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ABSTRACT OF THE THESIS

Feasibility of Duty Cycling GPS Receiver for

Trajectory-based Services

by XIAOHAN LI

Thesis Director: Prof. Janne Lindqvist

Energy efficient localization is important for lots of smartphone applications. The

research community has argued that fixed duty cycling of GPS is not a good choice for

trajectory-based services concerning route accuracy. In this note, we show that duty

cycling of a smartphone GPS receiver achieves considerable energy efficiency without

sacrificing much route accuracy. When increasing sampling period to 120 seconds, it

saves at least 78% energy in comparison to continuous GPS sampling, while the loss of

route accuracy tends to be stable at 0.23 to 0.25.
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Chapter 1

INTRODUCTION

1.1 Motivation

Location service dominates in mobile applications nowadays. Location information

serves as an important context to many mobile applications, thus almost all the smart

phones today have integrated GPS chips. Some of the location based applications are

satisfied with a single position fix. However, some of them require continuous location

traces. For example, applications like navigation cannot navigate based on a single

position fix. It requires continuous location traces to construct route and navigate

based on the route. Those services are called trajectory-based services. Compared to

single location services, trajectory-based services require continuous GPS sensing. GPS

sensing is known for its high energy consumption. Usually continuous GPS sensing

can drain the battery of a smart phone within 10 hours. Thus, energy efficiency has

increasing importance to trajectory-based services for modern mobile device. In order to

realize energy efficient localization, the most obvious way is duty cycling GPS receiver

instead of performing continuous GPS sampling. However, several works have cast

doubt on duty cycling GPS concerning route accuracy or energy efficiency [1–7].

1.2 Background

1.2.1 Location-based Services

Location-based service allows location-based apps to use information on the geograph-

ical position of the mobile device. There are mainly three options for a smart phone to

determine your approximate location: cellular, Wi-Fi, and Global Positioning System

(GPS) networks. Depending on which option your mobile device is using, the precision
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is different.

• Cellular

In a cellular radio system, based on radio signal delay of closest cell-phone towers

and cell ID, a smart phone can obtain its raw location information.

• Wi-Fi

Crowdsourced Wi-Fi data can also be used to identify a smart phone’s location.

Wi-Fi based locating is widely used in the indoor environment when GPS is not

available due to satellites invisibility.

• GPS

Location obtained by GPS is significantly more precise that it plays a critical

role in military, civil and commercial users around the world. Trajectory-based

services often need to activate continuous GPS sampling to obtain location traces,

in order to satisfy its high precision requirement.

1.2.2 Basic Concept of GPS

A GPS receiver calculates its location by satellite position and the precise time that

signals transmitted from satellites. It can obtain a position fix only when there is an

unobstructed line of sight to at least four GPS satellites. Each satellite continuously

transmits messages including the time that the message was transmitted and its satel-

lite position at the time of message transmission. When a GPS receiver receives the

messages, it will determine the transit time of each message and computes the distance

to each satellite using speed of light. The paper Energy Efficient GPS Sensing with

Cloud Offloading [7] explains how a GPS receiver works.

• GPS System

Currently, the GPS system has 31 active satellites in orbits and one satellite

for redundancy. And each orbit is about 20,000 km from the Earth’s surface.

A satellite can orbit the Earth two cycles a day. A set of ground management

stations are used to monitor satellites’ orbit and status, and send the satellite

data to the satellites. Two types of data included are almanac and the ephemeris.
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• Almanac and Ephemeris

In order to determine the location of the satellites, two types of data are required

by the GPS receiver: the almanac and the ephemeris. The satellites continuously

transmit these data and the GPS receiver collects and stores these data.

The almanac contains coarse information about status and orbit of the satellites.

The almanac is used by the GPS receiver to calculate which satellites are currently

visible. However, it is not precise enough for the GPS receiver to calculate a

position fix. Almanac will be stored in the GPS receiver and is considered valid

for up to 180 days. If a GPS receiver has not been used for some time, almanac

data is not valid anymore, and it may take 15 minutes or so to receive a current

almanac. In some old models of GPS receiver, almanac is required to acquire

the satellites. But many newer models of GPS receiver are able to acquire the

satellites without waiting for the almanac.

Except for almanac data, a GPS receiver also requires ephemeris data for each

satellite, which contains very precise information about the orbit of each satellite.

The location of a satellite can be calculated with accuracy of a meter or two by

GPS receiver using ephemeris data. The ephemeris is broadcasted by the satellite

every 30 seconds and is usually valid up to four hours, according to Navstar GPS

User Equipment [8]. If a GPS receiver has been off for a while, it may spend

up to several minutes to receive the ephemeris data from each satellite before

obtaining a position fix. A GPS packet frame is shown in Figure 1.1. There are

five subframes in the packet. Each subframe contains 10 words that each needs

0.6 second to process. Thus it takes 6 seconds to process one subframe, and 30

seconds to decode the whole packet.

• Time to First Fix

An important concept to understand GPS is Time To First Fix (TTFF). TTFF

is the time that a GPS needs to spend to receive satellite signals and data in

order to calculate a position fix. According to GPS Receiver Testing [9], TTFF

is commonly broken down into three scenarios depending on GPS start up mode:
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– Cold Start

If a GPS receiver has no prior knowledge of its position, velocity, the time,

or the visibility of any of the GPS satellites, it has to systematically search

the entire space for all possible satellites. After acquiring a satellite signal,

the receiver can begin to obtain almanac on all the other satellites. In this

scenario, GPS receiver may take a few second to acquire one satellite. And

it also needs to decode the whole packet shown in Figure 1.1, which takes 30

seconds. This is one of the main reasons why it takes longer time to obtain

initial position fix and consumes higher energy.

– Warm Start

If a GPS receiver knows the time within 20 seconds, the current position

within 100 kilometers, its velocity within 25 m/s, and it has valid almanac

data, then it can skip almanac acquisition and start from acquiring ephemeris

data.

– Hot Start

If a GPS receiver has valid time, position, almanac and ephemeris data, it

then can enable a hot start. In this scenario, the GPS receiver can skip the

acquisition and only need to obtain timing information from each satellite.

The time spent to calculate a position fix in this scenario may also be termed

as Time to Subsequent Fix (TTSF). For most modern GPS receivers, TTSF

is usually within 0.5 to 20 seconds.

1.2.3 Assisted GPS

Assisted GPS (A-GPS) is one of multiple ways to improve TTFF. For example, in the

Mobile-Station Based A-GPS mode, the infrastructure can supply ephemeris data so

that the GPS receiver does not have to decode them from the satellites signals.



6

1.2.4 Duty Cycling GPS

For smart phones, continuous GPS sensing means to sample at 1 Hz, which is very

energy consuming. The most obvious way for energy efficient localization is to reduce

the time that GPS receiver is on. Usually for single location service, it activates GPS

receiver only when location information is required and then turn off the GPS receiver

right after the position fix has been obtained. For trajectory-based service, it requires

continuous location traces, which means the GPS receiver should be on and sampling all

the time. Thus, trajectory-based services are much more energy consuming. However,

by observing GPS traces, we found that sampling at 1 Hz was unnecessary even for

trajectory-based services. With the knowledge of road information, we are still able to

construct the route from a GPS trace even when the GPS sample rate is inadequate.

Thus, duty cycling GPS is a feasible approach for efficient trajectory-based services. The

problem is to find out the trade-off between the accuracy of routes constructed from

GPS traces with different sample rates and energy consumption. Thus after balancing

the pros and cons, we can formulate the most energy efficient period of duty cycling

GPS, meanwhile guarantee high accuracy of routes constructed from the traces.

1.2.5 Map Matching

Map matching is the procedure of aligning a sequence of observed user positions with the

road network on a digital map. The most obvious algorithm is that simply matching

each location sample of GPS trace with the nearest node of map data. Each road

in the map provided by OpenStreetMap is represented by a series of nodes. Due to

measurement noise and the density of the map data, this procedure is prone to error.

The paper Hidden Markov Map Matching Through Noise and Sparseness [10] describes

a novel, principled map matching algorithm that uses a Hidden Markov Model (HMM)

to match location samples from GPS traces onto map data. In this project, I propose

another algorithm for map matching.
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Location Samples

Map Data

Map Matching 
Algorithm Trajectory

Figure 1.2: Map matching process

1.2.6 Path Constructing

For trajectory-based services, the most important part is to construct the path from

the GPS traces. Path constructing is the procedure that determines the roads vehicle

has been on according to the data collected by GPS device. The accuracy of path con-

structed depends on three elements. First, the accuracy of map matching provides the

foundation for path constructing. Second, the sample rate of GPS trace determines the

density of trace. Trace with high sample rate provides more information to construct

the path. Third, the algorithm that we use to construct the path can also determine

the accuracy. This paper demonstrates how to construct the path of GPS traces by ap-

plying road network information provided by OpenStreetMap in order to find trade-off

between path constructing accuracy and sample rate of GPS trace. By analyzing en-

ergy consumption of GPS device, we can therefore be able to find the trade-off between

accuracy and energy consumption. To construct a path, there are two steps. First,

map matching procedure matches location samples of GPS traces onto map data pro-

vided by OpenStreetMap. Second, path exploration will be based on the result of map

matching. If samples from the GPS trace provide adequate information, meaning only

one legal path between every successive two samples, then the path can be obtained

by simply connecting these two samples. Otherwise, path exploration can be done by

querying the road network information provided by OpenStreetMap and by applying

some restrictions to find the most likely path. The restrictions included are no U turn
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or right/left turn on certain road, one way, impossibility to make a turn under high

speed limit, etc. In this case of path exploration, additional road network information

provided by OpenStreetMap will make up for the inadequate GPS samples to construct

the path. This paper focuses on the path exploration method.
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Chapter 2

RELATED WORK

Previous researches have made many approaches on energy efficient localization. Those

approaches include trade-off between positioning accuracy and adaptive duty cycling

GPS; using low power sensors to aid GPS sampling; making up GPS sampling insuffi-

ciency by using history location information etc. Most past research papers have made

a point that fixed duty cycling GPS receiver is not a good choice for trajectory-based

services.

LEAP: a low energy assisted GPS for trajectory-based services [6] explains why

it is hard to realize duty cycling GPS receiver for trajectory-based services. The GPS

processing contains four stages: acquisition, tracking, decoding and position calculation.

The GPS receiver is in charge of the first three stages. And the position calculation is

processed in main processor of the device. When the GPS receiver starts up, it acquires

and receives the data transmitted in by GPS satellites. Once the signals are acquired,

the receiver enters the second stage, i.e. tracking. In this stage, it runs continuously

to keep feedback loops with satellites. To calculate a position fix, the receiver must

track time to microsecond level. The millisecond part is decoded in the decoding stage.

The sub-millisecond part called code phase is computed by using correction in the

tracking stage. Thus the receiver needs to maintain code phase sync with satellites.

Then the receiver will go to decoding stage with correct tracking. In this stage, it

decodes the packets sent by the satellites. During the decoding, the tracking stage still

keeps running. If the tracking component of GPS shuts down, it takes time to search

and reacquire connection with satellites, forming a time gap that can cause severe code

phase error. In order to be energy efficient, LEAP off-loads packet decoding and location
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calculation to the cloud. And further more, by introducing a mechanism for fast re-

acquisition based on previous tracking results, LEAP realizes duty-cycle tracking loops

of GPS receiver. Hence, LEAP has made a good performance for energy consumption

on trajectory-based services.

Energy-efficient localization: GPS duty cycling with radio ranging [3] makes a point

that duty cycling the GPS module can prolong the device’s battery life at the cost of

increased position uncertainty while the GPS is off. The paper analyzes the relationship

among energy, GPS uncertainty, GPS off-time and speed. It then proposes three speed

models for duty cycling strategies for maintaining position uncertainty within specified

bounds. Static model is based on a constant assumed speed. Dynamic model is based

on setting the assumed speed as the last observed speed of mobile node. Probabilistic

model is based on last observed speed and a state model of the mobile node. According

to the required uncertainty bound of certain application and speed, the system can

decide how to schedule duty cycling.

Improving energy efficiency of location sensing on smartphones [5] talks about

RAPS, rate-adaptive positioning system, based on the approach of duty-cycling GPS. It

uses a collection of techniques to cleverly determine when to turn on GPS. It takes three

elements into account when deciding whether to turn off GPS. First, it uses location-

time history to estimate user velocity and adaptively turn on GPS according to the

uncertainty. Second, it estimates user movement using a duty-cycled accelerometer

and Bluetooth to reduce position uncertainty among neighboring devices. Third, cell

tower-RSS blacklisting is used to detect GPS unavailability. RAPS achieves much of its

energy saving by avoiding GPS activation in the places not available. However, when

it comes to driving on the roads that GPS service is always available and necessary, it

does not save much energy.

Energy-accuracy trade-off for continuous mobile device location [11] proposes an

approach that is similar to the one above. Their goal was to develop location as a

system service that automatically manages location sensor availability, accuracy and

energy. The approach is based on two observations. First, location applications do not

always need highest available accuracy. Second, a phone has multiple modalities to
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sense location aside from GPS. The paper saves energy by determining the most energy

efficient sensor to be used, such that the required location accuracy can be achieved.

In addition, before spending energy on sensing at the current time step, the paper uses

Hidden Markov Model to provide a probability distribution of predicted location.

Energy-efficient positioning for smartphones using Cell-ID sequence matching [1]

comes up an approach to save energy by using a cell-ID sequence matching technique

to estimate current position based on the history of cell-ID and GPS position sequences

that match the current cell-ID sequence. Obtaining current location information by

cell tower uses much less power than by GPS. However because the uncertainty of

using cell tower is much higher, it is barely used in obtaining precise location. By

adding additional information to the location information obtained by cell tower, it

is possible to gain current position with relatively high accuracy while saving energy.

When locating current position, the system designed has three salient features: Spatial

and temporal mobility history, cell-ID sequence matching and opportunistic learning.

The paper reveals a fact that people often take similar routes in daily life. The cell-

ID sequence and GPS coordinates are stored in the database as history route. If the

current cell-ID matches a sequence or a sub-sequence in the database, it estimates the

user position within the route traveled in the past. If it is not, the system will turn on

the GPS to opportunistically learn and build the history of route for future usage. The

system has two main limitations. First, it requires storage for route of history. Second,

if the user always explores new route instead of having a travel pattern, the system

cannot save much energy as it always has to turn on GPS every time to learn a new

route.

SensLoc: sensing everyday places and paths using less energy [12] has made an

attempt to efficiently provide contextual information about locations as places and

paths instead of simply tracking a user’s raw coordinates. The paper proposes a new

abstraction of continuous location: places and paths. It also presents a framework that

provides location context as places and paths using less energy. The system architecture

contains three parts: place detector, movement detector and path tracker. The place

detector can learn a new place by saving its place signature, recognize the place by
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regularly scanning neighboring radio beacon and consulting database, triggering the

movement detector to find an opportunity to sleep. Path tracker is only enabled when

the place detector senses a place departure. The system saves most of energy by context

detection, detecting places and only enabling GPS on these paths.

EnTracked: energy-efficient robust position tracking for mobile devices [4] proposes

EnTrack, a system that is based on the estimation and prediction of system conditions

and mobility. It can schedule position updates to both minimize energy consumption

and optimize robustness. First, the paper analyzes the power consumption model, giv-

ing us the relationship of power consumption and five power parameters instead of

simply assuming that power consumption for position sensing and sending is instanta-

neous. Second, by detecting movement and estimating speed, the paper proposes an

error model with two parameters: the estimated uncertainty of the last GPS position

delivered to the application, the time since the last GPS position and the estimated

speed. Then based on the application-defined error limit, the current error and the

estimated speed, the system calculates the time limit for the next GPS position. Tak-

ing the power consumption and the time limit into account, the paper formulates an

equation to minimize power consumption. The main limitation of EnTrack is that the

experiment is conducted by tracking the pedestrian target with maximum speed of

10m/s, which is not suitable when it comes to driving scenario.

Energy-efficient trajectory tracking for mobile devices [13] proposes an on-device

sensor management strategy and a set of trajectory updating protocols which cleverly

determine when to sample different sensor (accelerometer, compass and GPS) and when

data should be simplified and sent to a remote server. The framework the paper pro-

poses is an extension of EnTrack. The sensor management strategy is compass-based

change-of-direction sensing and adaptive duty cycling accelerometer and compass sen-

sors. Trajectory simplification algorithm is designed for energy-efficient trajectory up-

date protocols. The paper has made great progress after EnTrack that it can be used

for different transportation modes other than pedestrian.

Exploiting temporal stability and low-rank structure for localization in mobile net-

works [14] focuses on localization in mobile networks instead of using GPS for location
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determination in order to be energy efficient. It proposes three schemes to accurately

determine locations in mobile networks: Low Rank based Localization, Temporal Sta-

bility based Localization and Temporal Stability and Low Rank based Localization.

According to the paper, GPS for localization is not the only option to accurately deter-

mine locations. However, it does not analyze energy consumption for those schemes.



14

Chapter 3

EXPERIMENTAL METHODOLOGY

3.1 Experimental Goal

This study was performed with two main goals in mind. The first goal is to formu-

late the relationship between the accuracy of path constructed by GPS traces and the

sample period of the GPS traces. To do so, we need to collect a large amount of GPS

traces and reduce the sample rate of the traces gradually. And then by applying our

algorithms, construct the routes from those GPS traces and quantify the accuracy of

the routes constructed from traces with different sample rates. After a large amount of

experiments, we can formulate a general result. The second goal is to analyze energy

consumption under different sample rates. The energy analysis in combination with

the result of route accuracy gives us a clue of whether duty cycling GPS is a feasible

approach for energy efficient trajectory-based services.

3.2 Experimental Design

To realize the study goal, we designed our experiment into 5 stages.

• Data Collection: Collecting real-life driving GPS traces is the first step of our

project, since it uses a lot of GPS traces. In order to do so, each participant

carries an Android phone with an application that can activate GPS location

service and store traces into local database during driving. The traces collected

are all under normal driving circumstances, with no traffic violation. And the

routes we chose are distributed in different area of Central Jersey and contain

both highways and local roads.
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Figure 3.1: We designed our experiment into 5 stages

• Experiments on GPS Traces: The data we collected are time stamped lati-

tude/longitude coordinates. And the original sample rate of those traces is 1 Hz.

To simulate reducing sample rate, we removed samples in those traces gradually.

For example, to simulate 0.1 Hz sample rate, all we need to do is to select sam-

ples with interval of 10 seconds and remove all the other samples between them.

After simulating reducing sample rate of each trace, we have traces with different

sample rates. We then construct routes from these traces, compare them with

original route and quantify their accuracy. After a large amount of experiments

on those traces, we can then formulate our result, as indicated in Figure 3.2.

• GPS Time To First Fix (TTFF) Analysis: Real duty-cycling GPS working process

is not exactly like our simulation. Because it takes time for GPS to get a position

fix after acquiring satellite signals, as introduced in Chapter 1, we need to consider

GPS TTFF into the result we get from the last step. However, GPS TTFF is

not a fixed value. It depends on the weather condition, the number of visible
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Figure 3.2: Experiments on GPS traces

satellites, signal strength, driving speed, etc. In order to have a general clue of

TTFF, we test it by activating GPS receiver and timing its TTFF on the real

driving circumstances under different weathers and different roads.

• GPS Energy Analysis: To do energy analysis, we activate GPS component of the

smartphone under the condition that satellites are visible and then we monitor

the electric current going through the smartphone’s battery using an oscilloscope.

We then can get a clue of how much energy GPS receiver consumes on different

working stages. The data we get from this part can help us understand the

trade-off between energy consumption and accuracy in our approach.
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Chapter 4

ALGORITHMS AND IMPLEMENTATIONS

4.1 Parse the Road Information

Trajectory-based services are usually associated with road information or map. GPS

receiver alone can only obtain its latitude/longitude coordinates but not be able to use

that information. Only associated with road information or map, the latitude/longitude

can be used for applications like navigation, traffic and advertising, etc. Thus, it is

inevitable to use map when requiring trajectory-based services. To construct path of

the GPS trace, we need to know the road information. The road information we used for

this project is provided by OpenStreetMap. OpenStreetMap (OSM) is a collaborative

project to create a free editable map of the whole world. Due to the emphasis of

local knowledge and ground truth in the process of data collection, the project has a

geographically diverse user-base. The density of map data of OpenStreetMap varies

from area to area, as indicated in Figure 4.1. The map database downloaded from

OpenStreetMap contains the following tables.

• Bounds: This table contains four elements: minimum latitude/longitude and

maximum latitude/longitude. It sets up the boundaries of the map we want to

use. OpenStreetMap contains map all around the world. We need to set the

boundaries of the map more specifically according to the area that the GPS trace

covers.

• Nodes: The map data provided by OpenStreetMap consists of many nodes. Each

node in this table has its unique node ID and latitude/longitude coordinates.

• Ways: All the road information within the area is stored in this table. Each way

has its unique way ID, road name, its type and node IDs of all the nodes on it.
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Figure 4.1: OpenStreetMap GPS trace density

The types of way are primary, residential, secondary, motorway, etc. Each way

type has its own speed limit.

• Speed Type: Depending on its type, each road has its speed limit which is stored in

the speed type table. There are three columns in this table: road type, minimum

speed for road type, maximum speed for road type. The unit of speed used here

is miles per hour. For example, the minimum speed for motorway is 55 mi/hr

and the maximum speed is 65 mi/hr.

Way ID Name Type Node ID

5670031 Staff Street residential 42425780

5670031 Staff Street residential 60916236

5670031 Staff Street residential 60916237

5670031 Staff Street residential 42431666

5670088 West 167th Street residential 42432218

5670088 West 167th Street residential 42432220

5670088 West 167th Street residential 42432223

5670131 Dyckman Street secondary 42427859

5670131 Dyckman Street secondary 42432789

Table 4.1: An example of Ways table
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Type min speed (mi/hr) max speed (mi/hr)

motorway 55 65

motorway junction 55 65

motorway link 25 35

trunk 45 55

trunk link 25 35

primary 40 50

primary link 25 35

secondary 35 45

secondary link 25 35

tertiary 30 40

tertiary link 25 25

residential 25 25

service 5 25

construction 25 45

Table 4.2: Speed Type

• Lanes: Each way may contain more than one lane. For example, a highway usually

contains at least two lanes, one lane to the north and one lane to the south or

one lane to the east and one lane to the west. Driver cannot change directly to

the opposite direction. Lanes table contains 2 columns: way ID and the number

of lanes of this road.

• Adjacencies: Road is represented by a series of connected nodes. Adjacencies

table stores the adjacency relationship between nodes on a road. There are three

columns in this table: way ID, from node ID and to node ID. When we explore

ways from one node to the other node, we need to consider the adjacency rela-

tionship among the nodes.

4.2 Map Matching

4.2.1 Features of Map Data

The features of map data provided by OpenStreetMap cause the difficulty to match the

samples from GPS trace onto the right road. In the database, each road is represented

by a series of connected nodes. Figure 4.2 below shows all the nodes along the route in

the database. As Figure 4.2 indicates, the distances between two connected nodes in
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Figure 4.2: Difficulty of mapping caused by two elements: noise of GPS device and
uneven distribution of nodes in the database

the map data are different. The database represents straight road by relatively small

density of nodes. However, for a curvy road, there are relatively more nodes to represent

it in the database.

4.2.2 Difficulty of Map Matching

The difficulty of map matching is caused by the noise of GPS device and the uneven

distribution of nodes in the database. As Figure 4.2 indicates, the red colored nodes

are all the nodes along the route in the database. The correct route is represented by

simply connecting those red nodes with straight line. The black node is one of samples

from the GPS trace. Our task is to match the black node onto one of the nodes stored

in the database. The blue node is a node in the database that is close to the back node

but not on the correct route. The obvious algorithm for map matching is to match

the GPS trace to its nearest node in the database. However, as we can see, due to

measurement noise and uneven distribution of the database, the nearest node in the

database to the black node is the blue one, which obviously does not belong to the

correct route.



21

Figure 4.3: Example of bad mapping
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4.2.3 Map Matching Error

There are two scenarios of map matching error as indicated in Figure 4.3. Either of

them can cause severe problems when it comes to constructing path.

• Map Matching Onto a Wrong Road

Map matching onto a wrong road could cause path constructing error. For ex-

ample, in Figure 4.3, node 1 and node 5 are matched onto a wrong road. For

this scenario, we can apply the relationship among samples in the GPS trace as

a restriction to do a better map matching. To map match each sample in the

trace, we not only get the nearest node on the road but get a range of possible

nodes near it and sort them by the distance to the sample that we want to match.

Then we check its succeeding sample. We also get a range of candidates for the

succeeding sample and sort them. Check whether there is one among the former

candidates that shares same way ID with the one among candidates of the suc-

ceeding sample. If so, we match the former sample on the road that the way ID

represents. If there is no such same way ID, meaning the node is not on the same

road with its succeeding node, then it must share the same way ID with the node

ahead of it. Apply with the former way ID, and then select the candidate on the

road that the former way ID represents. This map matching algorithm proves to

be effective in some cases. However, when it comes to the scenario below, it is

prone to error.

• Map Matching Onto a Right Road But a Wrong Lane

When a road has lanes with different directions, for example, one lane to the north,

the other to the south, we cannot distinguish the lanes since there is no lane ID

to distinguish different lanes of the road in the database. If we match the sample

onto the right road but a wrong lane, it will explore error when constructing the

path. Because it is illegal to drive from one lane and directly turn to the lane

with opposite direction if U turn is not allowed, we cannot connect them with a

legal path. As illustrated in Figure 4.3, node 3 is matched onto the right road

but a wrong lane. When constructing the path, we will find node 3 can neither
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be connected from node 2 nor connected to node 4. For this scenario, there is no

way but checking the connectivity from the former node to the node that we are

matching. First, we query the database to get a range of candidates connected

to the former node. And then we get a range of candidates for the node that

we are matching and sort them according to the distance. Check whether each

candidate is connected to the former node according to the order of its distance

to the sample in GPS trace. If it is connected, match it, otherwise, check next

candidate. Due to lacking way ID information, this algorithm sometimes can also

cause map matching error.

4.2.4 Backtracking and Connectivity Check Map Matching

For this project, in order to construct the path and compare the path we construct

with the correct route, we need to improve the accuracy of map matching algorithm.

As explained in Figure 4.4a, the red nodes are the nodes we have already matched.

The black node is a sample from the GPS trace that we want to match onto the map

data. There are two conditions that need to be satisfied when matching the black node

onto a certain node in the database: the candidates we select must be within a certain

range of the black node; the candidates must be reachable by the nodes that have been

already matched which are colored by red. So first, we get a range of candidates in the

database that are close to the black node and color them by blue. And then we check

the connectivity from node 1 to each of the blue nodes. Both node 3 and node 4 are

connected to node 1. Because node 4 is closer, we match the black node onto node 4.

For this step, even though node 4 is closer to node 2, we know from Figure 4.2 that

node 3 is the right choice. We can modify that by backtracking. Since black node 2

has already been matched, we are going to match next sample from the trace which is

node 6, as indicated in Figure 4.4b. We get a range of candidates for it and check the

connectivity from node 4 to them. Then an error arises that none of the candidates

can be reached from node 4. Thus we know it is a wrong decision to match node 2 onto

node 4. We must go back to rematch node 2, as indicated in Figure 4.4c. Because we

have failed with matching node 2 onto node 4, as indicated in Figure 4.4c, unqualified
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Figure 4.4: Map Matching process
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candidates being marked by grey, node 3 is the only candidate left. Therefore we match

node 2 onto node 3. Then we can continue to match node 6 in Figure 4.4d. This time we

can tell that candidate node 7 satisfies the two conditions, so match node 6 onto node

7. Because of the backtracking and connectivity check mechanism, if a map matching

error happens, we can always detect it and backtrack to correct it. This map matching

algorithm achieves much better accuracy.

4.2.5 Limitations of Map Matching

The map matching algorithm is dependent on the map data provided by OpenStreetMap,

which is uploaded by users around the world. The density of map data provided by

OpenStreetMap varies from area to area. Thus, in certain area, the density of nodes

in the database is inadequate due to infrequency of GPS trace uploading. Figure 4.5a

below is a GPS trace collected in Beijing, China. There are 1,270 nodes in the original

trace. However, when map matching it onto the map data provided by OpenStreetMap

as indicated in Figure 4.5b, the route is represented by only 15 sample nodes in the

database. For this area, the density of map data is inadequate compared to the com-

plexity and density of road network.

4.3 The Path Constructing Problem

Each node stored in the database provided by OpenStreetMap has attributes such as, a

unique node ID, latitude/longitude coordinates and way ID indicating which road the

node belongs to. A node may have several way IDs.

4.3.1 Path Constructing Scenarios

Path constructing problem contains two scenarios. The first one, as indicated in Fig-

ure 4.6a, is when the two nodes have the same way ID. To this scenario, we query

the database and then simply connect the two nodes by adding points between them

along the road as illustrated in Figure 4.6b. The number of points we add between

the two nodes depends on the density of nodes along the road in the database. The
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(a) A GPS trace collected in Beijing, China

(b) Same route represented by the sample nodes in the database

Figure 4.5: Inadequate sample nodes in Open Street Maps
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(a) Two nodes have same way ID, meaning they
are the same road

(b) Connect the two nodes by adding points
between them along the road

(c) Two nodes are on the different roads (d) Explore path by inquiry database to find
intersection of the two roads

Figure 4.6: Map matching process
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Figure 4.7: Breadth First Search to explore path between nodes that are not on the
same road

second scenario is when the two nodes do not have a common way ID, as indicated in

Figure 4.6c. To construct the path under this scenario, we query the database to find

all the nodes connected to the first node and use restrictions to eliminate the impossible

nodes. Then use modified Breadth First Search algorithm to explore all the possible

nodes until we find the path connected to the second node.

4.3.2 Exploring Possible Nodes

To construct the path under the second scenario, we want to find the possible path

between two nodes with different way IDs. To explore the path between the two nodes,

we use modified Breadth First Search algorithm. From the starting node, push all

the possible next nodes adjacent to it into a queue. Explore each node in the queue.

Check whether the node popped out from the queue matches the destination node.

If it matches, stop exploring and construct the path from the starting node to the

destination node. Otherwise keep exploring until find the destination node in the queue.

For example, in Figure 4.7, we want to explore the path from node 1 to node 9. We

can see there are two paths form node 1 to node 9: node1-node 6-node7-node 9 and

node 1-node 8-node 9. Clearly node 1 is the intercourse of three different roads: way 1,

way 2 and way 3. Each way is colored differently. Starting from node 1, we query the
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database and find its adjacent nodes, node 2, node 6 and node 8. Because we have not

encountered our destination node, i.e. node 9, we need to keep exploring from these

nodes. Starting from node 2, we find its successor node 3. Node 9 is still not met, so we

keep exploring from node 6 and then node 8. We find node 8’s successor is node 9. We

then stop and way 3 is our choice. This algorithm tends to find straight and shortest

way between two nodes, which is similar to our driving habit. When driving from one

location to the other location, people tend to choose the shortest way.
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Chapter 5

EXPERIMENTS

5.1 Experiments on GPS Traces

5.1.1 GPS Traces

We tested our theory using the data collected in driving cars. We have collected 123

traces with different route complexity and road network density in Central Jersey. The

total distance of the traces is 1188.88 miles. The longest trace is 36.55 miles long. The

original sample rate is 1 Hz. The shortest trace is 1.78 miles. An example of the traces

we used is as shown in Figure 5.1a. This route is 2.886 miles long. The number of

latitude/longitude coordinates is 327. After map matching the trace onto the map data

provided by OpenStreetMap and filtering unqualified nodes, only 66 nodes have been

left, as shown in Figure 5.1b. We simulated reducing sample rate of the GPS data by

removing points. The sample period was gradually increased to 10, 20, 30, 40, 50, 60,

90, 120, 240, 300 seconds.

5.1.2 Accuracy Evaluation

First, we ran our program on the trace with sample period of 10 seconds. The path

constructed from it would be considered as the correct route when evaluating the route

accuracy. After running our program on traces with longer sample periods, we qual-

ified the accuracy of the routes constructed from those traces by comparing with the

correct route. Figure 5.2 explains how we estimated the accuracy by the percentage of

mismatched fraction of route.
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(a) An example of the traces we use

(b) Same route represented by map data

Figure 5.1: An example of GPS traces
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d0=length*of*correct*route

correct*route

matched*route

d2

d+

d2=length*erroneously*subtracted
d+=length*erroneously*added
(d2+d+)/d0=reported*error

Figure 5.2: This illustrates how we measured the error between the correct route and
the route constructed from GPS traces

5.1.3 Results

After running our program on all 123 traces, we have all the results. For GPS traces,

because of different route complexity, the results vary from each others. Table 5.1 is a

part of the result of the trace shown in Figure 5.1.

Sample Period (second) d0(mile) d+(mile) d-(mile) Mismatch Fraction

20 2.886 0 0 0

30 2.886 0.876 0.280 0.40

40 2.886 0.876 0.280 0.40

50 2.886 0 0 0

60 2.886 0.876 0.280 0.40

Table 5.1: Result of a single trace

After having tested on all 123 traces that we have collected, we got a chart of how

the mismatched fraction of route changed when constructing route from GPS traces

with different sample periods. The total distance of the traces is 1188.88 miles. And

the result is as shown in Figure 5.3 and Table 5.2.
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Figure 5.3: The result of how the mismatched fraction of route changes as sample period
increases
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Sample Period (second) Mismatched Fraction

20 0.065

30 0.129

40 0.178

50 0.172

60 0.180

70 0.202

80 0.205

90 0.202

120 0.235

180 0.256

240 0.258

300 0.236

Table 5.2: Result of general cases

5.2 Experiments on Energy Analysis

5.2.1 Duty Cycling GPS

After conducting experiments on the GPS traces, we have the trade-off between GPS

sample rate and route accuracy. However, in order to analyze the trade-off between

energy consumption and route accuracy, we also need to conduct experiments on energy

analysis. Then we would be aware of how much energy we can save from duty cycling

GPS receivers instead of continuous GPS sampling. The energy consumption is related

to the status of the GPS receiver. Thus before energy analysis, we need to recall how

GPS works.

• GPS Working Process

GPS signal processing contains three stages: acquisition, tracking and decoding.

Acquisition: It is the first stage when the GPS receiver starts up. During the

stage, the GPS receiver searches for visible satellites in order to start receiv-

ing data transmitted from the satellites. Tracking: After satellites signals are

acquired, the GPS receiver enters tracking stage, during which stage the GPS

receiver keeps a lock to the satellites. Decoding: With correct tracking, the

GPS receiver can decode the packets sent from the satellites. Then the location

calculation is finished by the main processor. Acquisition is more expensive than
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the other stages.

There are three start up modes for GPS receiver: cold start, warm start and hot

start. Cold Start: When GPS receiver has no prior knowledge of its last position

and time, a cold start takes place and the GPS receiver has to search the entire

space for satellites and at least one GPS frame must be downloaded from each

of the satellites. It has the longest GPS Time To First Fix (TTFF) among the

three start up modes. Most modern GPS receivers achieve position fixes from

a cold start condition in 30 to 60 seconds. Warm Start: A warm start occurs

when the receiver has some almanac information that is less than one week old

but does not have valid ephemeris information. From a warm start condition, a

modern GPS receiver can achieve a position fix in much less than 60 seconds for

it only needs to decode ephemeris data from the satellite’s packet. Hot Start: If

a receiver has up-to-date almanac and ephemeris information, it will perform hot

start mode, namely skip the acquisition process and start directly. It takes 0.5

to 20 seconds to get its position fix for modern GPS receivers under this mode,

because it only needs to obtain timing information from each satellite.

When it comes to duty cycling GPS receiver, if the receiver has valid almanac

and ephemeris information, it is more likely to perform a hot start each time. In

our case, because the time that the GPS receiver has been off during each duty

cycle period is much less than almanac and ephemeris valid time, it is more likely

to perform hot start every time after being activated during the duty cycle. From

result of the experiments on constructing route from GPS traces with reducing

sample rates, we can see duty cycling GPS is still a possible way for energy efficient

trajectory-based services of smart phones.

• GPS Time to First Fix (TTFF)

In order to get trade-off between accuracy of the route constructed from GPS

traces with different sample rates and the power consumption, an important task

is to decide how to duty cycle GPS. From the explanation of GPS working process,

we know that it takes time for a GPS receiver to get a position fix after activating
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it. In hot start mode, GPS TTFF is still dependent on several elements: the

number of satellites visible to GPS device, moving speed of GPS device, signal

strength, etc. Under normal driving condition, we tested how long it took to get

a position fix each time after activating the GPS receiver on average. Because we

want the GPS receiver to perform hot start each cycle, we set the duty cycle period

as 10 seconds or 20 seconds. We have collected 2150 samples. The distribution

of GPS TTFF is as shown in Figure 5.4.

We can see from the result shown in Figure 5.4, the probability that the GPS receiver

takes less than 20 seconds to get a position fix is more than 94%, which satisfies the data

provided by [9]. And the average GPS TTFF from our experiments is 11.549 seconds.

Based on these data together with power consumption of GPS receiving process, we can

then calculate how much energy we can save from duty cycling GPS. We can suppose

that the lowest energy efficiency occurs when the GPS TTFF is 20 seconds, because

in order to obtain one single position fix, the receiver keeps on for 20 seconds, which

means that it has to decrease the time that GPS receiver is off during the duty cycle to

maintain relatively high route accuracy. And the average case for battery consumption

is when we consider GPS TTFF as the average value 11.549 seconds.

5.2.2 Power Consumption Measurement

Our measurements of power consumption of GPS receiver were performed on Samsung

Galaxy Player 4.0. It is an mp3 player with GPS component. We used an oscilloscope

to measure the current consumption of the GPS component. Because the Android

device cannot boot without battery in the device, we left the the battery connected to

the device and measured continuous power transferred from the battery to the device.

To avoid interference from battery charging circuitry, we took the measurements with

no external charger connected to the device. We placed a 0.5 ohm resistor in series with

ground and measured the voltage drop on the resistor from which we can calculate the

current of the circuit. The power consumption we measured here was under hot start

condition. The device ran a background service to get locations by activating its GPS

receiver periodically. During the idling, the current is 8 mA and the power consumption
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Figure 5.4: GPS sensing duration
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Battery Capacity
(mAh)

Power Consumption
on idling (mW)

Power Consumption
on Sampling (mW)

1200 29.6 325.6

Table 5.3: Battery consumption

is 29.6 mW. And the power burst after activating the GPS receiver is as high as 260 mA.

However it can be ignored because its duration is much shorter than the total sensing

duration. During the GPS sensing, the current is 88 mA and the power consumption is

325.6 mW. Thus for a smart phone having battery capacity of 1200 mAh, continuous

GPS sampling can drain the battery in 13.6 hours, assuming that the smart phone is

not used for anything else.
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Chapter 6

DISCUSSION

6.1 Result of Experiments on GPS Traces

6.1.1 Single Trace

It is interesting to find that for a single trace sometimes the mismatched fraction of

route does not increase steadily as the sample rate decreases. This situation is caused

by the randomness when removing samples in the GPS trace. Figure 6.1 are the 30-

second-sample-period trace and 50-second-sample-period trace and their results.

After comparing the results to the correct route, it is obvious that the path con-

structed by 50-second-sample-period trace is 100% accurate. On the other hand, the

path constructed by 30-second-sample-period trace mismatched a fraction of the route.

Figure 6.2 illustrates how it happens. As we can see, though 30-second-sample-period

trace has denser nodes, it does not contain the key node which is on the curve street

instead of the straight main road (marked as blue). When it comes to explore the path

between the two nodes, our algorithm tends to find the shortest path (marked as blue)

between the two nodes rather than the other path (marked as red ). Thus it erroneously

constructs a wrong path using the 30-second-sample-period trace. When factorizing the

long sample period, if the short sample period is not a factor of it, then this situation

may occur. On the other hand, if the short period is a factor of the long sample period,

for example, 30 seconds and 60 seconds, there is no way that path constructed by the

longer sample period trace is better than the one constructed by the shorter sample

period trace, because the 30-second-sample-period trace contains all the nodes in the

60-second-period-trace and is twice denser. If the 30-second-sample-period trace misses

a key node, the 60-second-sample-period-trace will definitely end up missing a key node
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(a) 30-second-sample-period GPS trace (b) path constructed by 30-second-sample-
period GPS trace

(c) 50-second-sample-period GPS trace (d) path constructed by 50-second-sample-
period GPS trace

Figure 6.1: Single trace result
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right path
wrong path

50 seconds 50 seconds

30 seconds 30 seconds 30 seconds

Figure 6.2: compare the 50-second trace with 30-second trace

for the same part of route as well. Thus the general trend of the mismatched fraction

of route is going upward as the sample period increases.

6.1.2 General Case

We made an observation based on the result of general case in Figure 5.3. The maximum

slope happens from 20 seconds to 40 seconds. By visualizing the trace on the map as

shown in Figure 6.1, we know usually the mismatched fraction of route happens on the

local part of the route. For highway part, it does not change much as sample period

increases. Take residential road for example. The speed limit for residential road is 25

mi/hr, which means a driver could travel 0.2 miles within 30 seconds on it. Considering

high density of roads in local area, 0.2 miles between two nodes means that there could

be more than two streets or roads connecting them. Because more than one path are

legal, the chance of choosing a wrong path by our path constructing algorithm thus

increases. However, on the freeways, even though the driving speed is from 55 mi/hr to

65 mi/hr meaning a driver could travel 0.5 miles within 30 seconds, there is big chance

that only one legal path between two nodes due to much less density and complexity

of roads.
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6.2 Energy Analysis Results

From the GPS working process, we know that in our case duty cycling GPS performs

hot start each time after being activated. And even though TTFF is not a fixed

value, through experiments on TTFF, we can get a clue that under normal driving

condition, TTFF is not likely to exceed 20 seconds and the average value of it is 11.549

seconds. Based on that, we may consider the trade-off between route accuracy and

energy consumption with average case and worst case.

We measured how much power it consumed during GPS sensing process after a

hot start. And then we can calculate how much energy saved. In the combination

with the result from the path constructing experiments on GPS traces, we can get

the trade-off between energy consumption and route accuracy. Then we can decide

whether duty cycling GPS is energy efficient. The relationship can be summarized as

in Equation 6.1, 6.2.

Ttotal duration = Toff + Ton (6.1)

Pduty-cycle GPS =
Ton

Ton + Toff
× Pcontinuous GPS sampling +

Toff

Ton + Toff
× Pidling (6.2)

Where:

• Ttotal duration: time interval between GPS samples

• Toff: time that GPS has been off each time during duty cycling GPS

• Ton: time that GPS has been on each time during duty cycling GPS

• Pduty-cycle GPS: power consumption when duty cycling GPS

• Pcontinuous GPS sampling: power consumption when continuous GPS sampling

• Pidling: power consumption when the smart phone is on idling
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6.3 Trade-off between Route Accuracy and Energy Consumption When

Duty Cycling GPS Receivers

To conclude the trade-off between route accuracy and energy consumption when duty

cycling GPS receivers, we took results from three parts into account: path constructing

experiments on the GPS traces, GPS TTFF experiments, and battery consumption

measurement. When it comes to the real world duty cycling GPS receivers, GPS

TTFF is always changing. We can only set the time that GPS has been off each time

during duty cycling GPS (Toff) fixed. The duty cycling strategy would be activating

the GPS receiver at the beginning of each cycle and keeping it on until it obtains a

position fix. And turn it off for Toff. Then next cycle begins. When analyzing the

trade-off between route accuracy and energy consumption, we cannot have both GPS

TTFF and Toff changing. We must set one of them as a fixed value. The experiments

on GPS TTFF shows that for hot start condition, TTFF is most likely to be within a

range. Thus based on the experiments on GPS TTFF, we divided our conclusion into

two cases: worst case and average case.

• Worst Case

As explained in Introduction, the GPS TTFF in hot start condition is usually

within 0.5 to 20 seconds for modern GPS receivers. And our experiments on GPS

TTFF show that the value has 94% probability that it does not exceed 20 seconds.

Thus we used 20 seconds to analyze the trade-off as worst case, as indicated in

Table 6.1.

• Average Case

The GPS TTFF we measured has an average value of 11.55 seconds. We used

this value to analyze the trade-off as average case, as indicated in Table 6.2.
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Ttotal duration(sec) Ton(sec) Toff (sec) Mismatched Fraction Average Power Con-
sumption(mW)

30 20 10 0.129 224.66

40 20 20 0.178 177.6

50 20 30 0.172 148

60 20 40 0.180 126.98

70 20 50 0.202 114.17

80 20 60 0.205 103.6

90 20 70 0.202 95.37

120 20 100 0.235 78.93

180 20 160 0.256 62.49

240 20 220 0.258 54.27

300 20 280 0.236 49.33

Table 6.1: Worst case of Trade-off between Route Accuracy and Energy Consumption
When Duty Cycling GPS Receiver
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Figure 6.3: Worst case of Trade-off between Route Accuracy and Energy Consumption
When Duty Cycling GPS Receiver
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Ttotal duration(sec) Ton (sec) Toff (sec) Mismatched Fraction Average Power Con-
sumption(mW)

20 11.55 8.45 0.065 200.54

30 11.55 18.45 0.129 143.56

40 11.55 28.45 0.178 115.07

50 11.55 38.45 0.172 97.98

60 11.55 48.45 0.180 86.58

70 11.55 58.45 0.202 78.44

80 11.55 68.45 0.205 72.34

90 11.55 78.45 0.202 67.59

120 11.55 108.45 0.235 58.09

180 11.55 168.45 0.256 48.59

240 11.55 228.45 0.258 43.85

300 11.55 288.45 0.236 41.00

Table 6.2: Average case of Trade-off between Route Accuracy and Energy Consumption
When Duty Cycling GPS Receiver
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Figure 6.4: Average case of Trade-off between Route Accuracy and Energy Consump-
tion When Duty Cycling GPS Receiver
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Chapter 7

CONCLUSIONS

7.1 General Conclusion

Duty cycling GPS receiver achieves energy efficiency by sacrificing route accuracy. As

the sample period increases, both energy consumption and route accuracy are generally

decreasing. When the sample period exceeds 120 seconds, the mismatched fraction of

route tends to be stable at 0.23 to 0.25. By visualizing each route on the map, we can

make a bold assumption that this value is proportional to the composition of the route.

When reducing sample rate of GPS receivers, the mismatched fraction of the route is

more likely to occur on local roads rather than on highways. Thus duty cycling GPS

receiver mainly saves energy from the loss of accuracy on local part of the route. If a

mobile app can bear the loss of accuracy on local roads, fixed period of duty cycling

GPS receiver is still a feasible approach for energy efficient trajectory-based services.

7.2 Schedule Duty Cycling GPS Based on Trade-off Result

To schedule a duty cycle based on our results, we also need to establish some criteria

based on the specification that a certain app wants to achieve. We can analyze the

trade-off result and make a decision by 2 decision-making methods: single criterion

choice and pros/cons trade study.

• Single Criterion Choice

For this decision-making method, only one criterion dominates. For example,

for trajectory-based services, the criterion for route accuracy usually dominates

over energy consumption. Thus how to schedule a duty cycle is totally based on

the requirement of route accuracy. Because both of route accuracy and energy
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consumption decrease as sample period increases, the most efficient duty cycle

period can be chosen based on the maximum loss of accuracy an app can bear.

• Pros/Cons Trade Study

Pros/cons trade study is used when more than one criterion is known. When

making decision based on this method, we need to consider all the criteria, quan-

tify those criteria by inventing a scoring system and make decision based on the

score. An example is illustrated as follow.

An app with trajectory-based service expects to consume less than 250 mW power

on GPS sampling. And the maximum mismatched fraction of route it can bear

is 0.2. Both of route accuracy and energy consumption are equally weighted to

the app. Associated with the result in 6.3, a scoring system can be invented as

Equation 7.1, 7.2, 7.3. After calculating the score based on it, sample period with

lowest score is the most efficient one under those criteria.

Punified =
Pduty-cycle GPS

Pmax
(7.1)

Funified =
Fduty-cycle GPS

Fmax
(7.2)

S = Punified ×Wpower + Funified ×Waccuracy (7.3)

Where:

– Punified: unified power consumption on the scale of maximum power con-

sumption on GPS sampling the app can bear

– Pmax: maximum power consumption on GPS sampling the app can bear

– Pduty-cycle GPS: power consumption when duty cycling GPS with certain sam-

ple period

– Funified: unified mismatched fraction of route on the scale of maximum mis-

matched fraction of route the app can bear

– Fmax: maximum mismatched fraction of route the app can bear

– Fduty-cycle GPS: mismatched fraction of route when duty cycling GPS with

certain sample period
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– Wpower: weight of power consumption for the app

– Waccuracy: weight of route accuracy for the app

Applying the scoring system on the result in 6.3, we have scored each sample

period as in Table 7.3. The sample period with lowest score is 20 seconds. Thus

for this app, we can schedule duty cycling GPS receiver with sample period of 20

seconds.

Sample Period (sec) Pduty-cycle GPS (mW) Pmax (mW) Punified

20 200.54 250 0.802

30 143.56 250 0.574

40 115.07 250 0.460

50 97.98 250 0.392

60 86.58 250 0.346

Table 7.1: Unified power consumption

Sample Period (sec) Fduty-cycle GPS (mW) Fmax (mW) Funified

20 0.065 0.2 0.325

30 0.129 0.2 0.645

40 0.178 0.2 0.890

50 0.172 0.2 0.860

60 0.180 0.2 0.900

Table 7.2: Unified mismatched fraction of route

Sample Period (sec) Punified Wpower Funified Waccuracy Score

20 0.802 0.5 0.325 0.5 0.564

30 0.574 0.5 0.645 0.5 0.610

40 0.460 0.5 0.890 0.5 0.675

50 0.392 0.5 0.860 0.5 0.626

60 0.346 0.5 0.900 0.5 0.623

Table 7.3: Score each sample period

7.3 Future Works

To improve the route accuracy of duty cycling GPS receiver, we may consider some

future works as below.
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7.3.1 Using Other Sensors to Detect Turns

In 6.1.1, it shows that it is critical to detect key nodes on the route to improve route

accuracy. Our path constructing algorithm tends to choose the shortest legal path

between two nodes, thus it usually tends to choose a straight road over a curvy road.

Yet sometimes the correct path is the curvy road. To prevent this situation, a future

work can be focused on using other sensors to help detect turns during duty cycling

GPS receivers. By comparing turning points and curvature of the roads, it is possible

to avoid missing key nodes and improve route accuracy.

7.3.2 Adaptive Duty Cycling GPS Receiver

The loss of route accuracy tends to occur on the local roads rather than highways.

Therefore, the tolerance of reducing sample rate of the GPS receiver is different to local

roads and highways. To improve route accuracy on local roads, instead of using fixed

sample rate of duty cycling GPS receiver, a better approach would be using adaptive

duty cycling GPS receiver based on the density of road network. If the density of roads

is high, then increase the GPS sample rate, otherwise, reduce it. Future works for this

approach include: analyze the features of different road types, qualify the parameters

that affect route accuracy, etc.
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