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ABSTRACT OF THE DISSERTATION

On the birationality of toric double mirrors

By ZHAN LI

Dissertation Director:

Lev A. Borisov

We prove that generic complete intersections associated to double mirror nef-partitions

are all birational. This result solves a conjecture of Batyrev and Nill in [6] under some

mild assumptions. This dissertation is based on my paper [18].
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Chapter 1

Introduction

Mirror symmetry was first discovered in string theory as a duality between families of

3-dimensional Calabi-Yau manifolds. Since its discovery more than twenty years ago,

it has drawn much attention from physicists and mathematicians. Batyrev [2] used

∆-regular hypersurfaces in toric varieties associated to reflexive polytopes as a way

to construct a large set of mirror pairs. In this case, the mirror pair consists of the

family of ∆-regular hypersurfaces associated to a reflexive polytope and the family of ∆-

regular hypersurfaces associated to its dual polytope. Borisov [7] generalized Batyrev’s

construction by considering nef-partitions of reflexive polytopes. A nef-partition of

a reflexive polytope corresponds to a decomposition of the boundary divisor into nef

divisors. In this case, the mirror pairs are constructed as the family of complete intersec-

tions associated to a nef-partition and the family of complete intersections associated

to its dual nef-partition. These complete intersections are Calabi-Yau varieties, and

their string-theoretic Hodge numbers behave as predicted by mirror symmetry [4].

Compared to hypersurfaces, complete intersections associated to nef-partitions are

more complicated. In particular, they may exhibit nontrivial double mirror phenomenon,

i.e. two Calabi-Yau varieties X, X̃ may have the same mirror Y . If this is the case,

the homological mirror symmetry conjecture [17] implies that the derived categories

of coherent sheaves on X, X̃ are equivalent. Indeed, according to the conjecture, the

derived categories of X, X̃ are expected to be equivalent to the Fukaya categories of

their mirrors, which in this case are the same because X, X̃ are double mirrors.

Instead of derived equivalence, Batyrev and Nill [6] asked whether toric double

mirrors are birational. We give an affirmative answer to this question in Theorem 4.3.1

under some mild assumptions:
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Theorem. Let X, X̃ be toric double mirrors, then there exists a variety D, called the

determinantal variety, with morphism

X
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@@
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ÄÄ~~
~~

~~
~

D

such that if X, X̃ and D are all irreducible with dimD = dim X = dim X̃, then X, X̃

are birational.

Now, we describe briefly the content of each chapter:

In Chapter 2, we fix the notations used throughout the paper. We give relevant

background information on reflexive Gorenstein cones and nef-partitions. At the end

of the chapter, we prove Proposition 2.2.1 which connects the notions of nef-partitions

and reflexive Gorenstein cones. This will be used to reformulate Batyrev and Nill’s

original question in the language of Gorenstein cones. We also give a constructive proof

of the converse of Proposition 2.2.1 in Proposition 2.2.2. In Chapter 3, we reformulate

the question of Batyrev and Nill using reflexive Gorenstein cones. We also discuss

the motivation of this question and give an example which motivates our proof. In

Chapter 4, we give a proof for the main result Theorem 4.3.1. We also discuss the

necessity of its assumptions. In Chapter 5, we present some open questions related

to the subject. In the appendix, we give the definition of ∆-regularity and discuss its

properties. We show that the singularities of ∆-regular intersections are inherited from

the ambient toric variety. In particular, the complete intersections considered in the

paper are Calabi-Yau varieties with canonical, Gorenstein singularities. This fact is

used in the proof of the main theorem.
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Chapter 2

Background

2.1 Gorenstein cones and Nef-partitions

We fix the following notations throughout the paper. Let M ∼= Zd be a lattice of rank

d, and N = HomZ(M,Z) be its dual lattice with pairing 〈·, ·〉 : M × N → Z. Let

MR := M ⊗Z R, and NR := N ⊗Z R be the R-linear extensions. The pairing between

M, N can be extended to 〈·, ·〉 : MR×NR → R. Let M = Zs⊕M be the lattice extended

from M , and N = Zs ⊕N be its dual lattice with pairing:

M ×N → Z

(a1, · · · , as;m)× (b1, · · · , bs;n) 7→
s∑

i=1

aibi + 〈m,n〉 ,

where the integer s should be obvious from the context.

The purpose of introducing notations M, N will become clear in a moment: if a nef-

partition lives in M (or N), then the corresponding reflexive Gorenstein cone will live

in M (or N). Sometimes we also use lattice M1 and its dual lattice N1. The convention

is as follows: we always use M (or N) to denote the lattice where polytopes live, if the

cones come from nef-partitions, we use M (or N) to denote the lattice where they live.

However, when talking about general cones which do not come from nef-partitions, we

use M1 (or N1) to denote the lattice where they live.

Let S ⊂ MR be a set, we use Conv(S) to denote its convex hull.

If ∆ ⊂ MR with the origin 0 in the interior is a lattice polytope (i.e. the convex

hull of a finite set of lattice points), then ∆∨ := {y ∈ NR | 〈x, y〉 ≥ −1,∀ x ∈ ∆} is its

dual polytope. We use Vert(∆) to denote the set of vertices of a lattice polytope ∆,

and l(∆) to denote the set of its lattice points, i.e. l(∆) = ∆ ∩M .
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Definition 2.1.1. Let ∆ be a lattice polytope with the origin 0 ∈ ∆ as an interior

point. If the dual polytope ∆∨ is also a lattice polytope, then ∆ is called reflexive

polytope.

Definition 2.1.2. (See [5]) A d-dimensional rational polyhedral cone K ⊂ (M1)R is

called a Gorenstein cone, if it is generated by lattice points which are contained in an

affine hyperplane {x ∈ (M1)R | 〈x, n〉 = 1} for some n ∈ N1.

This n is uniquely determined if dimK = rankM1, and this is the only case consid-

ered in the paper. We denote this unique element by deg∨, and call it the degree element.

By definition, deg∨ must live in K∨∩N1, where K∨ := {y ∈ (N1)R | 〈x, y〉 ≥ 0,∀ x ∈ K}
is the dual cone of K.

In general, K is a Gorenstein cone does not imply K∨ is a Gorenstein cone. However,

if this is the case, we arrive at the notion of reflexive Gorenstein cone.

Definition 2.1.3. (See [5]) A Gorenstein cone K is called reflexive Gorenstein cone

if K∨ is also a Gorenstein cone. Let deg ∈ K, deg∨ ∈ K∨ be the degree elements in

K, K∨ respectively, then 〈deg,deg∨〉 is called the index of this pair of dual reflexive

Gorenstein cones.

We will see in a moment how reflexive Gorenstein cones relate to nef-partitions.

Before doing this we should briefly recall the notion of nef-partition. In the projective

toric variety defined by a reflexive polytope, a nef-partition is equivalent to a decom-

position of the boundary divisor into a summation of nef divisors. On the other hand,

there exists a purely combinatorial definition of nef-partition without invoking toric

variety constructions. For simplicity, we use this combinatorial definition here. The

readers can find its equivalent form and its motivation in Borisov’s original paper [7].

Definition 2.1.4. If the Minkowski sum of s lattice polytopes
∑s

i=1 ∆i is a reflexive

polytope, and the origin 0 ∈ ∆i (0 may not be an interior point) for each i, then

{∆i | i = 1, . . . , s} is called a length s nef-partition of the convex hull Conv(∪s
i=1∆i) .

Nef-partitions arise in pairs [7]: if we fixed a nef-partition {∆i | i = 1, . . . , s} with

∆i ⊂ MR, then there exists a dual nef-partition {∇i | i = 1, . . . , s} with ∇i ⊂ NR. The
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relations between them are

(
s∑

i=1

∆i)∨ = Conv(∪s
i=1∇i)

(
s∑

i=1

∇i)∨ = Conv(∪s
i=1∆i).

Furthermore, they satisfy the property

min〈∆i,∇j〉 ≥ −δij ,

and ∀ wj ∈ Vert(∇j)− {0}, the minimum value can be achieved, that is

min
x∈∆i

〈x,wj〉 = −δij .

2.2 Relationship between nef-partitions and reflexive Gorenstein cones

From a nef-partition, one can construct a reflexive Gorenstein cone [5]. On the other

hand, from a reflexive Gorenstein cone associated to a nef-partition, if we have a de-

composition of the degree element deg∨ , we can construct another nef-partition. Now

we will give a precise statement of the above relations, which appeared in a slightly

different form in [6]. In fact, we will prove a general result.

Let K, K∨ be full dimensional reflexive Gorenstein cones in (M1)R, (N1)R, with

degree elements deg,deg∨ in K, K∨ respectively. Suppose the index is 〈deg,deg∨〉 = s

and

deg∨ =
s∑

i=1

ei,

with ei ∈ N1 ∩K∨, ei 6= 0.

Let

S = {x ∈ K | 〈x,deg∨〉 = 1}

Si = {x ∈ K | 〈x, ei〉 = 1, 〈x, ej〉 = 0, j 6= i}

T = {y ∈ K∨ | 〈deg, y〉 = 1}.

Because K is a Gorenstein cone, any vertex v of S is a lattice point. Thus 〈v, ei〉 are

nonnegative integers which add up to 1. Hence, there exists precisely one ei such that
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〈v, ei〉 = 1. On the other hand, for any ej , because ej 6= 0 and K is a full dimensional

cone, there exists at least one vertex w of S such that 〈w, ej〉 = 1. Using these facts,

one can show that {e1, . . . , es} must be part of a Z-basis of N1.

Let

Ann(e1, . . . , es) := {m ∈ M1 | 〈m, ei〉 = 0,∀ i, 1 ≤ i ≤ s}

be a sublattice of M1 (we also use Ann(e) for simplicity if no confusion arises), and

SpanZ{e1, . . . , es} :=
s∑

i=1

Zei

be a sublattice of N1. From the fact that {e1, . . . , es} is part of a Z−basis, it follows

that the pairing between M and N induces a pairing

Ann(e1, . . . , es) × (N1/ SpanZ{e1, . . . , es}) → Z,

which identifies Ann(e1, . . . , es) and N1/ SpanZ{e1, . . . , es}.

Proposition 2.2.1. Under the above notations, the lattice polytope

s∑

i=1

Si − deg ⊂ Ann(e1, . . . , es)R

is a reflexive polytope.

Proof. We will show that the dual polytope of
∑s

i=1 Si − deg is exactly

T ⊂ (N1/ SpanZ{e1, . . . , es})R,

where T is the image of T under the projection (N1)R → (N1/ SpanZ{e1, . . . , es})R.

First, we show that T has 0 as an interior point. Because deg∨ is in the inte-

rior of K∨, 1
s deg∨ is also in the interior of K∨, and thus in the interior of T . This

property is kept under the projection map T → T . The image of 1
s deg∨ is 0 in

(N1/ SpanZ{e1, . . . , es})R, and thus 0 is in the interior of T .

Second, we show 0 ∈ ∑s
i=1 Si−deg is an interior point. Let deg =

∑
i∈I λivi, where

λi ∈ R and vi ∈ Vert(S) be vertices of S. We have

1 = 〈deg, e1〉 = 〈
∑

i∈I

λivi, e1〉 =
∑

i∈I1

λi,
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where I1 = {i ∈ I | 〈vi, e1〉 = 1}. This implies
∑

i∈I1
λivi ∈ S1. By continuing

this procedure, one can show deg ∈ ∑s
i=1 Si. If w ∈ Vert(T ) is a vertex of T , then

〈∑s
i=1 Si, w〉 cannot always be zero. Indeed otherwise, all the Si would be contained in

a facet of K, which is impossible. Thus, for any w ∈ Vert(T ) , there exists v ∈ ∑s
i=1 Si

such that 〈v − deg, w〉 ≥ 0. If
∑s

i=1 Si − deg did not have 0 as an interior point, then

R≥0(
∑s

i=1 Si − deg) 6= (M1)R. We have already showed that T had 0 as an interior

point, so R≥0T = (N1/ SpanZ(e1, . . . , es))R. In particular, there exists a vertex w̄ of T ,

and thus a vertex w ∈ T , such that 〈∑s
i=1 Si − deg, w〉 < 0, a contradiction.

Next, we show that
∑s

i=1 Si − deg ⊂ Ann(e1, . . . , es)R is a reflexive polytope with

dual T ⊂ (N1/ SpanZ(e1, . . . , es))R. Because

min〈
s∑

i=1

Si − deg, T 〉 = min〈
s∑

i=1

Si − deg, T 〉

=min〈
s∑

i=1

Si, T 〉 − 〈deg, T 〉 ≥ 0− 1 = −1,

we have T ⊆ (
∑s

i=1 Si − deg)∨.

We only need to show the other inclusion T ⊇ (
∑s

i=1 Si−deg)∨. Let y ∈ (
∑s

i=1 Si−
deg)∨ such that there exists x ∈ ∑s

i Si − deg with 〈x, y〉 = −1 (this y corresponding

to some boundary point of the dual polytope of
∑s

i Si − deg). We will show for this y,

y ∈ T . Then it follows for arbitrary y ∈ (
∑s

i=1 Si − deg)∨, y ∈ T .

Let θi = minx∈Si〈x, y〉 and set y′ = y − ∑s
i=1 θiei. We claim y′ ∈ K∨. Indeed,

K =
∑s

i=1 tiSi with ti ≥ 0, and we have

min〈K, y′〉 = min〈
s∑

i=1

tiSi, y −
s∑

i=1

θiei〉 =
s∑

i=1

min〈tiSi, y −
s∑

i=1

θiei〉

=
s∑

i=1

min


ti(〈Si, y〉)−

s∑

j=1

〈Si, θjej〉

 =

s∑

i=1

(ti(min〈Si, y〉 − θi)) ≥ 0.

Finally, we will show y′ ∈ T and this will imply y ∈ T . By the assumption on y,

we have min〈∑s
i=1 Si − deg, y〉 ≥ −1, and there exists x ∈ ∑s

i=1 Si − deg, such that

〈x, y〉 = −1. Let x =
∑s

i=1 xi−deg with xi ∈ Si, then we must have 〈xi, y〉 = θi. Indeed,

otherwise there exists k such that 〈xk, y〉 > θk, and all the others satisfy 〈xi, y〉 ≥ θi.
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Thus

−1 = min〈
s∑

i=1

Si − deg, y〉 =

(
s∑

i=1

min〈Si, y〉
)
− 〈deg, y〉

=

(
s∑

i=1

θi

)
− 〈deg, y〉 =

(
s∑

i=1

〈xi, y〉
)
− 〈deg, y〉,

a contradiction.

We have

〈deg, y′〉 = 〈deg, y −
s∑

i=1

θiei〉 = 〈deg, y〉 −
s∑

i=1

θi = 1

and this implies y′ ∈ T .

The converse is proved in [6] Theorem 2.6. We will give a direct proof by constructing

the dual cone K∨ explicitly.

Proposition 2.2.2. Let ∆1, . . . ,∆s ⊂ MR be lattice polytopes such that the Minkowski

sum
∑s

i=1 ∆i has dimension dim(MR) and
∑s

i=1 ∆i−m be a reflexive polytope for some

m ∈ M . Let M = Zs ⊕M , then the associated cone in MR

K = {(a1, . . . , as;
s∑

i=1

ai∆i) | ai ≥ 0}

is a reflexive Gorenstein cone of index 〈deg,deg∨〉 = s.

Proof. Let ∇ = (
∑s

i=1 ∆i − m)∨, and for any vertex wj ∈ Vert(∇), we set mij =

−minx∈∆i〈x,wj〉. Then we claim K∨ ⊂ NR is generated by the lattice points

{(m1j ,m2j , . . . , msj ;wj) ∈ N | wj ∈ Vert(∇)}

∪{ (0, . . . , 1, . . . 0︸ ︷︷ ︸
1 at the i-th position

; 0) ∈ N | 1 ≤ i ≤ s} .

Suppose these lattice points generate a cone C, then it is straightforward to check

C ⊆ K∨. The difficult part is to show K∨ ⊆ C.

Let (a1, . . . , ar; t) ∈ K∨, then we must have ai + min〈∆i, t〉 ≥ 0 for all i. Sub-

tracting a non-negative combination of the (0, . . . , 1, . . . , 0; 0) if necessary, we have

a′i+min〈∆i, t〉 = 0 for all i. In this case, if one can show (a′1, . . . , a
′
s; t) ∈ C, then adding
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back those non-negative combination of the (0, . . . , 1, . . . , 0; 0), we have (a1, . . . , as; t) ∈
C. By the above argument, we can assume without loss of generality, ai+min〈∆i, t〉 = 0

for all i. Moreover, if t = 0, then we are done. If t 6= 0, then one can multiply t by a

positive real number λ, such that λt lands on the boundary of ∇. In this case, we still

have λai + min〈∆i, λt〉 = 0, and if one can show (λa1, . . . , λas;λt) ∈ C, then certainly

(a1, . . . , as; t) ∈ C. Thus, we can reduce to the case when t is on the boundary of ∇,

particularly, it is on some facet Fv ⊂ ∇. Here, v is a vertex of
∑s

i=1 ∆i − m such

that 〈v, Fv〉 = −1, where we have used the 1− 1 correspondence between vertices and

facets in dual reflexive polytopes. Let v =
∑s

i=1 vi − m, with vi a vertex of ∆i, and

t =
∑

j λjtj , λj ≥ 0,
∑

j λj = 1, with tj vertices of Fv. Then because

−1 + 〈m, t〉 = min〈
s∑

i=1

∆i, t〉 =
s∑

i=1

min〈∆i, t〉 =
s∑

i=1

〈vi, t〉,

we have

−min〈∆i, t〉 = −〈vi, t〉 = −
∑

j

λj〈vi, tj〉 = −
∑

j

λj min〈∆i, tj〉.

The last equation uses the fact that tj ∈ Fv, and because

−1 = min〈
s∑

i=1

∆i −m, tj〉 =

(
min

s∑

i=1

〈∆i, tj〉
)
− 〈m− tj〉

= 〈
s∑

i=1

vi −m, tj〉 =

(
s∑

i=1

〈vi, tj〉
)
− 〈m, tj〉,

we must have 〈∆i, tj〉 = 〈vi, tj〉. Putting everything together, we have

(−min〈∆1, t〉, . . . ,−min〈∆s, t〉, t)

=
∑

j

λi(−min〈∆1, tj〉, . . . ,−min〈∆1, tj〉; tj).

This proves the claim K∨ ⊆ C.

In order to show K∨ is also a Gorenstein cone, let deg = (1, 1, . . . , 1;m). By using

the property min〈∑s
i=1 ∆i − m, vj〉 = −1, it is straightforward to show that for the

vertex vj of ∇,

〈deg, (m1j ,m2j , . . . , mrj ; vj)〉 = 1
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and

〈deg, ( 0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at the i-th position

; 0)〉 = 1.

Thus we finish the argument K is a reflexive Gorenstein cone. Because deg∨ =

(1, 1, . . . , 1; 0), the index is 〈deg,deg∨〉 = s.

The above theorem can be applied to the case of nef-partitions, where
∑s

i=1 ∆i

itself is a reflexive polytope with dual polytope (
∑s

i=1 ∆i)∨ = Conv(∪s
i=1∇i). Because

0 ∈ ∇i, and min〈∆i,∇j〉 = −δij , we can write the reflexive Gorenstein cones associated

to this pair of nef-partitions in a symmetric way

K = {(a1, . . . , as;
s∑

i=1

ai∆i) ⊂ (M)R | ai ≥ 0}

K∨ = {(b1, . . . , bs;
s∑

i=1

bi∇i) ⊂ (N)R | bi ≥ 0}.

This result can also be proved directly as in [5].

The following is our key construction which is used to reformulate the question from

polytopes to reflexive cones.

Now we start off with a nef-partition {∆i | 1 ≤ i ≤ s}, and let K be the reflexive

Gorenstein cone associated to it as above with the degree element deg∨ ∈ K∨. If deg∨ =
∑s

i=1 ẽi, with ẽi 6= 0, ẽi ∈ K∨∩N , then we can similarly define S̃i as in Proposition 2.2.1.

In this case,
(∑s

i=1 S̃i − deg
)

is a reflexive polytope in Ann(ẽ1, . . . , ẽs). Without loss

of generality, we can assume

ẽi = ( 0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at the i-th position

; pi) ∈ Zs ⊕N.

We claim that there exists a lattice isomorphism

φ : Ann(ẽ1, . . . , ẽs) → M

defined by restricting to the projection p : Zs ⊕ M → M . In fact, if φ(x) = 0, then

x = (a1, . . . , as; 0), but x ∈ Ann(ẽ1, . . . , ẽs) implies that ∀ i, ai = 0, thus φ is injective.
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The surjectivity comes from the fact that for m ∈ M , if we let ai = −〈m, pi〉, then

(a1, . . . , as;m) ∈ Ann(ẽ1, . . . , ẽs) maps to m under φ.

Under this isomorphism, we can identify Ann(ẽ1, . . . , ẽs) with M . Let ∆̃i = p(S̃i),

one can verify directly that

Conv(
s⋃

i=1

∆̃i) = Conv(
s⋃

i=1

∆i).

Moreover, since φ(deg) = 0, and by Proposition 2.2.1, (
∑s

i=1 S̃i − deg) is a reflexive

polytope in Ann(e1, . . . , es)R. Hence, (
∑s

i=1 ∆̃i) is a reflexive polytope in M . Because

( 0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at the i-th position

; 0) ∈ S̃i, we have 0 ∈ ∆̃i, and this implies {∆̃i | 1 ≤ i ≤ s} is another

nef-partition of Conv(∪s
i=1∆i) (see Definition 2.1.1).

Remark 2.2.3. One cannot exhaust all the nef-partitions of length s of Conv(∪s
i=1∆i)

using the above construction (i.e. first construct reflexive Gorenstein cone K, K∨, then

decompose deg∨ =
∑s

i=1 ẽi, and finally construct ∆̃i). For example, any subsets of

the vertices of an octahedron will give a nef-partition, but some subsets cannot be

obtained from the above construction. However, the above process will give exactly the

combinatorial data for toric double mirrors (details see Theorem 3.1.3).

Next, we give the geometry meaning of this construction.

Let X(Σ) be the toric variety defined by the fan

Σ := {0} ∪ {R≥0θ | θ ⊂ Conv(∪i∆i) is a face},

and

Li =
∑

ρ∈Vert(∆i)\{0}
Dρ, L̃i =

∑

ρ∈Vert(∆̃i)\{0}
Dρ

be the nef divisors corresponding to {∆i}, {∆̃i} respectively, where Dρ is the torus

invariant divisor associated to the primitive element ρ. The following result gives a

characterization of the nef-partitions obtained from reflexive Gorenstein cones as above.

Proposition 2.2.4. The nef-partition {∆̃i | 1 ≤ i ≤ s} of Conv (∪s
i=1∆i) is obtained

from the same reflexive Gorenstein cone if and only if the corresponding divisors {L̃i |
1 ≤ i ≤ s} and {Li | 1 ≤ i ≤ s} are pairwise linearly equivalent.
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Proof. Suppose deg∨ =
∑s

i=1 ẽi =
∑s

i=1 ei. Without loss of generality, we can assume

ẽi− ei = pi ∈ N . Then one can check that L̃i−Li is exactly the principle divisor (Xpi)

on X(Σ).

On the other hand, suppose L̃i,Li are linearly equivalent divisors for each i, then

there exists pi ∈ N such that L̃i − Li = (Xpi). one can check that ẽi = ei + (0; pi)

satisfies the requirement.

One may ask what is the relation between associated Gorenstein cones of these

double mirror nef-partitions. As one can imagine, they are all isomorphic.

In fact, let ẽi ∈ Zs⊕M as before, then ηi = ( 0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at the i-th position

; 0) ∈ Zs⊕M must be in

Si by definition. Let S̃i = Si−ηi, then we have (1) 0 ∈ S̃i ⊂ Ann(ẽ1, · · · , ẽs); (2)
∑s

i=1 S̃i

is reflexive; (3) S̃i has the same image as Si under the aforementioned projection. Also,

because Ann(ẽ1, · · · , ẽs) is isomorphic to M under the same projection, we can identify

{S̃i} with the nef-partition ∆̃i. Hence we only need to show the claim for {S̃i} in lattice

Ann(ẽ1, · · · , ẽs).

This is straightforward to check, because

s∑

i=1

Zηi + Ann(ẽ1, · · · , ẽs) = Zs ⊕M,

and the reflexive Gorenstein cone associated to S̃i is

K̃ =
s∑

i=1

ri(ηi + S̃i) =
s∑

i=1

riSi = K, ri ≥ 0.

We will prove the birationality for the ∆-regular complete intersections associated

to nef-partitions (i.e. double mirror nef-partition) which are obtained from above.
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Chapter 3

The main question

3.1 The main question and its motivation

After establishing the relation between reflexive Gorenstein cones and nef-partitions,

we are ready to state the question asked in [6] more explicitly.

Let us repeat the construction in the last part of Section 2 in order to extract

the main ingredients. Let ∆ ⊂ M be a reflexive polytope, Conv(∪s
i=1∆i) = ∆, and

{∆i | i = 1, . . . , s} be a nef-partition of ∆. Let M = Zs ⊕ M, N = Zs ⊕ N , and

K ⊂ MR be the reflexive Gorenstein cone associated to this nef-partition. The dual

cone of K is K∨ ⊂ NR and deg∨ ∈ K∨ is the degree element. Then deg∨ =
∑s

i=1 ei

with ei = ( 0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at the i-th position

; 0) gives back the original nef-partition {∆i}. If there exists

another decomposition deg∨ =
∑s

i=1 ẽi with ẽi 6= 0, ẽi ∈ K∨∩N , then we can associate

to it {∆̃i} which gives another nef-partition of ∆.

Whenever one has a polytope, there is a family of Laurent polynomials associated to

it. Let l(∆i) be the set of lattice points in ∆i, then the family of Laurent polynomials

associated to ∆i is

fi =
∑

v∈l(∆i)

cvX
v ∈ C[M ],

where cv is a complex coefficient only depends on the vertex v. Here we abuse notations,

using v to represent the lattice point as well as its coordinate in M . For example, if

v = (a1, . . . , an) ∈ M , then Xv = xa1
1 · · ·xan

n ∈ C[M ]. In the same fashion, ∆̃j produces

a family of Laurent polynomials

f̃j =
∑

v∈l(∆̃j)

cvX
v ∈ C[M ].
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Remark 3.1.1. We should emphasize that for the same vertex v, v 6= 0, the coefficient

cv is the same in all Laurent polynomials. However, the coefficient of the origin, c0

(i.e. the constant term) might be different in different Laurent polynomials. We abuse

notations to avoid writing c0,j in place of c0.

We can take the zero locus of all fi in (C∗)d = Spec(C[M ]), and denote this variety

by X(∆i). To be precise X(∆i) ⊂ (C∗)d is defined by:

X(∆i) : f1 = f2 = · · · = fs = 0,

and similarly, X(∆̃i)
⊂ (C∗)d is defined by

X(∆̃i)
: f̃1 = f̃2 = · · · = f̃s = 0.

Remark 3.1.2. From toric variety point of view, this construction can be stated as

follows. Let X := X(Σ(∇)) be the projective toric variety associated to the polytope
∑s

i=1 ∆i, T ⊂ X be the big torus. Let Li be the line bundle associated to the dual

nef-partition {∇i | 1 ≤ i ≤ s}. Generic global sections in H0(X,Li) can be identified

with Laurent polynomials with Newton polytopes ∆i. In particular, for 1 ≤ i ≤ s,

fi =
∑

v∈l(∆i)
cvX

v ∈ H0(X,Li). Let (fi)0 be the zero locus of fi, then

X(∆i) = T ∩ (f1)0 ∩ · · · ∩ (fs)0.

We will return to this point of view in the appendix.

The following question was asked by Batyrev and Nill in [6] Question 5.2:

(Nef-partition version)

Are the Calabi-Yau complete intersections X(∆i) and X(∆̃i)
birational to

each other?

We can reformulate this question in terms of reflexive Gorenstein cones as follows.

Let S̃ = {x ∈ K | 〈x,deg∨〉 = 1}, S̃i = {v ∈ K | 〈v, deg∨〉 = 〈v, ẽi〉 = 1}. Because

deg∨ =
∑s

i=1 ẽi, for each lattice point v in S̃, that is v ∈ l(S̃), there exists a unique
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i, such that 〈v, ẽi〉 = 1. We have a disjoint union l(S̃) =
∐s

i=1 l(S̃i). One can define a

Laurent polynomial in C[M ] by setting:

g̃i =
∑

v∈l(S̃i)

cvX
v.

For any lattice point wi such that 〈wi, ẽi〉 = 1, 〈wi, ẽj〉 = 0, i 6= j, X−wi · g̃i is a

Laurent polynomial in C[Ann(ẽ1, . . . , ẽr)]. We can similarly define an intersection

X(ẽi) ⊂ (C∗)d = Spec(C[Ann(ẽ1, . . . , ẽs)]) by

X(ẽi) : X−w1 · g̃1 = X−w2 · g̃2 = · · · = X−ws · g̃s = 0

This intersection does not depend on the choice of wi, because any other choice will

differ by a factor Xw, w ∈ C[Ann(ẽ1, . . . , ẽs)] and this will not affect the zero loci defined

in (C∗)d.

Similarly, we can construct Si and gi associated to the decomposition deg∨ =
∑r

i=1 ei, and an intersection X(ei) ⊂ (C∗)d = Spec(C[Ann(e1, . . . , es)]) by

X(ei) : X−w′1 · g1 = X−w′2 · g2 = · · · = X−w′s · gs = 0.

We can compare the equations defined by these intersections with the equations defined

the intersections above by nef-partitions. Because the lattice isomorphism

φ : Ann(ẽ1, . . . , ẽr) → M

sends S̃i − deg to ∆̃i, we can identify g̃i ∈ C[Ann(ẽ1, . . . , ẽr)] with fi ∈ C[M ] up to a

factor Xvi , vi ∈ C[M ]. Hence, X(ẽi) and X(∆̃i)
are isomorphic varieties. The same thing

is true for X(ei) and X(∆i) as well.

The importance of the above construction is explained in the following theorem.

Theorem 3.1.3. The complete intersections X(ẽi) and X(ei) are toric double mirror in

the sense that they both mirror to the same family.

We abuse the notations: X(ẽi) here means the family parameterized by the coeffi-

cients cv, and the same for X(ei).
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Proof. By the toric mirror construction in [2] [3], the mirror of X(ẽi) is a family of

generic complete intersections defined by divisors {L̃i|1 ≤ i ≤ s} in the toric variety

X(Σ) (see the notations above Proposition 2.2.4). Likewise, the mirror of X(ei) is a

family of generic complete intersections defined by divisors {Li|1 ≤ i ≤ s} in X(Σ). By

Proposition 2.2.4, {L̃i|1 ≤ i ≤ s}, {Li|1 ≤ i ≤ s} consist of pairwise linearly equivalent

divisors and hence they defined the same family of complete intersections which is the

mirror of both X(ẽi) and X(ei).

Viewing the original question from this perspective, we can ask:

(Reflexive Gorenstein cone version)

Are the toric double mirror X(ei), X(ẽi) birational?

We give an affirmative answer to this question in Theorem 4.3.1 under some technical

assumptions.

3.2 Example

In this section, we will illustrate the basic idea of the proof by an explicit example.

Let {u1, . . . , u15} be a basis of Z15, and we consider a sublattice M ⊂ Z15 which is

defined by

M := {
15∑

i=1

liui ∈ Z15 |
5∑

i=1

li =
10∑

i=6

li =
15∑

i=11

li}.

The rank of M is 13, it contains a cone K = Z15
≥0∩M which is defined by nonnegativity

of all li. The 125 generators of rays of K are given by ui1 + ui2 + ui3 with 5j − 4 ≤
ij ≤ 5j, and let cijk ∈ C denote coefficients. Suppose {v1, . . . , v15} is the dual basis of

{u1, . . . , u15}, then the dual lattice M∨ is the quotient of Z15:

M∨ = Z15/ SpanZ{
5∑

i=1

vi −
10∑

i=6

vi,
5∑

i=1

vi −
15∑

i=11

vi}.

The dual cone K∨ is the image of Z15
≥0 in M∨, and its rays are generated by vi, 1 ≤ i ≤

15. The degree elements deg,deg∨ are given by
∑15

i=1 ui and
∑5

i=1 vi respectively.
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There are three different ways of decomposing deg∨ as a summation of lattice points

in K∨:

deg∨ =
5∑

i=1

vi, deg∨ =
10∑

i=6

vi, deg∨ =
15∑

i=11

vi.

This gives three different complete intersections in P4 × P4.

For deg∨ =
∑5

i=1 vi, the equations of this decomposition can be expressed as

∑

1≤j,k≤5

c1jk x1yjzk = 0

∑

1≤j,k≤5

c2jk x2yjzk = 0

...
∑

1≤j,k≤5

c5jk x5yjzk = 0 .

Here [x1, · · · , x5] are homogenous coordinates of P4, and similarly for yj , zk.

As explained before, we can multiply each equation a factor in order to make it well

defined in M ∩Ann(v1, . . . , v5). Hence, let

fi(y, z) = x−1
i

∑

1≤j,k≤5

cijk xiyjzk =
∑

1≤j,k≤5

cijk yjzk = 0, 1 ≤ i ≤ 5.

This can be viewed as five bidegree (1, 1) equations in P4 × P4. Similarly, for deg∨ =
∑10

i=6 vi and deg∨ =
∑15

i=11 vi we have defining equations:

gj(x, z) =
∑

1≤i,k≤5

cijk xizk = 0, 1 ≤ j ≤ 5,

hk(x, y) =
∑

1≤i,j≤5

cijk xiyj = 0, 1 ≤ k ≤ 5.

Our question thus becomes whether these three complete intersections are birational

for generic choice of cijk.

Let X1 be the variety defined by fi = 0, 1 ≤ i ≤ 5. Let A1(z) be 5× 5 matrix

A1(z) =

(
5∑

k=1

cijkzk

)

ij

, 1 ≤ i, j ≤ 5,
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then fi = 0, 1 ≤ i ≤ 5 can be written as a matrix equation

A1(z)




y1

...

y5




= 0.

Notice that ([y1, . . . , y5], [z1, . . . , z5]) ∈ P4 × P4 satisfy fi = 0, 1 ≤ i ≤ 5 if and only if

det(A1(z)) = 0 in P4. Let D1 denote the variety defined by det(A1(z)) = 0. For generic

coefficients, one can show X1 and D1 are birational.

Similarly, the variety X2 defined by gj = 0, 1 ≤ j ≤ 5 can be written as

(x1, · · · , x5) A2(z) = 0

where

A2(z) =

(
5∑

k=1

cijkzk

)

ij

, 1 ≤ i, j ≤ 5.

Let D2 be the variety defined be det(A2(z)) = 0. The same argument as above

shows that X2 is birational to D2. On the other hand, D1 and D2 are the same

varieties, and hence X1, X2 are birational. We notice that despite drastically different

defining equations, the three complete intersections are all birational.

This example suggests us to look at the determinantal variety defined by a “com-

mon” matrix of different nef-partitions. However, it is not very clear how to construct

this “common” matrix at present stage. Besides that, there are following more pressing

issues: (1) the dimension of SpanR{ẽ1 − e1, . . . , ẽs − es} might be smaller than s − 1

which leads to considering the intersection of several determinantal varieties; (2) “non-

saturatedness” might occur, which forces us to work in auxiliary lattices; (3) in order to

show the birationality, we have to take into account of the singularities of the complete

intersection. This leads us to consider ∆-regular intersections.
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Chapter 4

The main theorem

4.1 Results on the decomposition of lattices

Let ∆ be a reflexive polytope, {∆i | 1 ≤ i ≤ s} be a nef-partition of ∆, and {∇i | 1 ≤
i ≤ s} be its dual nef-partition. In the following, we assume dim ∆ = dimMR. Because

∆ ⊂
s∑

i=1

∆i ,

we have dim(
∑s

i=1 ∆i) = dim MR. We use SpanR{p1, . . . , ps} to denote the vector space

spanned by pi ∈ NR, 1 ≤ i ≤ s. The following lemma is crucial for our argument.

Lemma 4.1.1. Let pi ∈ ∇i. If
∑s

i=1 pi = 0, and

dim(SpanR{p1, . . . , ps}) = s− r,

then there exist disjoint sets Ik ⊂ {1, . . . , s}, 1 ≤ k ≤ r, such that
∐r

k=1 Ik = {1, . . . , s}
and for each k, we have

∑
i∈Ik

pi = 0.

Proof. Suppose l is the maximum number such that there exist l nonempty disjoint sets

Ij , 1 ≤ j ≤ l satisfying

I1

∐
· · ·

∐
Il = {1, · · · , s}

and ∀ j,
∑

i∈Ij
pi = 0.

Because these l equations are linearly independent, we have

s− r = dim(SpanR{p1, . . . , ps}) ≤ s− l,

and hence l ≤ r. All we need to show is l = r.

Otherwise, suppose l < r, then there must exist at least one equation
∑

1≤i≤s aipi =

0, which is not a linear combination of
∑

i∈Ij
pi = 0. Hence, there must exist an index
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j, such that for i ∈ Ij , ai are not identically the same. Suppose am is a minimal element

in {ai | i ∈ Ij}. After reindexing the set, we can assume j = 1 and m = 1. Let C be a

sufficiently large number, then

0 =
∑

1≤i≤s

aipi − a1

∑

i∈I1

pi + C ·
∑

i∈I2t···tIl

pi =
∑

2≤i≤s

bipi

satisfies bi > 0 when i ∈ I2 t · · · t Il, and bi ≥ 0 when i ∈ I1. Moreover, there exists at

least one element t ∈ I1 such that bt > 0 (because ai are not identically the same for

i ∈ I1). Let S = {i | bi 6= 0} be the index set corresponding to nonzero coefficients.

Set P =
∑

i∈S pi =
∑

i∈S(1−cbi)pi with c sufficiently big such that ∀ i, (1−cbi) < 0.

When k /∈ S, we have

〈∆k,
∑

i∈S

pi〉 ≥ 0

〈∆k,
∑

i∈S

(1− cbi)pi〉 ≤ 0.

Hence 〈∆k, P 〉 = 0 for k /∈ S.

In the following, we will show P = 0. Otherwise, there exists v ∈ MR such that

〈v, P 〉 > 0. Because MR =
∑s

i=1R≥0∆i, we can chose v =
∑

1≤i≤s vi with vi ∈ ∆i.

Then we have

〈v, P 〉 = 〈
∑

i∈S

vi +
∑

i/∈S

vi, P 〉 =
∑

i∈S

〈vi,−
∑

j /∈S

pj〉+
∑

i/∈S

〈vi, P 〉.

We use the assumption
∑s

j=1 pj = 0, and thus P = −∑
j /∈S pj in the second equation.

However,
∑

i∈S〈vi,−
∑

j /∈S pj〉 ≤ 0, and
∑

i/∈S〈vi, P 〉 = 0 because 〈∆k, P 〉 = 0 for k /∈ S.

This contradiction implies P =
∑

i∈S pi = 0.

Because I1 ∩ S 6= ∅ and I1 6⊆ S, the index set I ′1 := I1 ∩ S must satisfy ∅ $ I ′1 $ I1.

Since I2 t · · · t Il ⊂ S, we have

∑

j∈I′1

pj = P −
∑

i∈I2t···tIl

pi = 0.

But this implies
∑

j∈I′1

pj =
∑

j∈I1\I′1
pj = 0
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which gives a further decomposition of I1. This is a contradiction to the maximality of

l.

Remark 4.1.2. Under the notation of Lemma 4.1.1, we observe that for each k,

dim(SpanR{pi | i ∈ Ik}) = #(Ik)− 1.

Let M = Zs ⊕ M , and K ⊂ MR be the reflexive Gorenstein cone associated to

a nef-partition {∆1, . . . ,∆s} in MR as it is in Proposition 2.2.2. This nef-partition

corresponds to deg∨ =
∑s

i=1 ei ∈ K∨, where ei = ( 0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at the i-th position

; 0). If deg∨ =

∑s
i=1 ẽi with ẽi 6= 0, ẽi ∈ N ∩K∨, then we can assume without loss of generality that

ẽi = ( 0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at the i-th position

; pi), pi ∈ N ∩∇i.

Note that

dim(SpanR{e1, . . . , es, ẽ1, . . . , ẽs}) = s + dim(SpanR{p1, . . . , ps}),

hence, if dim(SpanR{p1, . . . , ps}) = s − r, by Lemma 4.1.1 there exists disjoint index

sets Ik, 1 ≤ k ≤ r, such that
∐r

k=1 Ik = {1, . . . , s}. For each k, we have
∑

i∈Ik
pi = 0,

with dim(SpanR{pi | i ∈ Ik}) = #(Ik)− 1.

Let nk = #(Ik) from now on, and let

Ann(e) := Ann(e1, . . . , es) = {m ∈ M | 〈m, ei〉 = 0,∀ 1 ≤ i ≤ s}.

If rankM = d, then Ann(e) is a sublattice of M with rank d, and

Ann(e, ẽ) : = Ann(e1, . . . , es, ẽ1, . . . , ẽs)

= {m ∈ M | 〈m, ei〉 = 〈m, ẽi〉 = 0,∀ 1 ≤ i ≤ s}

a sublattice of M with rank d + r − s.

For our convenience, we use {(k1), (k2), . . . , (knk)} as the index set of Ik, and reindex

the corresponding elements. For example

∑

i∈Ik

pi = 0
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becomes
nk∑

i=1

pki = 0

under the new indexing.

Because dim(SpanR{pk1, . . . , pknk
}) = nk − 1, we can choose

{p12, . . . , p1n1 , . . . , pr2, . . . , prnr}

as a R-linearly independent set.

Another important fact of {pi | 1 ≤ i ≤ s} is that they form a saturated sublattice in

N , that is, the abelian group N/ (
∑s

k=1 Zpi) is torsion free. The following combinatorial

proof is due to Borisov.

Lemma 4.1.3. The sublattice
∑s

i=1 Zpi ⊂ N is saturated.

Proof. Suppose otherwise, there exists n =
∑s

i=1 aipi with ai ∈ Q such that n ∈ N but

n 6∈ ∑s
i=1 Zpi. Furthermore, we can assume ∀ i, 0 ≤ ai < 1.

Recall that ∀ i, pi ∈ ∆i, hence aipi ∈ ∆i. By the property of nef-partition, we have

n ∈
s∑

i

∆i = (
s⋃

i

∇i)∨.

If n 6= 0, then there exists a lattice m ∈ ∪s
i∇i such that −1 ≤ 〈n,m〉 < 0. Because n is

a lattice, we have 〈n,m〉 = −1.

On the other hand, the set {m ∈ ∪s
i∇i | 〈n,m〉 = −1} must contain some vertices

of ∪s
i∇i and hence some vertices of ∇i due to nef-partition, without loss of generality,

we can assume m ∈ ∇k. Then use the property that min〈∆i,∇j〉 ≥ −δij (see the

discussion after Definition 2.1.4), we have

−1 = 〈n,m〉 =
s∑

i=1

ai〈pi,m〉 ≥ −ak > −1,

this is a contradiction. Thus n = 0, but this contradicts our initial assumption on

n 6∈ ∑s
i=1 Zpi.

Using the above two lemmas, we can decompose the lattice to fulfil our purpose.
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Lemma 4.1.4. The lattice Ann(e) ⊂ M can be decomposed as follows:

Ann(e) = Ann(e, ẽ)

⊕ Z[w12]⊕ · · · ⊕ Z[w1n1 ]

⊕ · · ·

⊕ Z[wr2]⊕ · · · ⊕ Z[wrnr ].

Where wki ∈ M satisfies the following requirements (where by our indexing, wki starts

from wk2):

1. 〈wki, ẽk1〉 = −1, 〈wki, ẽki〉 = 1 for i ≥ 2.

2. 〈wki, ẽlj〉 = 0 for all ẽlj 6= ẽk1, ẽki.

3. 〈wki, elj〉 = 0 for all elj.

Proof. First, if we already have wki satisfying the given properties, then by definition,

we have

Ann(e, ẽ)⊕ Z[w12]⊕ · · · ⊕ Z[w1n1 ]⊕ · · · ⊕ Z[wr2]⊕ · · · ⊕ Z[wrnr ] ⊂ Ann(e)

as a sublattice. On the other hand, ∀ m ∈ Ann(e), we set

m−
∑

k

∑
ki

i≥2

〈m, ẽki〉wki,

then by definition, one can check

m−
∑

k

∑
ki

i≥2

〈m, ẽki〉wki

∈ Ann(e) ∩Ann(ẽ12, · · · , ẽ1n1 , · · · , ẽr2, · · · , ẽrnr).

Using the fact that ∀ k,
∑

t∈Ik
et =

∑
t∈Ik

ẽt, we have

m−
∑

k

∑
ki

i≥2

〈m, ẽki〉wki ∈ Ann(e, ẽ).

Thus, we only need to show the existence of wki. Let lattice map

θ : M → Zs−r
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be defined by

m 7→ (〈m, p12〉, . . . , 〈m, p1n1〉, . . . , 〈m, pr2〉, . . . , 〈m, prnr〉).

We claim that θ is a surjective lattice map. Because of the saturatedness (Lemma 4.1.3),

{p12, . . . , p1n1 , . . . , pr2, . . . , prnr}

forms part of Z-basis of N . It follows that θ is surjective.

We can choose m such that 〈m, pij〉 = 0 ∀j ≥ 2 except 〈m, pki〉 = 1, and set

wki = (0, 0, . . . , 0;m) ∈ M,

then wki satisfies the required properties.

Now let

L = SpanZ{w12, · · · , w1n1 , · · · , wr2, · · · , wrnr} ⊂ M

we have

Ann(e) = Ann(e, ẽ)⊕ L .

Because of the above decomposition of lattices, we have a corresponding decompo-

sition of toric varieties:

Spec(C[Ann(e)]) = Spec(C[Ann(e, ẽ)])× Spec(C[L]) .

For any closed point in Spec(C[Ann(e)]) with coordinate x , we will write x = (y, ω)

with y ∈ Spec(C[Ann(e, ẽ)]), ω ∈ Spec(C[L]) respectively.

4.2 Construction of the determinantal variety

The main ingredient in the proof of Theorem 4.3.1 is a determinantal variety D which

serves as a bridge to connect two complete intersections. We will show how to construct

this variety in Spec(C[Ann(e, ẽ)]) which heavily relies on Lemma 4.1.4.

Now, let

Si,j = {v ∈ K | 〈v, deg∨〉 = 1, 〈v, ei〉 = 〈v, ẽj〉 = 1}
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be a polytope, and

gi,j =
∑

v∈l(Si,j)

cvX
v

be the Laurent polynomial associated to Si,j with coefficients cv ∈ C. Let uki ∈ M

satisfy:

1. 〈uki, eki〉 = 〈uki, ẽk1〉 = 1

2. 〈uki, elj〉 = 0 for all elj 6= eki

3. 〈uki, ẽlj〉 = 0 for all ẽlj 6= ẽk1.

We point out that unlike those wki constructed before, uki starts from uk1 for each

k. The existence of uki follows from the similarly reason as in Lemma 4.1.4, and we do

not repeat it here.

Next, we proceed to the construction of the determinantal variety D.

Let Ak(y) be the nk × nk matrix with entries in C[M ],

Ak(y)

=




X−uk1gk1,k1 X−uk1−wk2gk1,k2 · · · X−uk1−wknk gk1,knk

X−uk2gk2,k1 X−uk2−wk2gk2,k2 · · · X−uk2−wknk gk2,knk

...
...

...

X−uknk gknk,k1 X−uknk
−wk2gknk,k2 · · · X−uknk

−wknk gknk,knk




Notice that the first column is not constructed identically as the rest. The rea-

son for writing the matrix Ak(y) as a function of y is that every entry of this matrix

is in C[Ann(e, ẽ)], as one can verify. Thus, according to the above decomposition

Spec(C[Ann(e)]) = Spec(C[Ann(e, ẽ)]) × Spec(C[L]), we use y to represent the corre-

sponding coordinates in Spec(C[Ann(e, ẽ)]).

Next, we define nk × 1 matrix

wk = (1, Xwk2 , · · · , Xwknk )t ,

where t means the transpose of a matrix. And also define the 1× nk matrix

uk = (Xuk1 , Xuk2 , . . . , Xuknk ).
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We claim that the condition

Ak(y) ·wk = 0

is exactly the same as 


X−uk1gk1

...

X−uknk gknk




= 0.

Indeed, recall (Section 3) by definition, we have

gki =
∑

v∈l(Ski)

cvX
v

where

Ski = {v ∈ K | 〈v, deg∨〉 = 1, 〈v, eki〉 = 1}

(Notice: this is not the same as Sk,i defined before).

Because of the relation
∑

i∈Ik
ei =

∑
i∈Ik

ẽi, for any v ∈ l(Ski), 〈v,
∑

i∈Ik
ei〉 = 1

implies 〈v,
∑

i∈Ik
ẽi〉 = 1, thus there exists kj, such that v ∈ l(S̃kj), where S̃kj = {v ∈

K | 〈v, deg∨〉 = 1, 〈v, ẽkj〉 = 1}. This means v ∈ l(Ski,kj), and in particular, we have a

disjoint union

l(Ski) =
∐

kj∈Ik

l(Ski,kj).

Hence, gki =
∑

kj∈Ik
gki,kj , and this justifies the claim.

On the other hand,

uk ·Ak(y) = 0

is exactly the same as

(
X−wk1 g̃k1, · · · , X−wknk g̃knk

)
= 0,

where g̃kj =
∑

v∈l(S̃kj)
cvX

v =
∑

ki∈Ik
gki,kj because of the disjoint union

l(S̃ki) =
∐

ki∈Ik

l(S̃ki,kj) .

Let

Dk := {det Ak(y) = 0}
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in Spec(C[Ann(e, ẽ)]). Let

D =
r⋂

k=1

Dk

with its reduced induced subscheme structure. This D will serve as a bridge to prove

the birationality of two complete intersections.

Remark 4.2.1. We have det Ak(y) 6≡ 0 for generic coefficients because we always have

( 0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at the i-th position

; 0) ∈ Si,i.

Thus by the definition of determinant, after choosing generic coefficients, these el-

ements will give a nonzero summand in detAk(y), hence, Dk is a hypersurface in

Spec(C[Ann(e, ẽ)]), and dimDk = d + r − s− 1, with d = rankM .

We need the following lemma about the degree of a morphism and points in the

generic fibres. This proof below is indebted from the discussion with Professor Qing

Liu.

Lemma 4.2.2. Let f : X → Y be a dominant morphism of varieties over C. Suppose

[K(X) : K(Y )] = n. Then there exists a dense open subset U of Y such that f−1(y)

consists of n (distinct) points for all y ∈ U .

In particular, if f is a dominant, injective morphism, then [K(X) : K(Y )] = 1, so

X, Y are birational.

Proof. First we can reduce it to the case when f is a finite morphism. In fact, the

problem is local in Y , hence we can assume Y = Spec(A) to be affine. Let X ′ ⊂ X be a

non empty open affine subset, it suffice to prove the result for X ′ → Y . This is because

[K(X) : K(Y )] < ∞, then Y \ f(X\X ′) 6= ∅, hence the open set f−1(Y \ f(X\X ′)) ⊂
X ′. Now we assume X = Spec(B).

The dominant morphism f corresponds to an injective homomorphism A → B.

Write k(B) = k(A)[t] where k(B), k(A) are quotient fields of B,A and t annihilates a

polynomial P (T ) ∈ k(A)[T ] of degree n (theorem of primitive element). Replacing A

by a localization Aa with a ∈ A such that the element t becomes integral over A (also
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localizing B correspondingly). As B is a finitely generated algebra over A, localizing

further A, we can suppose A ⊂ B ⊂ A[t] (because each element of B belong to some

Aa[t], it is enough to inverse a common denominator for a system of generators of B

over A). As B and A[t] have the same field of fractions and B is finite over A, localizing

A again, we have B = A[t] = A[T ]/(P (T )). The discriminant ∆ of P (T ) belongs to

A (we may need to localize A for this) and is non-zero because P (T ) is separable in

k(A)[T ]. Let U be the principal open subset D(∆) ⊂ Y . Then for any y ∈ Y , the fiber

f−1(y) is given by the algebra k(y)[T ]/(P̄ (T )) where k(y) = C denotes the residue field

at y and P̄ (T ) ∈ k(y)[T ] is the canonical image of P (T ). Its discriminant is ∆(y) 6= 0,

so it has n (distinct) roots.

4.3 Proof of the main theorem

In this section, we will show that X(ei) and X(ẽi) are both birational to the determi-

nantal variety D. In fact, we will show that the morphism X(ei) to D induced by the

projection from Spec(C[Ann(e)]) to Spec(C[Ann(e, ẽ)]) gives the birational morphism,

and similarly for X(ẽi) to D. We recall our setup first:

Let M, N be rank d lattices, and let K, K∨ be reflexive Gorenstein cones associated

to a length s nef-partition. Let deg∨ =
∑s

i=1 ei =
∑s

i=1 ẽi where ei, ẽi ∈ K∨∩N, ei, ẽi 6=
0 as before. Again, without loss of generality, we assume ∀ 1 ≤ i ≤ s,

ei = ( 0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at the i-th position

; 0), ẽi = ( 0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at the i-th position

; pi) ∈ N .

By Lemma 4.1.1, we have a decomposition of {p1, . . . , ps} into subsets Ik = {pk1, . . . , pknk
},

for each 1 ≤ k ≤ r. We define the intersections X(ei), X(ẽi) as in Section 3. With this

notation, we have the following birationality result:

Theorem 4.3.1. For generic coefficients, if X(ei), X(ẽi), D are irreducible with dimD =

dimX(ei) = dim X(ẽi), then the complete intersections X(ei) and X(ẽi) are birational.
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Proof. When s = 1, then X(ei) = X(ẽi), so nothing needs to be proved. Now we assume

s ≥ 2.

From the discussion after Lemma 4.1.4, we have

Ann(e) = Ann(e, ẽ)⊕ L ⊂ M.

For any closed point x ∈ X(ei), we can write x = (y, ω) ∈ Spec(C[Ann(e)]) with

y ∈ Spec(C[Ann(e, ẽ)]), and ω ∈ Spec(C[L]) respectively. We claim that there exists a

morphism π:

π : X(ei) → D

defined by x 7→ y.

Indeed, by Lemma 4.1.4, we have a lattice decomposition of Ann(e) in M

Ann(e)

=Ann(e, ẽ)⊕ Z[w12]⊕ · · · ⊕ Z[w1n1 ]⊕ · · · ⊕ Z[wr2]⊕ · · · ⊕ Z[wrnr ].

By the construction of Ak(y), the following matrix equation



A1(y)

A2(y)
. . .

Ar(y)







w1

w2

...

wr




= 0

gives the variety X(ei), where wk = (1, Xwk2 , · · · , Xwknk )t.

Hence, for a closed point (y, ω) ∈ X(ei) with y ∈ Spec(C[Ann(e, ẽ)]) and ω ∈
Spec(C[L]), we have for all k, Ak(y)wk = 0. Because wk 6≡ 0, we must have det(Ak(y)) =

0. Hence, for all k, y lives in Dk, and thus y ∈ D = ∩r
k=1Dk. This shows that the

natural projection Spec(C[Ann(e)]) → Spec(C[Ann(e, ẽ)]) maps X(ei) to D. We denote

this morphism by π.

Next, we show that π is generically injective, that is, π is injective on a nonempty

open subset of X(ei). Roughly speaking, the proof rests on the fact that a Calabi-Yau

variety cannot be uniruled. We show that if π is not generically injective, then X(ei) is
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a uniruled variety. However, we can construct a compactification X(ei) of X(ei) which

is a projective, Calabi-Yau variety with canonical, Gorenstein singularities. Put these

facts together, and we get a contradiction. The details are given in the follows:

Suppose π is not generically injective. By a theorem of Chevalley ([10] Chapter II

Ex.3.22(e)), there exists a nonempty open set V ⊂ π(X(ei)) such that over V , the fibres

have the same dimension h. Let y ∈ V , and let (X(ei))y be the fibre over y. We claim

that there exists a birational morphism

θy : (X(ei))y → Ph.

In fact, let

Ωy = {ω ∈ Spec(C[L]) | (y, ω) ∈ (X(ei))y},

and let

Wy = {
∑

i∈I,#(I)<∞
λiωi | ωi ∈ Ωy, λi ∈ C}

be the affine subspace of Spec(C[L]) generated by Ωy, where I is some finite index set.

We claim that Ωy ⊂ Wy is a dense open subvariety. To see this, notice by the matrix

equation 


A1(y)

A2(y)
. . .

Ar(y)







w1

w2

...

wr




= 0,

if
∑

i∈I,#(I)<∞
λi 6= 0 and

∑

i∈I,#(I)<∞
λiωi ∈ Spec(C[L]),

then we have

(y,
∑

i∈I,#(I)<∞
λiωi) ∈ (X(ei))y.

However, the closed points in Wy which satisfy

∑

i∈I,#(I)<∞
λi 6= 0 and

∑

i∈I,#(I)<∞
λiωi ∈ (C∗)s−r

form an open variety, and this justifies the claim.
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Now, dim Ωy = h implies dim Wy = h, and the natural morphism

θy : (X(ei))y ↪→ Wy ↪→ Ph

is a birational morphism. Moreover, if π is not generically injective, then h ≥ 1, i.e.

the general fibres of π are positive dimensional (one might need to pass to some small

open subvariety of V in order to make the fibre contains distinct closed points). Then

we can construct a birational morphism

π−1(V ) → V × Ph

(y, ω) 7→ (y, θy(ω)).

This shows that X(ei) is a ruled variety and, in particular, a uniruled variety.

In the appendix (cf. Remark 6.0.18, Proposition 6.0.17), we construct a compactifi-

cation X(ei) of X(ei), such that X(ei) is a projective, Calabi-Yau variety with canonical,

Gorenstein singularities. Let X̃(ei) be a desingularization of X(ei). It is also a uniruled

variety. Because X(ei) is a Calabi-Yau variety with canonical singularities, the canonical

divisor K(ei) of X̃(ei) is

K(ei) =
∑

cjEj , cj ≥ 0,

where Ej are the exceptional divisors. Hence, H0(X̃(ei),O(K(ei))) 6= 0. However,

because X̃(ei) is a smooth, proper uniruled variety over C, we have H0(X̃(ei),O(K(ei))) =

0 ( [15] IV Corollary 1.11). This is a contradiction, and hence π is generically injective.

Let U ⊂ X(ei) be an open set where π|U is injective. Because for generic coefficients,

X(ei) is smooth of dimension d− s (Proposition 6.0.14), π(U) is a constructible subset

of D with dimension d− s. This is the same dimension as D by assumption. Thus π is

dominant as well. By Lemma 4.2.2, X(ei) is birational to D.

A similar argument can be used to show that X(ẽi) is birational to D as well. We

sketch the argument below:
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First, by the proof of Lemma 4.1.4, one has a decomposition of lattices

Ann(ẽ) = Ann(e, ẽ)

⊕ Z[u12 − u11]⊕ · · · ⊕ Z[u1n1 − u11]

⊕ · · ·

⊕ Z[ur2 − ur1]⊕ · · · ⊕ Z[urnr − ur1].

where uki is as defined in Section 4. We can view uki−uk1 as wki when i ≥ 2 because it

satisfies the required relation of Lemma 4.1.4 (with eki, ẽki switched), and this is enough

for the existence of the decomposition. Correspondingly, we have a decomposition of

the torus:

Spec(C[Ann(ẽ)]) = Spec(C[Ann(e, ẽ)])× (C∗)s−r.

We can similarly define X(ẽi) → D as before, and for the same reason, this is a birational

morphism.

Hence X(ei) and X(ẽi) are both birational to D, and this completes the proof.

Remark 4.3.2. It is necessary in our argument for D to be irreducible. When we

consider the case s = 2, with S2,1 = ∅, we see that D is a union of zero loci of g1,1 and

g2,2, where gi,i =
∑

v∈l(Si,i)
cvX

v, i = 1, 2. By the proof of the theorem, we see that

X(ei) is birational to the zero locus of g2,2, but X(ẽi) is birational to the zero locus of

g1,1. A priori, one cannot expect that the two loci be birational.

There is a result due to Batyrev and Borisov ([3] Theorem 3.3) which asserts that

X(ei) is irreducible if the nef-partition is 2-independent. This means there exists no

integer n > 0 nor any subset of the nef-partition {∆k1 , . . . ,∆kn} ⊂ {∆1, . . . ,∆s} such

that dim(∆k1 + · · ·+ ∆kn) ≤ n.

Remark 4.3.3. It is reasonable to require that dimD = dim X(ei) = d − s. Indeed

D = ∩r
i=1Di is a variety in Spec(C[Ann(e, ẽ)]) ∼= (C∗)d−(s−r) defined by the intersection

of r hypersurfaces. Thus D is expected to have dimension d − s for generic choice of

coefficients.
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Chapter 5

Open questions: D-equivalence and K-equivalence

Let Db(Coh(X)) be the derived category of bounded complexes of coherent sheaves on

X. For smooth varieties X, Y , if Db(Coh(X)) is equivalent to Db(Coh(Y )) as derived

categories, then X, Y are called D-equivalent.

Let KX ,KY be canonical divisors of X and Y respectively. If there exists a birational

correspondence

X
πX←−− Z

πY−−→ Y

such that π∗XKX
∼= π∗Y KY , then X, Y are called K-equivalent. There is a surprising

relation between D-equivalence and K-equivalence [11]. A theorem of Kawamata [13]

says: if X, Y are projective smooth varieties of general type over an algebraically closed

field, then X, Y are D-equivalent implies they are K-equivalent. We have the following

conjecture of Kawamata [13]

Conjecture 5.0.4. If X, Y are smooth projective varieties, then X, Y are K-equivalent

implies they are D-equivalent.

This conjecture has been settled for smooth Calabi-Yau threefolds [8] and toroidal

varieties [14].

Back to the case considered in this paper. We have proved that X(ei), X(ẽi) are

birational Calabi-Yau varieties, and their compactifications X(ei), X(ẽi) are automat-

ically K-equivalent. According to the conjecture, we expect to have D-equivalence

Db(Coh(X(ei))) ∼= Db(Coh(X(ẽi))).

Conjecture 5.0.5 ([6] Conjecture 5.3). There exists an equivalence (of Fourier-Mukai

type) between the derived category of coherent sheaves on the two Calabi-Yau complete

intersections X(ei) and X(ẽi).
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One might consider sheaves on smooth DM-stacks associated to X(ei), X(ẽi) be-

cause of the possible singularities. Moreover, when we consider the homological mirror

symmetry conjecture, it is plausible to have such D-equivalence.
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Chapter 6

Appendix: ∆-regularity, singularities and Calabi-Yau

varieties

Roughly speaking, ∆-regularity is a condition on the smoothness of stratifications with

correct dimension. In this appendix, we generalize the concept of ∆-regularity [1] [2] of

a hypersurface to an intersection of several hypersurfaces in toric varieties. We will show

that for general coefficients (meaning for a nonempty open set of the parameter space

of coefficients), the complete intersections defined by a nef-partition are ∆-regular, and

thus form a large family of intersections associated to a nef-partition. Under the ∆-

regular assumption, the singularities of the complete intersection are inherited from

the ambient toric variety. Using these results, we will show that an irreducible ∆-

regular complete intersection associated to a nef-partition is a Calabi-Yau variety with

canonical, Gorenstein singularities. This fact is used in the proof of Theorem 4.3.1 by

showing that the morphism π is generically injective.

Let Σ ⊂ NR be a fan, and X(Σ) be the toric variety defined by Σ. If σ ∈ Σ is a

cone, let Tσ be the torus corresponding to σ. Then we have the following stratification:

X(Σ) =
⋃

σ∈Σ

Tσ .

Definition 6.0.6. Let Vi, 1 ≤ i ≤ s, be hypersurfaces of X(Σ), and let V =
⋂s

i Vi

be the scheme-theoretic intersection. Then V is called ∆-regular if and only if V is

equidimensional and ∀ σ ∈ Σ, Tσ ∩ V is either empty or smooth of codimension s in

Tσ.

Remark 6.0.7. The ∆-regular condition requires the linear independence of the cotan-

gent spaces at a common intersection point. This takes care both of smoothness and

of codimension.
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We use the name ∆-regularity following Batyrev [1] [2], where ∆ is a polytope, and

the regularity is about a hypersurface defined by a Laurent polynomial with Newton

polytope inside ∆.

One can consider the family of ∆-regular complete intersections associated to a nef-

partition. In fact, let ∆ ⊂ MR be a reflexive polytope with nef-partition {∆i | 1 ≤
i ≤ s}, in particular, we have Conv(∪s

i=1∆i) = ∆. Let {∇i | 1 ≤ i ≤ s} be the dual

nef-partition, then

∇ = Conv(
s⋃

i=1

∇i) = (
s∑

i=1

∆i)∨.

Let

Σ(∇) = {0} ∪ {R≥0θ | θ is a face of ∇}

be a fan, and X(Σ(∇)) be the toric variety defined by fan Σ(∇). One can show

that X(Σ(∇)) is the same as the projective toric variety associated to the polytope

(
∑s

i=1 ∆i).

By the construction of a nef-partition, we have a nef torus invariant (Cartier) divisor

Li:

Li =
∑

ρ∈Vert(∇i)\{0}
Dρ

where Dρ is the torus invariant divisor associated to the primitive element ρ.

One can identify the global sections of Li with Laurent polynomials associated to

∆i [9]:

H0(X(Σ(∇)),Li) ∼= {
∑

v∈l(∆i)

cvX
v | cv ∈ C}.

Let gi =
∑

v∈l(∆i)
cvX

v, and let Vi = (gi)0 be the zero locus of gi on X(Σ(∇)). Then

{V =
s⋂

i=1

Vi | Vi = (gi)0, gi ∈ H0(X(Σ(∇)),Li)}

is a family of subschemes of X(Σ(∇)) parameterized by the coefficients of gi, 1 ≤ i ≤ s.

To show the general elements is ∆-regular, we first show that the general elements

satisfy the requirement on the codimension for each Tσ.
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Proposition 6.0.8. For general coefficients cv ∈ C of gi =
∑

v∈l(∆i)
cvX

v, 1 ≤ i ≤ s,

the scheme Tσ
⋂

V = Tσ
⋂

(∩s
i=1Vi) is either empty or smooth of codimension s for

every Tσ.

Proof. Using the same notation as before. Because nefness and basepoint freeness are

equivalent on toric varieties, the linear system |Li| is basepoint free.

Next, we generalize Bertini’s theorem ([10] III Corollary 10.9 and Remark 10.9.2)

to show that for general coefficients, either Tσ ∩ V is empty or smooth of codimension

s, where σ ∈ Σ. If the dimension of the linear system |Li| is ni, then together they

define a morphism

f : Tσ ↪→ X(Σ(∇)) → Pn1 × · · · × Pns .

Let P := Pn1 × · · · × Pns , and we consider it as a homogeneous space under the

action of G := PGL(n1)×· · ·×PGL(ns). Let Hi → Pni be the inclusion of a hyperplane

Hi
∼= Pni−1, and

g : H1 × · · · ×Hs → Pn1 × · · · × Pns

be the product of these inclusions.

Next, we set H := H1×· · ·×Hs, and for τ ∈ G, let Hτ be H with the morphism τ ◦g
to P. We can apply Kleiman’s theorem ([10] III Theorem 10.8) to g and conclude that

there exists a nonempty open set W ⊂ G, such that ∀ τ ∈ W , Tσ ×P Hτ is nonsingular

and either empty or of codimension s. However, one can show that f−1(Hτ ) is exactly

the scheme theoretic intersection Tσ ∩ V defined by the linear systems |Li|, 1 ≤ i ≤ s.

This completes the proof.

Remark 6.0.9. It worth while to point out that not only the complete linear sys-

tem |LI | is basepoint free, but also the linear system {∑v∈Vert(∆i)
cvX

v | cv ∈ C} is

basepoint free, where Vert(∆i) denotes the set of vertices of ∆i.

Proposition 6.0.10. For general coefficients, V =
⋂s

i=1 Vi is a reduced scheme.
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Proof. We follow the idea in the proof of [12] Theorem 6.3(3). For 1 ≤ i ≤ s, let

ni + 1 = dim(H0(X(Σ(∆)),Li)),

then we can choose a basis f
(i)
0 , · · · , f

(i)
ni of H0(X(Σ(∆)),Li). Let

Z := {(x;u(0)
0 , · · · , u(0)

n0
; · · · ;u(s)

0 , · · · , u(s)
ns

) |
s∑

j=1

nj∑

k=0

u
(j)
k f

(j)
k (x) = 0}

be a subscheme of X × Cn0+1 × · · · × Cns+1, and π be the natural projection:

π : Z → Cn0+1 × · · · × Cns+1.

Then Z is an integral scheme. Indeed, at any open affine variety SpecB ⊂ X(Σ(∆))

where f
(j)
k trivializes to b

(j)
k ∈ B, the inverse image under the projection Z → X is

Spec


B[u(j)

k ]/(
s∑

j=1

nj∑

k=0

u
(j)
k b

(j)
k )


 := Spec(B′).

Then, because X(Σ(∆) is an integral variety, B is an integral domain, and hence B′ is

also an integral domain.

Let Y := π(Z) be the closure of scheme-theoretic image. By using the fact that

char(C) = 0 and Z is integral, one can show that the fibre of π : Z → Y over the

generic point η of Y is geometric reduced over the field K(η), where K(η) is the local

ring at η. Because the set of points over which the fibres are geometric reduced is a

constructible set in Y (see [12] Theorem 4.10), for general elements ξ ∈ Y , π−1(ξ) is

geometric reduced, and in particular reduced. On the other hand, π−1(ξ) ∼= ⋂s
i=1 Vi

where Vi := {∑ni
k=0 u

(i)
k f

(i)
k (x) = 0}. This shows that for general coefficients, V is a

reduced scheme.

Next, we will show that if V have the property that Tσ
⋂

V = Tσ
⋂

(∩s
i=1Vi) is

either empty or smooth of codimension s, then the singularities of V is inherited from

the singularities of the ambient toric variety.

First, recall that toric Gorenstein, canonical and terminal singularities are charac-

terized by the combinatoric properties of cones [20] (See also [1]):
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Proposition 6.0.11. Let n1, . . . , nr ∈ N be primitive integral generators of all 1-

dimensional faces of a cone σ ⊂ NR.

1. Uσ has Gorenstein singularity if and only if n1, . . . , nr are contained in an affine

hyperplane

Hσ := {y ∈ NR | 〈kσ, y〉 = 1},

for some kσ ∈ M .

2. Assume Uσ has Gorenstein singularity, then it has canonical singularity if and

only if

N ∩ σ ∩ {y ∈ NR | 〈kσ, y〉 < 1} = {0}.

3. Assume Uσ has Gorenstein singularity, then it has terminal singularity if and only

if

N ∩ σ ∩ {y ∈ NR | 〈kσ, y〉 ≤ 1} = {0, n1, . . . , nr}.

Theorem 6.0.12. Let X(Σ) be the toric variety defined by a fan Σ and V :=
⋂s

i=1 Vi

be the intersection defined by nef-partitions. Suppose X(Σ) has Gorenstein, canonical

(resp. terminal) singularities, and Tσ
⋂

V is either empty or smooth of codimension s

for any σ ∈ Σ, then V also has Gorenstein, canonical (resp. terminal) singularities.

Proof. For σ ∈ Σ, let Tσ be the torus corresponding to σ. Let Uσ,N be the toric variety

associated to the cone σ in the lattice N , and N(σ) be the lattice N ∩ Rσ. Then we

have

Uσ,N
∼= Uσ,N(σ) × (C∗)d−l.

with rankN = d, rankN(σ) = l.

Under this identification, Tσ
∼= pσ × (C∗)d−l, where pσ ∈ Uσ,N(σ) is the unique

torus invariant point with coordinate (0, . . . , 0). Let f1, . . . , fs be the restriction of

∆-regular Laurent polynomials on Uσ,N . This should be understood as follows: since

Uσ,N(σ) = Spec(C[σ∨ ∩ M(σ)]), (C∗)d−l = Spec(C[t±1 , . . . , t±n−l]), f1, . . . , fs should be

viewed as elements in C[x1, . . . , xl; t±1 , . . . , t±n−l]. By the ∆-regular assumption, if Vfi
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denotes the zero locus of fi, for any (0, . . . , 0; a1, . . . , an−l) ∈ Tσ ∩ Vf1 ∩ · · · ∩ Vfs , the

Jacobian matrix
(

∂fi

∂tj
(0, . . . , 0; a1, . . . , an−l)

)

ij

, 1 ≤ i ≤ s, 1 ≤ j ≤ n− l

has rank s = dim(Tσ)− dim(Tσ ∩ Vf1 ∩ · · · ∩ Vfs). By continuity, in an analytic neigh-

borhood of (0, . . . , 0; a1, . . . , an−l) ∈ Cl × (C∗)n−l, the matrix
(

∂fi

∂tj
(x1, . . . , xl; a1, . . . , an−l)

)

ij

, 1 ≤ i ≤ s, 1 ≤ j ≤ n− l

has rank s. Without loss of generality, we can assume the s × s minor with 1 ≤ i ≤
s, l + 1 ≤ j ≤ l + s is nonvanishing. Thus, we can apply the implicit function theorem

to f1, . . . , fs. It shows that there are s analytic functions u1, . . . , us defined on an

open neighborhood of (0, . . . , 0; as+1, . . . , an−l) ∈ Cl × (C∗)n−l−s such that for points

satisfying f1 = · · · = fs = 0 on Cl × (C∗)n−l, we have

fi = fi(x1, . . . , xl;u1, . . . , us, tn−l−s+1, . . . , tn−l), 1 ≤ i ≤ s.

Thus, when we restrict to a neighborhood of

(0, . . . , 0; a1, . . . , an−l) ∈ Uσ,N(σ) × (C∗)n−l ⊂ Cl × (C∗)n−l,

it is locally, analytically isomorphic to a product of a neighborhood of pσ = (0, . . . , 0)

in Uσ,N(σ) with a neighborhood of (as+1, . . . , an−l) in (C∗)n−l−s. Moreover, Gorenstein

singularity is a locally analytic property. This is because the completion of the local

ring of a variety is the same as the completion of the local ring of the analytic space

associated to that variety, and a local ring is Gorenstein if and only if its completion

is Gorenstein. Likewise, canonical and terminal singularities are both local analytic

property ([19] Proposition 4-4-4). Hence, we have proved the claim.

Remark 6.0.13. The same argument also shows that the intersection V is normal,

because X(Σ) is normal, and normality is preserved under analytic isomorphism.

Next we show that a large family of intersections associated to nef-partition are

∆-regular intersections.
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Theorem 6.0.14. For general coefficients, V =
⋂s

i=1 Vi is a ∆-regular intersection.

Proof. From Proposition 6.0.8, we know that for general coefficients, V ∩ Tσ is either

empty or smooth of codimension s. Because V is also normal (see Remark 6.0.13), the

irreducible components of V cannot intersect. By the proof of Theorem 6.0.12, we know

that each component has dimension n−s (because for any point on an irreducible com-

ponent, we show that a neighborhood of that point is locally analytically isomorphism

to an open neighborhood of dimension n − s). Finally, it is proved in Theorem 6.0.12

that the singularities of each component are canonical and Gorenstein .

Remark 6.0.15. From the above argument, one can show further that for general

coefficients, and for any subset I ⊂ {1, 2, · · · , s}, the scheme-theoretic intersection
⋂

i∈I Vi is ∆-regular.

In the last part of this section, we apply the adjunction formula to a ∆-regular

complete intersection of a nef-partition to show that it has trivial canonical divisor

(i.e. Calabi-Yau). As Proposition 6.0.14, we assume V to be a ∆-regular intersection

associated to a nef-partition. First recall following proposition about the adjunction

formula on a Cohen-Macaulay scheme ([16]Proposition 5.73).

Proposition 6.0.16. Let P be a projective Cohen-Macaulay scheme of pure dimension

n over a field k, and D ⊂ P an effective Cartier divisor. Then ωD
∼= ωP (D) ⊗ OD.

Here ωD, ωP are dualizing sheaves of D, P respectively.

Applying this result and combining with Theorem 6.0.12, we have the following

proposition.

Proposition 6.0.17. If an irreducible variety V is an intersection of general elements

of |Li|, 1 ≤ i ≤ s, then V is a Calabi-Yau variety (i.e. the canonical divisor KV = 0).

Proof. Let Vi ∈ |Li| be the general element which is a Weil divisor and associates to the

effective Cartier divisor Li. By definition (see Proposition 6.0.14), we have V =
⋂s

i Vi.
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A Gorenstein ring is naturally Cohen-Macaulay, so X := X(Σ(∇)) is a Cohen-

Macaulay scheme, and we can apply Proposition 6.0.16 to get

ωV1
∼= ωX(V1)⊗OV1

ωV1∩V2
∼= ωX(V1 + V2)⊗OV1∩V2

...

ωV
∼= ωX(V1 + V2 + · · ·+ Vs)⊗OV .

Because of the nef-partition, we have

−KX
∼=

s∑

i=1

Vs .

We have

ωX(V1 + V2 + · · ·+ Vs) ∼= OX(−KX + V1 + V2 + · · ·+ Vs) ∼= OX ,

hence ωV
∼= OV . On a normal variety, the dualizing sheaf is equivalent to the canonical

sheaf ([16]Proposition 5.77). Using the fact that V is a normal variety, we have KV = 0.

This shows that V is a Calabi-Yau variety.

In summary, we have proved that for general coefficients, the variety V associated

to a nef-partition is a ∆-regular Calabi-Yau variety with canonical, Gorenstein singu-

larities.

Remark 6.0.18. If the nef-partition {∆i | 1 ≤ i ≤ s} comes from deg∨ =
∑s

i=1 ei as

in Section 3, then V ∩ (C∗)d = X(ei). In other words, V is a projective compactification

of X(ei), and we denote it by X(ei) in Theorem 4.3.1.
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