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ABSTRACT OF THE DISSERTATION

Variability in the Fraction oAmbient Fine Particulate Matter in Indoor Air and
Implications for Air Pollution Epidemiology
by NATASHA HODAS

Dissertation Director: Barbara Turpin

Exposure to ambienirfe particulate matter (PM) is associated with multiple
negative health outcomeStudies investigating these associations commonly usg; PM
concentrations measured at outdoor, cessital monitors to estimate exposuBecause
people spend the majority of time indoonewever,the variable efficiency with which
ambient PM;s penetates and persists indoois a source oferror in epidemiobgic
analysesThis error generally results in an underestimation of health effects, hampering
the detection of associations between ambient fdposuresand the risk of health
outcomes To reduce this error, practical methods to model indoor concentrations of
ambient PMsare needed.

This dissertatiorcontributes to exposure science by advaneixigting models of
residential exposure to ambidPl, s and byimproving the robustness and accessibility
of these toolsFirst, drivers of variability inthe fraction of ambient Pp4found indoos
(F) are identifiedand the potential for this variability to explaiservedheteogeneity
in PM-mediated healteffect estimatesis explored Next, a physicallybased mass
balance model and modeling tools that account for variability in humarityapatterns
(e.g. time spenin various indoor and outdoor environments) are used to compute

ambient PMs exposures that acant for the modification of Pl with outdoorto-



indoor transporin orderto explore whether the use of these refined exposure surrogates
reduces error andids in epidemiologic analyseSubsequently, this outdotws-indoor
transport model isevaluatedand refinedusing measured indoor and outdoor 2M
concentrations and air exchange ratgsviding a practical and robust tool for reducing
exposure misclassification in epidemiologic studiemally, the volatility basis set is
used for the first timéo study shifts inthe gasparticle partitioningof ambient organics

with transportindoors.

This dissertation provides guidance regarding measurements and data most
critically needed to facilitate the prediction of refined exposure surrogates in large
epidemiological studieand, thusjnformsthe design of future sampling campaigns and
epidemiologic studiedt enables detter accounting of ambient particle penetration into
and persistence in the indoor environmeantl constitutes an important advamest in
the efforts to reduce exposure erroin epidemiologic studiesand to elucidate

relationships between PMexposure and adverse health outcomes.



ACKNOWLEDGEMENTS

My graduate education and reseavere funded by a Department of Education
Graduate Assistance in Areas of National Need (GAANN) Fellowdbmyironmental
Protection Agency Science To Achieve Results (STAR) Fellowship agreement number
FP-917336 and an Air Pollution Education and Research G(ARERG) from the Air
and Waste Management Associatidfuch of thisresearch waslone in collaboration
with U.S. Ehvironmental Protection Agencyooperative Agreement Cig34072010.

| would like to thank all of those who have supported me during my time as a
graduate studerat Rutgers University and who have made this research possible. First, |
would like to thank my advisors Drs. Barbara Turpin and Qingyu Meng. Dr. Turpin has
provided me with invaluable guidance and support in my research and all aspects of my
professional developmeridr. Meng has provided me with important statistical skills and
has been a mentor throughout my graduate career. | would also like to thank the other
members of my committee, Drs. Mark Miller and Ann Marie Carlton. Their expertise in
the classroom and as research mentors has provided important support for this work.
While not an official member of my committee, Dr. David Rich has egaluable
mentorand this work would not have been possible without his guiddrneeuld also
like to acknowledge thether members of the EPA Coop: Melissa M. Lunden, Kelly
ThevenetMorrison, Pamela Ohma8trickland, Lisa Baxter, Janet Burke, ahihlik
Ozkaynak.In addiion, | thankmy lab group andhe faculty and staff of the Rutgers
University Environmental Science Department for helping me to navigate all aspects of

my graduate education.



My family and friends have provided support throughout my life and my time
here. My parents (all four of them) have instilled in me a desire to learn and have always
encouraged me to continuously reach for new goals. They and my sister have also always
provided me with unconditional love and support. My husband, Paul Loikith, has been a
pillar of strength. He has been there throughout the many ups and downs of life and can
always find a way to make me smile. | ateankVirendra Ghate, Samantha Amato, and
Timothy Heckler for providing their friendship, support, and comic reliEfis
dissertation is dedicated to the memory of Irving Hodas, who embodied the joy of
learning and proved that you are never too old to explore particle physics and other

scientificfields.



TABLE OF CONTENTS

Y 0111 =T PP Ii
ACKNOWIEAGEMENLTS ... 222222 amme e \Y
Table Of CONIENLS .....oviiieiiie et eee e e e merenees \
IS A ) = ] =TSRSS Xiii
LiSt OF HIUSErAtIONS ...t e e e s Xiv
Chapter LINtrOUCTION.........coiiiiiei i e e e e e e e e e .1
I I Y/ o 11V T 1SS 1
1.11 Ambient PM sand Negative Health Outcomes......ccccoeeeeevecvveiieeneenn. 1
1.1.2Exposure Error and Bias in Air Pollution Epidemiolagy........c.............. 2
Y = 7= (o (o (01U ] (o PP PPPPPPUPPPPPPPR 4
I 172 1 0] o TT=T 0 A e 1 3T 4
1.2.2 ThePhysics and Chemistry of OutdetrIndoor Transport..........c........ 6
1.23 QUANTITYINGF....eeeeiiiiiiiieeee s 13
1.3.Hypotheses and Dissertation ObJeCtiVES..........ccccovviiiiiiiiiiiiiimne e 15
1.4, DiSSErtation OVEIVIEW ......ccciiiiieeeeeeeeeeeeeeeeeeeietiiies s s s e e s emmme e e eeeaeeeeaeeeeeennesennnnns 16
ST Y (=] =] T = 21

Chapter 2Variability in the Fraction of Ambient Fine Particulate Maf@und Indoors

and Observed Heterogeneity in Health Effect EStimates..........ccooccveeeeviviiiinneeenn. 29
2. L ADSITACT. ... 29
V222 1 11 {0 To [ 8041 o] o PP PP PPPPPP 30
2.3 MEENOMUS. ...ttt e s 32
2.3.1MAIN ANAIYSIS. ..ettiiieeiieiiiie e e e e e 32

Vi



2.3.2SeNnSitiVIty ANAIYSES......coooiii i 37

2.4, RESUILS ... oot e e e e e 39
2. 4. 1MAIN ANAIYSIS....ceiiiiiiiieei e emm e e e e e e 39
2.4.2SeNSItIVIEYANAIYSES......cco i e 40

2.5, DISCUSSION ...ttt 1141 e e e e e e ennnn 42
2.5.1Implications for BIidemiology...........ccceiiiimiiiiiiiiiiceee e emae 42
2.5.2Refined EXpOSUre SUIMOQAaLeS..........oooviiiiiiiiiiiiiiiiee e e 43

2.6. CONCIUSIONS ...ttt e ettt e et e e e e s n s e e e 47

2.7. REIEIENCES ...t 47

Chapter 3:Refined Ambient PMs Exposure Surrogateand tle Risk of Myocardial

] £= T (o1 1o o P PP TP TPRPPP 57
3L ADSTIACT. ...ttt e 57
T2 | 011 (¢ (8o (o] o TP PP PTP PP PP P R 58
3.3 MBENOUS. ... e e 61
3.3.1. Study Population and Outcome Definition ............ccomeeevvieeeeeennenn. 61
3.3.2. EXPOSUIe SUIMOQALES........ceeeeeiiiiiiieieiiieeeiiiiiis e e e e e e e eeeeeennennnms 62
3.3.3. Statistical ANAlYSES......ccoooiieiieiie e 66
AL RESUILS ... 70
3.4.1. Modeled Exposure Tier ANAIYSES..........uuuvieiiiiiiiiiiiiiiieeieee e 70
3.4.2. AER Effect Modification AnalySes............cooviiviriiiiiiiiiiiiieeeeeee e 71
3.5 DISCUSSION. ...etttteieeeeite et e e e e mmmm ettt ettt e e e e e e e e e e e e e e e s e s nbne e e s s 73
3.6 CONCIUSIONS. ... e e e e e e e s e 78
3.7 RETEIBNCES. ...coieee i i bbb 79

vii



Chapter 4:Toward Refined Estimates of Ambient PMExposure: Evaluation of a

PhysicalOutdoorto-Indoor Transport Model...........ccccuvvviiimiiiiiiiiiee e 88
N 511 = V0! ST PP PP PP 88
o [ 011 (oo 18 ox 1 o] o W TR TTPPPPPO B
4.3 METNOUS. ...t 90
4.3.1 Modeled Indoor PMsCONCENLIAtiONS........ccceuuvriiiiiiimieieeeeeeeeee e 90
4.3.2. Model EValUatiQN..........cccuiiiiiiiiiiieeeeeeccee s 91
4.3.3. Attributing ModeMeasuremenbDifferences: Human Activities........... 92

4.3.4. Attributing ModeMeasurement Differences: Indoor Sources of.OC 94
4.3.5. Attributing ModeMeasurement Differences: Uncertainty in OC Size
D11 01U 11 To] 3 95

4.3.6. Attributing ModeMeasurement Differences: Phase Changes of Ambient

OFQANICS. ...ttt ettt et et e e e e e e e e e e e e s s e e e enerrem e e e e e e s e e e e mmebeennne e 95
4.4. ReSUItS and DISCUSSIQN..........uuuuiiiiiiiiiiiiiiiitteeee e e e e e e e s s s s mmmmmnaeseeeeeeeeneassebereeeeeees 96
4.4.1. Initial MOEL.......cooii e 96
4.4.2. Model Refinements: Accounting for Human Activities............cc...... 98
4.4.3. Accounting for Indoor Sources of OC...........cccccvvvieiiiiiiiiiieeee 100
4.4.4. Variability and Uncertainty in OC Size Distriloms...........ccccueeeeennn. 100
4.4.5. Shifts in the GaBarticle Partitioning of Ambient OC.........cccenn. 101
4.4.6. Further Recommendations for Epidemiologic Studies................... 102
4.5, CONCIUSIONS. ...ttt e mmn bbbttt e e e e e e e e e e e e naaaaas 104
4.6. RETEIEINCES. ...coiiiiiiiiii et 105

viii



Chapter 5:Shifts in thegasparticle partitioning of ambient organics with transport into

the INAOOr ENVIFONMENT.......uuiiii ittt e e e e 115
5. L ADSTIACE . .. oot ———— e e e e aern e e as 115
5.2, INEFOTUCTION. ...ttt e e e e e e e e rmmmnnnee e e 116
5.3 MEINOAS. ... e ———— 118
5.3. L. OVEIVIEW.....ceiiiieeeeee ettt e e e e e e e e e 118.....
5.3.2. RIOPA Study Measurements...........oooouiiiiiiiiiiniiiiiiiiiieeeeeeeee e 120.....
5.3.3. Volatility DIStriDULIONS. .......cceviiiiiiiiiieeeee e 120...

5.3.4. Shifts in Ga®article Paritioing with Outdooito-Indoor Transport....121

5.3.5. ModelMeasurement ClOSUIE............uuuiiiiiiiiiiiiieieeeeee e 126....
5.4. Results and DiSCUSSIQN..........ccoiuuiiiiiiiiiiieeeeeeesiiieieesemrseeeeeeeeeeeeeeeeeeeeeeesnneeees 127
5.5, CONCIUSIONS......cuiiiiiiiiiiiii e e e e e e e e e e e e eaeeeaeas 133
5.6. RETEIENCES. ... .ottt 134
Chapter 6Summary, Future Directions, and ImplicationS......cc.cccoeeeeeevvvviveeenennne 148
6.1. Summaryand Concurrent STUAIES. ........coiiiiiiiiiiiiiiiieee e 148
6.2. FULUIE DIFECHIONS. .....eiiiiiiiiiiiee e e e et et 153
6.2.1. EpidemiologiC ANAIYSES.......ccooiiiiiiiiiieie e 153
6.2.2. Data and MeasUMENTS.........coooiiiiiiiiiiiiieee e 156
6.3. Implications and IMPACES...........eeiiiiiiiiiiiiie e creeiiiii e 158
6.3.1. Implications for Future StUdIES............covvviviiiiiiiiiii e 158

6.3.2. Implications for Exposure Mitigation Strategies and Policies......... 159
6.3.3. Broader IMPaCIS.........uuviieiiiiiiiiiiiieeieee e e 160

B.4. RO I N CES. . e ettt et e e e et aan 161



Appendix A:Supporting Information for Chapter.2...........cccooevviiiiiiiiiiiccee e, 1e!

APPENTIX A RETEIENCES.....ciiiiiiiie ittt ettt e e e e e e e e e 165
Appendix A1 Queens, NY Size DistributidVleasurements..............oceeeeeee 166
Appendix A2 Fresno, CA Siz®istribution Measurements...........c......cc..... 167

Appendix B:Supmrting Information for Chapter.3..........cccccooeiiiiiiiimiiiiiieeee, 168

APPENTIX B RETEIENCES. ... .uuiiiiiiii ettt 173

Appendix B1l. Input Seasonal Air Exchange Rate Distributions for the SHEDS
Model used to Generate Tier 2A Exposure Estimiate..................evuemeeee.. 174
Appendix B2. Input Paramters for the SHEDS Model used to Generate Tier 2A
and Tier 3EXPOSUIe ESHMALES. .........coiviiiiiiiii ettt e e e e e e e e e e e a e 175
Appendix B3. Mass Median Diameters and Associated Deposition Coseftecie
used for Particulate Sulfate, Nitrate, Elemental Carbon, and Organic Carbon in the
Tier 2B EXposure EStMALES .........ccccciiiiiiiiiiiiieeeee s o e e eeeees 176
Appendix B4. Correlations of Measured PM2.5 SpeciessMasctions Across
CentratSite MONITOIS. .....eiiiiiiiii et 177
Appendix B5 Variables and simple linear regression results for variables
identifiedon the RIOPA Baseline and Actity Questionnaires as being relevant

to residential airexchange rate..............ccccceviiiii 178

Appendix B6 LBNL Infiltration Model Evaluation Multiple Linear Regression

TS U 181
Appendix B7 Modeled and Measured Air Exchange Rates...............c... 182
Appendix B8 Summary Statistics of Each Exposurer8gateTier................ 183

Appendix B9 Air Exchange Rate Summaryafistics by Tertile and Seasaril86



Appendix B1l0 PM,s Species Mass Fractions and Ambient £2M
(O0] g (01T 01 (=11 (o] 4 - NPT PO PPPPPPP 187
Appendix B11 Study Subjects by Monitorin§ite Community..........c........ 188
Appendix B12 Relative Odds of a Transmural Infacet Calculated at the Zip
COAELEVEL...ceieiee et e e e e e e e e aennnes 189
Appendix B13 Study Population Characteristics by AER Tertile, Cool
S BASON. ...ttt e e e eanna 190

Appendix Bl4. Study Population Characteristics by AER Tertil&/arm

YTz L0 o FE PP P PP PP 191
Appendix C:Supprting Information for Chapter.4...........ccccceiiiiiiniiiiiiiiii 192
APPENTIX C RETEIENCES ......utiiiiiiiiiiiiiii ettt mmm e 195

Appendix C1 Number of RIOPA Study Homes Included in Chapter 4

ANBIYSES. ...ttt e e e e e e e e e e e e e nnnn 199
Appendix C2 Summary Statistics of RIOPA Study Measurements.......... 200
Appendix C3 Particle Size Distribution LiteratuRReView................eeueeenenes 201
Appendix C4 Cumulative Distributions of Indoor Sulfate............ccccceee.... 203

Appendix C5 Robust Regression of Measured Indo@rganic Carbonon
MeasuredOutdoor @ganiCCarboN............coooiiiiiiiiiiii e 204
Appendix C6 Cumulative Distributions of Indoor Organic Carban........... 205

Appendix C7 SAS Code for Chapter 4 Calculations: Elemental Carbon.. 206

Appendix C8 SAS Code for Chapter 4 Calculatioi®lfate............c....cc... 210
Appendix C9 SAS Code for Chapter 4 Calculatio@rganicCarbon............ 216
Appendix D:Supprting Information for Chapter.5............cccuvvviieeimiiiiiiiiiieeeee, 25

Xi



Appendix D1. VolatilityDistribution Parameters...........ooeeevvvniiiineeeenennn. 225
Appendix D2.Aerosol Mass Spectrometer Fac@nganic AerosolComponent

MASS FrACONS......ccoiiiiiiiiiiiie i 226
Appendix D3. Distributions of the Change in Ambient Organic Aerosol
Concentrations Association with Shifts in Garticle Partitioing with Outdoer
tO-INAOOF TIANSPOIT ...evviieiiiiiieiieiie ettt e e e e 227
Appendix D4. RIOPARegion and Seasoibpecific Aggregate Volatility
Distributions Generated for the Chemicafgsolved, Organic Aerosol
Component CalCUlAtIONS............ e 228
Appendix D5. SAS Code for Chapter 5 Calculations: Indoor and outdoor Gas
Particle Partitioning for RIOPA Study HOMES..........cooviiieeiiiaeiiiineeeeeee, 229
AppendixD6. SAS Code for Chapter 5 Calations: Multiple Linear Regression
AANBIYSES. ..ttt et a e e e e e an bbb 276
Appendix D7. SAS Code for Chapter 5 Calations: Average Contons
VOlatility BASISSEIS. .. .uuuiiiiiiiiiiiiiiiiiiee s st e e e e e 283

APPENTIX D RETEIENCES.......ci i it 292

Xii



LIST OF TABLES
Table 21. Mass median diamet¢MMD) and associatekle, and Prrer Valuesused for
particulate soil, sulfate, nitrgtelemental carbon, and organic carbon.................... 53
Table 31. Relative increase in odds of a transmuméhrction associated with each IQR
increase in Pis concentration, by eXposure Tiel.......cooceiiiiiiiiiiiiiee e 84
Table 32. Relative increase in odds of a transmural infarction associated with each IQR
increase in PMs concentration, by exposure Tig-score method.............ccevvvveeeeee. 85
Table 33. Relative odds of transmural infarction associated with each interquartile range
increase in PMs concentration, stratified by monitorirggte, in order of incrasing
Median air EXCNANGE FALE .......oiiiii ettt e e e es 86

Table 41. Ambient PMsspecies particle diameters and associated particle deposition loss rate

coefficients penetratiorefficiencies central heating and air conditioning filter penetration
efficiencies, and penetration efficiencies for homes with open wisda................ 109

Table 42. Results of mltiple linear regressioanalysis investigating the contribution

human activities twariability in modelmeasurement differences for sulfate......... 110
Table5-1. Summary statistics of measured indoor and outdoor temperatures and organic
aerosol concentrations for RIOPA StUTYMES.........cccoooiiiiiiiiiiiiiceeeeeee e 140

Table 52. Multiple linear regression analyses investigating drivers of variability in changes in

organic aerosol concentrations due to shifts inggaticle partitioning.........ccccceeeevveneennnen. 141

Xiii



LIST OF ILLUSTRATIONS
Figure 21. SpatiallyvaryingPM; s COMPOSItioN SCENANQS..........uumrrriiriiiiiimieeerines 54
Figure 22. Most frequently observed size distributions for major P8fpecieqsulfate,
Nitrate, OrganiC MALEL)..........ovviieeiiiiiiiiiiee e e e e et e e e e e e e e e eeeem e em e e e eeeees 55
Figure 23. Outdoor and indoor concentrations of ambient,BMnd the fraction of
outdoor PM that penetrates and persists indodfy for the scenarios described in
Figure 21 and TabIe2-1...........ooiiiiii i e eme e 56
Figure 31. Relative odds of transmural infarctiassociated with each interquartile range
increase in Tier 1 (centraite) PMys concentration, stratified by air exchange rate
1= 1] RS 87
Figure 41. Cumulative concentration distributions: measured indoor species and indoor
species of ambient origin modeled with the initial madel...........ccce e, 111
Figure 42. Indoor PM;s species concentrations modeled with the initial model and
L TCT= S = o 112
Figure 43. Indoor PM s species concentratiomsodeled with the refined model and
L TCT= U | = o P ORS 113

Figure 44. Cumulative distributions of measurednd modeled indoor organic

Figure 52. Changen organic aerosol mass concentrations due to changes-pagade
partitioning with  outdooto-indoor transport by enthalpy of vaporization

= RS [ 0] 01T 0] o PP P PP P TP 143..

Xiv



Figure 53. Change in organic aerosol mass concentrations due to changespiarigds
partitioning associated withonly indooroutdoor temperature differencesd indoor
outdoor differences inrganic aerosdbading............ccuvuvueriieiiiiiiiieeeeee e e e s e 144
Figure 54. Change in organic aerosol masmcentrations due to changes in-gasticle
partitioning with outdooto-indoor transportor the three geographically and climatically
dIVErse Urban regIONS ... ...uueiiiiiiiieiecce ettt 145
Figure 55. Change in organic aerosol mass concentrations due to changesparijzs
partitioning with outdooto-indoor transport assuming tharganic aerosolcan be
represented as a mixture of factoralysis COMPONENES...........ccceevvvviiiiiimeeeeeeeennn. 146
Figure 56. Comparison of modeheasurement differences and calculated shifts in gas

particle partitioning of ambient organics with outdéaindoor Transport.............. 147

XV



Chapter 1. Introduction
1.1 Motivation
1.1.1 Ambient PM, sand Negative Health Outcomes

Chronic and acute xposures to particulate air pollution aassociated with
multiple negative health effects including airway inflammation, aggravation of asthma,
myocardial infarctior(MI), pulmonary disease, and cant&ecent attention has focused
on fine particulate matter (P)), defined as particles with aerodynamics diameters
smaller than or equal to 2}, because such particles penetrate efficiently into the air
exchange regions of the luhand estimates of risk of morbidity or mortality associated
with exposure to Pl are greater than those for Ry which includes larger, coarse
mode particle3 Notably, fine and coarsenode particlesare derived from different
sources and formation mechanisms and, as a result, they have distinctly different
physiochemical chemical pregies. The fine mode for example, is formed through
combustion, nucleation, and gesparticle conversion processes, while coarse mode
is formed through mechanical processes (e.g. the breakup of larger material by
construction activity or wind).Due to these differences between f2nd PMg, 5 the
factors that influence human exposure to these pollutants, the-b#altts associated
with these exposures, and the strategies implemented to mitigate these exposure differ.
This dissertation is faised on improving estimates of ambientRxposure and aims
to increase understanding of the health effects associated with that exposure.

Increases in exposure to ambient 2Mre associated with increased morbidity
and mortality. A recent metandysis, for example, reported a 2.5% increase in the risk

of MI with each 10ug/m® increase in the ambient BMconcentration in the 24 hours



precediy the ML® Each 10pug/m® increase in the annual average ambient, PM
concentration was associated with@9 and a 20.8% increase in-efluse mortality for
participants in an American Cancer Society study and the Harvard Six Cities Study,
respectively> Research has also shown associations between certain health effects and
PM, s derived from specific soues or ofspecific chemical makeupMultiple studies
have reported increased risks of adverse health outcomes when ambigit EtMiched
in primary combustion tracef and with residentiaproximity to a major roadway**
Other studies have providexvidence for an increased risk of morbidity and mortality
when PMis enriched in chemical species formed through atmospheric chemistry (i.e.
secondary PMs).}#%
1.1.2 Exposure Error and Bias in Air Pollution Epidemiology

The vast majority of studes investigatingrelationshipsbetween ambient P
exposure and negative health outcomesRigles concentrations measured at outdoor
centralsite communityscale) monitors as surrogates for human exposure to ambient
PM,s. However, this exposure isrggely dependent on human activity patterns. More
specifically, exposure is a function of the time spent in various microenvironments (e.g.
in the home, at a restaurant, in a vehicle) and the ambiex €vicentrations in each of
those microenvironmentsThe use of PMs concentrations measured at outdoor,
stationary monitors to estimate exposure does not take human activity patterns into
account. Notably, people spend the majority of their time indoor®@86), and most of
that time in their home&® While ambient PMs concentrations can be higher at other
microenvironments (e.g. at a bus stop), the large amount of time spent in the residence

makes it an important venue for exposure to ambient:PM



The use of centradite PMys concentrations agxposure surrogates inherently
assumes that indoor and outdoor ambieng Pédncentrationgnd compositionare well
correlated. As is discussed in detail below, however ftaction of ambient P4 that
penetrates and persists indo¢f} varieswithin and across hom¥s®and is different for
different chemical components of the PMmixture!*?* This variability has been
identified as a source axposureerror in epidemiologic studies that use centté
PM; 5 concentrations as exposure surregatThis error is likely to bias health effect
estimates towards the null (i.e. result in an eredtimation of health effec¢t?
hampering the detection of statistically significant associations between increased
ambient PMsexposuresind the risk ohegative health outcomes order to reduce the
exposure error and bias associated with variability,irpractical methodsto predict
indoor concentrations of ambient PMn large epidemiologic studies are need€de
research presented in this disaBon is designed to address this need.

There is evidence that supports the hypothesis that the variabiktgontributes
to observed heterogeneity in headtfiect estimatesMultiple studies have reported a
lower risk of morbidity or mortalityassocated with ambient Pikin communities with a
higher prevalence of centradir conditioning (AC), compared to risk estimates among
communities with lower AC prevalenc®?® Notably, homes withentral ACin usetend
to have lowelF valuesbecause indoaair is filtered as it is reirculated, thus ineasing
particle losses indoofS>! WhenF values are lowetthe difference between centsite
PM,s concentrations and actual ambient RMexposure is greater, resulting in
proportionally more exposumisclassificationand larger bias towards the null (i.e. a

greater underestimation of effect), likely contributing to the lower effect estimates



observed for homes with AC use. Work conducted as part of this dissertation and
concurrent work conducted b@henC. et al®**® and ChenR. et al** provide more
comprehensive estimates [6fand use these to explore the hypothesis that variability in
factors that influenc€& contributes to exposure error and bias in epidemiologic studies.

A better accounting achmbient particle penetration and persistence in the indoor
environments needed toedue@ exposure erroin epidemiologic studies and to further
elucidate relationships between Pdvexposure and adverse health outcomes. Toward
this goal, this dissertatioadvances existing methods to predict indoor concentrations of
ambient PM;, increases the robustness and accessibility of these modeling tools, and
explores the ways in which accounting for (and not accounting for) variabilify in
influences healtleffect estimates derived from epidemiologic studies. This research also
provides insights regarding the measurements and data most toittbel prediction of
residential ambient P4 exposures and, thus, will inform the design otifatsampling
campaigns and epidemiologic studies
1.2 Background
1.2.1Ambient PM, 5

Ambient PMys is a complex mixture of locallyand regionallygenerated
pollutants. Regionalhgenerated Pl is formed through atmospheric processing of gas
phase pollwnts during transport. For example, sulfur dioxide emitted from-foedl
power plants in the Ohio River Valley is oxidized during transport, resulting in
ubiquitous and abundant sulfate aerosol in the eastern United Statanajority of this
sulfate 8 formed through aqueoyhase oxidation reactions in cloud droplets, while a

lesser amount can be attributed to the homogenousphge® oxidation of sulfur



dioxide*>* Particlephase nitrate is formed in the atmosphere throughpgdile
partitioning following the uptake of ammonia by nitric acid. Like sulfate, secondary
organic aerosol (SOA) is formed through both -gasd aqueouphase oxidation
processes (SQAsand SOA,).*** Both SOA.sand SOA, formation processes begin
with the gagphase oxidation of volatile organic compounds emitted from anthropogenic
and biogenic sources. SQAIs formed when these oxidation reactions result in products
with low enough vapor pressures that they partitexisting organic matteé > In the
case of SOA, smaller, more watesoluble gagphase oxidation products partition into
cloud and fog droplets or the liquid water associated with atmospheric aerosols. They
then undergo further oxidation in the aquephase, resulting in lower volatility products
that remain in the particle phase following the evaporation of water from the droplet or
wet particle>”*® Locally-generated Pl is dominated by primary emissions from local
sources. Concentrations of regaly-generated, secondary BMtend to be more
uniformly distributed across an air shed, while primary ;BMoncentrations are
enhanced in close proximity to sources (i.e.uwhan and neighborhood scafeand
diluted with distance downwind.

The sizedistribution and chemical composition of ambient RMre functions of
PM sources and formation mechanisms. As a result,sPébncentrations and
characteristics vary temporally and spatially with source mix, as well as with
meteorological factors suchs aprecipitation, boundary layer mixing height, wind
direction and actinic flux>® As is discussed in detail below, particle size and the
volatility of particlephase components are important determinantsFg&f2t4%4t

Modeling tools that account foraviability in F with particle size and composition are



crucial for improving ambient P4 exposure estimates. That research need is addressed
in this dissertation
1.2.2 The Physics and Chemistry of Outdoeto-Indoor Transport

Thefraction of ambienPM, s that penetrates into and persistridoor air F) is a
function of residentialair exchange rate (AER), the efficieneyith which ambient
particles penetratacross the building envelopB)( the rate of indoor particle lossdse
to deposition in indooair (kyep), and, for semvolatile species, losses or gains in mass
resulting from phase changes in indoor.*afi®**? In the following paragraphs, the
current understanding and outstanding research needs for each of these deternfinants of
are discused.

Air Exchange Raté& Therate at which air in &dome is exchanged with outdoor
airis the sum ofwo processes: (1¢akage through ecks in the building shell driven by
indooroutdoor pressure differences and (2) air flow through open ddndows****

Air exchange rates are commonly measured using a tracer gas method, in whieh a non
toxic, inert gas (e.g. sulfur hexafluoride, a pefluorocarbon traceelaased at a known
emission rate and is collected with a passive sampler. Because the emassiohthe

tracer gas is known, the measured concentration in the home serves as an indicator of the
rate at which air in the honie exchanged with outdoor &it***®Notably, only a small

fraction of AER studies have included a large number of homardian et &l’*®
aggregated AER measurements from approximately 100 studies and generated summary
statistics and frequency distributions of AERs for this subset of U.S. hdfassmmoto

|9

et al”” conducted 593 AER measurements in about 100 homes in afatiree

climatically and geographically diverse regions of the United States (Houston, TX, Los



Angeles County, CA, and Elizabeth, NJ) as part of the Relationships of Indoor, Outdoor,
and Personal Air (RIOPA) study. These studies have demonstrated that VeER
spatially with housing characteristics (e.g. construction material, home age) and both
spatially and temporally with meteorological conditions and home ventilation conditions
(e.g. wind speed, indoautdoor temperature differences, opening/clohgvindows,
use of heating or cooling systems). This heterogeneity in AER contributes to geographic
and temporal variability irF. Notably, the homes for which AER measurements have
been conducted are limited in their spatial and temporal extent and tas&atistically
representative of the complete United States Housing stock. Generalizing these
measurements to the broader population of U.S. homes is further complicated by the fact
that, in addition to home construction characteristics, AER varies gtmeteorological
conditions and the human activities related to home ventilation discussed above.

Due to their practical applications for the weatherization and eredfigiency
auditing industries, measurements of the effective leakage area of horegH{E&Isum
of all cracks and spas through which air can flo#f are more common than AER
measurements. However, like AER, ELA measurements have not been conducted for a
representative samplé 0.S. homed” Chan et af* utilized a database of about GO0
air leakage measurements to explore the relationship between ELA and common housing
characteristics with the objective of developing a statistical model that could be used to
calculate ELA for the broader population of homes. Calculations of ELA eegiaita
readily available from the American Housing Survey and the U.S. C&hehsn et af*
demonstrated that home age and floor area are the most significant predictors of ELA and

that modelmeasurement agreement was maximized when separate maatelsised



depending on household poverty stabezause home leakiness varies with household
income (with lower income homes tending to be leakier)

Modeling tools have been developed to predict AER from ELA and such tools
provide a means to calculate AER fotroader sample of homes than those for which
AER measurements are available. The Lawrence Berkeley National Laboratory (LBNL)
Infiltration model, for example, predicts AER distributions for siFgieily, closed
homes (i.e. windows and doors closed) dasen normalized leakage area (ELA
normalized by floor area), certain house characteristics, and meteorological
conditions>®*! The data required to generate AER distributions with the LBNL
Infiltration model are readily available from the U.S. Censwww.census.goy the
American Housing Surveyvnyw.census.gobusingahg, and the National Climate Data
Center (www.ncdc.noaa.g9Qv The LBNL Infiltration model is an important tool for
generating AER distributions for the purpose of modeling indoor contensaof
ambient PM;s. This dissertation advances the LBNL Infiltration model by exploring the
extent to which certain human activities and housing characteristics contribute te model
measurement disagreement and by elucidating refinements to the LBNMtatioh
model. These analyses informed the development of a refined version of the LBNL
Infiltration model, by Dr. Melissa M. Lunden, which was applied in Chapter 3 of this
dissertation to calculate refined estimates of exposure to amBibhis in an
epidemiologic study investigating the relationship between ambientskposure and
myocardial infarction

Particle Penetration Efficiency Particle penetration efficiency) describes the

fraction of outdooigenerated particles that remain suspended following their infiltration



through the building envelogé®® Particle losses to the sides of building cracks during
infiltration are the result of Brownian diffusion, gratitaal settling, interception and
impaction®® Brownian diffusion dominates particle losses for particles with diameters
smaller than about 0.1>m.*® For larger particles, interception, impaction and
gravitational settling are the dominant loss proce¥sBsnetration efficiency describes

the fraction of particles that are not removed by the combination of these mechanisms
during passage across the building shell. Sampling and laboratory studies have measured
P for particles of various siz€5>* Such stdies have demonstrated that the penetration
efficiency curve is relatively constant across the accumulation mode, but increases
rapidly for larger (supemicron) and smaller (ultrafine) particles due to siependence

of the particleloss processes dedwerd abové®*! Values ofP for particles in the size
range considered in this work have been observed to range from 0.6%o 1.0.

Values of P, and thusF, vary with building ventilation conditions andhe
characteristics of cracks in the building sh&f® While it is known from laboratory
studies that complex crack geometry and increased roughness of crack surfaces result in
lower P values, the characteristics of cracks in buildings are not well known and are
likely to be highly varied within and acssbuildings®**° Furthermore, human activities
contribute to variability inP. For exampleP values approach 1.0 for homes with open
windows. As a result, there is substantial uncertaintyPinwWhile this dissertation does
not reduce this uncertainty, sensitivity analyses were conducted to evaluate the effect of
this uncertainty on modeldélvalues and adjustments were made for the effect of certain
human activities onP (e.g., opening windows)n the model of outdoeto-indoor

transport applied herein
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Depositional LossesThe same physical loss mechanisms that govern penetration
are also important drivers of particle deposition in the indoor environth&Hg>*
Deposition loss ratefkyen) are a strong function of particle sizeepositional losses in
residences have been determined empirically from simultaneous indoor and outdoor
PM, 5 concentration measuremefts®***® For examplesOQzkaynak et al®> measured
indoor and outdoor Ppkconcentrations at 60 residences in Riverside, CA. Valukgof
and P were then calculated with Alamear least squares regression. A major limitation of
the majority of studies aimed at measurihgndkgep is thatbecause botR andkyep are
unknown, the individual effects of each of these variables on indoor ambiept PM
concentrations cannot be separated. In other words, a single, unique vétuer fiojep
can only be determined if one of the variables is knd\WwhThatcher et ai? took
specific measures in their experimental methods to separate the efféttandfkyep
Simultaneous indoor and outdoor PM concentrations were measured at an unoccupied
home andralues ofkgepfor sulfate, nitrate, and organic and elemental caviere solved
for using atransient solution to the mass balance equatierticle concentration
measurements were performed under two very distinct conditions in order to separate the
effects ofP andkyep First, particle levels were artificially elevatdtrough resuspension
activities. Because indoor concentrations are forced to relatively high values through this
process, changes in indoor concentrations are driven by depositional losses and increases
in indoor particle concentrations due to penetrafitom outside is negligibldJnder the
second scenario, which was implemented to reduce the influence of depositional losses,
recovery of particle concentrations was measured after indoor particles concentrations

were reduced to near zero through presstiozeof the home with HEPA filtered air.
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Riley et al*® combined a physical particle deposition model with a polynomial fit to
empirically determinedtyep values from studies like those described above to prdwige
values for a wide range of particless.

These studies verify that depositiolaksesdepend strongly omarticle size
However, it is not well understood how depositional losses vary geographically and
temporally with heterogeneity in PM sources, formation mechanisms, and chemical
conmposition (all of which are related to particle size). This dissertation explores the
extent to which heterogeneity in these factors contributes to variabilkyjand, thus,
to variability in F. As part of this dissertatiorg comprehensive assessmehtPM, s
species size distributions conducted in order to provide robust estimates of padizée
dependent model inputs suchkas,

GasParticle Partitioning - In addition to the physical losses discussed above,
shifts in the gagarticle partitiming of semivolatile ambient PMls species can occur
with outdoorto-indoor transport due tondooroutdoor differencesin temperature and
environmental characteristicsuch as the availability ofurface areeor particulate
organic matterfor sorption?>*®>° Recent studies have demonstrated that such phase
changes can have a substantial impacEdh?®?**?Sarnatet al?® estimatedF as the
indooroutdoor ratios of PMs concentrations measured inside and outside 17 Los
Angeles area homes during periods when indoor sources were absent. Misdiafack
carbon (BC), which isnonvolatile, was 0.84 The medan F for ammonium nitrate,
which is semtvolatile, was 0.18. Wherthe authors compared the results from Los
Angeles to other study areabkey found that~ for PM, s massincreased ashe mass

fraction of outdoorammonium nitratedecreased. In other words, a greater fraction of
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outdoorgenerated Pls penetratesnto and persists in indoor air in regions where
concentrations osemivolatile nitrate are lowerLunden et af® measured ammonium
nitrate PM s inside and outside ofnaunoccupied home in Clovis, CA.he dramatic
differences bateen indoor and outdoor pantiate nitrate concentrations could not be
explained by only losses with penetration through the building envelop@lasical
deposition indoors. When a mass balance model that included penegfiiency,
physicaldepositionandevaporative lossesas appliedhowever modeledand measured
indoor ammonium nitratshowed good agreemeit.

Shifts in gasparticle partitioningwith outdoorto-indoor transporhavealsobeen
observed for semivolatile organic compounds (SVOC$}:%2°%° Lunden et af!
observed a loweF value for organic carbon (OC; F=0.47) than for elemental carbon
(EC; F=0.61) in anunoccupiedhome. The greater OC losses were attributedh&
depletion of gaphase organics as they sorbed to indoor sources followsHifts in the
partitioning of SVOCs from the particle phase towards the gas phase in order to reach a
new equilibrium In contrast, it was concluded that, atcupied homes, incoming
organics from outdoors can shift from the gas phase toward the pafiese as they
sorb to particulate organic matter emitted by indoor seifé8

The gasparticle partitioning of SVOCm theatmospherdas been parameterized
with a partitioning coefficient, Kl and, as an extension of this concept, mapped into a
volatility basis set (VBS§? K, describes the ratio of mass of a specific SVOC in the
particle phase (normalized by the total particle mass) to the mass in the gas phase. In the
rare case that the particle composition and the properties of a partitiorgagic

compound are known, the gpatrticle partitioning of that compound can be predicted
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from the temperatur e, t he compound©s sub
concentration and properties of the particulate ®©Bowever, because the atmosphere
contains thousands of organics, atmospheric models rely on parameteripétibins
processThe VBS treats ambient organics as a distribution of compounds binned by their
volatilities and is used talescribe the gagarticle partitioning of organics inhé
atmosphere as a function of temperature and organic aerosol 16ading.

Organis account for20 to 90% of ambient PM s mass>® It is acceptedhat phase
changes of organics impa€t However,changes in the ggsarticle partitioning of total
ambient PMs organic matter with outdodo-indoor transport have not been
guantitatively predicted. This dissertatiexpand current knowledge chmbientorganic
PM; s exposuran partby investigating the extent to which variability in indoor ambient
OC concentitions can be attributed to shifts geeticle partitioning and by exploring
the VBS as a tool for modeling theartitioning behavior of ambient organicwith
outdoorto-indoor transport
1.2.3Quantifying F

Multiple methods have been used to quantifg fraction of ambient Pp4 that
penetrates and persists indoors. In homes for which indoor sources of ambjgrar®M
not presentF is commonly estimated as the ratio of ambient,PNoncentrations
measured indoors to those measured outd8dBarnat et af* for example, utilized
indoor and outdoor Ppgconcentration measurements from overnight periods (i.e. times
when home occupants were sleeping and indoop 2durces were minimized) to
calculateF values for ambient Pps and PM s spedes. Note that this method provides

and upper bound fdf and could be biased high for species that are enuitéormed
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indoors (e.g. EC and OC)Statistical methods, in which measured indoor PM
concentrations are regressed on measured outdoor catioe® have been used for
homes or time periods for which indoor sources were present to estimate the fraction of
indoor PMs that could be attributed to outdoor sourtes:®* The intercept of the
resulting regression model indicates an average ingtmance strength, while the slope of
the regression model is an average valud4t®* A regression method that down
weights outliers (e.g. robust regression) has the advantage of reducing the influence of
indoor sources of ambient BMwhen estimating= because such outliers are likely
indicative of a strong indoor sourteThese statistical methods assume that the indoor
environment is well mixed and that indoor and outdoor sourcesdgependent?

Mass balance modetan also be usetb calculatethe indoor concentration of
ambientPM, 5>>%>®Alzona et af® and Koutrakis et &° demonstrated that a simple,
singlecompartment mass balance model could be used to predict indoor concentrations

and residential exposures to ambient,RMering etal.*?

expanded on this work by
pairing modeled AERs with central sitePM, s concentrationdata to estimate indoor
concentrationof ambientPM, s for an unoccupiechome. hdoor concentrations/ere
calculatedwith a forwardstepping solution toca single compartment mass balance
equation. Evaporative losses of ammonium nitrate were modeled hasleed m@sults of
Lunden et af® discussed abov@ecause speciggsolved size distribution data were not
available, a constarte,value of 0.2 H wasassumed for all species. However, as noted
above, kyep is highly particlesize dependent and is likely to vary with chemical

composition. Region and speciespecific characterization of PM particle size

constitutes a major gap in current knowledgel isneeded to accurately account for
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ambientparticle penetration and persistence in the indoor environment. Spatiesize
resolved characterization of BMin different regions of the United States will allow for
more accurate estimates of pengdra and loss rate coefficients and, subsequently, the
indoor concentration of outdogenerated particles; these are crucial inputs for-next
generation Pls exposure and health studiés noted above, this dissertation provides
estimates of such modehputs. TheHering et af?* model laid the framework for
estimating indoor concentrations of outd@enerated Plk by making use of PM
species datalheresearclpresented in this dissertatierpand onand refines this model
by addressing the researabeds discussed above.
1.3 Hypotheses and Dissertation Objectives

A central theme of this dissertation is develop and implement a simple,
practical method that can be applied in large epidemiologic studies to predict residential
exposures to ambient BM It is hypothesized thagxposure surrogates that account for
the effects of outdoeto-indoor transport will provide more accurate estimates of ambient
PM, sexposures than centrsite PM s concentrations. Thus, accounting for variability in
F in ambient PM s exposure estimates will reduce exposure misclassification and will
result in less bias in health effect estiamesd smaller confidence intervals in
epidemiologic studies:or this reason, thiesearch described in thdsssertation:
1. Identfies major drivers of spatial and temporal variability in the fraction of ambient
PM,sfound in indoor air and evaluates whether observed heterogeneity in-ékadih
estimates can be attributed, in part, to variability in these factors.
2. Compares la#dth-effect estimates derived from epidemiologic analyses in which

variability in F is and is not accounted for in estimates of ambient fMposure and
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discusses circumstances and epidemiologic study designs for which variabHitysin
more and lesbkely to be a major contributor to exposure error.
3. Identifies data and measurements most criticed the prediction ofresidential
exposures to ambient BM and, thus, informs the design of future sampling and
epidemiologic studies.
4. Explores the ragnitude and direction of shifts in the geemticle partitioning of
ambient organics with outdoto-indoor transport.
1.4 Dissertation Overview

This research described heremontributes to the field of exposure science by
advancingexisting models ofesidential exposure to ambidpivl, s and byimproving the
robustness and accessibility tfese tools. This work begins by examining drivers of
geographic and spatial variability fhand identifying the potential for this variability to
explain, at leastn part, the heterogeneity in RMediated hedit effect estimates
(Chapter 2)Next, (1) a physicallybased mass balance model #dmodeling tools that
account for variability in human activity patterns (e.g. time spend in various indoor and
outdoor emironments) are used to compute ambient, P&posures that account for the
modification of PMs with outdoorto-indoor transport. These refined exposure
surrogates are used to calculdterisk of myocardial infarction associated with ambient
PM, s exposure and to explore whether the use of these refined exposure surrogates
reduces exposure error and bias in epidemiologic analyses (Chapter 3). Subsequently, in
Chapter 4this outdootto-indoor transport model is validated and refined using data from
the RIOPA study, providing a practical and robust tool for reducing exposure

misclassification in epidemiologic studies. The work of Chapter 4 identified shifts-n gas
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particle partitioning as a remaining source of exposure error and thus led to the work of
Chapter 5. For the first time, the volatility basis set is appliestudy shifts inthe gas
particle partitioning of ambient organicswith transport into the indoor environment
(Chapter 5). Finally,the research contained ithis dissertation provideguidance
regarding measurements and data most critically needed to facilitate the prediction of
refined exposure surrogates in lagmdemiological studieand, thus, contributes to the
design of future sampling campaigns and epidemiologic studllgs. work enables a
better accounting of ambient particle penetration into and persistence in the indoor
environmentand constitutes an important advancement in the efforsdiace exposure
errorin epidemiologic studieand to elucidate relationships betwd#, s exposure and
adverse health outcomes.

In Chapter 2F was modeled using a mass balance approach for several scenarios
across which heterogeneity in effect estimates has been observed: with geographic
location of residence, residential roadway pmnaiky, socioeconomic status, and central
air conditioning use. Calculated values Fofare higher in close proximity to primary
combustion sources (e.g. proximity to traffic) and for lower income homeés.lower
when PM; is enriched in nitrate and with central air conditioning use. As a result,
exposure error resulting from variability Fwill be greatest when these factors have
high temporal and/or spatial variability. Thecumstances for whichk is lower in these
cdculations correspondto circumstances for whiclower effect estimatefiave been
observedin epidemiological studies and high&r values correspond to higher effect

estimates. These results suggest that variability in exposure misclassification resulting
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from variability in F is a possible contributor to heterogeneity in -Riddiated health
effect estimates.

The hypotheses generated in Chapter 2 were testetlapt€ 3.Using a case
crossover study design and conditional logistic regression, the redatigeof transmural
(full-wall) myocardial infarction (M) calculated using exposure surrogates that account
for human activity patterns and the indoor transport of ambient:RR&re comparedith
those calculated using centsate PN s concentrationso estimate exposure to BMof
outdoor origin (exposure tambientPM, ). Because variability in human activity and
indoor PM stransport contributes exposure error in epidemiologic analyses when-central
site concentrations are used as exposure satesgsurrogates that account for this
variability are referred to as "refined" surrogatés.an alternative analysis, whether the
relative odds of transmural MI associated with increasesnibientPM, sis modified by
residential air exchange rate (AER) variable that influences the fraction of ambient
PM,s that penetrates and persists indpossas evaluatedUse of refined exposure
surrogates did not result in larger health effect estim@&s = 1.10- 1.11 with each
interquartile range increasg.jparrower confidence intervals, or better model fits
compared to the analysis that used cesdital PMs. However, eidence for
heterogeneity in the relative odds of transmural Ml with residential A&fRect
modificatior) was observed, with residents ledmes with higher AERs having larger
ORs than homes in lower AER tertiles. For the level of expesstimate refinement
considered here, thefiadings add support to the use of censidé PM s concentrations
for epidemiological studies that employ similar casgssover study designs. such

desigrs, each subject serves as his or her own matched comtrak, exposure error
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related to factors that vary spatially or across subjects shouldnainiynally impact
effect estimatedt is possiblethat factors that influence the fraction of ambient,BM
indoor ar (e.g., AER) could possiblybias health effects estimates in study designs for
which a spatietemporal comparison of exposure effemtsoss subjects is conducted

The epidemiologic modeling inf@pter 3 was conducted By. David Rich and
Kelly ThevenetMorrison from theUniversity of Rochester School of Medicine and
Dentistry and Dr. Pamela Ohmedtrickland from the University of Medne and
Dentistry of New JerseyModeling with the Stochastic Human Exposure and Dose
Simulation (SHEDS) modeb produceTier 2a exposure estimates was conducted by Dr.
Lisa Baxter and colleaguddrs. Janet Burkeand Halik Ozkaynakat the United States
Environmental Proectection Agency National Exposure Research Laboratyry.
contribution includes the determination of the mbakance model inputs that were used
by Dr. Melissa Lunden of Lawrence Berkeley National Laboraimigeneate the refined
exposureestimateghat accounted for the indoor transport of ambient PMs well as
the analysis and interpredtion of the epidemiologiestudy results and manuscript
preparation

Chapter 4provides a partial validation dhe exposwe estimates used inh@pter
3, while also providing new insights that are used to refine the outdaodoor
transport model. Toward the goal of providipgactical methods to model indoor
concentrations of ambient BN the mechanistioutdoorto-indoor transport model was
evaluated and refined using measured indoor and outdogg §fMcies concentrations
and air exchange rates from the Relationships of Indoor, Outdoor, and Personal Air

Study. Chapter 4 presents model evaluation resliksusses what data are most critical
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to prediction of residential exposures at the indiviekiddject and populations levels, and
makes recommendations for the application of the model in epidemiologic studies. This
study demonstrates that not accoumtiar certain human activities (air conditioning and
heating use, opening windows) leads to bias in predicted residentia éXgbsurest

the individualsubject level, but not the population level. The analyses presented also
provide quantitative evidee that shifts in the ggsarticle partitioning of ambient
organics with outdoeto-indoor transport contribute significantly to variability in indoor
ambient organic carbon concentraticarsd suggest that methods to account for these

shifts will further mprove the accuracy of outdetw-indoor transport models.

Chapter 5 presents the first study to address the need for a method to predict shifts
in the gagparticle partitioning of total ambient organics with transport into the indoor
environment. Here he change in the ggmarticle partitioning of ambient organics with
outdoorto-indoor transport was calculated for 167 homsisgimeasured temperatures,
particulate organic matter concentrations, andlishedorganic aerosol (OAyolatility
basis set§VBS). To evaluate the sensitivity dfiesecalculations to uncertaiets in the
thermodynamigroperties of ambient OApartitioning shifts were calculatemssuming
enthalpies of vaporizatio(gHay) of 100 and 50 kJ/molVolatility distributions
constructed for OA components derived from factor analysis of aerosol mass spectra
were used in an alternative analysRartitioning shifts were sensitive tog Hap
assumptionsand resulted in changes in indoor concentrations of ambient OA ef 11
27%, onaverage, depending on the assumeH., and whether OA was treated as a
single entity or as a mixture of chemicatlistinct OA components. Hydrocarbtike

OA was most sensitive to outdetmrindoor changes in temperature and OA loading.
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Outdoorto-indoar transport did not induce shifts in partitioning for lowiatility
oxygenated OAThe calculations indicate that phase changes are important determinants
of residential ambient OA exposure. To account for these phase changes in predictive
models, indootemperatures and estimates (or distributions) of indooe@ssion rates

are needed.

Conclusions, future directions, and the broader impactshisf research are
discussed in Bapter 6.This work identifies the factors that drive variability in the
fraction of ambient PMs in indoor air, as well as thgeographic locations, seasons, and
temporal and spatial scales for which outdtmeindoor transport is (and is not) a
substantiabource of exposure error in P&pidemiology Modeling tools to addrasthis
error are presented and the data and measurements most critical to predicting residential
ambient PMs exposures are highlighted. In addition, this research evaluates which
epidemiologic study designs are (or are not) robust to the type of etroduoed by
indoor transport of ambient PM This information will be useful in the design of
measurement strategiésx future exposure and health studies tmatke use of refined
exposure surrogateButure applications of the tools presented kdhehelpto elucidate
relationships between PMexposure and adverse health outcomeshane the potential

to aid in the development of strategies to mitigate this exposure.
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Chapter 2. Variability in the Fraction of A mbient Fine Particulate Matter Found
Indoors and Observed Heterogeneityn Health Effect Estimates
Material in this chapter has been published previously as:
Hodas, N.; Meng, Q. Y.; Lunden, M. M.; Rich, D. @zkaynak H.; Baxter, L. K_;
Zhang, Q.; Turpin, B. J., Variability in the fraction of ambient fine particulate matter
found indbors and observed heterogeneity in health effect estindatésposure Sci.
Environ. Epidemiol2012 22, 448 454.
2.1 Abstract

Exposure to ambient (outdegenerated) fine particulate matter (Pl occurs
predominantly indoors. The varialadficiency with which ambient P4 penetrates and
persists indoors is a source of exposure error in air pollution epidemialatyyould
contributeto observedtemporal and spatidheterogeneity inhealth effect estimates
Using a mass balance approaéhwas modeled for several scenarios across which
heterogeneity in effect estimates has been observed: with geographic location of
residence, residential roadway proximity, socioeconomic status, and central air
conditioning use. Calculated values Bf are hgher in close proximity to primary
combustion sources (e.g. proximity to traffic) and for lower income homeés.lower
when PM; is enriched in nitrate and with central air conditioning use. As a result,
exposure error resulting from variability F will be greatest when these factors have
high temporal and/or spatial variability. Thecumstances for whichk is lower in these
calculationscorrespondto circumstances for whictower effect estimatebave been
observedin epidemiological studies and lngr F values correspond to higher effect

estimates. These results suggest that variability in exposure misclassification resulting
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from variability in F is a possible contributor to heterogeneity in -Riddiated health
effect estimates.
2.2 Introduction

Multiple epidemiologic studies have reported spatial and temporal heterogeneity
in PM-mediated health effect estimates. Notably, larger effects have been observed for
the eastern U.S. compared to the western'¥.Several studies report larger risks of
adverse health outcomes when RMs enriched in primary combustion tracetsand
with proximity to roadway:** Low socioeconomic status has also been identified as a
predictor of susceptibility to PMelated health effect$ Various factors have been
explored to explain this variability. Bell et.Aconcludedhat as much as 37% of spatial
and seasonal heterogeneity in relative risk of cardiovascular hospital admissions could be
explained by variability in exposure to specific P\pecies. Sacks et.& identified
disparities in access to health care as one possible contributor to variability in effect
estimates by socioeconomic staflibis work explores whether variability in the fraction
of ambient PM;s that penetrates into and persists in thenéois also a possible
contributor to observed heterogeneity in fiagl-mediated health effect estimates.

Central site PMs is commonly used as a surrogate for exposure to ambient
(outdoorgenerated) Pisin epidemiologyHowever, people spend timeajority of their
time indoors (880%), and most of that time in their hom@#s a result, exposure to
ambient PMs mostly occurs in the indoor environment and, specifically, within the
residencelmportantly, the fraction of ambient PMthat penetries and persists indoors
(F) varies temporalfyf and spatially® and is different for different components of the

PM, s mixture® Exposure metrics that rely on central site concentrations do not account
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for this variability, nor do they account for charsg@e PM sproperties (i.e., composition
and size distribution) that result from outddosindoor transport® Variability in F has
been identified as a potential source ofB@rksonian exposure error that could lead to a
downward bias and underestiriat of effectsderived from epidemiological analys$&%’
when centrakite PM sis used as an estimate of ambient;Rbkposure Several studies
are underway which will apply refined exposure surrogates that account for the effects of
indoor transport to health studies. This paper articulates the motivation for those studies.

There is evidence th&t can influencehealtheffect estimatesn epidemiological
studies. 8veral studies show a reduced riskmadrtality or morbidityassociated with PM
when theprevalence of air conditioning (AC) is higtfe?®?? Bell et al?® reported a 43%
decrease imisk of cardiovascular hospitatition associated with each 10 pgfincrease
in PM, s for every additional 20%fdhouseholds with central AC.gdtral AC prevalence
explained 17% of betweestommunity variability in PMs effect estimatesThe use of
AC increases particle losses indoars] therefore decreases and exposure to ambient
PM, 5.2%?* Further,homes with ACin useare more likely to havéheir windows closed
and, thereforehave lowerair exchange rate@nd F) compared to homes with open
windows? Certainly, the use ofAC varies seasonally and geographically, leading to
heterogeneity i across regions of the U.S. and across seasons.

There are additional factors besides AC that have a dramgtiact onF. F
depends on the rate at which air within the building is exchanged with outdoairair (
exchange rateAER), the efficiency of particle penetration across the building envelope,

depositional losses in indoor air, and, for sewiatile species, particleo$ses or gains

due to phase changes. These parametersteamyorally and spatiallyith factors such
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as meteorological conditions, building characteristics, human activities, axnglseitce
mix.26'27

This paper exploresvhether variability inF could contribute to the observed
heterogeneity in effect estimates with geographic location of residence, residential
proximity to roadwaysair conditioning use, ansbcioeconomic statuft.is hypothesizd
that regions and circumstances for whilchwer dfect estimatedave been observed
epidemiological studies (i.e., with AC use and residence in the western U.S.) have lower
F values and that regions and circumstances with higher effect estimates (i.e., residence
in the eastern U.S., close proximity to roadways, and low socioeconomic status) have
higherF values. While other factors undoubtedly also contribute to differencefeict
estimates, it should be noted thabhen F is lower, the nondifferential exposure
misclassification that results when censdé PM s concentrations are used to estimate
exposure is greateresulting inlarger biastowards the nulland underesnation of
effects
2.3Methods
2.3.1 Main Analysis

To identify situations for which variations i may contribute substantially to

exposure error, a mass balance approach was used to madsler a variety of
scenarios related to the conditions under which heterogeneity in effect estimates has been
observed (i.e., with geographic location of residence, residential roadway proximity,
socioeconomic status, and air conditioning use). Spedyficelwas modeled for two

homes, a Atypi cirwdme home, oreler a vadety af cdnditians: location
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in the eastern U.S. and the western U.S., in close proximity and further from a roadway,
and with and without central AC in use.

For nonvolatile speciesthe mass balance model describes the concentration of
PM. s species] in indoor air Cinj) as a function of its outdoor concentratid@y; ),
residentialair exchange rateAER), the efficiency of particle penetration across the

building envelope P;), and the rate of indoor loss by depositiki ):

~

P9 0 d00Y 6 FQ 5 OOY (1a)

For nitrate, which is semviolatile and can undergo phase changes, the model inch&les

rate of indoor loss by evaporatio®(  ):

6 » 0 00Y 6 Q j 6oYQ (1b)
Thesteady state solution to Equationg)(&nd (Lb) was used in the calculations beltowv

solve forCi,:

0p O p —— (2a)

0 0 & (2b)

h
Summing Ci,; over all major particle species provides the indoonceatration of
ambientPM, s, since no indoor sources are included in the modéthout indoor

sourcesF is the ratio of the Plkconcentration indoors to outdoors
0o — 3)
A versionof the model used in this analysis Haenpreviouslyvalidatedwith

reattime particle speciesand AER measurements made inside and outsidean

unoccupié (closed) house in Californf&?° Calculated indoor concémations captured
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well the attenuation of theutdoor concentrations and were highly correlated with indoor
measurementdR® = 0.80.93.%

Using this mass balance model, timneloor concentrations and composition of
ambient PM s were predicted for several scenarios representative of conditions for which
variability in effect estimates has been observédst, PMs compositionand size
distributionswere variedin calculatiors of F to capture variability across geographic
location in the U.S. and with roadway proximiBor this analysisthe major contributors
to PMy s mass(sulfate, nitrate, elemental carbon (EC), aigacarbon (OC), and d0i
were considered and residential outdoor composition measurements from the
Relationships of Indoor, Outdoor, and Personal Air (RIOPA) Sflatyd speciespecific
size distributions from an Aerosol Mass Spectrometer (AMSwere usedCertainly
disparties in health effects could result from differenaesoncentrations of other Py
species (e.g., metals), but these specm®mprise a very small fractioof total fine
particle mass andill not affectF in a measureable wayhe RIOPA OC measurements
areartifact corrected andrereconverted to organic ritar (OM) using a factor of 1.3
It should be noted that in the RIOPA study, all major fine particle species were measured,
with the exception of nitrate and water. Rbie calculationspresented heret was
assumed that nitrate completes the species mass balance, providing an upper bound
estimate for nitrate.

PM, s composition for each scenario is shown in Figurd. 2Scenario (a)
representsa typical northeastern U.SPM, s composiion; it is the mean composition
measured outside Elizabeth, NJ hordesng theRIOPA study®® Scenarigb) represents

a high PM s episode in the southwestern U.S; it is enriched in nitrate. Scenariogb) ha
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the mean composition of the top 25th percerRild, s mass concentration days from the
Los Angeles County RIOPA measuremefitsScenario (5 which representsa
northeastern U.Shear roadway scenaries eniched in OC and EC based on the near
roadvay measurements of Lena ef&l.

Particle composition is taken into account in the calculatioistbfough the use
of speciesspecific deposition loss rates and by accounting for the semivolatile nature of

12° and

nitrate. The value fokevapnos is from the work of Lunden et &f.and Heringet a
involves the temperatw@ependent equilibrium constant for ammonium nitrate
dissocigion (Appendix A). Other PM components, including organic PM, were treated as
nonvolatile. Sizeresolved kyep values were fit based on specresolved size
distributions as described below. Thus, changes ipsRlidmposition result in changes

in kgepand changes iR.

Because patrticle size distributions are driven by formation mecharasniéent
speciesspecificsize distributionsareless vari@le than size distributions for totparticle
mass(Appendices Al, A2). Therefore,lae, value was assigned for each of the major
PM, s species based on speeresolved size distributions measured with the Aerodyne
Aerosol Mass Spectrometer (AMS), whiafeasures vacuum aerodynamic diam&ter.
For the northeastern United States composition scenarios, sppe®Bc size
distributions measured in Queens, NY in August 3b0kre used. Speciapecific size
distributions measured in Fresno, CA in Janu2®l 0 were used to represent the
southwestern U.S.

Hourly, campaigraveragedspeciegesolved size distributiongAppendix A)

were examinedo determine the number and frequency of modes, the mass median
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diameter(MMD) and geometric standard deviatidneach mode, and the fraction of total
mass in each mode when distributions were bimodal. The most frequently observed
distribution was chosen as represéméa of each species (Figure-2). For all
composition scenarios, a mass median diameter of 2.0 asnassumed for soil. It was
also assumed that the smaller diameter mode observed for OC in New York was
representative of EC (The AMS does not measure EEQr scenario (c)the near
roadway scenario, botBC and OC were assumed to be entirely instimaller diameter
mode, as is likely for fresh, primary BM

Values ofkgep for the MMD of eachspecies were assigned using the deposition
curve presented in Riley et &f.which combiresa physical particle deposition model
with empirically determinedkye, Values from several sampling studid®esults are
summarizedn Table2-1. For all calculations and speciesconstan®; value of 0.8, the
median of the range of measur@d/alues reported in the literature for particles in the
size range examindtere(P=0.6- 1.0)3°was assumed

For the northeastern U.S. mean composition scenario, the effects of central air
conditioning onF were also considered (scenario d). As noted above, air conditioning
increases particle losses indoors by filteringcireulated air. To account for this, a
speciesspecific filter penetration efficiency term.r) was added to the model based on
the parttle-sizeresolved filter efficiency curve presented in Riley et’dbr residential
buildings using the same MMDs as were used to adgigvalues. Values 0P for
each species are given in Tablé.2

For each scenario described abdvayas catulated for two AERSAERs from

the literaturewere usedto represent typical U.S. homes and Jimwome residences
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respectively in order to illustrate howr vares with the socioeconomic statusf the
residentsThe median measured ABROM an aggregation of AER measurement studies
that spanned all climatic regions of the U.S. was use@presentypical U.S. housing
stock (0.45 H).*” The geometric mean of AERs measured in 255-ilmwme homes
(0.90h™")*" was used to represent ldéncome residencesAER also varies within homes
with meteorological conditions, season, and human activity patterns (e.g., opening
windows).
2.3.2Sensitivity Analyses

The sensitivity ofthe mass balance mod& uncertainty in PMs species size
distributionswas evaluated~or scenario (a)i was calculatedor total PM s by fitting
kiep Values based on the size distribution fototal PMys mass (i.e., the sum of the
measured specieslhe total PMsmass size distributiois bimodal with a smaller mode
MMD near 0.08 em and a | arger modekeMMD
values of 0.05 and 0.07*hrespectivelyBecause PMs mass is not broken down by
species here, evaporative losses of nitrate with transport indaamst accounted foin
this calculation.To separate the effects of not accounting for the evaporative losses of
nitrate and not accounting for the variability ke, across speciesk was also
recalculated for scenario (a) neglecting evaporative losses of nitrate. In this case,
variability in kyep across species is accounted for, but nitrate is treated asofadite.

The sensitivity ofthe model to variations in speciespecific siz distributions
across season and locatiomnvas also evaluatedSize- and speciegesolved PMs
concentratiordataare availablefor only alimited number of citiesand, where they are

available, are generally limited in their temporal scope. Thus, mp®itant to evaluate

ne
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how temporal and spatial variability in BMspecies size distributions might contribute
to uncertainty in the methods illustrated héravas recalculatetbr scenarig (a) and (d)
using kqep and Prirer Values fit based othe Fresno size distribution data in place of the
New York size distribution datd was also recalculatefdr scenaris (a) and (d) with
Kiep and Prirer Values fit usingsize distributions measured in New York during the
winter! Winter size distributions ere analyzed in the same manner as described above.
During the winter sampling campaign, particulate sulfate, nitrate and organics had size
distributions that could be characterized by a single mode with an MMD near 0.3 um. EC
and Soil MMDs were held corssit at the values used in the main analysis. This
calculation was done for both scenarios (a) andétpusefor the particle size ranges
considered herethe filter efficiency curveis more sensitive to changes in particle
diameter than the depositioate curve®

To evaluate the sensitivity of the model to uncertainty in size distribution
measurement t he MMD of sulfate and nitrate were
calculations ofF. Previous studies have reported an MMD of 0.7 um for nitaste
sulfate size distributions when measurements are resolved to account for sampler
collection efficiencie$:? ***Theimpact of uncertainty in EGize distributions was also
considered Notably, the AMS does not measure EC size distributitmsthe main
analysesit wasassumedhatEC was represented by the smaller modiefimodal OC
size distributionmeasuredin New York. Here,we recalculatedF for scenario (a),
assuming EC has the same bimodal distribution asa@Qnight be expected for air

mass characterized by a mix of primary and regioftadigsported, aged P
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Uncertainty in particle size distributions also contributes to uncertainty; in
because, like deposition, the loss mechanisms that ggematration efficiencyare
particle-size dependentP; also varies with building ventilation conditions and the
geometry of cracks in the building sh&f%**While it is known from laboratory studies
that complex crack geometry and increased roughness of crack surfaces result ih lower
values, the characteristics of cracks in buildings are not well known and are likely to be
highly varied within and across tdings3®“° Furthermore, sizeesolved measurements
of P; under a variety of ventilation conditions and building characteristics are limited. As
a result, there is substantial uncertaintyPjnChen and Zhd8 reported thaP values
measured in real buiings generally range from 0.6 to 1.0 for particles in the size range
considered hereWilliams et al.?* however, reported a minimur® value of 0.11
measured during the Research Triangle Park Particulate Matter PanelThtidytect of
uncertainty inP; was evaluatedly calculating the change kif P; was 0.6, 1.0 and 0.11,
rather than 0.8 for all species.
2.4Results
2.4.1 Main Analysis

Outdoorto-indoor transportreducedambient PMs concentrations to roughly
onehalf of their outdoor valueson average, in the modeling scenarios, depending on
AER, PM: s composition, and aiconditioning use (Figure-2). Variationsin F due to
variations in PMs composition alone andAER alone were comparable When
considering variations in PMcomposition alone (i.e., comparing scenarios (g) at a
fixed AER), F changed by between 7 and 32%. When considering variatioA&

alone (i.e. comparing each scenario acAiSRS), F changed by between 13 and 22%.
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washigherf or t he f/mearcem@madwa andAERDf0Bkandi| ow i
it waslowerf or t he D s$cengribandhwith airaaneitioningNotably, F was
nearly a factor of two greater ftmiefi n e ar rscenaiova h@| ow i AEKRO me 0
(F=0.82) than forthe high nitrates c enar i o a QAERt(Fr@36)AThiy quggeses | 0
heterogeneity inF betweenlow income urban residents and higher income suburban
residentsn the southwestern U.S., for example. The seohtile nature of itrate was
responsible for the lgest composional effects. At an AER of @5 H', ambient
particulate nitrate indoors was only 12% of its outdoor concentration; in coRtraas
0.67 for sulfatelncreased particle losses due to the filtration efireulated air in central
air conditoning systems had the largest overall impactForCompared to the natural
ventilation scenario with the same PMcomposition and size distribution, air
conditioning decrease®lby 34 and 35% at AERs of 0.45 and 0.90 tespectively.

Calculated values df (Figure 23) are in agreement with the rangeFofalues
reported by several studieB=( 0.320.8)° Sarnat et af? and Lunden et &f observed
higher values of for EC (0.84 and 0.64, respectively) compared to other specig@s. Th
is consistent with the highé&r values we calculated for EC (0.71, 0.75 for AERs of 0.45
and 0.90 H, respectively) and the higheF values we calculated for the high
carbonaceous aerosol (near roadway) scenario.
2.4.2 Sensitivity Analyses

F increagd substantially when PM mass was treated as a single entity, rather
than a mix of separate species with distinct loss rates. Wgisgalues fit for total PMs
mass, F values of 0.69 and 0.74 were obtained for AERs of 0.45 and 0’90 h

respectively. This is an increaseRrof 30 and 23% over the values obtained for scenario
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(a) in the initial analysis. Not accounting for variability ki, across species and not
accounting for the evaporative losses of nitrate both contributed santtrease irf.
Accounting for variability inkgep across species, but not evaporative losses of nitrate
resulted inF values of 0.66 and 0.72 at AERs of 0.45 and 0:9Gdspectively.

The model showed little sensitivity to changesdg, with variations in species
specific size distributions across season and locatievgstmore sensitive to changes in
Pirer. The overall F value for scenario (a: NE composition) did not change wagn
values fit based on the Fresno spesigscific size distributions were used rather than the
New York City size distributions. Similarly; values changed by less than 2% wkgyp
values were selected based on the winter New York size distributions tiadimethe
summer valuedJsing Fresno size distributions in place of New York Size distributions
to fit kyep and Prirer fOr scenario (d) resulted in an increaseFif only about 3%, but
using winter New York size distributions to Kde, and Prier rather than summer values,
resulted in an increase Bfof 157 17%, depending on AER.

Varying the sulfate MMD between 0.7 and @.5rchanged- by less than 3%H
for sulfate is 0.62 assuming a MMD of &7mand 0.67 assuming a MMD of Ce5Smfor
an AER 0f0.45 h'). Varying the MMD for nitrate over the same range had a negligible
effect onF because evaporation, not deposition, is the dominant loss mechalsisig.
kiepVvValues fit assuming EC was bimodal for scenario (a) had no efféct on

F is sensitiveto uncertainty inP. Varying Pj between 0.6 and 1.0, the range
reported by Chen and Zhao et *8IchangedF by as much as 25% compared to our
calculations that assumed R} value of 0.8 for all specieA P value of 0.11, the

minimum reported by Williamst al.** reducedr by about 86%.
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2.5 Discussion
2.5.1 Implications for Epidemiology

The resultsof this studysuggest that variability in the fraction of ambient 2M
that penetrates into and persists in indoor air is a possible contributoe tubserved
heterogeneity in PMnediated health effect estimatés hypothesized, lower values of
F correspond to the conditions for which lower fhédiated effect estimates have been
observedThefiscr ubbi ngo of -transpbriechaeresodfiarsaunce of nerd o o r
differential exposure misclassification when outdoor,BMoncentrations are used as
exposure surrogates. As a result, there is greater exposure misclassification in regions
where nitrate is a large and variable fraction of the,Pktas. There are large
geographic differences in PM composition across the United States, with nitrate
comprising a larger and more variable fraction of ambient Plass in the western
United States compared to the eastern United Statéwrus, the loweF value calculated
for the southwestern U.S., high nitrate scenario is consistent with the lower risk estimates
for PM-associated morbidity/mortality in the western U’SSimilarly, F was greatly
reduced in these calculations by the addition of a term to account for filtration losses in
air conditioning systems. This is consistent with the lower effect estimates observed for
communities with a higher prevalence of central A82? Variability in air conditioning
use with season and meteorological conditions may also contribute to temporal
heterogeneity in effect estimates.

WhenF is largerand less variabJeambient PM s exposurs are more similarto
and more highly correlated wittentralsite PM, s concentrationsAs a resultpiases not

attributable to Berkson's falla@resmaller A higherF valuewas observedor the near



43

roadway scenarjowhich is consistent with several studies that report larger risks of
adverse healtloutcomes when P4 is enriched in primary combustion tracerand
with proximity to roadway.® #*While PM,s components associated with primary
combustion sources might be more toxic than others, these results suggest that fresh
combustion particlesalso penetrate and persist indoors with higher efficiency than
secondary sulfate due to their smaller depositional losses. Low socioeconomic status, a
predictor of susceptibility to PNelated health effects, affectsF because low income
residences tend have higher AER values and are more likely to be in close proximity to
busy roadways. The results of this study suggest that both factors erxposere to
ambient PMs. Note F values were as much as 22% greater at an AER of 0’90 h
compared to amAER of 0.45 R for the scenarios studied. Disparity in exposure
misclassification, in addition to factors such as access to health care, could contribute to
differences in health effect estimates for these populations.

While the focus of this analysis wan spatial variability, parameters considered
in this analysis also vary temporally. For example, AERs vary with meteorological
conditions (e.g., wind, indoasutdoor temperature difference) and home ventilation
conditions (e.g., open windows versus efbswvindows). The physical and chemical
properties of ambient PM also vary temporally with variations in primary emissions,
atmospheric stability, relative humidity, and photochemical activity. Certainly, AC use
varies temporally with outdoor temperatuiiéhus, variability inF could contribute to
exposure misclassification in tinseries epidemiology, as well as to the observed
geographic differences in Piediated health effect estimates.

2.5.2 Refined Exposure Surrogates
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This studysuggests that refined exposure surrogates that account for the eutdoor
to-indoor transport of Pk could reduce exposure errorfiv, s epidemiology Tools for
modeling indoor concentrations of ambient R\xist, are being refined, and are being
incorporated into population exposure models such as the Stochastic Human Exposure
and Dose (SHEDS) mod& Such models show promise for the development of exposure
surrogates for epidemiology that account for modifications of ambientsRaith
outdoorto-indoor transport. This paperillustrates a method to predict the indoor
concentration and composition ambientPM, 51 a method that makes use of readily
available data and computationally inexpensivet is proposed that this approach could
be usedto provide refined exposure surrogates for populati@sed epidemiologic
analysesIn the following paragraphs, recommendations for the use of this method to
generate refined exposure estimates are made and important refinements are discussed.

The sensitivity analysis presented above demonstrates the importance of
accounting for speciespecific losses in indoor air when predicting indoor concentrations
of ambient PMs. Treating ambient Plk as a single entity resulted in a substantial
increase inF over the calculation that accounted for differences in depositional losses
across species and phase changes of nitrate. Thus, the potential benefits from use of
refined exposure surrogates may not realizédid calculated based on total Pmass
rather than PMs composition and specigssolved size distributions. Notably, particle
species size distributions are not frequently measured. Most species size distribution
measurements have been made during intensive sampling campaigns in remoteslocation
for the purpose of visibility research. It is expected that broad generalizations can be

made about species size distributions based on source proximity and atmospheric



45

chemistry. However, a systematic analysis backed by measurements has not been
perfomed to support the application of the methods demonstrated here to other locations.
An improved understanding of the variability of Pdspecies size distributions would

help facilitate the use of this model elsewhere

The sensitivity analysis also illtrates the importance of accounting for phase
changes of semivolatile speciésdecreasedby as much as 25% when the evaporative
losses of nitrate were accounted for. A limitation of this method is that organigi®M
treated as nowmolatile, when in fat it is semivolatile*®* Sampling studies have
demonstrated that phase changes of organics can ifigamden et af? concluded that
a lower F for OC (F=0.5) than forEC (F=0.61) in anunoccupiedhome was due to
evaporation of some particulate organic mathsr organic gases sorbed indoor
surfaces. However, it has also been suggested that ambient organic matter shifts from the
gas into the particle phase by sorption into indgemerated PM imccupiedhomes?’

This has been demonstrated for polycyclic aromatic hydrocafBokscounting for
phase changes of ambient organics with outdoandoor transport to further refine
ambient PM s exposure prediction is an area of future research.

Particle loss mechanisrare influenced by many factors in addition to particle
size and composition, including home ventilation conditions, air flow characteristics, and
building constructiot®#*2%49*°For example,P values are likely to differ for homes
above and below thegoverty line, with homes below the poverty line (which tend to be
leakerf* having higherP values. Thus, the disparity i values for homes above and
below the poverty line could be larger than demonstrated here. It should be noted that

sampling from peaicle size distributions to generate distributionskaf, P, and Piter
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values (e.g. Monte Carlo methods) representative of eachs Bpecies would better
capture the distribution of PMexposures over a wider range of conditions than the use
of asingle value for each PM species, as done in this demonstration. This refinement is
recommend when using the methods demonstrated here to generate exposure
distributions. Distributions of these model parameters reflecting each §ddcies size
distribution (i.e. Figure 22) can be obtained using distributions Bf kyep and Pier
availablefor a range of particle sizes and under a variety of condifi&ng®>°

While AER values in this work were taken from the literature, AER distributions
for a study population can be modeled. The Lawrence Berkeley National Laboratory
(LBNL) infiltration modeP?>**has the potential to provide AER estimates that could be
used in mass balance models to generate refined estimates of exposure to ambjent PM
Currently, the LBNL infiltration model predicts AER distributions for closed (i.e.
windows and doors closed) housing stock using houdnagacteristics data that are
readily availablefrom sources such @be Census and American Housing Survey and
meteorolgical data available, for example, from the National Climate Data CenteY.
The LBNL infiltration model must be adapted &mcount for natural ventilation (i.e. air
flow through open windows/doorsYhis is an active areaf researchi® ?° As is
recommended fokgep P, and Prier, Sampling from the distribution of AERs generated
with the LBNL Infiltration Model is recommended when calculating exposure
distributions.

The method presented hedees not account fogxposure to ambient PMin

environments other than the honhe.addition, he methods presented in this work are

meant only to predict the indoor concentrations of ambieng PN single family,
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detached homes. While people do spend the majority of their time in their homes (nea
70%), they also spendime in other indoor environmentsutdoors and in transit
Exposure to ambient PMin these environments also contributes to total ambientsPM
exposurePredicion of theconcentrations of ambient BMin theseother enviroments
andin multi-family residences ialso needed
2.6 Conclusions

Variability in the fraction of ambient PM that penetrates and persists indoors
can be substantial and may contribute to the heterogeneity in effect estimates of PM
related health outenes. This work suggests thktis higher in close proximity to
primary combustion aerosol (e.g. proximity to traffic) and with increased prevalence of
poverty. F is lower when PMs is enriched in nitrate and with AC use. As a result,
exposure error resulting from variability Fwill be greatest when these factors have
high temporal and/or spatial variability. Analyses of the relative sizes of the temporal and
spatial errors in exgsure estimates are needed in order to understand which types of
epidemiological study designs are more, versus less affected by this type of exposure
error. Certainly caserossover designs, in which each subject acts as their own control,
can avoid erms associated with location of residence, proximity to sources,
socioeconomic status, and residential construction. The methods described here have the
potential to reduce exposure misclassification for the study designs for which this
variability is not hherently controlled for.
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Sulfate  Nitrate Elemental Organic Soll
Carbon Carbon

Queens NY
MMD'(um) 0.5 0.5 0.07 0.07,0.4 2.0
kdegf (h™) 0.09 0.09 0.06 0.06, 0.07 0.58
Pfilter” 0.60 0.60 0.85 0.85, 0.70 0.00
Fresno, CA
MMD®(um) 0.5 0.4 0.07 0.3 2.0
kdeg (h™) 0.09 0.07 0.06 0.06 0.58
Pfilter® 0.60 0.70 0.85 0.78 0.00

! Drewnick et al. (2004)
?Riley et al. (2002)
3

Ge etal. 2012

Table 2-1. Mass median diameter (MMD) and associatedgep and Prier Valuesused
for particulate soil, sulfate, nitrate, elemental carbon, and organic carbonvalues of

kdepandPyier are fromRiley et al.?®
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. Sulfate
. Nitrate

. Elemental Carbon

Organic Matter

B soil

Figure 2-1. Three PM, s composition scenarios( a) finort heastern meal
(b) Asouthwestern high nitrated compositio
(d) uses the Anortheastern mean compositio
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Figure 2-2. Most frequently observed size disibutions for major PM , 5 species
(sulfate, nitrate, organic matter). (a) in Queens, NY in August 2001 (Drewnick et al.,
2004) and (b) Fresno, CA in January 2010 (Ge et al., 2012).
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Figure 2-3. Outdoor and indoor concentrations of ambient PMs and the fraction of

outdoor PM; s that penetrates and persists indoorsK) for the scenarios described in

Figure 2-1 and Table 21. Not e the ANE mean compositi ont
scenarios have the same composition and spspasfic sizedistributions. Data labels

areF values for each scenaria) typical residential U.S. air exchange rate of 0.45 h

and (b)air exchange rate for low income residence of 0:8&h
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Chapter 3. Refined Ambient PM, s Exposure Surrogates and the Risk ofMyocardial
I nfarction
Material in this chapter has been published previously as:
Hodas, N.; Turpin, B. J.; Lunden, M. M.; Baxter, L. Kzkaynak H.; Burke, J.Ohman
Strickland P.; ThevenetMorrison K.; Rich, D. Q.,Refined ambient Pl exposure
surogates and the risk ahyocardial infarctionJ. Exposure Sci. Environ. Epidemiol
2013, 23, 573- 580.
3.1 Abstract

Using a caserossover study design and conditional logistic regression, the
relative odds of transmurglfull-wall) myocardial infarction (MI) calculated using
exposure surrogates that account for human activity patterns and the indoor transport of
ambient PMs were comparedwith those calculated using centsale PMs
concentrationdo estimate exposure to BMof outdoor origin (exposure tambient
PM,s). Because variability in human activity and indoor RMransport contributes
exposure error in epidemiologic analyses when ceasti@lconcentrations are used as
exposure surrogates, surrogates that accoonttHis variability are referred to as
"refined” surrogatesiAs an alternative analysis, whether the relative odds of transmural
MI associated with increasesambientPM, sis modified by residential air exchange rate
(AER), a variable that influences ehfraction of ambient Pl that penetrates and
persists indoorsvas evaluatedJse of refined exposure surrogates did not result in larger
health effect estimate@ORs = 1.10- 1.11 with each interquartile range increase.)
narrower confidence intervalsy better model fits compared to the analysis that used

centralsite PMs. Evidence forheterogeneity in the relative odds of transmural MI with
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residential AER éffectmodification) was observed, with residents of homes with higher
AERs having larger ORthan homes in lower AER tertiles. For the level of expesure
estimate refinement considered here, thiesbngs add support to the use of censii
PM, s concentrations for epidemiological studies that employ similar-cassover
study designs. Isuch desigrs, each subject serves as his or her own matched control
Thus, exposure error related to factors that vary spatially or across subjects should only
minimally impact effect estimate$hese findings also illustrate that variability in factors
tha influence the fraction of ambient BNin indoor ar (e.g.,AER) could possiblybias
health effects estimates in study designs for wldackpatiestemporal comparison of
exposure effects across subjects is conducted
3.2 Introduction

A recent metaanalysis, which reported a statistically significari®6 increase in
the risk of myocardial infarction (MI) associated with each 10 fgherease in ambient
(outdoorgenerated) Pl concentration lagged one day, concluded that acute sesea
in PM,.s may trigger MI* A previous study, which was included in this matalysis,
reported an increased risk dfansmural (full wall) M] but not nortransmural
(subendocardialMI, associated with increased BMconcentration in the 24 hours
before emergency departmeadmissionfor that infarctio” The work presented here
builds on this "initial" analysisln all of these studies, P\ measured at one or more
nearby (within 10 km) centraite monitorswasused as @roxy fora s u beikpesaré 6 s
to PMs of outdoor origin (i.e., exposure t@ambientPM,s). This likely resulied in
exposure errodue, in part, to proximity to local sources, human activity pattesrg,

time spent in various locationand temporal and spatial variability in the efficiency with
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which ambient PMs penetrates into and persists in the indoor environment. While other
air pollution studies have explored exposure refinements that account for spatial
variability in ambient PMs due to local sourc€s *° the variable effects of human
activity patterns and ambient BMIlosses with outdoeto-indoor transport are largely
unexplored.

The fraction of ambient Py4 that penetrates and persists indg@i) varies with
multiple factors including particle size and chemical composjtiusing characteristics
(e.g., home age), meteorological conditions (e.g., wind speedeamgeraturey® and
human activitiege.g., opening windws or using air conditioning Variability in the
time spent in variousocations(e.g., outdoors, indoors, or in a vehjclso influences
personal exposure to BMof outdoor origindueto spatial variability in both outdoor
PM s concentrations and the indoor transport of ambigvits. This exposure errois
likely a combination of Berkson and classical errors, which would bias effect estimates
towards the null and/or inflate variand8s! hampering the detection of statistically
significant associations between increased amb#m s exposuresind the risk of MI.
Therefore, ambient PM exposure surrogates that account for these factors could offer
improvement over the direct use of censié monitor PMs concentrations in air
pollution epidemiology studies.

Exposure errors associated with variabilityHrand human activity patterns may
modify ambientPM-mediated health effect estimatdgultiple studies have reported a
lower risk of morbidity or mortalityassociated with increases in PMtoncentration in
communities with a higlprevalence of centrair conditioning (AC), compared to risk

estimates among communities with lower AC prevaléfitéCentral AC use reducds
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because indoor air is filtered as it is-aieculated, thus increasing particle losses
indoors*™® In Chapter 2, it is reported that conditions resulting in lower calculated
values ofF (due to spatial variability in Pit composition and/or residential AER)
corresponded to circumstances under which lower effect estimates had been dhserved
previous epidemiological studies. It was concluded ¢lpbsure misclassification due to
variability in F could partially explainthis observed geographic heterogeneity in
ambientPM-mediated health effect estimaf8s

Using a caserossover study dggn, herein the relative odds tvansmuralMi
associated withincreasedambient PM, s exposurein the previous 24 hoursvere
estimated using three different RPMexposure metrics that account for variability in
human activity patterns and/or the indoor transport of ambientsP{d) a stochastic
human exposurmodelthat simulateshe ambient PMsconcentration andime spent in
each of severalocations (i.e.outdoors,indoors, in a vehicle}o estimate poputon
distributions of ambient Pp% exposure,(b) a deterministic masbalance model that
estimates residential, indoooncentrations of ambient (outdegeneratedPM, susing a
more refined treatment oEsidential air exchange raté&ERs) and PM s penetration
and losses witindoor transport, and (c) a hybrid of these two motfefs noted above,
variability in human activity patterns and the indoor transport of ambientsRlih
contribute toexposure error in epidemiologic analyses when cesi@lconcentrations
alone are used to estimate exposure to ambientsRR, thus, the exposure surrogates
that account for this variability are referred to as "refined" exposure surrogates in the
following text. It washypothesized thaheserefinedambient PM s exposure surrogates

would have less nondifferential exposure errofwhich tends to bias effect estimates
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towards the null)and, thus would result inlarger health effect estimates, narrower
confidence intervals, and better dab fits compared to the analgghat used centraite
PM s concentrationglone as surrogates fambientPM, s exposurs. As an alternative
analysis,whetherthe association between ambient RMnd transmural Mis modified
by residential AER was evaluateBor this analysis, it was hypothesized tledfiect
estimatesvould be smaller for low AERs because a smaller fraction of ambiea PM
penetrates and persists indoors. Thus, at low AERSs, the difference bewmvemisite
PM,s concentrations and actual ambient RMexposure is greater, resulting in
proportionally more nowlifferential exposure misclassificatiand larger bias towards
the null (i.e. greater underestimation of effect).
3.3Methods
3.3.1Study Population and Outcome Definition

The study population and definition of transmural infarction used in this study
have been escribed previousl§ Briefly, all unscheduled hospital admissionsgth a
primary diagnosis of acute myocardial infarction (International Classification of Diseases
9th Revision [ICD9] code 410.01, 410.11, 410.21, 410.31, 410.41, 410.51, 410.61,
410.71, 410.31, 410.91) were extracted from the Myocardial InfarctionAzagaisition
System (MIDAS), a Newlerseywide database of hospital discharges and death
certificate registration¥?® Only thosepatients who were admitted between January
2004 and December 0 0 6 , were 018 years of age, wer e
time of their MI, and had no previous diagnosis ofwére inlcuded Thesesubjectdn =
1563) were primarily male (63%) and white (69%) and had a median age @r6g.

subjects who resided within 10 km of a censié& monitor at the time of their Ml ave
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included in this studyThis study was approved by the Institutional Review Beafdhe
University of Medicine and Dentistry of New JerseydRutgers, The State University of
New Jerseyand the University of Rochester Research Subjects Review BAHDAS
was also approved by the New Jersey Department of Health and Senior Services
Institutional Review Board.
3.3.2Exposure Surrogates

Four different exposure surrogates generated from cesiteal monitor
concentrations were used to estimate persexbsure to PMs of outdoor origin (i.e.,
exposure to ambient P)). Because a significantly increased relative odds of transmural
MI associated with average BMconcentrations in the 24 hours preceding emergency
department admission waserved in thénitial analysis? here, hourly ambient P\
exposures were computed and averaged over that 24 hour period for each exposure
metric. Detailed descriptions of ea@xposure surroga@nd comparisons between them
are available elsewheft In the following paragraphs, a brief description of each
exposure metrics provided.The exposure surrogates are labeled based on their level of
refinement and complexity, with highaumbered Tiers corresponding to a greater
degree of refinement.

Tier 1. Centralsite PMys Concentrations For Tier 1, hourly ambient PMs
concentrationgor the study period (January 200December 2006) measured/aNew
Jersey Department of Environmental Protection monitors were retrieved from the United
States Environmental Protection Agency web®itd§ he zip code of e ac
residence at the time of Ml was eatted from MIDASand subjects were assigned 24

hour average PWls concentratios, for all case and control periods, from thenitor
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closest to their residenéelier 1 exposure estimates varied temporally within and across
centralsiteemonitor regions with ambient PMconcentrationsBecause subjectesiding
within 10 km of the same monitor were assigned the same exposureoradugiven24-

hour case or control periothere was no geographic variability in exposure estimates
within that 10 km radius Within a given case or control period, howevexposure
estimates did vary across monitoring locations.

Tier 2a. SHEDS In Tier 23 the exposurenodifying effects of human activity
patterns and the indoor transport of ambient,PMere taken into account usirige
Stochastic Human Exposure and D&ienulation (SHEDS) modéP Distributiors of
ambientPM; s exposuresvere generatetbr a simulated populatiorepresentative of the
study population. For each census tract within 10 km of a cesitieamonitor, 10,000
representative individuals were gifated by sampling from censtract level
demographiaata (gender, age, and employment status) from the 2000 U.S. Census. For
each simulated individual, a time series of human activity patterns was simulated using
diary datafrom the Consolidated Human divity Databas& matched by age, gender,
season, and day of wedKourly centratsite PM s concentrations (Tier 1) were used as
inputs and personal exposuréo PM, s of outdoor origin wascalculated as dime-
weightedaverage ofthe ambientPM, s conceantrationsin eachmicroenvironment (e.g.
home, office, outdoors)Note, ndoor PM s sources were set to zero éstimate the
distribution of exposures tBM, s of outdoor origin only (i.e., ambiefM, s exposures)
in each census trackor residential microenvironments, SHEDS samgldrom a
representativelistribution ofhousing typesAERS, particle penetration efficiencieand

indoor particle depositiommates(Appendices Bl, B2)It should beemphasizedhat the
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AERs used irthis version ofSHEDS vay seasonally, but not spatialyithin the study
domain From the distribution of ambient Piexposures generated for each hour during
the study period, the median was used to calculate 24 hour mean exposures for each case
and control period. The 24 homean exposures calculated for each census tract were
then averaged over the 10 km region surrounding each esitérahonitor.

Tier 2b. The Aerosol Penetration and Persistence MaddeHourly PM;s
concentrations measured at the cergitd monitors (Tier 1) were modified to account
for the effects of outdoewo-indoor transport using the Aerosol Penetration and
Persistence (APP) modél*®and the Lawrence Berkeley National Laboratory (LBNL)
Infiltration modef®*® The APP model is a deterministic malsalance model that
predicts the indoor concentration of ambient PMbased on AER, outdoor Rl
concentrations, the efficiency of particle penetratiomo the home the rate of
depositional loses in indoor air, and, f@mmonium nitratephase changes in the indoor
environmenf?’?® The equations that form the APP model are provided in Chapter 2
(Equations la and 1b)in addition to accounting for the semmlatile nature of
ammonium nitratedaily variations in prticle chemical compositionwere taken into
accountthrough the use of partickzeresolved deposition loss rates specific to the size
distributions of the major Pp4 species (sulfate, nitrate, elemental carbon, and organic
carbon Appendix B3. Centralsite PM s composition data from the EPA Speciation
Trends Network (STN) is available for every third day and was downloaded from the US
EPA website for this purpo$é.For days without measurements, R\Mpecies mass
fractions wee interpolated using a weighted average of the two nearest mass fraction

measurementsSubjects were excluded if there was a period of more than nine days
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between STN measurements for the case period or all control p&exdaise speciation
measurements were not available for all cergit@monitor locations, values for the
New Brunswick monitoring statiorwhich were most highly correlated witllata from
other monitors across the stdfgppendix B4) were used. With tki approach, particle
losses indoors varied daily with variations in P/Momposition. Note, however, that
deposition loss rates did not vary spatially in this work.

AERs calculated with the LBNL Infiltration modelvhich wasmodified to
include air flow through open windowsAppendix B, were used as inpute the APP
model. The LBNL infiltration model predicts AER for singmily homes based on
normalized leakage rates (which describe the effective area of openings in the building
shell through which ia can flow, normalized by home floor area and a parameter
accounting for building height and validated against measurements in 70,000 closed
homes)and meteorological conditiod* Meteorological data were gathered from four
airports in New Jersey (Newk, Caldwell, Somerset, and Trenton) and subjects were
assigned the weather data from the monitor nearest their residence at the tim&'od MI.
normalized leakage area was calculated using a model resulting from a statistical analysis
relating leakage tdousing characteristics (home age, floor @fea$ing censusract
level housing data from the 2000 U.S. Census and the American Housing Survey.
Notably, the model used to calculate normalized leakage rate differs for homes above and
below the poverty hie because home leakiness varies with resident poverty status, with
low-income homes tending to be leaki&fhus, variations in calculated AERs arise from
temporal and spatial variability in meteorological conditions and with spatial variability

in houshg stock.Unlike Tier 2a, detailed human activity patterns are not accounted for in



66

this metric, but Tier 2b provides a more refined treatment of residential AER apn¢gl PM
penetration and losses with indoor transpOdnsugractlevel ambient PMs exposires
were averaged over the 10 km area around each csitérahonitor.

Tier 3.SHEDS and APybrid - The final exposure metric combined the refined
treatment of human activity patterns from Tier 2a, with the more temporatig
spatiallyresolvedestimates of residential AER from Tier Zbut without variations in
PM, s deposition rates with variations in BMcomposition) PM, s exposures were
estimated with SHEDS as described abovepbsutgresidential AERs estimated with the
LBNL Infiltration model.
3.3.3Statistical Analyses

Study DesignFor each ambient PM exposure surrogate (tiethe same time
stratified casecrossover desigh*3as in the initial analysfswas usedo estimate the
relative oddsof a transmural infarction associated with increasggosurein the
previous 24 hours. In this design, each patient contdbmt@rmation both as a case
during the period immediately before the MI, and as a matched control during times
when a MI did no occur. Since each subject serves as their own control, factors that
differ only across subjects are controlled by desiigse periods were defined as the 24
hour period beforemergency departmemidmission for MI Control periods (34 per
case dependgion the number of days in the calendar mqgribjined as 24 hour periods
in which no MI occurred, wermatched to the case period by day of the week, time of
day, year, anadalendarmonth. Centratsite PM s concentrations (Tier 1) and modeled
ambient PM s exposuregTier 2a, 2b, 3xorresponding to these case and control periods

were then contrasted in the statistical analyses.
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Modeled Exposure Tier Analysélthe same conditional logistic regression model
as in the initial analysj$ stratified by stud/ subject, was used to examine the
multiplicative interaction between ambient PMexposure and transmural MI:

aé&Qo—— 00 QYQa 1)

Casecontrol status (i.e., case period = 1, control period w&y regressedgainst the
mean estimated ambienPM,s exposurein the 24 hour period before emergency
departmentadmissionfor the index infarction or the corresponding control periad
natural pline (3 degrees of freedom) of the mean apparent tempetatifeom the
same24 hour periogwas also includett o est i mate each subject s¢
temperatureHourly temperature and relative humidity data used to calculate apparent
tempeature were gathered from the same airports as the data used to calculate AER in
Tiers 2b and 3. The relative odds of transmural M| estematedusing each exposure
surrogate (Tier 12a, 2b, or3) scaled to theTier-specific interquartile range (IQR)
increasein the ambient PMs exposure For each Tier, the odds ratio (OR), its 95%
confidence interval, and its Akai keds I nfo
to compare the fit of these norested models to Tier, Are presented

Whetherthe refined exposure estimates (Tiers 2a, 2b, 3pdexplanatory power
over the Tier 1 estimatgas also examinedh other words, whether the refined exposure
estimates provided supplementary exposure information beyond that accounted for in the
Tier 1 estimates and whether including that information in eféstimate calculations
resulted in additional MI risk over that associated with the -cesitial PM s
concentrations (Tier 1 estimates) alone was evalu&®deach case and control time

period, the Tier lexposure estimatand each of the refine@xposureestimateswere
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converted to &scores based on their respective means and standard deviations. The
conditional logistic regression model described above was run again with the Fier 1 z
score andhe z-score difference (e.g., thiifference between the Tier iszore and the
Tier 2a zscorg as covariatesZ-scores were used in order to create scabel location
invariant versions of the exposure metrics. Given that variables that differ onbaley s
and location may contribute equivalently to explaining a response in the cohliextar
modeling, entering the difference (between the refined and the origswres) into a
linear model in addition to the original represents the additionakibatiobn that the
refined variable can make over the original in explaining the resporessénear model
The regression coefficient for the Tier dseore times the observed IQRstimatedhe
increase in logpdds of transmural infarction associatedhweach IQR increase ithe
Tier 1 PM>s concentrationwhile the regression coefficient for tfie-score differenoe
provided an estimateof the additional increase in legdds of a transmural infarction
associated with each IQR increase in the refined fMposure estimate, independent of
the Tier 1 PMs concentrationA significance test of théd s c or e d irefyréssione n c e 0
coefficient provides a test of whether the refirfiédr adds anystatistically significant
relative oddseyondwhat is providd by Tier 1.This same modelvas runseparately for
each refined metric (TieiZa,2b, and 3).

AER Effect ModificatiorAnalysesWhetherresidential AERalone, without the
other components contributing to theefined exposure surrogatesnodified the
association betweethe Tier 1exposure surrogatand transmural infarctiowas also
explored This was done because AER estimates have smaller uncertainties than the more

expansive exposure models and are important predictors of the frataambient PMs
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that penetrates and persists indoors. However, as explained below, this approach also
differs from the main analysis in that it introduces a spatial comparison.

AERsfrom theTier 2bexposure estimates were ranketb tertiles figh AER,
middle AER, andlow AER). See Appendix BTor summary statistics of AERs in each
tertile. The Tier 1 conditional logistic regression analysias then reun adding two
interaction terms to the model, as well as indicator variables for. AEf® basenodel is

aé o—— | T O60YR 100YR [ 060Ys 00 1060Ys 00

I 60Y 00 "QYQaH (2)
where® equals one if th¢" period for thei™ subject is a case and zero if control.
Further,0 ‘OY 5,0 O'Y ;; andd O'Y  are indicator variables equal to one if subject
has a low, middle or high AER and zero otherwise. The I @&M™MQ & 1f] represents the

natural spline that is added to adjust for apparent tempesatdie represents theum
of a random intercept for subjectas well as any betweesubject variablesUpon
conditioning on subject, becomes a nuisance parameter which cancels out of the
conditional logistic likelihood and is not estimat&dom this model, the relative odds of
a transmural infarction and its 95% confidence interval associated witl).a8nug/nd
(IQR) increase inTier 1 PM, s concentratiorwas estimateavithin each tertile of AER.
This was done for theool (November to April and warm (May to October) seasons
separately because BMconcentrations and compositi@re distinctly different over
these two periodgAppendi B8).%

In this alternative analysis using interaction terms to estimate the relative odds of
a transmuraMI associated with increasd®lM, s concentration within the low, middle,

and high AER groups, the casmssover analysis described above was essentially
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stratified by modeled residential AER and estimates of the relative odds of transmural Ml
across AERt erti l es were compared. I n contrast
Anal ysi so, whi ch -swasg estri cdtelmpoaalwi amiahysi
Modi ficati on A-+empoyalscongparison sf exposusepetietts awross AER
tertiles and, thysacross subjects. This analysis discused on a single parameter that
influences the indoor transport of ambient BMn order to reduceghe number of
assumptions and associatadcertainty in comparison to the more complicated refined
exposure surrages explored above

To evaluate whether spatially varying factors in addition to AER (e.q.sPM
chemical composition, study population characteristics) could contribute to variability in
relative risk of M| across AER tertilea,casecrossover analysisratified bymonitoring
site communif was also conducted and study population characteristics were compared
across AER tertilesAll data sets were constructed using SAS software (version 9.1.3;
SAS Institute Inc., Cary, NC), drall analyses were conducted using R (version 2.6.1; R
Foundation for Statistical Computing, Vienna, Austria).
3.4Results
3.4.1Modeled Exposure Tier Analyses

The summary statistics fofiers 1, 2a, 2b, and 3 ambieRM,s exposure
estimatediave beemlescribed previousfy?! and are provided in AppendB6. While the
refined ambient Pl exposure concentrations (Tiers 2a, 2b, 3) for each case and control
period were approximately half of Tier 1 (centsée) values on average, they were all
highly correlated with the Tier 1 concentrations 0.98 0.98, and 0.98 for Tiers 2a, 2b,

and 3 respectively)All relative oddsestimateseported belowvere scaled tohe IQR
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increase of eachier: Tier 1 (10.3 pg/M), Tier 2a (5.4 pg/rf), Tier 2b (5.4 pg/M), and
Tier 3 (5.4 pg/m).

Each 10.3 pg/rhincrease irthe Tier 1 PM s concentration waassociated with a
significantincrease in the odds of transmural Ml (OR = 19%% CI = 1.01, 1.19¥ach
IQR increase(5.4 pg/n?) in the Tier 2a, Tier 2b, and Tier 3 BMconcentratios was
associated with the same size increagbemelative odds o&transmural Miwith similar
95% confidence intervals across exposure tf@érer 2a: OR = 1.10, 95% CI = 1.01,
1.20; Tier 2B: 1.10, 95% CI = 1.01, 1.20; Tier 3: 1.11, 95% CI = 1.02, 1.20; Bdble
Similarly, model fits, as measured by the AIC value, were not substantially different
across exposure tiers (TablelB Further, using the zscore methodno additional
significant relative increase in odds of transmural MI associated with the refined
exposure estimates in addition to that associated with Tier isRWbhcentrations was
found (Table ). For example, each IQR.22 pg/n) increase irthe zscore forTier 1
PM, s concentration was associated with a significant increase in the relativedds
transmural infarction (OR = 1.11, 95% CI = 1.00, 1.23), but an [QR1 ug/m)
increase in the Tier 2a-score difference was associated with onlysraall, non
significant increasen the relative odd¢OR = 1.03, 95% CI = 0.90, 1.18). Similarly
increases in the relative odds of MI associated with IQR increa3ésri@b and Tier 3z
score differences (0.21 and 0.28 pd/mespectively) were small and not statistically
significant(Table3-2) and, thus, added rexplanatory power over the Tier ltiesate
3.4.2 AER Effect Modification Analyses

As an alternative analysisyhethermodeled residentiaRERs in the 24 hour

period immediately beforemergency departmemtrival modified our estimate of the
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relative odds of a transmurlll associated witleach10.3 pg/nt (IQR) increase in the
Tier 1 PM s concentratiorwas evaluatedVis were evenly distributed between tharm
(May to October) and cool (November to ApsBasonsSummary statistics of the AER
distributions for the warm anmbol seasons arghown in Apendix B7.

Heterogeneity in the relative odds of transmural M| across AER tertiles was
observed, with homes in higher AER tertiles having larger ORs than homes in the low
AER tertile. In the warm season, eactD.3 ug/n’? increase inthe Tier 1 PMs
concentrationwas associated with increaseelative odds of a transmural Ml in the
middle AER tertile (OR = 1.16, 95% CI =.06, 1.39) and high AER terti©R = 1.15,
95% CI = 0.98, 1.35), but not the low AER tertile (OR = 0.96, 95% QL74, 1.25)
(Figure 31). When themodel was run again with th@iddle and high AER tertiles
combined each10.3 pg/ni increase in Tier 1 PM was associated with a significant
increase in relative odds of a transmural Ml for the middle and high ABEReser
combined (OR = 1.15, 95% CI = 1.02, 1.33milarly, in the cool seasoan increase in
the relative odds of a transmural i$sociated witeach10.3 pg/ni increase in Tier 1
concentratioa was observed fahe middleand highAER tertiles (both ndividually and
combined) but notfor the low AER tertile Figure 31).

To further explore the apparent effecbdification by AER whetherAER was
actually a surrogate for another spatialgrying factor that might explain the observed
variability in relative odds of transmural M| across AER tertiles was assdSssil.the
distribution of monitoring siteso which MI patients were assignedithin each AER
tertile was evaluatedand a caserossover analysisstratified by monitoringsite

communityy was conductedin the low AER tertile the majority of studysubjectswere
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residents of th&lew Brunswickmonitoringsite community. h the high AR tertile, the
majority of subjects wereresidents of the Elizabeth monitorssge community
(Appendix B9. Each monitorspecific IQR increase in ambient B¥toncentration was
associated with a nestatisticallysignificant increase in the relative odofstransmural
Ml in both New Brunswick (OR = 1.15, 95% CI = 0.95, 1.39) and Elizabeth (OR =1.11,
95% CI = 0.97, 1.27; Table-3). For the other 5 monitors, ORs ranged from 0.78 in
Millville to 1.23 in Rahway. However,igen the sample sizes, ORs, and 988afidence
intervals within each monitoring location (Tal8e3), there is no clear difference in the
relative odds of transmural Ml associated with each IQR increase iR &vcentration
across monitors.
3.5 Discussion

In this casecrossover study fatransmural myocardial infarctionyse of refined
surrogates of personal exposure to,RMf outdoor origin thatccount for the exposure
modifying effects of human activity patterns and/or the indoor transport of ambient
PM,s, did not result in largeestimates of the relative odds of a transmural infarction
associated with each IQR increase in RMoncentration in the previous 24 hours,
smaller confidence intervals, nor better model dsnpared to analgs that usedPM, s
concentrations measured @ntralsite monitors However, effect modification of this
relative odds estimate by estimated residential AER was observed. This may be
attributable to a greater degree of exposure error and resulting bias towards the null in the
low AER tertile (less pnetration of ambient PM indoors, and therefore more error in

estimating oneds pzeof caatdooraotigin)eceanmpared uor tlee higher P M
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AER tertiles (more penetration of ambient PM indoors and therefore less exposure error),
or residual confouting by some unmeasured factor.

Spatial variability, time activity, and losses with outdt@indoor transport are
all sources of exposure error in epidemiologic analyses that use central site monitor
concentrations as surrogates for exposure to amfmatdoorgenerated) Plk. Several
recent studies have reported larger effect estimates and/or smaller confidence intervals
when exposures were estimated using models that account for spatial variability in
outdoor air pollutant concentrations on locallesge.g. interpolation methods, land use
regression) in place of concentrations measured at a single monitor or averaged over all
monitors in a regiofi? *® However,at the timethe work herein was publishegpnehad
directly compared centralite PMs with models accounting for human activity patterns
and the indoor transport of ambient P a large epidemiologic study. Ebelt etal.
estimated individualevel ambient PMls exposure in a panel study of 16 subjects using
individuaktlevel time-activity diaries (to estimate time spent indoors) and indoog M
concentrations estimated using a mass balance model. Associations between
cardiopulmonary outcomes (e.g., heart rate variability, forced expiration volume) and
ambient PMs exposure wre calculated with this exposure metric, as well as ambient
PM, sconcentrations measured at censige monitors. Contrary to the findings presented
in this study, the Ebelt et &f.analyses that used individdalel information to model
ambient PMsexposuresesulted in larger health effect estimates and smaller confidence
intervals compared to the analyses that used cesiteshmbient PMsconcentrations

Multiple factorscould have contributed to the differences between the findings

presentedhere and those of Ebelt et®4lOne possibility is that many of the factors that
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are accounted for in the refined exposure estimatesd not be expected to contribute to
exposure error (or bias) in the casessover desigrBecaise cases serve as thewn
controls in this desigrfactors that differ across subjects, but are largely constant within
subjectqe.g, proximity to local PMssources andifferencesn AERsor particle losses
that stem from differences in housing stoelt conditioning prevalenceor human
activity patterns)would be expected to have a minimal impact on effect estimates
Similarly, with the casecontrol period confined to one calendar month, any factors that
vary on timescales longer than a monfh.g, seasonal variabiyy in AER driven by
indooroutdoor temperature differences, natural ventilation, or air conditioningy use
would be expected to have little or no effect on the relative odds estin@aagol
periods are also matched to case periods by weekday, caleadtr, rand hor of the

day, likely reducing the influencef much of the withiasubject variability in human
activity patternsoccurring on these timgcales Although not directly evaluated in this
study, timeseries analyses, which are also temporal estdr of daily pollutant
concentrations and daily counts of health outcomes, may also be only minimally
impacted by these factors.

In addition, the refined exposure estimates used in Ebelt*éwalre based on
subjectlevel timeactivity diaries and homspecific penetration and persistence of
ambient PMs, while here, human activities and the indoor transport of ambient PM
were modeled using censtract level data and were then averaged tveiarea within a
10 km radius of each centrsite monitor. For example, human activity patterns
simulated with SHEDS for Tier 2a exposure estimates were estimated based on census

tract level demographic data. Similartppdeled AER distributions for elacensus tract
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were used in the calculation of Tier 2b APP and Tier 3 exposure surrogates, rather than
individuallevel AERSs. Further, species mass fractions were not available in every
monitoring area and were estimated as the mass fractions measurbd Bew
Brunswick monitoywhich was most highly correlated with tbéher monitors across the
state. These were used with local mass concentrafibesspatial resolution of data used
to calculate the refined exposure estimates is a limitation of thay.stincertairty
resulting from these limitations coulthve contributel to exposure error in theefined
exposure surrogates antius, the potential benefits of the refined exposure surrogates
may not have been fully realiz&iHowever, when exposures reeestimated at the zip
code level, rather than averaging over 10 km (Appeli®), no increase in ORSs,
reduction in 95% ClIs, nor improved model fits were observed. The potential for
uncertainty due to averaging and the associated exposure error andabidikely
reduced in the "AER Effect Modification” analyses because a single parameter was
focused on, requiring fewer assumptions and, thus, reduced possibility of compounding
of exposure prediction errons.is possible that simpler methods to accdontariability
in exposure to PWs of outdoor origin resulting mostly from variability in the indoor
transport of ambient P (e.g., including AER as an interaction term in the conditional
logistic regression model) may more accurately capture vatyahil effect than these
more complicated exposure models, which could be subject to greater uncertainty.

The differences in the results of the "Modeled Tiered Exposure” and "AER
Effect Modification” analyses may also be explained, in part, by differencetudy
design.In the tiered exposure analysis, the relative odds of transmural M| within different

ti me periods dur i ntigne weee essentrlly cgmparad.6Toerefore,r s o n
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nontime varying confounders such as subject characteristics (agkh tistory, etc.),
residential location (and any potential differences in the pollutant mixture due to different
pollution sources, source proximity), and housing characteristics (leakage) were
controlled by design. In the effect modification analysiach relative odds estimate
within each AER tertile also has this feature. However, when thesetéfR-specific

relative odds estimates were then contrasted, different subjects with their inherent
differences inthese characteristiag8ere comparedThus, these characteristics may now

act as confounders in this analydis a result, differences in these AEéttile-specific

relative odds estimates could be due, in part, to differences in AER, as well as differences
in subject characteristics (e.g. age;morbidity, proximity to sources, housing stock,
access to healthcare, smoking status, etc.) if those characteristics are covariant with AER.
For example,low sociceconomic statusSES has been identified as a predictor of
susceptibility to negative héh outcomes associated with PM expostréurther, low
income residents tend to live in homes with higher AERs and, therefore, are exposed to a
larger fraction of ambient PM (and smaller fraction of indoor emissions) than residents
with higher SES%* In fact, because SEB a predictor of AER, poverty status is
included in the residential AER model (Appendix>B)Thus, it is conceivable thahe

results showingeffect modification of the PM s-MI associationby AER could actually
reflect effect modification by SESr a combination of AER and SEBis also possible

that higher AERs, in addition to access to health care and other factors, help to explain
the associations between low SES and adverse health outcomes observed in previous
studies. Mtably, differences in age, gender, race/ethnicity, anthaxbidities by AER

tertile were not observed (Appendices B8). Further, if locatiorspecific factors other
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than AER were contributing tthesefindings, an increased relative odds of transmural
Ml in the monitoringsite communi in which the majority of subjects were assigned to
the highAER tertile (i.e., Elizabeth) and a smaller effect estimate in communities in
which the majority subjects were assigned to the A& tertile (i.e. New Brunswk)
would be expectednstead, larger relative odds of transmuralvixire observeth New
Brunswick compared to Elizabeth (Tal8e3), which suggests that the observed effect
modification is related to variability in AER.

The modification of MI risk by cmmunity-average AER is consistent with the
results ofconcurrently conductestudies that found that percent increases in gbart
mortality associated with given increases in outdoor ozone angd®kMcentrations were
larger for cities with higher annuaverage AERs compared to those with smaller
AERs***® Previous studies havalso shown that homeentilation conditions(e.g.,
infiltration through cracks in the building shell, air flow through open windows) and
activities that affect particle lossesdpbors (e.g., AC usejmpact ambient Pl
exposure§? ***Sarnat et at? concluded that ambient monitargre good surrogates for
exposurein well-ventilated homes, but were poor exposure surrogatémmes with
windows and doors closetihe resultpresented herare also consistent with studies that
have demonstrated a reduced risk of morbidity and mortality with increased prevalence of
central AC'*'® As noted abovef tends to be lower for homes with central AC in use
due to increased particle losses in AC filt€rS. Further, AERs tend to be lower for
homes with AC in use compared to those with open winddwsijch also contributes to
lower F values.

3.6 Conclusiors
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Use of refined exposure surrogates that account for human activity patterns and/or
the indoor transport of ambient BMin this casecrossover studgid not result in larger
health effect estimates, narrower confidence interaaletter model fits ampared to
the analyses that used censaé PM s concentrations to estimate RMexposure For
the level of exposurestimaterefinement considered here, these findings suuportto
the use ofcentralsite PM, s concentrations forepidemiologicalstudies that employ
similar casecrossover study designs and other similar temporal analytic mefhioetse
findings also illustrate that variability in factors that influence the fraction of ambient
PM,s in indoor & (e.g., AER) can bias health effects estimates in study designs for
which a spatietemporal comparison of exposure effects across subjects is conducted
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Table 3-1. Relative increase inodds of a transmural infarction associated with an
IQR increase in PM, 5 concentration, by exposure Tier

Tier IQR N AIC OR 95% ClI  p-value
Tier 1 10.3 4397.4 1.10 1.01,1.19 0.03
1561
Tier 2A
SHEDS 5.4 4397.2 1.10 1.01,1.20 0.03
Tier 1 10.3 4367.7 1.09 1.01,1.19 0.04
1552
Tier 2B
APP 5.4 4366.8 1.10 101,1.20 0.02
Tier 1 10.3 4396.4 1.10 1.01,1.19 0.03
1561
Tier 3
HYBRID 5.4 4396.1 1.11 1.02,1.20 0.01

* Subjects were excluded if there was a period of more than nine days between STN
PM, s species concentrationeasurements for the case period or all control periods
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Table 3-2. Relativeincrease inodds of a transmural infarction associated with each
IQR increase in PM, 5 concentration, byexposureTier. Z-score method.

Tier IQR N OR 95% CI p-value
Tier 1 1.22 1.11 1.00, 1.23 0.04
1561
Tier 2a
SHEDS 0.25 1.03 0.90, 1.18 0.65
Tier 1 1.22 1.12 1.02,1.23 0.02
Tier 2b 1552
APP 0.21 1.05 0.97,1.14 0.21
Tier 1 1.22 1.12 1.03, 1.22 0.01
1561
Tier 3
HYBRID 0.18 1.05 0.99,1.11 0.12

* Subjects were excluded if there was a period of more than nine days between STN
PM, s species concentrationeasurements for the case period or all control periods

For Tier 1, IQR refers to thénterquartile range of -gcores, while for the refined
exposure models (Tiers 2a, 2b, and 3), it refers to the interquartile range e$dbeez
difference (e.g., the difference between the Tier 1 and Tier Zxores).
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Table 3-3. Relative odds of transmual infarction associated with each interquartile
range increase in PMs concentration, stratified by monitoring-site, in order of
increasing median air exchange rate

Median Air IQR
Monitor location ~ Exchange Rate ()  (ug/m®) OR 95% CI p-value

Flemington 0.32 8.9 0.98 0.40,2.39 0.96
New Brunswick 0.41 8.4 1.15 0.95,1.39 0.15
Camden 0.50 10.3 1.04 0.86,1.25 0.68
Millville 0.50 9.5 0.78 047,130 0.34
Rahway 0.52 9.3 1.23 0.87,1.74 0.24
Elizabeth 0.60 11.7 111 0.97,1.27 0.13

Jerse\City 0.66 12.2 1.17 0.86,1.59 0.32
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Figure 3-1. Relative odds of transmural infarction associated with each interquartile
range increase inTier 1 (central-site) PM, sconcentration, stratified by air exchange
rate tertile. (a) low, middle, and high AER tertiles and (b) for low and middle/high AER
tertiles combined
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Chapter 4. Toward Refined Estimates of Abient PM, s Exposure: Evaluation of a
Physical Outdoor-to-Indoor Transport M odel

Material in this chapter has bepuablished previously as

Hodas, N.; Meng, Q. Y.; Lunden, M. M.; Turpin, B. Jgward Refined Estimates of
Ambient PM s Exposure: Evaluation of Bhysicé Outdoorto-Indoor Transport Model
Atmos Environ.2014 83, 229 236.

4.1. Abstract

Because people spend the majority of their time indoors, the variable efficiency with
which ambient PMls penetrates and persists indosrs. source oérror in epidemioloig

studies that usPM, s concentratios measured at centrsite monitorsas surrogates for
ambient PMs exposure To reduce this error, practical methods to model indoor
concentrations of ambient BMare neededloward this goal, we evaluated and refined

an outdootto-indoor transport modeusing measured indoor and outdoor Ridpecies
concentrations and air exchange rates from the Relationships of Indoor, Outdoor, and
Personal Air Study. Herein, we present model evaluation results, discuss what data are
most critical to prediction ofresidential exposures at the individsalbject and
populations levels, and make recommendations for the application of the model in
epidemiologic studies. This paper demonstrates that not accounting for certain human
activities (air conditioning and heag use, opening windows) leads to bias in predicted
residential PMs exposuresat the individualsubject level, but not the population level.
The analyses presented also provide quantitative evidence that shifts in-freertgdes
partitioning of ambienbrganics with outdoeto-indoor transport contribute significantly

to variability in indoor ambient organic carbon concentratimmgd suggest that methods



89

to account for these shifts will further improve the accuracy of outtieimdoor
transport models.

4.2 Introduction

While people spend the majority of &nindoors’ fine particulate matter (Pi)
corcentrations measured aiutdoor centralsite monitors are commonly used as
surrogates foexposure to Pls of outdoor (ambient) origim epidemiological studies.

The use of centradite PMs concentrationsas ambient Pls exposure surrogates
inherently assumes thatdoor and outdooambientPM,s concentrationsare highly
correlated. However, the fraction of ambient RMhat penetrateand persists indoors

(F) varieswith multiple factors including meteorological conditionke physical and
chemical properties of ambient PM, housingcharacteristics and home ventilation
conditions®® Exposure error associated with not accounting for variabilityF iiis
expected to contributed an underestimation of health effects associated with ambient
PM, 5 exposures’

In order to reduce this exposure error, practicethodsto predict indoor
concentrations of ambient PMare neededloward this goal, we evaluated and refined a
physical mas$®alance model using measurements from the Relationships of Indoor,
Outdoor, and Personal Air (RIOPA) stutly> An earlier version of the model was
applied in two epidemiologic studies: one that explored associations between ambient
PM; 5 exposures and myocardial infarction (MI) and the other, associations with birth
outcomes>'® The work herein provides a partial validation of the exposure estimates
usal in those studies, while also providing new insights that are used to refine the model.
This paper highlights the measurements and data most critically needed to facilitate the

prediction of residential ambient BMexposures in epidemiological studies.
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4.3 Methods
4.3.1 Modeled Indoor PM, s Concentrations

Indoor concentrations of ambient particulate sulfate, elemental carbon (EC), and
organic carbon (OC) were calculated for RIOPA homes (Appendix C1) with & mass
balance model. The moddéscribes theancenration of chemically nomeactivePM, 5
specieg in indoor air Cinj) as a function of its outdoor concentrati@, j), residential
air exchange ratéAER), particle penetration efficiendy;), andthe depositional loss rate

of specieg in indoor air(Kgep, )*:

dCin,j dt - Cou“_ (PJ 3 AEQ - Cin,j (kdepj + AEQ (1)

Forty-eight hour average outdoor sulfate, EC, and OC concentrations and AERs
measured at each RIOPA home (Appendix C2) were used as model inputs (nitrate was
not measuredduring RIOPA). Details regarding RIOPA study measurements are
provided in Appendix C. Briefly, AERs were measured with a perfluorcarbon tracer
method'® PM, s filter samples were analyzed for EC and OC (ugl/mith a Sunset
carbon analyzer and for sulfbby energydispersive XRF spectrometry and expressed as
sulfate’>'?>OC was corrected for the adsorption artifact by subtracting the organic mass
on the backup filtet? Due to the long averaging time of RIOPA measurements, indoor
concentrations were a@allated with the timaveraged solution to equation 1:
6r 6 5 60YDTOOYTQ (2).

A review of published species size distributions from diverse geographic locations

and seasons (Appendix C, Appendix C3) was conducted to identify "typical" size

distributions (i.e., number of modes, mass median diameter of each mode, and the
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fraction of mass in each mode) for sulfate, EC, and OC. Valuég.pivere then selected

for the mass median diameter of each size mode of eagh $fidcies size distribution
(Table 41) using thefourth-order polynomial fit to measuregarticlesizeresdved
depositon rates from Nazaroff. While this method provides a means to estimate
reasonable values &fi, the reader should be aware that factors in addition to particle
size can contribute to variability kiep (€.g. particle density, room airflow condition$)

and there is heterogeneity in measured-sselved particle deposition rates across
studies® A constant? of 0.8, the median value reported by Chen and Zf@articles

in the size range considered here, was used for all specieskdsjkenany factors
contribute to variability irP. For example, laboratory studies have demonstrated that the
geometry and roughness of cracks in a building shell can contribute to variability in
P;*>"'8however, these cracks have not been well characterizeddigidinal homes and

are likely to be highly variab®As a result, this variability is not accounted for in our
calculations. In subsequent sections, we explore other contributors to variat#lisyiamn

as particle size and home ventilation conditions.

4.3.2. Model Evaluation
We compared modeled indoor concentrationsamibientsulfate, EC, and OC
with the measured indoor concentrations of these fAdecies (Appendix C, Appendix
C2) for each (occupied) RIOPA home. In epidemiologic analyses, the éxtetich a
model is successful in predicting exposures at the indivisluigect level is described by
the covariance between actual and estimated exposures. As a result, we examined
correlations between measured and modeled indoor concentrations. Rastedwere

also conducted to evaluate whether pairs of measured and modeled indompebles
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concentrations were significantly different at the 95% confidence level. To assess model
performance at the population level, -slguare tests were used toasxne whether
cumulative distributions of measured and modeled indoor concentrations had the same
underlying distribution at a 95% confidence leval.analyses were conducted with SAS
software (version 9.3; SAS Institute Inc., Cary, NC).

Using the sam methods, we also evaluated whether measesdentialoutdoor
PM, sconcentrations were good predictors of indoor ambient felshcentrations. Much
of the recent work aimed at refining ambient RMxposure surrogates hasised on
accounting for satial variability in outdoor PM,s concentrations (e.g. land use
regression interpolation methods®?° Ambient PM s corcentrations measureatitside
of RIOPA home providespatiallyresolvedmeasures obutdoor PM sconcentrationsA
comparison between measured resideraigidoor PM; s concentrations and modeled
indoor ambient PMsconcentrations evaluates whetlegposure metrics that account for
outdoorto-indoor transporbffer improvement over exposure metrics that account only
for spatialvariability in outdoor concentrations.

4.3.3. Attributing model -measurement differencesHuman activities

To focus our efforts to refine the outdetorindoor transport model, we explored
the contributions of several factorsdiferencesbetween modeled and measured indoor
PM 5 species concentrations. First, we evaluated the extent to which-medslrement
differences could be attributed to the fact that the model does not account for the effects
of human activities likely to influencE. Humanactivity variables that were likely to
influence the efficiency with which ambient B¥penetrated and/or persisted in RIOPA

homes were selected from questionnaires administered to RIOPA participants to
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characterize homeccupant activities durin sample collection (Appendix €} The
activities were: (1) time with windows open, (2) time with central air conditioning (AC)
in use, and (3) time with central heating in use. Differences between modeled and
measured indoor PM concentrations wereegressed on these activity variables using
multiple linear regressioMLR) with stepwise selectiorl(= 0.15 for variable entrance
and removal threshold; SAS versior8)9.Variance inflation factors indicated that the
human activities were not significéy correlated with each other. Outliers were detected
based on the studentds t and a valuelt was
should be noted that outliers are likely indicators of strong indoor so@céiger homes
were excludedrom all following analyseso avoid influence oétrongindoor sources of
PM, s on modelevaluation resultsas the model predicts only the contributioranfbient
PM; sto indoor concentrations and not the contribution of indoor sources

We refined the model to account for the huraativity variables selected as
significant predictors of modeheasurement differences basedassumptions abotie
ways in whicheach activity variablevould influenceF. For homes wittopen windows,
there s little to no removal of the particles entering the home and, thus, we assumed a
penetration efficiencyRuindow) Of 1.0(Table 41).” For homes with centralC or heating
in use, a filter penetration efficiendgrm (Psier) Was multiplied bythe right side of
equation (2)to account for losses in the filters of central heating and cooling systems
Values of Pser Were selected fronparticlesizeresolved filtration efficiencies for
residential furnace filter(assuming a pressure drop of 125 Pa adiwsdilter to account
for particle loading}* usingthe same assumptions about species size distribaiowsre
used to seledtyep values(Table 41). If more than one activitpccurred withina home,

we accounted only for thdominantactivity (i.e. the activitycarried out for the longer
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period of tim@. The performance of this refined version of the model was evaluated
using the same methods as described above.
4.34. Attributing model -measurement differencesindoor sources of OC

Because sulfatand EC are nomolatile and have minimal indoor sources, indoor
concentrations of these species are likely driven by outieiadoor transporf.
However, organics comprised the majority of RMemitted or formed inside RIOPA
homes (on average, 4176%)%? Because the aim of the current modeling is to predict
indoor concentrations aimbientPM, s, there is a need for an estimate of the measured
indoor OC that can be attributed to outdoor sour@és.estimated this by regressing
measured indoor OC condeations on measured outdoor OC concentrations using robust
regression$AS version 9.8 Robust regression dowmeights outliers and, thus, reduces
the influence of strong indoor sources on the regression eq@atiorhe intercept of the
resulting regession equation provides an average ingmarce strength and the slope is
a populatioraverage estimate df. We multiplied this populaticaverageF by each
measured outdoor OC concentration to calculatalisteibutionof measured indoor OC
of ambient origirt>?* When this approach was used for sulfate, which is dominated by
outdoor sourcesF estimated by robust regression was in good agreement Rwith
calculated as the ratio of measured indoor to measured outdoates{Appendix C,
Appendix C4).
4.35. Attributing model -measurement differences Uncertainty in OC size
distributions

Ambient OC size distributions are more variable across sampling locations and

seasons than sulfate and EC. We conducted a sensitivitysiasnt explore whether
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uncertainty in ambient outdoor OC size distributions (and, tkidg, was a source of
error in modeled indoor ambient OC. Indoor ambient OC concentrations were calculated
assuming two alternative size distributioii$) a bimodal distribution with an ultrafine
peak at O0.08 em and meakingaod a @ wihQ@aamdi80% of i o n
OC mass comprising each mode, respectivily, € 0.07 i)*>?° and (2) a timodal
distributionwith an ultrafine peakcomprising 20% of @ mass)and a accumulation
mode comprised of a condensation mode (0.2 @nd) dropletmode (0.7 um) of equal
mass proportions. Thkye, Values for alternative size distribution (2) are the same as
those shown in Table-#, but the mass fractions comprigithe condensation and droplet
modes are different from those explored in the main analysis. Indoor OC concentrations
calculated assuming each of the three size distributions were compared to evaluate the
sensitivity of the model to uncertainty kyep associated withvariability in OC size
distributions.
4.36. Attributing model -measurement differences: Phase changes of ambient
organics

Predicting the outdoawo-indoor transport of particulate OC is further
complicated by the fact that organics canengd phase changes due to indootdoor
differences in temperature, surface area, and the availability of particulate matter for
sorption?>?*?° Because ambient OC is comprised of thousands of compounds with
largely unknown identitie¥ it is not posible to calculate the change in gaarticle
partitioning with outdoocto-indoor transport from first principles. In order to explore the
influence of phase changes Bna surrogate is needed. We used Bring polycyclic

aromatic hydrocarbons (PAHSs), iweh were measured in the gas and particle phases
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inside and outside of 76 RIOPA honfégor this purpose. The PAHs included were
benzo[b+k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylendeno[l,2,3
c,d]pyrenedibenzola,e¢a,hlanthracendyenzo|g,h,i]perylene, and coroneiitiese PAHs
are predominantly of outdoor origin ameere mainly in the particle phase undtre
ambient conditionsneasured outside RIOPBomes*! making them a useful surrogate
for ambient particulate OC

Using MLR, weexplored the extent to which variability in measured indoor OC
concentrations could be explained by (1) physical losses associated with d@atdoor
indoor transport (i.e., those already accounted for in the model) and (2) shifts in-the gas
particle partitiming of ambient organics with indoor transport (using changes in
partitioning of 57 ring PAHS). We regressed measured indoor OC on modeled indoor
OC and on the indoavutdoor difference in the pooled gparticle partitioning
coefficient K,) of the 5- 7r i ng P A B.%5 fof Variable entrance and removal
threshold; SAS version 9.3, was calculated as the ratio of the pooled concentration of
PAHSs in the particle phase to their concentration in the gas phase, normalized by the total
PM, 5 concentratiori? No oollinearity between variables wdsund andoutliers were
removedusing the same criteria as described above.
4.4. Results and Discussion
4.4.1. Initial Model

Agreement between modeled indoor ambient, Pdbncentrations and measured
indoor concentrations varied by species. While modeled indoor ambient EC
concentrations were well correlated with measured indoor BG=(R.70), the model

generally underestimated indoor EC (Figuréad 42a). In fact, pairs of measured and



97

modeled indor EC were significantly different and modeled and measured values did not
have the same underlying distribution at a 95% confidence level, suggesting that model
refinements are needed to predict residential EC exposures.

For sulfate, the initial model permed reasonably well at the population level,
but the model undguredicted indoor sulfate for many high concentration homes (Figure
4-2b). Qumulative distributions of measured and modeled indoor sulFageire 41b)
had thesame underlying distribitn (P = 0.87). While modeled and measured values
were well correlatedR? = 0.8 Figure 42b), modeled indoor sulfateoncentrations
were significantly lower than measured concentrations at a 95% confidence level
according to a paired-test Thus, the iitial model could be applied to estimate
residential sulfate exposures at the population level, but refinements are needed to
improve exposure estimates at the individsiabject level, particularly for higand
exposures.

Measured indoor OC concentrat®owere not well captured by the initial model
(Figure 41c, 42c), which accounts for physical losses of ambient OC during outdoor
indoor transport into closed homes without air conditioning, but does not account for
phase changes or indoor sources.dbled indoor particulate OC of ambient origin
explained only 4% of the variability in total particulate OC measured indodrs QR4).
Further, measured and modeled indoor OC concentrations were significantly different at
a 95% confidence level at bothet individual (paired) and population (distribution)
levels. Contributors to this poor agreement are explored below.

4.4.2. Model refinement: accounting for human activities
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Human activities that were not accounted for in the initial model helped taiexpl
differences between modeled and measured indoor sulfate (T-&pjebdt not EC and
OC. For sulfate, all activity variables included in the MLR analysis were selected as
significant predictors of modehe asur e ment di fferences (U
explained 31% of the variance in these differences (Taldg ¥e refined the model to
account for these activities based on our assumptions regarding the ways in which each
activity would influence~ (Table 41).

Improved agreement between measured amableled indoor sulfateat the
individualsubject level was substantial (Figure3d). Pairs of measured and modeled
indoor sulfate concentrations were no longer significantly different (P = 0.60). Indoor
sulfate concentrations modeled with the refined eh@xkplained 90% of the variance in
measured indoor sulfate, compared to 86% for the initial model. While use of the refined
model also improved agreement between measured and modeled indoor sulfate
distributions(P = 0.996; Figure -&c), the initial modedistribution was not significantly
different from the measured distribution to begin withus, while the initial model is
adequate for predicting sulfate distributions, we recommend the use of the refined model
when estimating residential sulfate expesuat the individuasubject level. Notably,
most epidemiologic studies do not focussuifateexposures, but rather on exposure to
total ambient PMs. When using a madsalance model like the one explored here,
exposure to total ambient BM would be calculated by summing predicted indoor
concentrations of the individual species. The fact that a refined version of the model is

needed to predict residential sulfate exposures has implications for the design of

epidemiologic studies focused on both RMpecies and total ambient R¥exposures,
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as it requires the collection of human activity data (e.g., pertaining to windows, air
conditioning, and heating) using questionnaires or activity diaries or a method to estimate
human activity patterns (e.g. saimg from a distribution of published tiraectivity
patternd®) over the length of the study.

While accounting for human activities in the model improved model
measurement agreement for sulfate, the examined human activities had a minimal impact
on F for ambient EC. The small impact of human activities can likely be explained by the
EC size distribution. Values d¥., for 80 nm particles are ~9G%and, thus, use of
central AC or heating is expected to result in only small losses of EC. This also suggests
that for the ultrafinenode, overall penetration efficiencies may be greater than the 0.8
used in the initial calculations. We-calculated indooambient EC assumingRvalue
of 0.9. With this refinement, the model captured indoor EC concentrations at both the
population and individuasubject levels (Figure-3b, 43d). Measured and modeled EC
had the same underlying distribution (P = 0.65¢ytvere well correlated (‘R= 0.70),
and pairs of measured and modeled indoor EC were not significantly different at a 95%
confidence level (P = 0.16)hese results suggeasiat human activities might not need to
be accounted for when calculating resitlnEC exposures, but th& values can vary
across PMsspecies due to differences in size distributions.

Like EC, human activities were not selected as significant predictors of
differences between measured and modeled indoor OC. Based on the asmemed
distribution for OC, we would expect that the influence of human activitids would
be minimal for OC in the ultrafine mode, but similar to that for sulfate for the

accumulation mode fraction. However, the effect of human activities was likely
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overshadowed by the substantial contribution of indoor emis&i@dasneasured indoor
OC.
4.4.3. Accounting for indoor sources of OC

The robustregression estimated value for OC was 0.53, suggesting that, on
average, 53% of the ambient OC penetrated and persisted indoors (Appendix C5). This
value is higher than thE value for OC reported in Polidori et &, which estimated
contributions of outdoegenerated OC tootal OC measured in RIOPA homes using a
Random Component Superposition (RCS) statistical moBek (0.32). Figure 4-4
compares cumulative distributions of ambient indoor OC estimated with the mass
balance model with our robustgression estimate &f (a cwmparison with the RGS
estimated- value is available in Appendix C6). Agreement between the distributions of
indoor ambient OC estimated with the model and with robust regredsigurd 4-4;
mean + standard deviation2s54+ 1.61 ug-/m® and 1.91 #1.26 pdC/m®, respectively)
is improved compared to agreement between modeled indoor ambient OC and measured
(total) indoor OC §.08 + 3.77 pg/m°). However, the two distributions are still
significantly different (P = 0.0004)Accounting for human activés and the higher
penetration efficiency of ultrafinmmode particlesK = 0.9) in calculations of indoor
ambient OC did not reduce this bias (mean + standard deviation 2.74 fgCan>;
Appendix C6).
4.4.4. Variability and uncertainty in OC size distri butions

The model showed little sensitivity to the uncertaintykig, associated with
variability in OC size distributions€Estimated indoor OC concentrations were highly

correlated across the sidéstributions scenarios (R 0.99) and distributions of modeled
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indoor OC were in good agreement (mean *+ standard deviation = 2.54 + 1.61, 2.62 +
1.66, and 2.58 + 1.64 pgClnfor the initial and two alternative sizlstribution
scenarios, respectively). The OC size distributionssicemed here are based on
measurements conducted in urban regions in which OC is comprised of a mix of locally
and regionallygenerated PM (Appendix C). It is possible that these size distributions are
not representative of the OC measured outside of sirtitee RIOPA study homes. For
example, for homes in close proximity to primary RJdources (as is the case for many
RIOPA homes), the majority of OC might be in the ultrafine mode, which would result in
smaller depositional losses (and possibly gre&ewralues) than those calculated
assuming that accumulationode OC comprised a substantial fraction of the OC. It
should be noted, however, that this would result in increased calculated indoor ambient
OC concentrations and the model already has an upwasdFigure 44).
4 4.5. Shifts in the gasparticle partitioning of ambient OC

We did find evidence that shifts in the gaerticle partitioning of ambient OC
with outdoorto-indoor transport contributed to variability in particulate OC measured
insideRIOPA homes. The modeistimated indoor OC, which was included in the MLR
analysis to represent physical particle losses associated with ctadodoor transport,
was the most significant predictor of variability in measured indoor OC concentrations (P
= 0.0003), explaining 20% of this variability {R 0.20). The indoeputdoor difference
in K, for the 5- 7 ring PAHS, which we used as a surrogate for changes in tgagade
partitioning of ambient OC, was also selected as significant predictor of variability in
indoor OC (P = 0.05), explaining 5% of this variability’ (R0.05). While PAHsaccount

for only a small fraction of total OC, this new finding for @Cconsistent with previous
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work which demonstrated that shifts in the-gasticle partitioning of outdoegenerated
PAHs with outdootto-indoor transport contributes substantially t@riability in
residential PAH exposusé®**Much of the remaining variability can likely be attributed
to indoor OC sources, which contributed te 39% of the OC in these RIOPA homes
(calculated by subtracting the robuegression estimate of indoambient OC from total
measured indoor OC).

While physical loss was the dominant contributor to variability in indoor ambient
OC, our results suggest that refining the model to account for phase changes of OC with
outdoorto-indoor transport would improvihe predictive abilities of the model. This is
an important area of future work that requires further characterization of the
thermodynamic properties of ambient OC and a better understanding of the chemistry
that occurs in indoor air, including interawis between indoerand outdociemitted
organics’*
4.4.6. Further recommendations for epidemiologic studies

Exposure research has focused on accounting for spatial variability in outdoor air
pollution concentrations (e.g., use of residential outdoamcentrations rather than
centralsite concentrations through land use regression, interpolation between sites,
etc)*?° One objective of this study was to explore whether a model that brings the
residential outdoor air pollution indoors, offeeslditional improvement The mass
balance modalid offer improvement over the use of measured outdoor concentrations as
residential ambient Ppg exposure surrogatess noted above, EC and sulfate have
minimal indoor sourcésand, thus, the vast majoritgf the sulfate and EC measured
inside RIOPA homes can be attributed to Rl outdoor origin. As expected,gasured

outdoor sulfate and ECconcentrationswere wellcorrelated with measured indoor
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concentrations (R= 0.77 and 0.69, respectively), but i@ations between modeled and
measured indoor concentrations are even stronder (R86 and 0.90 for the initial and
refined sulfate models and®R 0.70 for EC for both models). Measured outdoor and
indoor OC were weakly correlated {R 0.03), undoubtedly because of the substantial
contributions of indoor sources to indoor OC concentrations. The-lmadessce model
offered only a small improvement over measured outdoor OC concentratidérs (R
0.004). However, when the influence of ind@smurces was reduced using the robust
regression estimate d¥, indoor OC concentrations calculated with the mzaance

model performed better than measured outdoor OC concentrations (mean * standard
deviation = 1.91 #.26 2.54+ 1.61, and 3.61 #2.38 ugC/m® for the robustegression
estimate of indoor ambient OC, modeled indoor ambient OC, and measured outdoor OC,
respectively). Notably, in the two epidemiologic studies discussed above (in which a
version of this masbalance model was used to estientite fraction otentralsite PM, 5

found in studysubject homes) the spatial resolution of residential ambieagBEXposure
estimates was identified as a possible source of Erfotwo-step approach involving a
method to account for locakale variability in outdoor Pp4 followed by the use of an
outdoorto-indoor transport model might offer the best results wiredicting residential

PM; sexposures.

It should also be notetthat AERs measured at each individual home were used as
model inputs in our calculations; however, these data are not generally available for an
epidemiologic study population. The Lawrence Berkeley National Laboratory Infiltration
model, which accounts fair exchange due to air flow through cracks in a resid@nce

has recently been refined to include natural ventilation through open witifSarsd can
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be used to calculate AER distributions for a study population using readiiiable
housing data (bm the United States Census and the American Housing Survey) and
routinely measured meteorological parameters. A refined version of the LBNL
Infiltration model was used for this purpose in the two epidemiologic studies mentioned
14,15

above.

4 5. Conclusiors

The evaluation and refinemenf an outdooito-indoor transportmodel using
measured indoor and outdoor Pispecies concentrations and AERs from the RIOPA
study illustrateghat the modeling toolgresented here offer improvement over the use of
outdoor PM sconcentrations to estimate residential ambient BMposureThe level of
model refinement and data required to facilitate the use of this model in large
epidemiologic studies varies across RMpecies. Accounting for AC and heating use
and open windows led to reduced bias in predi¢tedluesfor sulfateat the individual
subject level, but this refinement was not needed for EC nor at the population level for
sulfate. This refinement did not resolve the large mauedhsurement differensdor OC.

We did, however, find quantitative evidence that shifts in thepgeticle partitioning of
ambient organics with outdoto-indoor transport contribute significantly to variability

in F. Our results suggest that the collection of human actilata or a method to predict
these human activity patterns can lead to substantial improvements in indaudbjedt

level residential ambient PMexposure estimates. This work also highlights the need for
a method to account for shifts in the gestide partitioning of ambient OC in outdeor
to-indoor transport models. While further refinements are recommended, this mass
balance model is a practical methibat can be appliedhilarge epidemiologic studi¢s

predict residential ambient PMs exposures. The input parameters (kgep Priter)
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provided here are based on a comprehensive assessment ,gf spbties size
distributions and their evaluation using RIOPA data provides confidence in this version
of the massalance model as a robusbt for reducing exposure misclassification in

epidemiologic studies.
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EC Sulfate OoC
Model Mode2 Model Mode2 Mode3
Mass Fraction in Mode 1.0 0.2 0.8 0.4 0.12 0.48
Particle Diameter (um’  0.08 0.2 0.7 0.08 0.2 0.7
Kaep(h™) 0.05 0.05 0.13 0.05 0.05 0.13
P 0.80/0.96  0.80 0.80 0.80/0.96 0.80 0.80
Priter- 0.90 0.90 0.65 0.90 0.90 0.65
Puindow: 1.0 1.0 1.0 1.0 1.0 1.0

®Refined model: activitieselected as significant predictors of variability in meaelasurement
differences were included in the refined model.

Refined model: greater penetration efficiency of ultrafimede particles was accounted for in
the refined model

Table 41. Ambient PM s species particle diameters and associated particle deposition loss rate
coefficients kyep), penetration efficienciesP], central heating and air conditioning filter
penetration efficiencies Pfier), and penetration efficiencies for homes with open
windows Puindow) for elemental carbon (EC), sulfate, and organic carbon (OC).
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Sulfate (n = 203

Selection Activity Partial R Model R P
Step
1 Central Air Conditioning 0.20 0.20 <0.0001
2 Open Windows 0.09 0.29 < 0.0001
3 Central Heating 0.02 0.31 0.027

Table 4-2. Multiple linear regressiofMLR) analysis investigating the contribution of
human activities tovariability in modelmeasurement differences for sulfate. Partial R
describes the variance in modaeeasurement differences explained by each human
activity variable individually. Model Rdescribes the total variance in these differences
described by the full MLR model at each selection step. Indoor sulfate of outdgiar or

is modeled. Measurements are of total indoor sulfate. Previous work suggests indoor
sulfate is predominately of outdoor origin (Sarnat et al., 2006).
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Figure 4-1. Cumulative distributions: measured indepecies (blue) and indoor species of ambient origin modeled with the initial
model (red): (a) elemental carbon (EC), (b) sulfate, and (c) organic carbon (OC).
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value calculated usin@bust regression (black).
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Chapter 5. Shifts in the gagparticle partitioning of ambient organics with transport

into the indoor environment

Material in this chapter hdseenpublishedpreviouslyas:

Hodas, N.; Turpin, B. JShifts in the gagarticle partitioning of ambient organics with
transport into the indoor environmeAgrosol Sci. Techno2014 48, 271- 281

5.1 Abstract

Predictingindoor exposure to ambient organic aero§@A) is complicated bghifts in

the gagparticle partitioning ofambient organics with outdoto-indoor transportThis
analysis aims to quantify the effect of changes in temperature and OA loading onthe gas
particle partitioning of ambient organics transported indoors and explores whether
accounting for shifts in pationing closes the gap between measured indoor ambient OA
concentrations and indoor concentrations calculated in a previous analysis using a model
that accounts for only the physical processes that influence otttd@owoor transport.
Changes in the ggarticle partitioning of ambient organics with outdeoiindoor
transport were calculated for 167 homesing measured temperatures and OA
concentrations angublishedOA volatility distributions Initially, it was assumed that
ambient OA could be repsented with a sgie volatility distribution. he analysisvas

then repeatetteating ambient OA as the sum of distinct components derived from factor
analysis of aerosol mass spectra (e.g. hydrocdrke®©A, oxygenated OA), each with a
distinct volatilty distribution. The sensitivity ofthesecalculations to uncertainty in the
thermodynamic properties of ambient @as also evaluateoly varying the enthalpy of
vaporization. RBrtitioning shifts were sensitive t@nthalpyof-vaporizationassumptions

and esulted in changes in indoor ambient OA concentrations of 23%. The
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calculations indicate that phase changes are important determinants of residential
exposure to ambient OA and are of sufficient magnitude to close the gap between
measured and modeletioor concentrations of ambient OA.
5.2.Introduction

Ambient PM s exposure mitigation strategies, risk assessment and health studies
all benefit from accurate exposure prediction. Becaasplp spend about 70% of time in
their homeg the residence is an important setting for exposure te sRN ambient
(outdoor) origin.The efficiency with which ambient PM penetratesnto and persists in
indoor air and thus the fraction of ambient RPMhat people are exposed to in their
homes,varies across Ppt species due to differences in particle size distributions and
thermodynamic properti€s For chemically nosreactive speciege.g.sulfate, elemental
carbor), outdoorto-indoor transport is governed by the physical losses associdtted w
penetration across the building envelope and deposition intidols has been
demonstrated for nitrate and polycyclic aromatic hydrocarbons (PAHs), however, that
semtvolatile species can also undergo pheBanges with outdodp-indoor transport
due to changes in temperature, surface area, and the availabpigytmulate matter for
sorption'®*? Organics are a major component of outdoor and indeaerated Phk.™
While previous work provides evidence that organics also undergo phase chathges
outdar-to-indoor transport*? to my knowledge this process has not been incorporated
into models used to predict ambient P)dxposure.

The thermodynamic principles governing gmsticle partitioning of ambient
organics are wekstablished” Increasing temperature increases organic vapor pressures,

shifting organic mass from the particle phase to the gas phase. On the other hand, organic
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aerosol (OA) provides a medium for sorption of sewiatile organics. As a result,
increasing concentrats of OA (for example with the introduction of indoor sources)
shift organic mass from the gas to the particle phase. While the thermodynamics are
understood, modeling these processes for atmospheric organics is hindered by their
complexity. Atmospheriorganic mattetis comprised of thousands of composnalith
largely unknown identities and broad range of thermodynamic propertfeS Thus,
explicitty modeling the gaparticle partitioning ofall individual organic compounds
comprising ambient OAis nad practical The prtitioning behavior of atmospheric
organicsis often parameterizeavith a volatility basis et (VBS), which treats organics as
a distribution of compounds binned by their volatilitté#lore specifically, the VBS is a
distribution of s&uration vapor pressures expressed in concentration @njtsvith logio
spacing that span the range of atmospherigalgvant organic saturation
concantrations’’ A volatility distribution withC" on the xaxis and total (gas + particle)
organic mass (OM) on theaxis can be used to describe the-gadicle partitioning of
ambient organics as a function of temperature and organic aerosol [bading

In this chapter the first studyto utilize this volatility distribution to modeshifts
in the gasparticle partitioning of ambient organicswith transport into the indoor
environment is presented Changes in temperature, and that indoor sources add
considerable OA for sorptive partitioningare considred Recently, volatility
distributions were generated for ambient OA and OA components measured in regions
dominated by anthropogenic BMsources® These volatility distributionsvere utilized

to explore the thermodynamic behavior of ambient OA wittdoorto-indoor transport
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for multiple homes located in three urban regions of the United States: Elizabeth, NJ, Los
Angeles County, CA, and Houston, TX.

Notably, Chapter 4demonstrated that shifts in gparticle partitioning were
significant contribubrs to variability in measured indoor OA for these homes and that not
accounting for these shifts significantly contributed to error in predicted indoor
concentration®f ambient OA’ In that study, indoor concentrations of ambient OA were
calculated with a single compartment mass balance model that accounted for the physical
processes that govern outddo+indoor transport (i.e. the efficiency with which particles
penetrate across thHauilding envelope, depositional losses indoors, and losses in the
fillters of HVAC systems), but not shifts in gparticle partitioning. A comparison
between these modeled indoor concentrations of ambient OA and a statistical estimate of
the measuredndoor OA that could be attributed to outdoor sources demonstrated a lack
of closure. A noted in Chapter 4naestimate of the measured ambient OA indoors was
needed because the indoor concentrations measured in these occupied homes include OA
of both outdoorand indoor origirt. This chaptetusesvolatility distributionsto illustrate
and quantify the effect of changes in temperature and OA loading on tipargate
partitioning of ambient organics found indoors and explores whether these changes in OA
concentrations are of adequate magnitude to achieve mmadakurement closure.

5.3. Methods
5.3.1.0verview

As is described in detail below, the change in thepgeacle partitioning of
ambient organics with outdoto-indoor transport was calculated for homes sampled

during the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) Study. Changes
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in paritioning due to indoooutdoor temperature differences were considered, as was the
fact that indoor sources emit OA to which ambient organics canBoelextent to which
positive (net sorption) and negative (net volatilization) shifts were driven bygekan

OA loading and changes in temperatwas examinedrinally, the magnitude of shifts in
partitioningwere comparewith the size of the measuremenbdel gap discussed above.
This work was accomplishedsimg measured temperatures and OA concentratioom
RIOPA'"? andpublishedvolatility distributions for ambient OA® It was assumed that
volatility distributions generated for ambient OA measured during the MILAGRO
campaignin Mexico City are representative of the volatility distributions of #mbient

OA at each of the three RIOPA sitd$is assumption is supported by the fact that mass
thermograms (measurements of the fraction of mass remaining in the particle phase as a
function of temperature) for the ambient OA in Riverside, CA are sirtolahose for
Mexico City, suggesting similarities in the thermodynamic properties of ambient OA for
regions dominated by anthropogenic OA souf&éSinitially, the volatility of ambient

OA was represented with a single volatility distribution usingathalpy of vaporization
(pHap of 100 kd/mol, a value considered reasonable when ambient OA is treated as a
mixture of compounds with a range of volatilities, as is the case for the'V/8S.
However, a preferred approach would be one in which diffesencéhe sources and
formation mechanisms (and thus differences in thermodynamic properties) of ambient
OA with season and geographic region are accounted for. Thus, this amvedgsis
repeatedreating ambient OA as the sum of several distinct components, each with its
own distinct volatility distribution, derived from factor analysis of aerosol mass spectra

(assuming anpH,, of 100 kJ/mol for all components). In this alternative analysis,
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volatility distributions in different cities and seasons were represented by an average of
the of the OA component volatility distributions weighted by the mass fractions of the
OA components in each of those seasons and locatidms. sensitivity ofthese
cdculations to uncertainty in the thermodynamic properties of ambientw@# also
evaluatedy repeating these analyses assumingpéfy, of 50 kd/mol.
5.3.2.RIOPA Study Measurements

RIOPA study measurements are described in detail by Weiset®rad Turpin
et al?® Measurements included indoor and outdoor particulate organic carbon (OC)
samples collected for 173 homes. Briefly, OC concentrations were measured by-thermal
optical transmittance with a Sunset Carbon Analyzer using the NIOSH temperature
protocol and were corrected for the adsorption of-gesse seravolatile organic
compounds on the quartz fiber filters used for collection. OC concentrations ()gC/m
were converted to OA concentrations (udy@ssuming an OA:OC ratio of 1.A.total of
167 homes had all data required for the calculations conducted eh#pter(indoor and
outdoor temperature and OC concentrations). Summary statistics for the RIOPA data
used in our alculations are shown in Tablel5
5.3.3.Volatility Distr ibutions

The calculation of the volatility distributions for ambient OA is described in detail
elsewheré?® Briefly, during the MILAGRO campaign in Mexico City, aerosol was pulled
through a thermodenuder that heated the aerosol stepwise between amipendtiee
and 236C. Organic mass fragments remaining in the particle phase at each temperature
were measured in an Aerdddass Spectrometer (FBMS).*! These measurements and

a detailed model of aerosol evaporation in the ANDS system were used to generate
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volatility distributions for ambient OA at 26 and the campaigaverage OA loading (17
ng/m°).*® The fitting approach involved fixing two sets oéé parameters: (1) the range
of C" bins that described the volatility distributions of the measured aerosol and (2) the
total OM (gasphase + partickphase) in each of thos® bins Ciwr). The authors used
an iterative approach to determine the ran§ieCo bins that maximized agreement
between modeled aerosol evaporation and theAM3 measurement<i: in each of
the bins was calculated assuming an exponential relationship beGveen C; ,; and,
again adjusting this relationship iteratively until modekasurement agreement was
maximized. Volatility distributionsvere calculatedfor a range ofp Hap assumptions, as
well as for OA componentsderived from factor analysis of aerosol mass spectra:
hydrocabonlike OA (HOA), biomass burning OA (BBOA), oxygenated OA (OOA),
semivolatile oxygenated OA (S¥DOA), and lowvolatility oxygenated OA (LV
OOA).®® Factor analysis of AMS spectra categorizes OA based on the temporal
variability of measured compound maagmentsAs a result, any given OA component
is comprised of compounds with similar sources, formation mechanisms, and
physiochemicaf??’ Thus, while the contribution of any given OA component will vary
tempoelly and spatially?* the physiochemical pperties of this OAomponent are likely
to be similar across seasons and geographic regions.
5.3.4.Shifts in GasParticle Partitioning with Outdoor -to-Indoor Transport

In the initial analysis in which ambient OA volatility was represented with a
singledistribution, volatility distributions were first calculatéal the ambient conditions
(i.e. temperature and OA loading) measured outside of each RIOPA home using the

parameters presented in Cappa and Jimégappendix DJ. Volatility distributions for
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the average outdoor conditions for the homes considered her&Q18.87 pg/m) are
shown in Figures-1. The full bar for each saturation vapor pressure 6if) {ndicates
thetotal OM (gas + particle phase) in that vdit (saturation vapor pressure) bin. The
shaded region indicates the fraction of that OM that is in the particle @ijeasstiming

absorptive partitioning into a single, wallixed condensed phase:

z

: P (1)

where Coa Is the OA mass concentration. Organic aerosol concentrations measured
outside eaclRIOPA home Coaou) Were used as inputs f@oa in equation (1) irnthese
calculations.

As noted above, the publishedlatility-distribution parametes (Appendix D}*®
are for an ambient temperature of@5The distributiorof C" bins for the temperature
measured outside of each home was calculated assuming that ntperaeire

dependence o can be described by the ClausiDigpeyron equation:

8 Y 6°°Y — Qo i— - — )

whereT, is 25°C, T is the temperature measured outside each RIOPA homeR &nd
the ideal gas constatft The samem Hap assumptions as were used to construct the
volatility distributions were also used to calculate changé€s imith temperature.

It should be noted thalhese volatility distributions were used only to simulate the
change in partitioningpehaviorof the ambient organics. In other words, the volatility
distributionswere usedo calculate thdraction of total ambient OM (gas and particle

phase) that was in the condensed phase) (outside of each RIOPA home

B R

o )
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This calculated fraction of OM in the particle phase outside of each RIOPA home
(b, 5 and the measured outdoor OA concentratiare then usetb determine the
total OM in the gas plus particle phase outside of each home:

0 : 4

h

Using the same methods, the fractiorttadt ambientCiy; that would be found in
the particle phase for the temperature and OA loading measwsield each RIOPA
home (  was then calculatedn other words, the new equilibrium partitioning of
the ambient OM after it was transporiatb the indoor environmentas simulatedNote
that measured indoor OA concentrations, which were used to estimate the total OA
loading indoors (i.eCoa in equation 1), include emissions from indoor sources into
which ambient organics can partition, aslmas the fraction of ambient OA that has
penetrated into and persisted in indoor lanwasassumed that there was no change in the
thermodynamic properties of the ambient organics with outttemoor transport (i.e.
the same volatility distributiogould be used to represent ambient OA before and after
transport indoors). Possible limitations of this assumption are discussed in the Results
and Discussion sectiofection 5.4) Indoor concentrations aimbientOA (Coa,inamb
were calculated by muftiying, by Cy. Changes in OA mass due tepartitioning
with outdoorto-indoor transport were calculated by subtracting measured outdoor OA
concentrations from those calculated after repartitioning to indoor conditions (i.e.,
temperatur@and OA loading):

Y6 6 i 0 (5)
In a more sophisticated analysis, ambient @As treatedas a mixture of

components derived from factanalysis of aerosol mass spectra. In these chemically
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resolved calculationgp H,, is assumed to be uniform across the OA components (100
kJ/mol); however, the volatility distribution for total OA varies across locations and
seasons because the mass ilvastof the OA components differ and each component has

a unique volatility distribution (Figurés1c - 5-1g). While measurements of OA outside

of each homavere available measurements of AMS OA componentsre not Thus,
measured OA component mass fiaas for Riverside, New York City, and Houst8iF

were used to apportion measured OA between the components for LA County, Elizabeth,
and Houston RIOPA homes, respectiveyppendix D3. The measured mass fractions

are seasospecific and, thus, only homes that were sampled during the seasons for which
OA component mass fractions were available were included in the calculations that
utilized thevolatility distributionsfor OA componentsior Houston andRiverside only

warm season (May October) mass fractions were available, while kew York
component mass fraction measurements were available for both the warm and cool
(November- April) seasons (Appendix D2Aggregate volatility digibutions for each
RIOPA region (i.e. those calculated as an average of these comgpeeriiic
distributions weighted by the mass fraction of each component) are providpgdendix

D4. Volatility distributions were calculated for the ambient condgig¢temperature and

OA loading) measured outside each RIOPA home for each of the OA components using
the OAcomponenspecific parameters presented in Cappa and Jirfet®zpendix

D1). Note that for these calculations, outdoor concentrations of each Opooemt
(rather than the total outdoor OA concentrations) are used as inp@igafior equation 1.
These were calculated by multiplying the component mass fractiolgpendix D2by

the OA measwd outside of each RIOPA hontghifts in the gagparticle patitioning of
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each of these OA components with outdtsindoor transport were then calculated
using the same methods as described above. Theyi@aldue to shifts in partitioning
for each RIOPA home was calculated by summopdoa. across all of the OA
components.

In order to determine the data most important for predicting shifts ipayaisle
partitioning with outdootto-indoor transport, whether changes in temperature or changes
in OA loading were the dominant drivers of variability in calculaggparticle
partitioning shiftswas then exploredThis will clarify what measurements and data are
most needed in order to incorporate this process into predictive ambient PM exposure
models.For example, can shifts in partitioning largely be predicted knowing only the
indoor temperature or is it necessaryaiso characterize indoo©A emission rates?
Using multiple linear regression (MLR) with stepwiselection () = 0.15 for variable
entrane and removal threshold; SAS version 9.3, SAS Inc., Cary, N&), was
regressean the indoooutdoor temperature difference and the indmatdoordifference
in OA mass loading, which was calculated by subtracting measured outdoor OA mass
concentrabns from measured indoor OA mass concentrations. This analysis
systematically evaluates the predictive capability afforded by including either one or both
variable§t should again be kept in mind that the total OA loading measured inside each
home inclugés OA emitted or formed inside the home and is a different value than the
OA of ambientorigin calculated above. Variance inflation factors indicated that there
was no correlation between indemntdoor differences in temperature and OA loading.
For unoccpied homes, we would expect these two quantities to be correlated because

temperature influences the fraction of OMthe particle phast however, for these
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occupied homes, indoor sources of organics are the driving force for variability in
measured inoor OA massoncentrations® Outliers were identified with a student's t
test and were removed if t > 2. The MLR analysis was conducted for cp&gth
assumption, as well as for each urban region in order to explore variability in partitioning
shifts acrgs climatic regions.
5.3.5. ModelMeasurement Closure

In order to explore whether changes in OA concentrations due to shifts in
partitioning with outdooto-indoor transport can explain, at least in part, the gap between
measured and modeled indoor ambient OA concentrations observed in the previous study
disaussed above, the previously calculated distribution of model @Dfwaipter 4) was
comparedwith the distributions ofcpGa calculated here. IrChapter 4 (1) indoor
concentrations of ambient OA calculated for RIOPA homes using an ottdowoor
transpot model that accounted only for home ventilation and physical loss processes (i.e.
air exchange rates, particle penetration efficiencies, and depositional losses) and (2) a
statistical estimate of the Omneasuredindoors that could be attributed to outdoor
sourceswvere comparedAn estimate of the measured indoor OA of ambient origin was
required because indoor OA measurements included ambient OA that had penetrated and
persisted indoors, as well as OA emitted by indoor sourdtesas concluded that
remainng differences between modeled values and the statistical estimate of measured
indoor OA of ambient origin could likely be attributed to phase changes with otttgoor
indoor transport. If shifts in partitioning explain this closure gaps expected thathe
magnitude ofp Gais equal in magnitude, but opposite in sign of the modehsurement

disagreement (i.ap Ga would offset model error). In order to compare these quantities
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directly, values of model error (modeledneasuredyvere multipliedby -1. Thus, if the
distributions of "model error" angb Gaare similar, shifts in partitioning with outdoeto-
indoor transport could plausibly close this mendwasurement disagreemerithe
distribution of model errowas comparetb all calculations ofp Ga (i.e. those assuming
o Hap = 100 kJ/mol, those assumiguhl, = 50 kd/mol, and those treating ambient OA as
a mixture of factoranalysis components)
5.4. Results and Discussion

In the main analysis (i.€p Hap= 100 kJ/mol), partitioning shiftesulted in a loss
of OA mass for 56% of homes (i.e., net volatilization; shifts from the particle phase
towards the gas phase), and changes in ambient organic aerosol concentrations due to
these shifts in partitioninggf Ga) ranged from-4.6 to 2.4ug/m® for individual homes
(Figure 5-2). Negative values indicate net volatilization and positive indicate net
absorption with outdoeto-indoor transport.Calculated shifts in partitioning with
outdoorto-indoor transport were highly sensitive doH.p,assumpbn (Figure5-2). Both
the magnitudes and the direction of partitioning shifts varied across these analyses. While
the main analysis resulted in a loss of OA mass for 56% of homes, partitioning shifts
resulted in an increase in OA mass for 61% of homdisarsensitivity analysisyg Hap =
50 kJ/mol). Values ofp Ga for individual homes spanned a wider range in the sensitivity
analysis {10.5to 5.71g/m®) compared to the main analysButdoorto-indoor transport
resulted in an absolute changeQsa (i.e. n& absorption or volatilization) of only 13%,
on average, in the main analysis, while a 27% change, on average, was observed in the

sensitivity analysis.
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Differences withgp Hap, assumptions can partially be attributed to the fact that
shifts inC" with temperature are dependentai,, (equation 2). However, this effect is
relatively small*® The differences in gasarticle partitioning shifts are mostly the result
of differences in the volatility distributions for these twpH,, assumptions. The
volatility distribution generated fap Hap = 100 kJ/mol has more mass in lov@rbins*®
In other words, when ampHy of 100 kJ/mol is assumed, lower volatility material
comprises a larger fraction of the OA and, thus, this OA is less sensitive tr-indo
outdoor differences in OA loading than that with qartd,, of 50 kd/mol. As is evident
from Figure5-3, which shows shifts in ggsarticle partitioning that would result if only
indooroutdoor temperature differences or only indoatdoor differences i®A loading
were considered, the change in OA associated with temperature is relatively similar
acrossm Hap values but the OA with angHap of 50 kd/mol shows a much greater
sensitivity to changes in OA loading with outddofindoor transport.

This efect is also evident in our MLR results (Tal@e). In the main analysis
(0o Hap = 100 kJ/mol), the change in temperature with outdo@ndoor transport was the
dominant predictor of variability iogp Ga explaining 45% of this variability (R= 0.45).

The indooroutdoor difference in OA loading explained 249% &R0.24) of the variability
in PGa When anmH.p of 50 kd/mol was assumed, however, the indmddoor
difference in OA loading was the dominant driver of variability in shifts ititparing,
explaining 51% of the variability igp Ga (R* = 0.51) The indooroutdoor temperature
difference explained 23% of this variability{R 0.23). The MLR results indicate that

both temperature and OA emissions inside homes are important fortipggdiaifts in

partitioning of ambient organics with outdemrindoor transport. Note that indeor
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outdoor temperature differences also affect ambient exposure prediction by affecting
residential air exchange rates.

Geographicdifferencesin the results(Figure 5-4, Table5-2) demonstratehat
heterogeneity across climatic regions in indoatdoor temperature differences and in
the human activities that influence these differences (e.g. air conditigA@p and
heating use)mpact gaspatrticle partitiomg shifts with outdocto-indoor transport. In
the relatively moderate climate of Los Angeles Coumtlgere both heating and AC use

193¢ indoor temperatures were greater than outdoor temperatur@8%orof

were low
homesand the average indeoutdoortemperature difference was 438 In Elizabeth,

where some of the homes sampled in the winter had heating i*"*isedoor
temperatures werggaingreater than outdoor temperaturestfar vast majority of homes
(96%), but the average indomutdoor terperature differencevas about twice that
observed in Los Angeles County (89. Finally in Houston, where centrdlC usewas
greater than for #1other two urban regioff&* there was a decrease in temperature with
indoor transport for 30% of homes amdlooroutdoor temperature differences ranged
from -7.2°C to 128°C. Interestingly, Houston is the only region for which there was a net
increase in OA mass (shifts from the gas phase to the particle phase) for the majority of
homes (64% compared to 31 aB@Po for Los Angeles County and Elizabeth; Figbre

4), indicating that human activities in addition to those associated with indoor emissions
of OA (i.e., heating and AC use) can influence-padicle partitioning. The greater
range of indocoutdoor terperature differences in Elizabeth and Houston likely explains

why partitioning shifts were dominantly driven by changes in temperature for those two

regions, whilethe changein OA loading was the dominant predictoof shifts in
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partitioning forLos Angeles County homegTable5-2). While not explored here directly
because of sampkaze restrictions, these results also indicate that there are likely
seasonal differences in shifts in gzegticle partitioning (and OA exposuri@)regions for
which there isseasonal heterogeneity in indamrtdoor temperature differences and in
heating andAC use.

Shifts in gagparticle partitioning calculated for RIOPA homes using the volatility
distribution generated for OA components were qualitatively similar to tredselated
in the main analysisqf Hap = 100 kJ/nol); however, this aerosol demonstrated slightly
lower sensitivity to temperature and @@ading changes with outdots-indoor
transport (Figure5-5). These shifts resulted in an absolute chang€dn (i.e. net
absorption or volatilization) of 11%n average, compared to 13% for the main analysis.
HOA was most sensitive to changes in temperature and OA loading with ctdeoor
indoor transport (20% change in OA concentrations, on average), followed by "other
OA (13% change on average), and OOA (12%, on average; Fgirdndoor transport
resulted in a 7% change {Doa, ONn average, for SOOA, whereas outdodo-indoor
transport did not induce shifts in partitioning for {OA (Figure5-5).

While there $ uncertainty in the thermodynamic properties of ambient OA, we
can speculate about which calculationgm®a are most realistic. Partitioning models in
which total ambient OA is represented by one or two compounds regigggvaluesO
50 kJ/molto repoduce partitioning behavior observed ihamber studies and in the
field.*"*33"3However, when a wider range of thermodynamic properties is considered in
the representation of ambient QA.g. use of a volatility basis set as is the case here

versususe of a tweproduct model)a more realistiap Hap 0f 100 kJd/mol reproduces
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observed pditioning behavior”*® As a result, the calculations for whiapHa, was
assumed to be 100 kJ/mol are likely to be more representative of the partitioning behavior
of ambient OA than those calculated assumingpeth, of 50 kJ/mol. Treating ambient
OA as a mixture of components derived from factor analysis of aerosol mass spectra
likely provides the most realistic and robust estimate ofpgascle partitioning shifts
with indoor transport. As noted above, the physiochemical properties of any particular
component (e.g., HOA) are likely similar across seasons and geographic regions because
each component is comprised of species that are covariant due to having comroes so
or formation mechanisnf§?’ Notably, mass thermograms for OA components generated
from TD-AMS measurements in Riverside, CA were similar to those for Mexico City,
suggesting similarities in the thermodynamic properties of these OA components for
regions dominated by anthropogenic OA souréeés.This supports the use of these
volatility distributions for a wide range of locations. However, AMS data describing the
mass fractions of each OA component are also required before these volatility
distributions can be applied to predict indoor concentrations of ambient OA. Greater use
of the AMS to measure outdoor aerosol in exposure studies will facilitate such exposure
modeling efforts.

Distributions of measurementodel disagreement and calculated valagémp Ga
are compared in Figurg-6. Median values of residual model error andqy®a differ
(note that median values qf Ga are near zero); however, the distributions of model error
andg Ga are not significantly different. Thus, shifts in gaarticle partitioning provide a
plausible explanation for the previously observed lack of clogQteapter 4) As

expected based on the discussion above regarding the most realistic and robusg-volatilit
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distribution assumptions, distributions of modetasurement disagreement ap&aare
closest in magnitude when anH,, of 100 kJ/molis assumed and when ambient OA is
treated as a mixture of AMS factors (e.g., HOA, OOA)

One limitation of this workis that the increased surface area in the indoor
environment, compared to the outdoor environment, is not accounted for. Sorption to
indoor surfaces such as carpets, wallboard, furniture, HVAC surfaces and even home
occupants can be an important sink fasepus SVOC8 and could result in a shift of
OM of outdoor origin from the particle phase towards the gas phagséen to reach a
new equilibrium>®* Thus, it can be concludel that interactions with indoor surfaces
would result in greater evaporatilesses of OA than were calculated for the RIOPA
homes. As noted in the Methods section, we assumed that there was no change in the
thermodynamic properties of the ambient organics with outttemdoor transport (i.e.
the same volatility distribution codilbe used to represent ambient organics before and
after transport indoors). Many factors such as particle size and composition,
characteristics of cracks in the building shell, human activities (e.g. opening/closing
windows), and compound volatility andeactivity contribute to variability in the
efficiency with which pollutants penetrate and persist indodtdReactive gases are
expected to encounter larger losses andreantive gases smaller losses than particulate
organics. Such differential lossegy alter the ambient volatility stribution of ambient
organics.For example, depletion of the particle phase and not the gas phase would result
in smaller evaporative losses or larger increases in ambient OA due sorption te indoor

generated OA than thealues calculated here. It should also be noted that the timescale
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required for organic compounds to reach equilibrium partitioning between the gas and
particle phases can vary over several orders of magnitude depending on vapor Pressure.

This work alsodoes not consider interactions of ambient OA with-pfaase
organics of indoor origin (e.g. terpenoids from cleaning praluE&AHs from
combustion sourcg¥**. Weschler and Nazardffnote that the partitioning of gaghase
organics emitted or formdddoors to OA of outdoor origin could both increase the mass
concentrations of the particles transported indoors and alter their chemical composition.
These interactions illustrate the difficulties that could arise in separating the ambient and
nonrambien contributions to OA exposure. Further, the importance of liquid water as a
partitioning and reaction medium has been demonstrated for atmospheric d&rosbls
its role in the indoor environment has not been explored.elicdlse of PAHS, Naumova
etal* found that the majority of variability (84.5%) in gparticle partitioning indoors
could be explained by PAH vapor pressure, indoor temperature, and the characteristics of
the PMys measured indoors (mass fractions of elemental and organic carbon).
5.5.Conclusions

Accounting for shifts in gaparticle partitioning of ambient organics with
transport into the indoor environment improved meadehsurement closure. Calculated
shifts resulted in changes in OA mass of between 11 and 27%, on averagejragpa
the assumedp H,p and whether OA was represented with a single volatility distribution
or with a distribution generated assuming a mixture of AMS faamatysis components.
While uncertainties in the thermodynamic properties of ambient OA cotdrilp
uncertainty in the magnitude and direction of partitioning shifts with outtlemdoor

transport, all calculations indicate that phase changes are important determinants of
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residential OA exposure. Of the calculations presented here, treatmraanbieint OA as

a mixture of components with distinct sources, formation mechanisms, and
physiochemical properties (AMS fators, e.g. HOA, OOA) is likely to offer the most
robust estimates of shifts in partitioning with outdémindoor transport across seas

and geographic regions. Expanding the spatial and temporal coverage-AM3D
measurements, volatility distribution calculations like those ptegsein Cappa and
JimeneZ® and OA component mass fraction measurements will help to identify seasonal
andgeographic variations in OA volatility distributions and will help facilitate estimates
of shifts in partitioning with outdoeto-indoor transport.
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5" 25"  Median 75" 95"
Percentile Percentile Percentile Percentile
OutdoorOA? (ug/nr) 1.07 2.66 4.25 6.47 10.90
Indoor OA (ug/m°) 2.45 4.95 7.42 11.04 27.43
Outdoor TemperaturéQ) 3.8 13.6 19.5 24.1 28.6
Indoor Temperature’C) 19.5 22.2 23.9 25.6 27.8

80A concentrationsyg/m°) were estimatefom measurements of organic carbon
concentrations(gC/nt) assuming an OM:OC ratio of 1.4.

Table 5-1. Summary statistics of measured indoor and outdoor temperatures and organic
aerosol (OA) concentrations for the RIOPA study homes included irpéper. Only
homes for which all measurements shown above were available were included in this
analysis (n = 167).
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Selection Stef Variable  Partial R Model R Coefficient Estimate P

QP Hap = 100 kJ/mol
All Homes 1 Temperature 0.45 0.45 -0.07 <0.0001
(n=167) 2 OA Loading 0.24 0.69 0.06 <0.0001
Los Angeles County, CA 1 OA Loading 058 0.58 0.12 <0.0001
(n=44) 2 Temperature 0.20 0.78 -0.10 <0.0001
Elizabeth, NJ 1 Temperature 0.%4 0.4 -0.08 <0.0001
(n=54) 2 OA Loading 0.24 0.78 0.03 <0.0001
Houston, TX 1 Temperature 0.30 0.30 -0.07 <0.0001
(n=69) 2 OA Loading 0.2 0.62 0.05 <0.0001

P Hap = 50 kJ/mol
All Homes 1 OA Loading 0.51 0.51 0.11 <0.0001
(n=167) 2 Temperature 0.23 0.74 -0.08 <0.0001
Los Angeles County, CA 1 OA Loading 0.78 0.78 0.25 <0.0001
(n=44) 2 Temperature 0.10 0.88 -0.10 <0.0001
Elizabeth, NJ 1 OA Loading 0.5 0.5 0.08 <0.0001
(n=54) 2 Temperature 0.28 0.4 -0.09 <0.0001
Houston,TX 1 OA Loading 058 0.58 0.11 <0.0001
(n=69) 2 Temperature 0.12 0.70 -0.06 <0.0001

Table 5-2. Multiple linear regressio(MLR) analy®s investigating the contribution afdooroutdoor differences in temperature and
organic aerosol (OA) loadinp changes in ambient OA concentratiogs@a) dueto shifts in gasparticle partitioning with outdoer
to-indoor transport. Partial Riescribes the variance @ Ga explained by each variable individually. Model &escribes the total
variance ing Ga described by the full MLR model at each selection stefficient estimates describe the change in partitioning
(i.e.,p Ga) per unit difference between indoor and outdoor temperature and OA loading
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Figure 5-1. Volatility distributions for the average conditions measured outside of
RIOPA homes (temperature = 182and OA loading = 4.87 pgfn (a) total OA
assuming an enthalpy of vaporization of 100 kJ/mol; (b) total OA assuming an enthalpy
of vaporization of 50 kJ/mol; (c¢) (g) OA components derived from factor analysis
assuming an enthalpy of vaporization of 100 kJ/mol focathponentshydrocarbon like

OA (HOA), oxygenated OA (OOA), semmblatile oxygenated OA (SDOA), low
volatility oxygenated OA (LVOOA), and "other" OA. The distribution for "other" OA is
based on parameters for total OAppenix D). The full bar for each saturatiorapor
pressure bin@ ) indicates théotal OM (gas + particle phase) in that volatility (saturation
vapor pressure) bin. The shaded region indicates the fraction of that OM that is in the
particle phase assuming absorptive partitioning into a singld;mveéd condensed
phase. Adapted with permission from Cappa and Jimenez (2010).
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Figure 5-2. Frequency distributions of the change in organic aerosol mass concentrations
due to changes in ggmrticle partitioning with outdoeto-indoor transport ¢ Ga)
assuming an enthalpy of vaporizatiomp Kl.,,) of (a) 100 kd/mol and (b) 50 kJ/mol.
Negative values indicate net volatilization, whereas positive values indicate net
absorption.
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Figure 5-3. Frequency distributions of the change in organic aerosol mass concentrations due to changearticlggsartitioning
with outdoorto-indoor transportc Ga) accounting only for (a) (b) indooroutdoor temperature differences and {¢y) indoor
outdoor differences in OA loading
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Figure 5-4. Frequency distributions of the change in organic aerosol mass concentrations
due to changes in ggmrticle partitioning with outdoeto-indoor transportep Gp) for the

three geographicallgnd climatically diverse urban regions studied here: (a) Los Angeles
County, CA, (b) Elizabeth, NJ, and (c) Houston, TX.
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Figure 5-5. Frequency distributions of the change in organic aerosol mass concentrations
due to changes in gaarticle partitioning with outdoeto-indoor transportg Ga) for (a)

total OA assuming that OA can be represented as a mixture of -&abysis
components with mass fractions given in Appendix D2 and (f)for each OA factor
aralysis component: (b) hydrocarbtke OA (HOA), (c) semivolatile oxygenated OA
(SV-O0A), (d) low volatility oxygenated OA (LMOOA), (e) oxygenated OA (OOA),

and (f) other OA. The bin widths for each distribution are on the same order of magnitude
as thestandard deviations afp G, illustrating differences across OA factanalysis
components. An enthalpy of vaporization of 100 kJ/mol was assumed for all components.



