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ABSTRACT OF THE THESIS 

Robust Optimization of Electric Power Generation Expansion Planning 

Considering Uncertainty of Climate Change 

by SHUYA LI 

 

Thesis Director: 

Dr. David W. Coit 

 

This research is dedicated to the study of electric power system generation 

expansion planning considering uncertainty of climate change. Policymakers across the 

world are increasingly concerned about the effects of climate change and its impact on 

human systems when making decisions. Electric power Generation Expansion Planning 

(GEP) problems that determine the optimal expansion capacity and technology under 

particular technical constraints, given cost and policy assumptions are undoubtedly 

among those decisions. Now and in the future, climate change is and will be affecting 

new power plant investment decisions and the electricity generation system in more 

uncertain ways. The power system needs to be more reliable, cost-effective and 

environmentally friendly when exposed to higher temperature, less precipitation and 

more intense and frequent extreme events. However, incorporating the climate change 

effects into a GEP model has rarely been attempted before in the literature. The best 

approach to comprehensively model those uncertainties into electricity generation, and to 
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optimize the generation planning under uncertainty needs be studied in a more specific 

way.  

In this research, a preliminary GEP model is proposed with available input data 

from various resources. Discrete scenarios and robust optimization are adopted to 

specifically model uncertainty. Relationships between climate change and GEP 

parameters are defined and considered in each scenario. The preliminary GEP model is 

then solved under each scenario to identify the climate change impact on the generation 

expansion planning decision. Two robust optimization models are presented and solved 

to find the optimal results under uncertainty: Model 1 is expected total cost minimization 

and Model 2 is maximum regret minimization. Both models find a compromise solution 

that is good for all scenarios, which avoids the possible risk associated with a poor 

decision that is only optimal for one particular scenario. The results suggest 

recommendations for further power system uncertainty modeling and risk management.    
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1 Introduction 

This section provides an introduction of the background knowledge involved in 

this research, and a general outline of the work. The electric power system, the generation 

expansion planning problem, the relationship between climate change and power system 

are briefly introduced. The problem statement and objective of this study are presented 

thereafter. 

 

1.1 Power System 

An electric power system is a network of electrical components used to supply, 

transmit and use electric power. In the United States, electric energy sales have grown to 

well over 400 times after the 1970s. The installed kW capacity per capita in the U.S. is 

estimated to be close to 3 kW [22]. 

An interconnected power system is a complex enterprise that may be subdivided 

into the four major subsystems: 

• Generation;  

• Transmission and Sub-transmission;  

• Distribution; 

• Load. 

The generators produce power whose voltage is then increased, and an overhead 

transmission network transfers power from generating units to the distribution system. 

Then the distribution system distributes lower voltage power to retail consumers. Figure 

1 is a simplified illustration of the power system. 
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Figure 1 Power system [70] 

There are three large power grids in the continental U.S., Eastern Interconnection, 

Western Electricity Coordinating Council, and Electric Reliability Council of Texas. The 

electric power industry in the U.S. has changed since the deregulation of the 

telecommunication, gas, and other industries. The generation business is rapidly 

becoming market-driven. The industry now faces new challenges and problems 

associated with the interaction of power system entities in their efforts to make crucial 

technical decisions while striving to achieve the highest level of human welfare [22]. 

 

1.2 Generation Expansion Planning (GEP) 

Electricity consumption is considered as an important component of a country’s 

economy. Expansion planning of electric power systems involves many elements such as 

generation, transmission, distribution, load, equipment, construction, and operation in the 
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system. Researchers have to consider all the technologies and resources used in different 

subsystems to meet the changing demand over a short or long time horizon.  

The electricity generation expansion planning (GEP) problems focus on the 

generation part of the power system. The objectives are to determine the optimal 

selection of generation technologies at the right time and right place to construct them. 

The problem is solved to ensure an economic, reliable, and environmentally acceptable 

supply according to the predicted demand, over a given planning horizon based on 

particular technical constraints, cost and policy assumptions. 

 

1.3 Climate Change and Power System 

Climate change is a significant and lasting change in weather patterns. It can be 

caused by factors such as biotic processes, variations in solar radiation received by Earth, 

plate tectonics, and volcanic eruptions and certain human activities [75]. In recent 

decades, human activities are identified as the significant driving force of “global 

warming” [76]. 

Particular indicators can reflect climate change, such as ocean surface 

temperature, sea level, ice sheet, precipitation and so on. At least three major climate 

variables are relevant to the power system [36]: 

• Temperature; 

• Precipitation; 

• Extreme events. 

Figures 2-5 show the historical data of some climate variables in the past 30 years 

of the United States. Figure 2 is the average annual temperature; Figure 3 shows the 
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number of days exceeding 100 ̊F in summer 2011. Figure 4 is the average annual 

precipitation, and Figure 5 is a summary of climate disasters. 

 

Figure 2 Average annual temperature (°F) of the U.S. (1981-2010) [32] 
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Figure 3 Number of days with maximum temperature exceeding 100 ̊F in Summer 2011 across the U.S. [32] 

 

Figure 4 Average annual precipitation (inches) of the U.S. (1981-2010) [32] 
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Figure 5 Annual number of weather events causing at least $1 billion in losses in the U.S. [32] 

All these climate variables have more or less impacts on the generation, 

transmission, distribution and demand for electricity (Figure 6). In the long term, it must 

be assured that sufficient and flexible generation capacity is planned and constructed to 

meet anticipated growing demand and unpredictable climate disasters, recognizing that 

the costs of associated with short-term variability are absorbed and passed on to 

consumers. 
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Figure 6 Climate change and power system [71] 

While climate change remains uncertain in local and short-term variations, 

appropriate adaptation and mitigation in response to global climate trends is urgent and 

necessary. The power system is facing four impacts brought on by the climate change.  

• Higher temperatures will increase summer cooling demands and peak loads, and 

decrease heating demands in winter. Net energy demand is projected to increase 

as rising cooling demands outpace declining heating demands. 

• Seasonal and long-term change pattern of precipitation, streamflow, runoff and 

snowpack will impact cooling water availability for electricity generation. 

• Extreme events are affecting electricity generation, transmission and distribution 

facilities. The frequency and intensity of extreme events are expected to increase. 

• In the longer term, sea level rise will affect coastal facilities and infrastructure. 

Some of the effects of climate change are projected to occur in all regions 

whereas others may vary more by region. However, regional variation does not imply 

regional isolation as energy systems have become increasingly interconnected. 
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Compounding factors may create additional challenges [36], which brings more 

challenges in the study of power system and climate change. 

 

1.4 Problem Statement  

Now and in the future, climate change is and will be affecting new power plant 

investment decisions and electricity generation plans in more uncertain ways. It is desired 

that the power system should be more reliable, cost-effective and environmentally 

friendly when confronted with higher temperature, more extreme events and 

unpredictable climate change. Traditional GEP modeling is not sufficient because 

uncertain GEP problems with climate change consideration are necessary to be solved. 

To rigorously consider the uncertainty of climate change, this study adopts 

discrete scenarios method and robust optimization. It aims at finding an optimal 

expansion plan including investment, generation and transmission, which is effective for 

possible climate scenarios assuming discrete probability distributions. In another words, 

the objective is to select a compromise solution under discrete climate scenarios, 

avoiding the possible risk brought on by a poor decision that is only optimal for one 

particular scenario. Possible risks can be either investing too much capacity and having 

too much electricity or not meeting demands and requirements under some scenarios, 

which can be then quantitatively defined as the “regret.” In either case, “regret” is 

interpreted as the difference between the desired cost in one particular scenario and the 

realistic cost under uncertainty. 

This study starts with a preliminary GEP model with all the variables and 

parameters well defined and available data from various sources, which includes existing 
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capacities, projected future electricity demands and peak demands, emission and 

transmission limits, etc. Then, the uncertainty of climate change is taken into 

consideration, as the parameters that are directly or indirectly impacted by the climate 

change have been quantifiably specified. The methodology of scenarios is used instead of 

the unknown continuous probability density functions to make the problem tractable. The 

preliminary GEP model is then solved under each scenario to identify the climate change 

impact on the generation expansion planning decision. After that, two robust optimization 

models are presented and solved to determine the optimal results under uncertainty: 

Model 1 is expected total cost minimization and Model 2 is maximum regret 

minimization. In both models, global robust constraints are used for all scenarios by 

incorporating penalty costs of each scenario. Sensitivity analyses and comparisons 

between results are conducted and conclusions are made thereafter. 

The scope of this research study is limited to New England (Maine, New 

Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut), New York State and 

the PJM Interconnection (all or most of Delaware, District of Columbia, Maryland, New 

Jersey, Ohio, Pennsylvania, Virginia and West Virginia, parts of Indiana, Illinois, 

Kentucky, Michigan, North Carolina and Tennessee). The geographic areas of 

Independent System Operator of New England (ISO-NE), New York Independent 

System Operator (NYISO) and PJM Interconnection are shown in Figures 7-9. 
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Figure 7 Independent System Operator of New England (ISO-NE) map [72] 

 

 

Figure 8 New York Independent System Operator (NYISO) map [72] 
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Figure 9 PJM Interconnection map [73] 

 

1.5 Objectives 

The major objectives of this research are: 

• Specify the basic GEP model with input data of the Northeastern region and 

validate the basic model with numerical tests; 

• Identify variables in the basic model that are affected by climate change and 

define quantifiable relationships between climate change and GEP parameters; 

• Define discrete climate scenarios that approximate the possible futures and each 

scenario is an independent sample path with corresponding realization of relevant 

climate variables: temperature, precipitation and extreme events; 

• Solve the preliminary model under each scenario, compare the optimal solutions 

in each case and identify the climate change impact on the expansion decisions; 
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• Establish two mathematical robust optimization models: Model 1 minimizing the 

expected total cost, Model 2 minimizing the maximum “regret”; 

• Solve the robust optimization models, perform sensitivity analysis and 

comparisons. 
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2 Background and Literature Review 

This section provides an overview of GEP problem formulation and definition, 

various generation technologies and summary of the literature on climate change and 

different types of GEP problems. Based on the objective of this research, the literature 

review is presented in three subsections:  

• Climate change; 

• Climate change’s impact on power system; 

• GEP problems: Least-cost GEP problems, GEP problems considering uncertainty 

and GEP problems with environmental consideration. 

 

2.1 GEP Problem Definition and Formulation  

The GEP problem is to determine the optimal planning decision that involves the 

technologies and resources to satisfy the increasing power demand. Least-cost and multi-

objective GEP problems, as well as different solution techniques have been well studied 

in the past forty years.  

A typical GEP optimization model has 1) a planning horizon, 2) an economic 

objective minimizing the present value of the total cost or maximizing social economic 

welfare, 3) a set of constraints including capacity limitations, environment regulations, 

price, customer demands and so on, 4) a set of the decision variables representing the 

operating and expansion options. 

Because of the complexity of involved factors and computation in GEP problems, 

a multitude of GEP problems based on different assumptions, predictions, objectives, 

uncertainties, mathematical solution techniques are also studied. 
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Buehring et al. [23] presented the major issues in the GEP problems: 1) uncertain 

demand, 2) technology options, including existing and potential future options, 3) 

economic evaluation, which takes inflation and real discount rate into consideration, 4) 

reliability, considering many factors such as forced outage, variation in demand, 

scheduled maintenance and so on, 5) constraints, such as transmission, reserve margin, 

availability of resources, infrastructure needs, environmental considerations and policies. 

 

2.2 Generation Technologies 

Various technologies are employed in electricity generation systems. Typical 

sources are coal, petroleum, natural gas, nuclear and renewable sources like solar, wind, 

hydro, geothermal and biomass. For example, according to the study of U.S. Energy 

Information Administration (EIA), the percentage of U. S. electricity generation 

resources by capacity (MW) are shown in Figure 10 and U.S. electricity generation 

amounts from 1990-2040 are shown in Figure 11, with fuel generation percentages. 

While electricity demand is growing, emission-related problems are more significant and 

harmful. As a result, clean energy is gradually replacing fossil energy in the diverse field. 

As projected in Figure 11, nearly 20% of total electricity generation is shifting from coal 

and other fossil fuels to renewables and natural gas from 2000 to 2040. 
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Figure 10 2012 U.S. electricity generation sources [62] 

 

Figure 11 U.S. electricity generation by fuel 1990-2040 (trillion kilowatt-hours) [69] 
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Electricity load demand can be divided into “base load”, “intermediate load”, and 

“peak load.” Based on the generation technology operational characteristics and the 

relative fixed including capital and variable costs, different types of fuels or combination 

of fuels are needed to fulfill one or more of these three types of demand. Figure 12 is a 

typical yearly load curve with different generation technologies for each type of demand. 

 

Figure 12 Electricity load curve and types of different load demand in a year [74] 

 

2.3 Climate Change 

The Special Report on Emissions Scenarios (SRES) [33] prepared by 

Intergovernmental Panel on Climate Change (IPCC) in 2000 presents several scenarios 

including socio-economic ones, the resulting carbon dioxide levels and the consequent 

changes in global temperatures and sea levels. It considers different storylines of 

population projection, economic and social development, energy and technology, 

agriculture and land-use emissions, other greenhouse as emissions, and policies, etc. The 

set of scenarios consists of six scenario groups summarized from the four storylines and 
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families: one group each in A2, B1, B2, and three groups within the A1 family, 

characterizing alternative developments of energy technologies: A1FI (fossil fuel 

intensive), A1B (balanced), and A1T (predominantly non-fossil fuel). This is widely used 

in the literature for projection of climate change. 

The Special Report on Managing the Risks of Extreme Events and Disasters to 

Advance Climate Change Adaptation (SREX) [39] presented by IPCC in 2012 assesses 

numerous papers and reports on issues that range from observations of exposure, 

vulnerability, climate extremes, impacts and disaster losses to the implications for future 

disaster risk management, social and sustainable adaptation and development. It aims to 

provide background and resources for decision-makers to prepare effectively for 

managing the risk of extreme events. 

The U.S. National Oceanic and Atmospheric Administration (NOAA) Technical 

Report of Regional Climate Trends and Scenarios for the U.S. National Climate 

Assessment (NCA) is a complete and targeted synthesis of historical and emission-

dependent future climate conditions associated with two pathways of greenhouse gas 

emissions based on IPCC emission scenarios. There are nine reports in this series, one for 

the contiguous U.S. [32] and one each for eight regions defined by the NCA, Northeast 

[40], Southeast, Midwest, Great Plains, Northwest, Southwest, Alaska and Hawaii/Pacific 

Islands. 

In the U.S. Global Change Research Program (USGCRP) report [51] and National 

Climate Assessment Development Advisory Committee (NCADAC) draft climate 

assessment report [49], comprehensive impacts of climate change on Americans’ health 

and livelihoods and the ecosystems are assessed and summarized. For instance, water 
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resources, energy supply and use, agriculture, transportation, human health, etc. These 

references are very useful in understanding climate change impacts and preparing for 

these challenges. 

 

2.4 Climate Change’s Impact on Power System 

It is the greenhouse gas emission, mainly carbon dioxide, associated with 

humanity’s production and use of energy is a primary cause of global warming, and in 

turn, climate change will eventually affect our production and use of energy [51]. The 

interaction of climatic, environmental and human factors makes the effects of climate 

change complex and uncertain. Researchers start to study the impacts on power systems 

in the most recent decade. 

Pilli-Sihvola et al. [17] examine the impact of a gradually warming climate on the 

need for heating and cooling with an econometric multivariate regression model for five 

countries in Europe along the south–north line. The predicted changes in electricity 

demand are then used to analyze how climate change impacts the cost of electricity use, 

including carbon costs. 

Franco and Sanstad [18] use historical data on electricity consumption and 

construct some simple regression estimation of the electricity demand based on the 

IPCC’s emissions scenarios. Ahmed et al. [19] use multiple linear regression analysis for 

the historical climatic and non-climatic variables to establish a correlation between per 

capita electricity demand and associated key variables. Time series analysis is then 

performed to predict future temperature and corresponding cooling and heating degree 

days of New South Wales, Australia. 
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The Sixth Northwest Conservation and Electric Power Plan [34] models climate 

change as a random variable and shows that the uncertainty in the climate change 

analyses is much larger than the uncertainty surrounding the current climate. In order to 

incorporate climate change uncertainty into the model as a random variable, the relative 

likelihood of occurrence for each climate scenario must be known. Then for each future 

examined, one particular climate change profile would be selected as one of the many 

random variables used for that particular future. 

U.S. Department of Energy [36] presents a report regarding the climate change 

vulnerabilities in the energy sector and the adaptation responses and future opportunities. 

They summarize various literatures and projections of climate change’s impact on the 

energy sectors, and identify future challenges and opportunities. Several major climate 

trends are considered: increasing air and water temperatures, decreasing water 

availability in some regions and seasons, increasing intensity and frequency of storms 

events, flooding, and sea level rise. Exploration and production, transportation, 

generation, renewable energy, electric grid and energy demand are the major energy 

sectors discussed in the report. 

Urban and Mitchell [37] focus on the impacts of disasters brought by climate 

change, assess the vulnerability of various electricity generation options such as fossil 

fuels, nuclear power, hydropower and renewable energy to changing disaster risks and 

address the implications for electricity generation planning and policy. 

U.S. Climate Change Science Program [38] summarizes what is currently known 

about the effects of climate change on energy production and use in the United States. 

Any of these climate change effects could have very significant impacts for energy 
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policies, decisions, and institutions in the U.S., affecting discussions of courses of action 

and appropriate strategies for risk management. It answers three questions for improving 

adaption and mitigation:  

• “How might climate change affect energy consumption in the U.S.? 

• How might climate change affect energy production and supply in the U.S.? 

• How might climate change have other effects that indirectly shape energy 

production and consumption in the U.S.?” 

Miller et al. [41] emphasize the extreme heat events in California, which is 

defined as temperature threshold for the 90th-percentile exceedance probability (T90) of 

the local warmest summer days under the current climate. They project the T90 events 

and predict that the electricity demand is going to increase under both higher and lower 

emission scenarios and is likely to challenge current-day providers. 

Mirasgedis et al. [42] develop two statistical forecasting models on a daily and 

monthly basis respectively for electricity demand in Greece. The effect of the climatic 

conditions on the electricity demand is then further investigated via predictions under 

four different scenarios for the weather conditions of the coming year, which include both 

normal and recently observed extreme behavior. 

Crowley and Joutz [43] investigate the climate change-driven effects on 

electricity demand. They construct scenarios to present the impact of a 2 degree 

Fahrenheit increase in temperature and simulate the short-run and long-run energy 

consumption. The output from the short-run and long-run consumption models in terms 

of load projections and elasticities then serve as the inputs to supply side models that 

allocate or dispatch the electricity from the generation stock and mix to meet the load. 
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2.5 Generation Expansion Planning Models 

2.5.1 Least-cost Generation Expansion Planning Models 

Most GEP problems are least-cost single objective problems, minimizing the 

investment and operating cost over a planning period, but multi-criteria modeling with 

economic and environmental factors has been analyzed in detail in the past recent years. 

These factors may be included in the single objective, or one of the multiple objectives. 

Bloom [8] solves a least-cost GEP problem using a mathematical programming 

decomposition technique. The paper takes system reliability into consideration, by adding 

an expected unserved energy constraint. The planning problem is decomposed into a 

master problem and a set of sub-problems. The master problem is a LP problem that 

generates a trial solution and the sub-problem minimizes the total cost of this solution. 

The sub-problem has the form of a non-linear integral equation, but can be solved using 

probabilistic simulation. Then the solution can be found in an iterative way. 

Based on the generalized Benders’ decomposition of Bloom’s work [8]-[9], 

Sirikum et al. [5] provide a genetic algorithm heuristic-based method called GA-Benders’ 

decomposition to solve the GEP problem. They consider the constraints of the power 

demands, power capacities, loss of load probability levels, locations and emission 

limitations. It is a large-scale mixed integer nonlinear programming problem, but can be 

efficiently solved by the GA-BD method. 

Kagiannas et al. [3] review the GEP methods used in a competitive electric power 

generation market. Game theoretic modeling is usually used in GEP problems 

considering dynamics of electricity markets. Chuang et al. [4] present an application of 
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non-cooperative game theory for GEP in a competitive electricity industry. They apply 

the Cournot model of oligopoly competing behavior, incorporated operational 

considerations such as plant capacity limitations and energy balance constraints. Results 

show that Cournot competition leads to greater industry expansion and system reliability, 

while a monopoly expansion may lack sufficient incentive to introduce new technologies.  

Meta-heuristic techniques are also widely used in GEP modeling. Kannan et al. 

[10] present an application and comparison of meta-heuristic techniques including 

genetic algorithm, differential evolution, evolutionary programming, evolutionary 

strategy, ant colony optimization, particle swarm optimization, tabu search, simulated 

annealing and hybrid approach. 

Kannan et al. [24] also present the application of particle swarm optimization and 

its five variants to the least-cost GEP problem. The virtual mapping procedure and 

penalty function approach are addressed to reduce the number of infeasible solutions that 

appear in the subsequent iterations. Results show that the particle swarm optimization 

performs better than dynamic programming when the planning horizon is longer. 

Fukuyama and Chiang [25] use a parallel genetic algorithm to solve long-range 

GEP problem. A test system with four technologies, five intervals and various numbers 

of generation units prove the high efficiency of coarse-grain parallel genetic algorithm 

with decimal coding. 

Park et al. [6] propose an evolutionary programming algorithm to solve the least-

cost GEP problem. A novel domain mapping procedure is presented, which maps yearly 

cumulative capacity vectors into one dummy vector, and quadratic approximation 

tournament selection are used to enhance the efficiency.  
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Park et al. [7] also apply an Improved Genetic Algorithm (IGA), which 

incorporates an artificial initial population scheme, a stochastic crossover technique, 

elitism and scaled fitness function, to solve long-term least-cost GEP problems. Two 

traditional shortages in mathematical programming are overcome, and the IGA can find a 

better solution in a reasonable computation time. 

2.5.2 Generation Expansion Planning Models Considering Uncertainty 

A lot of studies employ deterministic modeling, but in recent years researchers 

have realized that it is necessary to include the uncertainty in future conditions. There are 

enormous uncertainties in the field of GEP. Hobbs [1] provides us a review of 

uncertainties that utilities must consider in resource planning in Table 1. 

Table 1 Uncertainties in GEP problems [1] 

I. Market/demand uncertainties 

• Load growth 

• Price elasticities 

• Market for off-system sales & purchases 

• Competition with non-electric fuels 

II. Resource uncertainties 

• Technological developments 

• Availability, initial costs of resource options 

• Construction times 

• Fuel prices, emission allowance prices 

• Generating unit availability 

• Climate change, water supplies 
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• Amount, dependability of nonutility generation 

• Customer response to Demand-Side Management (DSM) programs 

• Dependability and persistence of DSM 

III. Legal and economic uncertainties 

• Inflation, interest rate, economic growth 

• Government policies concerning ratemaking, cost recovery 

• Environmental regulations 

• Municipalization/government takeover 

• Public concerns 

 

Cazalet [27] may be one of the earliest research efforts that consider uncertainty 

in the GEP problem. A decomposition method is firstly applied to stochastic power plant 

planning. Then based on this work, Borison et al. [26] introduce a primal-dual method 

that solves the dynamic probabilistic problem using simple static deterministic solution 

techniques. The main problem is decomposed into a set of linked static deterministic 

problems, where the linkages are forced through Lagrange multipliers. These problems 

are solved separately in a primal iteration, while the multipliers are updated in a dual 

iteration. The name “State-of-the-world” (time and outcome) in their research is defined 

as a scenario. 

Gorenstin et al. [14] describe a methodology for GEP under uncertainty. The 

paper summarizes three classes of techniques to solve the least-cost GEP problem: 

decomposition and stochastic optimization, decision analysis, and multi-objective 

tradeoff analysis. As described in the paper, the deterministic equivalent approach is not 

used; instead, several scenarios with probabilities are given, and the stochastic 
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optimization aims to find an optimal solution that gives satisfactory results for all 

scenarios, which is a “robust model.” Two formulations are given in the paper, which are 

minimization of expected costs and minimax regret function. 

Malcolm et al. [15] develop a similar robust optimization model for GEP under 

uncertain power demand. They introduce a set of independent scenarios with assigned 

probabilities. Then they consider two types of error: surplus capacity and unmet demand. 

In the objective function, except for the expected total cost, they also include a weighted 

variance of scenarios and a weighted penalty of errors. The test problem shows the 

optimal solution is “almost” optimal for any realization of the demand scenarios. 

Buehring et al. [23] introduce STATS (Stochastic Analysis of Technical Systems) 

model based on Monte Carlo simulations with uncertain costs of technologies. They 

apply probabilistic value distributions for cost components and performance factors, and 

relationships between component costs are modeled through correlations. Although the 

exact cost is still unknown, the relationship or comparison between several technologies 

using similar components can be simulated, and then the investment of one technology 

can be decided. 

Mo et al. [16] consider the uncertainty in energy demand, prices of energy carriers 

(electricity) and dynamics of the system with a dynamic programming approach. They 

use discrete time Markov chains to depict the variables such that these variables have a 

year-to-year independence. The problem is transformed to a problem minimizing 

expected cost with Markov chains. However, due to the assumptions of independence, 

whether Markov chains is adequate to simulate the raw data needs further study. 



	
  

	
  

26	
  

Su et al. [12] propose a dynamic programming (DP) GEP problem incorporated 

with a fuzzy technique. The only objective is minimizing the cost, but a fuzzy constraint 

is used for environment protection. With the fuzzy technique, the original DP paths and 

states can be reduced for the ease of computation. 

Ahmed et al. [28] address a GEP problem with uncertainties in demand and cost 

parameters, and economies of scale in expansion costs. The uncertain parameters are 

assumed to evolve as a discrete time stochastic process with a finite probability space. 

Using a scenario tree approach to model the evolution of uncertain parameters, they 

develop a multi-stage integer stochastic programming formulation. By reformulating the 

original model in different ways (stochastic lot-sizing, Krarup-Bilde, heuristic method, 

branch-and-bound), they obtain tighter LP relaxation gaps, and thus solve the problem to 

global optimality. 

Schaeffer and Szklo [29] consider the uncertainty in the policies that will affect 

electricity demand and supply and subsequent environmental burdens in Brazil. They add 

a cogeneration module that can assess the portion of the electric power market to the 

model and compare three scenarios including the business-as-usual case. The total cost in 

the emissions of environmental scenario seems to be much better than the 

environmentally desirable technologies scenario and the base case. 

2.5.3 Generation Expansion Planning Models with Environmental Considerations 

When considering the environment, most researchers focus on the impact as a part 

of the objective function, or one of multiple objectives. Kim and Ahn [13] present a 

multi-criteria model considering cost, CO2 emissions, nuclear hazards and solve it by 
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applying Mitten’s preference-order dynamic programming to WASP (Wien Automatic 

System Planning Package).  

Diakoulaki and Karangelis [30] examine four mutually exclusive scenarios for the 

expansion of the Greek electricity system. In the first methodology, they consider the 

economic, technical and environmental performance as the criteria, and give each of them 

a weight that sums up to 1. The cost-benefit analysis is presented as an alternative 

method, and they assign each of the indices a generalized cost, so the objective is to 

minimize the total cost. 

Meza et al. [31] describe a multi-period multi-objective GEP model solved by a 

linear programming method (max-min, min-max, compromise programming, and 

weighted approach) and the analytical hierarchy process. Minimizing the total cost 

including investment, operational and transmission costs, as well as minimizing the 

emission, the imported fuel and the energy price risks are the objectives of the model. 

Tekiner et al. [2] propose a mixed integer linear program model integrated with 

reliability, dispatching decision, reducing air emission, centralized and distributed power 

generation over a multi-period planning horizon. They include the unmet demand cost 

and revenue from steam into the total cost, and by using Monte-Carlo simulation, 

numerous scenarios considering the availability of the system components are randomly 

determined. Then the Pareto front for different weights on the objectives are found, and 

the trade-offs between the cost and environmental impacts are presented. 

2.5.4 Conclusion of Generation Expansion Planning Literature Review 

To summarize, environmental factors are mostly considered in the model output, 

but modeling climate change variables and impacts is rarely studied in the GEP literature. 
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Some researchers that have noticed the uncertain climate change are using simple 

statistical models, and only focusing on the demand part of the GEP problem. In fact, 

many other elements in the generation expansion are impacted by the climate change, 

such as transmission capacity, generation capacity, maintenance, and so on, which should 

be specifically and systematically studied. 

Many GEP models that consider uncertainty and various solution methods have 

been studied and implemented. These ideas can be adopted to address climate change. 

Dynamic programming, decomposition, discrete time stochastic process, fuzzy theory, 

scenarios are widely utilized in this field.  

Single objective least-cost and multi-objective models are well developed during 

the past few decades, and they established the foundation of further GEP models. 

Numerous algorithms have been applied efficiently, and meta-heuristic methods are 

becoming popular as the scale of the problems become larger.  

Future study for GEP modeling lies in:  

• Development of multi-criteria models with different policies, environmental 

consideration, sustainable resources, reliability and so forth; 

• Better and more efficient method or program to solve the larger-scale problem; 

• Inclusion of uncertainties brought by the economic, environmental and 

technological changes; 

• Better coordination with different subsystems of the power system. 
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2.6 Methodologies 

In this research, we adopt the methodologies of discrete scenarios and robust 

optimization to solve optimization models with uncertain parameters. Expected total cost 

minimization is well developed, while maximum regret minimization is rather new. 

Therefore, we present an introduction section for both scenario and minmax regret 

modeling. 

2.6.1 Scenario Definition 

Scenario analysis is a common tool in the field of stochastic programming, aiming 

at approximating future uncertainty through a finite set of scenarios with a discrete 

probability distribution. Each scenario corresponds to a realization of a random variable 

over the planning horizon and has an associated realization probability with it [64]. 

Scenarios should be designed to capture the realistic range of all relevant sources of 

uncertainty at a computational acceptable number. Meanwhile, extreme scenarios with 

low probability are necessary to be included for the consideration of model robustness. 

There exist two common ways of describing the set of all possible scenarios. In 

the interval data case, each numerical parameter can take any value between a lower and 

an upper bound. In the discrete scenario case, the scenario set is described explicitly [68]. 

In our research, the emphasis is on discrete scenarios. Scenarios are used in [2, 14, 25, 26, 

28, 29, 30] to interpret various uncertainties (costs, demands, policies) considered in the 

GEP models. Climate scenarios are used in [34, 42, 43] to specifically represent 

uncertainty in weather conditions in the future.  
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2.6.2 Minmax Regret Models 

“Regret” is also called “opportunity loss” in some literature, and maximum regret 

is then the worst-case opportunity loss. Averbakh [67] defines the regret as the absolute 

(or relative) deviation of the objective function value from the best possible one under 

this scenario. One can refer to [66, 67, 68] for detailed mathematical formulations of 

different approximations of minmax regret modeling. 

Gorenstin et al. [14] describe a linear programming minimax regret function used 

in GEP model with uncertainty in 1970. They define the regret as the difference between 

the actual cost and the cost that would have been incurred if there was prior knowledge 

that a given scenario would take place. Due to a great variability in the investment and 

operation costs for various scenarios, the minimax regret model can be an alternative way 

to obtain a “robust solution.” 

Bean and Hoppock [65] study the least-risk metric that also assures low relative 

costs by “minimizing the maximum regret” of generation plans. They study the 

Shoreham nuclear power plant in New York as motivation. It took twenty years to 

construct, was nearly 100 times over budget, and was mothballed before entering 

commercial operation. Therefore, it is attractive to identify a low cost and low risk plan 

across all possible scenarios. They describe the procedure of minimization of maximum 

regret modeling as follows: 

Step 1: Calculate the net present value of total system cost for each investment 

option or investment portfolio across all scenarios. 

Step 2: Create a matrix of total costs for each investment option in every scenario. 

Determine the least-cost investment option in each scenario. 
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Step 3: Calculate a regret score for each investment option across all scenarios by 

subtracting the least-cost option from each investment option within each scenario. 

Create a matrix of regret scores. 

Step 4: Determine the maximum regret of each investment option by selecting the 

maximum regret score for each investment option across all scenarios. Determine the 

investment option with the lowest maximum regret. This option minimizes the maximum 

forecast regret. 

For example, Bean and Hoppock [65] give an example of four scenarios and three 

investment decisions, with optimal decisions highlighted in red in Figure 13, which lists 

the performance of investment decisions under each scenario. Investment A seems to be 

an optimal solution as it is optimal for three out of four scenarios. However, from the 

perspective of maximum regret as shown in Figure 14, investment B performs better. In 

fact, a finite set of possible solutions are numerated in their study, the matrix of solution 

scenario combination can be easily evaluated.  

 

Figure 13 A typical GEP scenario analysis output, depicting net present value total system costs for each 

investment scenario combination [65] 
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Figure 14 A regrets table quantifying the potential risk for each investment [65] 

Jiang et al. [66] also give an example of decision making under uncertainty as 

shown in Figure 15. For different objective considerations such as expected cost, 

maximum cost and maximum regret, the optimal solution may be rather distinct. 

 

Figure 15 Decision making under uncertainty [66] 

The two examples illustrated above both have a finite set of feasible solutions; 

decision makers only need to choose one of them. In reality, we are not so sure about the 

feasible solutions, and thus, the method of Gorenstin et al. [14] can be used to solve 

stochastic programming on an infinite set of alternative solutions. 
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3 Preliminary Model 

In this section, the preliminary model with its inputs is presented. Data is 

collected from various sources, and all the assumptions are made according to the 

availability of the data. The mathematical model and its nomenclature are then defined. 

 

3.1 Model Inputs and Assumptions 

The preliminary model is a fundamental linear programming GEP problem. The 

scope of this research study is limited to New England (Maine, New Hampshire, 

Vermont, Massachusetts, Rhode Island, Connecticut), New York State and the PJM 

Interconnection (All or most of Delaware, District of Columbia, Maryland, New Jersey, 

Ohio, Pennsylvania, Virginia and West Virginia, parts of Indiana, Illinois, Kentucky, 

Michigan, North Carolina and Tennessee), the time horizon is between 2010 and 2040. 

The input data is gathered from various sources such as Eastern Interconnection Planning 

Collaborative (EIPC) [59], National Renewable Energy Laboratory (NREL) [60], U.S. 

Environmental Protection Agency (EPA) [61], U.S. Energy Information Administration 

(EIA) [62]. 

3.1.1 Geographic Regions 

The regions considered in this study are: NEISO, NYISO_A-F, NYISO_G-I, 

NYISO_J-K, PJM_E, PJM_ROM, PJM_ROR, which are shown in Figure 16 as indicated 

by the dashed rectangle. The names of these regions come from three Regional 

Transmission Organizations (RTO) in the Eastern Interconnection grid of North America: 

NEISO- Independent System Operator of New England, NYISO-New York Independent 

System Operator, PJM-PJM Interconnection. New York state is divided into eleven sub-
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regions A-K, we consider Upstate (A-F), Lower Hudson Valley (G-I), New York 

City/Long Island (J-K) as three big sub-regions. We consider PJM Eastern Mid-Atlantic 

Area Council (NJ, DE, east MD), PJM Rest of Mid-Atlantic Area Council (east PA, DC, 

west MD), PJM Rest of Regional Transmission Operator (north IL, OH, west PA, west 

MD, WV, VA, east NC) as three big sub-regions. 

 

Figure 16 Map of considered areas in the model [59] 

3.1.2 Demands and Peak Demands 

We divide a year into three seasons: summer, winter, and spring/fall. The summer 

is defined as May through September, the winter includes December, January, February. 

Spring/fall is named shoulder in the study, which includes March, April, October, and 

November. The time periods are defined as summer-peak, summer-offpeak, shoulder-

peak, shoulder-offpeak, winter-peak, winter-offpeak. Tables 2-3 give the electricity 

demands and peak demands in 2010 and projected growth rates 2010-2040. 
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Table 2 Electricity demands and peak demands in 2010 (GWh) [59] 

 
NEISO NYISO_A-F NYISO_G-I NYISO_J-K PJM_E PJM_ROM PJM_ROR 

Summer-peak 30,115 14,710 5,048 19,759 38,078 35,124 124,635 

Summer-offpeak 23,953 12,918 4,001 15,185 29,507 28,614 102,943 

Shoulder-peak 20,773 10,908 3,266 12,162 23,305 23,731 84,720 

Shoulder-offpeak 18,014 9,985 2,858 10,495 20,819 21,511 78,294 

Winter-peak 16,628 8,687 2,601 9,229 18,642 19,527 68,549 

Winter-offpeak 14,608 8,021 2,329 8,196 16,948 17,856 63,614 

Peak (MW) 26,043  11,455  4,356  17,030  32,910  27,332  99,146  

 

Table 3 Electricity load growth rate [59] 

 
NEISO NYISO_A-F NYISO_G-I NYISO_J-K PJM_E PJM_ROM PJM_ROR 

Annual load growth        

2010-2020 0.23% 0.2% 0.14% 0.39% -0.98% 0.86% 0.4% 

2021-2040 0% 0.51% 0.85% 0.88% 0.67% 0.67% 0.61% 

Peak load growth        

2010-2020 0.49% 0.1% -0.09% 0.1% -0.92% 0.71% 0.42% 

2021-2040 0.12% 0.51% 0.85% 0.88% 0.67% 0.67% 0.61% 

 

3.1.3 Generation Technologies 

The existing, new and renewable generation technology types are shown in Table 

4. Table 5 gives a summation of characteristics of generation technologies. Existing 

capacity at the beginning of the planning horizon is listed in Table 6. We also consider 

the capacity factor for each type of generation technology, forced new builds with online 

year, forced retirements with retire year [59]. We do not include the investment costs of 
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forced new plants in our expansion costs, because it is sunk costs. To be precise on the 

definition of capacity factor, it is the potential availability of each generation unit, as an 

upper bound of generation output. For example, the onshore class 3 wind turbine has a 

capacity factor of 0.1781 during summer peak in NEISO, which means at most 17.81% 

of time the wind turbine can work due to insufficient wind power or other conditions. 

Table 4 Generation technologies [59] 

 Generation Type Description 

Existing  

CC Combined Cycle - Natural Gas 

Coal Steam Turbine - Coal 

CT Combustion Turbine - Natural Gas or Oil 

GEO (Renewable) Geothermal 

HY (Renewable) Hydro - Conventional 

LFG (Renewable) Landfill Gas 

NU Nuclear 

PS (Renewable) Hydro - Pumped Storage 

PV (Renewable) Solar - Photovoltaic 

ST (Renewable) Solar - Solar Thermal/Solar Power 

STOG Steam Turbine - Oil/Gas 

STWD Steam Turbine - Wood 

WT (Renewable) Wind Turbine onshore 

New 

WT_on3 (Renewable) Wind Turbine (onshore class 3 wind) 

WT_on4 (Renewable) Wind Turbine (onshore class 4+ wind) 

WT_off (Renewable) Wind Turbine offshore 

IGCC Integrated Gasification Combined Cycle 

IGCC_seq IGCC with carbon capture/sequestration 

AC Advanced or Pulverized Coal 
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Biomass (Renewable) Biomass 

Note: WT_on3 and WT_on4 are both onshore wind turbine technologies but have different target wind 

resources (depending on the wind power, wind can be divided into different classes, we consider class 3 and class 

4+ wind), they are only distinguished for new generation units 

Table 5 Characteristics of all generation technologies [59, 60] 

Type 
Outage 

rate 

Inv. cost 

(2010$/kW) 

Fixed OM (2010$/kW) Var. cost [62] 

(2010$/MWh) 

SO2 NOX CO2 

Existing New (lbs/MWh) [61] 

CC 6.1% 1,035 29.68 14.39 47.45 0.1 1.7 1,135 

Coal 6.5% - 48.22 - 28.63 13 6 2,249 

CT 9% 711 - 6.7 78.43 0.66 2.9 1,565 

GEO 13% 4,163 89.76 84.27 0 0 0 0 

HY 4.9% - 14.24 - 0 0 0 0 

LFG 5% 2,525 120.65 120.33 0 0.8 5.4 2,988 

NU 3.2% 5,615 112.77 88.75 12.06 0 0 0 

PS 4% - 23.74 - 5.98 0 0 0 

PV 60% 4,777 14.66 16.7 0 0 0 0 

ST 1% 4,714 60.32 64 0 0 0 0 

STOG 6.7% - 37.15 - 58.82 3 2.4 1,325 

STWD 10% - 32.05 - 78.43 3 4 1562 

WT 0% - 34.22 28.07 0 0 0 0 

WT_on3 0% 2,460 34.22 28.07 0 0 0 0 

WT_on4 0% 2,460 34.22 28.07 0 0 0 0 

WT_off 0% 5,997 - 53.33 0 0 0 0 

IGCC 8% 3,262 - 48.9 44.12 0.13 0.4 1,540 

IGCC_seq 8% 5,389 - 69.3 53.04 0.13 0.4 154 

AC 6% 2,885 - 29.67 30.1 0.13 1.6 1,540 

Biomass 7.5% 3,901 - 100.5 41.47 28.6 11 0 

Note: investment costs are not listed for some technologies that are not allowed to invest 
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Table 6 Existing generation capacity in 2010 (MW) [59] 

 
NEISO NYISO_A-F NYISO_G-I NYISO_J-K PJM_E PJM_ROM PJM_ROR 

CC 11,463 3,594 1,157 3,658 7,649 3,986 10,542 

Coal 2,570 2,252 369 
 

3,853 16,381 59,868 

CT 2,384 260 152 4,948 6,899 3,555 21,073 

HY 1,933 4,395 32 
 

258 1,236 1,604 

LFG 532 166 64 124 462 338 482 

NU 4,645 3,197 2,045 
 

8,472 5,036 20,000 

PS 1,674 1,412 
  

400 1,513 3,081 

PV 2 
   

22 4 24 

STOG 6,236 1,701 2,431 6,799 3,252 4,109 2,122 

STWD 609 86 
   

70 194 

WT 202 1,283 
  

10 731 2,597 

 

3.1.4 Emission Limits 

Considered emissions from different types of generation technologies are SO2, 

NOX, and CO2 in this study. Emission limit assumptions are made according to the 2011 

real emission data of included states [62]. Since the geographical boundaries of the 

considered region do not exactly match with boundaries of the states, reasonable 

assumptions are needed. As shown in Table 7, 110% of the real emissions in 2011 from 

New Jersey and Delaware are used as the 2010 emission limit of PJM_E, 110% of the 

real emissions in 2011 from Pennsylvania, Maryland, District of Columbia serve as the 

2010 emission limit of PJM_ROM, and the 2010 PJM_ROR emission limit is 1.1 times 

of total emissions from Ohio, Virginia, West Virginia in 2011. New York State real 

emissions in 2011 are equally divided into three parts, and 1.1 times of each part is the 
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2010 emission limit for NYISO_A-F, NYISO_G-I and NYISO_J-K. Due to the 

environmental consideration, we assume a mandatory declining rate of 0.5% every year. 

Table 7 Emission limits in 2010 (lbs) 

 
SO2 NOX CO2 

NEISO 140,150,241 88,884,873 91,435,710,713 

NYISO_A-F 41,959,533 34,467,164 30,121,374,938 

NYISO_G-I 41,959,533 34,467,164 30,121,374,938 

NYISO_J-K 41,959,533 34,467,164 30,121,374,938 

PJM_E 32,428,935 42,031,490 50,559,872,517 

PJM_ROM 879,357,749 420,002,006 342,555,176,849 

PJM_ROR 1,746,512,807 436,214,048 371,550,964,554 

 

3.1.5 Transmission Limits 

Transmission within regions is also allowed and it is associated with a 

transmission capacity (see Table 8). It is assumed that transmission capacity remains 

constant throughout the planning horizon. Transmission lines are limited to the sub-

region, Canadian and other states’ transmission are neglected, and transmission losses are 

not included. 

Table 8 Transmission capacity in 2010 (MW) [59] 

 
NEISO NYISO_A-F NYISO_G-I NYISO_J-K PJM_E PJM_ROM PJM_ROR 

NEISO 
 

600 600 430 
   

NYISO_A-F 600 
 

4,250 
  

1,000 
 

NYISO_G-I 600 1,999 
 

6,130 1,500 
  

NYISO_J-K 
  

1,999 
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PJM_E 
  

500 330 
 

8,000 
 

PJM_ROM 
 

2,000 
  

8,000 
 

8,000 

PJM_ROR 
     

8,000 
 

 

3.1.6 Construction limits 

New investments are limited by construction limits as shown in Tables 9-10. 

Table 9 regulates a five-year construction limits for some technologies, while no limits 

for others, and Table 10 specifies the available new resource limit for each technology in 

each region. The construction time is omitted in this research, which means the new 

generation unit will be available immediately after the investment. 

Table 9 Yearly construction limits (MW) [59] 

 
2015 2020 2025 2030 2035 2040 2045 2050 

AC 0 2,500 
      

NU 0 0 3,750 12,500 25,000 37,500 50,000 62,500 

WT_on 0 426 
      

WT_off 0 10,454 
      

Biomass 0 4,192 8,383 12,575 16,766 
   

PV 0 2,769 
      

LFG 0 864 1,755 2,619 
    

IGCC_seq 0 500 3,000 8,000 
    

IGCC 0 1,500 
      

 

Table 10 Regional construction limits (MW) [59] 

 
NEISO NYISO_A-F NYISO_G-I NYISO_J-K PJM_E PJM_ROM PJM_ROR 



	
  

	
  

41	
  

CC 
       

Coal 0 0 0 0 0 0 0 

CT 
       

GEO 0 0 0 0 0 0 0 

HY 0 0 0 0 0 0 0 

LFG 710 446 223 446 142 284 368 

NU 
  

0 0 
   

PS 0 0 0 0 0 0 0 

PV 12,000 4,000 2,000 4,000 2,000 4,000 6,916 

ST 0 0 0 0 0 0 0 

STOG 0 0 0 0 0 0 0 

STWD 0 0 0 0 0 0 0 

WT 0 0 0 0 0 0 0 

WT_on3 16,900 12,700 300 200 3,200 5,800 50,400 

WT_on4 5,280 840 60 170 470 1,230 3,200 

WT_off 8,500 500 200 2,400 9,600 16,900 20,200 

IGCC 
       

IGCC_seq 4,000 
  

0 
   

AC 0 0 0 0 0 
  

Biomass 1,700 1,000 818 0 332 2,357 10,556 

Note: 0 here means no available resources or no construction is allowed, while blank cell means unlimited 

construction. 

3.1.7 Other Assumptions 

Electric power systems should always have excess capacity to maintain reliability. 

Reserve margin is (capacity minus demand)/demand, where "capacity" is the expected 

maximum available supply and "demand" is expected peak demand [62]. For instance, a 
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reserve margin of 0.15 means available generation capacity is 15% more than the 

expected peak demand. Reserve margin requirements for each region can be found in 

[59]. 

RPS (Renewable Portfolio Standard), which is a regulation that requires the 

increased production of energy from renewable energy sources, specifies the percentage 

of renewable energy generation in each region [59]. 

Some factors are omitted due to their complexity and data unavailability. For 

example, emissions trade market is growing because of some environmental regulations, 

but this may relate to many other policies and regulations. Therefore, trade is avoided in 

this study. Cogeneration revenue is also not considered here. 

The interest rate in the study is assumed to be 0.06; all costs are calculated in net 

present value (NPV) of 2010$. 

The problem is a LP-based model, which means the investments can be any 

positive value. Future research will make the investment decision more reasonable by 

using integer programming or other methods. The real generation expansion problem is 

much more complicated, and one may refer to the report of EIPC [59] and NREL [60] for 

more details. 

 

3.2 Nomenclature 

The decision variables, indices and parameters are described in this section. 

Decision Variables 

𝑥!,!,!!,!  Generation amount of generation type i in region r1 in time period t in year y (MWh) 

𝑠!,!!,!  Investment amount of generation type i in region r1 in year y (MW) 
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𝑓!,!,!!,!!  Transmission flow from region r1 to r2 in time period t in year y (MWh)  

Indices 

y Years, alias u 

t Time periods in a year 

r1 Regions, alias r2 

i Generation types 

n Renewable generation types (subset of i) 

e Emission gases  

Parameters 

r Interest rate 

Y Number of years 

T  Number of the time periods in a year 

R Number of the regions 

I Number of generation types 

N Number of renewable generation types 

E Number of emission gases (CO2, SO2, NOx…) 

𝑐!,!  Generation variable cost for generation type i in year y ($/MWh) 

𝑎!,!  Investment cost for generation type i in year y ($/MW) 

𝑖𝑛𝑖𝑡!!,!  Initial capacity of generation type i in region r1 at the beginning (MW) 

𝑓𝑛𝑒𝑤!,!!,!  Forced new capacity of generation type i in region r1 with online year y (MW) 

𝑓𝑟𝑒𝑡𝑖𝑟𝑒!,!!,!  Forced retirement capacity of generation type i in region r1 with retirement year y (MW) 

𝑔!,!  Fixed operation and maintenance cost for existing generation type i in year y ($/MW) 

ℎ!,!  Fixed operation and maintenance cost for new generation type i in year y ($/MW) 

𝜑!,!,!!  Demand in region r1 in time period t in year y (MWh) 

𝑑!,!,!  Derate rate of generation type i in time period t in year y 

ℎ𝑜𝑢𝑟𝑠!  Hours in time period t 
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𝑐𝑓!,!,!!,!  Capacity factor for generation type i in region r1 in time period t in year y 

𝑝𝑒𝑎𝑘!,!!  Peak load (demand) in year y in region r1 (MW) 

𝑚!,!!  Reserve margin for region r1 in year y 

𝑀𝐼𝑁!,!!,!  Minimum generation percentage requirement of renewable type n for region r1 in year y 

𝑇𝑀𝐼𝑁!,!!  Yearly minimum renewable generation percentage requirement for region r1 in year y 

𝐸𝑀!,!  Amount of emission gas e from generation type i (lbs/MWh) 

𝑅𝐿𝐸𝑀!,!,!!  Regional limit for emission gas e in region r1 in year y (lbs) 

𝑇𝐿!,!!,!!  Transmission limit from region r1 to r2 in year y (MW) 

𝐶𝐿!,!!,!  Yearly construction limit of generation type i in region r1 in year y (MW) 

 

3.3 Mathematical Model 

The problem is a deterministic linear programming model. The objective is to 

minimize the net present costs of an expansion planning solution. The total costs include 

three parts: investment costs of the new construction, electricity generation costs and 

operation and maintenance costs. 
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 xy,t ,r1,n
n=1

N

∑
t=1

T

∑ ≥ TMINy,r1
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i=1
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∑
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xy,t ,r1,i
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∑
t=1

T
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 xy,t ,r1,iEMe,i
i=1

I

∑
t=1

T

∑ ≤ RLEMe,y,r1
∀e, y,r1   (7) 

 sy,r1,i ≤CLy,r1,i ∀y,r1,i   (8) 

 fy,t ,r1,r2 ≤ TLy,r1,r2hourst ∀y,t,r1,r2   (9) 

 xy,t ,r1,i ≥ 0, sy,r1,i ≥ 0, fy,t ,r1,r2 ≥ 0 ∀y,t,r1,r2,i   (10)  

The objective function (1) is to minimize the net present total costs. Equations (2) 

state that energy supplies should meet the demands, constraints (3) are capacity 

constraints, so that generation should not exceed the total capacity, constraints (4) are 

reserve margin requirements, constraints (5) and (6) represent the RPS requirement. 

Constraints (7) limit the generation emissions of SO2, NOX, and CO2, while constraints 

(8) and (9) represent the construction and transmission capacity respectively, and (10) are 

nonnegative constraints. 

 

3.4 Results 

After solving the preliminary model with GAMS/CPLEX, the investment and 

generation of the optimal solution are shown in Tables 11-12. More details of the optimal 

solution in this base scenario (Scenario 5) are interpreted in Section 5, when compared to 

other scenarios. We also make a comparison with the EIPC modeling results. While the 

majority of the assumptions are the same, we have new emission limits and slightly 

different generation technologies characteristics. On the other hand, EIPC has considered 
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many more details such as energy efficiency, demand response, energy savings, 

transmission and trading costs, emission retrofits, etc. Therefore, the results differ in 

many ways. But we can still observe some similarities in Figures 17-18. To keep 

consistency with later sections, the base scenario is shown in the blue bar as Scenario 5, 

and the red bar implies the results of EIPC. It is noted that EIPC uses the term WT as the 

general onshore wind turbine, which in our model includes WT (existing onshore wind 

turbine), WT_on3 (new onshore class 3 wind turbine) and WT_on4 (new onshore class 

4+ wind turbine). For the ease of comparison, our WT here has the same meaning with 

EIPC’s results. 

Table 11 New investments in Scenario 5 (MW) 

 
CC CT LFG NU PV WT WT_off 

2010 43,918 10,387 
     

2016 
  

489 
 

287 426 
 

2017 
  

26 
    

2018 
  

287 
 

622 
 

289 

2019 
    

1,485 
 

111 

2020 
    

375 
 

507 

2021 
  

1 3,750 
 

6,115 
 

2022 
  

27 
  

5,923 
 

2023 
     

6,790 
 

2024 
     

99 
 

2025 
     

427 
 

2026 
  

151 8,750 
   

2030 
 

181 
     

2031 
 

22 
 

1,423 
 

10,780 
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2032 
 

194 
     

2033 
 

196 
     

2034 
 

198 
     

2035 
 

199 
     

2036 
 

201 
     

2037 
 

203 
     

2038 
 

205 
     

2039 
 

206 
     

2040 
 

208 
     

 

Table 12 Yearly generation in Scenario 5 by technology (GWh) 

 
CC Coal HY LFG NU PS PV STOG WT WT_off 

2010 548,809 0 79,734 1,482 326,734 65,816 137 30,652 21,300 0 

2011 558,217 4,271 83,526 8,032 326,734 65,816 204 27,965 28,745 0 

2012 556,641 6,198 86,386 10,491 326,288 65,816 288 16,469 37,610 0 

2013 554,794 6,848 89,548 10,775 325,913 65,816 288 13,266 41,654 0 

2014 554,969 7,417 93,172 10,123 325,591 65,816 288 10,947 43,327 0 

2015 557,889 5,218 93,172 9,995 325,313 65,816 288 12,439 44,305 0 

2016 550,160 5,639 93,172 16,504 338,189 65,816 1,041 0 46,733 0 

2017 554,805 4,183 93,172 15,287 338,189 65,816 1,041 883 46,733 0 

2018 552,301 0 93,172 17,800 338,189 65,816 2,676 5,265 46,733 1,047 

2019 550,330 0 93,172 16,697 338,189 65,816 6,580 6,961 46,733 1,449 

2020 545,599 0 93,172 13,287 338,189 65,816 7,565 15,174 46,733 3,214 

2021 505,032 6,838 93,172 24,528 367,414 65,816 7,565 0 61,791 3,214 

2022 494,953 8,645 93,172 24,737 367,414 65,816 7,565 0 76,376 3,214 

2023 482,185 11,407 93,172 24,737 367,414 65,816 7,565 0 92,948 3,214 
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2024 492,303 7,689 93,172 24,737 367,414 65,816 7,565 0 93,158 3,214 

2025 501,781 4,630 93,172 23,927 367,414 65,816 7,565 0 94,062 3,214 

2026 416,709 26,345 93,172 25,928 435,605 65,816 7,565 0 94,062 3,214 

2027 427,285 22,510 93,172 25,928 435,605 65,816 7,565 0 94,062 3,214 

2028 437,917 18,663 93,172 25,928 435,605 65,816 7,565 0 94,062 3,214 

2029 448,605 14,804 93,172 25,928 435,605 65,816 7,565 0 94,062 3,214 

2030 459,351 10,934 93,172 25,928 435,605 65,816 7,565 0 94,062 3,214 

2031 411,868 23,565 93,172 25,928 446,692 65,816 7,565 0 124,746 3,214 

2032 422,729 19,670 93,172 25,928 446,692 65,816 7,565 0 124,746 3,214 

2033 433,648 15,762 93,172 25,928 446,692 65,816 7,565 0 124,746 3,214 

2034 444,626 11,842 93,172 25,928 446,692 65,816 7,565 0 124,746 3,214 

2035 455,663 7,909 93,172 25,928 446,692 65,816 7,565 0 124,746 3,214 

2036 466,846 4,495 93,172 25,309 446,692 65,816 7,565 0 124,746 3,214 

2037 478,294 2,331 93,172 23,223 446,692 65,816 7,565 0 124,746 3,214 

2038 489,804 162 93,172 21,129 446,692 65,816 7,565 0 124,746 3,214 

2039 500,598 0 93,172 16,427 446,692 65,816 7,565 1,363 124,746 3,214 

2040 507,979 0 93,172 10,705 446,692 65,816 7,565 7,045 124,746 3,214 

 

According to Figure 17, our optimal solution (in blue bar) has the most 

investments in nuclear, onshore wind turbine and combustion turbine, while EIPC results 

(in red bar) invest in more in combined cycle. The total investments of our results are 

significantly larger than EIPC. Note that here in order to compare with results of EIPC, 

we include the forced new capacity in the investments, while in other sections, we do not 

generally consider forced new capacity as investment decisions. 
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Figure 17 New investments (including forced new capacity) comparison with EIPC by region (MW) 

Like the investments, we have much more total generation amount of electricity 

than EIPC (Figure 18). Similarity lies in the fossil generation, e.g., we both choose 

combined cycle as the major fossil resources instead of coal. The proportion of coal 

generation is rather small in both results. But the results are quite different in renewables 

generation. Our results show significant parts of hydro electricity (including conventional 

hydro and pumped storage), while EIPC have more biomass, landfill gas and photovoltaic 

generation. 
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Figure 18 Generation comparison with EIPC in NEISO (GWh) 

 

3.5 Conclusion of Preliminary Model 

We introduce our preliminary GEP model with results compared to EIPC. GEP 

models have been well developed in the past years, therefore, the mathematical models in 

literature share objectives and a lot of constraints in common. Our model is one of those 

models that have single objective least cost and a wide range of constraints. The 

preliminary model is a large-scale linear programming problem, in which the collected 

data and output are stored in corresponding excel files. 

Carefully designed cases have been tested to validate the model, however, our 

results are still dissimilar to the results of EIPC. EIPC and NREL have been working on 

the generation expansion planning problems for systematically and collaboratively in 

much more detail for years. Although most of our data comes from EIPC assumptions, 

our model is much more simplified and theoretical. Future research should continuously 

improve the mathematical model by including more realistic constraints and data.
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4 Climate Variables 

In this section, three major climate variables relevant to the power system are 

introduced. In the Northeast region, temperature and precipitation are projected to 

increase with seasonal variation; the frequency and intensity of extreme events are 

projected to increase. In general, increasing temperature, decreasing precipitation and 

increasing extreme events will reduce the capacity of electric power generation system, 

as shown in Table 13. We refer to a wide range of literature to identify how the climate 

change will affect different sectors of the power system, and then come up with our 

definition of the quantifiable impacts. They are important inputs when we generate the 

climate scenarios, as well as relate the scenarios variables to the GEP models parameters. 

Table 13 Relationship between climate change projections and implications for GEP parameters 

Climate change trend Impact GEP parameters Implication 

Increasing 

temperature 

Electricity 

generation 

Generation capacity factors 

(Coal, CT, CC, GEO, LFG, NU, 

ST, STOG, STWD, IGCC, 

IGCC_seq, AC, Biomass) 

Reducing thermal 

efficiencies 

PV capacity factor 
Reducing efficiency of the 

semiconducting material 

Power grid Transmission loss 
Decreasing transmission 

capacity  

Electricity 

demand 

Demand 
Lower heating demand, 

higher cooling demand 

Peak demand Higher peak demand 

Decreasing 

precipitation 

Electricity 

generation 

Generation capacity factors  

(CT, CC, GEO, LFG, NU, ST, 

Decreasing cooling water 

for thermal generation 
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STOG, STWD, IGCC, 

IGCC_seq, AC, Biomass) 

 

Hydropower Hydropower capacity factor Decreasing streamflow 

Increasing frequency 

and intensity of 

extreme events 

(storm, flooding, heat 

wave, wildfire) 

Electricity 

generation 
Derate rate 

More storms and flooding 

and potential wear 

Power grid Transmission loss Storms/wildfire damage 

Electricity 

demand 

Reserve margin Reliability requirement 

Peak demand Extreme heat wave 

 

4.1 Temperature 

Temperatures across the United States have increased during the past 100 years 

and will continue increasing in the future. Increasing temperature has an impact on 

electricity demand, generation capacity and transmission capacity. The National Oceanic 

and Atmospheric Administration projects the Northeastern region average temperature 

increases of 3.0°F by 2035, 4.8°F by 2055, and 8.0°F by 2085 for the high (A2) 

emissions scenario, and for the low (B1) emissions scenario, of 2.7°F by 2035, 3.6°F by 

2055, and 4.7°F by 2085, with respect to 1971-1999 [40].  

Figure 19 illustrates the simulated differences in annual mean temperature under 

each emission scenario; Figure 20 shows the seasonal variations under a higher emission 

scenario. Based on the simulation for Northeastern region, some temperature variables 

simulations under higher emissions scenario (A2) are shown in Table 14. 
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Figure 19 simulated differences in annual mean temperature (°F) for the Northeast region, with respect to the 

reference period of 1971-1999 [40] 
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Figure 20 Simulated differences in annual and seasonal mean temperature (°F) for the Northeast region, for 

2041-2070 with respect to the reference period of 1971-2000 under a higher (A2) emissions scenario [40] 

 

Table 14 Annual mean change in selected temperature variables from NARCCAP simulations for Northeastern 

region, 2041-2070 with respect to 1971-2000, under higher emissions scenario (A2) 

Temperature Variable NARCCAP Simulation Mean 
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Freeze-free period +26 days 

#days Tmax > 90°F +13 days 

#days Tmax > 95°F +8 days 

#days Tmax > 100°F +4 days 

#days Tmin < 32°F -26 days 

#days Tmin < 10°F -17 days 

#days Tmin < 0°F -9 days 

Consecutive #days > 95°F +171% 

Consecutive #days > 100°F +237% 

Heating degree days -16% 

Cooling degree days +99% 

Growing degree days (base 50°F) +41% 

 

Source: North American Regional Climate Change Assessment Program (NARCCAP) [40] 

4.1.1 Projections 

Increasing ambient air and water temperatures are projected to increase steam 

condensate temperatures and turbine backpressure, reduce the thermal efficiencies of 

thermoelectric power plants. This will reduce the output of natural gas, coal, nuclear, 

solar thermal, biomass, and geothermal power plants. For example, the power output of 

natural gas-fired combustion turbines is estimated to decrease by approximately 0.6%-

0.7% for a 1°C increase in air temperature [44]. For combined cycle power plants, output 

can decrease by approximately 0.3%-0.5% for 1°C increase in air temperature [45]. For 

nuclear power plants, output is estimated to decrease by approximately 0.45%-0.5% for a 

1°C increase in air temperature [46, 63].  
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Increasing temperature could reduce the generation capacity of solar photovoltaic 

because of the semiconducting material. One of the studies shows the output of a 

crystalline silicon PV cell decreases by about 0.65% per 1°C increase in air temperature 

[47]. Temperature also has an effect on other renewable resources, wind, hydropower, but 

these projection remain uncertain due to many other factors, such as various wind 

patterns and river stream. 

As temperature increases, the transmission losses increase. A study of the 

California electricity system shows that a 5°C air temperature increase diminishes the 

capacity of a fully loaded transmission line by an average of 7.5% [48].  

Demand and peak demand are often modeled as a function of different 

temperature variables. As temperature increases, heating demand will decrease, and 

cooling demand will increase. The increasing frequency and duration of heat wave will 

lead to higher peak demand. Overall, electricity demand is projected to increase since 

demand for cooling is primarily supplied by electricity, while demand for heating is 

supplied by a variety of energy sources, including natural gas, heating oil, and electricity 

[51]. 

However, temperature is not the only factor that affects electricity demand; 

population, economic conditions, energy prices, consumer behavior and many other 

factors are considered when predicting the demand and peak demand. Therefore, multiple 

projections are needed due to uncertainty, for example, a study in California shows that 

by midcentury, residential peak demand is projected to increase by 2.8%-7.7% under a 

lower emissions scenario (B1) and by 3.4%-10.0% under higher emissions scenarios (A2 

and A1FI) compared to the average demand of 1961-1990 [41]. Another study of 
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electricity demand in California uses different models for projection in the CalISO area. 

The estimated increases in annual electricity and peak load in downscaling Parallel 

Climate Model (PCM, lower-sensitivity model) of the National Center of Atmospheric 

Research (NCAR) and Geophysical Fluid Dynamics Laboratory global circulation model 

(GFDL, higher-sensitivity model) are shown in Table 15 [18].  

 

Table 15 Estimated increases in annual electricity and peak load demand, relative to the 1961-1990 base period 

[18] 

Climate Model Year Emissions 

Scenario 

Annual Electricity 

(%) 

Peak Demand 

(%) 

PCM 

Projected end of century 

warming [50] 

A2: 2.6°C 

B1: 1.7°C 

2005-2034 A2 1.2 1.0 

B1 0.9 1.4 

2035-2064 A2 2.4 2.2 

B1 1.7 1.5 

2070-2099 A2 5.3 5.6 

B1 3.1 4.1 

GFDL 

Projected end of century 

warming [50] 

A2: 3.9°C 

B1: 2.2°C 

2005-2034 A2 2.9 3.6 

B1 2.5 4.1 

2035-2064 A2 5.0 5.0 

B1 4.2 5.0 

2070-2099 A2 11.0 12.1 

B1 5.8 7.3 

 

In addition to the annual electricity demand increasing projection, some studies 

have also examined seasonal variations. In one study of the Northwest, the projected 

change of demand is greater in the summer than the winter. Summer demand is 
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approximately projected to increase by 4.7% due to a 1.6°C increase in summer 

temperature, whereas winter demand is approximately projected to decrease by 2.5% due 

to a 1.1°C increase in winter temperature [34]. 

4.1.2 Assumptions 

Based on the projections from different references, Table 16 gives the summary 

of temperature impact on GEP paramters. It is assumed that the correlations between 

temperature and GEP parameters are linear. Major impacts are considered and defined, 

while unclear and negligible impacts are omitted. 

Table 16 Magnitude of impact from temperature on GEP parameters 

 GEP Parameters Impact 

Temperature (+1°C) 
Capacity factor 

Coal, STOG, STWD, AC (-0.1%) 

CT (-0.65%) 

CC, IGCC, IGCC_seq (-0.4%) 

GEO, LFG, Biomass (-0.1%) 

PV, ST (-0.65%) 

NU (-0.5%) 

Transmission capacity (-1.5%) 

 Annual demand (+2.2%) 

 Summer demand (+2.7%) 

 Winter demand (-2.3%) 

 Peak demand (+2.9%) 
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4.2 Precipitation 

The cooling water availability will be impacted by a change pattern of 

precipitation, streamflow, runoff and snowpack, among which precipitation is a major 

cause. It is projected that for the Northeastern region, the annual mean precipitation will 

increase, with regional and seasonal variations [40]. The Northeast has observed 

increasing precipitation, streamflow, runoff, reduction in snowpack whereas the 

precipitation and streamflow are projected to decrease in the Southwest [51]. According 

to National Oceanic and Atmospheric Administration (NOAA) simulation, although 

annual precipitation of the Northeast is going to increase (Figure 21) but in a higher 

emissions scenario, the summer precipitation will decrease (Figure 22), which will limit 

the available summer capacity of generation due to less availability of cooling water and 

reduce hydroelectric power output. 
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Figure 21 Simulated differences in annual mean precipitation (%) for the Northeast region, with respect to the 

reference period of 1971-1999 [40] 
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Figure 22 Simulated differences in annual and seasonal mean precipitation (%) for the Northeast region, for 

2041-2070 with respect to the reference period of 1971-2000 under a higher (A2) emissions scenario [40] 

4.2.1 Projections 

Approximately 90% of thermoelectric power generation in the United States 

requires water for cooling, and once-through cooling systems are particularly vulnerable 

to low streamflow conditions due to the large volumes of water withdrawn [36]. Steam-

cycle coal-fired power plants typically use more water than steam-cycle natural gas-fired 
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power plants. Combined cycle plants are more water-efficient. Nuclear power plants, 

solar thermal plants, and geothermal plants can withdraw and consume as much, or more, 

freshwater as fossil-fueled thermoelectric facilities [52]. In contrast, relatively little water 

is consumed in the generation of electricity from solar photovoltaic or wind technologies 

[36]. 

According to a recent estimation study estimation of US, the summer average 

available capacity of power plants with once-through and recirculating cooling systems is 

projected to decrease by 12%-16% and 4.4%-5.9% respectively, for the period 2031-

2060, compared to 1971-2000 [53]. 

Hydroelectric generation is very sensitive to changes in precipitation and river 

discharge. For example, every 1% decrease in precipitation results in a 2-3% percent drop 

in streamflow; while every 1% decrease in streamflow in the Colorado River Basin 

results in a 3% drop in power generation [51]. 

4.2.2 Assumptions 

Linear correlations are assumed between the precipitation and GEP parameters. 

Major impacts are considered and defined in Table 17, while unclear and negligible 

impacts are omitted. 

Table 17 Magnitude of impact from precipitation on GEP parameters 

 GEP Parameters Impact 

Precipitation (-1%) Capacity factor 

Coal, CT, STOG, STWD, AC (-2.5%) 

CC, IGCC, IGCC_seq (-0.8%) 

NU, ST, GEO, LFG, Biomass (-3%) 

HY (-6%) 
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4.3 Extreme Events 

Since the 1970s, the intensity of hurricanes and tropical storms has increased and 

is likely to increase in the future [39]. One study projects nearly a doubling of the 

frequency of category 4 and 5 storms by the end of the 21st century, despite a decrease in 

the overall frequency of tropical cyclones, as shown in Figure 23 [55].  

 

Figure 23 Projected changes in Atlantic hurricane frequency by category for 2081-2100, with respect to 2001-

2020 [36] 

In the future, more frequent and intense downpours and a greater proportion of 

total rainfall coming from heavy precipitation events are very likely across the United 

States [32]. Historical data in Figure 24 shows an increasing trend of very heavy 

precipitation events, especially in the Northeast. Measurements of stream gauges with at 

least 85 years of historical records show that the greatest increases in peak streamflows 

have occurred in the upper Midwest (specifically, the Red River of the North), and in the 

Northeast (especially in eastern Pennsylvania, New York, and New Jersey) [54].  
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In general, areas that are projected to receive the greatest increases in heavy 

precipitation are also expected to experience greater flooding, such as the Northeast and 

Midwest, with some uncertainty [36]. Projections indicate that it is likely that a 1-in-20 

year annual maximum 24-hour precipitation rate will become a 1-in-5 to 1-in-15 year 

event by the end of 21st century in many regions (A2, A1B, and B1 emission scenarios) 

[39]. 

At the same time, all regions of U.S. are very likely to experience an increase in 

maximum temperature as well as an increase in frequency and intensity of heat wave 

[51]. It is assessed that a 1-in-20 year annual extreme hot day is likely to become a 1-in-2 

year annual extreme by the end of the 21st century in most regions (A2 and A1B higher 

emission scenarios), and is likely to become a 1-in-5 year annual extreme (B1 lower 

emission scenario) [39]. 

Due to large uncertainty in the data collection and modeling, although regional 

and global studies indicate an increasing trend of droughts, floodings and extreme sea 

level rise, there is low confidence in those projections [39]. 
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Figure 24 Percent increases in the amount of precipitation falling in very heavy events (defined as the heaviest 

1% of all daily events) from 1958 to 2011, with respect to 1901-1960 [49] 

4.3.1 Projections 

Extreme events can lead to major interruption of energy and economic loss. For 

example, in 2012, storm surge and high winds from Hurricane Sandy downed power 

lines, flooded substations and underground distribution systems, and damaged or 

temporarily shut down ports and several power plants in the Northeast, including eight 

nuclear power units in the region [56]. During a 2006 heat wave, electric power 

transformers failed in Missouri and New York, causing interruptions of the electric power 

supply [51]. 
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Hurricanes and storms can disrupt the costal facilities while the floodings cause 

the shutdown of inland facilities. Extreme events will likely result in increasing 

transmission loss and even damage of power grid. However, there are no accurate 

projections related to the weather disasters and power generation system. 

4.3.2 Assumptions 

Linear correlations are assumed between the extreme events and GEP parameters. 

Major impacts are considered and defined in Table 18, while unclear and negligible 

impacts are omitted. 

Table 18 Magnitude of impact from extreme events frequency on GEP parameters 

 GEP Parameters Impact 

Frequency (+100%) 

Derate rate Maintenance time (+20%) 

Transmission capacity (-3%) 

Reserve margin (+10%) 

Peak demand (+5%) 

 

4.4 Conclusion of Climate Variables 

The projections of temperature, precipitation, extreme events as well as their 

impacts on the electric power generation system are briefly discussed in this section. 

Appropriate assumptions are included. We assume that the relationship between climate 

variables and GEP parameters are linear, while it is not in most real cases. Uncertainty 

assumptions and the experts’ projections mentioned here are subjected to spatial and 

temporal conditions, for example, there are many studies forecasting the electricity 

demands for California, but not many for the Northeast area. For the extreme events, few 

climate models can have high confidence of future predictions. Therefore, due to the 
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complexity and uncertainty, consistency of data and projections from various literature 

are not considered in this study. We simply take their results along with our assumptions 

as the theoretical input. Further studies can focus on the data and possibly propose 

sensitivity analysis for each of the climate variables. 
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5 Scenarios 

Each scenario is a realization of a set of random variables over the planning 

horizon. In this research, discrete climate scenarios with a set of climate variables are 

defined. Climate variables are related to the GEP model parameters through the method 

described in Section 4. Therefore, each climate scenario corresponds to a scenario of 

uncertain GEP parameters. After introducing the definition of scenarios considered in the 

research, we present the optimal electric power generation expansion planning solution 

under each scenario using the preliminary model in Section 3. Therefore, by comparing 

the optimal solutions between scenarios, the impact of climate change on the generation 

expansion decision can be identified. 

 

5.1 Definition of Scenarios 

Each climate scenario has three major climate variables: temperature, 

precipitation and extreme events as shown in Table 19, and corresponds to six sets of 

GEP parameters: demand, peak demand, capacity factor, transmission capacity, reserve 

margin and derate rate. Based on the results of [32, 33, 36, 37, 39, 40, 49, 50, 51, 53], we 

assume that temperature is going to increase equally in different seasons (the literature 

shows little seasonal variation), whereas annual and summer precipitations are defined 

separately (summer precipitation is largely distinguished from annual precipitation). Only 

the frequency of extreme events is included in the scenarios, since intensity and duration 

are difficult to model and project. It is noted that temperature and precipitation of 

Scenarios 2 and 3 are extracted from experts’ projections of higher and lower emissions 

scenarios. 
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Table 19 Climate scenarios summary by 2035, with respect to 1971-2000 

Scenario Temperature Precipitation Extreme events 

 Annual Annual Summer Frequency 

1 +4.4°C +12% -4% +300% 

2 +1.7°C +4% +1% +75% 

3 +1.5°C +3% +2% +50% 

4 +1.0°C +2% +0% +10% 

5 As present As present As present As present 

 

We have discussed the inputs and assumptions in Section 3. It is noted that those 

assumptions are made without considering the impact of climate change. In other words, 

those assumptions are used in Scenario 5, which is the base scenario with every climate 

variable remaining the same in the fifty-year range.  

As we define Scenarios 1-4 differing on the extent of climate change, whereas 

most of the non-climate-related GEP parameters are not changed, the six sets of climate-

related GEP parameters are affected, which are summarized in Table 20. By comparing 

with the parameters in Scenario 5, Table 20 provides the additional yearly growth rate 

due to climate change. For example in Scenario 5, the peak demand growth rate of 

NEISO from 2010 to 2020 is 0.49% as listed in Table 3. Thus the peak demand growth 

rate NEISO from 2010 to 2020 is (0.49%+0.56%=1.05%) in Scenario 1. 

Table 20 Additional yearly growth rates for each scenario due to climate change, with respect to Scenario 5 

 Scenario 1 2 3 4 

Additional demand growth 
Summer +0.24% +0.092% +0.081% +0.054% 

Shoulder (spring/fall) +0.19% +0.075% +0.066% +0.044% 
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Winter -0.2% -0.078% -0.069% -0.046% 

Additional peak demand 

growth 
 +0.56% +0.175% +0.137% +0.068% 

Additional reserve margin 

requirement 
 +0.6% +0.15% +0.1% +0.02% 

Additional maintenance time  +1.2% +0.3% +0.2% +0.04% 

Additional transmission loss  +0.31% +0.096% +0.075% +0.036% 

Additional summer capacity 

factor decrease 

Coal, STOG, STWD, AC -0.209% - - - 

CT -0.257% - - - 

CC, IGCC, IGCC_seq -0.099% - - - 

GEO, LFG, Biomass -0.249% - - - 

PV -0.057% - - - 

NU -0.284% - - - 

ST -0.297% - - - 

HY -0.48% - - - 

Additional shoulder 

(spring/fall) and winter 

capacity factor decrease 

Coal, STOG, STWD, AC -0.009% -0.003% -0.003% -0.002% 

CT -0.057% -0.022% -0.02% -0.013% 

CC, IGCC, IGCC_seq -0.035% -0.014% -0.012% -0.008% 

GEO, LFG, Biomass -0.009% -0.003% -0.003% -0.002% 

NU -0.044% -0.017% -0.015% 0.01% 

PV -0.057% -0.022% -0.02% -0.013% 

ST -0.057% -0.022% -0.02% -0.013% 
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5.2 Optimal Solution under Each Scenario 

GAMS/CPLEX is used to solve the deterministic linear programming of the 

preliminary model. The optimal solutions are graphed and analyzed after we solve the 

preliminary models with sets of parameters corresponding to the scenarios.  

5.2.1 Expansion Costs 

The expansion costs under each scenario are shown in Table 21. As we defined 

earlier, Scenario 5 is the base scenario, in which climate will remain the same as present 

for the next thirty years. Therefore, the additional expansion costs under other scenarios 

are compared to Scenario 5, which implies the climate change effects. Scenario 1, which 

is the most extreme scenario, has the most climate change effects, which is about 5% 

more than no climate change scenario, equivalent 45 Billion in 2010 dollars. Tables 22 

and 23 provide the corresponding effects in investments and generation due to climate 

change. 

Table 21 Total expansion cost in each scenario 2010-2040 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Expansion cost (2010$ Billion) 968.06 934.85 932.97 929.18 923.61 

Climate change cost (2010$ Billion) 44.45 11.24 9.36 5.57 0.00 

Climate change effect 4.81% 1.22% 1.01% 0.60% 0.00% 

 

5.2.2 New Investments 

The investments are the decision variables, which decide the type and amount of 

capacity that is constructed every year in every region. Table 22 shows that Scenario 1 

has 45% more investments than Scenario 5, which implies under the most extreme 
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scenario, climate change results in almost 50% more capacity investments. It is because 

Scenario 1 has the largest demand increasing and capacity decreasing, while the emission 

limits and Renewable Portfolio Standards requirements are not relaxed. 

Table	
  22	
  Total	
  investments	
  in	
  each	
  scenario	
  2010-­‐2040	
  

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Total investments (MW) 153,073 115,565 112,581 108,828 105,457 

Climate change effect (MW) 47,617 10,108 7,124 3,371 0 

Climate change effect 45.15% 9.59% 6.76% 3.20% 0.00% 

 

Figure 25 depicts the total investments in different regions during the planning 

horizon 2010-2040. The extreme scenario has the most investments, most of which occur 

in the PJM_ROR region. It means that PJM_ROR can provide relatively inexpensive 

investments in the case of extreme climate change. 

 

Figure 25 Total investments in each region in each scenario 2010-2040 (MW) 

From Figures 26-27, the five scenarios share the same varieties of investments: 

combined cycle, combustion turbine, landfill gas, nuclear, photovoltaic, onshore wind 
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turbine (class 3 and class 4+ wind) and offshore wind turbine, but slightly differ in the 

investment amounts. The extreme case Scenario 1 has significantly more investments 

during 2021-2025, and onshore wind turbine takes the largest portion, which indicates 

that onshore wind turbine is invested to combat extreme climate change given forced 

emission limits. 

 

Figure 26 New investments in each scenario (MW) 

Figure 27 indicates that except for onshore wind turbine, combustion turbine is 

also invested more extensively in case of higher peak demand, while combined cycle has 

a smaller portion of total investments as climate becomes more extreme. The reason is 

that combustion turbine has a lower capital cost. 
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Figure 27 Proportion of total investments by technology in each scenario (2010-2040) 

5.2.3 Generation 

In terms of the generation, the total generation in each scenario is listed in Table 

23. Unlike investments, Scenario 1 only has 1.82% more generation when compared to 

Scenario 5, which implies that more investments should be planned even though the 

demands are not significantly increasing.  

Table	
  23	
  Total	
  generation	
  in	
  each	
  scenario	
  2010-­‐2040	
  

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Total generation (1000 GWh) 36,919 36,507 36,477 36,403 36,258 

Climate change effect (1000 GWh) 661 249 219 145 0 

Climate change effect 1.82% 0.69% 0.60% 0.40% 0.00% 
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As shown in Figure 28, fossil resources generation is gradually replaced by 

generation from renewable resources across all scenarios. Especially in the most extreme 

scenario, the average generation proportion of renewables is the largest. That is because 

given the same emission limits for all scenarios, more demand and generation is 

correlated with less fossil generation. For the renewables generation percentage in 

Figures 29-30, onshore wind turbine is gradually replacing hydro-electricity. It is 

interesting to observe that combustion turbine has been invested in a large amount but not 

heavily utilized for generation, because of expensive operation costs. Therefore, it is 

good to keep combustion turbine as peaker generation units or to meet reserve margin 

reliability requirements. 
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Figure 28 Generation in each scenario 2010-2040 (1000GWh) 

In our results (Figures 29-30), coal is taking 1% of the generation across all 

scenarios, which is similar to EIPC’s results [59]. Previously in Section 2.2 Figure 11, we 

have mentioned that coal is and will remain an important source of electricity generation. 

Our results here do not exactly match the reality (coal is one of our primary resources 

nowadays) because of emission limits. However, once we relax the bound of emission, 

coal generation increases dramatically. 
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Figure 29 Proportion of total generation by technology in each scenario 2010-2040 
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Figure 30 Proportion of total generation by technology in each scenario 2010-2040 (continued) 

5.2.4 Energy Prices 

We also graph the energy prices in two time periods in a year: summer-peak and 

shoulder-offpeak, in which the energy prices are the highest and lowest, respectively. 

They are derived from the shadow prices of energy supply constraints. The high energy 

price and energy jump around 2010 and 2021 are because of the constructions in 2010-

2015 and 2021-2025 as indicated in Figure 31. Energy prices in extreme case Scenario 1 

are marginally higher than those in the other scenarios.  
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Figure 31 Summer-peak and shoulder-offpeak energy prices in each scenario 2010-2040($/MWh) 

5.2.5 Percentage Usages 

Once we compare the generation of different types of technologies in Section 

5.2.2, it is easy to understand the percentage usage. Percentage usage of a generation unit 

means the ratio of its actual output to its potential output if it were possible to operate at 

full nameplate capacity indefinitely over a period of time [77]. It is sometimes also called 

“capacity factor”, but to distinguish it from the GEP parameter, the percentage usage is 

used in this research. We graph the percentage usage derived from the optimal results in 

four years, 2010, 2020, 2030, 2040 in Figure 32. We know that combined cycle, 
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conventional hydro, nuclear and pumped storage hydro have percentage usage larger than 

50%, some of them even close to 90%. They are the main resources of electricity 

generation due to low variable costs in all scenarios. Combined cycle are utilized less in 

the future among all scenarios due to the consideration of emissions, but Scenario 1 has 

some different patterns than other generation technologies. For instance, nuclear is 

increasing in Scenario 2-5 while decreasing in Scenario 1. 

In reality, conventional hydro and pumped storage hydro are subject to the nature 

of the river flow or physical conditions, so they cannot actually reach 90% of usage. 

Particularly for pumped storage hydro, extra electricity is consumed to pump up water. It 

often serves as a peaker unit, using off-peak extra electricity and produce peak electricity. 

Our assumptions do not include those conditions due to lack of data, and as a result, 

conventional hydro and pumped storage hydro become the major resources of power 

generation. 
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Figure 32 Percentage usages by technology in each scenario 2010, 2020, 2030, 2040 
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5.2.6 New Plants Levelized Costs 

Levelized cost is often cited as a convenient summary measure of the overall 

competiveness of different generating technologies. It represents the per-unit megawatt-

hour cost (in real dollars) of building and operating a generating plant over an assumed 

financial life and duty cycle [69]. We try to capture the average cost of a generation unit 

from construction to operation over a particular period. Therefore, only the levelized 

costs of new plants, whose investment costs can be included, are studied here.  

Normally levelized costs can be calculated by including overnight capital costs, 

fuel costs, fixed and variable operation and maintenance costs, and assumed percentage 

usage. Since we have obtained the optimal solution under each scenario, the amount of 

investments, generation and percentage usage are known. The calculation of levelized 

cost is straightforward, which can be obtained by dividing the summation of investment 

costs, generation costs and fixed costs by the summation of generation in the planning 

horizon.  

In Figure 33, most of the levelized costs are between $60-90/MWh in 2010$, and 

landfill gas has a lower cost around 30 in all scenarios. The extreme Scenario 1 has 

higher levelized costs for nuclear and class 3 onshore wind turbine. This indicates that 

those additional costs sum to the energy prices in the extreme scenario. In other words, 

we are paying more for investment of nuclear and class 3 onshore wind plants in an 

extreme scenario. 
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Figure 33 Levelized costs for new technology in each scenario 2010-2040 ($/MWh) 

We can compare our results with EIA, e.g., EIA has assumed an 87% usage of 

combine cycle, then the levelized cost of combined cycle is $67.1/MWh in 2011 dollars, 

while in our study, combined cycle are working around 60% of time, and the 

corresponding levelized cost is around 70 in 2010 dollars in all scenarios. Other examples 

are shown in Table 24. Differences do exist in many ways, so we should also notice that 

our modeling could be rather different from EIA. It is noted that the levelized costs are 

quantified differently in 2010 and 2011 dollars. 

Table 24 Levelized cost comparison 

 EIA (2011$/MWh) [69] This study (2010$/MWh) 

CC 87%, 67.1$ 60%, 70$ 

NU 90%, 108.4$ 92%, 70$ 

PV 25%, 144.3$ 30%, 71$ 

WT_off 37%, 221.5$ 40%, 82$ 
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5.3 Conclusion of Scenarios 

 The scenarios described in our study are realization of three climate variables: 

temperature, precipitation and extreme events in the planning horizon. Meanwhile, the 

correlations between climate variables and GEP parameters imply that these scenarios are 

also realization of six sets of GEP parameters: demands, peak demands, reserve margin 

requirements, transmission capacity, maintenance time and capacity factors. 

Normally the definition of scenarios is largely dependent on the objectives of the 

GEP models. Here we define an extreme scenario, a base scenario and scenarios built by 

experts’ advices. By solving the GEP models under the constraints subjected to each 

scenario, we can identify the climate change impacts on the electric power generation 

expansion planning decisions. Therefore, a detailed analysis is presented in this section 

by comparing several indices of scenarios. 

The results show that the extreme scenario can be significantly distinguished from 

other scenarios, but all scenarios share a lot of similarities in the choice of generation 

technologies. The extreme scenario requires much more renewable resources, which 

leads to higher energy prices. The differences are relatively small for Scenarios 2-5. 
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6 Robust models 

Unlike stochastic optimization, robust optimization is widely adopted for 

modeling with parameter uncertainty, where deterministic or set-based uncertainty is 

assumed known. In this research, we assume that climate change remains uncertain but 

one of the climate scenarios will occur, with the set of uncertain parameters are 

associated with each scenario. Which scenario will occur is unknown at the decision time, 

and therefore, a robust decision should be made in advance, that should be effective for 

any realization of the uncertainty in the given set of scenarios. The robust solution is a 

compromise optimal solution, neither spending too much for reliability consideration, nor 

paying too much penalty once underestimating the reality. 

As climate scenarios are taken into consideration, slightly different parameters are 

defined in this section, compared to the preliminary model. It is noted that certain 

constraints may be violated because of uncertain parameters. Thus we introduce new 

decision variables: unmet demands and reserve margin requirements, unavailable 

generation and transmission amount. The unavailable generation and transmission 

amount is counted into the final unmet demands. Thus only two kinds of penalty costs are 

considered in the study, costs for unmet demands and costs for unmet reserve margin 

requirements.  

Two robust optimization models are then presented in this section: Model 1 is 

expected total cost minimization and Model 2 is maximum “regret” minimization. They 

have nearly the same sets of constraints but different objective functions. In both models, 

global robust constraints are used for all scenarios by incorporating penalty costs of each 



	
  

	
  

86	
  

scenario. Both models are linear programming models, aiming at finding a good 

compromise solution under different objectives. 

 

6.1 Nomenclature 

The decision variables, indices and parameters of the robust models are described 

in this section. 

Decision Variables 

𝑥!,!,!!,!  Generation amount of generation type i in region r1 in time period t in year y (MWh) 

𝑠!,!!,!  Investment amount of generation type i in region r1 in year y (MW) 

𝑓!,!,!!,!!  Transmission flow from region r1 to r2 in time period t in year y (MWh)  

𝑈𝐷!,!,!!,!  Unmet demand in region r1 in time period t in year y in scenario j (MWh) 

𝑈𝐺!,!,!!,!,!  
Unavailable amount of generation type i in region r1 in time period t in year y in scenario j 

(MWh) 

𝑈𝑅!,!!,!  Unmet reserve margin capacity requirement in region r1 in year y in scenario j (MW) 

𝑈𝑇!,!,!!,!!,!  
Unavailable transmission amount from region r1 to r2 in time period t in year y in scenario 

j (MWh) 

Maxregret Maximum regret 

Indices 

j Scenarios 

y Years, alias u 

t Time periods in a year 

r1 Regions, alias r2 

i Generation types 

n Renewable generation types (subset of i) 

e Emission gases  

Parameters 
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r Interest rate 

J Number of scenarios 

Y Number of years 

T  Number of the time periods in a year 

R Number of the regions 

I Number of generation types 

N Number of renewable generation types 

E Number of emission gases (CO2, SO2, NOx…) 

𝑐!,!  Generation variable cost for generation type i in year y (2010$/MWh) 

𝑎!,!  Investment cost for generation type i in year y (2010$/MW) 

𝑝!  Probability of scenario j 

𝑖𝑛𝑖𝑡!!,!  Initial capacity of generation type i in region r1 at the beginning (MW) 

𝑓𝑛𝑒𝑤!,!!,!  Forced new capacity of generation type i in region r1 with online year y (MW) 

𝑓𝑟𝑒𝑡𝑖𝑟𝑒!,!!,!  Forced retirement capacity of generation type i in region r1 with retirement year y (MW) 

𝑔!,!  Fixed operation and maintenance cost for existing generation type i in year y (2010$/MW) 

ℎ!,!  Fixed operation and maintenance cost for new generation type i in year y (2010$/MW) 

𝜑!,!,!!,!  Demand in region r1 in time period t in year y in scenario j (MWh) 

𝑑!,!,!,!  Derate rate of generation type i in time period t in year y in scenario j 

ℎ𝑜𝑢𝑟𝑠!  Hours in time period t 

𝑐𝑓!,!,!!,!,!  Capacity factor for generation type i in region r1 in time period t in year y in scenario j 

𝑝𝑒𝑎𝑘!,!!,!  Peak load (demand) in year y in region r1 in scenario j (MWh) 

𝑚!,!!,!  Reserve margin for region r1 in year y in scenario j 

𝑀𝐼𝑁!,!!,!  Minimum generation percentage requirement of renewable type n for region r1 in year y 

𝑇𝑀𝐼𝑁!,!!  Yearly minimum renewable generation percentage requirement for region r1 in year y 

𝐸𝑀!,!  Amount of emission gas e from generation type i (lbs/MWh) 

𝑅𝐿𝐸𝑀!,!,!!  Regional limit for emission gas e in region r1 in year y (lbs) 
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𝑇𝐿!,!!,!!,!  Transmission limit from region r1 to r2 in year y in scenario j (MW) 

𝐶𝐿!,!!,!  Yearly construction limit of generation type i in region r1 in year y (MW) 

𝑉𝐷!  Penalty cost of unmet demand in year y ($/MWh) 

𝑉𝑅!  Penalty cost of unmet reserve margin requirement in year y ($/MW) 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙!  Expansion cost of optimal solution under scenario j ($) 

 

6.2 Expected Total Cost Minimization Model 

The objective function (11) of the expected total cost minimization model is to 

minimize the expected total present costs including the penalty costs. The total costs 

include four parts: investment costs of the new construction, electricity generation costs, 

operation and maintenance costs, and penalty costs. The first three parts that represent the 

total expansion costs of the compromise optimal solution are the same as the preliminary 

model. The fourth part is the expected total penalty costs. 
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  (11) 

 

6.3 Maximum Regret Minimization Model 

The objective function (12) of maximum regret minimization model is to 

minimize the maximum regret over all scenarios. Here in our study, regret is interpreted 

as the difference between desired cost in one particular scenario and the realistic cost 

under uncertainty in this study. If one particular scenario certain to happen, the 
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deterministic model presented in Section 3 can be solved to obtain the optimal solution 

under that scenario. However, by the time a decision has to be made, uncertainty lies in 

the realization of any climate scenario. After the compromise solution is determined at 

the beginning, one of the future scenarios will actually occur, and the penalty costs can be 

observed. If we compare the difference between the realistic cost and deterministic 

optimal cost, the regret can be obtained by subtraction. 

Any realization of scenario would lead to a different regret. Here we present a 

robust optimization model: a minmax problem, which finds the maximum regret over all 

scenarios and minimizes it. In this case, no probabilistic assumption is associated. We 

have to determine the “worst case.” From the perspective of regret, the maximum regret 

case does not necessarily imply extreme scenario. The regret is largely dependent on the 

initial decision, for example, if the optimal solution of the extreme scenario is chosen to 

be the compromise solution, then there would be no regret once the extreme scenario 

happens, but large regret for other scenarios. 
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Reformulation 

 A simple linear programming reformulation is performed for the ease of 

computation. The original minmax problem has been transformed to a minimization 
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programming by introducing a new decision variable Maxregret and adding a group of 

constraints (14) corresponding to j scenarios. Other constraints remain the same. 

 minMaxregret   (13) 
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6.4 Constraints 

The two robust models share most of the constraints (15-23). The only difference 

is (14) after reformulation depicted in the previous section. Compared to the preliminary 

model, robust models have more decision variables and parameters associated with each 

scenario. Constraints (15-17) and (22) differ from (2-4) and (9) due to the uncertainty of 

scenarios. 
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  (23) 

Compared to (2), equations (15) allow unmet demands if the generation and the 

transmission electricity amount of the compromise solution cannot meet the demands in 

some scenarios. Constraints (16) are capacity constraints, which allow unavailable 

capacity if generation exceed the total capacity in some scenarios. Constraints (17) are 

reserve margin requirements constraints that allow unmet capacity. Constraints (18-21) 

remain the same as (5-8). Constraints (22) represent transmission capacity limits that 

allowing unavailable transmission in some scenarios, (23) are nonnegative constraints. 
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7 Numerical Examples 

Considering the two robust models in previous section, how to evaluate those 

models and how to choose between those two options are our concern. Therefore, 

numerical examples are tested and compared in this section. 

 

7.1 Assumptions 

While most of the assumptions keep consistency with the preliminary model, we 

need clarification of new assumptions. The cost of unmet demand is normally called 

Value of Lost Load (VoLL) with typically range of $1,000-20,000/MWh [57]. Here we 

assume the unmet demand cost to be $2000/MWh (in 2010 dollars) with a growth rate of 

2% as a reasonable value, while the cost of unmet reserve margin requirements is 

assumed to be 1.5 times the investment cost of combustion turbine. Since combustion 

turbine has the lowest investment cost, in order to meet the reliability requirements, it is 

desired to invest in the most economic technology. Scenarios 1 through 5 have 

probabilities of 0.1, 0.3, 0.3, 0.2, 0.1. We assume that Scenario 1 is the extreme case with 

0.1 probability, and climate change is likely to occur, and thus Scenario 5 is also less 

probable to happen. Scenarios 2 and 3 origin from the projections of experts, and we 

assign them larger probabilities. The assumed probabilities are only used for numerical 

purpose. Again GAMS/CPLEX is used to solve the robust optimization models. 

 

7.2 Results Comparison 

When we scrutinize the total expansion costs in Figure 34 (note that in order to 

compare with each scenario, expansion total costs do not include the penalty costs, but 
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penalty costs are considered in the optimal objective function values), total investments 

in Figure 35 and total generation in Figure 36, we can easily understand that our robust 

solutions are more like compromise solutions. In Figures 35 and 36, instead of using 

Scenarios 2-5 individually, we average them since results of Section 5.2 show that 

Scenarios 2-5 are similar. However, we emphasize the extreme case Scenario 1. 

 

Figure 34 Expansion total costs for different models 2010-2040 (Billion 2010$) 

Figure 35 illustrates the compromise solutions, which do not invest too much to 

pay for the extreme case, but do reserve more capacity in case of extreme weather. 

Unlike discrete scenario solutions, compromise solutions in both models invest in AC 

and IGCC instead of PV and WT_off. It may imply that advanced fossil technologies are 

alternative choices for planning under uncertainty. Generation has some similarities with 

investments in the compromise solutions. GEO, AC and IGCC take part in the generation 

to combat uncertainty (Figure 36). 
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Figure 35 Total investments for different models 2010-2040 (MW) 

 

Figure 36 Total generation for different models 2010-2040 (1000GWh) 

It is interesting to compare the expected total cost minimization model and 

maximum regret minimization model. In this example, expected total cost minimization 

model gives a more satisfactory solution as shown by the blue bar in Figure 37, especially 

when their expansion total costs are quite close. The expected total cost minimization 

model only has penalty in Scenarios 1 and 5, while the other model has more penalty 
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costs in nearly every scenario. Although the expected total cost minimization model has 

slightly higher regret in Scenario 5, on average, it has less regret. 

On the other hand, maximum regret minimization model (red bar) does provide a 

solution with least maximum regret around 29.7 Billion in 2010 dollars, but it is not a 

significant improvement compared to the 31.7 Billion in 2010 dollars of the expected 

total cost minimization model. Meanwhile, the maximum regret minimization model 

gives us an equal regret under each scenario, which means, no matter how the future 

climate would be, we will have a certain regret. This indeed diminishes the uncertainty or 

variance; however, policy makers will not favor it as the average penalty cost and regret 

are both too much. 

 

Figure 37 Penalty and regret comparison (Billion 2010$) 

 

7.3 Sensitivity Analysis 

A lot of questions follow the results in Section 7.2: 

• Is expected total cost minimization model always good? 

• How will the model results change once the probabilities change? 
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• Will maximum regret minimization model always give results of equal regret for 

each scenario? 

• How will the model results change once the unit penalty cost change? 

Therefore, a sensitivity analysis is conducted to inspect whether it is just a special 

case or it can be generalized to some extent. We only examine the probability and unit 

penalty cost sensitivities on a simple basis in this research. 

In previous discussion, the probabilities assigned to Scenarios 1-5 are 0.1, 0.3, 0.3, 

0.2, 0.1, which implies that the extreme scenario has 10% of chance to happen. We 

design another sets of probabilities, in which the future climate is less extreme. The 

probability of Scenario 1 decreases to 0.02, while probabilities of other Scenarios 

increase equally. Then the new sets of probabilities are 0.02, 0.32, 0.32, 0.22, 0.12 for 

Scenarios 1-5. 

Another design is to increase the unit penalty cost for unmet demand. We observe 

cases that once the unit penalty cost is too low, it is desired to pay the penalty costs rather 

than invest new plants or generate more electricity. We raise the unit penalty cost of 2010 

from 2000$/MWh to 5000$/MWh, still in the range of 1,000-20,000$/MWh, keeping the 

yearly growth rate of 2%. Unit penalty cost for unmet reserve margin requirements is not 

changed. 

The sensitivity analysis design is listed in Table 25, in which we label every 

combination of conditions as A-F. After solving the six cases individually, we present 

pairwise comparisons to identify particular features: A vs B vs C, D vs E vs F, A vs D, B 

vs E, C vs F.  
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Table 25 Sensitivity analysis design 

 Expected toal cost minimization Maximum regret minimization 

 
More extreme  

(p1=0.1) 

Less extreme  

(p1=0.02) 
 

Low unit penalty cost 

(2000$/MWh) 
A B C 

High unit penalty cost 

(5000$/MWh) 
D E F 

 

7.3.1 A vs B vs C 

Under a low unit penalty cost assumption, B has a much lower expansion cost 

(Figure 38) as we assume the extreme scenario is very unlikely to occur. Therefore, 

solution B is an optimistic decision. However, once Scenario 1 happens as shown in 

Figure 39, there are extreme penalty and regret associated with Scenario 1. It is noted that 

A and C are precisely what were discussed in Section 7.2.  

Another important message conveyed by Figure 39 is that although solution B has 

a very large penalty and regret in Scenario 1, for Scenarios 2-5, solution B gives negative 

regrets. It is strange as it seems to cost less than the optimal solution for each scenario. 

The reason is that the preliminary model does not allow any unmet demand, unavailable 

capacity or unmet reserve margin requirements, while the robust model allows that with 

the limitation that penalty costs should be included. Consequently, compromise solution 

B chooses to pay a penalty instead of investment or generation.  
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Figure 38 Expansion costs under low unit penalty cost for A, B and C 2010-2040 (Billion 2010$) 

 

Figure 39 Penalty and regret under low unit penalty cost for A, B and C 2010-2040 (Billion 2010$) 

7.3.2 D vs E vs F 

We raise the unit penalty cost and run the same models again. The results show 

that probabilities are not significantly affecting the compromise solutions (Figures 40-

41). D and E have almost the same results in expansion, penalty costs and regret. Both D 

and E lead to large regrets when the extreme scenario occurs. Solution F is much better in 

this case, it spends four Billion 2010 dollars and gets much lower regrets in return, except 

that it has penalties for Scenarios 1-4. Compromise solutions D and E only have penalties 

in Scenario 1, but have regrets in all scenarios.  
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We may infer from the results of Sections 7.3.1 and 7.3.2 that expected total cost 

minimization model is desired under a low unit penalty cost case. On the contrary, the 

maximum regret minimization model performs better under a high unit penalty cost case. 

However, further studies are necessary for confirmation. 

 

Figure 40 Expansion costs under high unit penalty cost for D, E and F 2010-2040 (Billion 2010$) 

 

Figure 41 Penalty and regret under high unit penalty cost for D, E and F 2010-2040 (Billion 2010$) 

7.3.3 A vs D 

A and D are compared in Figure 42, which indicates that the low and high unit 

penalty cost under a more extreme future cases are solved using the expected total cost 

minimization model. We assume that Scenario 1 is going to happen at a 0.1 level. 
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Solution D spends less for expansion, and as a result, it has a much more penalty for 

extreme scenario. Hence higher unit penalty may lead to lower expected cost, but bring 

more risk when response to extreme climate. 

 

Figure 42 Expansion, expected total and penalty costs under more extreme future for A and D 2010-2040 

(Billion 2010$) 

7.3.4 B vs E 

When we assume a less extreme future, the results are on the opposite direction 

(Figure 43). Higher unit penalty leads to higher expansion cost but lower penalty. 
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Figure 43 Expansion, expected total and penalty costs under less extreme future for B and E 2010-2040 (Billion 

2010$) 

7.3.5 C vs F 

The maximum regret minimization model has been solved under low and high 

unit penalty cost assumptions and the results are shown in Figure 44. The penalty costs 

for scenarios in C and F are literally the same. Thus the differences in the expansion costs 

are exactly displayed in the regret. It is noted that the same penalty dose not imply the 

same unmet demand, because of the low and high unit penalty cost assumptions. Under 

both assumptions, we have equal regret for each scenario. It may lead to the deduction 
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that the maximum regret minimization model reduces variance as much as possible, but a 

theoretical proof is needed. 

 

Figure 44 Expansion, penalty costs and regret for C and F 2010-2040 (Billion 2010$) 

 

7.4 Conclusion of Numerical Example 

We present two robust optimization models in previous section and the numerical 

example in Section 7. The models work effectively and can obtain satisfiable solutions. 
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Both the expected total cost minimization and maximum regret minimization models give 

us compromise solutions, avoiding investing too much for the extreme case as well as 

keeping extra reliability for other scenarios. Subjected to global constraints, these two 

models can solve the GEP problems robustly, with emphasis on different objectives. 

In terms of comparison of the two models, their performances vary. We conduct a 

sensitivity analysis for the comparison of the models by changing parameters. Under a 

high unit penalty cost case, maximum regret minimization model seems to be a better 

option, while expected total cost minimization model is desirable when the unit penalty 

cost is relatively low. If the extreme scenario is less likely to happen, results show that it 

is better to pay penalty rather than invest. Both the unit penalty cost and the probability of 

the extreme scenario significantly influence the electric power generation expansion 

decisions. Different combination of them would lead to different solutions. Meanwhile, 

the maximum regret minimization model provides equal regret for each scenario, which 

can reduce the variance to the most extent. 
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8 Conclusions and Future Directions 

In this research, a detailed study of electric power generation expansion planning 

considering uncertainty of climate change has been carried out. We refer to a large 

amount of literature to construct a preliminary GEP model, collect data from various 

resources and validate our model by comparing our results with EIPC. The input of the 

preliminary model serves as the base scenario in later discussion. 

As we take the uncertainty of climate change into consideration, discrete climate 

scenarios method is adopted. Five climate scenarios are defined based on the quantifiable 

relationships between climate variables and GEP parameters extracted from the 

projections of experts. We solve the five scenarios independently and obtain the optimal 

solution under each scenario, then the climate change impacts can be identified by 

comparing the results. The extreme scenario is shown to have the largest impacts on the 

expansion decisions. 

We present two formulations of robust optimization, expected total cost 

minimization and maximum regret minimization models. Both models provide good 

compromise solutions with different performances under different configurations of GEP 

parameters. The models are proved to be theoretically valid and work efficiently by 

conducting sensitivity analysis. 

The research is limited by the complexity of the GEP problems and preciseness of 

climate projections. Appropriate assumptions are made accordingly. But the results 

provide certain reference for power system modeling under uncertainty and risk 

management. Future studies can extend the spatial and temporal scale of this research, as 
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well as include more constraints (policies and regulations, economy and demography, 

climate and geology, etc) and more effective data from advanced research.  

The deductions of the results in this study can be further investigated, especially 

the choices of different technologies and the objective functions of the two robust 

optimization models. A combination of mathematical proof and practical application is 

suggested for future research. Further comprehension of power system and climate 

change requires the coordination of researchers from climate change, power system, 

mathematics and engineering fields. 
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