TY - JOUR TI - Robust optimization of electric power generation expansion planning considering uncertainty of climate change DO - https://doi.org/doi:10.7282/T3G73C0J PY - 2014 AB - This research is dedicated to the study of electric power system generation expansion planning considering uncertainty of climate change. Policymakers across the world are increasingly concerned about the effects of climate change and its impact on human systems when making decisions. Electric power Generation Expansion Planning (GEP) problems that determine the optimal expansion capacity and technology under particular technical constraints, given cost and policy assumptions are undoubtedly among those decisions. Now and in the future, climate change is and will be affecting new power plant investment decisions and the electricity generation system in more uncertain ways. The power system needs to be more reliable, cost-effective and environmentally friendly when exposed to higher temperature, less precipitation and more intense and frequent extreme events. However, incorporating the climate change effects into a GEP model has rarely been attempted before in the literature. The best approach to comprehensively model those uncertainties into electricity generation, and to optimize the generation planning under uncertainty needs be studied in a more specific way. In this research, a preliminary GEP model is proposed with available input data from various resources. Discrete scenarios and robust optimization are adopted to specifically model uncertainty. Relationships between climate change and GEP parameters are defined and considered in each scenario. The preliminary GEP model is then solved under each scenario to identify the climate change impact on the generation expansion planning decision. Two robust optimization models are presented and solved to find the optimal results under uncertainty: Model 1 is expected total cost minimization and Model 2 is maximum regret minimization. Both models find a compromise solution that is good for all scenarios, which avoids the possible risk associated with a poor decision that is only optimal for one particular scenario. The results suggest recommendations for further power system uncertainty modeling and risk management. KW - Industrial and Systems Engineering KW - Electric power systems--Management KW - Climatic changes LA - eng ER -