Tier  IQR N OR 95% CI p-value 

 

Tier 1 

 

1.22 

1561 

1.11 1.00, 1.23 0.04 

Tier 2a 

SHEDS 
0.25 1.03 0.90, 1.18 0.65 

 

Tier 1 

 

1.22 

1552* 

1.12 1.02, 1.23 0.02 

Tier 2b  

APP 

 

0.21 1.05 0.97, 1.14 0.21 

 

Tier 1 

 

1.22 

1561 

1.12 1.03, 1.22 0.01 

Tier 3 

HYBRID 
0.18 1.05 0.99, 1.11 0.12 

* Subjects were excluded if there was a period of more than nine days between STN 

PM2.5 species concentration measurements for the case period or all control periods  

For Tier 1, IQR refers to the interquartile range of z-scores, while for the refined 

exposure models (Tiers 2a, 2b, and 3), it refers to the interquartile range of the z-score 

difference (e.g., the difference between the Tier 1 and Tier 2a z-scores).
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Table 3-3. Relative odds of transmural infarction associated with each interquartile 

range increase in PM2.5 concentration, stratified by monitoring-site, in order of 

increasing median air exchange rate 

 

Monitor location  

Median Air 

Exchange Rate (h
-1
) 

IQR 

(µg/m
3
) OR 95% CI p-value 

 
Flemington 0.32 8.9 0.98 0.40, 2.39 0.96 

New Brunswick 0.41 8.4 1.15 0.95, 1.39 0.15 

Camden 0.50 10.3 1.04 0.86, 1.25 0.68 

Millville  0.50 9.5 0.78 0.47, 1.30 0.34 

Rahway 0.52 9.3 1.23 0.87, 1.74 0.24 

Elizabeth 0.60 11.7 1.11 0.97, 1.27 0.13 

Jersey City 0.66 12.2 1.17 0.86, 1.59 0.32 
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Figure 3-1. Relative odds of transmural infarction associated with each interquartile 

range increase in Tier 1 (central-site) PM2.5 concentration, stratified by air exchange 

rate tertile. (a) low, middle, and high AER tertiles and (b) for low and middle/high AER 

tertiles combined 

  



88 
 

 

Chapter 4. Toward Refined Estimates of Ambient PM2.5 Exposure: Evaluation of a 

Physical Outdoor-to-Indoor  Transport M odel 

Material in this chapter has been published previously as:  

Hodas, N.; Meng, Q. Y.; Lunden, M. M.; Turpin, B. J., Toward Refined Estimates of 

Ambient PM2.5 Exposure: Evaluation of a Physical Outdoor-to-Indoor Transport Model. 

Atmos. Environ. 2014, 83, 229 - 236. 

4.1. Abstract 

Because people spend the majority of their time indoors, the variable efficiency with 

which ambient PM2.5 penetrates and persists indoors is a source of error in epidemiologic 

studies that use PM2.5 concentrations measured at central-site monitors as surrogates for 

ambient PM2.5 exposure. To reduce this error, practical methods to model indoor 

concentrations of ambient PM2.5 are needed. Toward this goal, we evaluated and refined 

an outdoor-to-indoor transport model using measured indoor and outdoor PM2.5 species 

concentrations and air exchange rates from the Relationships of Indoor, Outdoor, and 

Personal Air Study. Herein, we present model evaluation results, discuss what data are 

most critical to prediction of residential exposures at the individual-subject and 

populations levels, and make recommendations for the application of the model in 

epidemiologic studies. This paper demonstrates that not accounting for certain human 

activities (air conditioning and heating use, opening windows) leads to bias in predicted 

residential PM2.5 exposures at the individual-subject level, but not the population level. 

The analyses presented also provide quantitative evidence that shifts in the gas-particle 

partitioning of ambient organics with outdoor-to-indoor transport contribute significantly 

to variability in indoor ambient organic carbon concentrations and suggest that methods 
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to account for these shifts will further improve the accuracy of outdoor-to-indoor 

transport models. 

4.2. Introduction  

 While people spend the majority of time indoors,
1
 fine particulate matter (PM2.5) 

concentrations measured at outdoor central-site monitors are commonly used as 

surrogates for exposure to PM2.5 of outdoor (ambient) origin in epidemiological studies. 

The use of central-site PM2.5 concentrations as ambient PM2.5 exposure surrogates 

inherently assumes that indoor and outdoor ambient PM2.5 concentrations are highly 

correlated. However, the fraction of ambient PM2.5 that penetrates and persists indoors 

(F) varies with multiple factors including meteorological conditions, the physical and 

chemical properties of ambient PM2.5, housing characteristics, and home ventilation 

conditions.
2-9

 Exposure error associated with not accounting for variability in F is 

expected to contribute to an underestimation of health effects associated with ambient 

PM2.5 exposures.
10

   

 In order to reduce this exposure error, practical methods to predict indoor 

concentrations of ambient PM2.5 are needed. Toward this goal, we evaluated and refined a 

physical mass-balance model using measurements from the Relationships of Indoor, 

Outdoor, and Personal Air (RIOPA) study.
11,12

 An earlier version of the model was 

applied in two epidemiologic studies: one that explored associations between ambient 

PM2.5 exposures and myocardial infarction (MI) and the other, associations with birth 

outcomes.
13-15

 The work herein provides a partial validation of the exposure estimates 

used in those studies, while also providing new insights that are used to refine the model. 

This paper highlights the measurements and data most critically needed to facilitate the 

prediction of residential ambient PM2.5 exposures in epidemiological studies.  
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4.3. Methods 

4.3.1 Modeled Indoor PM2.5 Concentrations 

 Indoor concentrations of ambient particulate sulfate, elemental carbon (EC), and 

organic carbon (OC) were calculated for RIOPA homes (Appendix C1) with a mass-

balance model. The model describes the concentration of chemically non-reactive PM2.5 

species j in indoor air (Cin,j) as a function of its outdoor concentration (Cout, j),  residential 

air exchange rate (AER), particle penetration efficiency (Pj), and the depositional loss rate 

of species j in indoor air (kdep, j)
5
:                       

    
                            (1) 

Forty-eight hour average outdoor sulfate, EC, and OC concentrations and AERs 

measured at each RIOPA home (Appendix C2) were used as model inputs (nitrate was 

not measured during RIOPA).  Details regarding RIOPA study measurements are 

provided in Appendix C. Briefly, AERs were measured with a perfluorcarbon tracer 

method.
16

 PM2.5 filter samples were analyzed for EC and OC (µgC/m
3
) with a Sunset 

carbon analyzer and for sulfur by energy-dispersive XRF spectrometry and expressed as 

sulfate.
11,12

 OC was corrected for the adsorption artifact by subtracting the organic mass 

on the backup filter.
12

 Due to the long averaging time of RIOPA measurements, indoor 

concentrations were calculated with the time-averaged solution to equation 1: 

   ὅ ȟ ὅ ȟ ὃὉὙὖȾὃὉὙὯ ȟ                               (2). 

 A review of published species size distributions from diverse geographic locations 

and seasons (Appendix C, Appendix C3) was conducted to identify "typical" size 

distributions (i.e., number of modes, mass median diameter of each mode, and the 

)()( ,,,
, AERkCAERPC

dt jdepjinjjout
dC jin +-³=
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fraction of mass in each mode) for sulfate, EC, and OC. Values of kdep were then selected 

for the mass median diameter of each size mode of each PM2.5 species size distribution 

(Table 4-1) using the fourth-order polynomial fit to measured particle-size-resolved 

deposition rates from Nazaroff.
3
 While this method provides a means to estimate 

reasonable values of kdep, the reader should be aware that factors in addition to particle 

size can contribute to variability in kdep (e.g. particle density, room airflow conditions)
3,17

 

and there is heterogeneity in measured size-resolved particle deposition rates across 

studies.
3
 A constant P of 0.8, the median value reported by Chen and Zhao

7
 for particles 

in the size range considered here, was used for all species. Like kdep, many factors 

contribute to variability in P. For example, laboratory studies have demonstrated that the 

geometry and roughness of cracks in a building shell can contribute to variability in 

P;
3,7,18 

however, these cracks have not been well characterized for individual homes and 

are likely to be highly variable.
3
 As a result, this variability is not accounted for in our 

calculations. In subsequent sections, we explore other contributors to variability in P such 

as particle size and home ventilation conditions. 

4.3.2. Model Evaluation 

 We compared modeled indoor concentrations of ambient sulfate, EC, and OC 

with the measured indoor concentrations of these PM2.5 species (Appendix C, Appendix 

C2) for each (occupied) RIOPA home. In epidemiologic analyses, the extent to which a 

model is successful in predicting exposures at the individual-subject level is described by 

the covariance between actual and estimated exposures. As a result, we examined 

correlations between measured and modeled indoor concentrations. Paired t-tests were 

also conducted to evaluate whether pairs of measured and modeled indoor PM2.5 species 
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concentrations were significantly different at the 95% confidence level. To assess model 

performance at the population level, chi-square tests were used to examine whether 

cumulative distributions of measured and modeled indoor concentrations had the same 

underlying distribution at a 95% confidence level. All analyses were conducted with SAS 

software (version 9.3; SAS Institute Inc., Cary, NC).   

 Using the same methods, we also evaluated whether measured residential outdoor 

PM2.5 concentrations were good predictors of indoor ambient PM2.5 concentrations. Much 

of the recent work aimed at refining ambient PM2.5 exposure surrogates has focused on 

accounting for spatial variability in outdoor PM2.5 concentrations (e.g. land use 

regression, interpolation methods).
19,20

 Ambient PM2.5 concentrations measured outside 

of RIOPA homes provide spatially-resolved measures of outdoor PM2.5 concentrations. A 

comparison between measured residential outdoor PM2.5 concentrations and modeled 

indoor ambient PM2.5 concentrations evaluates whether exposure metrics that account for 

outdoor-to-indoor transport offer improvement over exposure metrics that account only 

for spatial variability in outdoor concentrations.  

4.3.3. Attributing model -measurement differences: Human activities  

 To focus our efforts to refine the outdoor-to-indoor transport model, we explored 

the contributions of several factors to differences between modeled and measured indoor 

PM2.5 species concentrations. First, we evaluated the extent to which model-measurement 

differences could be attributed to the fact that the model does not account for the effects 

of human activities likely to influence F. Human-activity variables that were likely to 

influence the efficiency with which ambient PM2.5 penetrated and/or persisted in RIOPA 

homes were selected from questionnaires administered to RIOPA participants to 
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characterize home-occupant activities during sample collection (Appendix C).
6,11

 The 

activities were:  (1) time with windows open, (2) time with central air conditioning (AC) 

in use, and (3) time with central heating in use. Differences between modeled and 

measured indoor PM2.5 concentrations were regressed on these activity variables using 

multiple linear regression (MLR) with stepwise selection (Ŭ = 0.15 for variable entrance 

and removal threshold; SAS version 9.3). Variance inflation factors indicated that the 

human activities were not significantly correlated with each other. Outliers were detected 

based on the studentôs t and a value was considered an outlier if t was greater than 2. It 

should be noted that outliers are likely indicators of strong indoor sources. Outlier homes 

were excluded from all following analyses to avoid influence of strong indoor sources of 

PM2.5 on model evaluation results, as the model predicts only the contribution of ambient 

PM2.5 to indoor concentrations and not the contribution of indoor sources. 

 We refined the model to account for the human-activity variables selected as 

significant predictors of model-measurement differences based on assumptions about the 

ways in which each activity variable would influence F. For homes with open windows, 

there is little to no removal of the particles entering the home and, thus, we assumed a 

penetration efficiency (Pwindow) of 1.0 (Table 4-1).
7
 For homes with central AC or heating 

in use, a filter penetration efficiency term (Pfilter) was multiplied by the right side of 

equation (2) to account for losses in the filters of central heating and cooling systems. 

Values of Pfilter were selected from particle-size-resolved filtration efficiencies for 

residential furnace filters (assuming a pressure drop of 125 Pa across the filter to account 

for particle loading)
21

 using the same assumptions about species size distributions as were 

used to select kdep values (Table 4-1). If more than one activity occurred within a home, 

we accounted only for the dominant activity (i.e. the activity carried out for the longer 



94 
 

 

period of time). The performance of this refined version of the model was evaluated 

using the same methods as described above. 

4.3.4. Attributing model -measurement differences: Indoor sources of OC 

 Because sulfate and EC are non-volatile and have minimal indoor sources, indoor 

concentrations of these species are likely driven by outdoor-to-indoor transport.
4
 

However, organics comprised the majority of PM2.5 emitted or formed inside RIOPA 

homes (on average, 41 ï 76%).
22

 Because the aim of the current modeling is to predict 

indoor concentrations of ambient PM2.5, there is a need for an estimate of the measured 

indoor OC that can be attributed to outdoor sources. We estimated this by regressing 

measured indoor OC concentrations on measured outdoor OC concentrations using robust 

regression (SAS version 9.3). Robust regression down-weights outliers and, thus, reduces 

the influence of strong indoor sources on the regression equation.
23,24

 The intercept of the 

resulting regression equation provides an average indoor-source strength and the slope is 

a population-average estimate of F. We multiplied this population-average F by each 

measured outdoor OC concentration to calculate the distribution of measured indoor OC 

of ambient origin.
23,24

 When this approach was used for sulfate, which is dominated by 

outdoor sources, F estimated by robust regression was in good agreement with F 

calculated as the ratio of measured indoor to measured outdoor sulfate (Appendix C, 

Appendix C4). 

4.3.5. Attributing model -measurement differences: Uncertainty in OC size 

distributions 

 Ambient OC size distributions are more variable across sampling locations and 

seasons than sulfate and EC. We conducted a sensitivity analysis to explore whether 
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uncertainty in ambient outdoor OC size distributions (and, thus, kdep) was a source of 

error in modeled indoor ambient OC. Indoor ambient OC concentrations were calculated 

assuming two alternative size distributions: (1) a bimodal distribution with an ultrafine 

peak at 0.08 ɛm and a broad accumulation mode peaking at 0.4 ɛm with 20% and 80% of 

OC mass comprising each mode, respectively (kdep = 0.07 h
-1

)
25,26

 and (2) a trimodal 

distribution with an ultrafine peak (comprising 20% of OC mass) and an accumulation 

mode comprised of a condensation mode (0.2 µm) and droplet mode (0.7 µm) of equal 

mass proportions. The kdep values for alternative size distribution (2) are the same as 

those shown in Table 4-1, but the mass fractions comprising the condensation and droplet 

modes are different from those explored in the main analysis. Indoor OC concentrations 

calculated assuming each of the three size distributions were compared to evaluate the 

sensitivity of the model to uncertainty in kdep associated with variability in OC size 

distributions. 

4.3.6. Attributing model -measurement differences: Phase changes of ambient 

organics 

 Predicting the outdoor-to-indoor transport of particulate OC is further 

complicated by the fact that organics can undergo phase changes due to indoor-outdoor 

differences in temperature, surface area, and the availability of particulate matter for 

sorption.
22,27-29 

 Because ambient OC is comprised of thousands of compounds with 

largely unknown identities,
30

 it is not possible to calculate the change in gas-particle 

partitioning with outdoor-to-indoor transport from first principles. In order to explore the 

influence of phase changes on F, a surrogate is needed. We used 5 - 7 ring polycyclic 

aromatic hydrocarbons (PAHs), which were measured in the gas and particle phases 



96 
 

 

inside and outside of 76 RIOPA homes,
31

 for this purpose. The PAHs included were 

benzo[b+k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, indeno[1,2,3-

c,d]pyrene, dibenzo[a,c+a,h]anthracene, benzo[g,h,i]perylene, and coronene. These PAHs 

are predominantly of outdoor origin and were mainly in the particle phase under the 

ambient conditions measured outside RIOPA homes,
31

 making them a useful surrogate 

for ambient particulate OC. 

 Using MLR, we explored the extent to which variability in measured indoor OC 

concentrations could be explained by (1) physical losses associated with outdoor-to-

indoor transport (i.e., those already accounted for in the model) and (2) shifts in the gas-

particle partitioning of ambient organics with indoor transport (using changes in 

partitioning of 5-7 ring PAHs). We regressed measured indoor OC on modeled indoor 

OC and on the indoor-outdoor difference in the pooled gas-particle partitioning 

coefficient (Kp) of the 5 - 7 ring PAHs (Ŭ = 0.15 for variable entrance and removal 

threshold; SAS version 9.3). Kp was calculated as the ratio of the pooled concentration of 

PAHs in the particle phase to their concentration in the gas phase, normalized by the total 

PM2.5 concentration.
32

 No collinearity between variables was found and outliers were 

removed using the same criteria as described above. 

4.4. Results and Discussion 

4.4.1. Initial Model  

 Agreement between modeled indoor ambient PM2.5 concentrations and measured 

indoor concentrations varied by species. While modeled indoor ambient EC 

concentrations were well correlated with measured indoor EC (R
2
 = 0.70), the model 

generally underestimated indoor EC (Figure 4-1a, 4-2a). In fact, pairs of measured and 
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modeled indoor EC were significantly different and modeled and measured values did not 

have the same underlying distribution at a 95% confidence level, suggesting that model 

refinements are needed to predict residential EC exposures. 

 For sulfate, the initial model performed reasonably well at the population level, 

but the model under-predicted indoor sulfate for many high concentration homes (Figure 

4-2b).  Cumulative distributions of measured and modeled indoor sulfate (Figure 4-1b) 

had the same underlying distribution (P = 0.87). While modeled and measured values 

were well correlated (R
2 

= 0.86; Figure 4-2b), modeled indoor sulfate concentrations 

were significantly lower than measured concentrations at a 95% confidence level 

according to a paired t-test. Thus, the initial model could be applied to estimate 

residential sulfate exposures at the population level, but refinements are needed to 

improve exposure estimates at the individual-subject level, particularly for high-end 

exposures.  

 Measured indoor OC concentrations were not well captured by the initial model 

(Figure 4-1c, 4-2c), which accounts for physical losses of ambient OC during outdoor-to-

indoor transport into closed homes without air conditioning, but does not account for 

phase changes or indoor sources. Modeled indoor particulate OC of ambient origin 

explained only 4% of the variability in total particulate OC measured indoors (R
2
 = 0.04). 

Further, measured and modeled indoor OC concentrations were significantly different at 

a 95% confidence level at both the individual- (paired) and population (distribution) 

levels. Contributors to this poor agreement are explored below. 

4.4.2. Model refinement: accounting for human activities 
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 Human activities that were not accounted for in the initial model helped to explain 

differences between modeled and measured indoor sulfate (Table 4-2), but not EC and 

OC. For sulfate, all activity variables included in the MLR analysis were selected as 

significant predictors of model-measurement differences (Ŭ < 0.15) and together 

explained 31% of the variance in these differences (Table 4-2). We refined the model to 

account for these activities based on our assumptions regarding the ways in which each 

activity would influence F (Table 4-1).   

Improved agreement between measured and modeled indoor sulfate at the 

individual-subject level was substantial (Figure 4-3a). Pairs of measured and modeled 

indoor sulfate concentrations were no longer significantly different (P = 0.60).  Indoor 

sulfate concentrations modeled with the refined model explained 90% of the variance in 

measured indoor sulfate, compared to 86% for the initial model. While use of the refined 

model also improved agreement between measured and modeled indoor sulfate 

distributions (P = 0.996; Figure 4-3c), the initial model distribution was not significantly 

different from the measured distribution to begin with. Thus, while the initial model is 

adequate for predicting sulfate distributions, we recommend the use of the refined model 

when estimating residential sulfate exposures at the individual-subject level. Notably, 

most epidemiologic studies do not focus on sulfate exposures, but rather on exposure to 

total ambient PM2.5. When using a mass-balance model like the one explored here, 

exposure to total ambient PM2.5 would be calculated by summing predicted indoor 

concentrations of the individual species. The fact that a refined version of the model is 

needed to predict residential sulfate exposures has implications for the design of 

epidemiologic studies focused on both PM2.5 species and total ambient PM2.5 exposures, 
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as it requires the collection of human activity data (e.g., pertaining to windows, air 

conditioning, and heating) using questionnaires or activity diaries or a method to estimate 

human activity patterns (e.g. sampling from a distribution of published time-activity 

patterns
33

) over the length of the study.  

 While accounting for human activities in the model improved model-

measurement agreement for sulfate, the examined human activities had a minimal impact 

on F for ambient EC. The small impact of human activities can likely be explained by the 

EC size distribution. Values of Pfilter for 80 nm particles are ~90%
21

 and, thus, use of 

central AC or heating is expected to result in only small losses of EC. This also suggests 

that for the ultrafine-mode, overall penetration efficiencies may be greater than the 0.8 

used in the initial calculations. We re-calculated indoor ambient EC assuming a P value 

of 0.9. With this refinement, the model captured indoor EC concentrations at both the 

population and individual-subject levels (Figure 4-3b, 4-3d).  Measured and modeled EC 

had the same underlying distribution (P = 0.65), they were well correlated ( R
2
 = 0.70), 

and pairs of measured and modeled indoor EC were not significantly different at a 95% 

confidence level (P = 0.16). These results suggest that human activities might not need to 

be accounted for when calculating residential EC exposures, but that P values can vary 

across PM2.5 species due to differences in size distributions. 

 Like EC, human activities were not selected as significant predictors of 

differences between measured and modeled indoor OC. Based on the assumed size 

distribution for OC, we would expect that the influence of human activities on F would 

be minimal for OC in the ultrafine mode, but similar to that for sulfate for the 

accumulation mode fraction. However, the effect of human activities was likely 
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overshadowed by the substantial contribution of indoor emissions
22

 to measured indoor 

OC.  

4.4.3. Accounting for indoor sources of OC 

 The robust-regression estimated F value for OC was 0.53, suggesting that, on 

average, 53% of the ambient OC penetrated and persisted indoors (Appendix C5). This 

value is higher than the F value for OC reported in Polidori et al.,
22

 which estimated 

contributions of outdoor-generated OC to total OC measured in RIOPA homes using a 

Random Component Superposition (RCS) statistical model (F = 0.32). Figure 4-4 

compares cumulative distributions of ambient indoor OC estimated with the mass-

balance model with our robust-regression estimate of F (a comparison with the RCS-

estimated F value is available in Appendix C6). Agreement between the distributions of 

indoor ambient OC estimated with the model and with robust regression (Figure 4-4; 

mean ± standard deviation = 2.54 ± 1.61 µgC/m
3
 and 1.91 ± 1.26 µgC/m

3
, respectively) 

is improved compared to agreement between modeled indoor ambient OC and measured 

(total) indoor OC (6.08 ± 3.77 µgC/m
3
). However, the two distributions are still 

significantly different (P = 0.0004). Accounting for human activities and the higher 

penetration efficiency of ultrafine-mode particles (P = 0.9) in calculations of indoor 

ambient OC did not reduce this bias (mean ± standard deviation 2.74 ± 1.81 µgC/m
3
; 

Appendix C6).  

4.4.4. Variability and uncertainty in OC size distri butions 

 The model showed little sensitivity to the uncertainty in kdep associated with 

variability in OC size distributions. Estimated indoor OC concentrations were highly 

correlated across the size-distributions scenarios (R
2
 > 0.99) and distributions of modeled 
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indoor OC were in good agreement (mean ± standard deviation = 2.54 ± 1.61, 2.62 ± 

1.66, and 2.58 ± 1.64 µgC/m
3
 for the initial and two alternative size-distribution 

scenarios, respectively). The OC size distributions considered here are based on 

measurements conducted in urban regions in which OC is comprised of a mix of locally- 

and regionally-generated PM (Appendix C). It is possible that these size distributions are 

not representative of the OC measured outside of some of the RIOPA study homes. For 

example, for homes in close proximity to primary PM2.5 sources (as is the case for many 

RIOPA homes), the majority of OC might be in the ultrafine mode, which would result in 

smaller depositional losses (and possibly greater P values) than those calculated 

assuming that accumulation-mode OC comprised a substantial fraction of the OC. It 

should be noted, however, that this would result in increased calculated indoor ambient 

OC concentrations and the model already has an upward bias (Figure 4-4).  

4.4.5. Shifts in the gas-particle partitioning of ambient OC 

 We did find evidence that shifts in the gas-particle partitioning of ambient OC 

with outdoor-to-indoor transport contributed to variability in particulate OC measured 

inside RIOPA homes. The model-estimated indoor OC, which was included in the MLR 

analysis to represent physical particle losses associated with outdoor-to-indoor transport, 

was the most significant predictor of variability in measured indoor OC concentrations (P 

= 0.0003), explaining 20% of this variability (R
2
 = 0.20). The indoor-outdoor difference 

in Kp for the 5 - 7 ring PAHs, which we used as a surrogate for changes in the gas-particle 

partitioning of ambient OC, was also selected as significant predictor of variability in 

indoor OC (P = 0.05), explaining 5% of this variability (R
2
 = 0.05). While PAHs account 

for only a small fraction of total OC, this new finding for OC is consistent with previous 
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work which demonstrated that shifts in the gas-particle partitioning of outdoor-generated 

PAHs with outdoor-to-indoor transport contributes substantially to variability in 

residential PAH exposures.
29,33

 Much of the remaining variability can likely be attributed 

to indoor OC sources, which contributed to 3 - 99% of the OC in these RIOPA homes 

(calculated by subtracting the robust-regression estimate of indoor ambient OC from total 

measured indoor OC).  

 While physical loss was the dominant contributor to variability in indoor ambient 

OC, our results suggest that refining the model to account for phase changes of OC with 

outdoor-to-indoor transport would improve the predictive abilities of the model. This is 

an important area of future work that requires further characterization of the 

thermodynamic properties of ambient OC and a better understanding of the chemistry 

that occurs in indoor air, including interactions between indoor- and outdoor-emitted 

organics.
34

 

4.4.6. Further recommendations for epidemiologic studies 

 Exposure research has focused on accounting for spatial variability in outdoor air 

pollution concentrations (e.g., use of residential outdoor concentrations rather than 

central-site concentrations through land use regression, interpolation between sites, 

etc).
19,20

 One objective of this study was to explore whether a model that brings the 

residential outdoor air pollution indoors, offers additional improvement. The mass-

balance model did offer improvement over the use of measured outdoor concentrations as 

residential ambient PM2.5 exposure surrogates. As noted above, EC and sulfate have 

minimal indoor sources
4
 and, thus, the vast majority of the sulfate and EC measured 

inside RIOPA homes can be attributed to PM2.5 of outdoor origin. As expected, measured 

outdoor sulfate and EC concentrations were well-correlated with measured indoor 
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concentrations (R
2
 = 0.77 and 0.69, respectively), but correlations between modeled and 

measured indoor concentrations are even stronger (R
2
 = 0.86 and 0.90 for the initial and 

refined sulfate models and R
2
 = 0.70 for EC for both models). Measured outdoor and 

indoor OC were weakly correlated (R
2
 = 0.03), undoubtedly because of the substantial 

contributions of indoor sources to indoor OC concentrations. The mass-balance model 

offered only a small improvement over measured outdoor OC concentrations (R
2
 = 

0.004). However, when the influence of indoor sources was reduced using the robust-

regression estimate of F, indoor OC concentrations calculated with the mass-balance 

model performed better than measured outdoor OC concentrations (mean ± standard 

deviation = 1.91 ± 1.26, 2.54 ± 1.61, and 3.61 ± 2.38 µgC/m
3
 for the robust-regression 

estimate of indoor ambient OC, modeled indoor ambient OC, and measured outdoor OC, 

respectively). Notably, in the two epidemiologic studies discussed above (in which a 

version of this mass-balance model was used to estimate the fraction of central-site PM2.5 

found in study-subject homes) the spatial resolution of residential ambient PM2.5 exposure 

estimates was identified as a possible source of error.
15

 A two-step approach involving a 

method to account for local-scale variability in outdoor PM2.5 followed by the use of an 

outdoor-to-indoor transport model might offer the best results when predicting residential 

PM2.5 exposures.  

 It should also be noted that AERs measured at each individual home were used as 

model inputs in our calculations; however, these data are not generally available for an 

epidemiologic study population. The Lawrence Berkeley National Laboratory Infiltration 

model, which accounts for air exchange due to air flow through cracks in a residence
35

 

has recently been refined to include natural ventilation through open windows
13,36 

and can 
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be used to calculate AER distributions for a study population using readily-available 

housing data (from the United States Census and the American Housing Survey) and 

routinely measured meteorological parameters. A refined version of the LBNL 

Infiltration model was used for this purpose in the two epidemiologic studies mentioned 

above.
14,15

 

4.5. Conclusions 

 The evaluation and refinement of an outdoor-to-indoor transport model using 

measured indoor and outdoor PM2.5 species concentrations and AERs from the RIOPA 

study illustrates that the modeling tools presented here offer improvement over the use of 

outdoor PM2.5 concentrations to estimate residential ambient PM2.5 exposure. The level of 

model refinement and data required to facilitate the use of this model in large 

epidemiologic studies varies across PM2.5 species. Accounting for AC and heating use 

and open windows led to reduced bias in predicted F values for sulfate at the individual-

subject level, but this refinement was not needed for EC nor at the population level for 

sulfate. This refinement did not resolve the large model-measurement differences for OC. 

We did, however, find quantitative evidence that shifts in the gas-particle partitioning of 

ambient organics with outdoor-to-indoor transport contribute significantly to variability 

in F. Our results suggest that the collection of human activity data or a method to predict 

these human activity patterns can lead to substantial improvements in individual-subject 

level residential ambient PM2.5 exposure estimates. This work also highlights the need for 

a method to account for shifts in the gas-particle partitioning of ambient OC in outdoor-

to-indoor transport models. While further refinements are recommended, this mass-

balance model is a practical method that can be applied in large epidemiologic studies to 

predict residential ambient PM2.5 exposures. The input parameters (i.e. kdep, Pfilter) 
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provided here are based on a comprehensive assessment of PM2.5 species size 

distributions and their evaluation using RIOPA data provides confidence in this version 

of the mass-balance model as a robust tool for reducing exposure misclassification in 

epidemiologic studies. 
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 EC Sulfate OC 

  Mode 1 Mode 2 Mode 1 Mode 2 Mode 3 

Mass Fraction in Mode 1.0 0.2 0.8 0.4 0.12 0.48 

Particle Diameter (µm) 0.08 0.2 0.7 0.08 0.2 0.7 

kdep (h
-1
) 0.05 0.05 0.13 0.05 0.05 0.13 

 P  0.80/0.90
b
 0.80 0.80 0.80/0.90

b
 0.80 0.80 

Pfilter
a
 0.90 0.90 0.65 0.90 0.90 0.65 

Pwindow
a
 1.0 1.0 1.0 1.0 1.0 1.0 

a
Refined model: activities selected as significant predictors of variability in model-measurement 

differences were included in the refined model. 
b
Refined model: greater penetration efficiency of ultrafine-mode particles was accounted for in 

the refined model 

 

Table 4-1. Ambient PM2.5 species particle diameters and associated particle deposition loss rate 

coefficients (kdep), penetration efficiencies (P), central heating and air conditioning filter 

penetration efficiencies (Pfilter), and penetration efficiencies for homes with open 

windows (Pwindow) for elemental carbon (EC), sulfate, and organic carbon (OC). 
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Sulfate (n = 203) 

Selection 

Step 

Activity  Partial R
2
 Model R

2
 P 

1 Central Air Conditioning 0.20 0.20 < 0.0001 

2 Open Windows 0.09 0.29 < 0.0001 

3 Central Heating 0.02 0.31 0.027 

 

 

Table 4-2. Multiple linear regression (MLR) analysis investigating the contribution of 

human activities to variability in model-measurement differences for sulfate. Partial R
2
 

describes the variance in model-measurement differences explained by each human-

activity variable individually. Model R
2
 describes the total variance in these differences 

described by the full MLR model at each selection step. Indoor sulfate of outdoor origin 

is modeled. Measurements are of total indoor sulfate.  Previous work suggests indoor 

sulfate is predominately of outdoor origin (Sarnat et al., 2006). 



 
 

 

 

 

 

 

 

 

Figure 4-1. Cumulative distributions: measured indoor species (blue) and indoor species of ambient origin modeled with the initial 

model (red): (a) elemental carbon (EC), (b) sulfate, and (c) organic carbon (OC).
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Figure 4-2. Indoor PM2.5 species concentrations (ɛg/m
3
): modeled with the initial model and measured (a) elemental carbon (EC), (b) 

sulfate, and (c) organic carbon (OC). The dashed line is the 1:1 line. Note the model predicts indoor concentrations of ambient origin, 

whereas measurements also include the contribution from indoor sources.  
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Figure 4-3. Indoor PM2.5 species concentrations (ɛg/m
3
): modeled with the refined model and measured (a) sulfate and (b) elemental 

carbon (EC). The dashed line is the 1:1 line. Cumulative distributions: measured indoor species (blue) and indoor species of ambient 

origin modeled with the refined model (red): (c) sulfate and (d) elemental carbon (EC). Note that for sulfate the refined model 

accounts for human activities, while for EC it accounts for the greater penetration efficiency of ultrafine-mode particles. 
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Figure 4-4. Cumulative distributions of measured indoor organic carbon (OC) 

concentrations (blue), indoor OC of ambient origin estimated with the mass-balance 

model (red), and indoor OC of ambient origin estimated with the population average F 

value calculated using robust regression (black). 
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Chapter 5. Shifts in the gas-particle partitioning of ambient organics with transport 

into the indoor environment 

Material in this chapter has been published previously as:  

Hodas, N.; Turpin, B. J., Shifts in the gas-particle partitioning of ambient organics with 

transport into the indoor environment, Aerosol Sci. Technol. 2014, 48, 271 - 281. 

5.1. Abstract 

Predicting indoor exposures to ambient organic aerosol (OA) is complicated by shifts in 

the gas-particle partitioning of ambient organics with outdoor-to-indoor transport. This 

analysis aims to quantify the effect of changes in temperature and OA loading on the gas-

particle partitioning of ambient organics transported indoors and explores whether 

accounting for shifts in partitioning closes the gap between measured indoor ambient OA 

concentrations and indoor concentrations calculated in a previous analysis using a model 

that accounts for only the physical processes that influence outdoor-to-indoor transport. 

Changes in the gas-particle partitioning of ambient organics with outdoor-to-indoor 

transport were calculated for 167 homes using measured temperatures and OA 

concentrations and published OA volatility distributions. Initially, it was assumed that 

ambient OA could be represented with a single volatility distribution. The analysis was 

then repeated treating ambient OA as the sum of distinct components derived from factor 

analysis of aerosol mass spectra (e.g. hydrocarbon-like OA, oxygenated OA), each with a 

distinct volatility distribution. The sensitivity of these calculations to uncertainty in the 

thermodynamic properties of ambient OA was also evaluated by varying the enthalpy of 

vaporization. Partitioning shifts were sensitive to enthalpy-of-vaporization assumptions 

and resulted in changes in indoor ambient OA concentrations of 13 - 27%.  The 
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calculations indicate that phase changes are important determinants of residential 

exposure to ambient OA and are of sufficient magnitude to close the gap between 

measured and modeled indoor concentrations of ambient OA.  

5.2. Introduction  

 Ambient PM2.5 exposure mitigation strategies, risk assessment and health studies 

all benefit from accurate exposure prediction. Because people spend about 70% of time in 

their homes,
1
 the residence is an important setting for exposure to PM2.5 of ambient 

(outdoor) origin. The efficiency with which ambient PM2.5 penetrates into and persists in 

indoor air, and thus the fraction of ambient PM2.5 that people are exposed to in their 

homes, varies across PM2.5 species due to differences in particle size distributions and 

thermodynamic properties.
2-5

 For chemically non-reactive species (e.g. sulfate, elemental 

carbon), outdoor-to-indoor transport is governed by the physical losses associated with 

penetration across the building envelope and deposition indoors.
6-9

 It has been 

demonstrated for nitrate and polycyclic aromatic hydrocarbons (PAHs), however, that 

semi-volatile species can also undergo phase changes with outdoor-to-indoor transport 

due to changes in temperature, surface area, and the availability of particulate matter for 

sorption.
10-12

 Organics are a major component of outdoor and indoor-generated PM2.5.
13

 

While previous work provides evidence that organics also undergo phase changes with 

outdoor-to-indoor transport,
9,12

 to my knowledge this process has not been incorporated 

into models used to predict ambient PM2.5 exposure. 

 The thermodynamic principles governing gas-particle partitioning of ambient 

organics are well established.
14

 Increasing temperature increases organic vapor pressures, 

shifting organic mass from the particle phase to the gas phase. On the other hand, organic 
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aerosol (OA) provides a medium for sorption of semi-volatile organics. As a result, 

increasing concentrations of OA (for example with the introduction of indoor sources) 

shift organic mass from the gas to the particle phase. While the thermodynamics are 

understood, modeling these processes for atmospheric organics is hindered by their 

complexity. Atmospheric organic matter is comprised of thousands of compounds with 

largely unknown identities and a broad range of thermodynamic properties.
15,16

 Thus, 

explicitly modeling the gas-particle partitioning of all individual organic compounds 

comprising ambient OA is not practical. The partitioning behavior of atmospheric 

organics is often parameterized with a volatility basis set (VBS), which treats organics as 

a distribution of compounds binned by their volatilities.
17

 More specifically, the VBS is a 

distribution of saturation vapor pressures expressed in concentration units (C
*
) with log10 

spacing that span the range of atmospherically-relevant organic saturation 

concentrations.
17

 A volatility distribution with C
*
 on the x-axis and total (gas + particle) 

organic mass (OM) on the y-axis can be used to describe the gas-particle partitioning of 

ambient organics as a function of temperature and organic aerosol loading.
17

 

 In this chapter, the first study to utilize this volatility distribution to model shifts 

in the gas-particle partitioning of ambient organics with transport into the indoor 

environment is presented. Changes in temperature, and that indoor sources add 

considerable OA for sorptive partitioning are considered. Recently, volatility 

distributions were generated for ambient OA and OA components measured in regions 

dominated by anthropogenic PM2.5 sources.
18

 These volatility distributions were utilized 

to explore the thermodynamic behavior of ambient OA with outdoor-to-indoor transport 
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for multiple homes located in three urban regions of the United States: Elizabeth, NJ, Los 

Angeles County, CA, and Houston, TX.  

 Notably, Chapter 4 demonstrated that shifts in gas-particle partitioning were 

significant contributors to variability in measured indoor OA for these homes and that not 

accounting for these shifts significantly contributed to error in predicted indoor 

concentrations of ambient OA.
9
 In that study, indoor concentrations of ambient OA were 

calculated with a single compartment mass balance model that accounted for the physical 

processes that govern outdoor-to-indoor transport (i.e. the efficiency with which particles 

penetrate across the building envelope, depositional losses indoors, and losses in the 

filters of HVAC systems), but not shifts in gas-particle partitioning. A comparison 

between these modeled indoor concentrations of ambient OA and a statistical estimate of 

the measured indoor OA that could be attributed to outdoor sources demonstrated a lack 

of closure. As noted in Chapter 4, an estimate of the measured ambient OA indoors was 

needed because the indoor concentrations measured in these occupied homes include OA 

of both outdoor and indoor origin.
9
 This chapter uses volatility distributions to illustrate 

and quantify the effect of changes in temperature and OA loading on the gas-particle 

partitioning of ambient organics found indoors and explores whether these changes in OA 

concentrations are of adequate magnitude to achieve model-measurement closure.  

5.3. Methods 

5.3.1. Overview 

  As is described in detail below, the change in the gas-particle partitioning of 

ambient organics with outdoor-to-indoor transport was calculated for homes sampled 

during the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) Study. Changes 
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in partitioning due to indoor-outdoor temperature differences were considered, as was the 

fact that indoor sources emit OA to which ambient organics can sorb. The extent to which 

positive (net sorption) and negative (net volatilization) shifts were driven by changes in 

OA loading and changes in temperature was examined. Finally, the magnitude of shifts in 

partitioning were compared with the size of the measurement-model gap discussed above. 

This work was accomplished using measured temperatures and OA concentrations from 

RIOPA
19,20  

and published volatility distributions for ambient OA.
18

 It was assumed that 

volatility distributions generated for ambient OA measured during the MILAGRO 

campaign in Mexico City are representative of the volatility distributions of the ambient 

OA at each of the three RIOPA sites. This assumption is supported by the fact that mass 

thermograms (measurements of the fraction of mass remaining in the particle phase as a 

function of temperature) for the ambient OA in Riverside, CA are similar to those for 

Mexico City, suggesting similarities in the thermodynamic properties of ambient OA for 

regions dominated by anthropogenic OA sources.
18,21

 Initially, the volatility of ambient 

OA was represented with a single volatility distribution using an enthalpy of vaporization 

(ȹHvap) of 100 kJ/mol, a value considered reasonable when ambient OA is treated as a 

mixture of compounds with a range of volatilities, as is the case for the VBS.
17,18

 

However, a preferred approach would be one in which differences in the sources and 

formation mechanisms (and thus differences in thermodynamic properties) of ambient 

OA with season and geographic region are accounted for. Thus, this analysis was 

repeated treating ambient OA as the sum of several distinct components, each with its 

own distinct volatility distribution, derived from factor analysis of aerosol mass spectra 

(assuming an ȹHvap of 100 kJ/mol for all components). In this alternative analysis, 
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volatility distributions in different cities and seasons were represented by an average of 

the of the OA component volatility distributions weighted by the mass fractions of the 

OA components in each of those seasons and locations. The sensitivity of these 

calculations to uncertainty in the thermodynamic properties of ambient OA was also 

evaluated by repeating these analyses assuming an ȹHvap of 50 kJ/mol.  

5.3.2. RIOPA Study Measurements 

 RIOPA study measurements are described in detail by Weisel et al.
19

 and Turpin 

et al.
20

 Measurements included indoor and outdoor particulate organic carbon (OC) 

samples collected for 173 homes. Briefly, OC concentrations were measured by thermal-

optical transmittance with a Sunset Carbon Analyzer using the NIOSH temperature 

protocol and were corrected for the adsorption of gas-phase semi-volatile organic 

compounds on the quartz fiber filters used for collection. OC concentrations (µgC/m
3
) 

were converted to OA concentrations (µg/m
3
) assuming an OA:OC ratio of 1.4. A total of 

167 homes had all data required for the calculations conducted in this chapter (indoor and 

outdoor temperature and OC concentrations). Summary statistics for the RIOPA data 

used in our calculations are shown in Table 5-1. 

5.3.3. Volatility Distr ibutions 

 The calculation of the volatility distributions for ambient OA is described in detail 

elsewhere.
18

 Briefly, during the MILAGRO campaign in Mexico City, aerosol was pulled 

through a thermodenuder that heated the aerosol stepwise between ambient temperature 

and 230
o
C. Organic mass fragments remaining in the particle phase at each temperature 

were measured in an Aerosol Mass Spectrometer (TD-AMS).
21

 These measurements and 

a detailed model of aerosol evaporation in the TD-AMS system were used to generate 
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volatility distributions for ambient OA at 25
o
C and the campaign-average OA loading (17 

µg/m
3
).

18
 The fitting approach involved fixing two sets of free parameters: (1) the range 

of C
*
 bins that described the volatility distributions of the measured aerosol and (2) the 

total OM (gas-phase + particle-phase) in each of those C
*
 bins (Ci,tot). The authors used 

an iterative approach to determine the range of C
*
 bins that maximized agreement 

between modeled aerosol evaporation and the TD-AMS measurements. Ci,tot in each of 

the bins was calculated assuming an exponential relationship between C
*
 and Ci,tot and, 

again, adjusting this relationship iteratively until model-measurement agreement was 

maximized. Volatility distributions were calculated for a range of ȹHvap assumptions, as 

well as for OA components derived from factor analysis of aerosol mass spectra: 

hydrocarbon-like OA (HOA), biomass burning OA (BBOA), oxygenated OA (OOA), 

semi-volatile oxygenated OA (SV-OOA), and low-volatility oxygenated OA (LV-

OOA).
18

 Factor analysis of AMS spectra categorizes OA based on the temporal 

variability of measured compound mass fragments. As a result, any given OA component 

is comprised of compounds with similar sources, formation mechanisms, and 

physiochemical.
22-27

 Thus, while the contribution of any given OA component will vary 

temporally and spatially,
24

 the physiochemical properties of this OA component are likely 

to be similar across seasons and geographic regions.  

5.3.4. Shifts in Gas-Particle Partitioning with Outdoor -to-Indoor Transport  

 In the initial analysis in which ambient OA volatility was represented with a 

single distribution, volatility distributions were first calculated for the ambient conditions 

(i.e. temperature and OA loading) measured outside of each RIOPA home using the 

parameters presented in Cappa and Jimenez
18

 (Appendix D1). Volatility distributions for 
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the average outdoor conditions for the homes considered here (18.2
o
C, 4.87 µg/m

3
) are 

shown in Figure 5-1. The full bar for each saturation vapor pressure bin (C
*
i) indicates 

the total OM (gas + particle phase) in that volatility (saturation vapor pressure) bin. The 

shaded region indicates the fraction of that OM that is in the particle phase (ɝi) assuming 

absorptive partitioning into a single, well-mixed condensed phase:  

                                                          ‚ ρ
ᶻ

                                                    (1) 

where COA is the OA mass concentration. Organic aerosol concentrations measured 

outside each RIOPA home (COA,out) were used as inputs for COA in equation (1) in these 

calculations.  

 As noted above, the published volatility-distribution parameters (Appendix D1)
18 

are for an ambient temperature of 25
o
C. The distribution of C

*
 bins for the temperature 

measured outside of each home was calculated assuming that the temperature-

dependence of C
*
 can be described by the Clausius-Clapeyron equation: 

                               ὅᶻὝ ὅᶻὝ Ὡὼὴ
Ў

                            (2) 

where Tref  is 25
o
C, T is the temperature measured outside each RIOPA home, and R is 

the ideal gas constant.
17

 The same ȹHvap assumptions as were used to construct the 

volatility distributions were also used to calculate changes in C
*
 with temperature. 

 It should be noted that these volatility distributions were used only to simulate the 

change in partitioning behavior of the ambient organics. In other words, the volatility 

distributions were used to calculate the fraction of total ambient OM (gas and particle 

phase) that was in the condensed phase (‚ ) outside of each RIOPA home: 

                                                               ‚
В ȟ

В ȟ
                                                (3) 
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This calculated fraction of OM in the particle phase outside of each RIOPA home 

(‚ ȟ  and the measured outdoor OA concentration were then used to determine the 

total OM in the gas plus particle phase outside of each home: 

                                                                                                       ὅ ȟ

ȟ

                                                                             (4) 

 Using the same methods, the fraction of that ambient Ctot that would be found in 

the particle phase for the temperature and OA loading measured inside each RIOPA 

home (‚ ȟ  was then calculated. In other words, the new equilibrium partitioning of 

the ambient OM after it was transported into the indoor environment was simulated. Note 

that measured indoor OA concentrations, which were used to estimate the total OA 

loading indoors (i.e. COA in equation 1), include emissions from indoor sources into 

which ambient organics can partition, as well as the fraction of ambient OA that has 

penetrated into and persisted in indoor air. It was assumed that there was no change in the 

thermodynamic properties of the ambient organics with outdoor-to-indoor transport (i.e. 

the same volatility distribution could be used to represent ambient OA before and after 

transport indoors). Possible limitations of this assumption are discussed in the Results 

and Discussion section (Section 5.4). Indoor concentrations of ambient OA (COA,in,amb) 

were  calculated by multiplying ‚ ȟ  by Ctot. Changes in OA mass due to re-partitioning 

with outdoor-to-indoor transport were calculated by subtracting measured outdoor OA 

concentrations from those calculated after repartitioning to indoor conditions (i.e., 

temperature and OA loading): 

                                                     Ўὅ ὅ ȟȟ ὅ ȟ                                        (5) 

In a more sophisticated analysis, ambient OA was treated as a mixture of 

components derived from factor-analysis of aerosol mass spectra. In these chemically-



124 
 

 

resolved calculations, ȹHvap is assumed to be uniform across the OA components (100 

kJ/mol); however, the volatility distribution for total OA varies across locations and 

seasons because the mass fractions of the OA components differ and each component has 

a unique volatility distribution (Figures 5-1c - 5-1g). While measurements of OA outside 

of each home were available, measurements of AMS OA components were not. Thus, 

measured OA component mass fractions for Riverside, New York City, and Houston
28-35

 

were used to apportion measured OA between the components for LA County, Elizabeth, 

and Houston RIOPA homes, respectively (Appendix D2). The measured mass fractions 

are season-specific and, thus, only homes that were sampled during the seasons for which 

OA component mass fractions were available were included in the calculations that 

utilized the volatility distributions for OA components. For Houston and Riverside, only 

warm season (May - October) mass fractions were available, while for New York, 

component mass fraction measurements were available for both the warm and cool 

(November - April) seasons (Appendix D2). Aggregate volatility distributions for each 

RIOPA region (i.e. those calculated as an average of these component-specific 

distributions weighted by the mass fraction of each component) are provided in Appendix 

D4. Volatility distributions were calculated for the ambient conditions (temperature and 

OA loading) measured outside each RIOPA home for each of the OA components using 

the OA-component-specific parameters presented in Cappa and Jimenez
18 

(Appendix 

D1). Note that for these calculations, outdoor concentrations of each OA component 

(rather than the total outdoor OA concentrations) are used as inputs for COA in equation 1. 

These were calculated by multiplying the component mass fractions in Appendix D2 by 

the OA measured outside of each RIOPA home. Shifts in the gas-particle partitioning of 
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each of these OA components with outdoor-to-indoor transport were then calculated 

using the same methods as described above. The total ȹCOA due to shifts in partitioning 

for each RIOPA home was calculated by summing ȹCOA across all of the OA 

components.  

 In order to determine the data most important for predicting shifts in gas-particle 

partitioning with outdoor-to-indoor transport, whether changes in temperature or changes 

in OA loading were the dominant drivers of variability in calculated gas-particle 

partitioning shifts was then explored. This will clarify what measurements and data are 

most needed in order to incorporate this process into predictive ambient PM exposure 

models. For example, can shifts in partitioning largely be predicted knowing only the 

indoor temperature or is it necessary to also characterize indoor OA emission rates? 

Using multiple linear regression (MLR) with stepwise selection (Ŭ = 0.15 for variable 

entrance and removal threshold; SAS version 9.3, SAS Inc., Cary, NC), Ўὅ  was 

regressed on the indoor-outdoor temperature difference and the indoor-outdoor difference 

in OA mass loading, which was calculated by subtracting measured outdoor OA mass 

concentrations from measured indoor OA mass concentrations. This analysis 

systematically evaluates the predictive capability afforded by including either one or both 

variablesȢ It should again be kept in mind that the total OA loading measured inside each 

home includes OA emitted or formed inside the home and is a different value than the 

OA of ambient origin calculated above. Variance inflation factors indicated that there 

was no correlation between indoor-outdoor differences in temperature and OA loading. 

For unoccupied homes, we would expect these two quantities to be correlated because 

temperature influences the fraction of OM in the particle phase;
14

 however, for these 
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occupied homes, indoor sources of organics are the driving force for variability in 

measured indoor OA mass concentrations.
13

 Outliers were identified with a student's t-

test and were removed if t > 2. The MLR analysis was conducted for each ȹHvap 

assumption, as well as for each urban region in order to explore variability in partitioning 

shifts across climatic regions. 

5.3.5. Model-Measurement Closure 

 In order to explore whether changes in OA concentrations due to shifts in 

partitioning with outdoor-to-indoor transport can explain, at least in part, the gap between 

measured and modeled indoor ambient OA concentrations observed in the previous study 

discussed above, the previously calculated distribution of model error (Chapter 4) was 

compared with the distributions of ȹCOA calculated here. In Chapter 4, (1) indoor 

concentrations of ambient OA calculated for RIOPA homes using an outdoor-to-indoor 

transport model that accounted only for home ventilation and physical loss processes (i.e. 

air exchange rates, particle penetration efficiencies, and depositional losses) and (2) a 

statistical estimate of the OA measured indoors that could be attributed to outdoor 

sources were compared. An estimate of the measured indoor OA of ambient origin was 

required because indoor OA measurements included ambient OA that had penetrated and 

persisted indoors, as well as OA emitted by indoor sources. It was concluded that 

remaining differences between modeled values and the statistical estimate of measured 

indoor OA of ambient origin could likely be attributed to phase changes with outdoor-to-

indoor transport. If shifts in partitioning explain this closure gap, it is expected that the 

magnitude of ȹCOA is equal in magnitude, but opposite in sign of the model-measurement 

disagreement (i.e. ȹCOA would offset model error). In order to compare these quantities 
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directly, values of model error (modeled - measured) were multiplied by -1. Thus, if the 

distributions of "model error" and ȹCOA are similar, shifts in partitioning with outdoor-to-

indoor transport could plausibly close this model-measurement disagreement. The 

distribution of model error was compared to all calculations of ȹCOA  (i.e. those assuming 

ȹHvap = 100 kJ/mol, those assuming ȹHvap = 50 kJ/mol, and those treating ambient OA as 

a mixture of factor-analysis components). 

5.4. Results and Discussion 

In the main analysis (i.e. ȹHvap = 100 kJ/mol), partitioning shifts resulted in a loss 

of OA mass for 56% of homes (i.e., net volatilization; shifts from the particle phase 

towards the gas phase), and changes in ambient organic aerosol concentrations due to 

these shifts in partitioning (ȹCOA) ranged from -4.6 to 2.4 µg/m
3
 for individual homes 

(Figure 5-2). Negative values indicate net volatilization and positive indicate net 

absorption with outdoor-to-indoor transport. Calculated shifts in partitioning with 

outdoor-to-indoor transport were highly sensitive to ȹHvap assumption (Figure 5-2). Both 

the magnitudes and the direction of partitioning shifts varied across these analyses. While 

the main analysis resulted in a loss of OA mass for 56% of homes, partitioning shifts 

resulted in an increase in OA mass for 61% of homes in the sensitivity analysis (ȹHvap = 

50 kJ/mol). Values of ȹCOA for individual homes spanned a wider range in the sensitivity 

analysis (-10.5to 5.7µg/m
3
)
 
compared to the main analysis. Outdoor-to-indoor transport 

resulted in an absolute change in COA (i.e. net absorption or volatilization) of only 13%, 

on average, in the main analysis, while a 27% change, on average, was observed in the 

sensitivity analysis.  
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 Differences with ȹHvap assumptions can partially be attributed to the fact that 

shifts in C
*
 with temperature are dependent on ȹHvap (equation 2). However, this effect is 

relatively small.
18

 The differences in gas-particle partitioning shifts are mostly the result 

of differences in the volatility distributions for these two ȹHvap assumptions. The 

volatility distribution generated for ȹHvap = 100 kJ/mol has more mass in lower C
*
 bins.

18
 

In other words, when an ȹHvap of 100 kJ/mol is assumed, lower volatility material 

comprises a larger fraction of the OA and, thus, this OA is less sensitive to indoor-

outdoor differences in OA loading than that with an ȹHvap of 50 kJ/mol. As is evident 

from Figure 5-3, which shows shifts in gas-particle partitioning that would result if only 

indoor-outdoor temperature differences or only indoor-outdoor differences in OA loading 

were considered, the change in OA associated with temperature is relatively similar 

across ȹHvap values, but the OA with an ȹHvap of 50 kJ/mol shows a much greater 

sensitivity to changes in OA loading with outdoor-to-indoor transport.  

 This effect is also evident in our MLR results (Table 5-2). In the main analysis 

(ȹHvap = 100 kJ/mol), the change in temperature with outdoor-to-indoor transport was the 

dominant predictor of variability in ȹCOA, explaining 45% of this variability (R
2
 = 0.45). 

The indoor-outdoor difference in OA loading explained 24% (R
2
 = 0.24) of the variability 

in ȹCOA. When an ȹHvap of 50 kJ/mol was assumed, however, the indoor-outdoor 

difference in OA loading was the dominant driver of variability in shifts in partitioning, 

explaining 51% of the variability in ȹCOA (R
2
 = 0.51). The indoor-outdoor temperature 

difference explained 23% of this variability (R
2
 = 0.23). The MLR results indicate that 

both temperature and OA emissions inside homes are important for predicting shifts in 

partitioning of ambient organics with outdoor-to-indoor transport. Note that indoor-
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outdoor temperature differences also affect ambient exposure prediction by affecting 

residential air exchange rates.  

 Geographic differences in the results (Figure 5-4, Table 5-2) demonstrate that 

heterogeneity across climatic regions in indoor-outdoor temperature differences and in 

the human activities that influence these differences (e.g. air conditioning (AC) and 

heating use) impact gas-particle partitioning shifts with outdoor-to-indoor transport. In 

the relatively moderate climate of Los Angeles County, where both heating and AC use 

were low,
19,36

 indoor temperatures were greater than outdoor temperatures for 98% of 

homes and the average indoor-outdoor temperature difference was 4.8
o
C. In Elizabeth, 

where some of the homes sampled in the winter had heating in use,
19,36

 indoor 

temperatures were again greater than outdoor temperatures for the vast majority of homes 

(96%), but the average indoor-outdoor temperature difference was about twice that 

observed in Los Angeles County (9.9
o
C). Finally in Houston, where central AC use was 

greater than for the other two urban regions,
19,36

 there was a decrease in temperature with 

indoor transport for 30% of homes and indoor-outdoor temperature differences ranged 

from -7.2
o
C to 12.8

o
C. Interestingly, Houston is the only region for which there was a net 

increase in OA mass (shifts from the gas phase to the particle phase) for the majority of 

homes (64% compared to 31 and 30% for Los Angeles County and Elizabeth; Figure 5-

4), indicating that human activities in addition to those associated with indoor emissions 

of OA (i.e., heating and AC use) can influence gas-particle partitioning. The greater 

range of indoor-outdoor temperature differences in Elizabeth and Houston likely explains 

why partitioning shifts were dominantly driven by changes in temperature for those two 

regions, while the change in OA loading was the dominant predictor of shifts in 
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partitioning for Los Angeles County homes (Table 5-2). While not explored here directly 

because of sample-size restrictions, these results also indicate that there are likely 

seasonal differences in shifts in gas-particle partitioning (and OA exposure) in regions for 

which there is seasonal heterogeneity in indoor-outdoor temperature differences and in 

heating and AC use.  

 Shifts in gas-particle partitioning calculated for RIOPA homes using the volatility 

distribution generated for OA components were qualitatively similar to those calculated 

in the main analysis (ȹHvap = 100 kJ/mol); however, this aerosol demonstrated slightly 

lower sensitivity to temperature and OA-loading changes with outdoor-to-indoor 

transport (Figure 5-5). These shifts resulted in an absolute change in COA (i.e. net 

absorption or volatilization) of 11%, on average, compared to 13% for the main analysis. 

HOA was most sensitive to changes in temperature and OA loading with outdoor-to-

indoor transport (20% change in OA concentrations, on average), followed by "other" 

OA (13% change on average), and OOA (12%, on average; Figure 5-5). Indoor transport 

resulted in a 7% change in COA, on average, for SV-OOA, whereas outdoor-to-indoor 

transport did not induce shifts in partitioning for LV-OOA (Figure 5-5).  

 While there is uncertainty in the thermodynamic properties of ambient OA, we 

can speculate about which calculations of ȹCOA are most realistic. Partitioning models in 

which total ambient OA is represented by one or two compounds require ȹHvap values Ò 

50 kJ/mol to reproduce partitioning behavior observed in chamber studies and in the 

field.
17,18,37,38

 However, when a wider range of thermodynamic properties is considered in 

the representation of ambient OA (e.g. use of a volatility basis set as is the case here 

versus use of a two-product model) a more realistic ȹHvap of 100 kJ/mol reproduces 
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observed partitioning behavior.
17,18

 As a result, the calculations for which ȹHvap was 

assumed to be 100 kJ/mol are likely to be more representative of the partitioning behavior 

of ambient OA than those calculated assuming an ȹHvap of 50 kJ/mol. Treating ambient 

OA as a mixture of components derived from factor analysis of aerosol mass spectra 

likely provides the most realistic and robust estimate of gas-particle partitioning shifts 

with indoor transport. As noted above, the physiochemical properties of any particular 

component (e.g., HOA) are likely similar across seasons and geographic regions because 

each component is comprised of species that are covariant due to having common sources 

or formation mechanisms.
22-27

 Notably, mass thermograms for OA components generated 

from TD-AMS measurements in Riverside, CA were similar to those for Mexico City, 

suggesting similarities in the thermodynamic properties of these OA components for 

regions dominated by anthropogenic OA sources.
18,21

 This supports the use of these 

volatility distributions for a wide range of locations. However, AMS data describing the 

mass fractions of each OA component are also required before these volatility 

distributions can be applied to predict indoor concentrations of ambient OA. Greater use 

of the AMS to measure outdoor aerosol in exposure studies will facilitate such exposure 

modeling efforts. 

 Distributions of measurement-model disagreement and calculated values of ȹCOA 

are compared in Figure 5-6. Median values of residual model error and of ȹCOA differ 

(note that median values of ȹCOA are near zero); however, the distributions of model error 

and ȹCOA are not significantly different. Thus, shifts in gas-particle partitioning provide a 

plausible explanation for the previously observed lack of closure (Chapter 4). As 

expected based on the discussion above regarding the most realistic and robust volatility-
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distribution assumptions, distributions of model-measurement disagreement and ȹCOA are 

closest in magnitude when an ȹHvap  of 100 kJ/mol is assumed and when ambient OA is 

treated as a mixture of AMS factors (e.g., HOA, OOA). 

 One limitation of this work is that the increased surface area in the indoor 

environment, compared to the outdoor environment, is not accounted for. Sorption to 

indoor surfaces such as carpets, wallboard, furniture, HVAC surfaces and even home 

occupants can be an important sink for gaseous SVOCs
39

 and could result in a shift of 

OM of outdoor origin from the particle phase towards the gas phase in order to reach a 

new equilibrium.
12,39

 Thus, it can be concluded that interactions with indoor surfaces 

would result in greater evaporative losses of OA than were calculated for the RIOPA 

homes. As noted in the Methods section, we assumed that there was no change in the 

thermodynamic properties of the ambient organics with outdoor-to-indoor transport (i.e. 

the same volatility distribution could be used to represent ambient organics before and 

after transport indoors). Many factors such as particle size and composition, 

characteristics of cracks in the building shell, human activities (e.g. opening/closing 

windows), and compound volatility and reactivity contribute to variability in the 

efficiency with which pollutants penetrate and persist indoors.
9,40

 Reactive gases are 

expected to encounter larger losses and non-reactive gases smaller losses than particulate 

organics. Such differential losses may alter the ambient volatility distribution of ambient 

organics. For example, depletion of the particle phase and not the gas phase would result 

in smaller evaporative losses or larger increases in ambient OA due sorption to indoor-

generated OA than the values calculated here. It should also be noted that the timescale 
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required for organic compounds to reach equilibrium partitioning between the gas and 

particle phases can vary over several orders of magnitude depending on vapor pressure.
41

 

 This work also does not consider interactions of ambient OA with gas-phase 

organics of indoor origin  (e.g. terpenoids from cleaning products, PAHs from 

combustion sources)
42-44

.  Weschler and Nazaroff
39

 note that the partitioning of gas-phase 

organics emitted or formed indoors to OA of outdoor origin could both increase the mass 

concentrations of the particles transported indoors and alter their chemical composition. 

These interactions illustrate the difficulties that could arise in separating the ambient and 

non-ambient contributions to OA exposure. Further, the importance of liquid water as a 

partitioning and reaction medium has been demonstrated for atmospheric aerosols,
45

 but 

its role in the indoor environment has not been explored. In the case of PAHs, Naumova 

et al.
11

 found that the majority of variability (84.5%) in gas-particle partitioning indoors 

could be explained by PAH vapor pressure, indoor temperature, and the characteristics of 

the PM2.5 measured indoors (mass fractions of elemental and organic carbon). 

5.5. Conclusions 

 Accounting for shifts in gas-particle partitioning of ambient organics with 

transport into the indoor environment improved model-measurement closure. Calculated 

shifts resulted in changes in OA mass of between 11 and 27%, on average, depending on 

the assumed ȹHvap and whether OA was represented with a single volatility distribution 

or with a distribution generated assuming a mixture of AMS factor-analysis components. 

While uncertainties in the thermodynamic properties of ambient OA contribute to 

uncertainty in the magnitude and direction of partitioning shifts with outdoor-to-indoor 

transport, all calculations indicate that phase changes are important determinants of 
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residential OA exposure. Of the calculations presented here, treatment of ambient OA as 

a mixture of components with distinct sources, formation mechanisms, and 

physiochemical properties (AMS fators, e.g. HOA, OOA) is likely to offer the most 

robust estimates of shifts in partitioning with outdoor-to-indoor transport across seasons 

and geographic regions. Expanding the spatial and temporal coverage of TD-AMS 

measurements, volatility distribution calculations like those presented in Cappa and 

Jimenez,
18

 and OA component mass fraction measurements will help to identify seasonal 

and geographic variations in OA volatility distributions and will help facilitate estimates 

of shifts in partitioning with outdoor-to-indoor transport.  
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 5
th
 

Percentile 

25
th
 

Percentile 

Median 75
th
 

Percentile 

95
th
 

Percentile 

Outdoor OA
a
 (µg/m

3
) 1.07 2.66 4.25 6.47 10.90 

Indoor OA
a
 (µg/m

3
) 2.45 4.95 7.42 11.04 27.43 

Outdoor Temperature (
o
C) 3.8 13.6 19.5 24.1 28.6 

Indoor Temperature (
o
C) 19.5 22.2 23.9 25.6 27.8 

 a
OA concentrations (µg/m

3
) were estimated from measurements of organic carbon 

concentrations (µgC/m
3
) assuming an OM:OC ratio of 1.4. 

 

 

Table 5-1. Summary statistics of measured indoor and outdoor temperatures and organic 

aerosol (OA) concentrations for the RIOPA study homes included in this paper. Only 

homes for which all measurements shown above were available were included in this 

analysis (n = 167). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-2. Multiple linear regression (MLR) analyses investigating the contribution of indoor-outdoor differences in temperature and  

organic aerosol (OA) loading to changes in ambient OA concentrations (ȹCOA) due to shifts in gas-particle partitioning with outdoor-

to-indoor transport. Partial R
2
 describes the variance in ȹCOA explained by each variable individually. Model R

2
 describes the total 

variance in ȹCOA described by the full MLR model at each selection step. Coefficient estimates describe the change in partitioning 

(i.e., ȹCOA) per unit difference between indoor and outdoor temperature and OA loading 

 Selection Step  Variable Partial R
2
 Model R

2
 Coefficient Estimate P 

ȹHvap = 100 kJ/mol 

All Homes  

(n = 167) 

1 Temperature 0.45 0.45 -0.07 <0.0001 

2 OA Loading 0.24 0.69 0.05 <0.0001 

Los Angeles County, CA  

(n = 44) 

1 OA Loading 0.58 0.58 0.12 <0.0001 

2 Temperature 0.20 0.78 -0.10 <0.0001 

Elizabeth, NJ  

(n = 54) 

1 Temperature 0.54 0.54 -0.08 <0.0001 

2 OA Loading 0.24 0.78 0.03 <0.0001 

Houston, TX 

(n = 69) 

1 Temperature 0.30 0.30 -0.07 <0.0001 

2 OA Loading 0.32 0.62 0.05 <0.0001 

ȹHvap = 50 kJ/mol 

All Homes  

(n = 167) 

1 OA Loading 0.51 0.51 0.11 <0.0001 

2 Temperature 0.23 0.74 -0.08 <0.0001 

Los Angeles County, CA  

(n = 44) 

1 OA Loading 0.78 0.78 0.25 <0.0001 

2 Temperature 0.10 0.88 -0.10 <0.0001 

Elizabeth, NJ  

(n = 54) 

1 OA Loading 0.56 0.56 0.08 <0.0001 

2 Temperature 0.28 0.84 -0.09 <0.0001 

Houston, TX 

(n = 69) 

1 OA Loading 0.58 0.58 0.11 <0.0001 

2 Temperature 0.12 0.70 -0.06 <0.0001 

1
4

1 
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Figure 5-1. Volatility distributions for the average conditions measured outside of 

RIOPA homes (temperature = 18.2
o
C and OA loading = 4.87 µg/m

3
). (a) total OA 

assuming an enthalpy of vaporization of 100 kJ/mol; (b) total OA assuming an enthalpy 

of vaporization of 50 kJ/mol; (c) - (g) OA components derived from factor analysis 

assuming an enthalpy of vaporization of 100 kJ/mol for all components: hydrocarbon like 

OA (HOA), oxygenated OA (OOA), semi-volatile oxygenated OA (SV-OOA), low 

volatility oxygenated OA (LV-OOA), and "other" OA. The distribution for "other" OA is 

based on parameters for total OA (Appenix D1). The full bar for each saturation vapor 

pressure bin (C
*
) indicates the total OM (gas + particle phase) in that volatility (saturation 

vapor pressure) bin. The shaded region indicates the fraction of that OM that is in the 

particle phase assuming absorptive partitioning into a single, well-mixed condensed 

phase. Adapted with permission from Cappa and Jimenez (2010). 
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Figure 5-2. Frequency distributions of the change in organic aerosol mass concentrations 

due to changes in gas-particle partitioning with outdoor-to-indoor transport (ȹCOA) 

assuming an enthalpy of vaporization (ȹHvap) of (a) 100 kJ/mol and (b) 50 kJ/mol. 

Negative values indicate net volatilization, whereas positive values indicate net 

absorption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

Figure 5-3. Frequency distributions of the change in organic aerosol mass concentrations due to changes in gas-particle partitioning 

with outdoor-to-indoor transport (ȹCOA) accounting only for (a) - (b) indoor-outdoor temperature differences and (c) - (d) indoor-

outdoor differences in OA loading. 
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Figure 5-4. Frequency distributions of the change in organic aerosol mass concentrations 

due to changes in gas-particle partitioning with outdoor-to-indoor transport (ȹCOA) for the 

three geographically and climatically diverse urban regions studied here: (a) Los Angeles 

County, CA, (b) Elizabeth, NJ, and (c) Houston, TX. 
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Figure 5-5. Frequency distributions of the change in organic aerosol mass concentrations 

due to changes in gas-particle partitioning with outdoor-to-indoor transport (ȹCOA) for (a) 

total OA assuming that OA can be represented as a mixture of factor-analysis 

components with mass fractions given in Appendix D2 and (b) - (f) for each OA factor 

analysis component: (b) hydrocarbon-like OA (HOA), (c) semi-volatile oxygenated OA 

(SV-OOA), (d) low volatility oxygenated OA (LV-OOA), (e) oxygenated OA (OOA), 

and (f) other OA. The bin widths for each distribution are on the same order of magnitude 

as the standard deviations of ȹCOA, illustrating differences across OA factor-analysis 

components. An enthalpy of vaporization of 100 kJ/mol was assumed for all components. 

 

 

 

 

 

 

 

 

 

 

 

 

 


