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Whenever we have a decision to make, there is always some risk to take. From a

mathematical perspective, risk is manifested by a random variable, and a risk measure

simply characterizes the random variable in a more compact form. Risk, in general

and in practice, is not be adequately described by a real valued random variable, but

rather requires a random vector to capture the dimensions of the problem. To this

end, multivariate risk measures are crucial ingredients for decision making processes,

and stochastic optimization is a natural and superior skill to find a key to the optimal

decision-making.

A recent paper by Prékopa (2012) presented results in connection with Multivari-

ate Value-at-Risk (MVaR) that has been known for some time under the name of

p-quantile or p-Level Efficient Point (pLEP) and introduced a new multivariate risk

measure, called Multivariate Conditional Value-at-Risk (MCVaR). Lee and Prékopa

(2013) studied new methods for numerical calculations and mathematical properties of

these multivariate risk measures, presented in Chapter 2. Another new multivariate

risk measure has been constructed and presented in Chapter 3. This is especially for
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corporate mergers and acquisition (M&A) transactions, as the limited applicability of

a coherent risk measure in the sense of Artzner et al (1999) for M&A transactions is al-

ready discussed in Kou et al (2013). A decision making scheme using that risk measure

is introduced and surveyed, together with illustrative real-life numerical examples.

Insurance companies typically hold their money in bonds to pay out the random

liabilities in the same periods. In Chapter 4, such bond portfolio construction problem

is presented using various stochastic programming problem formulations. For a financial

trading business, “price-bands” can be used as an indicator for successfully buying or

short-selling shares of stock. Chapter 5 presents a mathematical model for the novel

construction of price-bands using a stochastic programming formulation. Numerical

examples using recent US stock market intraday data are presented.
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Chapter 1

Introduction

When faced with any forward-looking decision, there will always be some risk of making

an inappropriate or suboptimal decision. If there were no risk, then all ends are known

and the optimal decision is clear to a clever individual – one might say there is hardly

a decision to make. Given the prevalence of uncertainty in many problems of interest,

risk analysis is a crucial aspect of an effective decision-making process.

The business environment is increasing not only in its complexity, but also in its

intricacy. With the advent of smart systems and detailed data capture tracking every

aspect of a business you can imagine, powerful datasets are now available and methods

for their effective use are paramount for success in the competitive landscape. The ex-

plosion of this phenomenon – popularly known as “big data” – is transforming various

industries from finance to healthcare through the use of analytics cleverly tracking key

parameters to guide optimal decisions. Often, more often than not in fact, decisions

must be made in the face of substantial risk and uncertainty, and methods for analyt-

ics under such risk are surprisingly incipient. Effective modeling and development of

business analytics under suitable risk conditions will be a significant edge in the age of

big data.

From a mathematical point of view, risk is a random variable itself, and a risk

measure simply characterizes the random variable in a more compact form. Risk, in

practice, may not be equal to a real valued random variable, rather, it is frequently

represented by a finite collection of random variables, i.e., a random vector, to capture

the dimensions of the problem. In order to characterize the diverse risk exposure of the

entity, we therefore need to work with the joint probability distribution of the relevant

random variables, which is often a significantly more complex issue. Hence, broadly
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the discipline of risk management is fundamentally tied to the elements of random

vectors, risk measures, and stochastic processes and their role in mitigating future

negative outcomes. For effective risk management, companies must establish rigorous

risk assessment processes via a “suitable risk measure.” However, a suitable risk measure

is inherently related to a judgement of the outcome of a random experiment, and so,

in this sense, a fluid understanding of the industry is decidedly synergistic.

A company typically has many different assets, portfolios, business sectors, exposed

to different kinds of randomness, influencing the overall behavior of the company. In

order to characterize it, from the point of view of risk exposure, we need to work with

the joint probability distribution of the random variables involved. Thus, for a complex

real world environment, I believe multivariate risk measures are crucial ingredients for

the decision-making processes and stochastic optimization with relevant risk measures

will play indispensable role in finding a key to optimal decision-making.

The organization of this dissertation is as follows. In Chapter 2, we have explored

various properties of Multivariate Value at Risk, or MVaR and Multivariate Condi-

tional Value at Risk, or MCVaR. We have shown that many properties enjoyed by VaR

and CVaR, carry over to the multivariate risk measures. We also have proposed the

numerical procedures to calculate or approximate MCVaR values. In Section 2.2 we

recall the notions of Multivariate Value-at-Risk and Multivariate Conditional Value-

at-Risk, following the guidelines of Prékopa (2012). In Section 2.3 basic properties of

both risk measures are stated. While MVaR enjoys similar properties as the univariate

counterpart, MCVaR does not have the convexity property. Explanation is supplied.

In Section 2.4 we present numerical procedures, for both the continuous and discrete

cases, to approximate MCVaR, by the use of bounding, based on the binomial moment

method and the Boolean bounding scheme. The practical meaning of MCVaR is illus-

trated on two portfolios with different correlation structures. Finally, in Section 2.5 we

present conclusions.

In Chapter 3, we construct a further multivariate risk measure: the worst case

Combined Value-at-Risk (wCoVaR), where only one orthant of the space represent un-

favorable set and its vertex is at the vector with components equal to the individual
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VaR’s. wCoVaR has a very strong connection with the univariate risk measure: Condi-

tional Value-at-Risk (CVaR) – sum of individual CVaR equals wCoVaR if all random

variables are independent. This makes it possible to compare values of sum of random

variable and a random vector which has the random variables as components. And this

idea is to help decision making in corporate mergers and acquisitions by comparison of

risks before and after M&As or demergers activities before taking action on the deals.

In Section 3.7 we show in what way it can be used in practice. In the numerical exam-

ples we look at one company which considers M&As with one or two of a few target

candidates, we calculate which M&A deal is ideal in terms of risk and which M&A deals

reduce risk. To do the above analysis we have introduced vector operations, where we

put together risk vectors to create new risk vector with increased number of compo-

nents, to describe M&As, and split a risk vector into parts, to describe demergers, i.e.

restructuring of companies.

In Chapter 4, various stochastic problem formulations are presented for bond port-

folio problem of insurance companies. Insurance companies typically hold their money

in bonds to pay out the random liabilities in the same periods. Insurance claims are

randomly occurring events, which is considered as liabilities to an insurance company.

The probability of a number of events occurring in a fixed period of time can be ex-

pressed as a Poisson distribution. The problem is that how many of the different bonds

should be purchased that minimizes the cost subject to the constraint that all liabilities

can be payed out in the course of a given number of periods. Numerical examples are

presented.

In Chapter 5, we present a mathematical model to construct “price-bands,” which

are certainly helpful to deter investors from entirely following their feelings. This has

been widely used in practice, especially for short term investment, to help people val-

idate their investment decisions. As one variant, we construct new price-bands via

binomial moment problem formulation under the assumption that stock prices follow

a Gaussian process. Usage of conditional probability distributions is the key attribute
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that differentiates our model. We presents a mathematical model for the novel con-

struction of price-bands using a stochastic programming formulation. Numerical ex-

amples using recent US stock market intraday data are presented. This methodology

for forecasting upper and lower bounds need not only apply in finance, but could also

be applicable in many business management areas, e.g., supply chain management,

production management, inventory control, reliability engineering, etc.

In any business practice, many different technical tools exist to guide decision makers

through the swarm of information. Information is processed data, whereas data are

plain facts – analytics are the link. Business analytics must provide timely information

in order to play a material role in the decision making process. In Chapter 5, we consider

a financial institution and, using intraday stock price data, present novel price-bands,

one of the most widely used analytics in financial trading. Based on historical data,

there are a huge number of possible cases on what will happen over the next day. All

possible cases should be appropriately considered to make a reasonable decision, but in

a systematic way allowing faster computation. To this end, we formulated the problem

as a modified binomial moment problem, which effectively counts all possible cases

without actual counting per se and renders the daunting problem solvable.

Through my doctoral residency with my adviser, Professor András Prékopa, I have

found that a set theoretical approach is useful for many stochastic optimization prob-

lems, especially in a vector space, since set theory offers an intuitive way to represent

data in a multi-dimensional space. With a suitable construction of sets, a mathematical

programming formulation can be created using those sets as inputs for the objective

function or constraints. For the calculation of multivariate risk measures in Chapter

2, the modified binomial moment and Boolean bounding schemes are used. For more

complex problems, introduction of functions related to those sets was helpful, see, e.g.,

the equations and formulations in Chapter 5.
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Chapter 2

Properties and Calculation of Multivariate Risk

Measures: MVaR and MCVaR

2.1 Introduction

Value-at-Risk (VaR) has already existed in the statistical literature since the second

half of the 19th century, under the name of quantile or percentile. The term Value-

at-Risk was introduced at the beginning of the 1990s in the financial literature and

became widely used in a short time. We refer the reader to Jorion (2006) and Saita

(2007) for various topics of Value-at-Risk. Its multivariate counterpart turned up in

the stochastic programming literature, primarily in the works of Prékopa (1970, 1973a,

1990, 1995, etc.). Based on this, Multivariate Conditional Value-at-Risk (MCVaR) was

recently introduced by the same author (2012).

In stochastic programming one standard way to create a decision model out of one,

where some of the parameters are random, is to prescribe a lower bound on the probabil-

ity that the stochastic constraints are jointly satisfied. If, for example, a decision prob-

lem is an LP: min cTx subject to Tx ≥ ξ, Ax = b, x ≥ 0, where ξ is a random vector,

then we may formulate the problem: min cTx subject to P (Tx ≥ ξ) ≥ p, Ax = b, x ≥ 0,

or min {cTx+
∑r

i=1 qiE([ξi − Tix]+)}, subject to the same constraints, where Ti is the

ith row of the r × n matrix T and the qi, i = 1, . . . , r are nonnegative constants. The

practical application of this model goes in such a way that first we decide on the value

of x and, after that, we observe the realized value of ξ. The probability p is chosen

near 1 so that the inequality Tx ≥ ξ should be satisfied in most cases. If ξ has con-

tinuous distribution and its c.d.f. is F (z) = P (ξ ≤ z), z ∈ Rr, then the probabilistic

constraint can be rewritten as: Tx ≥ z, for at least one z such that F (z) = p. If ξ is

discrete, then we may use the p-Level Efficient Points (pLEP’s), or briefly p-efficient
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points z(1), . . . , z(N), and reformulate the probabilistic constraint as Tx ≥ z(i), for at

least one i = 1, . . . , N . The above mentioned sets {z | F (z) = p} and {z(1), . . . , z(N)}

can be regarded as multivariate quantiles. In Prékopa (2012) the term Multivariate

Value-at-Risk (MVaR) was introduced as an alternative name for the collection of p-

efficient points. Methods to generate elements of MVaR in the case of a continuously

distributed ξ and the entire MVaR, in the discrete case, has already been existed in

the literature (see, e.g., Prékopa (1995) and the references therein; Prékopa, Vizvári,

Badics (1998); Boros et al (2003); Dentcheva, Prékopa, Ruszczcyński (2000), etc.).

The term Conditional Value-at-Risk (CVaR) was introduced by Rockafellar and

Uryasev (2000). The same notion was named by Föllmer and Schied (2002) Aver-

age Value at Risk (AVaR). Earlier, in 1973, Prékopa has already used conditional ex-

pectation as a risk measure in stochastic programming. If the rows of the matrix T

are T1, . . . , Tr and the components of ξ are ξ1, . . . , ξr, then the use of the constraints

E(ξi−Tix | ξi−Tix > 0) ≤ di, i = 1, . . . , r was proposed as replacement of the compu-

tationally more complicated constraint: P (Tx ≥ ξ) ≥ p, or, as a supplement to it. One

major advantage of the conditional expectation constraints is that if the components of

ξ have continuous distributions with logconcave p.d.f.’s, then each of them is equivalent

to a linear constraint (see Prékopa (1973a, 1995)).

Let F denote the probability distribution function of the random variable X ∈ R.

Then the Value-at-Risk(VaR), for some fixed probability level p, is defined as the p-

quantile of the probability distribution function F :

VaRp(X) = F−1(p), (2.1)

where, by definition,

F−1(p) = min{u | F (u) ≥ p}. (2.2)

It can also be defined as the optimum value of the following two problems:

min v

subject to P (X ≤ v) ≥ p,
(2.3)
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and

sup v

subject to P (X ≥ v) > 1− p,
(2.4)

where p is some fixed probability, 0 < p < 1. The optimum values of problems (5.1) and

(2.4) are equal. Value-at-Risk (VaR) has a property, considered undesirable by many

authors for a risk measure: it is not convex, in general, and it measures the frequency,

not the amount of losses beyond VaR (the predicted maximum amount of losses at a

fixed probability level). This motivated the development of the notion of a coherent

risk measure, equal to the conditional expectation of a random variable, given that it

surpasses VaRp(X). Conditional Value at Risk, designated by CVaRp(X), where X is

the random variable involved and p the probability, is defined as:

CVaRp(X) = E(X | X ≥ VaRp(X)). (2.5)

Uryasev and Rockafellar (2000) and Pflug (2000) have shown that

CVaRp(X) = min
a

{
a+

1

1− pE([X − a]+)

}
(2.6)

and that CVaRp(X) ≥ VaRp(X). Equation (2.6) can also be used as the definition of

CVaRp(X).

An optimization problem, similar to that of (2.6) was introduced and applied to a

“chance constrained problem” by Ben-Tal and Teboulle (1986). After reformulation of

the problem, a random objective function is obtained, for which a new type of “certainty

equivalent” is formulated. If X is a random variable and u is a (increasing and strictly

concave) utility function, then it is equal to:

sup
a
{a+ E[u(X − a)]} . (2.7)

In the mentioned and in other papers (see, e.g., Ben-Tal and Ben-Israel (1991), Ben-Tal

et al (1991), etc.) Ben-Tal, Ben-Israel and Teboulle expound a theory and application

of the new certainty equivalent (2.7) and show that its negative enjoys the properties

of a coherent risk measure in the sense of Artzner et al (1999).

Coherence, however, is not such a property of a risk measure that it would be

imperative to rely on it, under all circumstances. VaR is not a coherent risk measure,
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in general, but it is widely and successfully used in many applications, such as: testing

statistical hypotheses, sequential analysis, decision theory, stochastic programming and

others. If, for example, an unfavorable event may cause huge damage that has to be

avoided, then VaR may be more important than CVaR. Another point is that CVaR

takes average on rare events while small probabilities are multiplied by large numbers,

making the estimation of the risk measure inaccurate and we need very long trial

sequences to realize the benefit of the conditional expectation in practice, where the

conditioning event has very low frequency. If the population is at hand at the same

time, then CVaR may have reasonable practical interpretation.

We think that risk measures and axiomatic systems for risk measures should not

be regarded in an exclusive manner. As in geometry, various axiomatic systems de-

fine various geometries out of which we may choose the one most suitable for a given

application, the axiomatic systems for risk measures and the risk measures themselves

should provide us only with a menu to choose one or more than one for our purpose.

Risk measures for multidimensional settings have previously been studied, and we

refer the reader to the recent literature (e.g., see Dentcheva and Ruszczyński (2009),

Noyan and Rudolf (2013), etc.). Multivariate risk measures, other than ours, exist in the

literature, for example, see Cousin and Di Bernadino (2011) and the references therein.

The results in connection with them, however, are little to do with ours, especially

because those risk measures are mostly vectors while ours are numbers. On the other

hand we have in mind applications in stochastic optimization which require convexity

statements and algorithms to calculate the numerical values of the risk measures.

The organization of this paper is as follows. In Section 2.2 we recall the notions of

Multivariate Value-at-Risk and Multivariate Conditional Value-at-Risk, following the

guidelines of Prékopa (2012). In Section 2.3 basic properties of both risk measures are

stated. While MVaR enjoys similar properties as the univariate counterpart, MCVaR

does not have the convexity property. Explanation is supplied. In Section 2.4 we present

numerical procedures, for both the continuous and discrete cases, to approximate MC-

VaR, by the use of bounding, based on the binomial moment method and the Boolean

bounding scheme. The practical meaning of MCVaR is illustrated on two portfolios
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with different correlation structures. Finally, in Section 2.5 we present conclusions.

2.2 The Notions of Multivariate Value-at-Risk (MVaR) and Multi-

variate Conditional Value-at-Risk (MCVaR)

While VaR and CVaR both have been around for some time, only VaR had a multivari-

ate counterpart. However, the fact that we intend to take into account the stochastic

dependence of the random variables involved, called for the introduction of the Multi-

variate Conditional Value at Risk or MCVaR. That was done in the recent paper by

Prékopa (2012). For the sake of completeness below we recall the definitions of both

MVaR and MCVaR (Definitions 2.2.1 and 2.2.2, respectively).

Definition 2.2.1. (Prékopa 1990) Let X ∈ Rr be a random vector and F its c.d.f. A

point s ∈ Rr is said to be a p-Level Efficient Point, or briefly p-efficient point, of the

probability distribution, or the distribution function F , if F (s) ≥ p and there is no y

such that y ≤ s, y 6= s, F (y) ≥ p. MVaRp(X) is the set of all p-efficient points of the

random vector X.

If X has discrete distribution on Zr, then its support is finite or countably infinite. In

both cases MVaRp(X) is a finite set by the following

Theorem 2.2.1. If the components of the random vector ξ are integer-valued, then for

any p ∈ (0, 1) the set of p-level efficient points is nonempty and finite.

Theorem 2.2.1 is an immediate consequence of Dickson’s Lemma (3, Cor. 4.48).

It was mentioned, in another context, by Vizvári (1987) and Dentcheva, Prékopa,

Ruszczyński (2000), for p-efficient points. The assertion of Theorem 2.2.1 is not neces-

sarily true if the support of the random vector is countable but not part of the integer

lattice. In case of an integer valued Y , there exist N ≥ 1 and s(1), . . . , s(N) such that

MVaRp(Y ) = {s(1), . . . , s(N)},

where s(i) ∈ Rr, i = 1, . . . , N . If X has continuous distribution, with strictly increasing

c.d.f. (F (s1) > F (s2) if s1 ≥ s2, s1 6= s2), then

MVaRp(X) = {s | F (s) = p}. (2.8)
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The following concepts were introduced in Prékopa (2012). Suppose that the random

vector X is related to losses, then the favorable event for X is defined as

X ∈
⋃

s∈MVaRp(X)

(s+Rr−). (2.9)

The complementary of the event in (2.9) is the unfavorable event:

X ∈
⋂

s∈MVaRp(X)

(s+Rr−)c. (2.10)

Let us introduce the notation:

Dp =
⋃

s∈MVaRp(X)

(s+Rr−). (2.11)

The sets Dp, D
c
p are called favorable and unfavorable sets, respectively. As illustrated

in the Figure 2.1, the unfavorable set Dc
p is the north east shaded region and the

favorable set Dp is the south west unshaded region. Sometimes we write Dp(X), Dc
p(X)

to indicate the dependence on X.

Definition 2.2.2. (Prékopa (2012)) The Multivariate Conditional Value-at-Risk, or

MCVaR, of the random vector X, is defined as:

MCVaRp(X) = E(ψ(X) | X ∈ Dc
p),

where ψ is some r-variate function such that E(ψ(X)) exists. The value 0 < p < 1 (or

1− p) is called the level of MCVaR. The symbol Dc
p denotes the closure of Dc

p.

If the probability P (X ∈ MVaRp(X)) is negligible, then

E(ψ(X) | X ∈ Dc
p) ≈ E(ψ(X) | X /∈ Dp).

Thus, we can write MCVaRp(X) as E(ψ(X) | X /∈ Dp) in case of P (X ∈ MVaRp(X)) ≈

0 (see Prékopa (2012)). Let us define the function ψ(u) as

ψ(u) =

r∑
i=1

λiui, (2.12)

where

r∑
i=1

λi = 1 and λ1, . . . , λr are nonnegative. If the components of X are losses in

different portfolios, then λi weighs the loss in portfolio i, i = 1, . . . , r.

The following equation holds true:

E(ψ(X)) = E(ψ(X) | X /∈ Dp)P (X /∈ Dp) + E(ψ(X) | X ∈ Dp)P (X ∈ Dp), (2.13)



11

s(1)

s(2)

s(3) s(4)

s(1)

s(2)

s(3) s(4)

Figure 2.1: 2-D Illustration of the favorable set, and its complementary set where the
Multivariate Conditional Value-at-Risk is defined in both types of a random vector –
discrete and continuous.
X and Y are discrete and continuous random vectors, respectively. LHS: MVaRp(X) =
{s(1), . . . , s(4)}, RHS: MVaRp(Y ) is the boundary of the shaded region. MCVaR is
defined in the shaded region (north east), i.e., the unfavorable set. The unshaded
region (south west) is the favorable set.

from where we derive:

MCVaRp(X) = E(ψ(X) |X /∈ Dp) =
1

P (X /∈ Dp)

(
E(ψ(X))−E(ψ(X) |X ∈ Dp)P (X ∈ Dp)

)
.

(2.14)

Equation (3.8) can be written as:

MCVaRp(X) =
1

1− P (X ∈ Dp)

(
r∑
i=1

λimi −
r∑
i=1

λiE(Xi| X ∈ Dp)P (X ∈ Dp)

)
,

(2.15)

where mi = E(Xi), i = 1, . . . , r.

While Definition 2.2.2 of MCVaR applies for the general case, a simpler definition

can be given for the continuous case, as follows.

Definition 2.2.3. The Multivariate Conditional Value-at-Risk, or MCVaR, of a con-

tinuous random vector Z ∈ Rr, is the value:

MCVaRp(Z) = E(λTZ | FZ(Z) ≥ p),where FZ(z) = P (Z ≤ z).

Remark 1. The Conditional Value-at-Risk (CVaR) measures the amount of losses

beyond the Value-at-Risk(VaR). In the multivariate case, however, the elements of Rr

are only partially ordered and MVaR is a set, not a single point, in general. On the other

hand, we may not want to interpret the occurrence of an unfavorable event in terms
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of the sum of values of the r portfolios we are holding. In fact, a finance company

typically creates a variety of portfolios, in an informative way, not only on their sum.

The definition of MCVaR solves this problem in such a way that an unfavorable event

is said to have occurred wherever X is larger than at least one element in MVaR, where

“larger” means in the sense of partial order of vectors (x > y iff x ≥ y, x 6= y). The

value of MCVaR is then the conditional expectation of the total loss, given that an

unfavorable event occurs. In the total loss each asset has a multiplier (λ1, . . . , λr) to be

able to value the different asset types on a common ground, by the use of a numeraire.

2.3 Properties of MVaR and MCVaR

The following definition and theorem about the multivariate stochastic ordering is well-

known (see, e.g., Müller and Stoyan (2002)).

Definition 2.3.1. Let X and Y be r-variate random vectors. Then we define

(SD1) Stochastic dominance of order 1: X �(1) Y , if Ef(X) ≤ Ef(Y ) for all bounded

increasing functions f : Rr → R.

(SD2) Stochastic dominance of order 2: X �(2) Y , if Ef(X) ≤ Ef(Y ) for all nonde-

creasing concave functions f : Rr → R such that the expectations exist.

Theorem 2.3.1. The following statements are equivalent.

(i) X �(1) Y ,

(ii) P (X ∈ U) ≤ P (Y ∈ U) for all upper sets U ,

(iii) P (X ∈ U) ≤ P (Y ∈ U) for all closed upper sets U .

A set U is called an upper set if x ∈ U implies y ∈ U for every y ≥ x. A set L is a

lower set if x ∈ L implies y ∈ L for every y ≤ x. Note that the Multivariate Conditional

Value-at-Risk is defined on an upper set (both shaded sets in Figure 2.1).

The relationship between the Multivariate Value-at-Risk (MVaR) and multivariate

stochastic dominance of order 1 is illustrated in Figure 2.2.
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s(1)

s(2)

s(3)

s(4)

t(1)

t(2)

t(3)
t(4)

MVaRp(Y )

MVaRp(X)

Figure 2.2: 2-D Illustration of the first order stochastic dominance of random vectors:
X �(1) Y .
LHS: the case of discrete random vectors X and Y . MVaRp(X) is the collection of the
p-efficeint points t(i)’s and MVaRp(Y ) is the collection of the p-efficient points s(i)’s.
RHS: the case of continuous random vectors X and Y . MVaRp(X) is the hypersurface
{t | FX(t) = p} and MVaRp(Y ) is the hypersurface {s | FY (s) = p}.

We recall that the notions of logconcave p.d.f. and logconcave probability measure,

designated by f and P , respectively, are defined by the inequalities

f(λx+ (1− λ)y) ≥ [f(x)]λ[f(y)]1−λ,

P (λA+ (1− λ)B) ≥ [P (A)]λ[P (B)]1−λ,

(2.16)

where x, y ∈ Rr, 0 < λ < 1, and A,B are convex subsets of Rr. Two basic theorems

are as follows.

Theorem 2.3.2. (Prékopa 1971, 1973b) If a probability measure is generated by a

logconcave p.d.f., then it is a logconcave measure.

Theorem 2.3.3. (Prékopa 1973b) If the probability measure P is generated by a log-

concave p.d.f. that is strictly logconcave in an open set D ⊂ Rr, then the c.d.f. is also

strictly logconcave in D.

It follows that if a multivariate p.d.f. is logconcave, then its c.d.f. is also logconcave

for every 0 ≤ p ≤ 1, and the set {z | F (z) ≥ p} is convex. If 0 < p < 1, then the set

{z | F (z) = p} is an r−1 dimensional hypersurface embedded in Rr which is illustrated

by the boundary of the shaded set in Figure 2.3. If F is strictly logconcave, then it

can also be described as a strictly concave function in which we take r − 1 (arbitrarily
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chosen) variables as independent and one as dependent variable. For example, xr =

xr(x1, . . . , xr−1). This idea is used for the calculation of MCVaR in case of continuous

random vectors, presented in Section 5.41.

F (z) ≥ p

Figure 2.3: Illustration of the set {z | F (z) ≥ p}.
The boundary of the shaded set is {z | F (z) = p}, i.e., an r−1 dimensional hypersurface
embedded in Rr.

Consider the family of sets:

H(p) = {z | F (z)− p ≥ 0}, (2.17)

depending on the parameter p (0 < p < 1). For every fixed p, the set H(p) is convex

but now we want to consider F (z) − p as a function of all variables in z and p. Since

F (z)− p is not a logconcave function of z, p, in general, we change the parameter and

look at the family of sets:

K(u) = {z | F (z) ≥ eu}. (2.18)

If F (z) > 0, z ∈ Rr, then K(u) = {z | logF (z) − u ≥ 0}. For any −∞ < u < 0, we

have K(u) 6= ∅. We have the following

Theorem 2.3.4. K(u), −∞ < u < 0 is a concave family of sets, i.e., if u1, u2 are

arbitrary negative numbers and 0 < λ < 1, then K(λu1 + (1 − λ)u2) ⊃ λK(u1) + (1−

λ)K(u2).

Proof. Let z1 ∈ K(u1), z2 ∈ K(u2). Then

F (λz1 + (1− λ)z2) ≥ (F (z1))λ(F (z2))1−λ

≥ (eu1)λ(eu2)1−λ = eλu1+(1−λ)u2 ,
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which proves that

λz1 + (1− λ)z2 ∈ K(λu1 + (1− λ)u2).

Corollary 2.3.5. Let G be any convex subset of Rr and K(u), −∞ < u < 0 the

concave family of sets defined in (2.18) with a logconcave distribution function F . Then

K(u) ∩G, −∞ < u < 0 is a concave family of sets.

Theorem 2.3.2 implies

Theorem 2.3.6. Let f(z), z ∈ Rr be any logconcave function. Then∫
K(u)

f(z)dz

is a logconcave function of u ∈ (−∞, 0). In other words, the function∫
F (z)≥p

f(z)dz

is logconcave in log p.

Definition 2.3.2. Two random variables X and Y defined on the same probability

space (Ω,F , P ) are said to be comonotone, if for all ω1, ω2 ∈ Ω,

[X(ω1)− Y (ω1)][X(ω2)− Y (ω2)] ≥ 0 a.s.

We are now ready to state properties of MVaRp and MCVaRp.

Theorem 2.3.7. Let X,Y ∈ Rr be random vectors on the same probability space. Then

we have the following properties:

(1) MVaRp is translation-equivariant: MVaRp(X+c) = MVaRp(X)+c, where c ∈ Rr.

(2) MVaRp is positively homogeneous: MVaRp(cX) = cMVaRp(X), where c ∈ R+.

(3) {z | P (−X ≥ z) ≥ p and it does not hold for any y ≥ z, y 6= z} = −MVaRp(X).

(4) MVaRp is monotonic w.r.t. the first order stochastic dominance, i.e.:

X �(1) Y implies Dp(X) ⊃ Dp(Y )
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(5) If Xi and Yi are comonotone, X,Y have independent components, continuous and

increasing distribution functions, then

MVaRp(X + Y ) =




VaRα1 (X1)

...

VaRαr (Xr)

 +


VaRα1 (Y1)

...

VaRαr (Yr)

 , α1 . . . αr = p, 0 < αi < 1, i = 1, . . . , r

 .

(6) For any X and 0 < p < 1, MVaRp(X) is bounded from below.

Proof. The proofs of (1), (2) and (4) are simple and therefore omitted.

(3)

{z | P (−X ≥ z) ≥ p and there is no y ≥ z, y 6= z such that P (−X ≥ y) ≥ p}
= {z | P (X ≤ −z) ≥ p and there is no y ≤ −z, y 6= −z such that P (X ≤ y) ≥ p}
= −MVaRp(X).

(2.19)

It can also be written as

−MVaRp(X) = {z | P (−Xi < zi, for at least one i = 1, . . . , r) < 1− p

and there is no y ≥ z, y 6= z such that

P (−Xi < yi, for at lest one i = 1, . . . , r) < 1− p}.
(2.20)

(5) If X has independent components and continuous and increasing distribution

functions, then

MVaRp(X) = {u | ui = VaRα1(Xi)αi, α1 · · ·αr = p, 0 < αi < 1, i = 1, . . . , r}.

We have the equation

MVaRp(X + Y ) = {u | FXi+Yi(ui) = αi, α1 · · ·αr = p, 0 < αi < 1, i = 1, . . . , r}.

Since Xi and Yi are comonotone, i = 1, . . . , r, it follows that

ui = VaRαi(Xi) + VaRαi(Yi), i = 1, . . . , r

which implies (5).

(6) For every z ∈ Rr we have the inequality Fi(zi) ≥ F (z1, . . . , zr), hence F (z1, . . . , zr) ≥

p implies that Fi(zi) ≥ p. Since F (VaRp(X1), . . . ,VaRp(Xr)) ≥ p, it follows that

Fi(VaRp(Xi)) ≥ p and VaRp(Xi) ≥ F−1
i (p), i = 1, . . . , r.
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Theorem 2.3.8. Let X,Y ∈ Rr be r-component random variables with finite expecta-

tions. Then MCVaRp exhibits the following properties:

(1) MCVaRp is translation-equivariant: MCVaRp(X + c) = MCVaRp(X) + c.

(2) MCVaRp is positively homogeneous: MCVaRp(cY ) = cMCVaRp(Y ), c ∈ R+.

(3) MCVaRp is subadditive when X,Y are continuously distributed and all components

in X and Y are independent, i.e., we have the inequality

MCVaRp(X + Y ) ≤ MCVaRp(X) + MCVaRp(Y ).

(4) If the components of X = (X1, . . . , Xr) are independent and have continuous

distributions with logconcave p.d.f.’s, then MCVaRp(X) is logconcave in log p, for

p ≥ p0, where p0 is a probability (0 < p0 < 1) such that VaRp(Xi) ≥ 0, i =

1, . . . , r.

Remark 2. We can think, from Property (3) of MCVaR, about both cases of “good”

and “bad” corporate M&A (Mergers and Acquisitions) deals. From a risk management

perspective, Property (3) indicates that not all M&A deals would be successful, i.e.,

for some “bad” M&A deals, risk would not be reduced, since MCVaRp is not always

subadditive. More detailed explanation is presented in Remark 5.

Proof. Let us recall the following equation:

MCVaRp(X) = E(ψ(X) | X /∈ Dp)

=
1

1− P (X ∈ Dp)

(
r∑
i=1

λimi −
r∑
i=1

λiE(Xi| X ∈ Dp)P (X ∈ Dp)

)
,

(2.21)

where mi = E(Xi) for i = 1, . . . , r, ψ(X) =

r∑
i=1

λiXi and

r∑
i=1

λi = 1, λi ≥ 0 for

i = 1, . . . , r.
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(1) Let D′p =
⋃

s′∈MVaRp(X+c)

(s′ + Rr−), Dp =
⋃

s∈MVaRp(X)

(s + Rr−). Then we have the

equations:

MCVaRp(X + c) = E(ψ(X + c) | X + c /∈ D′p)

= E(ψ(X) | X + c /∈ D′p) +

r∑
i=1

λici

= E(ψ(X) | X /∈ Dp) +

r∑
i=1

λici

= MCVaRp(X) + c.

(2.22)

(2) If we use the notations Dp, D
′
p with s =

s′

c
, then we derive:

MCVaRp(cX) = E(ψ(cX) | cX /∈ D′p)

= E(cψ(X) | cX /∈ D′p)

= cE(ψ(X) | X /∈ Dp)

= cMCVaRp(X).

(2.23)

The third equality holds since it can easily be seen that cX /∈ D′p is equivalent to

X /∈ Dp, where D′p and Dp are defined as above. If we use the second property of

MVaR then we can obtain the following equations:

cX /∈ D′p =
⋃

s′∈MVaRp(cX)

(s′ +Rr−)

⇔ cX /∈ D′p =
⋃

s′∈cMVaRp(X)

(s′ +Rr−)

⇔ X /∈
⋃

s′
c
∈MVaRp(X)

(
s′

c
+Rr−)

⇔ X /∈ Dp =
⋃

s∈MVaRp(X)

(s+Rr−), s =
s′

c
.

(2.24)

(3) First we remark that if Z = (Z1, . . . , Zr) is a continuously distributed random

vector and Z1, . . . , Zr are independent, then P (Z ∈ Dp) is independent of the

distribution of Z. In fact, let Fi be the c.d.f. of Zi, i = 1, . . . , r. Then we have

P (Z ∈ Dp) = P (F1(Z1) · · ·Fr(Zr) ≥ p) = P (U1 · · ·Ur ≥ p)

= P (− logU1 − · · · − logUr ≤ − log p) =

∫ − log p

0

zr−1e−e

(r − 1)!
dz,

(2.25)
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where U1, . . . , Ur are independent random variables, uniformly distributed in

(0,1). Hence, the numerator counts in the second equation of (2.15), only. We

may disregard the linear terms and it is enough to look only at E(X1 | X /∈
DX), E(X2 | X /∈ DX

p ), E(Y1 | Y /∈ DY
p ), E(Y2 | Y /∈ DY

p ), E(X1 + Y1 | X + Y /∈
DX+Y
p ), E(X2 + Y2 | X + Y /∈ DX+Y

p ), where

DX
p =

⋃
s∈MVaRp(X)

(s+Rr
−), DY

p =
⋃

t∈MVaRp(Y )

(t+Rr
−), DX+Y

p =
⋃

u∈MVaRp(X+Y )

(u+Rr
−).

It is enough to prove that

E(X1 + Y1 | X + Y /∈ DX+Y ) ≤ E(X1 | X /∈ DX) + E(Y1 | Y /∈ DY ), (2.26)

E(X2 + Y2 | X + Y /∈ DX+Y ) ≤ E(X2 | X /∈ DX) + E(Y2 | Y /∈ DY ). (2.27)

If we multiply the inequalities (2.26), (2.27) by -1 and add them, then by (2.15)

and the fact that P (X /∈ DX) is independent of the random variable, the convexity

proof of MCVaR will be complete.

Proof. Proof of (2.26) (proof of (2.27) is the same):

E(X1 +Y1 |X+Y /∈ DX+Y ) = E(X1 +Y1 |FX1+Y1(X1 +Y1)FX2+Y2(X2 +Y2) ≥ p).

(2.28)

Note that X1 + Y1 and X2 + Y2 are independent

FX1+Y1(X1 + Y1) ∼ U1,

FX2+Y2(X2 + Y2) ∼ U2.

(2.29)

It follows that (2.28) is further equal to

E(X1 + Y1 | FX1+Y1(X1 + Y1) ≥ p

U2
). (2.30)

Incidentally we mention that if V is any random variable, then

E(V | FV (V ) ≥ q) =

∫∞
q [1−G(v)]dv

1−G(q)
+ q, (2.31)

where G is c.d.f. of V , and this, as a function of q is increasing.
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Let δ > 0 and introduce the notations:

A =

∫ ∞
q+δ

[1−G(v)]dv, B = 1−G(q + δ).

Then we have:∫∞
q+δ[1−G(v)]dv

1−G(q + δ)
+ q + δ −

∫∞
q [1−G(v)]dv

1−G(q)
− q

= δ +
A(B +G(q + δ)−G(q))−

(
A+

∫ q+δ
q (1−G(v))dv

)
B

(1−G(q + δ))(1−G(q))

= δ +
A(G(q + δ)−G(q))−

∫ q+δ
q (1−G(v))dv B

(1−G(q + δ))(1−G(q))

= δ +
A

1−G(q + δ)
− A

1−G(q)
−
∫ q+δ
q (1−G(v))dv

1−G(q)

≥ δ −
∫ q+δ
q (1−G(v))dv

1−G(q)

≥ δ − δ(1−G(q))

1−G(q)

= 0.

(2.32)

This implies that

E(X1 +Y1 | FX1+Y1(X1 +Y1) ≥ p

U2
) ≤ E(X1 +Y1 | FX1+Y1(X1 +Y1) ≥ p). (2.33)

In the same way, we have

E(X2 +Y2 | FX2+Y2(X2 +Y2) ≥ p

U1
) ≤ E(X2 +Y2 | FX2+Y2(X2 +Y2) ≥ p) (2.34)

and the assertion is proved.

A simple counterexample of Property (3) in the general case

Suppose that the random vectors X,Y ∈ R2 have the following possible values

with probability 0.25 for each point:

X = {(1.1, 4.4)T , (2, 1)T , (2, 8)T , (8, 4)T } and Y = {(1, 1)T , (2, 2)T , (3, 3)T , (4, 4)T },
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as depicted in Figure 2.4.

At p = 0.75, MVaRp(X) = {(2, 8)} and MVaRp(Y ) = {(3, 3)}. E(X1) =

3.275, E(X2) = 4.35 and E(X11X∈Dp) = 1.275, E(X21X∈Dp) = 3.35. Let λ1 =

λ2 = 0.5. Plugging in those values into MCVaR formulation (2.15), MCVaRp(X) =

6. For the random vector Y , MCVaRp(Y ) = 4 using E(Y1) = E(Y2) = 2.5,

E(Y11Y ∈Dp) = E(Y21Y ∈Dp) = 1.5 and λ1 = λ2 = 0.5. Then MCVaRp(X)+

MCVaRp(Y ) = 10.

Let Z = X+Y . Then Z1 =



2.1 with p = 0.252

3 with p = (0.5)(0.25)

3.1 with p = 0.252

4 with p = (0.5)(0.25)

4.1 with p = 0.252

5 with p = (0.5)(0.25)

5.1 with p = 0.252

6 with p = (0.5)(0.25)

9 with p = 0.252

10 with p = 0.252

11 with p = 0.252

12 with p = 0.252

, Z2 =



2 with p = 0.252

3 with p = 0.252

4 with p = 0.252

5 with p = 2× 0.252

5.4 with p = 0.252

6 with p = 0.252

6.4 with p = 0.252

7 with p = 0.252

7.4 with p = 0.252

8 with p = 0.252

8.4 with p = 0.252

9 with p = 0.252

10 with p = 0.252

11 with p = 0.252

12 with p = 0.252

.

X1, Y1

X2, Y2

p1
p2

p3

p4

p2

p4
p1

p3

0

Figure 2.4: A counterexample of MCVaR Property (3): subadditivity, in the general
case.
Each node of p1, p2, p3, p4 has probability 0.25. The length of each grid element is 1.
The rectangle-nodes are the possible values of X and the circle-nodes are that of Y ;
X = {(1.1, 4.4)T , (2, 1)T , (2, 8)T , (8, 4)T } and Y = {(1, 1)T , (2, 2)T , (3, 3)T , (4, 4)T }. At
the probability level p = 0.75, MCVaRp(X) = 6 and MCVaRp(Y ) = 4.



22

X1 + Y1

X2 + Y2
z(1)

z(2)
z(3)
z(4)z(5)

0

Figure 2.5: Illustration of MVaRp(Z), where Z = X + Y.
The length of each grid element is 1. Let Z = X + Y , Z ∈ R2. The
points z(i), i = 1, . . . , 5 are the elements of MVaRp(Z), i.e., MVaRp(Z) =
{(6, 12), (9, 11), (10, 10), (11, 9), (12, 8.4)}. Under the probability level p = 0.75,
MCVaRp(Z) = 11.

At p = 0.75, we have MVaRp(Z) = {(6, 12), (9, 11), (10, 10), (11, 9), (12, 8.4)},

since FZ(6, 12) = FZ(12, 8.4) = 0.75, FZ(9, 11) = FZ(11, 9) = 0.7617875 and

FZ(10, 10) = 0.765625 as described in Figure 2.5.From a simple calculation, we

get P (Z ∈ Dp) = 0.9609375, E(Z1) = 5.775, E(Z2) = 6.85, E(Z11Z∈Dp) =

5.3453125, E(Z21Z∈Dp) = 6.4203125 and let λ1 = λ2 = 0.5. Plugging in those

values into MCVaR formulation (2.15), we obtain MCVaRp(Z) = 11. Thus,

MCVaRp(Z) = 11 > 10 =MCVaRp(X)+MCVaRp(Y ) and this is the counterex-

ample of Property(3) of MCVaR in the general case.

(4) Since P (X ∈ Dp) does not depend on the distribution of X, it is enough to

prove that ∫
F1(z1)···Fr(zr)≥p

ψ(z)f(z)dz (2.35)

is logconcave in log p, for p ≥ p0. Since λi > 0, i = 1, . . . , r, the function ψ(z)

and also ψ(z)f(z) is logconcave in {z | z ≥ 0}. On the other hand, if p ≥ p0, then

{z | F1(z1) · · ·Fr(zr) ≥ p} ⊂ {z | z ≥ (VaRp(X1), . . . ,VaRp(Xr))} ⊂ {z | z ≥ 0}.

(2.36)

The rest of the proof is the same as the proof of Theorem 2.3.4.
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Remark 3. (Relationship between VaR and MVaR) Let us define


z1

...

zr


∣∣∣ P (ξ1 ≤ z1, . . . , ξr ≤ zr) ≥ p

 = Dc
p(ξ) ⊂ Rr, ξ =


ξ1

...

ξr

 ,




z1

...

zk


∣∣∣ P (ξ1 ≤ z1, . . . , ξk ≤ zk) ≥ p

 = Dc
p(η) ⊂ Rk, η =


ξ1

...

ξk

 , k < r.

(2.37)

If we create a cylinder set out of Dc
p(η) in such a way that we take


z1

...

zr


∣∣∣


z1

...

zk

 ∈ Dc
p(η)

 = Dr
p
c(η), k < r, (2.38)

then we have the relation

Dc
p(ξ) ⊂ Dr

p
c(η). (2.39)

It is true that the projection of MVaRp(X) to a space of a smaller number of components

of X, i.e., as before in (2.37) , from Rr to Rk, then the lower bound of the projection

in Rk of MVaRp(X) is equal to MVaRp((X1, . . . , Xk)
T ). The projection of MVaR is

illustrated in Figures 3.4 and 2.7. In Figure 3.4, for a random vector X ∈ R2, the

sets {z | z ≥ VaRp(X1)} and {z | z ≥ VaRp(X2)} are closures of the projections of

MVaRp(X) onto the horizontal and vertical axes, respectively. The same sets are the

closures of the projections of Dc
p(X). In Figure 2.7, for a random vector X ∈ R3, we

illustrate a boundary of the set {(z1, z2, z3)T | (z1, z2)T ≥ MVaRp(X1, X2)}. The set

{z ∈ R2 | z ≥ MVaRp(X1, X2)} is the closure of the projection of Dc
p(X) onto (X1, X2)-

plane and also the closure of the projection of MVaRp(X) onto the same plane.

Let a random vector X ∈ Rr denote losses from investment in a composite of port-

folios, where each component Xi, i = 1, . . . , r is just a single portfolio. Then we know

that the unfavorable set Dc
p(X) is only a part of {z ∈ Rr | zi ≥ VaRp(Xi), i = 1, . . . , r}.

It has practical meaning: if we have several portfolios put together in the random vector

X, then a single portfolio may signal an unfavorable event, i.e., the realized value of Xi
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is greater than VaRp(Xi), while X is still in the favorable set Dp(X), i.e., there is no

such signal for X, the composite of individual portfolios.

X1

X2

VaRp(X1)

VaRp(X2)

Figure 2.6: Projection of MVaRp((X1,X2)T) from R2 onto the space of X1, X2 ∈ R.
The points VaRp(X1) and VaRp(X2) are the lower bounds of the projection of
MVaRp(X), X = (X1, X2)T ∈ R2, onto the space of X1, X2 ∈ R respectively.

X1

X2

X3

0

VaRp(X1)

VaRp(X2)

Figure 2.7: Projection of MVaRp((X1,X2,X3)T) from R3 onto the space of
(X1,X2)T ∈ R2.
The shaded surface is the MVaRp((X1, X2)T ), which is a cylinder set of the lower bound
of the projection of MVaRp(X), X = (X1, X2, X3)T ∈ R3, onto the space of (X1, X2)T ∈
R2.
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2.4 Calculation of MCVaR

2.4.1 The Case of a Continuous Distribution

Assume that a random vector Z has continuous distribution, its p.d.f. and c.d.f. are

fZ(z) and FZ(z), respectively, where Z = (z1, . . . , zr)
T . Then

MCVaRp(Z) = E(λTZ | FZ(Z) ≥ p)

=

∫
. . .

∫
Dcp

(λ1z1 + · · ·+ λrzr)fZ(z1, . . . , zr) dz1 . . . dzr∫
. . .

∫
Dcp

fZ(z1, . . . , zr) dz1 . . . dzr

,
(2.40)

where Dc
p = {z | FZ(z) ≥ p}.

If fZ(z) is a log concave function, then so is FZ(z) (see Prékopa (1995)) and the set

Dc
p is convex. Its boundary is a convex surface that can be represented in the form of

a function provided that no coordinate axis is a supporting line of Dc
p. In this case we

can take any r − 1 variables out of z1, . . . , zr, the remaining variable will be a function

of them and this function uniquely describes the surface of Dc
p (see Busemann (2008)).

The set Dc
p can then be represented as

Dc
p = {(z1, . . . , zr) : VaRp(Z1) < z1, l1(z1) < z2, l2(z1, z2) < z3, . . . , lr−1(z1, . . . , zr−1) < zr},

(2.41)

where lk(z1, . . . , zk)’s are k-variate lower bound functions, k = 1, . . . , r − 1 and l1(z1)

is continuous on the domain {VaRp(Z1) < z1}, l2(z1, z2) is continuous on the 2-

dimensional domain {VaRp(Z1) < z1, l1(z1) < z2}, · · · , lr−1(z1, z2, . . . , zr−1) is con-

tinuous on the “r-1”-dimensional domain {VaRp(Z1) < z1, l1(z1) < z2, l2(z1, z2) <

z3, . . . , lr−2(z1, z2, . . . , zr−2) < zr−1}. Then (2.40), together with (2.41) can be written

as

MCVaRp(Z) =

∫ ∞
VaRp(Z1)

∫ ∞
l1

. . .

∫ ∞
lr−2

∫ ∞
lr−1

(λ1z1 + · · ·+ λrzr)fZ(z1, . . . , zr) dzrdzr−1 . . . dz2dz1∫ ∞
VaRp(Z1)

∫ ∞
l1

. . .

∫ ∞
lr−2

∫ ∞
lr−1

fZ(z1, . . . , zr) dzrdzr−1 . . . dz2dz1

. (2.42)

Each lower bound of the integrals in (2.42) represents MVaRp on its corresponding

multidimensional space, i.e.,

{(z1, . . . , zr)
T | zr = lr−1(z1, . . . , zr−1)} = MVaRp((Z1, . . . , Zr)

T ),

{(z1, . . . , zr−1)T | zr−1 = lr−2(z1, . . . , zr−2)} = MVaRp((Z1, . . . , Zr−1)T ),

...

{(z1, z2)T | z2 = l1(z1)} = MVaRp((Z1, Z2)T ).

(2.43)
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Generally, there is no closed form of the quantile function for a multivariate dis-

tribution. Thus, the functions of lower bounds in the set Dc
p of (2.41), i.e., the lower

limits of the integrals of (2.42) can be constructed by some numerical methods, e.g.,

multivariate nonlinear approximation. For various methods of multivariate function

fitting, we refer the readers to related books and literature (see, e.g., (Atkinson, 1988),

(Gasca and Sauer, 2000), (Sauerbrei et al, 2006), (Strang, 2007), etc.).

We generate a multidimensional grid of equally spaced points in the following set:

{(z1, . . . , zr)T : zk ∈ Ik for k = 1, . . . , r}, where Ik = [VaRp(Zk), x such that FZk
(x) ≈ 1].

(2.44)

Then we generate a collection of the closest points to the MVaRp(Z) = {z | FZ(z) = p}.

By a nonlinear approximation based on the collection of such points, functions of lower

bounds in the set Dc
p of (2.41) can be constructed. This is followed by (2.42), the

calculation of MCVaR.

Two numerical examples of recent finance market data are presented. The type of

financial securities is exchange-traded funds (ETFs), which can be regarded as mutual

funds that can be bought and sold just like common stocks, i.e. exchange-traded prod-

ucts. We use 6 months of time period from February 15, 2012 to August 14, 2012 for

the calculation of MCVaR with probability levels p = 0.80, p = 0.90, p = 0.95 and

p = 0.99. From Yahoo Finance, online finance portal, we download the data of daily

closing prices for the time period of 6 months from February 15, 2012 to August 14,

2012.

We want to show, by Examples 1 and 2, how MCVaR works on a set of “stochasti-

cally dependent” random variables. In Example 1 we have two “positively” correlated

funds: Fidelity Nasdaq Composite Index Tracking (ONEQ) ETF and Vanguard S&P

500 (VOO) ETF that closely resemble two of the US major indices, Nasdaq and S&P

500, respectively. For Example 2, we select Deutsche Bank US Dollar Index Bullish

(UUP) ETF which tracks the performance of the Deutsche Bank Long US Dollar Fu-

tures index, while keeping Fidelity Nasdaq Composite Index Tracking (ONEQ) ETF,

in order to see how MCVaR measures a risk on the set of index funds “negatively”

correlated with each other.
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Example 1 (Positively correlated two ETFs). We choose two ETFs: Fidelity Nas-

daq Composite Index Tracking (ONEQ) ETF and Vanguard S&P 500 (VOO) ETF,

“positively” correlated, as in Figure 2.8.

Figure 2.8: Basic Chart of Fidelity Nasdaq ETF and Vanguard S&P 500 ETF.
Over 6 months from February 15 2012 to August 14 2012, it is a basic chart of Fidelity
Nasdaq Composite Index Tracking (ONEQ) ETF and Vanguard S&P 500 (VOO) ETF
from Yahoo Finance.

Initial prices per share on February 15, 2012 are $115.02 for ONEQ, $61.56 for

VOO. Assume that we have total available amount of $1,000,000 for the investment

which is intended for the equal investment in each kind, i.e. $500,000 each. However,

since there is no fractional shares for those securities in real financial market, the initial

investment is $499,991.94 and $499,990.32 for ONEQ and VOO, respectively. The

corresponding number of shares is 4,347 for ONEQ and 8,122 for VOO. We manipulate

the data of daily closing prices into daily losses from the following equation:

Loss =
initial investment - (number of shares× price per share)

initial investment
. (2.45)

Let X1, X2 denote the random variables of losses from an investment in Fidelity

Nasdaq Composite Index Tracking (ONEQ) ETF and Vanguard S&P 500 (VOO) ETF,

respectively. Each is assumed normally distributed. The random vector X = (X1, X2)T

has a bivariate normal distribution with parameters E(X1) = µx1 = −0.01185, σx1 =
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Figure 2.9: Multivariate Value-at-Risk, the quantile function at the probability levels
p = 0.95 and p = 0.99.
At probability level p = 0.95 for LHS and p = 0.99 for RHS, over 6 months of time
period, MVaRp(X) is well approximated by polynomial fitting in the sense of the least-
squares (dotted curve). The random vector has components of losses from the invest-
ment in Fidelity Nasdaq Composite Index Tracking (ONEQ) ETF and Vanguard S&P
500 (VOO) ETF from Yahoo Finance. The piecewise linear line (looks like a curve) is
the set of line segments between the points (x1, x2) such that FX(x1, x2) = p.

0.02956, E(X2) = µx2 = −0.01439, σx2 = 0.02477 and ρ = 0.95139. We calculate

MCVaRp(X) = E(λTX | FX(X) ≥ 0.95),where FX(x) = P (X ≤ x)

≈

∫ ∞
VaRp(X1)

∫ ∞
l(x1)

(λ1x1 + λ2x2)fX(x1, x2) dx2dx1∫ ∞
VaRp(X1)

∫ ∞
l(x1)

fX(x1, x2) dx2dx1

≈

∫ µx1+7σx1

VaRp(X1)

∫ µx2+7σx2

l(x1)
(λ1x1 + λ2x2)fX(x1, x2) dx2dx1∫ µx1+7σx1

VaRp(X1)

∫ µx2+7σx2

l(x1)
fX(x1, x2) dx2dx1

,

(2.46)

where fX(x) and FX(x) denote bivariate normal p.d.f. and c.d.f., respectively; λ1 =

λ2 = 1/2 and

l(x1) = −12407756274.6875x7
1 + 5103841979.8231x6

1 − 893105499.6990x5
1+

86172769.9900x4
1 − 4951126.6304x3

1 + 169402.1044x2
1 − 3196.2936x1 + 25.6869,

(2.47)

with domain of {VaRp(X1) ≤ x1 ≤ µx1 + 7σx1}, which is simply constructed by the

use of Matlab “polyfit” function fitting the polynomial in the sense of the least squares.

We used the same upper bounds µxi + 7σxi , i = 1, 2 for the integrals in (2.46) since

P (Xi ≥ E(Xi)+7σxi) = 0.000000019 which is small enough. At p = 0.95 and p = 0.99,
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the p-quantile set {(x1, x2)T | x2 = l(x1)} ≈ MVaRp((X1, X2)T ) is illustrated in Figure

2.9.

From (2.46), we obtain MCVaRp(X) = 0.00048388, and it means that $483.88 is

the expected loss amount beyond the MVaRp(X) at probability level p = 0.95. In other

words, that amount of loss is expected to exceed at least one element in MVaR with

p = 0.95. With more critical probability level p = 0.99, we approximate MVaRp(X) as

in Figure 2.9 and calculate the value of MCVaRp(X) = 0.00082815, i.e., we can expect

$828.15 of loss from the investment at probability level p = 0.99. Note that MCVaRp(X)

at probability level p = 0.99 is clearly larger than that at p = 0.95.

Example 2 (Negatively correlated two ETFs). While keeping Fidelity Nasdaq Com-

posite Index Tracking (ONEQ) ETF, we replace S & P 500 ETF with Deutsche Bank

US Dollar Index Bullish (UUP) ETF, which is “negatively” correlated to Nasdaq ETF.

As we observe in Figure 2.10, the two index funds do not move in the same directions.

Figure 2.10: Basic Chart of Deutsche Bank US Dollar Index ETF and Fidelity Nasdaq
ETF.
Basic chart over 6 months of Deutsche Bank US Dollar Index Bullish (UUP) ETF and
Fidelity Nasdaq Composite Index Tracking (ONEQ) ETF from Yahoo Finance.

Initial prices per share on February 15, 2012 are $115.02 for ONEQ, $22.21 for

UUP. Like the previous example, we assume that we have total available amount of
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$1,000,000 for the investment which is intended for the equal investment in each kind,

i.e. $500,000 each. And due to no fractional shares for those securities in real financial

market, the initial investment is $499,991.94 and $499,991.52 for ONEQ and UUP,

respectively. The corresponding number of shares is 4,347 for ONEQ and 22,512 for

UUP. Again, we manipulate the data of daily closing prices into daily losses using the

equation (2.45). Let Y1, Y2 denote the random variables of losses from an investment

in Fidelity Nasdaq Composite Index Tracking (ONEQ) ETF and Deutsche Bank US

Dollar Index Bullish (UUP) ETF, respectively. Each is assumed normally distributed.

The random vector Y = (Y1, Y2)T have a bivariate normal distribution with parameters

µy1 = −0.01185, µy2 = −0.00875, σy1 = 0.02956, σy2 = 0.01705 and ρ = −0.70933.
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Figure 2.11: Multivariate Value-at-Risk, the quantile function at the probability levels
p = 0.95 and p = 0.99.
At probability levels p = 0.95 for LHS and p = 0.99 for RHS, over 6 months of time
period, MVaRp(Y ) is well approximated by polynomial fitting in the sense of the least-
squares (dotted curve). The random vector has components of the losses from the in-
vestment in Deutsche Bank US Dollar Index Bullish (UUP) ETF and Fidelity Nasdaq
Composite Index Tracking (ONEQ) ETF from Yahoo Finance. The piecewise linear
line (looks like a curve) is the set of line segments between the points (y1, y2) such that
FY (y1, y2) = p.

With MVaRp(Y ) of probability level p = 0.95, depicted in LHS of Figure 2.11, we

calculate the following:

MCVaRp(Y ) ≈

∫ µy1+7σy1

VaRp(Y1)

∫ µy2+7σy2

l(y1)
(λ1y1 + λ2y2)fY (y1, y2) dy2dy1∫ µy1+7σy1

VaRp(Y1)

∫ µy2+7σy2

l(y1)
fY (y1, y2) dy2dy1

, (2.48)
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where fY (y) denote bivariate normal p.d.f., λ1 = λ2 = 1/2 and

l(y1) = −7207383.7882y7
1 + 5413617.7299y6

1 − 1703609.1254y5
1+

290811.0271y4
1 − 29061.2545y3

1 + 1700.3294y2
1 − 54.01701y1 + 0.74111,

(2.49)

with domain of {VaRp(Y1) ≤ y1 ≤ µy1 + 7σy1}, constructed by the use of Matlab

“polyfit” function. In Figure 2.11, for both probability levels p = 0.95 and p = 0.99,

{(y1, y2)T | y2 = l(y1)} ≈ MVaRp((Y1, Y2)T ) is illustrated.

The result is MCVaRp(Y ) = 0.00040766, which means $407.66 is the expected

amount of loss beyond the MVaRp(Y ) with probability level p = 0.95. At probability

level p = 0.99, we obtain MCVaRp(Y ) = 0.00060555, i.e. $605.55 is the expected

amount of loss beyond MVaRp(Y ). We have conducted both Examples 1 and 2 with

probability levels: p = 0.8, 0.9, 0.95, 0.99 and summarized in Table 3.1 for an easy and

quick comparison.

Table 2.1: Summary of MCVaR of different stochastic dependence relationship at vari-
ous probability levels.

Nasdaq and S&P 500 (ρ = 0.9510393) Nasdaq and US currency (ρ = −0.7093342)
p-levels MCVaR P (X ∈ Dc

p) MCVaR P (Y ∈ Dc
p)

p = 0.8 0.00020031396148 0.15378401420764 0.00010897751748 0.00010152096654
p = 0.9 0.00033556530624 0.07132564927678 0.00020802596277 0.00000159763343
p = 0.95 0.00048387995078 0.03287958274500 0.00040766191359 0.00000002176898
p = 0.99 0.00082775999651 0.00477476826419 0.00060555466408 0.00000000000078

As in Table 3.1, the set of assets with negative correlation has a lower level of risk at

each probability level. We also observe that, for the set of negatively correlated assets,

the chance being beyond the MVaR is much smaller than the case of positive correlation

among assets. That is the power of low-correlation investment. Stochastic dependence

structure among assets must be taken into account and that is one of the great features

of desirable multivariate risk measures. It is shown that MCVaR can be used as a risk

measure on correlated assets.

Remark 4. In the multivariate case it is reasonable to choose the value of p smaller

than what we choose in the univariate case and it may depend on the number of com-

ponents of a random vector.
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Remark 5. (Corporate M&A (Mergers and Acquisitions)) Adequate measure of poten-

tial risk in a corporate M&A is essential. This is one of the most important factors

in analyzing M&A deals from a risk management perspective. Examples 1 and 2 can

also be considered as risk evaluation processes for different M&A deals. Depending on

the categorization, there are many types of risk evaluation useful for M&A deals includ-

ing strategic risk, compliance risk, operational risk, financial risk, reputation risk, etc.

Additionally, each type of risk needs to be evaluated by a suitable risk measurement.

Let us present a simple example of operational risk evaluation: suppose there are two

companies of the same size (asset-based), involved in an M&A deal, and each board of

directors wants to gauge its potential risk. Company A has 5 business sectors: smart

phone, tablet PC, laptop computer, TV and digital camera, each with a total asset of

$1 billion. Let Xi, i = 1, . . . , 5 denote the random variable of operational loss from

business sectors: smart phone, tablet PC, laptop computer, TV and digital camera, re-

spectively. Company B has only 2 business sectors: display (LCD, LED panels) and

real estate with total asset $4 billion and $1 billion, respectively. Let Yj, j = 1, 2 denote

the random variable of operational loss from these two business sectors, respectively.

Let us assume Y1 and Xi for i = 1, 2, 3, 4, 5 are highly correlated and Y2 has a low

correlation with others. With given asset value of each business sector, we have weight

vectors λX = (1/5, 1/5, 1/5, 1/5, 1/5)T and λY = (4/5, 1/5)T for company A and B,

respectively.

For the potential operational risk evaluation of this M&A deal, we calculate

MCVaRp(X1, . . . , X5, Y1, Y2) = E

(
5∑
i=1

λXi Xi +

2∑
i=1

λYi Yi | H(X1, . . . , X5, Y1, Y2) ≥ p
)
,

(2.50)

where H is the c.d.f. of the random vector (X1, X2, X3, X4, X5, Y1, Y2). If the value

of (2.50) is less than the sum of (2.51) and (2.52), risk measures of Company A and

Company B, respectively:

MCVaRp(X1, . . . , X5) = E

(
5∑
i=1

λXi Xi | G(X1, . . . , X5) ≥ p
)
, (2.51)
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where G is the c.d.f. of the random vector (X1, X2, X3, X4, X5),

MCVaRp(Y1, Y2) = E

(
2∑
i=1

λYi Yi | F (Y1, Y2) ≥ p
)
, (2.52)

where F is the c.d.f. of the random vector (Y1, Y2), then it may be considered as a signal

that this M&A deal is desirable from the point of view on managing risk. Comparison

of (2.50) and the sum of (2.51) and (2.52) may serve the process of risk management

in the M&A decision-making and it is advisable to do it for several p values to have

an overview before the final decision. In the real world, the estimation of operational

risk is complex and necessitates input from subject matter experts. However, MCVaR

captures a stochastically dependent structure among correlated business sectors in M&A

deals. In this respect, MCVaR will be able to play an important role as a risk measure

in M&A analyses as well.

2.4.2 The Case of a Discrete Distribution

We use bounding schemes to obtain sharp lower and upper bounds for the probability

P (X ∈ Dp) as well as for the expectations E(Xi1X∈Dp) = E(Xi| X ∈ Dp)P (X ∈ Dp)

(see Prékopa (1988, 1990a,b, 1995, 2003)). If the lower and upper bounds are close to

each other, we can use them for approximation.

Application of the Binomial Moment Bounding Scheme

The binomial moment problem for the probability of the union of events was introduced

in Prékopa (1988). If A1, . . . , AN are arbitrary events and

Sk =
∑

1≤i1<···<ik≤N
P (Ai1 . . . Aik), k = 1, . . . ,m,

then we solve the LP’s:

min(max)
N∑
i=1

pi

subject to
N∑
i=1

(
i

k

)
pi = Sk, k = 1, . . . ,m

pi ≥ 0, i = 1, . . . , N,

(2.53)
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and where m is a fixed integer, in practice m � N . Let Wmin, Wmax designate the

optimum values, respectively. Then we have the sharp bounds, for the probability of

the union,

Wmin ≤ P
(

N⋃
i=1

Ai

)
≤ min(Wmax, 1).

If the bounds are close to each other then they can be used to approximate the prob-

ability of the union. In the above formulation we are bounding probability but the

method can be applied, in a straightforward manner, for subsets of an arbitrary set

with finite measure.

In order to obtain lower and upper bounds for MCVaR, we take the sets {u | u ≤

s(i)}, i = 1, . . . , N, the union of which is Dp and define the measure on the Borel sets

of Dp, generated by functions of the type: uif(u), u ∈ Rr. Finally we construct lower

and upper bounds for MCVaR, by the use of the obtained bounds.

Let f(u) denote the p.d.f. of the random vector X ∈ Rr. Then

P (X ∈ Dp) =

∫
X∈Dp

f(u)du, (2.54)

E(Xi1Dp) = E(Xi| X ∈ Dp)P (X ∈ Dp) =

∫
X∈Dp

uif(u)du, (2.55)

where Dp =
⋃

s∈MVaRp(X)

(s+Rr−).

The set Ai = s(i)+Rr−, i = 1, . . . , N are the orthants in Rr, so are their intersections.

The vertex of Ai1 · · ·Aik is

(
min(s

(i1)
1 , . . . , s

(ik)
1 ), . . . ,min(s(i1)

r , . . . , s(ik)
r )

)
.

Let us define kth “binomial moment” Sk as follows.

Sk =
∑

i1<···<ik

∫
Ai1 ...Aik

g(y)dy, k = 1, . . . , N. (2.56)

Example 3 (Compound Poisson Processes, Insurance Claims). Suppose that various

insurance claims occur according to independent, homogeneous Poisson processes. For

simplicity the claims are assumed to be integer valued and independent of each other
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within each claim process and of the claims in the other claim processes. In the numer-

ical example M = 4, and the types are: auto, health, home, life. The time period in

which the claims are observed is one day. Information of daily claims to an insurance

company is summarized in Table 2.2 and depicted in Figure 2.12.

Table 2.2: An insurance company’s daily claims (in $1,000) from 4 types of insurance.

ξ1: Auto: N1 ∼ Poisson(0.55), ZN1 ∼ U(1, 2); the average of each claim= $1, 500
ξ2: Health: N2 ∼ Poisson(0.12), ZN2 ∼ U(1, 3); the average of each claim= $2, 000
ξ3: Home: N3 ∼ Poisson(0.08), ZN3 ∼ U(1, 5); the average of each claim= $3, 000
ξ4: Life: N4 ∼ Poisson(0.01), ZN4 ∼ U(1, 5); the average of each claim= $3, 000

Let Ni(t) and Xi(t) designate the number of events and the total claim up to time t

in the ith process, respectively. Then

P (Ni(t) = x) =
(λit)

x

x!
e−λit, x = 0, 1, . . . ; i = 1, . . . ,M

Xi(t) = Zi1 + Zi2 + · · ·+ ZiNi(t), i = 1, . . . ,M,

(2.57)

where Zij is the jth claim amount in claim process i.

t

Claim ($1,000)

1

2

3

4

5

6

Z1

Z2

Z3
Z4

ZH1

Z1

Z2

Z3

ZHm

period 1 period m

Figure 2.12: Illustration of Compound Poisson Distributed Losses.
Hi is the number of events incurred over the period i. The unit claim size is $1, 000.

The company is concerned about the loss at probability level p = 0.9. Let fi(x) =

P (Xi(t) = x). Then, Panjer’s formula (see Bowers et al (1997)) provides us with

recursions to calculate the probabilities fi(x), x = 1, 2, . . . , i = 1, 2, 3, 4:

fi(x) =
λi
x

x∑
j=1

jpi(j)f(x− j), x = 1, 2, . . . ,

fi(0) = e−λi , i = 1, 2, 3, 4.

(2.58)
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Table 2.3: MVaRp(X) with p = 0.9, the unit claim size $1,000.
ξ1 ξ2 ξ3 ξ4
3 4 6 1
3 7 5 6
4 3 5 3
4 3 6 1
4 4 3 1
4 6 2 6
4 7 2 5
5 2 6 1
5 3 3 4
5 3 4 1
5 4 1 1
6 2 5 5
6 3 3 1
7 2 5 3

For MVaR, we obtained the following 14 p-efficient points, presented in Table 2.3.

The binomial moment bounding scheme, to obtain lower and upper bounds for

E(Xi| X ∈ Dp)P (X ∈ Dp) is:

min(max)

14∑
i=1

pi

subject to
14∑
i=1

(
i

k

)
pi = Sk, k = 1, . . . ,m

pi ≥ 0, i = 1, . . . , 14,

(2.59)

where

Sk =
∑

i1<···<ik

∫
Ai1 ...Aik

g(y)dy, k = 1, . . . ,m,

g(y) = yif(y),where y = ξ ∈ R4,

Ai = {s(i) +R4
−, s

(i) ∈ R4}, i = 1, . . . , 14

and f is the p.d.f.of the random vector X ∈ R4.

(2.60)

With m = 14, the constraints in (2.59) uniquely determine the unknowns and we obtain

the values:

E(X1| X ∈ Dp)P (X ∈ Dp) = 0.82115806,

E(X2| X ∈ Dp)P (X ∈ Dp) = 0.23898585,

E(X3| X ∈ Dp)P (X ∈ Dp) = 0.22968684,

E(X4| X ∈ Dp)P (X ∈ Dp) = 0.02975693.

(2.61)
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For the bounds of P (X ∈ Dp), we solve the LP’s with m = 14 and integrand g(y) = f(y):

min(max)

14∑
i=1

pi

subject to
14∑
i=1

(
i

k

)
pi = Sk, k = 1, . . . ,m

pi ≥ 0, i = 1, . . . , 14,

(2.62)

where

Sk =
∑

i1<···<ik

∫
Ai1 ...Aik

f(y)dy, k = 1, . . . ,m,

Ai = {s(i) +R4
−, s

(i) ∈ R4}, i = 1, . . . , 14

and f is the p.d.f.of the random vector X ∈ R4.

(2.63)

The optimum values coincide up to 8 digits and the resulting number is accepted as

approximation of P (X ∈ Dp):

P (X ∈ Dp) = 0.99832959. (2.64)

Let λi = (the amount of premium in type i)/(total premium to all types) and assume

that λi =
1

4
for i = 1, . . . , 4. Then we have

4∑
i=1

λiE(Xi|X ∈ Dp)P (X ∈ Dp) = 0.32989692. (2.65)

Simple calculation gives:

m1 = E(X1) = E(N1)E(Z1) = λ1E(Z1) = 0.55× 1.5,

m2 = E(X2) = E(N2)E(Z2) = λ2E(Z2) = 0.12× 2,

m3 = E(X3) = E(N3)E(Z3) = λ3E(Z3) = 0.08× 3,

m4 = E(X4) = E(N4)E(Z4) = λ4E(Z4) = 0.01× 3,

(2.66)

and
4∑
i=1

λimi = 0.33375. (2.67)

Plugging in the values of (2.64), (2.65) and (2.67) into (2.15), we obtain a loss amount

of 2.30666989 with the unit claim size of $1,000. The insurance company will expect
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the daily loss, i.e., the amount of total claims per day, of $2, 306.67 with probability

level 90%. Thus, we conclude that under that probability level, the insurance company

would like to collect the amount of premium at least $2, 306.67 per day for accepting the

risk, in order to make some underwriting profit.

Application of the Boolean Bounding Scheme

The Boolean bounding scheme can also be used for bounding measures of the union

of sets. Again, for the details of the Boolean bounding scheme we refer the readers to

Prékopa (2003). Let us present a LP formulation for bounding the probability of the

union, i.e., P (X ∈ Dp), the probability of the union of favorable domain. In order to

formulate the problem we introduce the notations:

aIJ =

 1, if I ⊂ J

0, if I * J, I, J ⊂ {1, . . . , n}
,

xJ = P
(( ⋂

j∈J
Aj
)
∩
( ⋂
j /∈J

Āj
))
,

pI = P
(⋂
j∈I

Aj

)
, I, J ⊂ {1, . . . , n}.

The probability pI means that all events Aj , j ∈ K occur and the probability xJ means

that all events Aj , j ∈ I occur but the other do not occur. The Boolean probability

bounding problem, or scheme for the probability of the union is the following:

min(max)
∑

∅6=J⊂{1,...,n}

xJ

subject to∑
J⊂{1,...,n}

aIJxJ = pI , I ⊂ {1, . . . , n}, |I| ≤ m

xJ ≥ 0, J ⊂ {1, . . . , n}.

(2.68)

Problem (2.68) has 1 +

m∑
i=1

(
n

i

)
equality constraints and 2n variables. If we remove

x0 and the equality constraint containing x0 (meaning that the sum of the variables is

equal to 1), then we obtain an equivalent Boolean problem, for bounding the probability



39

of the union:

min(max)
∑

∅6=J⊂{1,...,n}

xJ

subject to∑
∅6=J⊂{1,...,n}

aIJxJ = pI , ∅ 6= I ⊂ {1, . . . , n}, |I| ≤ m

xJ ≥ 0, ∅ 6= J ⊂ {1, . . . , n}.

(2.69)

We also need to introduce the notations xJi and EIi as the following:

xJi = E

(
Xi1

(⋂
j∈J Aj

)
∩
(⋂

j /∈J Āj
)) , (2.70)

EIi = E
(
Xi 1

⋂
j∈I Aj

)
, I, J ⊂ {1, . . . , n}. (2.71)

For example, let I, J ⊂ {1, 2, 3}, |I| ≤ 2. Then EIi can be described as follows.

EIi =



∫
A1

xif(x)dx∫
A2

xif(x)dx∫
A3

xif(x)dx∫
A1A2

xif(x)dx∫
A1A3

xif(x)dx∫
A2A3

xif(x)dx



, (2.72)

where f(x) is the p.d.f. of the random vector X ∈ Rr. Now we are ready to apply

Boolean bounding scheme to the same numerical data of the examples in the previous

section.

Example 4 (using the same data of Example 3 with the Boolean bounding scheme).

The following LP formulation (2.73) with m = 4, n = 14 is for P (X ∈ Dp):

min(max)
∑

∅6=J⊂{1,...,n}

xJ

subject to∑
∅6=J⊂{1,...,n}

aIJxJ = pI , ∅ 6= I ⊂ {1, . . . , n}, |I| ≤ m

xJ ≥ 0, ∅ 6= J ⊂ {1, . . . , n},

(2.73)
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where xJ = P
(( ⋂

j∈J
Aj
)
∩
( ⋂
j /∈J

Āj
))

and pI = P
(⋂
j∈I

Aj

)
, I, J ⊂ {1, . . . , n}. The

corresponding Boolean matrix is very large – the size of the matrix is 1480 × 16383

because
4∑
i=1

(
14

i

)
= 1470 and 214 − 1 = 16383.

The LP formulation (2.73) provides us with the following result:

0.99832959468795 ≤ P (X ∈ Dp) ≤ 0.99832959471865. (2.74)

Since the difference between lower and upper bounds in (2.74) is very small, let us

present the bounds as one number of 8 decimal places: P (X ∈ Dp) ≈ 0.99832959 which

is the same as (2.64). In order to calculate E(Xi| X ∈ Dp)P (X ∈ Dp), we solve the

following Boolean bounding problem again with m = 4, n = 14:

min(max)
∑

∅6=J⊂{1,...,n}

xJi

subject to∑
∅6=J⊂{1,...,n}

aIJxJi = EIi , ∅ 6= I ⊂ {1, . . . , n}, |I| ≤ m

xJ ≥ 0, ∅ 6= J ⊂ {1, . . . , n},

(2.75)

where EIi = E
(
Xi1

⋂
j∈I Aj

)
, I, J ⊂ {1, . . . , n}, and xJi = E

(
Xi1

(⋂
j∈J Aj

)
∩
(⋂

j /∈J Āj
)) ,

where Ai = {s(i) + R4
−, s

(i) ∈ R4}, which is an orthant with vertex (s
(i)
1 , s

(i)
2 , . . . , s

(i)
r )

for i = 1, . . . , 14 since we have 14 p-Level Efficient Points, as those are enumerated in

Table 2.3.

From the above LP formulation the results are obtained as follows.

0.821158068554149 ≤ E(X1| X ∈ Dp)P (X ∈ Dp) ≤ 0.821158068554182,

0.238985857588695 ≤ E(X2| X ∈ Dp)P (X ∈ Dp) ≤ 0.238985857631699,

0.229686849617116 ≤ E(X3| X ∈ Dp)P (X ∈ Dp) ≤ 0.229686849618277,

0.029756933777791 ≤ E(X4| X ∈ Dp)P (X ∈ Dp) ≤ 0.029756933782136.

(2.76)

Again, let us use numbers of 8 decimal places. Then all expectations are represented

as one number, which are the same as (2.61) in Example 3. Since all the inputs are

the same as one with binomial moment scheme, we obtain the same result that MCVaR

for an insurance company is the loss of $2, 306.67. Thus, under the probability level
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p = 0.9, the insurance company would like to collect the amount of premium at least

$2, 306.67 per day for accepting the risk.

2.5 Concluding remarks

We have explored various properties of Multivariate Value at Risk, or MVaR and Mul-

tivariate Conditional Value at Risk, or MCVaR. We have shown that many properties

enjoyed by VaR and CVaR, carry over to the multivariate risk measures. In addition we

have derived some properties of MVaR and MCVaR, based on multivariate logconcave

theory, that do not have univariate counterpart or it is trivial. As regards the convexity

of MVaR and MCVaR, none of them has that property, in general, but we have proved

the convexity of MCVaR under the assumption that the components of the random

vector are independent. We have proposed the numerical procedures to calculate or ap-

proximate MCVaR values. In case of a continuously distributed random vector we have

used approximation and numerical integration. In case of a discrete random vector we

have used the recently developed binomial moment and Boolean bounding schemes to

approximate MCVaR. The results are illustrated on real life data and it is shown how

MCVaR depends on the probability level and the correlation between the components

of the random vector, representing different portfolios.
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Chapter 3

Decision-making from a Risk Assessment Perspective for

Corporate Mergers and Acquisitions

3.1 Introduction

Mergers and acquisitions (M&A) and corporate restructuring (e.g., combining divisions,

demergers, etc.) have a significant impact on financial markets. Investment bankers

on Wall Street and in financial centers worldwide arrange M&A transactions daily, and

deals can be worth hundreds of millions, and in many of the largest cases, billions of

dollars. Total M&A deals are in excess of tens and hundreds of billions annually. We

hear of the many deals frequently, and indeed they happen almost continuously – often

hundreds per quarter (see, e.g., Ernst&Young (2013), etc.).

Granted, M&A deals make headlines, but what does this all mean to decision makers

in the involved companies? Presumably, they want to achieve a synergetic effect as a

consequence of the M&A deal. In other words, decision makers considering M&A

deals seek robust, sustainable profitability from their future business model over the

long term. To this end, corporate M&As must be analyzed in multiple ways. For

details about analyses of corporate M&As, we refer the reader to the literature (e.g.,

see Ernst&Young (2013), Rose and Frame (2011), Jaruzelski et al (2009), Gregoriou

and Renneboog (2007), Shimizu et al (2004), etc.). Prediction of cash flow, especially

in the near future, may be the most important matter for the united firm in terms

of the business’ sustainability. However, future cash flow prediction is very difficult,

especially in the early phases after M&As, because so many factors are uncertain in the

post-M&A process. In this respect, reasonable risk assessment methods should play a

key role in realistically gauging the outcomes of M&A transactions.



43

From a risk management perspective, assessment of the risk before and after pro-

posed M&A deals is instrumental in the decision-making process. This is often because

decision makers are interested in determining if the M&A deals will result in a risk

reduction, allowing for more robust operations and, in many cases, revenues. This begs

the question: How can we systematically and effectively evaluate the complex risk pro-

files of M&A deals? Would deals necessarily reduce risk? Can we think of corporate

M&A as analogous to asset diversification? If this is the case, then would it also be

cost-effective? Most research indicates that M&A transactions from 1995 to 2005 have

an overall success rate of about 50% (see, e.g., Rose and Frame (2011).), indicating that

the answers to these questions are as often “yes” as “no,” and demonstrating the need

for more sophisticated technical tools for assessing the risk/return profile.

In a broad sense, corporate M&As can be regarded as an addition of assets, since

each company has many business divisions, which, in some sense, can be viewed as

“assets.” The question arises: Is it then logically equivalent to the sum of distinct

portfolios? We would contend that it is not. First of all, for the portfolio construction,

from the standpoint of investors, there is no resistance on adding (or subtracting) assets

to (or from) the existing portfolios. In case of M&As, on the other hand, restructuring

of the business divisions will be a very difficult and demanding task, and takes quite

a long time until the proper and satisfactory functioning of the reorganized business

units.

Moreover, business divisions within a company are very strongly correlated in a

steady and sustainable way; they are communicating all the time and try to create a

more efficient network. Each business division plays its own role, and the values (or,

profit/cost profile) generated by each division have unique patterns of net profit and

loss. Assets in a portfolio are also correlated with each other, however, not as strongly

and consistently as the business units within a firm. Clearly, business divisions operate

in a timely and organized manner, i.e., responding immediately to the actions of other

divisions.
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3.2 Risk assessment methods for corporate M&As from the mathe-

matical perspective

Suppose that there is an ongoing analysis for a corporate M&A deal between Companies

X and Y, and both companies run many different businesses. Assume that there are n

and m business units in Companies X and Y , respectively. Let the random variables

Xi, i = 1, . . . , n and Yj , j = 1, . . . ,m denote losses of the associated business sectors of

Companies X and Y, respectively. Then the random vectors X = (X1, . . . , Xn) ∈ Rn

and Y = (Y1, . . . , Ym) ∈ Rm mean losses of the associated companies. Vectors are

written in row form but if they appear in matrix operations then they are written in

column form. Let ρ denote a risk measure. Then ρ(X) and ρ(Y ) are the risk measures

of Company X and Y , respectively.

For a risk evaluation process on the corporate M&A deal for companies X and Y ,

we suggest the use of the random vector (X,Y ) ∈ Rn+m, instead of the sum of random

variables, i.e., Z =
∑n

i=1Xi +
∑m

j=1 Yj . Then a potential risk measurement of the

united firm can be written as

ρ((X,Y )), (3.1)

where the random vector (X,Y ) ∈ Rn+m means the losses of the new merged entity, and

all components of the random vector (X,Y ) are loss random variables of corresponding

business sectors of a new firm after the M&A deal of Company X and Y .

The reason behind this mathematical expression in (3.1) is that after an M&A

deal the new company becomes a multi-plant firm and each business sector is still

producing the same goods or services as it did for the former individual companies.

The component of the loss random vector (X,Y ) ∈ Rn+m can be thought of losses

of corresponding business units of a multi-plant firm, immediately following an M&A

deal. It is paramount to include all remaining business units of both companies, as

each unit would maintain its operations in the critical initial period following the deal.

Although a restructuring strategy for a united firm can begin in this initial period, the

implementation necessarily takes significant time to establish integrated operations, and

the early phases of the integration process are sensitive and critical to the success of
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the M&A deal.

We know that timing is crucial in a decision-making process. A risk measurement

for a more critical period would be exceedingly valuable in setting up a suitable risk

management plan. Thus, for risk evaluation for decision-making on M&As, it would be

best to simultaneously consider all the business units individually as they were before

M&As and all operating units as a whole. This implies that the risk measure on a

random vector (X,Y ) well-suited for a decision-making processes on M&As.

As we mentioned earlier in this section, ρ(X)+ρ(Y ) and ρ((X,Y )) represent the risk

measurements before and after the M&A transaction, respectively, and their comparison

could be an important component of analysis for (in)validation of execution on the deal.

Question arises: What kind of risk measure ρ should be used here for comparison of

the values? To calculate and compare the magnitudes of risks before and after M&As,

a convex risk measure might not be suitable for the risk evaluation processes in M&A

events.

The reason for this is that a convex risk measure always indicates that the merged

company will become less risky after the event because of its subadditivity property,

no matter how badly the M&A fits the existing business models of the target and

acquiring firms. This suggests that a convex risk measure will play a limited role in

the risk evaluation processes for the decision-making on M&As. The problem of the

applicability of a subadditive risk measure for M&A transactions has already been

discussed in Kou et al (2013). In this respect, an appropriate risk evaluation method

necessitates the use of a reasonable risk measure. Many examples of bad M&A deals

strongly motivate our research on the risk evaluation processes and investigation of

suitable risk measures for corporate M&A deals.

3.3 Motivation to study a new risk measure for corporate M&As

Value-at-Risk and Conditional (or Average) Value-at-Risk are widely accepted and

used by both academics and practitioners. Value-at-Risk (VaR) has already existed in

the statistical literature since the second half of the 19th century, under the name of
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quantile or percentile. The term Value-at-Risk was introduced at the beginning of the

1990s in the financial literature. For various topics of Value-at-Risk see Jorion (2006),

Saita (2007), etc. Its multivariate counterpart turned up in the stochastic programming

literature, primarily in the works of Prékopa (1990, 1995), etc.

The term Conditional Value-at-Risk (CVaR) was introduced in Uryasev and Rock-

afellar (2000). The same notion was named Average Value at Risk (AVaR) in Föllmer

and Schied (2002). This is also called Expected Shortfall, or Tail Value at Risk. How-

ever, it had already been presented in the earlier literature in Prékopa (1973a) and

Ben-Tal and Teboulle (1986). CVaR is a coherent risk measure in the sense of Artzner

et al (1999) while VaR is generally not (see, e.g., Pflug (2000).). For more about co-

herent (or convex) risk measures, the reader is referred to Acerbi and Tasche (2001),

Szegö (2002), Frittelli and Gianin (2002), Jarrow and Purnanandam (2005), Föllmer

and Penner (2006), Ben-Tal and Teboulle (2007), Föllmer and Schied (2010), etc.

In the case of multiple correlated assets, however, it is not imperative to require

convexity for a reasonable risk measure, and indeed, it is generally misguided. There

are reasons for that, as we mentioned earlier in this section, such as bad corporate

M&A deals and poorly constructed portfolios, which may have undesirable risk-return

characteristics. For decision-making on M&As, especially from a risk management

perspective, we believe that comparison of the risks before and after the M&A deals

would be useful, since a positive decision can be made if the M&A is expected to

reduce risk, i.e., the risk of a merged firm is less than the sum of the risks of the

separate acquiring and target companies.

M&As are very complex since a number of things are involved and correlated to

each other, and thus the use of a risk measure capable of handling a multidimensional

situation may be a useful tool for the decision-making in M&As. Multidimensional set-

tings can be managed in large part by capturing the dependence structure among key

elements involved in the M&As. Risk measures for multidimensional settings have pre-

viously been studied, and we refer the reader to the recent literature (see, e.g.,Prékopa

(2012), Dentcheva and Ruszczyński (2009), Noyan and Rudolf (2013), Lee and Prékopa
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(2013), etc.) In order to deal with dependency structures among multiple correlated ob-

jects, copula approach has been developed and used for various practical applications,

including finance, risk management, etc. For the theoretical and applicable aspects

of copula, we refer the reader to Joe (1997), Embrechts et al (1999), Embrechts et al

(2001), Ané and Kharoubi (2003), Luciano et al (2004), Junker and May (2005), etc.

Although copula itself is not supported by realistic modelling procedure, a suitable

application of copula might be useful for the risk management of M&As.

However, we are especially interested in the decision-making on M&As and a decision

should be based on a suitable decision analysis process before taking action on the deal.

We believe that, from a risk management perspective, comparisons of the expected

losses from before and after M&As should be one of the decision criteria. In other

words, we not only need to handle the dependence structure of the components of

(X,Y ), but also simultaneously quantify the expected losses from before and after the

M&As in order to see if the M&As would result in a risk reduction. For this reason,

application of copula would not be suitable for our goal, although it may play a role in

the risk management in post-M&A processes.

In a Bottom-Up way of thinking, we came up with a new multivariate risk measure

which quantifies the conditional expected loss of multiple correlated assets in some un-

favorable situations, and also simultaneously incorporates stochastic dependency struc-

tures among the objects. In Section 3.6 we introduce such risk measure under the

name of the worst-case Combined Value-at-Risk (CoVaR), which is developed through

Sections 3.4 and 3.5, by a Bottom-Up approach. For decision-making on corporate

M&As, especially from a risk management perspective, an appropriate methodology

is presented in Section 3.7. Numerical examples about corporate M&As are presented

and discussed in Section 3.8.

3.4 Taking a Bottom-Up approach in the multidimensional case

Let X ∈ R be a random variable, interpreted as loss, the probability distribution

function of X: F (z) = P (X ≤ z),−∞ < z < ∞. Let Q denote the p-quantile,
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equal to VaRp(X) = F−1(p), where, by definition, F−1(p) = min{u | F (u) ≥ p}. The

event X ≤ Q (or X ≤ VaRp(X)) is preferred for large p to the event X > Q (or

X > VaRp(X)). In other words, the set {x | x ≤ Q} is favorable and its complement

{x | x > Q} is unfavorable. If X means profit, then this holds with reversed inequalities,

i.e., Loss = −Profit. For a single asset, its Value-at-Risk can be represented as a single

point on the real line as demonstrated in Figure 5.3.

X

Q = VaRp(X)

event of unfavorable realizations of Xevent of favorable realizations of X

Figure 3.1: Favorable set and its complementary set in the case of a loss random variable

If we are dealing with multiple assets jointly, then the level of loss of some of the

assets can be expressed as a set rather than a single value. For a set of multiple assets,

the level of loss is called Multivariate Value-at-Risk (MVaR) that has been known for

some time as p-quantile or p-Level Efficient Point (pLEP), or briefly p-efficient point.

The latter concept was introduced in Prékopa (1990) and further studied in Prékopa

(1995), Prékopa et al (1998), Prékopa (2012), Lee and Prékopa (2013), Boros et al

(2003). Multivariate Value-at-Risk (MVaR), the multivariate counterpart of VaR, is a

set of points, rather than a single point as it is in the univariate case.

For the construction of portfolios, however, analysis of individual financial assets

is essential, since every individual asset has its own attributes in various aspects – for

example, categorization of stocks in the market can be done by business sector (health-

care, technology, services, etc.), capitalization (large, mid, or small Cap), style (growth

or value) and many other different ways. Clearly, assets in different countries have

different characteristics, even though the assets are of the same type, since there are

various types of country risks, already reflected in the rating of assets. Furthermore,

assets can also be handled in various ways by their classes; real estates, bonds, com-

modities, etc. Examining the specific assets, followed by analysis of a set of these assets,

can be called a Bottom-Up Approach for investment.
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The same reasoning applies to corporate M&A (Mergers and Acquisitions) activi-

ties. Before taking action for the M&A integration, a clear identification of the target

company is essential. Furthermore, every relevant business sector should be closely

examined for any potential effects of the event. In this respect, the detailed M&A plan

can be made based on the Bottom-Up analysis approach to facilitate decision making.

Note that M&A is a complex process so the risk measurement is only one of the key

resources in a successful M&A integration.

Let us assume that we have a set of n different assets (or n different business sectors

in a company). Let Xk be the loss random variable of asset k, k = 1, . . . , n and p

a given probability level for asset k, k = 1, . . . , n. With the probability distribution

functions FXk the p-quantile points are Qk = F−1
Xk

(p) = VaRp(Xk), k = 1, . . . , n. Let Q

be the p-quantile vector in the following sense:

Q = (F−1
X1

(p), . . . , F−1
Xn

(p))T = (VaRp(X1), . . . ,VaRp(Xn))T . (3.2)

Let B denote the most favorable outcome of the loss random vector X ∈ Rn, i.e.,

B = {x ∈ Rn | x1 ≤ VaRp(X1), x2 ≤ VaRp(X2), . . . , xn ≤ VaRp(Xn)}. (3.3)

Also let Aj = {Xj ≤ VaRp(Xj)}, for j = 1, . . . , n. Then we can write the favorable set

B =
⋂n
j=1Aj , and its complementary is an unfavorable set Bc =

⋃n
j=1A

c
j . Both are

illustrated in Figure 3.2.

3.5 Combined Value-at-Risk

In the definition of CVaR (or AVaR), we take the expectation of X given that X >

VaRp(X) (unfavorable outcome) if X means loss, i.e., CVaRp(X) = E(X | X >

VaRp(X)). For the multivariate case (a set of multiple assets), we propose the following

Definition 3.5.1. The Combined Value-at-Risk, or CoVaR, of the loss random vector

X ∈ Rn is designated and defined, with a fixed individual probability level p, as:

CoVaRp(X) = E(ψ(X) | X /∈ B), (3.4)

where ψ is some n-variate function, B is the most favorable outcome as defined in (3.3).
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Q

Figure 3.2: 2-D illustration of the favorable set and its complement.
The unshaded region represents the most favorable set B, and the shaded region de-
scribes its complement. Q is the p-quantile point in the sense that p = P (X1 ≤
Q1, . . . , Xn ≤ Qn), Qk = VaRp(Xk), k = 1, . . . , n.

CoVaR in (3.4) can also be rewritten as

CoVaRp(X) = E

ψ(X)

∣∣∣∣∣∣ X ∈
n⋃
j=1

Acj

 , (3.5)

where Acj = {Xj > VaRp(Xj)} for j = 1, . . . , n. Note that the event
⋃n
j=1A

c
j allows for

X the entire space excluding the single orthant {x ∈ Rn | xj ≤ VaRp(Xj), j = 1, . . . , n}.

Let us define the function ψ(u), u = (u1, . . . , un)T in the following way:

ψ(u) =

n∑
i=1

λiui, (3.6)

where λi, i = 1, . . . , n can be chosen in a suitable way depending on how random vari-

ables are defined. For a risk evaluation process on corporate M&As, random variables

may be defined as losses of business units of the companies involved in the M&As. In

this case we may have λi = 1, i = 1, . . . , n in order to count each business unit once to

quantify risk of the united firm after the M&As. For measuring risk on stock portfolios,

random variables can be designated as losses of stocks. Then it would be suitable to

have λ1, . . . , λn to be integer-valued as their interpretation is the number of shares of

corresponding stocks. We may also allow negative λ values, meaning short selling. If we

want to assign weights on investment in Assets 1, . . . , n, then λ1, . . . , λn are nonnegative

constants satisfying
∑n

i=1 λi = 1. Depending on the meaning of random variables, a

function ψ(u), u ∈ Rn can be specialized in an appropriate way.
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The calculation of CoVaR in (3.5) is not simple because it is defined in the space

of the union of sets Ac1, . . . , A
c
n (shaded region in Figure 3.2). To calculate, we can use

the following equation:

E(ψ(X)) = E(ψ(X) | X /∈ B)P (X /∈ B) + E(ψ(X) | X ∈ B)P (X ∈ B), (3.7)

from which we derive:

CoVaRp(X) = E(ψ(X) | X /∈ B)

=
1

P (X /∈ B)

(
E(ψ(X))− E(ψ(X) | X ∈ B)P (X ∈ B)

)
.

(3.8)

Equation (3.8) can be written as:

CoVaRp(X) =
1

1− P (X ∈ B)

(
n∑
i=1

E(Xi)−
n∑
i=1

E(Xi| X ∈ B)P (X ∈ B)

)
. (3.9)

Since the set B is only a single-orthant in the n dimensional space (unshaded region in

Figure 3.2), the formulation of (3.9) can be calculated. The set B represents the event

of the best-case realizations of the random vector X ∈ Rn as it is illustrated as an

unshaded region in Figure 3.2. Combined Value-at-Risk (CoVaR) gauges the expected

loss amount in the set Bc, where the unfavorable events occur. Bc represents the whole

space excluding the best-case scenarios and therefore Bc is the least risky of unfavorable

events.

Let us now turn our attention to the worst-case event, the riskiest event among

all possible outcomes under a set of individual probability levels. The expected loss

amount in the worst-case event is clearly the largest, and so would cover any other

risky situation. For this reason, it may be used for the calculation of minimum (but

safe) required reserve for financial institutions, and this is our motivation in the next

section.

3.6 Combined Value-at-Risk in the worst-case event

The worst-case event should be considered in practice for various purposes: trading

operations, asset management, or any business where a short-term catastrophe could

result in complete collapse of the entity. The worst-case event will focus on a possible
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loss given that no favorable event occurs. Let W denote the worst-case event. If

a random vector X = (X1, . . . , Xn)T ∈ Rn means losses, then the event W can be

written as

W = {x ∈ Rn | xi > VaRp(Xi), i = 1, . . . , n}

= {x ∈ Rn | x > Q}, where Q = (VaRp(X1), . . . ,VaRp(Xn))T .
(3.10)

Definition 3.6.1. The worst-case CoVaR of the loss random vector X ∈ Rn is desig-

nated and defined as:

wCoVaRp(X) = E(ψ(X) | X ∈W ), (3.11)

where ψ is some n-variate function, W denotes the worst-case set as in (3.10). Let us

define the function ψ(u) as in (3.6) with λi = 1, i = 1, . . . , n. Note that the function

ψ can be specialized in various ways, depending on the characteristics of the business,

as mentioned earlier in Section 3.5.

Q

Figure 3.3: 2-D Illustration of the worst-case unfavorable set
2-D Illustration of the worst-case unfavorable set W = {x ∈ Rn | x > Q} is the shaded
region, where Q = (VaRp(X1), . . . ,VaRp(Xn))T .

The worst-case CoVaR (wCoVaR) can easily be calculated directly from the def-

inition because the set W is a single-orthant in n-dimensional space, as described in

Figure 3.3. If a random loss vector X ∈ Rn has a continuous distribution, then the
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worst-case CoVaR (wCoVaR) can be formulated as:

wCoVaRp(X) = E(ψ(X) | X ∈W ) = E(ψ(X) | X > Q)

= E(X1 + · · ·+Xn | X1 > VaRp(X1), . . . , Xn > VaRp(Xn))

=

∫ ∞
VaRp(Xn)

. . .

∫ ∞
VaRp(X1)

(t1 + · · ·+ tn)fX(t) dt1 . . . dtn∫ ∞
VaRp(Xn)

. . .

∫ ∞
VaRp(X1)

fX(t) dt1 . . . dtn

,

(3.12)

where fX is the probability density function of a random vector X ∈ Rn.

Theorem 3.6.1. For a loss random vector X = (X1, . . . , Xn) with independent com-

ponents, we have the equation,

wCoVaRp(X) = CVaRp(X1) + · · ·+ CVaRp(Xn), (3.13)

where we assume that E(Xi), i = 1, . . . , n exist.

Proof. We have the equations

wCoVaRp(X) = E
(
X1 + · · ·+Xn

∣∣∣ ⋂n
j=1A

c
j

)
=

n∑
i=1

E (Xi | Ac1 · · ·Acn)

=
n∑
i=1

E (Xi | Aci )

=
n∑
i=1

E (Xi | Xi ≥ VaRp(Xi))

=
n∑
i=1

CVaRp(Xi).

(3.14)

Note that for a univariate random variableX, wCoVaRp(X) is the same as CVaRp(X).

Theorem 3.6.2. Let X,Y ∈ Rn be random vectors with finite expectations. Then the

worst-case CoVaR (wCoVaR) exhibits the following properties:

(1) wCoVaRp is translation-invariant:

wCoVaRp(X + c) = wCoVaRp(X) + c, c ∈ R
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(2) wCoVaRp is positively homogeneous:

wCoVaRp(cX) = c× wCoVaRp(X), c ∈ R+.

(3) wCoVaRp is subadditive: wCoVaRp(X + Y ) ≤ wCoVaRp(X) + wCoVaRp(Y ),

when all 2n components in X and Y are independent.

(4) wCoVaRp is monotonic with respect to the second order stochastic dominance:

X ≺SD(2) Y implies wCoVaRp(X) ≤ wCoVaRp(Y ),

when all 2n components of X and Y are independent.

(5) wCoVaRp is additive in the sense that

wCoVaRp((X,Y )T ) = wCoVaRp(X) + wCoVaRp(Y ),

when all n+m components in X ∈ Rn and Y ∈ Rm are independent.

Proof. The proofs of (1) and (2) are simple and therefore omitted.

(3) By Theorem 3.6.1, if all the components of the random vectors are independent,

then wCoVaRp(X) =
∑n

i=1 CVaRp(Xi) and wCoVaRp(Y ) =
∑n

i=1 CVaRp(Yi).

Conditional (or Average) Value-at-Risk satisfies subadditivity, one of the coher-

ence axioms of Artzner et al (1999), which implies that
∑n

i=1 CVaRp(Xi + Yi) ≤∑n
i=1 CVaRp(Xi) +

∑n
i=1 CVaRp(Yi). Thus it can be written as follows.

wCoVaRp(X + Y ) =
∑n

i=1 CVaRp(Xi + Yi)

≤ ∑n
i=1 CVaRp(Xi) +

∑n
i=1 CVaRp(Yi)

= wCoVaRp(X) + wCoVaRp(Y ).

(4) About multivariate stochastic orders we refer the reader to the literature, e.g.,

Müller and Stoyan (2002), etc. If X is second order stochastically dominated

by Y , that is, X ≺SD(2) Y , together with the independence assumption on the

all components of X and Y , then Xi ≺SD(2) Yi, i = 1, . . . , n, which implies

CVaRp(Xi) ≤ CVaRp(Yi), i = 1, . . . , n (see Pflug (2000).). By Theorem 3.6.1, we

have wCoVaRp(X) ≤ wCoVaRp(Y ) if CVaRp(Xi) ≤ CVaRp(Yi), i = 1, . . . , n.
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(5) It is a simple consequence of Theorem 3.6.1. When all components of the random

vectors X ∈ Rn and Y ∈ Rm are independent of each other, we have

wCoVaRp((X,Y )T ) = wCoVaRp((X1, . . . , Xn, Y1, . . . , Ym)T )

=
∑n

i=1 CVaRp(Xi) +
∑m

i=1 CVaRp(Yi)

= wCoVaRp((X1, . . . , Xn)T ) + wCoVaRp((Y1, . . . , Ym)T )

= wCoVaRp(X) + wCoVaRp(Y ).

Remark 6 (Geometrical relationships between wCoVaR and VaR). For a random

vector X ∈ Rn, if the worst-case set W in (3.10) is projected onto spaces of Xj ∈

R, j = 1, . . . , n, then the lower bound of the projection onto the space of Xj ∈ R is

VaRp(Xj), j = 1, . . . , n. The projection of W is illustrated in Figure 3.4 for the 2-

dimensional case. In Figure 3.4, the sets {z | z > VaRp(X1)} and {z | z > VaRp(X2)}

are the projections of W = {x ∈ R2 | x1 > VaRp(X1), x2 > VaRp(X2)} onto the

horizontal and vertical axes, respectively. If the random vector X ∈ R2 has independent

components X1 and X2, then, by Theorem 3.6.1, the following equation holds true:

wCoVaRp(X) = CVaRp(X1) + CVaRp(X2). Figure 3.4 can be used to illustrate this.

X1

X2

VaRp(X1)

VaRp(X2)

Figure 3.4: Description of projections of the set W
Projections of the set W , i.e., the worst case outcome as in (3.10) of the loss random
vector X = (X1, X2)T , from R2 onto the space of X1, X2 ∈ R. The points VaRp(X1)
and VaRp(X2) are the lower bounds of the projection of the set W ∈ R2, onto the space
of X1, X2 ∈ R, respectively.
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Remark 7 (Individual Probability levels of wCoVaR). The probability level for a set

of multiple assets is determined by the probability levels for individual assets, as P (X ∈

W ), where W = {x | x1 ≥ VaRp(X1), . . . , xn ≥ VaRp(Xn)}. If P (X ∈ W ) is too

small (i.e., individual probability levels are large), then the wCoVaR associated with the

corresponding individual p-level would not be a useful value in decision-making. This is

because if the probability of the worst-case scenario is close to zero, then wCoVaR may

become way too large. From a practical point of view, if the wCoVaR is used for the

calculation for the reserve requirement of a financial institution, then it will result in

an excessive reserve amount, and as a consequence, a negative effect on cash flow may

occur. With this in mind, if we are dealing with a “high” dimensional case then “small”

individual probability levels should be used to obtain a reasonable risk measurement.

3.7 Decision-making via potential risk measure on corporate M&As

For decision-making on M&A deals, comparison of risk measurements before and after

the M&A deal would be useful. Let us consider the simplest case: a univariate random

variable corresponding to loss for each company, and a bivariate random vector meaning

loss for a united firm. Let the random variables X ∈ R and Y ∈ R denote losses

of Companies X and Y , respectively. Then CVaRp(X) and CVaRp(Y ) indicate the

amounts of losses of the respective Companies X and Y (i.e., the expected magnitude

of losses beyond the VaRp(X), VaRp(Y ), respectively). Suppose that M&A activity

occurs between these companies and a new merged company is formed. Now let X and

Y be random variables corresponding to losses of the business sectors X and Y of the

new firm, respectively. If these business sectors are operating totally independently,

then the risk associated with the new company should be CVaRp(X) + CVaRp(Y ): a

simple sum of the risks, by Theorem 3.6.1.

However, if these are correlated, then the risk after the M&A deal is not the same,

in general, as the simple sum of risks of the companies. In case of correlated losses from

the business sectors of X and Y of the new company, risk measurement before and after
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the deal would be of either

superadditivity: wCoVaRp

(
(X,Y )T

)
≥ CVaRp(X) + CVaRp(Y ), or

subadditivity: wCoVaRp

(
(X,Y )T

)
≤ CVaRp(X) + CVaRp(Y ).

(3.15)

Between the two cases in (3.15), the case of subadditivity would be desirable for M&A

deals, while the case of superadditivity is ideal for demerger (split-up) activities. This

is because the LHS of (3.15) indicates a risk measurement of a united firm, and each

term of the RHS of (3.15) represents that of a single company before an M&A event

(or after a demerger activity). The same way of reasoning applies to an M&A event

for multi-plant firms. It is advisable to require for a decision that the new risk measure

should take better value than a combination of individual risk measures (e.g., sum of

two or more) for every p ≥ p0, where p0 can be chosen based on the problem.

It is important to note that the risk evaluation process must be very detailed. For

example, all business sectors that belong to the companies should be included and ana-

lyzed in the evaluation process, especially for their correlation structure. Furthermore,

there are many types of risk evaluations useful for M&A deals, including strategic risk,

compliance risk, operational risk, financial risk, reputation risk, etc., and each type of

risk needs to be evaluated by a suitable risk measurement.

In the real world, the estimation of operational risk is complex and necessitates

input from subject matter experts. Indeed, risk measurement is just one of the various

key factors to analyze for in M&A decision-making processes. There are many other

key factors to be considered as well, such as acculturation, human resource issues, post-

marketing, and taxation to name just a few. For more about corporate M&A activities

from a general point of view, we refer the reader to the literature (e.g., see Gregoriou

and Renneboog (2007), Shimizu et al (2004), Nahavandi and Malekzadeh (1988), Walsh

(1988), Berger et al (1998), Erickson (1998), Hagedoorn and Duysters (2002), Wulf and

Singh (2011), etc.).

In section 3.8 numerical examples of corporate M&A deals with the comparisons of

the risk measurements as in (3.15) are presented and discussed.
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3.8 Numerical examples and discussion

Adequate measure of potential risk in a corporate M&A (Mergers and Acquisitions)

is essential. In this section we want to show, with illustrative examples of corporate

M&A deals, how the worst-case Multivariate Individual Value-at-Risk (wCoVaR) plays

a role in risk evaluation processes for various cases in terms of the stochastic dependence

structure. Examples 5 and 6 present the cases of corporate M&A deals.

Example 5. Company A, a local newspaper company, wants to expand its business

scope through a good M&A deal before the fourth quarter (Q4) of the year. Suppose

that there are six candidates for the deal labeled by 1, 2, 3, 4, 5 and 6, local business

competitors of Company A. The risk management arm of Company A wants to gauge

and compare the risks to select the best case, in terms of risk, for the decision-making.

The expected Q4 operational profits for the companies are: 4% for Company A, -3%

for Company 1, -4% for Company 2, 0.5% for Company 3, 2% for Company 4, 3% for

Company 5 and 5% for Company 6.

Let X denote the Q4 operational loss of Company A, a normal random variable

with mean -4% and variance 1, i.e., X ∼ N(−0.04, 1). Let Yi, i = 1, 2, 3, 4, 5, 6 be the

normal random variables with

Y1 ∼ N(0.03, 0.72), Y2 ∼ N(0.04, 1.72), Y3 ∼ N(−0.005, 22),

Y4 ∼ N(−0.02, 1.62), Y5 ∼ N(−0.03, 1.82), Y6 ∼ N(−0.05, 1.52),
(3.16)

meaning the Q4 operational losses of Companies 1, 2, 3, 4, 5 and 6, respectively.

Then the random vectors (X,Yi)
T ∈ R2, i = 1, 2, 3, 4, 5, 6 are assumed to have

bivariate normal distributions, interpreted as Q4 operational losses of business units of

the newly united firms. Suppose that the pairs (X,Yi), i = 1, 2, 3, 4, 5, 6 have correlation

coefficients: ρ = 0.9,−0.6, 0, 0.5,−0.3, 0.7, respectively. Then we have

Cov(X,Y1) = (0.9)(0.7) = 0.63, Cov(X,Y2) = (−0.6)(1.7) = −1.02,

Cov(X,Y3) = 0, Cov(X,Y4) = (0.5)(1.6) = 0.8,

Cov(X,Y5) = (−0.3)(1.8) = −0.54, Cov(X,Y6) = (0.7)(1.5) = 1.05.

(3.17)

To make a decision regarding all the possible M&A events, especially in a risk

evaluation process, two types of comparisons could be useful:
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(a) Which M&A deal is ideal in terms of the risk?

We need to choose the smallest value among wCoVaRp((X,Yi)
T ), i = 1, . . . , 6,

i.e., compare the risk measurements after the M&A deals for all cases.

(b) Which M&A deals reduce risk?

We need to check which case will reduce the risk through the M&A deal, or

equivalently, check if wCoVaRp((X,Yi)
T ) < CVaRp(X)+CVaRp(Yi), i = 1, . . . , 6.

This is the comparison of the risk measurements before and after for the M&A

deal.

Let us use the same individual probability levels for each company. Then for each pair

of merged companies the worst-case Multivariate Individual Value-at-Risk (wCoVaR)

can be calculated by:

wCoVaRp((X,Yi)
T ) = E(X + Yi | X > VaRp(X), Yi > VaRp(Yi))

=

∫ ∞
VaRp(X)

∫ ∞
VaRp(Yi)

(x+ y)f(x, y) dxdy∫ ∞
VaRp(X)

∫ ∞
VaRp(Yi)

f(x, y) dxdy

.

(3.18)

In (3.18), f is the bivariate standard normal p.d.f. of (X,Yi), i = 1, . . . , 6 with expec-

tations in (3.16) and covariances (3.17).

Table 3.1: Risk after M&A deals, i.e., risk of the new united firms
The worst-case CoVaR (wCoVaR), i.e., risk after M&As

Individual p-levels: p = 0.60 p = 0.70 p = 0.80 p = 0.90 p = 0.95
wCoVaRp(X,Y1) 1.79025356 2.12712366 2.54391028 3.15397777 3.67959583
wCoVaRp(X,Y2) 1.89906848 2.42685181 3.10301480 4.11400437 4.99177280
wCoVaRp(X,Y3) 2.85256302 3.43191854 4.15441809 5.21993051 6.14310303
wCoVaRp(X,Y4) 2.72411371 3.23586774 3.86782594 4.79169631 5.58741982
wCoVaRp(X,Y5) 2.33154399 2.87028090 3.54970143 4.55937126 5.43700554
wCoVaRp(X,Y6) 2.61648455 3.11191386 3.72329776 4.61625343 5.38458160

Table 3.2: Sum of the risks of the companies before M&As
Risk of companies before the merger

p-levels: p = 0.60 p = 0.7 p = 0.8 p = 0.9 p = 0.95
CVaRp(X) + CVaRp(Y1) 1.63195576 1.96025814 2.36967632 2.97347163 3.49661176
CVaRp(X) + CVaRp(Y2) 2.60781203 3.12923346 3.77948583 4.73845478 5.56932425
CVaRp(X) + CVaRp(Y3) 2.85256302 3.43191853 4.15441808 5.21993051 6.14310303
CVaRp(X) + CVaRp(Y4) 2.45122645 2.95333598 3.57950495 4.50295660 5.30305326
CVaRp(X) + CVaRp(Y5) 3.11719163 3.75444932 4.54913547 5.72102543 6.73620487
CVaRp(X) + CVaRp(Y6) 2.32464083 2.80743845 3.40952400 4.29745828 5.06678200
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Table 3.3: Risk before M&As for each company
Risk of each company

p-levels: p = 0.60 p = 0.7 p = 0.8 p = 0.9 p = 0.95
Company A: CVaRp(X) 0.92585633 1.11897538 1.35980960 1.71498331 2.02271280
Company 1: CVaRp(Y1) 0.70609943 0.84128276 1.00986672 1.25848832 1.47389896
Company 2: CVaRp(Y2) 1.68195571 2.01025808 2.41967623 3.02347147 3.54661145
Company 3: CVaRp(Y3) 1.92670669 2.31294315 2.79460848 3.50494720 4.12039023
Company 4: CVaRp(Y4) 1.52537012 1.83436060 2.21969535 2.78797329 3.28034046
Company 5: CVaRp(Y5) 2.19133530 2.635473941 3.18932587 4.00604212 4.71349207
Company 6: CVaRp(Y6) 1.39878450 1.68846307 2.04971440 2.58247497 3.04406920

Table 3.4: Probability of the Worst Case Outcome
1- probability of the worst case outcome

Individual p-levels: p = 0.60 p = 0.70 p = 0.80 p = 0.90 p = 0.95
Case of (X,Y1) 0.66947743 0.76241307 0.85006754 0.93113505 0.96813223
Case of (X,Y2) 0.93272725 0.97723374 0.99550175 0.99976102 0.99998881
Case of (X,Y3) 0.84000011 0.91000008 0.96000005 0.99000002 0.99750001
Case of (X,Y4) 0.76087275 0.84323267 0.91284943 0.96759847 0.98781057
Case of (X,Y5) 0.88492698 0.94497326 0.98094402 0.99700071 0.99954134
Case of (X,Y6) 0.72237245 0.80948141 0.88709824 0.95322102 0.98040069

We calculate wCoVaR at the same individual probabilities (two decimal places)

from 0.50 to 0.99, and plot the results on the subfigures of Figure 3.5. Note that the

wCoVaR is a function of the individual probability levels. For clarification, risk after

M&As, i.e., wCoVaR at p = 0.6, 0.7, 0.8, 0.9, 0.95 are summarized in Table 3.1. In Table

3.2, risks before M&As, i.e., CVaRp(X)+ CVaRp(Yi), i = 1, . . . , 6 are also presented.

We have obtained the following risk measurements for before and after the M&A deals

between Companies A and its six target companies. For the M&As with Companies 1,

4 and 6, we have superadditive relationships:

wCoVaRp((X,Yi)
T ) > CVaRp(X) + CVaRp(Yi), i = 1, 4, 6, (3.19)

for M&A activity with Company 3, we have additive relationship:

wCoVaRp((X,Y3)T ) = CVaRp(X) + CVaRp(Y3), (3.20)

and for the M&As with Companies 2 and 5, we have subadditive relationships:

wCoVaRp((X,Yi)
T ) < CVaRp(X) + CVaRp(Yi), i = 2, 5. (3.21)

From a risk management perspective, cases of (3.21) are desirable since the mergers

result in a risk reduction. These ideal cases can also be found from subfigures (b) and

(e) of Figure 3.5. If decision will be made solely on the risk measurements, then (b)

will be preferred to (e) since wCoVaRp(X,Y2) < wCoVaRp(X,Y5).
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Note the case of the M&A between Companies X and 1 could also be beneficial, since

wCoVaRp(X,Y1) has the smallest value among all cases. In this respect, a thorough

case study over the pairs of (X,Y1) and (X,Y2) will help decision makers to find a

better deal and take action for the successful integration. In this example, we can see a

connection between wCoVaR and CVaR. From Tables 3.1 and 3.2 and equation (3.20),

we observe that the values of wCoVaR in the case of ρ = 0 are just a sum of CVaR

of each company (Zero correlation does not imply independence, in general.). By the

additive relationship (3.20), Theorem 3.6.1 can be checked numerically.

In a setting of more than two variables, dependency structure would be more com-

plex as we observe from Example 6.

Example 6. (Example 1 Continued) Suppose that Company A, the local newspaper

company in the previous example, were able to grow throughout the M&A deal. This

company is now considering acquiring the other media companies running other types

of business, in order to become a media group. The target companies are as follows.

Company 1 runs a magazine business, Company 2 is a radio broadcasting company,

Company 3 has web-based technology and Company 4 does digital TV broadcasting ser-

vice.

Company A wants to acquire two of these companies before the second half of the

year. The half-year business forecasts for Company A and Companies k, k = 1, 2, 3, 4

are 2% profit with standard deviation 0.8, -3% profit with standard deviation 0.6, 1.5%

profit with standard deviation 1.2, 7% profit with standard deviation 2.3, and 9% profit

with standard deviation 2.5, respectively. The risk management center of Company A

wants to compare the risk measurements before and after the all possible M&A activities,

in order to use the result as one of the key factors of the decision-making on the event.

Let X, Zk, k = 1, 2, 3, 4 denote normally distributed random variables, meaning the

half-year operational losses of Companies A and k, k = 1, 2, 3, 4, respectively:

X ∼ N(−0.02, 0.82),

Z1 ∼ N(0.03, 0.62), Z2 ∼ N(−0.015, 1.22), Z3 ∼ N(−0.07, 2.32), Z4 ∼ N(−0.09, 1.92).
(3.22)

Let us further assume for the correlation coefficients between the companies that

ρX,Z1 = −0.7, ρX,Z2 = 0.2, ρX,Z3 = 0.5, ρX,Z4 = −0.6, ρZ1,Z2 = 0.3, ρZ1,Z3 = −0.2, ρZ1,Z4 =
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0.6, ρZ2,Z3 = −0.5, ρZ2,Z4 = −0.2, ρZ3,Z4 = −0.4. Then the random vectors (X,Zi, Zj)
T ∈

R3, i 6= j, i, j = 1, 2, 3, 4 mean the set of operating losses from the corresponding busi-

ness sectors of the united firm after the M&As.

To make a decision regarding all the possible M&A events, especially in a risk

evaluation process, two different types of comparison may be useful:

(a) Which M&A deal is ideal in terms of the risk?

We need to choose the smallest value among wCoVaRp((X,Zi, Zj)
T ), i 6= j, i =

1, 2, 3, 4, i.e., compare the risk measurements after the M&A deals for all cases.

(b) Which M&A deals reduce risk?

We need to check if

wCoVaRp((X,Zi, Zj)
T ) < CVaRp(X) + CVaRp(Zi) + CVaRp(Zj), i 6= j, i, j =

1, 2, 3, 4. This is the comparison of the risk measurements before and after for the

M&A deal.

Let us use the same probability levels for individual companies. Then for each case

(X,Zi, Zj), i 6= j, i = 1, 2, 3, 4, the worst-case Multivariate Individual Value-at-Risk

(wCoVaR) can be calculated by:

wCoVaRp((X,Zi, Zj)
T ) = E(X + Zi + Zj | X > VaRp(X), Zi > VaRp(Zi), Zj > VaRp(Zj))

=

∫ ∫ ∫
W

(x + y + z)f(x, y, z) dxdydz∫ ∫ ∫
W

f(x, y, z) dxdydz

,

(3.23)

where W = {X > VaRp(X), Zi > VaRp(Zi), Zj > VaRp(Zj)}.

In (3.23), f is the trivariate standard normal p.d.f. with expectation vector µ and

covariance matrix Ck, k = 1, . . . , 6 in (3.24) according to the random vectors (X,Zi, Zj),

i 6= j, i, j = 1, 2, 3, 4 as follows.
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(X,Z1, Z2)T has µ1 =


−0.020

0.030

−0.015

 and C1 =


0.640 −0.336 0.192

−0.336 0.360 0.216

0.192 0.216 1.440

 ,

(X,Z1, Z3)T has µ2 =


−0.020

0.030

−0.070

 and C2 =


0.640 −0.336 0.920

−0.336 0.360 −0.276

0.920 −0.276 5.290

 ,

(X,Z1, Z4)T has µ3 =


−0.020

0.030

−0.090

 and C3 =


0.640 −0.336 −1.200

−0.336 0.360 0.900

−1.200 0.900 3.610

 ,

(X,Z2, Z3)T has µ4 =


−0.020

−0.015

−0.070

 and C4 =


0.640 0.192 0.920

0.192 1.440 −1.380

0.920 −1.380 5.290

 ,

(X,Z2, Z4)T has µ5 =


−0.020

−0.015

−0.090

 and C5 =


0.640 0.192 −1.200

0.192 1.440 −0.600

−1.200 −0.600 3.610

 ,

and (X,Z3, Z4)T has µ6 =


−0.020

−0.070

−0.090

 and C6 =


0.640 0.920 −1.200

0.920 5.290 −2.300

−1.200 −2.300 3.610

 .

(3.24)

The risk measurements in the cases of different dependency structures as in (3.24)

are calculated at the same individual probabilities (two decimal places) from 0.50 to

0.99. Due to the same individual p-levels they can be plotted in 2-D as in the sub-

figures of Figure 5.5. We observe some interesting results from Figure 5.5 – the cases

in the subfigures (a), (b), (d) are neither subadditive nor superadditive. So we can

expect that the stochastic dependence structure will be complicated in the risk evalua-

tion processes in practice, as we observe that some cases are neither superadditive nor

subadditive. Depending on stochastic dependence structures, these properties coexist

and are separated by a certain level of probability.

Numerical results at individual probability levels p = 0.6, 0.7, 0.8, 0.9, 0.95 are sum-

marized in Tables 3.5, 3.6, 3.7 and 3.8. At these individual probability levels, we have

relationships of superadditivity (3.25) and subadditivity (3.26) – comparisons of risks

before and after the M&As. As illustrated in the subfigures (a),(b),(d) of Figure 5.5
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and presented in Tables 3.5 and 3.6, at high individual probability levels we have su-

peradditive relationships:

wCoVaRp((X,Z1, Z2)T ) > CVaRp(X) + CVaRp(Z1) + CVaRp(Z2), p > 0.7

wCoVaRp((X,Z1, Z3)T ) > CVaRp(X) + CVaRp(Z1) + CVaRp(Z3), p > 0.8

wCoVaRp((X,Z2, Z3)T ) > CVaRp(X) + CVaRp(Z2) + CVaRp(Z3), p > 0.95

(3.25)

We have subadditive relationships for all other cases:

wCoVaRp((X,Zi, Zj)
T ) < CVaRp(X) + CVaRp(Zi) + CVaRp(Zj), i 6= j, i, j = 1, 2, 3, 4. (3.26)

Table 3.5: Risk after M&A deals, i.e., risk of the new united firms
The worst-case CoVaR (wCoVaR), i.e., risk after M&As

Individual p-levels: p = 0.60 p = 0.70 p = 0.80 p = 0.90 p = 0.95
wCoVaRp(X,Z1, Z2) 2.49329287 3.11460792 3.91970243 5.14037649 6.21496657
wCoVaRp(X,Z1, Z3) 3.42086954 4.22224287 5.22684633 6.69666789 7.94759881
wCoVaRp(X,Z1, Z4) 1.98392938 2.64570195 3.49924961 4.77204115 5.87065544
wCoVaRp(X,Z2, Z3) 3.70888752 4.56629510 5.66226146 7.30957330 8.75154331
wCoVaRp(X,Z2, Z4) 2.42305069 3.20355632 4.20574281 5.69781483 6.98608444
wCoVaRp(X,Z3, Z4) 2.21334102 3.25538668 4.62309213 6.65213752 8.38476756

Table 3.6: Sum of the risks of the companies before M&As
Risk of companies before the merger

p-levels: p = 0.60 p = 0.7 p = 0.8 p = 0.9 p = 0.95
CVaRp(X)+CVaRp(Z1)+CVaRp(Z2) 2.50622646 3.00833599 3.63450496 4.55795663 5.35805322
CVaRp(X)+CVaRp(Z1)+CVaRp(Z3) 3.51354385 4.22805169 5.11907625 6.43304858 7.57134263
CVaRp(X)+CVaRp(Z1)+CVaRp(Z4) 3.10732475 3.74461726 4.53936957 5.71144107 6.72694516
CVaRp(X)+CVaRp(Z2)+CVaRp(Z3) 4.04805773 4.87843701 5.91396195 7.44103858 8.76397032
CVaRp(X)+CVaRp(Z2)+CVaRp(Z4) 3.64183854 4.39500261 5.33425538 6.71943107 7.91957284
CVaRp(X)+CVaRp(Z3)+CVaRp(Z4) 4.64915592 5.61471818 6.81882662 8.59452302 10.13286217

From a risk management perspective, the subadditive cases of (3.26) are ideal since

the M&As result in a risk reduction. As we mentioned in Remark 3.6, at “high” indi-

vidual probability levels we will have unrealistic (way too large) magnitude of risk since

probability level for the worst-case event will be too high. In Table 3.8 such situation

can be confirmed – individual probability levels p = 0.6 or 0.7 are only reasonable to

be used. All the cases at lower individual p-levels are subadditive and so would be ben-

eficial in terms of risk reduction. The last case depicted in subfigure (f) of Figure 5.5

would be the best case concerning efficiency of risk reduction throughout the M&As.

However, a proper case study is necessary to find out logical and reasonable descriptions

of why and how this results in risk reduction, in order to make an appropriate final

decision on the deal.
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Table 3.7: Risk before M&As for each company
Risk of each company

p-levels: p = 0.60 p = 0.7 p = 0.8 p = 0.9 p = 0.95
Company A: CVaRp(X) 0.75268507 0.90718030 1.09984768 1.38398666 1.63017025
Company 1: CVaRp(Z1) 0.60951380 0.72538523 0.86988576 1.08298999 1.26762768
Company 2: CVaRp(Z2) 1.14402760 1.37577046 1.66477152 2.09097998 2.46025537
Company 3: CVaRp(Z3) 2.15134501 2.59548615 3.14934281 3.96607194 4.67354471
Company 4: CVaRp(Z4) 1.74512586 2.11205173 2.56963612 3.24446443 3.82914722

Table 3.8: Probability of the Worst Case Outcome
1- probability of the worst case outcome

Individual p-levels: p = 0.60 p = 0.70 p = 0.80 p = 0.90 p = 0.95
Case of (X,Z1, Z2) 0.95860665 0.98867999 0.99845649 0.99996197 0.99999925
Case of (X,Z1, Z3) 0.96670203 0.99153104 0.99893355 0.99997599 0.99999955
Case of (X,Z1, Z4) 0.98374077 0.99775031 0.99989708 0.99999968 0.99999999
Case of (X,Z2, Z3) 0.92911062 0.97178483 0.99268452 0.99934013 0.99994519
Case of (X,Z2, Z4) 0.98899152 0.99868821 0.99995276 0.99999991 0.99999999
Case of (X,Z3, Z4) 0.99886459 0.99998574 0.99999999 0.99999999 0.99999999

Remark 8. Note that M&As and demerger activities are like two sides of the same

coin. Thus, these examples are also considered as the cases about corporate demerger

events – corporate restructuring processes. For general corporate demerger activities,

there could be several candidates in terms of how to split business sectors of the company.

For example, if there are m different ways of restructuring, then we may need to choose

the least risky case. By comparison of risks among different cases, we can see what

would be the most desirable case in a demerger from a risk management perspective,

and eventually it will be used to make a decision on the demerger event. For demerger

events in the real world, analyses are required on each pertinent business sector and

on the correlation among all the sectors. Then this should be followed by some suitable

partition options for the inputs of the risk evaluation processes. Furthermore, a decision

should not be made based only on risk measurement since demerger is a very complex

process with various reasons behind it. For successful M&As and demergers, detailed

post-event plans should be set up before taking action on the deals.

3.9 Concluding remarks

Risk, in practice, may not be equal to a real valued random variable, rather, it is

frequently represented by a finite collection of random variables, i.e., a random vector.

A company typically has many different assets, portfolios, business sectors, exposed
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to different kinds of randomness, influencing the overall behavior of the company. In

order to characterize it, from the point of view of risk exposure, we need to work with

the joint probability distribution of the random variables involved. Multivariate risk

measures have already been introduced in the literature and the starting point of our

investigation is the paper by Prékopa (2012), where the concepts of Multivariate-Value-

at-Risk (MVaR) and Multivariate-Conditional-Value-at-Risk (MCVaR) are introduced

and explored. See also Lee and Prékopa (2013), where new methods for numerical

calculations of these concepts are presented.

In this paper we construct a further multivariate risk measure: the worst case

Combined Value-at-Risk (wCoVaR), where only one orthant of the space represent

unfavorable set and its vertex is at the vector with components equal to the individual

VaR’s. Properties of this risk measure are derived but they fail to satisfy the convexity

inequality required by one of the risk measure axioms of Artzner et al (1999). In

our opinion a risk measure should signal the advantages or disadvantages of corporate

M&As and demergers rather than to always satisfy an axiom, however, attractive it

is from a purely mathematical point of view; wCoVaR is constructed to serve this

objective. In Section 3.7 we show in what way it can be used in practice. In the

numerical examples we look at one company which considers M&As with one or two

of a few target candidates, we calculate which M&A deal is ideal in terms of risk and

which M&A deals reduce risk. To do the above analysis we have introduced vector

operations, where we put together risk vectors to create new risk vector with increased

number of components, to describe M&As, and split a risk vector into parts, to describe

demergers.

Comparison of risks before and after M&As or demergers activities will be useful for

decision-making before taking action on the deals. It is the job of the decision makers

to find out reasonable justification for an increase or decrease in risks throughout the

M&A deals, in order to make the best decision. We hope that these aspects of wCoVaR

will attract interest for future research.
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Figure 3.5: Comparison of risks among different M&A deals



68

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Individual Probability Level

w
M

IV
aR

 

 

Before the M&A
After the M&A

(a) Risk measurement of (X,Z1, Z2)

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Individual Probability Level

w
M

IV
aR

 

 

Before the M&A
After the M&A

(b) Risk measurement of (X,Z1, Z3)

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Individual Probability Level

w
M

IV
aR

 

 

Before the M&A
After the M&A

(c) Risk measurement of (X,Z1, Z4)

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Individual Probability Level

w
M

IV
aR

 

 

Before the M&A
After the M&A

(d) Risk measurement of (X,Z2, Z3)

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Individual Probability Level

w
M

IV
aR

 

 

Before the M&A
After the M&A

(e) Risk measurement of (X,Z2, Z4)

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Individual Probability Level

w
M

IV
aR

 

 

Before the M&A
After the M&A

(f) Risk measurement of (X,Z3, Z4)

Figure 3.6: Comparison of risks among different M&A deals
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Chapter 4

Bond Portfolio Optimization for Insurance Companies

4.1 Introduction

The investment objectives vary by different financial entities. The objective of the

insurance company is to earn a higher rate than that offered on the policy, that is,

higher return than its cost. In this paper, the total amount of claims from random

events is the only considered one as the financial cost. We also assume that the only

possible payoff source for the claims is the cash flows (fixed income) from the investment

in U.S treasury securities. The problem is that how many of the different bonds should

be purchased for minimization of the cost. With the cash flows generated by the bonds

invested, all the claims need to be payed out in the course of a given number of periods.

Since the claims are uncertain, a suitable stochastic programming formulation is needed.

Three stochastic programming models and their numerical solutions are presented in

this paper.

Bonds are financial instruments that pay the owner fixed amounts of money, in

subsequent periods. Insurance companies typically hold their money in bonds to pay

out the random liabilities in the same periods. Insurance claims are randomly occurring

events, which is considered as liabilities to an insurance company. The probability of

a number of events occurring in a fixed period of time can be expressed as a Poisson

distribution. Let X denote the number of events in the interval. If we let λ denote

the expected number of events in the period, then we can write the probability that x

events occur in the interval as:

P (X = x) =
λx

x!
e−λ, x = 0, 1, . . .

Suppose that N denote the number of events in the interval and let λ be its expected
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number of events in a given period. And suppose that X1, X2, . . . , XN denote the

claim at each event 1, 2, . . . , N , respectively. Then we can introduce the random sum

S = X1+X2+· · ·+XN which represents the aggregate claims of an insurance company in

the interval. Then S has a compound Poisson distribution with the Poisson parameter

λ. To introduce the suitable probability density function of S we need to assume:

• The positive claim amounts are positive integers,

• the claim size distribution is denoted by p(i), i = 1, 2, . . .

If we have m periods, then there are m compound Poisson distributions. Simply de-

picted below is compound Poisson distributed liabilities in the course of different length

of periods.

Now we need to compute the probability of S, the total of the incurred claims. Let

f(x) = P (S = x), x = 0, 1, . . . . Since a compound sum of integer claims has a recursive

relationship, the recursive formula to compute the probability of S is De Pril (1986a):

f(x) =
λ

x

x∑
i=1

ip(i)f(x− i), x = 1, 2, . . .

f(0) = P (N = 0) = e−λ,

(4.1)

where N ∼ Possion(λ), i.e., P (N = k) =
λk

k!
e−λ.

4.2 Stochastic Programming Formulation

The problem is that how many of the different bonds should be purchased that mini-

mizes the cost subject to the constraint that all liabilities can be payed out in the course

of a given number of periods. Let us introduce the notations:

If the liabilities were deterministic values then our optimal bond portfolio model
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n number of bond types which are candidates for inclusion into the
portfolio

m number of periods
aik cash flow of a bond of type k in period i, k = 1, . . . , n and i =

1, . . . ,m
pk unit price of bond of type k
rk remaining maturity of bond of type k
ξi random liability value in period i, i = 1, . . . ,m
xk decision variable, number of bonds of type k to include into the

portfolio

would be the following Hodges and M. (1977)

min

{
n∑
k=1

pkxk

}
subject to

n∑
k=1

aikxk ≥ ξi, i = 1, . . . ,m

xk ≥ 0, k = 1, . . . , n,

(4.2)

where the positivity of the variables means no short-selling allowed.

The probabilistic constrained variant of it can be formulated as

min

{
n∑
k=1

pkxk

}
subject to

P

(
n∑
k=1

aikxk ≥ ξi, i = 1, . . . ,m

)
≥ p

xk ≥ 0, k = 1, . . . , n

(4.3)

where p is a safety(reliability) level chosen by ourselves, e.g., p = 0.8, 0.9, 0.95 etc.

4.3 Numerical Example and Its Solutions

4.3.1 Random Liabilities

We assume that the length of a period is 1 month and the expected number of events

of incurred claims is 6, i.e., the Poisson parameter λ = 6. For simplicity, we also assume
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that there are only two kinds of the claim size, which are 1 and 2 with correspond-

ing probabilities p(1) = 0.8, p(2) = 0.2. Then the recursive formula to compute the

probability of the total incurred claims, i.e., P (S = x) = f(x) would be:

f(x) =
6

x

x∑
i=1

ip(i)f(x− i), x = 1, 2, . . .

f(0) = P (N = 0) = e−6,

(4.4)

where N ∼ Possion(6), i.e., P (N = k) =
6k

k!
e−6. Equivalently,

f(0) = e−6

f(1) = 6p(1)f(0) = 6(0.8)e−6

f(2) =
6

2
(p(1)f(1) + 2p(2)f(0)) = 3(0.8f(1) + 0.4e−6)

f(3) =
6

3
(p(1)f(2) + 2p(2)f(1) + 3p(3)f(0)) = 2(0.8f(2) + 2(0.2)f(1))

...

(4.5)

For finite number of possible values, computing f(0), f(1), f(2), . . . up to a certain point

where the probability already small, that is the point s such that F (s) ≈ 1 gives us:

F (0) = 0.0025 F (10) = 0.8559

F (1) = 0.0144 F (11) = 0.9090

F (2) = 0.0459 F (12) = 0.9451

F (3) = 0.1059 F (13) = 0.9682

F (4) = 0.1967 F (14) = 0.9823

F (5) = 0.3128 F (15) = 0.9905

F (6) = 0.4419 F (16) = 0.9951

F (7) = 0.5703 F (17) = 0.9976

F (8) = 0.6861 F (18) = 0.9988

F (9) = 0.7820 F (19) = 0.9994

F (20) = 0.9997

(4.6)

Since F (20) = 0.9997 ≈ 1, we can choose s = 20 and we have set up the p.d.f. of ξ:

f(x), x = 0, 1, . . . , 20.
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Consider three periods. Suppose that all three periods are of the same length. Let

ξi= total insurance claims in period i, i = 1, 2, 3. And assume that ξ1, ξ2 and ξ3 are

independent. Since it is a total incurred claim amount in the interval, the possible

values of ξi are 0, 1, . . . , 20, i = 1, 2, 3. If we let $1, 000 be the unit claim size, then, for

example, the probability that $1,000 claim occurs in the interval is 1.19%, i.e.,

P (S = 1) = f(1) = 0.0119 = 1.19%.

Thus, in this simple example, the possible claim dollar amount in one interval is

0, $1, 000, . . . , $20, 000 with probability f(0), f(1), . . . , f(20), respectively.

An insurance company needs to generate a cash flow to pay off such random claims.

Let zi = total cash flow in period i. Then the insurance company want to make sure

about the following relationship:

P (ξ1 ≤ z1, ξ2 ≤ z2, ξ3 ≤ z3) = p ≈ 1,

where p is a safety(reliability) level chosen by ourselves, e.g., p = 0.8, 0.9, 0.95 etc.

If we let f i(x), F i(x) designate the p.d.f and c.d.f. of ξ for period i = 1, 2, 3,

respectively, then we can write the following equations:

P (ξ1 ≤ z1, ξ2 ≤ z2, ξ3 ≤ z3) =
∑

i≤z1,j≤z2,k≤z3

f1(i)f2(j)f3(k)

= F 1(z1)F 2(z2)F 3(z3)

(4.7)

Since the set of p-level efficient points serves as the p-quantile of the probability distri-

bution determined by F . If we choose the safety(reliability) level p = 0.9, then we can

generate the p-level efficient points (or PLEP) with p = 0.9.

Recall

Definition 4.3.1. Prékopa (1990) A point s ∈ Rr is said to be a p-level efficient point

of the probability distribution F , if F (s) ≥ p and there is no y such that y ≤ s, y 6=

s, F (y) ≥ p.

and recall the following
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Theorem 4.3.1. Dentcheva et al (2000) If the components of the random vector ξ are

integer-valued, then for any p ∈ (0, 1) the set of p-level efficient points is nonempty

and finite. The set of p-level efficient points serves as the p-quantile of the probability

distribution determined by F .

Thus, the set of p-level efficient points of our example is nonempty and finite. Compu-

tation of PLEP’s for this example (p=0.9) is as follows.

(11, 15, 20) (11, 16, 16) (11, 20, 15) (12, 13, 15) (12, 14, 14)

(12, 15, 13) (13, 12, 15) (13, 13, 13) (13, 15, 12) (14, 12, 14)

(14, 14, 12) (15, 11, 20) (15, 12, 13) (15, 13, 12) (15, 20, 11)

(16, 11, 16) (16, 16, 11) (20, 11, 15) (20, 15, 11)

(4.8)

4.3.2 Bond Portfolio construction

In the previous section, we enumerate 19 p-efficient points with p = 0.9. We have

s(i) ∈ R3, i = 1, . . . , 19 such that F (s) = F 1(s1)F 2(s2)F 3(s3) ≥ 0.9 and there is no y

such that y ≤ s, y 6= s, F (y) ≥ 0.9. The following relationship:

P (ξ1 ≤ z1, ξ2 ≤ z2, ξ3 ≤ z3) ≥ 0.9, zi = total cash flow in period i

needs to be satisfied for the insurance company.

Suppose that the company wants to construct a bond portfolio to generate the cash

flows (zi denote total amount of cash flows in period i) to pay off the random liabilities.

For the sake of simplicity, we assume that bonds are offered with monthly coupon

payments. Suppose that there are only 10 kinds of bonds to invest in as:

Based on the notations and the table above, the matrix for the cash flows can be

written as:

A =


5 10 15 20 25 30 35 1040 1045 1050

5 10 15 20 1025 1030 1035 0 0 0

5 10 1015 1020 0 0 0 0 0 0


Note that the full principal amount of the bond of type 8,9,10 is included in the cash

flow of period 1; that of the bond of type 5,6,7 is included in the cash flow of period 2;
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Table 4.1: Prices, coupon payments and maturities of 10 bonds

Price Coupon Payment Remaining Maturity

x1 $970 $5 5 month
x2 $980 $10 4 month
x3 $990 $15 3 month
x4 $1,000 $20 3 month
x5 $1,010 $25 2 month
x6 $1,020 $30 2 month
x7 $1,030 $35 2 month
x8 $1,040 $40 1 month
x9 $1,050 $45 1 month
x10 $1,060 $50 1 month

that of the bond of type 3,4 is included in the cash flow of period 3.

For the sake of consistency, we need to scale down the components of the matrix A

as the same as the unit size of the random liability, which is $1000. Multiplying A by

1
1000 gives us:

T =


.005 .010 .015 .020 .025 .030 .035 1.040 1.045 1.050

.005 .010 .015 .020 1.025 1.030 1.035 0 0 0

.005 .010 1.015 1.020 0 0 0 0 0 0


(4.9)

4.4 Stochastic Programming Models

The problem is how to construct bond portfolio with 10 different bonds (as in Section

3.2) that minimizes the cost at initial time subject to the constraint that all liabilities

(as in Section 3.1)can be payed out in the course of three periods of the same length.

We assume that the length of each period is 1 month and the expected number of events

of incurred claims is 6, i.e., the Poisson parameter λ = 6. For simplicity, we also assume

that there are only two kinds of the claim size, which are 1 and 2 with corresponding

probabilities p(1) = 0.8, p(2) = 0.2, where the unit size is $1, 000. Our example can be

described as follows.

It is solved in three ways; Probabilistic Constrained Model; Simple Recourse Model;

Hybrid Model. The corresponding numerical solutions are presented in the following
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three sections.

4.4.1 Probabilistic Constrained Model

The probabilistic constrained model is formulated as follows.

min {cTx}

subject to

Tx ≥ s(i), for at least one i = 1, . . . , 19

x ≥ 0,

(4.10)

where x = (x1, . . . , x10) the number of each type of 10 bonds to be invested; c =

(970, 980, 990, 1000, 1010, 1020, 1030, 1040, 1050, 1060, 1070)T , which designates the cur-

rent price of each bond as in Table 3.1; the matrix T is as in (3.6); PLEP’s, s(i), i =

1, . . . , 19 are as in (3.5).

The next form of the problem (3.7) is a relaxation of problem in which we take the

convex hull of the p-efficient points and write up the first constraint in (3.7) by the use

of the convex combination of s(1), . . . , s(19). The relaxed problem can be formulated as

the following:

min {cTx}

subject to

Tx ≥
19∑
i=1

δis
(i),where s(i) = (s

(i)
1 , s

(i)
2 , s

(i)
3 )T

19∑
i=1

δi = 1

x ≥ 0, δi ≥ 0, i = 1, . . . , 19.

(4.11)

In the relaxed problem (3.8) the set

{
19∑
i=1

δis
(i) |

19∑
i=1

δi = 1, δ ≥ 0

}
is the convex hull

of the set of p-efficient points {s(1), . . . , s(19)}.

As we solve the relaxed problem (3.8) using Matlab with the code attached as an
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appendix, the optimal solution, i.e., the optimal bond portfolio comes up as:

x∗ = (0, 0, 12.8079, 0, 12.4955, 0, 0, 12.0149, 0, 0),

which can be interpreted that the investment in bond of type 3, 5, 8 as the optimal

solution x∗ is for both the cost minimization and the liability payoff.

4.4.2 Simple Recourse Model

min{cTx+
3∑
i=1

q+
i E([ξi − Tix]+)}

subject to

x ≥ 0,

(4.12)

where c = (970, 980, 990, 1000, 1010, 1020, 1030, 1040, 1050, 1060, 1070)T and the second

term in the objective function is the penalty. Let q+
1 = 1000, q+

2 = 200, q+
3 = 100.

Then this means that we pay 1,000, 200 and 100 dollars for each unit deviation of ξi

from Tix such that ξi > Tix, i = 1, 2, 3, respectively.

Theorem 4.4.1. Prékopa (1995) Let r = 1. If the random vector (T, ξ), where T is a

r×n random matrix and ξ is an r-component random vector, has a discrete probability

distribution with a finite number of possible values, then the function

E([ξi − Tix]+),

is piecewise linear and convex in Rn.

Since we have the relation

E([ξi − Tix]+) =

∫ ∞
Tix

[1− Fi(z)]dz

where Fi is the c.d.f. of ξ, i = 1, . . . , r and for any real number a we have that [a]+ −

[−a]+ = a, it follows that

q+
i E([ξi − Tix]+) + q−i ([Tix− ξi]+)

= q+
i E([Tix− ξi]+) + q+

i (E(ξi)− Tix) + q−i E([Tix− ξi]+)

= ((q+
i + q−i )E([Tix− ξi]+) + q+

i (E(ξi)− Tix)

(4.13)
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We may omit the term q+
i E(ξ) because it is constant. The new form of our problem is:

minimize {cTx+

3∑
i=1

(q+
i

∫ Tix

−∞
Fi(z)dz − q+

i Tix)}

subject to

x ≥ 0,

(4.14)

In our problem, the possible values of ξi are 0, . . . , 20. and pick two values −50

and 50 with zero probability. Each ξi, i = 1, 2, 3 is set to have the 23 values of

−50, 0, 1, . . . , 20, 50, i.e., j = 0, . . . , 22. If we replace yi = Tix in problem (3.11) then

we get

min {cTx+
3∑
i=1

(−q+
i yi + q+

i

∫ yi

−∞
Fi(z)dz)}

subject to

Tix = yi, i = 1, . . . , 3

x ≥ 0.

(4.15)

Let

fi(yi) = −q+
i yi + q+

i

∫ yi

−∞
Fi(z)dz (4.16)

This function is piecewise linear, continuous and convex in the interval [−50, 50]. Hence

we can represent fi(yi) as the optimum value of the LP:

min
22∑
j=0

fi(zij)λij

subject to
22∑
j=0

zijλij = yi, i = 1, . . . , 3

22∑
j=0

λij = 1, λij ≥ 0 for all i, j.

(4.17)



79

The next step is to combine (3.12) and (3.14) to get the LP:

min{cTx+

3∑
i=1

22∑
j=0

fi(zij)λij}

subject to

Tix = yi, i = 1, . . . , 3
22∑
j=0

zijλij = yi, i = 1, . . . , 3

22∑
j=0

λij = 1

x ≥ 0, λij ≥ 0 for all i, j.

(4.18)

The final form of the problem is obtained if we remove the superfluous variables

y1, . . . , y3 from (3.15) and introduce the notation: cij = fi(zij). Then we get

min{cTx+
3∑
i=1

22∑
j=0

cijλij}

subject to

Tix−
22∑
j=0

zijλij = 0, i = 1, . . . , 3

22∑
j=0

λij = 1, i = 1, . . . , 3

x1, . . . , x10 ≥ 0, λij ≥ 0 for all i, j,

(4.19)

Thus, the simple recourse problem with discrete ξ, where each component has finite

support, can be reformulated as a specially structured LP.

When solved with the penalty constant q+
1 = 1000, q+

2 = 200, q+
3 = 100, a trivial

solution comes up, however.

The solution is x∗ = (0, . . . , 0)T .

It is because each ξ has a value of zero and the corresponding probability is: f(0) =

0.0025 as in (3.3). As we run the model, their corresponding λ coefficients, i.e., in

λi1f(0), are set to one and everything else is set to zero, i.e., λi1 = 1 for all i = 1, 2, 3

and λij = 0, for all i = 1, 2, 3 and j 6= 1. To satisfy the equality constraint, the model

forces to let x be zero.
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Let us consider about a huge penalty. With a huge penalty, the company gets the

business shut down, if they cannot afford to pay off the claims from their clients. Thus,

they need to do generate enough cash flows to pay off the claims with huge penal-

ties. With q+
1 = 15000, q+

2 = 10000 and q+
3 = 5000, the optimal solution becomes

x∗ = (0, 0, 4.9262, 0, 4.8010, 0, 0, 4.6211, 0, 0)T .

4.4.3 Hybrid Model

We take the objective function from the penalty model, the probabilistic constraint

from the probabilistic constrained model and then our model is:

min{cTx+
3∑
i=1

22∑
j=0

fi(zij)λij}

subject to

Tx ≥
19∑
i=1

δis
(i),where s(i) = (s

(i)
1 , s

(i)
2 , s

(i)
3 )T

19∑
i=1

δi = 1

Tix−
22∑
j=0

zijλij = 0, i = 1, 2, 3

22∑
j=0

λij = 1

x1, . . . , x10 ≥ 0, λij ≥ 0 for all i, j.

(4.20)

As in the section 3.3.1, with a safety (reliability) level p = 0.9, we have 19 p-level

efficient points and the set

{
19∑
i=1

δis
(i) |

19∑
i=1

δi = 1, δ ≥ 0

}
is the convex hull of the set

of p-efficient points {s(1), . . . , s(19)}.

As in the section 3.3.2, we penalize with q+
1 = 1000, q+

2 = 200, q+
3 = 100. And,

again, this means that we pay 1,000, 200 and 100 dollars for each unit deviation of ξi

from Tix such that ξi > Tix, i = 1, 2, 3, respectively.
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The numerical solution of this model is:

x∗ = (0, 0, 14.7783, 0, 12.4666, 0, 0, 11.0256, 0, 0)

δ4 = 1

λ1,9 = 0.9048

λ1,22 = 0.952

λ2,9 = 0.8810

λ2,22 = 0.1190

λ3,9 = 0.8333

λ3,22 = 0.1667

(4.21)

Interestingly, the optimal solution x∗ = (0, 0, 14.7783, 0, 12.4666, 0, 0, 11.0256, 0, 0)

is the same when the penalty of q+
1 = 15000, q+

2 = 10000, q+
3 = 5000.
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Chapter 5

Price-bands: A Technical Tool for Stock Trading

5.1 Introduction

Stock trading can be approached in a multitude of ways, and the one fact practitioners

agree upon is that there is no clear and easy way to outperform the market consistently.

It is intuitively appealing that a company should have an “intrinsic value,” and in the

long run the stock price would converge to this value. This is the conventional wisdom

of so-called “fundamental analysis,” and the valuation of the company amounts to

estimating this unknown “intrinsic value.” This process is concerned mostly with the

economic climate, interest rates, products, earnings, management, etc. There is a large

number of valuation studies, and many of them are actually being used in financial

practice.

On the other hand, technical (or quantitative) analysis is an evaluation process of

securities based entirely on charting patterns, statistical approaches, and/or mathe-

matical formulae. The technical analysis approach is particularly suited for short-term

investing. In a certain sense, this amounts to an analysis of crowd psychology and

behavior as well as investor philosophy, since it is believed that short-term patterns

and trends result primarily from decisions by human investors. The tacit assumption

underlying technical analysis is that a future price can be predicted by quantitative

analysis of the past price movement. However, the efficient-market hypothesis (e.g., see

Fama (1970), Damodaran (2012), etc.) asserts that no one can consistently outperform

the market, since the market incorporates all information instantaneously. On the other

hand, behavioral economists criticize the efficiency of the market for many reasons, such

as irrationality of investors, information asymmetry, etc. For more details, we refer the

reader to the literature, e.g., see Kahneman and Tversky (1979), Shleifer (2000), etc.
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In this paper we suppose that stock prices are at least partially predictable based

on recent market trends. Price patterns can be elusive, and the difficulty is amplified

by the sheer complexity of the financial market, as well as market participants’ philo-

sophical and psychological states. We believe that price movement discloses investors’

expectations in light of these (and many more) factors, and in this way accounts for

them. There are some clear patterns in the stock market; for example, when a stock is

in an up-trend with increasing volume, it is regarded as a sign of an up-market trend.

Such patterns can be found by technical analysis, and this motivates the study of such

methodologies. In what follows, we present a mathematical model for constructing new

and reliable trading-bands (or price-bands) for price forecasting.

5.2 Construction of Price-bands

In the stock trading business, many different technical tools exist to guide traders

through the swarm of information, e.g., trading bands, envelopes, channels, etc. Bollinger

Bands is probably one of the most popular and successful models. Many traders use it

daily as a tool for pattern recognition, augmenting technical trading strategies, and so

on (see, e.g., Bollinger (2002), Grimes (2012), etc.). It is simple to see that Bollinger

Bands is a collection of individual confidence intervals of future stock prices. Stock

prices are expected to remain within the bands with a certain probability for each fu-

ture time, depending on the width of the bands. Observation of stock price outside of

the bands is considered a sign for “buying” or “(short) selling.”

Let us consider the following simple example: Suppose we happen to observe a

stock’s price moving below the lower band. Then our expectation would be that the

price will go up, moving back into the bands, ceteris paribus. If we make our investment

decision solely on the basis of price-bands, then we would choose to “buy” while the

price is below the lower band and subsequently “sell” within the bands. Consider, on

the other hand, the case that a stock price is observed above the upper band. As one

might expect, the proper action on the stock would be to “short sell” above the upper

band and then “buy” within the bands.
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Table 5.1: The Bollinger Bands
Upper band = n-day moving average+kσ
Middle band = n-day moving average
Lower band = n-day moving average−kσ

There are several ways to calculate moving average, e.g., simple moving average, front-weighted

moving average, exponential moving average, and so on. The band width is determined by the

multiplier k and standard deviation σ =
√∑

(xi−x̄)2

N−1 , where xi is the data point, µ the average,

and N the number of points. The multiplier k can be chosen depending on the time periods n.

Recommended (by Bollinger) width parameters with time periods are k = 1.9 if n = 10, k = 2.0

if n = 20, k = 2.1 if n = 50, etc.

For completeness we present the Bollinger Bands formulae in Table 5.1. Bollinger

uses the mean and standard deviation to create price-bands as in Table 5.1, where the

mean can be thought of as a central tendency and standard deviation as its volatility,

thus determining the width of the bands. Like Bollinger, we assume the stock price

in a time period to be a Gaussian process. However, rather than using simple mean

and variance, we use conditional mean and conditional variance. By conditioning on a

recent historical stock price data, we construct price-bands that are more sensitive to

recent market information than Bollinger Bands.

Let stochastic process X(s) be the stock price at time s, and

let Iτ = {X(τ1), X(τ2), . . . , X(τN )}, τ1 < τ2 < · · · < τN be a sequence of past

(τ1, . . . , τN ) stock prices (see Figure 5.1.). Then given the information set Iτ , the proba-

bility p of the future stock prices running within [a1, b1], · · · , [al, bl] at times t1 < · · · < tl,

is the following:

p = P (ai ≤ X(ti) ≤ bi, i = 1, . . . , l | Iτ ). (5.1)

If we use the past N data points (equally spaced), say, in order to predict the future

price changes for n time points, then (5.1) has the following practical meaning. With

probability p, we can expect that the future stock price is likely to run within the lower

and upper bounds ai, bi, i = 1, . . . , l. These bounds are paramount in trading strategy,

and in this paper we present an efficient method of computing these values.

Let us assume that the stochastic process {X(t), t ≥ 0} is Gaussian. Let µ =

(µ1, . . . , µn)T denote the expectation of the random vector X = (X(t1), . . . , X(tn))T .
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τ1 τ2 · · · τN−1 τN

past epochs future epochs

t1 t2 · · · tl−1 tl

Figure 5.1: Past, present, future timeline

Then the covariance matrix Σ = (Σij) is defined by

Σij = E((X(ti)− µi)(X(tj)− µj)). (5.2)

Let us recall that we have the closed form of p.d.f. of Gaussian models. Let random

vector X = X1, . . . , Xp, Σ its covariance matrix. Suppose that we are interested in

the conditional distribution of XA = (X1, . . . , Xk) given XB = (Xk+1, . . . , Xp). Let µA

and µB denote the corresponding expectation vectors of XA and XB, respectively. We

partition the covariance matrix Σ into

Σ =

 ΣAA ΣAB

ΣBA ΣBB

 .

Then we have

XA|XB ∼ Nk(µA + ΣABΣ−1
BB(XB − µB), ΣAA − Σ−1

BBΣBA),

where k denotes the number of dimension of the distribution function.

For a price-bands construction, let X(τj) denote the random stock prices on day

j, j = 1, . . . ,m, and let P denote “Past.” We form a random vector:

XP =


XP (τ1)

...

XP (τm)

 . (5.3)

Let ej denote the expected stock price on day i, i = 1, . . . ,m. Then the expectation

vector of (5.3), i.e., an m by 1 vector, on day j, j = 1, . . . ,m can be written as

eP = E(XP) =


eP1
...

ePm

 . (5.4)
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For the future random variable, let us use F for “Future.” Then we form a future

random vector:

XF =


XF (t1)

...

XF (tn)

 (5.5)

and expectation vector:

eF = E(XF) =


eF1
...

eFn

 . (5.6)

Using the notations (5.3), (5.4), (5.5) and (5.6), let us define components of covari-

ance matrix of the random variables XP (τj), j = 1, . . . ,m, XF (ti), i = 1, . . . , n by

S = E[(XF − eF)(XF − eF)T ]

U = E[(XF − eF)(XP − eP)T ]

T = E[(XP − eP)(XP − eP)T ].

(5.7)

Then the covariance matrix C can be written as

C =

 S U

UT T

 . (5.8)

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 t

Figure 5.2: Description of Gaussian process
X(τ1), X(τ2), . . . , X(τ10), τ1 < τ2 < · · · < τ10 be a sequence of random variables of past
stock prices on day τ1, . . . , τ10.We want to find reasonable lower and upper bounds of
X(t).
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In our setting, given that XP = xP, XF has a normal distribution with “conditional”

expectation vector

eC = eF + UT−1(xP − eP), (5.9)

and covariance matrix

S − UT−1UT . (5.10)

The conditional probability density of XF, given XP = xP, can be written up as

f(xF | xP) =

[∣∣(S − UT−1UT )−1
∣∣

(2π)N

]1/2

×exp
{
−1

2(xF − eC)T (S − UT−1UT )−1(xF − eC)
}
.

(5.11)

We want to predict upper and lower bounds of a stock price for the next business

day, based on historical data over a certain time period. Since we are interested in

trading on the next day, XF is a random variable, not a random vector. As S is the

variance of XF, it follows that S in the covariance matrix (5.8) is a number. Hence

the conditional covariance matrix S − UT−1UT is a number. Given XP = xP, let us

denote the standard deviation of XF by

σC =
√
S − UT−1UT . (5.12)

Then after the way of Bollinger, we can construct our trading bands, but with inputs

of the conditional variance and expectation (5.12) and (5.9), respectively.

Definition 5.2.1 (Prékopa-Lee Bands). Based on n intraday data points from the past

m days, we construct next-day trading bands by predicting volatility σC =
√
S − UT−1UT

and average price eC = eF + UT−1(xP − eP ) as follows:

Upper band = eC + kσC

Middle band = eC

Lower band = eC − kσC ,

(5.13)

where k is a multiplier that can be chosen based on investors’ preference (or risk

tolerance level), i.e., the larger k, the wider bands. Together with σC , k determines the

width of the bands. The central tendency (i.e. eC) determines the moving direction of
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the bands.

To construct the bands, we need to find the values of σC =
√
S − UT−1UT and

eC = eF + UT−1(xP − eP ). Since the stock price distribution of the next business day

is unknown, there is no way to find the exact values of σC and eC . However, given

XP = xP, the calculation of reasonable upper and lower bounds for the volatility σC

is possible.

Among the terms in the expression for σC , the “Future” random variable XF ap-

pears in S = E[(XF − eF)(XF − eF)T ] and U = E[(XF − eF)(XP − eP)T ]. For the

next-day variance S, we want to use the sample variance (as in Bollinger (2002)):

S =

∑N
i=1(xPi − x̄)2

N − 1
, (5.14)

where xPi , i = 1, · · · , N , are all the given data points (n intraday data points on each

of the past m days, i.e., the total number of data points is mn), x̄ their mean, and

N the number of data points, i.e., N = mn. In a short period of time, say up to 30

days, estimation of S by (5.14) is known to be acceptable to use in practice. More

importantly, the success of Bollinger bands in practice proves (5.14) works just fine

with a proper multiplier k.

Cross covariance U represents the relationship between past and future stock prices.

In the short term (of, in this case, at most ten days), a myriad of factors can materially

contribute to wildly varying degrees. For example, investor sentiment can, and often

does, shift in dramatic fashion as herd psychology sweeps the market. When patterns do

exist, distinguishing them in an actionable fashion is virtually impossible from historical

time series data alone.

However, the cross-covariance matrix U is typically estimated from historical time

series via linear regression. This approach effectively averages out the myriad of factors

alluded to above that contribute to short-term fluctuations; indeed, this is part of

the value of the approach in long-term forecasting. For the purpose of short-term

technical trading, however, a more detailed approach is required. For this reason,

effective estimation of U = E[(XF − eF)(XP − eP)T ] is paramount to obtaining the
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upper and lower bounds of the conditional volatility σC .

To this end, suppose we could choose the cross-covariance to maximize or minimize

the conditional variance (next-day volatility). Given n intraday data points zi, mea-

sured at equally spaced time points, then we have n! possible permutations on their

ordering. That is, we have the possible cases



z1 < z2 < · · · < zn−1 < zn

z1 < z2 < · · · < zn < zn−1

...

zn < zn−1 < · · · < z2 < z1.

(5.15)

As n gets arbitrarily large, the complexity of bounding σC therefore increases ex-

ponentially. Thus, in order to efficiently obtain the upper and lower bounds of σC , we

propose an efficient stochastic programming formulation.

5.3 Stochastic combinatorial optimization problem formulation

We want to find reasonable lower and upper bounds of the next day’s stock price. The

unit time period could be a day, a week, or a month, depending on the investment

strategy in terms of realization of profit in a preferred length of time. Generally, price-

bands are used for day trading, short-term investments, etc. For a short-term trading

we use intraday stock price data.

Suppose that for the next day stock trading, we use n intraday data points (per

day) with historical data points for the past m days. Let us define “Past Data Matrix”

by:

Y T =



y11 y21 . . . ym1

y12 y22 . . . ym2

...
...

. . .
...

y1n y2n . . . ymn


=



xP11 − eP1 xP21 − eP2 . . . xPm1 − ePm
xP12 − eP1 xP22 − eP2 . . . xPm2 − ePm

...
...

. . .
...

xP1n − eP1 xP2n − eP2 . . . xPmn − ePm


,

(5.16)

where xPji denotes the past stock price at ith time point on day j; ePj denotes the

estimated average stock price on day j, j = 1, . . . ,m (i.e., ePj = 1
n

∑n
i=1 xji).

Since we are interested in “unknown” stock prices on the next business day, let us
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define “Future Data Vector” by:

z = (z1, . . . , zn) = (XF
1 − eF , XF

2 − eF , . . . , XF
n − eF ), (5.17)

where random variables XF
i , i = 1, . . . , n are normally distributed with mean eF and

variance S, and denote stock price at ith time point of the next day. In (5.16) and

(5.17), Y T is an n×m matrix, and z is an 1× n row vector.

Components of the covariance matrix

C =

 S U

UT T

 . (5.18)

need to be represented by the use of “Past Data Matrix” and “Future Data Vector” as

in (5.16) and (5.17), respectively.

Using the “Past Data Matrix” Y T , T = E[(XP−eP)(XP−eP)T ] can be estimated

by

T =
1

n− 1
Y Y T , (5.19)

which is an m×m matrix.

Now we turn our attention to the other components of C: S and U , involving the

“Future” random variable XF . As in Bollinger (2002), we estimate next day’s variance

S by (5.14). The future is unpredictable, especially short term trading, so we cannot

predict the volatility of next day based on existing patterns or market trends (if there

is any) in the past couple of days. Thus the bridge between past and future for should

be closely examined, and we have to keep the randomness for the best selection.

The “unknown” cross covariance U = E[(XF − eF)(XP − eP)T ] can be written up

as

1

n− 1

n∑
i=1

zi[Y
T ]i, (5.20)

where zi, i = 1, . . . , n denote ith component of “Future Data Vector” z in (5.17), and

[Y T ]i i = 1, . . . , n denote ith row of the Past Data Matrix Y T in (5.16). Note that this

is a 1×m row vector.

By (5.14), (5.19) and (5.20), the conditional variance S−UT−1UT (i.e., the variance
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of XF|XP = xP) can be written up as:∑N
i=1(xPi − x̄)2

N − 1
−
(∑n

i=1 zi[Y
T ]i

n− 1

)(
(Y Y T )−1

n− 1

)(∑n
i=1 zi[Y

T ]i
n− 1

)T
, (5.21)

where x̄ in the first term is the mean of all the past data points, and N = mn, m :

number of days, n : number of intraday data points. In the above estimated conditional

variance (5.21), zi, i = 1, . . . , n, are the only unknowns, i.e., the “Future Data Vector”

z = (z1, . . . , zn) which can be found for the cases of minimum and maximum of the

conditional variance, by a suitable optimization problem formulation. Since zi = XF
i −

eF ∼ N(0, S), it is reasonable to assume that −4
√
S ≤ zi ≤ 4

√
S, i = 1, . . . , n.

We want to find the minimum and maximum values of (5.21), i.e., lower and upper

bounds of the variance of XF|XP = xP (volatility on the next day). For meaningful

bounding values of (5.21), the future data points zi, i = 1, . . . , n, and their relations

to all given past data points at time i, i = 1, . . . , n (i.e. [Y T ]i =
[
(xP − eP )T

]
i
, i =

1, . . . , n) are essential. Thus, all possible cases must be examined for a reasonable

selection of “Future Data Vector” z = (z1, . . . , zn).

Let f be p.d.f. of XF
i − eF , normally distributed with mean 0 and variance S for all

i = 1, . . . , n. Let z(k) denotes kth largest element in (z1, . . . , zn), i.e., z(n) ≤ z(n−1) ≤

· · · ≤ z(1). Similarly, let y
(k)
j denotes the kth largest element (i.e., y

(n)
j ≤ y(n−1)

j ≤ · · · ≤

y
(1)
j ), i.e., the ordering of the components of vector yj = (xj1 − ej , . . . , xjn − ej): n

intraday data points on day j, j = 1, . . . ,m. Let ePj and σPj denote the expectation

and standard deviation of the normal random variable XP
j , on day j = 1, . . . ,m. Let

gj denote p.d.f. of XP
j − epj ∼ N(0, σ2

j ), j = 1, . . . ,m. Then we define the following

probabilities p
(i)
j on day j, j = 1, . . . ,m by:

p
(0)
j =

∫ ∞
y
(1)
j

gj(t)dt,

p
(i)
j =

∫ y
(i)
j

y
(i+1)
j

gj(t)dt, i = 1, . . . , n− 1,

p
(n)
j =

∫ y
(n)
j

−∞
gj(t)dt,

(5.22)

where y
(n)
j ≤ y

(n−1)
j ≤ · · · ≤ y

(1)
j such that

n∑
i=0

p
(i)
j = 1. Figure 5.3 can be referred for

the description of p
(i)
j , i = 0, . . . , n.
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Figure 5.3: Description of data points and their corresponding probabilities

p
(0)
j =

∫ ∞
y
(1)
j

f(t)dt, p
(i)
j =

∫ y
(i)
j

y
(i+1)
j

gj(t)dt, i = 1, . . . , n− 1 and p
(n)
j =

∫ y
(n)
j

−∞
gj(t)dt where

gj is normal p.d.f. of ξPj − ePj on day j in the past, which is assumed to have mean zero

and variance σ2
j .

Based on the stock price data for the past m days, we want to give some reasonable

intervals to probabilities regarding “each” of the next day’s data points zi, i = 1, . . . , n.

For this reason, by (5.22), we set lower and upper bounds for probabilities regarding the

ordered future data points z(n) ≤ · · · ≤ z(1), out of zi, i = 1, . . . , n of in the following

way:

l0 = min{p(0)
1 , p

(0)
2 , . . . , p

(0)
m } ≤

∫ ∞
z(1)

f(t)dt ≤ max{p(0)
1 , p

(0)
2 , . . . , p(0)

m } = u0

l1 = min{p(1)
1 , p

(1)
2 , . . . , p

(1)
m } ≤

∫ z(1)

z(2)
f(t)dt ≤ max{p(1)

1 , p
(1)
2 , . . . , p(1)

m } = u1

...

ln = min{p(n)
1 , p

(n)
2 , . . . , p

(n)
m } ≤

∫ z(n)

−∞
f(t)dt ≤ max{p(n)

1 , p
(n)
2 , . . . , p(n)

m } = un,

(5.23)

where z(k) denotes kth largest element in (z1, . . . , zn), and f the p.d.f. of zi = XF
i −eF ,

normally distributed with mean 0 and variance S for all i = 1, . . . , n.
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With the condition (5.23), we can write min-max problem formulation as follows.

min(max)

∑N
i=1(xPi − µ)2

N − 1
−
(∑n

i=1 zi
[
Y T
]
i

n− 1

)(
(Y Y T )−1

n− 1

)(∑n
i=1 zi

[
Y T
]
i

n− 1

)T
subject to

l0 ≤
∫ ∞
z(1)

f(t)dt ≤ u0

l1 ≤
∫ z(1)

z(2)
f(t)dt ≤ u1

...

ln ≤
∫ z(n)

−∞
f(t)dt ≤ un

−4
√
S ≤ zi ≤ 4

√
S, i = 1, . . . , n

z(k) = kth largest element in (z1, . . . , zn),

(5.24)

where f is the p.d.f. of zi, i = 1, . . . , n and S =
∑N
i=1(xPi −µ)2

N−1 (the first term of the

objective function), the estimated variance for z1, . . . , zn.

The above formulation (5.24) can be said to be a stochastic combinatorial optimiza-

tion problem due to the last constraint, which requires the necessity of counting of all

outcomes and a proper selection among them. We know decision making in a finite

sample space is very often considered as a counting problem. There are n! permutation

of the set {z1, . . . , zn}, i.e., n! choices of a total ordering of the set of intraday data

points {z1, . . . , zn}. In order to find minimum and maximum of the problem (5.24),

all n!-permutations should be counted and examined (all must simultaneously satisfy

all the constraints for feasibility.). In order to count all of the n! cases, among various

methods we propose a set representation of the n intraday data points. In this way, all

possible cases can be counted in a more systematic way, allowing a faster subsequent

computation. In general, for any sequence of finite sets, the principle of inclusion and

exclusion can be used in counting problems

This is the fundamental motivation for implementing the set theoretical approach,

and the formulation (5.24) can be written up in a more (mathematically) compact

form by the use of an ordered partition of a finite set, and binomial coefficients. By a

set representation of the “Future Data Points” z = (z1, . . . , zn) as “ordered partitions
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with n nonempty blocks” of the set {z1, . . . , zn}, we can reformulate the problem as a

modified binomial moment problem, which effectively counts all possible cases without

actual counting per se.

5.4 Binomial moment problem formulation

Utilizing a binomial moment scheme, the problem (5.24) can be reformulated in a

systematic form. For details about the binomial moment scheme, we refer the reader to

the literature, e.g., Prékopa (1988; 1995; 2003), etc. For completeness we present some

basic definitions here.

Let ν designate the number of events from A1, . . . , An that occur. Let vi = P (ν =

i), i = 1, . . . , n. Then
n∑
i=0

(
i

k

)
vi = Sk, k = 0, 1, . . . , n, (5.25)

where, by definition, Sk = E

[(
ν

k

)]
, k = 0, . . . , n. Essentially, the binomial moment

problem formulation is to optimize an objective function with a counting method lever-

aging the inclusion-exclusion principle.

For a suitable representation of the future data points z = (z1, . . . , zn), let us define

the sets as follows:

Aj = {t | t ≤ z(j)}, j = 1, . . . , n, (5.26)

where z(j) is the jth largest among the next day’s n intraday data points z1, z2, . . . , zn,

i.e., z(n) ≤ z(n−1) ≤ · · · ≤ z(1). Note that An ⊆ An−1 ⊆ · · · ⊆ A1.

Let us introduce the functions, for k = 1, . . . , n:

Sk(z) =
∑

1≤i1<···<ik≤n
P (z(i1) ≥ η, . . . , z(ik) ≥ η)

=
∑

1≤i1<···<ik≤n
P (Ai1 . . . Aik),

(5.27)

where η = XF − eF , and Aij , j = 1, . . . , k are defined as in (5.26). Due to the special

shape of sets of (5.26), i.e., An ⊆ An−1 ⊆ · · · ⊆ A1, the probabilities vi, i = 1, . . . , n,



95

can be defined, for the binomial moment problem formulation, by

v0 = = 1− P (A1),

vi = P (Ai\Ai+1), i = 1, . . . , n− 1,

vn = P (An),

(5.28)

where vi = P (ν = i), i = 1, . . . , n, and ν designates the number of events out of

A1, . . . , An that occur.

Equivalently, if the random variable XF − eF has a normal p.d.f. f , then we can

write:

v0 =

∫ ∞
z(1)

f(t)dt,

vi =

∫ z(i)

z(i+1)

f(t)dt, i = 1, . . . , n− 1,

vn =

∫ z(n)

−∞
f(t)dt,

(5.29)

where z(n) ≤ z(n−1) ≤ · · · ≤ z(1) such that
n∑
i=0

vi = 1. Probabilities v0, v1, . . . , vn are

also described in Figure 5.4.

−3
√
S −2

√
S −

√
S 0

√
S 2

√
S 3

√
S

ξF − eF = η ∼ N(0, S)

v0v1vivi+1 vi−1vn−1vn

Figure 5.4: Description of data points and their corresponding probabilities

v0 =

∫ ∞
z(1)

f(t)dt, vi =

∫ z(i)

z(i+1)

f(t)dt, i = 1, . . . , n − 1 and vn =

∫ z(n)

−∞
f(t)dt where f is

normal p.d.f. of XF − eF which is assumed to have mean zero and variance S.

In the same way in (5.24), from the past stock prices moving tendency, we set
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reasonable lower and upper bounds for vi, i = 0, . . . , n of (5.29) in the following way:

l0 = min{p(0)
1 , p

(0)
2 , . . . , p

(0)
m } ≤ v0 ≤ max{p(0)

1 , p
(0)
2 , . . . , p

(0)
m } = u0

l1 = min{p(1)
1 , p

(1)
2 , . . . , p

(1)
m } ≤ v1 ≤ max{p(1)

1 , p
(1)
2 , . . . , p

(1)
m } = u1

...

ln = min{p(n)
1 , p

(n)
2 , . . . , p

(n)
m } ≤ vn ≤ max{p(n)

1 , p
(n)
2 , . . . , p

(n)
m } = un,

(5.30)

where p
(k)
j , j = 1, . . . ,m, k = 1, . . . , n are defined (5.22), and described in Figure 5.3.

Using (5.30), the stochastic combinatorial problem (5.24) can be reformulated, to-

gether with (5.27) in the RHS of the binomial constraints, as a binomial moment prob-

lem formulation:

min(max)

∑N
i=1(xPi − µ)2

N − 1
−
(∑n

i=1 zi
[
Y T
]
i

n− 1

)(
(Y Y T )−1

n− 1

)(∑n
i=1 zi

[
Y T
]
i

n− 1

)T
subject to
n∑
i=0

(
i

k

)
vi = Sk(z), k = 0, 1, . . . ,m ≤ n

li ≤ vi ≤ ui, i = 0, 1, . . . , n

−4
√
S ≤ zi ≤ 4

√
S, i = 1, . . . , n.

(5.31)

Since the sample variance S =
∑N
i=1(xPi −µ)2

N−1 is a constant and independent of decision

variables zi, i = 1, . . . , n and vi, i = 0, . . . , n, it can be removed from the formulation

(5.31). Now the min-max problem (5.31) becomes max-min problem as:

max(min)

(∑n
i=1 zi

[
Y T
]
i

n− 1

)(
(Y Y T )−1

n− 1

)(∑n
i=1 zi

[
Y T
]
i

n− 1

)T
subject to
n∑
i=0

(
i

k

)
vi = Sk(z), k = 0, 1, . . . ,m ≤ n

li ≤ vi ≤ ui, i = 0, 1, . . . , n

−4
√
S ≤ zi ≤ 4

√
S, i = 1, . . . , n.

(5.32)

Without the condition (5.30) for the probabilities related to the future data points,
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the optimal objective function values (lower and upper bounds of the next day’s volatil-

ity) would be less dependent on the past. If we assume a more independent stochas-

tic structure between past and future, then we can remove the condition of (5.30)

from the constraints. However, we still need a positivity restriction on probabilities

vi, i = 0, . . . , n, just to have a reasonable vector z = (z1, . . . , zn).

Simply,

max(min)

(∑n
i=1 zi

[
Y T
]
i

n− 1

)(
(Y Y T )−1

n− 1

)(∑n
i=1 zi

[
Y T
]
i

n− 1

)T
subject to
n∑
i=0

(
i

k

)
vi = Sk(z), k = 0, 1, . . . ,m ≤ n

vi ≥ pi, i = 0, 1, . . . , n

−4
√
S ≤ zi ≤ 4

√
S, i = 1, . . . , n,

(5.33)

where 0 ≤ pi � 1, i = 1, . . . , n are some fixed (very small) probabilities that can be

chosen in various ways (e.g., pi = 0.001, i = 1, . . . , n.). Still, constraints on probabilities

vi, i = 0, . . . , n, ensure reasonable placement of future data points at optimality of the

problem, as described in Figure 5.4.

As a result of the special structure of the sets regarding future data points as in

(5.26) ( i.e., An ⊆ An−1 ⊆ · · · ⊆ A1), the calculations of Sk, k = 1, . . . , n, are manage-

able (in general, it is very expensive computationally). This is due to the fact that, for

the calculations of Sk, k = 1, . . . , n, in particular, we need to find only the minimum

value among k data points over all cases of
(
n
k

)
, k = 1, . . . , n. We then calculate their

CDF values, followed by summing up the values of all
(
n
k

)
, k = 1, . . . , n, cases to cal-

culate the binomial functions Sk, k = 0, . . . , n as follows:
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S0(z) ≡ 1

S1(z) = P (η ≤ z1) + P (η ≤ z2) + · · ·+ P (η ≤ zn)

S2(z) = P (η ≤ z1, η ≤ z2) + P (η ≤ z1, η ≤ z3) + · · ·+ P (η ≤ zn−1, η ≤ zn)

= P (η ≤ min{z1, z2}) + P (η ≤ min{z1, z3}) + · · ·+ P (η ≤ min{zn−1, zn})

S3(z) = P (η ≤ z1, η ≤ z2, η ≤ z3) + P (η ≤ z1, η ≤ z2, η ≤ z4) + · · ·+ P (η ≤ zn−2, η ≤ zn−1, η ≤ zn)

= P (η ≤ min{z1, z2, z3}) + P (η ≤ min{z1, z2, z4}) + · · ·+ P (η ≤ min{zn−2, zn−1, zn})

S4(z) = P (η ≤ min{z1, z2, z3, z4}) + P (η ≤ min{z1, z2, z3, z5}) + · · ·+ P (η ≤ min{zn−3, zn−2, zn−1, zn})

...

Sn−1(z) = P (η ≤ min{z1, . . . , zn−1}) + P (η ≤ min{z1, . . . , zn−2, zn}) + · · ·+ P (η ≤ min{z2, . . . , zn})

Sn(z) = P (η ≤ min{z1, . . . , zn}),
(5.34)

where the binomial functions Sk have
(
n
k

)
number of terms for all k = 0, . . . , n. We

note that the calculations of Sk, k = 0, . . . , n are computationally expensive when n is

large, despite the fact that calculation of each term for the addition is relatively easy

as a result of the special shape of sets in (5.26).

In (5.34), the random variable η is normally distributed (setting η = XF − eF

implies η ∼ N(0, S), where S is the next day’s estimated variance, defined by (5.14).).

These detailed binomial functions are equivalent to (5.27), and z is an n-tuple vector

(vector of n intraday-data points); zi designates the data point at time i on the next

trading day for i = 1, . . . , n (i.e. the realization of random variable η ∼ N(0, S) at time

i = 1, . . . , n).
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With the binomial functions of (5.34) in the RHS of the constraints, we can write

the following detailed formulation:

max(min)

(∑n
i=1 zi

[
Y T
]
i

n− 1

)(
(Y Y T )−1

n− 1

)(∑n
i=1 zi

[
Y T
]
i

n− 1

)T
subject to(

0

0

)
v0 +

(
1

0

)
v1 +

(
2

0

)
v2 + · · ·+

(
n− 1

0

)
vn−1 +

(
n

0

)
vn = S0 ≡ 1(

1

1

)
v1 +

(
2

1

)
v2 + · · ·+

(
n− 1

1

)
vn−1 +

(
n

1

)
vn = S1(z)(

2

2

)
v2 + · · ·+

(
n− 1

2

)
vn−1 +

(
n

2

)
vn = S2(z)

. . .
...(

n− 1

n− 1

)
vn−1 +

(
n

n

)
vn = Sn−1(z)(

n

n

)
vn = Sn(z)

li ≤ vi ≤ ui, i = 0, . . . , n

−4
√
S ≤ zi ≤ 4

√
S, i = 1, . . . , n,

(5.35)

where n is the number of intraday data points; Sk(z), k = 1, . . . , n are defined by (5.34);

where li and ui, i = 0, . . . , n are the lower and upper bounds that can be found by (5.30);

Y T denotes the “Past Data Matrix” of (5.16), and [Y T ]i the ith row of that matrix; S

is the sample variance for XF defined in (5.14).

The decision variables of the above formulation (5.35) are vi, i = 0, . . . , n, and

zi, i = 1, . . . , n. The optimal objective function value will be used for the calculation

of σC in order to determine the width of the bands as in Definition 5.2.1. The optimal

solution zi, i = 1, . . . , n, are used for the calculation of the conditional mean, eC , since

with those optimal solutions we can find the estimated value of U by (5.20). Thus,

the conditional mean eC = eF + UT−1(xP − eP) can be calculated with the estimated

mean eF (moving average, front-weighted, or exponential average, etc.) as in Bollinger

Bands (see Table 5.1.).

Using the “Past Data Matrix” Y T in (5.16), together with (5.19) and (5.20), we can

estimate the second term of eC as

UT−1(xP − eP) =
1

n− 1

{∑n
i=1 zi[Y

T ]i
n− 1

(Y Y T )−1

n− 1
Y T

}
. (5.36)
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Table 5.2: The Prékopa-Lee Bands

By the maximization problem of (5.35) By the minimization problem of (5.35)

Price-bands with the minimum volatility Price-bands with the maximum volatility

Upper bands = eCmin + kσCmin Upper bands = eCmax + kσCmax

Middle bands = eCmin Middle bands = eCmax

Lower bands = eCmin − kσCmin Lower bands = eCmax + kσCmax

the lowest volatility level at a given setting the highest volatility level at a given setting

σC
min can be calculated by the maximization problem of (5.35), i.e., σC =

√
S − UT−1UT ; eCmin is

determined by its optimal solution. Similarly, σC
max is from the minimization problem of (5.35),

and by its solution eCmax can be found. The multiplier k can be chosen depending on the time

periods n. We recommend width parameters with time periods are k = 2 if n = 10, k = 2.1 if

n = 20, k = 2.2 if n = 50, etc.

By adding the value calculated from (5.36) to the estimation of eF (same as the mid-

band of Bollinger), we get conditional expectation eC to find the “Middle band” in

Table 5.2. eC is the central tendency of a stock price in a time period. The width of the

bands is determined by the optimal objective function value of (5.35), and the central

tendency of the bands can be determined by the optimal solution of (5.35).

As we solve both maximization and minimization problems, two different bands are

formed as in Table 5.2. The two different bands can be interpreted as follows. The

optimal objective function value (i.e. the conditional variance) from the maximization

problem is the lowest volatility level that we can expect under a reasonable setting (i.e.

the constraints of the problem (5.35)). The maximization problem provides us with the

tightest bands. Thus, investors with a higher risk tolerance (i.e. more aggressive trader)

may want to use the tightest bands constructed by solving the maximization problem

(minimization of σC). The bands from the minimization problem can be considered

analogous.

The constraints of (5.35) can be customized to incorporate investment preference

among various risk tolerance levels. For example, we can modify the lower bounds of

vi i = 0, . . . , n, or the upper and lower bounds of zi, i = 1, . . . , n. One simple band-

customization example is that by controlling the lower bounds of v0 and vn, we can

limit the next day’s highest and lowest stock price, respectively. This is because the
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lower bounds of v0 and vn determine the positions of “the upper bound of the highest”

and “the lower bound of the lowest” price of stock for the optimization problem in the

following way:

v0 =

∫ ∞
z(1)

f(t)dt

vn =

∫ z(n)

−∞
f(t)dt,

(5.37)

where z(1) and z(n) are the largest and the smallest stock price of the next business day.

The proper usage of our bands is as follows. More aggressive investment strategy

pairs with the bands constructed by solving the maximization problem (minimization

of σC), and conversely for the bands from the minimization problem (maximization of

σC). If the indicated actions agree, the result of price-bands analysis lends confidence

to a potential investment decision. On the other hand, if price-bands analysis indicates

a different action (e.g. “take no action”), this may suggest further verification of the

potential investment decision-making process before execution.

5.5 Numerical examples and discussion

We construct the price-bands of Apple Inc. (NASDAQ: APPL), Verizon Communi-

cations Inc. (NYSE: VZ), Yahoo! Inc. (NASDAQ: YHOO) and The Walt Disney

Company (NYSE: DIS over the same time period from May 1 to July 16 in 2013, by

solving the binomial moment problem (5.35). We do not only consider the price data

for the bands construction, but we also take into account that “trading volume” plays

a meaningful role in the stock price movement. Trading volume can be thought as a

measure of investors’ interest in the stock. There is intrinsic duality between buying

and selling (shares cannot be bought unless they are sold), and so the calculation of

daily average price can be formulated by

ePj =

∑n
i=1 P

(j)
i V

(j)
i∑n

i=1 V
(j)
i

, (5.38)

where P
(j)
i and V

(j)
i denote the stock price and its volume at time i on day j, i = 1, . . . , n

and j = 1, . . . ,m. This is called “volume weighted average price” (VWAP).

For all stocks, we use 30-minute intraday data points, i.e., the number of data points
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per day is n = 12. Using the historical stock prices data of the past 10 days, we calculate

S and eF . For S, let us use the same variance as in the Bollinger Bands for the next

day:

S =

∑N
i=1(xPi − µ)2

N
, (5.39)

where xPi ’s are all the given data points, µ their mean, and N the number of data

points, i.e., N = 12× 10 = 120.

It is reasonable and widely accepted that recent time periods influence price move-

ments more than earlier periods, and several measures are widely used in practice, e.g.

m-day moving average, exponential average and front-weighted average. Here and in

what follows we will use the front-weighted average. We calculate eF as a front-weighted

average given by

eF =

m∑
i=1

iePi

m∑
i=1

i

, (5.40)

where m = 10 since we looked back over past 10 business days, and ePi , i = 1, . . . , 10

are calculated by (5.38).

Then, with the next business day variance S from (5.39), we solve the following

maximization and minimization problems:

max(min)

(∑n
i=1 zi

[
Y T
]
i

n− 1

)(
(Y Y T )−1

n− 1

)(∑n
i=1 zi

[
Y T
]
i

n− 1

)T
subject to
n∑
i=0

(
i

k

)
vi = Sk(z), k = 0, 1, . . . , 12

li ≤ vi ≤ ui, i = 0, 1, . . . , 12

−4
√
S ≤ zi ≤ 4

√
S, i = 1, . . . , 12,

(5.41)

where Sk(z), k = 1, . . . , 12 are defined by

Sk(z) =
∑

1≤i1<···<ik≤n
P (z(i1) ≥ η, . . . , z(in) ≥ η), (5.42)

where η ∼ N(0, S).
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Using the optimal solutions to (5.41), eF from (5.40) and by the use of (5.36), we

find the conditional mean vector

eC = eF + UT−1(xP − eP ). (5.43)

By the results of (5.41) and (5.43), Prékopa-Lee Bands are constructed by the formulae

in Table 5.2, and depicted in Figures 5.5, 5.6, 5.7 and 5.8. As the bar chart is widely

used and easy to follow, we utilize it in those Figures. The thin vertical line segments

(red) are drawn to the high and low of the day, and the intersecting horizontal lines

(red) represent closing prices. Let us refer to the results described in Figures and the

summary of numerical results presented in Table 5.3 in terms of the number of chances

to make profit by short-selling or buying. The blue piecewise linear bands are the

Prékopa-Lee Bands, while the dashed and dotted black bands are the Bollinger Bands.

The lower figure of each subfigure represents the total trading volume of each day.

Volume represents the amount of trading activity, and is a main indicator of investors’

interest.

We are especially interested in finding opportunities for short-term profit realization—

simply put, “buy low sell high.” Given that stock prices are out of the bands, we can

expect that the stock price will be back in the range of the bands in the same time

period. If the red vertical line (daily price range of stocks) is fully in the bands, then

this price-band strategy suggests taking no action. Otherwise, there exists the oppor-

tunity to make a profitable decision: Above the upper bands is indication to sell short

and then buy as the price descends into the bands. Similarly, we can buy a stock if it’s

below the lower bands and sell it at a higher price upon entering the bands.

Table 5.3: Comparison of the performances of Bollinger and Prékopa-Lee bands

The Bollinger bands The Prekopa-Lee bands
Buying Short-selling Total number Total number Buying Short-selling

NASDAQ: AAPL 10 0 10 26 7 19
NYSE: VZ 8 3 11 23 11 12
NASDAQ: YHOO 5 6 11 14 5 9
NYSE: DIS 7 10 17 20 7 13

For all the cases of the stocks over the same time span, May 1 to July 16 in 2013,
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(a) From max problem (5.41); Prékopa-Lee bands in blue; black dotted are Bollinger-bands
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(b) From min problem (5.41); Prékopa-Lee bands in blue; black dotted are the Bollinger-bands

Figure 5.5: Prékopa-Lee bands on Apple Inc. (NASDAQ: AAPL) from May 1 to July
16, 2013
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(b) From min problem (5.41); the Prékopa-Lee bands in blue; black dotted are the Bollinger-
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Figure 5.6: Prékopa-Lee bands on Verizon Communications Inc. (NYSE: VZ) from
May 1 to July 16, 2013
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(b) From min problem (5.41); the Prékopa-Lee bands in blue; black dotted are the Bollinger-
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Figure 5.7: Prékopa-Lee bands on Yahoo! Inc. (NASDAQ: YHOO) from May 1 to July
16, 2013
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Figure 5.8: Prékopa-Lee bands on The Walt Disney Company (NYSE: DIS) from May
1 to July 16, 2013
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Prékopa-Lee Bands (from the max problem (5.41)) provide more opportunities for mak-

ing profit than Bollinger Bands.

In the case of Apple Inc. (NASDAQ: AAPL), as depicted in Figure 5.5, the Bands

from the maximization problem (5.41) look appealing—26 red vertical lines intersect

either upper or lower bands, indicating good opportunities on 26 days out of 50 days.

Another Prékopa-Lee Bands construction (by solving the minimization problem (5.41))

is depicted below in Figure 5.5 and it is almost identical to the Bollinger Bands. For

this example, the Prékopa-Lee Bands constructed from the max problem (5.41) perform

much better than the other. In other words, a more aggressive trading strategy works

better in case of NASDAQ: APPL in that time period. We note that there is a perfor-

mance gap between two different Prekopa-Lee Bands. We observe that the price-bands

with highest volatility behave almost identically as Bollinger bands.

For the other cases, Verizon Communications Inc. (NYSE: VZ), Yahoo! Inc. (NAS-

DAQ: YHOO) and The Walt Disney Company (NYSE: DIS), over the same time frame,

our price-bands all performed at a good level of effectiveness. Note that in case of “The

Walt Disney Company (NYSE: DIS),” Prékopa-Lee Bands marginally outperformed

the Bollinger Bands.

We do not insist that our model (i.e., the bands created from the maximization

problem (5.41)) outperforms Bollinger Bands in more cases, because sometimes less

aggressive trading strategy works better. Note that our model (from the minimization

problem (5.41)) also provides us with almost identical bands as Bollinger bands. What

we hope for in our research is to provide practitioners with another useful tool of tech-

nical analysis for stock trading. By spotting stock price trends with various functional

tools, including Prékopa-Lee Bands, Bollinger Bands, and others, we believe that it

would be possible to execute more winning trades than losing trades.

5.6 Concluding remarks

In the current financial climate, low interest rates make stock investment more at-

tainable, since low-cost borrowing is possible for most individuals (i.e. money is less
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expensive). However, successful investment remains elusive. Although it is simply de-

termined by only four words: buy low, sell high, there is, ironically, no clear way for

generating consistent profits from a stock trade, largely due to the mixture of the com-

plexity and efficiency of the market and irrationality of its participants. Indeed, the

emotional reactions of investors often (but not always) lead them to make poor real-

time investment decisions. Price-bands are certainly helpful to deter investors from

entirely following their feelings, and such tools have been widely used in practice, espe-

cially for short term investment, to help people validate their investment decisions. As

one variant, we construct new price-bands via binomial moment problem formulation

under the assumption that stock prices follow a Gaussian process. Usage of conditional

probability distributions is the key attribute that differentiates our model. We hope

that our model will pique the interest of many for both theoretical aspects and its

applicability to stock trading businesses.
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Chapter 6

Conclusion

As we move toward a data-rich society, the number of newly tractable decision-making

problems are increasing and finding the key to determining the best outcome becomes

increasingly complex and challenging. For such data-driven decision-making problems,

we need a systematic way of finding solutions – decision support modeling. In reality,

all information pertinent to all possible circumstances cannot, even in principle, be fully

known, and hence risk is intrinsically part of any decision with future outcomes. Thus

risk analysis is instrumental in decision making.

For quantitative decision support modeling, we need to express risk in meaningful

numerical values. To this end, stochastic optimization is a natural and superior skill

for finding a key to optimal decision-making, and multivariate risk measures are cru-

cial ingredients for the decision-making processes. Each chapter of this dissertation is

devoted to the development of tools and methods useful in various aspects of decision

support modeling.

I hope my research to be useful to industry, academia, and to my colleagues as we

work for a more efficient and “Smarter Planet.”
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Ané T, Kharoubi C (2003) Dependence Structure and Risk Measure. Journal of business

76(3):411–438

Artzner P, Delbaen F, Eber J, Heath D (1999) Coherent Measures of Risk. Mathemaical

Finance 9(3):203–228

Atkinson KE (1988) An introduction to numerical analysis, Second Edition. John Wiley

and Sons, Inc.

Ben-Tal A, Ben-Israel A (1991) A recourse certainty equivalent for decisions under

uncertainty. Annals of Operations Research 30:3–44

Ben-Tal A, Teboulle M (1986) Expected utility, penalty functions, and duality in

stochastic nonlinear programming. Management Science 32(11):1445–1466

Ben-Tal A, Teboulle M (2007) An old-new concept of convex risk measures: the opti-

mized certainty equivalent. Mathematical Finance 17(3):449–476

Ben-Tal A, Ben-Israel A, Teboulle M (1991) Certainty equivalents and generalized in-

formation measures: Duality and extremal principles. J Math Anal Appl 157:211–236

Berger A, Saunders A, Scalise J, Udell GF (1998) The effects of bank mergers and

acquisitions on small business lending. Journal of Financial Economics 50:187–229

Bollinger J (2002) Bollinger on Bollinger Bands. McGraw-Hill

Boros E, Elbassioni K, Gurvich V, Khachiyan L, Makino K (2003) An intersection



112

inequality for discrete distributions and related generation problems, vol 2719. Berlin:

Springer

Bowers NLJ, Gerber HU, Hickman JC, Jones DA, Nesbitt CJ (1997) Actuarial Math-

ematics. The society of Actuaries, Schaumburg, Illinois

Busemann H (2008) Convex Surfaces. Dover, Mineola, New York

Cousin A, Di Bernadino E (2011) A multivariate extension of Value-at-Risk and

Conditional-Tail-Expectation. Université Lyon 1, ISFA, Laboratoire SAF
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Prékopa A (1990) Dual method for a one-stage stochastic programming problem with

random rhs obeying a discrete probability distribution. Operations Research 34:441–

461
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