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ABSTRACT OF THE DISSERTATION

Recent Advances in Computer Experiment Modeling

by YUFAN LIU

Dissertation Director: Ying Hung

This dissertation develops methodologies for analysis of computer experiments and

its related theories. Computer experiments are becoming increasingly important in

science and Gaussian process (GP) models are widely used in the analysis of computer

experiments. This dissertation focuses on two settings where massive data are observed

on irregular grids or quantiles of correlated data are of interests. In this dissertation,

we first develop Latin Hypercube Design-based Block Bootstrap method. Then, we

investigate quantiles of computer experiments in which correlated data are observed

and propose penalized quantile regression with asymmetric Laplace process.

The computational issue that hinders GP from broader application is recognized,

especially for massive data observed on irregular grids. To overcome the computational

issue, we introduce an efficient framework based on a novel experimental design based

bootstrap method. The main challenge in GP modeling is the estimation of maximum

likelihood estimators because it relies heavily on large correlation matrix operations,

which are computationally intensive and often intractable for massive data. Using the
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idea of design-based data reduction, the proposed framework provides an asymptot-

ically consistent estimation for the parameters in GP with a dramatic reduction in

computation. The finite-sample performance is examined through simulation studies.

We illustrate the proposed method by a data center example based on tens of thousands

of computer experiments generated from a computational fluid dynamics simulator.

GP models and many other existing approaches focus on modeling the conditional

mean of the response variable in computer experiments. Little work has been done to

study quantile regression model that incorporate data dependence although in prac-

tice it is often of substantial interest. In addition, high dimensional data often display

heterogeneity and call for models with sparsity in which only a small number of covari-

ates have influence on the conditional distribution of the response. We propose a new

modeling framework to model different quantiles in computer experiments and identify

important effects for each quantile. The proposed approach utilize asymmetric Laplace

process (ALP) instead of Gaussian process modeling. Also, penalized likelihood es-

timators for ALP are studied. We show that penalized quantile asymmetric Laplace

estimator can select true relevant covariates when the number of covariates is large and

the number of covariates is able to grow to infinity when the number of observations

increase to infinity. Penalized quantile regression with asymmetric Laplace process is

demonstrated numerically with simulation and a real data example.
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Chapter 1

Introduction

Computer experiments refer to the study of real systems using complex mathematical

models. They have been widely used as alternatives to physical experiments, especially

for studying complex systems. The reason is, in many situations, a physical experi-

ment is infeasible because it is unethical, impossible, inconvenient or too expensive.

A mathematical model of the system can often be developed and input/output pairs

can be produced with the help of computers. Computer experiments are widely used

in science, engineering and medicine. Typically, computer experiments require a great

deal of time and computing to obtain and they are nearly deterministic in the sense

that a particular input will produce almost the same output if given to the computer

experiment on another occasion. Therefore, it is desirable to build an interpolator for

computer experiment outputs and use it as an emulator for the actual computer exper-

iment. More discussions of design and analysis of computer experiments can be found

in Fang et al. (2006); Koehler and Owen (1996); Sacks et al. (1989a,b); Santner et al.

(2003).

A Gaussian process (GP) model (or called kriging) is a flexible and widely used

interpolator in the analysis of computer experiments (Fang et al., 2006; Santner et al.,

2003). However, the computational issue that hinders GP from broader applications

is well recognized, especially for massive data observed on irregular grids (Gramacy
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and Apley, 2013; Gramacy and Lee, 2008; Nychka et al., 2011; Kaufman et al., 2011;

Peng and Wu, 2014). This is because modeling and inference of GP heavily involve

manipulations of the n× n correlation matrix that require O(n3) computations, where

n is the sample size. The calculation is computationally intensive and often intractable

for massive data, i.e., large n. To overcome the computational difficulties, we propose

a Latin Hypercube Design-based (LHD-based) Block Bootstrap method. It is an inno-

vative experimental design-based subsampling plan, which can achieve an accurate and

efficient approximation of the maximum likelihood estimators (MLEs) in GP models.

The proposed sampling plan provides efficient and flexible data reduction so that the

computational complexity is dramatically reduced and the correlation structure among

data is still kept. We show that the LHD-based bootstrap estimators are asymptotical-

ly consistent to the MLEs using complete data. Details of the proposed approach are

provided in Chapter 2.

In Chapter 3, we focus on modeling quantiles of data in computer experiments. The

underlying data structure is often of high dimensional and correlated. Despite numerous

research on computer experiment modeling, most of the existing approaches focus on

modeling the conditional mean of the response variable (Fang et al., 2006; Santner

et al., 2003). Little work is done to study quantile regression model that incorporate

data dependence although in practice it is often of substantial interest. We propose

a new modeling framework to model different quantiles in computer experiments and

simultaneously identify important effects for each quantile. To achieve this goal, we

extend Gaussian process to asymmetric Laplace process. The choice of asymmetric

Laplace process enable us to model the quantiles and incorporate dependence structure.

In addition, we regularize the quantile asymmetric Laplace process with a penalty
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function, such as L1 norm penalty (Tibshirani, 1996), the SCAD (Fan and Li, 2001)

and the MCP (Zhang, 2010). We show that penalized quantile asymmetric Laplace

estimator can select true relevant covariates when the number of covariates is large and

able to grow to infinity with the number of observations increasing to infinity.

The rest of this thesis is organized as follows. In Chapter 2, we develop a Latin Hy-

percube Design-based Block Bootstrap method for Gaussian process model. In Chapter

3, we propose a penalized quantile regression with asymmetric Laplace process.
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Chapter 2

Latin Hypercube Design-based Block Bootstrap for

Computer Experiment Modeling

2.1 Introduction

In this chapter, we consider the case that massive data are observed on irregular grids

in computer experiments. Thus it is impossible or takes too much time to perfrom GP

modeling. Several methods are proposed in the literature to address the computational

issue in GP modeling; however, to the best of our knowledge, this problem has not been

satisfactorily resolved. Apart from computer experiments, this issue has also been rec-

ognized in the field of spatial statistics and machine learning. The existing approaches

may be characterized broadly as either changing the model to one that is computa-

tionally convenient or approximating the likelihood for the original data. Examples of

the former include Banerjee et al. (2008), Cressie and Johannesson (2008), Gramacy

and Lee (2008),Rue and Held (2005), Rue and Tjelmeland (2002), and Wikle (2010),

while approximation approaches includes Fuentes (2007), Furrer et al. (2006), Gramacy

and Apley (2013), Kaufman et al. (2008), Nychka (2000), Nychka et al. (1998), Nychka

et al. (2002), Smola and Bartlett (2001), Snelson and Ghahramani (2006), and Stein

et al. (2004). Despite various methods, most of the existing ones are developed for

data sets collected from a regular grid under a low-dimensional geostatistical setting.
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These assumptions are often violated in computer experiments because having high-

dimensional inputs is common in complex computer experiments and the computational

expense often prohibits running computer experiments over a dense grid of input config-

urations (Fang et al., 2006; Santner et al., 2003; Tang, 1993; Ye, 1998). Recent studies

in computer experiments address these issues by imposing a sparsity constraint on the

correlation matrix, such as covariance tapering (Kaufman et al., 2008, 2011). Howev-

er, it has been shown that this method does not work well for purposes of parameter

estimation (Liang et al., 2013; Stein, 2013), which is crucial for the construction of GP

predictors and statistical inference. In addition, the connection between the degree of

covariance matrix sparsity and computation time is nontrivial.

A new framework based on the idea of bootstrap is proposed here to alleviate the

computational difficulty of GP modeling, given no loss of estimation consistency asymp-

totically. Bootstrap is a powerful and increasingly utilize method for statistical infer-

ence (DiCiccio and Efron, 1992, 1996; Efron, 1979; Efron and Tibshirani, 1994). Direct

extension of existing bootstrap methods to GP models is theoretically attractive but

practically inapplicable especially for massive data. This is because conventional boot-

strap methods are developed for independent data. Although various block bootstrap

methods are proposed for dependent data (Kunsch et al., 1989; Lahiri, 2003; Liu and

Singh, 1992; Paparoditis and Politis, 2001), they focus mainly on low-dimensional data

such as time series or spatial data and concatenate the sample blocks into a bootstrap

sample which has a similar size as the original observations. The application of these

methods leads to the same computational difficulties as the standard GP models, in-

cluding the complexity and singularity in large correlation matrix operations. Because

of the high dimensionality of the input space and the massive outputs in computer
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experiments, an efficient bootstrap sampling scheme that can tackle the computational

issue with GP models is called for.

To address the foregoing issue, a new bootstrap subsampling method called Latin

hypercube design-based (LHD-based) block bootstrap is proposed. It is an innova-

tive experimental design-based subsampling plan, which can achieve an accurate and

efficient approximation of the maximum likelihood estimators (MLEs) in GP models.

The proposed sampling plan provides efficient and flexible data reduction so that the

computational complexity is dramatically reduced. Theoretical studies show that the

resulting estimators are asymptotically consistent to the MLEs using complete data.

Moreover, the proposed approach can be easily parallelized to further speedup the com-

putation. Beyond computer experiments, this framework can be extended to the area

of spatial statistics, machine learning, and optimization with massive data.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce

the GP modeling framework based on LHD-based block bootstrap. Asymptotic prop-

erties are discussed in Section 2.3. In Section 2.4, finite-sample performance of the

proposed framework are investigated in a simulation study and, for illustration, the

method is applied to a real data set generated from a computational fluid dynamics

simulator for a data center thermal management study. Discussion is given in Section

2.5.

2.2 Efficient Gaussian process modeling using bootstrap

2.2.1 Gaussian process models for computer experiments

Consider a computer experiment that has inputs x ∈ Rd and produces univariate

output y(x). To analyze the experiments, the output y(x) is generally assumed to be
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a realization from a stochastic process

Y (x) = µ(x) + Z(x), (2.1)

where the mean function is defined as µ(x) = xTβ and Z(x) is a weak stationary Gaus-

sian process with mean 0 and covariance function σ2ψ. The covariance function is de-

fined by cov{Y (x+h), Y (x)} = σ2ψ(h;θ), where θ is a vector of correlation parameters

and ψ(h;θ) is a positive semidefinite function with ψ(0;θ) = 1 and ψ(h;θ) = ψ(−h;θ).

Note that we assume the variables in the mean function are known and such a model

is also known as universal kriging. However, the proposed framework is not limited to

this assumption. It can be further extended to incorporate various variable selection

methods for GP models Chu et al. (2011); Li and Sudjianto (2005).

Suppose n realization are observed and denoted by

Dn = {
(
xt1 , y(xt1)

)
, . . . ,

(
xtn , y(xtn)

)
}

= {(x1, y1), . . . , (xn, yn)}.

Denote yn = (y1, . . . , yn)T , Xn = (x1, . . . ,xn)T , φ = (θT ,βT , σ2)T as the vector of all

p parameters, and Θ as the parameter space. The likelihood function for (2.1), can be

written as

f(yn,Xn;φ) =
|Rn(θ)|−1/2

(2πσ2)n/2
exp{− 1

2σ2
(yn −Xnβ)TR−1

n (θ)(yn −Xnβ)},

where Rn(θ) = [ψ(y(xi), y(xj);θ), i, j = 1, . . . , n] is an n× n correlation matrix. Thus,

the log-likehood function, ignoring a constant, is

`(Xn,yn,φ) = − 1

2σ2
(yn −Xnβ)TR−1

n (θ)(yn −Xnβ)− 1

2
|Rn(θ)| − n

2
log(σ2).

Here, the parameters β, θ, and σ are unknown. They are estimated using likelihood-

based methods such as maximum likelihood or restricted maximum likelihood (REML)
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Irvine et al. (2007). In this chapter, we focus on the study of maximum likelihood

estimators and the results can be generalized to other approached such as REML, cross

validation or Bayesian methods (Kaufman et al., 2011).

For a GP model, the maximum likelihood estimators (MLEs) can be obtained by

β̂n = (XT
nR
−1
n (θ)Xn)−1XTR−1

n (θ)yn,

σ̂2
n = (yn −Xnβ̂n)TR−1

n (θ)(yn −Xnβ̂n)/n,

and

θ̂n = arg min
θ
{n log(σ̂2

n) + log |Rn(θ)|},

where |Rn(θ)| is the determinant of matrix Rn(θ). Based on the estimated MLEs, the

predictor for a new point xn+1 is given by y(xn+1) = xTn+1β̂n + γn(θ̂n)TR−1
n (θ̂n)(yn −

Xnβ̂n) with γn(θ̂n) being the correlation between the new point and the observations,

i.e. γn(θ̂n) = [ψ(y(xi), y(xn+1); θ̂n), i = 1, . . . , n] .

The main challenge in GP modeling is the calculation of MLEs. This is because

it relies heavily on the calculation of R−1
n (θ) and |Rn(θ)|, which is computational-

ly intensive and often intractable due to numerical issues. It is particularly difficult

for massive data (i.e., large n) when they are collected on irregular grids because no

Kronecker product techniques can be utilized for computational simplification (Bayarri

et al., 2007, ????; Rougier, 2008). Alternatives, such as Bayesian methods suffer from

the same difficulty.

2.2.2 Latin hypercube design-based block bootstrap

To overcome the computation issue with GP modeling, especially the estimation of

parameters, we propose to estimate MLEs using subsamples collected from LHD-based
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block bootstrap. LHD-based block bootstrap is a subsampling plan combining the idea

of block bootstrap and Latin hypercube designs (LHDs), a widely used class of space-

filling designs in computer experiments (McKay et al., 1979). In general, a m-run LHD

in d dimensions can be generated using a random permutation of {0, · · · ,m−1} for each

dimension. Each permutation leads to a different LHD. LHDs are easy to generate and

enjoy a desirable space-filling property called univariate stratification property (Tang,

1993), i.e., the design points are evenly spread across the projection of the experimental

region onto any dimension. Because the block bootstrap technique can capture the

dependence structure of the underlying response and LHDs are known to be space-

filling in high-dimensional space, such a combination provides an efficient subsampling

scheme for high-dimensional computer experiment problems.

Assume that we have n observations {yi(xi)} from a computer model, where i =

1, ..., n and xi ∈ Rd. Denote the d-dimensional input space by Γ. A LHD-based block

bootstrap procedure can be described in the following two steps.

Step 1: Decompose the d-dimensional experimental region Γ, assumed to be [0, l]d,

into disjoint hypercubes. This is achieved by dividing each dimension into m

equally spaced intervals so that Γ consists of md disjoint hypercubes. Define each

hypercube by

Bn(i) = b(i+ U),

where i = (i1, ...id), ij ∈ (0, ...,m − 1), represents the starting point of each

hypercube, b = l/m, and U = (0, 1]d is the unit hypercube. Let |Bn(i)| be the

number of observations in the ith hypercube. For simplicity, assume the data

points are equally distributed over the blocks, i.e. |Bn(i)| = n/md.
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Figure 2.1: An example of LHD-based block bootstrap

Step 2: A LHD-based block bootstrap sample is defined by selecting indices i ac-

cording to a randomly generated m-run LHD in a d-dimensional space, denoted

by i∗1,. . . ,i∗m. More specifically, let πi = (πi(1), . . . , πi(m)), 1 ≤ i ≤ d, be inde-

pendent random permutations of {0, . . . ,m − 1}, which is uniformly distributed

over m! possible permutations. Thus, i∗j = (π1(j), . . . ,πd(j)), j = 1, . . . ,m. The

m selected hypercubes are denoted by Bn(i∗1), . . . ,Bn(i∗m). The bootstrap samples

with size N =
∑m

i=1 |Bn(i∗i )|, denoted by y∗1(x∗1), . . . , y∗N (x∗N ), are the observations

in the selected cubes. Based on the N subsamples, φ̂
∗
N is obtained by maximizing

the likelihood.

Figure 2.1 illustrates an example of LHD-based block bootstrap samples with d = 2,

l = 24, b = 4, m = 6, |Bn(i)| = 6, N = 36, and n = 216. The 6-run 2-dimensional

LHD is denoted by i∗1 = (0, 4), i∗2 = (1, 0), i∗3 = (2, 2), i∗4 = (3, 5), i∗5 = (4, 1), and
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i∗6 = (5, 3). The observations, denoted by circles, are located irregularly on the grid.

The gray areas are the LHD-based blocks. It is clear that the univariate stratification

property of LHDs is preserved; therefore, if we project the selected blocks onto any

dimension, they are evenly spread out. The red dots are the resulting subsample from

this LHD-based block bootstrap.

Different from the existing block bootstrap approaches (Kunsch et al., 1989; Lahiri,

1995, 1999, 2003; Liu and Singh, 1992; Politis and Romano, 1994), the subsamples

obtained by LHD-based block bootstrap contain an attractive space-filling structure

with a significantly smaller sample size to efficiently achieve data reduction and thus

reduce computation.

2.3 Consistency of the LHD-based block Bootstrap Estimators

2.3.1 Notations

Recall that φ is a vector representing all the parameters in a GP model. It is estimat-

ed by maximizing the likelihood function, which is the most computationally intensive

step. Based on n outputs, y1(x1), ..., yn(xn), from a computer experiment, the MLE

of φ is denoted by φ̂n. A bootstrap version of φ̂n, denoted by φ̂
∗
N , is obtained by

calculating the MLE for each LHD-based block bootstrap subsample collected with

X∗N = (x∗1, . . . ,x
∗
N )T and y∗N = (y∗1, . . . , y

∗
N )T . Our primary interest is to investigate

the asymptotic properties of the estimated parameters under increasing domain asymp-

totic (Chu et al., 2011; Cressie and Cassie, 1993; Mardia and Marshall, 1984), which is

suitable for computer experiments. In contrast, properties under fixed domain asymp-

totic (Stein, 1999; Ying, 1993; Zhang, 2004) deserve further studies and they are left

for future investigation.
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We first introduce a mathematical formalization of the LHD-based block bootstrap

procedure. Given the underlying probability space (Ω,F , P ) of a Gaussian process, a

sample of size n with settings x1(ω), ...,xn(ω) and corresponding y(x)’s are observed

from a given realization ω ∈ Ω. Let (Λ,G) be a measurable space on the realization.

For each ω ∈ Ω, denote P ∗N,ω as the probability measure induced by the m-run LHD

bootstrap on (Λ,G). The proposed bootstrap is a method to generate new dataset

on (Λ,G, P ∗N,ω) conditional on the n original observations. Let τt : Λ → {1, ..., n}

denote a random index generated by the LHD-based block bootstrap. So, τt is the tth

index in the intersect index of observations and {Bn(i∗1), ...,Bn(i∗m)}, where (i∗1, ..., i
∗
m)

is a randomly generated m-run LHD. Therefore, for (λ, ω) ∈ Λ × Ω, we have the tth

bootstrap sample: x∗t (λ, ω) ≡ xτt(λ)(ω).

2.3.2 Consistency of the LHD-based block bootstrap mean

Before studying the asymptotic performance of MLEs, this section focuses on under-

standing properties of the LHD-based block bootstrap mean, which is an important

foundation to the theoretical development for φ̂
∗
N later. Suppose {Y (xt), t ∈ R} fol-

lows a Gaussian process with mean µ. Given n observations, the sample estimation of

mean µ is

ȳn =
1

n

n∑
s=1

ys,

and the LHD-based block bootstrap mean with N samples is given by

ȳ∗N =
1

N

N∑
s=1

y∗s .
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With a slight abuse of notation, we replace the notation of random variable Y by its

realization y unless otherwise specified. In addition, E(·) and Cov(·, ·) denote the ex-

pectation and variance under P while E∗N,ω(·) and Cov∗N,ω(·, ·) denote the expectation

and variance under P ∗N,ω.

The properties of LHD-based block bootstrap mean are investigated in the following

lemmas which lead to a proof of the distribution consistency of ȳ∗N .

Lemma 2.1 LHD-based block bootstrap mean is unbiased, i.e.,

E∗N,ω(ȳ∗N ) = ȳn.

Proof: Since the data points are equally distributed over all the blocks, we have

E∗N,ω(ȳ∗N ) =
∑
i1,...,id

1

md
ȳi1,...,id = ȳn.2

The next two lemmas show the consistency of LHD-based block bootstrap variance.

Denote the population variance of Gaussian process by τ2
n = 1

n

∑n
s,t=1Cov(Ys(xs), Yt(xt)).

Given the following regularity conditions, Lemma 2.2 provides an infeasible consistent

estimator of τ2
n.

(A.1) n
md
Cov{(ȳi − µ)2, (ȳj − µ)2} = O(1).

(A.2) |τ2
n| = O(1).

Lemma 2.2 Let ȳi = 1
Bn(i)

∑
xs∈Bn(i) ys, ∀i = (i1, . . . , id). Under (A.1) and (A.2), we

have

n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2 − τ2
n

P−→ 0.
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Proof: Denote by An = n
m2d

∑
i1,...,id

(ȳi1,...,id−µ)2. We will show that Cov(An, An) = 0

and E(An) = τ2
n. Variance of An is calculated as the following:

Cov(An, An)

= Cov(
n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2,
n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2)

=
n2

m4d

∑
i1,...,id

∑
j1,...,jd

Cov((ȳi1,...,id − µ)2, (ȳj1,...,jd − µ)2)

=
n2

m4d

m4d

n4

∑
i

∑
j

∑
xs1

,xs2
∈Bn(i)

∑
xt1

,xt2
∈Bn(j)

Cov{(ys1 − µ)(ys2 − µ), (yt1 − µ)(yt2 − µ)}

=
1

n2

∑
i

∑
xs1

,xs2
,xt1

,xt2
∈Bn(i)

Cov{(ys1 − µ)(ys2 − µ), (yt1 − µ)(yt2 − µ)}

+
1

n2

∑
i 6=j

∑
xs1

,xs2
∈Bn(i)

∑
xt1

,xt2
∈Bn(j)

Cov{(ys1 − µ)(ys2 − µ), (yt1 − µ)(yt2 − µ)}

By separately expanding the two terms above, we can rewrite Cov(An, An) as

1

n2

∑
i

σ4{2|Bn(i)|+
∑

xs1
6=xs2

∈Bn(i)

2ψ2(y(xt1), y(xt2))

+
∑

xs1
6=xs2

6=xt1
∈Bn(i)

2ψ(y(xt1), y(xs1))ψ(y(xt1), y(xs2))

+
∑

xs1
6=xs2

6=xt1
6=xt2

∈Bn(i)

ψ(y(xs1), y(xt1))ψ(y(xs2), y(xt2))

+ψ(y(xs1), y(xt2))ψ(y(xs2), y(xt1))}

+
1

n2

∑
i 6=j

σ4{
∑

xs1
∈Bn(i)xt1

∈Bn(j)

2ψ2(y(xs1), y(xt1))

+
∑

xs1 6=xs2∈Bn(i)xt1∈Bn(j)

2ψ(y(xs1), y(xt1))ψ(y(xs2), y(xt2))

+
∑

xs1∈Bn(i),xt1 6=xt2∈Bn(j)

2ψ(y(xs1), y(xt1))ψ(y(xs1), y(xt2))

+
∑

xs1
6=xs2

∈Bn(i),xt1
6=xt2

∈Bn(j)

ψ(y(xs1), y(xt1))ψ(y(xs2), y(xt2))

+ψ(y(xs1), y(xt2))ψ(y(xs2), y(xt1))}

= O(
1

n
+
md

n
)→ 0,
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where m = o(n1/d). In addition, the expectation of An is

E(An)− τ2
n =

n

m2d

∑
i1,...,id

E(ȳi1,...,id − µ)2 − 1

n

n∑
s,t=1

Cov(ys, yt)

=
1

n

∑
i

{
∑

xs∈Bn(i)

E(ys − µ)2 +
∑

xs 6=xt∈Bn(i)

E(ys − µ)(yt − µ)}

−σ2 − 1

n

∑
s6=t
E(ys − µ)(yt − µ)

=
1

n

∑
i

∑
xs 6=xt∈Bn(i)

E(ys − µ)(yt − µ)} − 1

n

∑
s 6=t
E(ys − µ)(yt − µ)

=
1

n

∑
i 6=j

∑
xs∈Bn(i),xt∈Bn(j)

σ2ψ(y(xs), y(xt)) = o(1).

Thus, we have An − τ2
n

P−→ 0. 2

Denote τ∗N
2 = Cov∗N,ω(ȳ∗N , ȳ

∗
N ) as the bootstrap variance under P ∗N,ω. The following

lemma reflects the convergence rate difference between ȳn and ȳ∗N with different sample

sizes.

Lemma 2.3 Assume (A.1)- (A.2), then

nτ∗N
2/md−1 − τ2

n
P−→ 0.

Proof: Based on the definition of nτ∗N
2/md−1, we have

nτ∗N
2/md−1 = n

md
Cov∗N,ω(ȳi∗1 , ȳi∗1) + 2n(m−1)

md
Cov∗N,ω(ȳi∗1 , ȳi∗2).

we compute the two terms on the right hand side separately as follows.
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First, calculate n
md
Cov∗N,ω(ȳi∗1 , ȳi∗1):

n

md
Cov∗N,ω(ȳi∗1 , ȳi∗1) =

n

md
E∗N,ω(ȳi∗1 − ȳn)2

=
n

md

∑
i1,...,id

1

md
(ȳi1,...,id − ȳn)2 =

n

m2d

∑
i1,...,id

(ȳi1,...,id − µ+ µ− ȳn)2

=
n

m2d

∑
i1,...,id

{(ȳi1,...,id − µ)2 − 2(ȳn − µ)(ȳi1,...,id − µ) + (ȳn − µ)2}

=
n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2 − n

md
(ȳn − µ)2

= An −Bn.

By Lemma 2.2, we have An − τ2
n

P−→ 0. For Bn = n
md

(ȳn − µ)2, by the central limit

theorem for ȳn, we have Bn
P−→ 0.

Finally, it suffices to show that n(m−1)
md

Cov∗N,ω(ȳi∗1 , ȳi∗2) converges to 0 in probability

under P . The following double summation
∑

i1,...,jd,j1,...,jd
are taken over i = (i1, . . . , id)

and j = (j1, . . . , jd) such that Bn(i) and Bn(j) are not equal and are selected together.

n(m− 1)

md
Cov∗N,ω(ȳi∗1 , ȳi∗2)

=
n(m− 1)

2md

1(
md

2

)
−md−1d

(
m
2

)∑
i 6=j

(ȳi − ȳn)(ȳj − ȳn)

=
n(m− 1)

m2d

1

md − 1− d(m− 1)

∑
i 6=j

(ȳi − µ)(ȳj − µ)

−2
n(m− 1)

m2d

md−1

md − 1− d(m− 1)

∑
i

(ȳi − µ)(ȳn − µ) +
n(m− 1)

md
(ȳn − µ)2

=
n(m− 1)

m2d

1

md − 1− d(m− 1)

∑
i 6=j

(ȳi − µ)(ȳj − µ)

+
n(m− 1)

md
[1− 2md

m{md − 1− d(m− 1)}
](ȳn − µ)2

= Cn +Dn.

Similar to An and Bn, we can show that Cn
P−→ 0 and Dn

P−→ 0. The result follows

immediately. 2

Based on the results from Lemmas 2.1-2.3, we develop the asymptotic consistency
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of the LHD-based block bootstrap mean in the following theorem.

Theorem 2.1 Under (A.1)-(A.2), if m→∞ and m = o(n1/d), then

sup
x
|P ∗N,ω(

√
n/md−1(ȳ∗N − ȳn)/τn ≤ x)− P (

√
n(ȳn − µ)/τn ≤ x)| P−→ 0,

when n −→∞.

Proof: It suffices to show that (1) E∗N,ω(ȳ∗N ) = ȳn; (2) nτ∗N
2/md−1 − τ2

n
P−→ 0; and

(3) supx |P ∗N,ω((ȳ∗N −E
∗
N,ω(ȳ∗N ))/τ∗N ≤ x) − Φ(x)| P−→ 0, where Φ(· ) denotes standard

normal distribution function and τ∗N
2 = Cov∗N,ω(ȳ∗N , ȳ

∗
N ).

Lemma 2.1 and Lemma 2.3 proved before imply the results in (1) and (2). Note that

ȳ∗N = 1
m

∑m
j=1 ȳi∗j and (ȳi∗1 , . . . , ȳi∗m) follows Latin Hypercube sampling distribution.

According to Loh (1996), we have the Berry-Essen type of bound for Latin Hypercube

sampling

sup
x
|P ∗N,ω((ȳ∗N − ȳn)/τ∗N ≤ x)− Φ(x)| ≤ c∗m−1/2,

where c∗ is a constant that depends only on d, given E∗N,ω‖ȳi∗1‖
3 < ∞. So we only

need to show that E∗N,ω‖ȳi∗1‖
3 is bounded uniformly in probability under P . Since

E∗N,ω‖ȳi1‖3 = 1
md

∑
i ȳ

3
i and according to Minkowski’s inequality, it follows that

1

md

∑
i

E{ȳ3
i } ≤

1

md

∑
i

1

|Bn(i)|3
{
∑

xs∈Bn(i)

E(ys)}3 <∞.

2

2.3.3 Consistency of MLEs using LHD-based block bootstrap

To investigate the asymptotic properties of the estimators from LHD-based block boot-

strap, we first decompose the likelihood function by blocks. For each block, denote
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yi = (ys(xs),xs ∈ Bn(i)), Xi = (xs,xs ∈ Bn(i))T , Ri,j(θ) =
[
ψ(y(xs), y(xt);θ),xs ∈

Bn(i),xt ∈ Bn(j)
]

and zi = R
−1/2
i,i (θ)(yi−Xiβ). Then, we can rewrite the normalized

log-likelihood function as

Qn(Xn,yn,φ) =
1

n
`(Xn,yn,φ)

= −(2nσ2)−1
∑

i=(i1,...,id)

(yi −Xiβ)TR−1
i (θ)(yi −Xiβ)

+(2n)−1
∑

i=(i1,...,id)

log(|Ri,i(θ)|)− 2−1 log(σ2) + n−1rn(Xn,yn,φ)

= −(2nσ2)−1
n∑
s=1

z2
s − (2n)−1

n∑
s=1

log(λs)

−(2n)−1
n∑
s=1

log(σ2) + n−1rn(Xn,yn,φ)

= n−1
n∑
s=1

qs(zs,φ) + n−1rn(Xn,yn,φ)

= n−1
n∑
s=1

qs(ω,φ) + n−1rn(ω,φ),

where {λs, s = 1, . . . , n} = {eigenvalues of |Ri,i(θ)|, i = (i1, . . . , id)} with (i1, . . . , id)

in lexicographical order and eigenvalues from the largest to the smallest. Note that

rn(ω,φ) contains all terms involving the off block-diagonal terms. Define Dn(θ) =

diag(Ri,i(θ)) and En(θ) = Rn(θ) − Dn(θ). Assuming that En(θ) = Un(θ)UTn (θ), we

have

rn(ω,φ) =
1

2σ2(1 + g)
(yn −Xnβ)TD−1

n (θ)En(θ)D−1
n (θ)(yn −Xnβ)

+
1

2
log |In + UTn (θ)D−1

n (θ)Un(θ)|,

where g = trace(En(θ)D−1
n (θ)).

Then maximum likelihood estimator is given by

φ̂n = arg max
φ

Qn(Xn,yn,φ).
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Analogue to the decomposition for Qn(Xn,yn,φ), the log-likelihood function for LHD-

based block bootstrap samples can be written as

Q∗N (X∗N ,y
∗
N ,φ) = N−1

N∑
s=1

q∗s(·, ω,φ) +N−1r∗N (·, ω,φ), (2.2)

where r∗N (·, ω,φ) contains all terms involving the off block-diagonal terms with boot-

strapped samples. Specifically,

r∗N (·, ω,φ) =
1

2σ2(1 + g∗)
(y∗N −X∗Nβ)TD∗N

−1(θ)E∗N (θ)D∗N
−1(θ)(y∗N −X∗Nβ)

+
1

2
log |IN + U∗N

T (θ)D∗N
−1(θ)U∗N (θ)|,

where D∗N (θ) = diag(Ri∗j ,i∗j (θ), j = 1, . . . ,m) and E∗N (θ) = R∗N (θ) − D∗N (θ) with

E∗N (θ) = U∗N (θ)U∗N
T (θ); g∗ = trace(E∗N (θ)D∗N

−1(θ)). The bootstrapped version of φ̂n

is

φ̂
∗
N = arg max

φ
Q∗N (X∗N ,y

∗
N ,φ).

The following assumptions are required for studying the convergence of the boot-

strap estimator φ̂
∗
N .

(A.3) limn→∞ supθ λmax(En(θ)) = 0, when the block space b = l/m→∞.

(A.4) ∀ φ1, φ2 ∈ Θ, |qs(·,φ1) − qs(·,φ2)| ≤ Ls|φ1 − φ2|a.s.P, where Ls is Lipschitz

constant and supn{n−1
∑n

s=1ELs} = O(1).

(A.5) Θ is compact.

(A.6) The functions qs(ω,φ) and rn(ω,φ) are such that qs(·,φ) and rn(·,φ) are mea-

surable for all φ ∈ Θ, a compact subset of Rp. In addition, qs(ω, ·) : Θ −→ R and

rn(ω, ·) : Θ −→ R are continuous on Θ a.s.-P , s = 1, · · · , n, n = 1, 2, · · · .
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(A.7) Qn(ω, ·) : Θ→ R is continuously differentiable of order 2 on Θ a.s. P .

(A.8) There exists a sequence Hn(φ) : Θ→ Rp×p such that ∇2Qn(·,φ)−Hn(φ)
P−→ 0

as n→∞ uniformly on Θ.

(A.9) Hn(φ0) is O(1) and uniformly nonsingular.

(A.10) Q∗N (λ, ω, ·) : Θ→ R are continuously differentiable of order 2 on Θ a.s. P . Also,

function ∇2Qn(ω,φ) is such that ∇2Qn(·,φ) is measurable for all φ ∈ Θ and

∇2Qn(ω, ·) : Θ→ R is continuous on Θ a.s.-P .

(A.11) ∀ φ1, φ2 ∈ Θ,|∇2Qn(·,φ1) − ∇2Qn(·,φ2)| ≤ Ms|φ1 − φ2|a.s.P, where Ms is

Lipschitz constant and supn{n−1
∑n

s=1EMs} = O(1).

Assumption (A.3) controls the correlation between bootstrapped blocks. (A.4) and

(A.5) are required in order to achieve uniform convergency of the bootstrapped likeli-

hood function. (A.6) ensures the existence of the estimators. (A.7)-(A.9) are regularity

conditions for standard MLE consistency in GP models, which is analogue to the con-

ditions in Mardia and Marshall (1984). (A.10) ensures the existence of covariance

matrix. (A.11) is the Global Lipschitz condition for ∇2Qn(ω, ·) which guarantees the

convergence of LHD-based block bootstrap covariance matrix.

Theoretical properties of the LHD-based block bootstrap likelihood function (3.3)

are established in the following two lemmas, which leads to a proof of convergence prop-

erties of the bootstrap estimator φ̂
∗
N . Lemma 2.4 below first established the pointwise

weak law of large numbers for the LHD-based block bootstrap likelihood functions.

Lemma 2.4 (Pointwise Weak Law of Large Numbers) Under (A.1)-(A.3), for each
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φ ∈ Θ,

lim
n→∞

P

[
P ∗N,ω

(
|N−1

N∑
s=1

q∗s(·, ω,φ) +N−1r∗N (·, ω,φ)

−n−1
n∑
s=1

qs(ω,φ)− n−1rn(ω,φ)| > δ
)
> ξ

]
= 0.

Proof: Rewrite the bootstrapped likelihood function as

N−1
N∑
s=1

q∗s(·, ω,φ) +N−1r∗N (·, ω,φ)− n−1
n∑
s=1

qs(ω,φ)− n−1rn(ω,φ)

= N−1
N∑
s=1

{q∗s(·, ω,φ)−E∗q∗s(·, ω,φ)}+ {N−1
N∑
s=1

E∗q∗s(·, ω,φ)− n−1
n∑
s=1

qs(ω,φ)}

+N−1r∗N (·, ω,φ)− n−1rn(ω,φ)

= I1 + I2 + I3.

By Lemma 2.3, I2 = 0. With respect to I3, we will show that n−1rn(ω,φ) → 0 in P

and N−1r∗N (·, ω,φ) → 0, prob-P ∗N,ω prob-P . For notation simplicity, we miss θ in the

following computation. The expectation and variance of n−1rn(ω,φ) are:

|E{n−1rn(ω,φ)}|

≤ |E{ 1

2nσ2(1 + g)
(yn −Xnβ)TD−1

n EnD
−1
n (yn −Xnβ)}|+

∣∣ log |In + UTnD
−1
n Un|

∣∣
≤ 1

2nσ2(1 + g)
λmax(En)λmax(D−1

n )E{‖yn −Xnβ‖22}| log(|In|+ |UTnD−1
n Un|)|

≤ 1

2nσ2(1 + g)
λmax(En)λmax(D−1

n ) + | log{1 + λnmax(En)|D−1
n }|

= o(1)
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and

V ar(n−1rn(ω,φ)) = V ar{ 1

2nσ2(1 + g)
(yn −Xnβ)TD−1

n EnD
−1
n (yn −Xnβ)}

≤ 1

4(1 + g)2σ4n2
V ar{

n∑
i=1

(
n∑
j=1

uijεj)
2}

≤ 1

4(1 + g)2σ4n2

n∑
i=1

V ar{(
n∑
j=1

u2
ij)(

n∑
j=1

ε2
j )}

≤ cn
4(1 + g)2σ4n2

n∑
i=1

n∑
j=1

V ar(ε2
j )

= o(1),

where εj is the ith entry of D−1
n (yn − Xnβ) and ui = (uij) is the ith row of Un;

cn = maxi{
∑n

j=1 u
2
ij}.

In addition, as λmax(E∗N ) ≤ λmax(En) and λmax(D∗N
−1) ≤ λmax(D−1

n ), we have

1

2σ2(1 + g∗)
(y∗N −X∗Nβ)TD∗N

−1E∗ND
∗
N
−1(y∗N −X∗Nβ)

≤ 1

2σ2
λmax(En)λmax(D−1

n )‖y∗N −X∗Nβ‖22.

According to Theorem 2.1, we have N−1‖y∗N −X
∗
Nβ‖22 − n−1‖yn −Xnβ‖22 → 0

prob-P ∗N,ω prob-P . Similarly, we can bound log |IN +U∗N
TD∗N

−1U∗N |. As λmax(En)→ 0,

we have 1
N r
∗
N (·, ω,φ)→ 0, prob-P ∗N,ω prob-P .

So when n is sufficiently large, we only need to show that limn→∞ P
[
P ∗N,ω(|I1| >

δ) > ξ
]

= 0. By Chebyshev’s inequality,

P ∗N,ω(|I1| > δ) ≤ 1

δ2
V ar∗N,ω(q̄∗N (·, ω,φ)).

By Lemma 2.1, r−1V ar∗N,ω(q̄∗N (·, ω,φ)) = Op(1), together with the fact that N =
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n/md−1

P
[
P ∗N,ω(|I1| > δ) > ξ

]
≤ P

[ n

md−1

1

δ2
V ar∗N,ω(q̄∗N (·, ω,φ)) > ξ

n

md−1

]
= O(m2d−2/n2)→ 0.

2

The next lemma further extends Lemma 2.4 to the uniform weak law of large num-

bers for the LHD-based block bootstrap likelihood functions.

Lemma 2.5 (Uniform Weak Law of Large Numbers) Under (A.1)-(A.5), ∀ δ, ξ > 0,

lim
n→∞

P

[
P ∗N,ω(sup

φ∈Θ
|N−1

N∑
s=1

q∗s (·, ω,φ) +N−1r∗N (·, ω,φ)

−n−1
n∑

s=1

qs(ω,φ)− n−1rn(ω,φ)| > δ) > ξ

]
= 0.

Proof: By Lemma 2.4, |n−1rn(ω,φ) − N−1r∗N (·, ω,φ)| can be arbitrarily small as n is

large enough uniformly over Θ. We only need to show that

lim
n→∞

P
[
P ∗N,ω(sup

φ∈Θ
|N−1

N∑
s=1

q∗s(·, ω,φ)− n−1
n∑
s=1

qs(ω,φ)| > δ) > ξ
]

= 0.

Given ε > 0 that will be selected later, let {η(φj , ε), j = 1, . . . ,K} be a finite cover of

Θ, where η(φi, ε) = {φ ∈ Θ : |φ− φj | < ε}. Then

sup
φ
|N−1

N∑
s=1

q∗s(·, ω,φ)− n−1
n∑
s=1

qs(ω,φ)|

=
K

max
j=1

sup
φ∈η(φj ,ε)

|q̄∗N (·, ω,φ)− q̄n(ω,φ)|.

It follows that ∀ δ > 0 with fixed ω,

PN,ω
(

sup
φ∈Θ
|q̄∗N (·, ω,φ)− q̄n(ω,φ)| > δ

)
≤

K∑
j=1

PN,ω
(

sup
φ∈η(φj ,ε)

|q̄∗N (·, ω,φ)− q̄n(ω,φ)| > δ
)
.
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For ∀ φ ∈ η(φj , ε), by Global Lipschitz condition,

|q̄∗N (·, ω,φ)− q̄n(ω,φ)|

≤ |q̄∗N (·, ω,φj)− q̄n(ω,φj)|+ |q̄∗N (·, ω,φj)− q̄∗N (·, ω,φ)|

+|q̄n(ω,φ)− q̄n(ω,φj)|

≤ |q̄∗N (·, ω,φj)− q̄n(ω,φi)|+N−1
N∑
s=1

L∗sε+ n−1
n∑
s=1

Lsε,

where L∗s is the bootstrapped Lispchitz coefficient.

By Markov inequality and supn{n−1
∑n

s=1ELs} = O(1),

P (n−1
n∑
s=1

Ls > δ/3) ≤ 3ε∆/δ ≤ ξ/3,

where ∆ is a large constant. If we choose ε < ξδ/(9∆), we have

P
[
P ∗N,ω( sup

φ∈η(φj ,ε)
|q̄∗N (·, ω,φ)− q̄n(ω,φ)| > δ) > ξ

]
≤ P

[
P ∗N,ω(|q̄∗N (·, ω,φj)− q̄n(ω,φj)| > δ) > ξ/3

]
+P
[
P ∗N,ω(N−1

N∑
s=1

L∗sε > δ/3) > ξ/3
]

+ P [n−1
n∑
s=1

Lsε > δ/3]

= K1 +K2 +K3.

According to Lemma 2.4, K1 ≤ ξ/3 when n is large enough. By Markov’s inequality,

we have

P ∗N,ω(N−1
N∑
s=1

L∗sε > δ/3) ≤ N−1
N∑
s=1

E∗L∗s/(δ/3ε) = n−1
n∑
s=1

Ls/(δ/3ε).

The last equality holds because of Lemma 2.1. Thus, K2 < ξ/3 as well as K3. 2

In the following theorem, we show that φ̂
∗
N converges in probability to φ̂n, con-

ditional on all samples with probability tending to one. For any LHD-based block

bootstrapped statistic T̂ ∗N , we write T̂ ∗N → 0 prob−P ∗N,ω, prob−P if for any ε > 0 and

any δ > 0, limn→∞ P{P ∗N,ω(|T̂ ∗N > ε| > δ)} = 0.
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Theorem 2.2 Under (A.1)- (A.6), if m = o(n1/d) and m→∞, then

φ̂
∗
N − φ̂n → 0 prob− P ∗N,ω, prob− P.

Proof: With the full preparation of the likelihood convergence developed in Lemmas

2.4 and 2.5, the convergence of bootstrap parameter estimation follows immediately

given the existence of φ̂n and φ̂
∗
N .

Denote q̄∗N (·, ω,φ) = N−1
∑N

i=1 q
∗
i (·, ω,φ) and q̄n(ω,φ) = n−1

∑n
i=1 qi(ω,φ). By

(A.6), q∗s(·, ω, ·) : Λ × Θ → R and r∗N (·, ω, ·) : Λ × Θ → R are measurable-G for each

φ ∈ Θ. In addition, q∗s(λ, ω, ·) and r∗N (λ, ω, ·) are continuous on Θ for all λ. Thus, we

have φ̂
∗
N (·, ω) exists as a measurable-G function by Jennrich (1969).

Following the procedure in Goncalves and White Gonçalves and White (2004), for

any subsequence {n′}, given that φ̂n′ is identifiable and unique, there exists a further

subsequence {n′′} such that φ̂n′′ is identifiably unique with respect to {Qn′′} for all

ω ∈ F in some F ∈ F with P (F ) = 1. By condition (A.6), there exists G ∈ F with

P (G) = 1 such that for all ω ∈ G, {Q∗N ′′(·, ω,φ)} (N ′′ is corresponding bootstrapped

sample size of n′′) is a sequence of random function on (Λ,G, P ∗N,ω) continuous on Θ for

all λ ∈ Λ. Hence, by White White (1996), for fixed ω ∈ G, there exists φ̂
∗
N ′′(·, ω) : Λ→

Θ measurable-G and φ̂
∗
N ′′(·, ω) = arg maxφQ

∗
N ′′(·, ω,φ). By the uniform weak law of

large numbers for Q∗N (X∗N ,y
∗
N ,φ) obtained from Lemma 2.5, we have Q∗N ′′(·, ω,φ) −

Qn′′(ω,φ) → 0 as n′′ → ∞ prob − P ∗N,ω prob − P uniformly on Θ. Hence, there

exists a further subsequence {n′′′} such that Q∗N ′′′(·, ω,φ)−Qn′′′(ω,φ)→ 0 as n′′ →∞

prob−P ∗N,ω prob−P for all ω in some H ∈ F with P (H) = 1. Choose ω ∈ F ∩G∩H,

by White (1996), we have φ̂
∗
N ′′′ − φ̂n′′′ → 0 as n′′′ → ∞ prob − P ∗N,ω prob − P . Since

this is true for any subsequence {n′}, we have P (F ∩G ∩H) = 1. 2
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Under some regularity conditions given by Mardia and Marshall Mardia and Mar-

shall (1984), it can be shown that the original estimator φ̂n based on full data is

consistent and it converges to φ0, where φ0 is the unique maximizer of Q̄n(φ) which

satisfies Qn(ω,φ)− Q̄n(φ) −→ 0 a.s. P . We first establish a generalization of Theorem

1 in Mardia and Marshall (1984) under assumptions (A.7)-(A.9).

Proposition 2.1 Under (A.7)-(A.9), the asymptotic normality and weak consistency

of φ̂n hold, i.e.,

√
n(φ̂n − φ0)→ N(0, H−1(φ0)).

Next we study the distribution consistency of φ̂
∗
N − φ̂n in Theorem 2.3. This re-

sult provides a strong theoretical support to the proposed LHD-based block bootstrap

framework. It shows that this framework guarantees the asymptotic consistency of

the bootstrapped MLEs to the MLEs using full data, given the advantages that this

procedure reduces computation and avoids numerical issues in calculating MLEs.

Theorem 2.3 Under (A.1)-(A.11), if m = o(n1/d) and m→∞, then

P
[
ω : sup

x
|P ∗N,ω(

√
n/md−1(φ̂

∗
N − φ̂n) ≤ x)− P (

√
n(φ̂n − φ0) ≤ x)| > ε

]
→ 0,

where “≤” applies to each component of the vectors.

Proof: Define B0
n = V ar{n−1

∑n
s=1∇qs(zs,φ

0)}. We first show that

√
n/md−1B0

n
−1/2∇Q∗N (·, ω, φ̂∗N )→ N(0, Ip)

under P ∗N,ω.
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To show this, denote h̄∗N (φ) = N−1
∑N

s=1∇q∗s(z∗s ,φ) and h̄n(φ) = n−1
∑n

s=1∇qs(zs,φ).

Then √
n/md−1[h̄∗N (φ̂

∗
N )− h̄n(φ̂n)]

=
√
n/md−1[h̄∗N (φ̂

∗
N )− h̄∗N (φ̂n)] +

√
n/md−1[h̄∗N (φ̂n)− h̄∗N (φ0)]

+
√
n/md−1[h̄∗N (φ0)− h̄n(φ0)] +

√
n/md−1[h̄n(φ0)− h̄n(φ̂n)

= J1 + J2 + J3 + J4.

Since h̄n and h̄∗N are functions whose secondary derivative are continuous, J1 → 0 prob−

P ∗N,ω, prob− P as φ̂
∗
N − φ̂n → 0 prob− P ∗N,ω, prob− P in Theorem 2.2. J2 + J4

P−→ 0

as φ̂n − φ0 → 0 by Proposition 1. In addition, the two terms in J3 are both evaluated

at φ0 which is a fixed value, by Theorem 2.1, we have B0
n

1/2
J3 → N(0, Ip) in P ∗N,ω.

By condition (A.10) and follow a similar proof as Lemma 2.5, we have

∇2Q∗N (·, ω,φ)−∇2Qn(ω,φ)→ 0 prob− P ∗N,ω, prob− P.

Let Ĥn(ω) = ∇2Qn(ω, φ̂n). According to White White (1996), given the result φ̂
∗
N −

φ̂n → 0 prob− P ∗N,ω, prob− P , and assumption (A.8), we have

√
N(φ̂

∗
N − φ̂n) = −Ĥ−1

n (ω)
√
n∇Q∗N (·, ω, φ̂n) + oP ∗N,ω(1)

= −Hn(φ0)−1(ω)
√
n∇Q∗N (·, ω, φ̂n) + oP ∗N,ω(1).

Given the fact that under P ∗N,ω√
n/md−1B0

n
−1/2∇Q∗N (·, ω, φ̂∗N )→ N(0, Ip),

we have

B0
n
−1/2

Hn(φ0)
√
N(φ̂

∗
N − φ̂n)→ N(0, Ip)

under P ∗N,ω. By the method of subsequence as in Theorem 2.2, together with the

consistency results of φ̂n in Proposition 1, the result follows immediately. 2
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2.4 Examples

2.4.1 Simulation study

The finite-sample performance of the proposed framework is demonstrated by numer-

ical examples in this section. The objective is to compare the MLEs obtained from

LHD-based block bootstrap with those obtained using full data. All simulations are

performed using a W35653 20GHz, 2G RAM workstation under R 2.15.2 in Windows

7.

Simulations are conducted for three sample sizes, n = 400, 900, 2500 and data are

generated from a regular grid in [0, 1]2. Note that the proposed method is particularly

useful for data collected from irregular grids. The reason to generate the simulations

from a regular grid is because under this setting, the MLE calculation using full data

can be further simplified by Kronecker product techniques and some matrix singularity

can be avoided (Bayarri et al., 2007, ????; Rougier, 2008). But these techniques are

only applicable to data sets collected from a regular grid. Therefore, a favorable com-

parison of the proposed method would make an even stronger case for the design-based

subsampling procedure.

Data are generated from Gaussian process with the mean function coefficients set

to be β = (1, 1). Choose the correlation function to be

ψ(x1,x2) = exp(−
2∑
i=1

|x1i − x2i|/θi),

where θ1 = θ2 = 1 and σ2 = 1. For each choice of sample size, a total of 100 data sets

are simulated. For each simulated data set, 20 LHD-based block bootstrap samples

are collected. Three different settings, m = 1, 4, and 6, of LHD-based block bootstrap

are performed. When m = 1, the results refer to the conventional GP modeling using
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Table 2.1: LHD-based Bootstrap parameter estimation

m Parameter estimation Time
θ1 θ2 β1 β2 σ2

n=400 1 0.94 (0.24) 0.97 (0.24) 0.89 (0.78) 1.04 (0.76) 0.92 (0.32) 58.42 (11.73)
4 0.94 (0.29) 0.93 (0.27) 0.87 (0.92) 1.01 (0.87) 1.15 (0.48) 56.88 (7.96)
6 0.89 (0.30) 0.93 (0.29) 0.87 (0.79) 1.01 (0.82) 0.80 (0.31) 32.18 (4.02)

n=900 1 0.96 (0.18) 0.95 (0.16) 0.86 (0.80) 1.04 (0.78) 0.92 (0.22) 306.40 (62.50)
4 0.95 (0.20) 0.94 (0.18) 0.81 (0.92) 1.05 (0.86) 0.90 (0.25) 280.31 (33.44)
6 0.94 (0.21) 0.92 (0.20) 0.82 (0.86) 1.05 (0.82) 0.86 (0.24) 145.35 (17.11)

n=2500 1 0.98 (0.13) 0.98 (0.14) 1.01 (0.80) 1.02 (0.79) 0.96 (0.20) 2258.60 (688.52)
4 0.98 (0.16) 0.96 (0.17) 1.01 (0.84) 0.97 (0.83) 0.95 (0.23) 1871.21 (214.36)
6 0.98 (0.16) 0.97 (0.17) 1.03 (0.86) 0.98 (0.81) 0.95 (0.24) 792.50 (82.59)

full data. To show the empirical performance of the LHD-based block bootstrap ap-

proach, we report the computing time, mean and standard deviation of the parameter

estimation. The results are summarized in Table 2.1. In addition, the empirical density

function for each parameter is shown in Figures 2.2 and 2.3 for sample size n = 900.

Similar plots are obtained for the other two sample sizes, therefore they are omitted.

The results in Table 2.1 demonstrate that the estimated parameters based on LHD-

based block bootstrap are consistent to the one obtained from full data, i.e., m = 1

cases. In general, the standard deviations increase slightly with the number of blocks

m in estimating the correlation parameters, while decrease in estimating the rest of the

parameters. In terms of computing time, LHD-based block bootstrap is much faster

than the conventional GP modeling and such advantage is particularly significant when

the total sample size n is large. For example, the percentage of computational time

saved using the proposed method is increased from 45% to 65% when sample size

increases. Figures 2.2 and 2.3 show that the two empirical distributions generated by

the LHD-based block bootstrap are approximately normal and perform similarly to the
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Figure 2.2: Comparison of the empirical distributions of θ̂n and θ̂∗N (n=900)

one from full data.

2.4.2 Application to data center thermal management study

A data center is a computing infrastructure facilities that house large amounts of infor-

mation technology (IT) equipment used to process, store, and transmit digital informa-

tion. Data center facilities constantly generate large amounts of heat to the room, which

must be maintained at an acceptable temperature for reliable operation of the equip-

ment. More discussions of data center can be found in Hung et al. (2012). A significant

fraction of the total power consumption in a data center is for heat removal; therefore,

determining the most efficient cooling mechanism has become a major challenge. The

objective of a thermal management study is to model the thermal distribution in a

data center and the final goal is to design a data center with an efficient heat-removal

mechanism.

For a data center thermal study, physical experiments are not always feasible because

some settings are highly dangerous and expensive to perform. Therefore, simulations
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Figure 2.3: Comparison of the empirical distributions of β̂n and β̂∗N (n=900)

based on computational fluid dynamics (CFD) are widely used. In this example, CFD

simulations are conducted at IBM T. J. Watson Research Center based on a real data

center layout. Detailed discussions about the CFD simulations can be found in López

and Hamann (2011). The first three columns in Table 2.2 list nine factors and their

levels in the CFD simulations, including four computer room air conditioning (CRAC)

units with different flow rates (x1, ..., x4), the overall room temperature setting (x5), the

perforated floor tiles with different percentage of open areas (x6), and spatial location

in the data center (x7 to x9). There are 27,000 temperatures simulated from the CFD

simulator and these temperature outputs are obtained from an irregular grid over the

9-dimensional experimental space.

It is computationally infeasible to fit a GP model using all the CFD simulation

outputs. Therefore, we reduce the computation by the proposed LHD-based block

bootstrap approach with m = 3 for variables x6, x7 and x9, which are the top three

factors with highest levels. The fitted GP model is summarized by the last two columns
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Table 2.2: LHD Bootstrap analysis of thermal management data

Variable Levels β̂ θ̂

x1 CRAC unit 1 flow rate (cfm) (0,7000,8500,10000 -8.58(0.96) 0.85(0.17)
11500,13000)

x2 CRAC unit 2 flow rate (cfm) (0,7000,8500,10000 -11.12(1.26) 0.77(0.23)
11500,13000)

x3 CRAC unit 3 flow rate (cfm) (0,2500,4000,5500) -6.83(0.80) 1.14(0.27)
x4 CRAC unit 4 flow rate (cfm) (0,2500,4000,5500) -6.26(0.98) 1.70(0.71)
x5 Room temperature setting (F) (65,67,69,71,73, 75) -0.82(0.66) 3.39(0.94)
x6 Tile open area percentage (%) (15, 25, 35, 45 0.15(3.63) 1.24(0.91)

(55, 65, 75)
x7 Location in x-axis 8 unequally spaced -5.09(2.72) 0.14(0.11)
x8 Location in y-axis 4 unequally spaced 3.70(2.18) 0.62(0.25)
x9 Height 18 equally spaced 33.43(3.90) 21.61(0.22)

of Table 2.2, where β̂ represents the estimated mean function coefficients and θ̂ repre-

sents the correlation parameters estimated based on exponential covariance function.

From the fitted model, it appears that the height (x9) in a data center has relatively

larger effect in the mean function and the overall room temperature setting (x5) has

a larger estimate in its correlation parameter. These results agree with the general

understanding of thermal dynamics in a data center that temperature increases with

height and the overall room temperature setting has significant impact on controlling

the temperature. It is worth noting that the mean function in the fitted GP model con-

tains the linear effects of the nine factors, which is predetermined without any variable

selection mechanism. If the objective is to further specify important factors, penalized

likelihood approaches developed in Chu et al. (2011); Li and Sudjianto (2005) can be

incorporated to the proposed framework for variable selection.
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2.5 Discussion

We present the practically useful LHD-based block bootstrap procedure to tackle com-

putational difficulties in GP modeling. It borrows the strength of space-filling designs

to provide an efficient subsampling plan and reduce computational complexity. We

prove a very general result to support the asymptotic consistency of the estimators ob-

tained from the proposed procedure. Finite-sample performance is examined through

simulation studies. The proposed procedure is applied to a data center thermal man-

agement study and an efficient GP model is obtained based on 27,000 computer outputs

generated from CFD simulator.

Future work on the LHD-based block bootstrap procedure will be explored in the

following directions. First, extensions of the proposed procedure to optimal designs

with better space-filling properties is intuitively appealing. For example, it is known

that randomly generated LHDs can contain some structure. To further enhance de-

sirable space-filling properties, various modifications are proposed (Fang et al., 2006;

Owen, 1994; Qian et al., 2009; Qian and Wu, 2009; Tang, 1993, 1994; Ye, 1998). Numer-

ical comparisons and theoretical developments of the generalization to different types

of optimal space-filling designs will be carefully studied. Second, an interesting and

important issue of the LHD-based block bootstrap is to determine the optimal block

size. This topic has been discussed for conventional block bootstrap methods (Hall

et al., 1995; Lahiri, 1999; Nordman et al., 2007), however the solutions therein are not

directly applicable to GP models. We plan to study the optimal block size for the

propose procedure based on a new criterion defined for GP. Third, we plan to extend

the LHD-based block bootstrap idea to construct bootstrap predictive distributions.

This is a promising direction because it not only overcomes the drawback of GP plug-in
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predictors (Santner et al. (2003), p.98) but also addresses the computational issue with

the conventional bootstrap predictive distribution (Sjöstedt-de Luna, 2003).
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Chapter 3

Penalized Quantile Regression with Asymmetric Laplace

Process Model for Computer Experiments

3.1 Introduction

Despite numerous research on computer experiment modeling, most of the existing ap-

proaches focus on modeling the conditional mean of the response variable (Fang et al.,

2006; Santner et al., 2003). Little work is done to study quantile regression model that

incorporate data dependence although in practice it is often of substantial interest.

Classic quantile regression model usually consider the case that observations are all in-

dependent. For example, Koenker and Bassett Jr (1978), Gutenbrunner and Jurecková

(1992), Chaudhuri et al. (1997) and Chernozhukov (2005) investigate quantile regres-

sion models with fixed number of covariates. Recently, Reich et al. (2011), Lum et al.

(2012) and Boukouvalas et al. (2012) extend quantile regression models to incorporate

spatial dependence in Bayesian framework. However, none of the aforementioned work

investigate high dimensional data which is commonly seen in computer experiments

with increasing availability of large size data and computing power. High dimensional

data often display heterogeneity (Wang et al., 2012) and calls for models with sparsity

in which only a small number of covariates have influence on the conditional distribution

of response. Penalization has emerged as a successful technique for model selection and

it is been extended to classic quantile regression as well. Belloni et al. (2011) investigate
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L1-penalized quantile regression and Wang et al. (2012) consider nonconvex penalties.

Zou and Yuan (2008) propose penalized composite quantile regression and show that it

enjoys oracle model selection property. It is worth noting that Belloni et al. (2011) and

Wang et al. (2012) consider possibly infinite collection quantile regression models with

different quantiles and assume the set of covariates that can impact the conditional

distribution of response may differ when different quantiles or segments of conditional

distribution are studied. On the other hand, Zou and Yuan (2008) study finite number

of quantile regression models and they all have the same set of relevant covariates. In

this chapter, we adopt the former concept, that is, relevant covariates may be different

for various quantiles of response’s conditional distribution.

This research is motivated by a data center thermal study. In this study, large

amounts of heat are constantly generated to the room, which must be maintained at an

acceptable temperature for reliable operation of the equipment. A significant fraction

of the total power consumption is for heat removal. Therefore, we are interested in

understanding the effect of different types of cooling approaches and the goal is to

find the most efficient and reliable heat removal mechanism. To achieve this goal,

we need to identify active factors and their effects on extreme temperature quantiles.

Because better control on higher temperature quantile can prevent significant damage

to servers and bringing up lower quantile temperature properly can dramatically reduce

unnecessary power consumption.

In this research, a new modeling framework is proposed to model different quan-

tiles in computer experiments and simultaneously identify important effects for each

quantile. To achieve this goal, we extend Gaussian process to asymmetric Laplace

process. The choice of asymmetric Laplace process enable us to model the quantiles
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and incorporate dependence structure. In addition, we regularize the quantile asym-

metric Laplace process with a penalty function, such as L1 norm penalty (Tibshirani,

1996), the SCAD (Fan and Li, 2001) and the MCP (Zhang, 2010). We show that pe-

nalized quantile asymmetric Laplace estimator can select true relevant covariates when

the number of covariates is large and able to grow to infinity when the number of

observations increase to infinity.

The reminder of this chapter is organized as follows. In Section 3.2, we introduce

quantile regression with asymmetric Laplace process and its penalized estimator. In

Section 3.3, we investigate asymptotic properties of the proposed penalized estimator.

In Section 3.4, we propose an algorithm for penalized quantile regression with asymmet-

ric Laplace process. Section 3.5 presents simulation studies and a real data example.

Final discussions are given in Section 3.6 and proofs are in Section 3.7.

3.2 Penalized quantile regression with asymmetric Laplace process

Suppose that we have a set of data (x1, y1), . . . , (xn, yn) with input xi ∈ Rp and output

yi ∈ R. The 100τ% quantile of y|x, τ ∈ (0, 1) can be recovered (Koenker and Bassett Jr,

1978) by minimizing a check function as

min
n∑
i=1

ρτ (yi − xiβ),

where β = (β1, . . . , βp) and ρτ (·) is the “check function” defined by ρτ (t) = t[τ − I(t <

0)], τ ∈ (0, 1). As minimizing L2 loss is associated with normal errors in linear models,

minimizing check function corresponds to assuming asymmetric Laplace errors. That

is, assume for i = 1, . . . , n,

yi = xiβ + εi,
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where εi are independent and follow Asymmetric Laplace Process (ALP) with 100τ%

quantile being 0. The probability density function of εi is

fτ (εi | σ) =
τ(1− τ)

σ
exp

[
− εi
σ

(τ − I(εi ≤ 0))

]
= {τ(1− τ)/σ} exp(−ρτ (εi) σ). (3.1)

As a result, the maximum likelihood estimation (MLE) is equivalent to estimators

minimizing the check function.

To construct a nonlinear parametric model for quantile analysis in computer ex-

periments, we incorporate a representation of the ALP provided by Kozubowski and

Podgorski (2000). A random variable ετ following ALP with density (3.1) can be rep-

resented by (Kozubowski and Podgorski, 2000)

ετ = σ

√
2W

τ(1− τ)
Z + σ

1− 2τ

τ(1− τ)
W,

where Z and W are independent, Z follows standard normal distribution and W follows

standard exponential distribution.

Using ALP, a new parametric model incorporating data dependence can be con-

structed by (Lum et al., 2012)

Y (x) = xβ + ετ (x), (3.2)

where xβ is the mean function, ετ (x) = σ
√

2W
τ(1−τ)Z(x) + σ 1−2τ

τ(1−τ)W , Z(x) and W are

independent, W follows standard exponential distribution, and Z(x) is a stationary

Gaussian process with mean 0 and correlation function ψ, i.e. corr{Z(x+h), Z(x)} =

ψ(h;θ), where θ is a vector of correlation parameters and ψ(h;θ) is positive semidef-

inite function with ψ(0;θ) = 1 and ψ(h;θ) = ψ(−h;θ). Note that Z(x) is used to

incorporate correlations among observations. In this chapter, we consider a common

exponential distribution W for n observations. In fact, quantile ALP model can be
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extended to incorporate independent standard exponential distribution or spatial ex-

ponential distribution (Lum et al., 2012). For simplicity, we use common W in this

chapter.

With n observations collected from computer experiments, (x1, y1), . . . , (xn, yn),

denote y = (y1, . . . , yn) and X = (xT1 , . . . ,x
T
n )T . Let ε = y − Xβ, the likelihood

function of (3.2) can be written as

Lτ (ε) =
2 exp(εTΣ−1

τ µτ )

(2π)n/2|Στ |1/2
(

εTΣ−1
τ ε

2 + µTτ Σ−1
τ µτ

)v/2Kv

(√
(2 + µTτ Σ−1

τ µτ )(εTΣ−1
τ ε)

)
, (3.3)

where v = (2 − n)/2, µτ = σ 1−2τ
τ(1−τ)1n, Στ = σ2

τ(1−τ)Ψ with 1n being a vector of length

n and all entries equaling to 1 and Ψ = (ψ(xi,xj), i, j = 1, . . . , n) and Kv(·) is the

modified Bessel function

Kv(u) =
1

2
(
u

2
)v
∫ ∞

0
z−v−1 exp(−z − u2

4z
)dz,

valid for complex u with the non-negative real part of u2.

For i = 1, . . . , n, since all εi = yi − xiβ have common W , error terms are always

correlated even Φ is identity matrix. Explicitly, covariance between εi and εj is

cov(εi, εj) = σ2 2φ(xi − xj ;θ)

τ(1− τ)
+ σ2 (1− 2τ)2

τ2(1− τ)2
.

To estimate parameters and identify important variables simultaneously, we imple-

ment a penalized likelihood approach to the proposed model. Define penalized log-

likelihood as

Qτ (β) = `τ (β)−
p∑
j=1

ρλτ (|βj |),

where `τ (β) = n−1 logLτ (y−Xβ) and ρλτ (·) is penalty function with tuning parameter

λτ and penalized likelihood estimator is defined as

β̂τ = arg max
β∈Ω

Qτ (β),
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where Ω = {β : `τ (β) <∞}.

3.3 Asymptotic properties

In this section, we investigate the asymptotic property of β̂τ . Suppose the true co-

efficients for each τ is β0
τ . Denote Aτ = {j : βτ,j 6= 0} is the index set of non-zero

coefficients and Acτ is its complement. It’s worth noting that for β ∈ Ω, `τ (·) is differ-

entiable everywhere. Following Fan and Peng (2004), we have the following theorems.

Assume the following regularity conditions for β ∈ Ω.

(A1) There exists constants C1, C2 > 0, such that Iτ (β) = nEβ{(∂`τ (β)
∂β )(∂`τ (β)

∂β )T }

satisfies

0 < C1 < λmin{Iτ (β)} ≤ λmax{Iτ (β)} < C2 <∞,

and Jτ (β) = −Eβ{∇2`τ (β)} satisfies

0 < C1 < λmin{Jτ (β)} ≤ λmax{Jτ (β)} < C2 <∞.

(A2) There exists constants C3, C4 > 0 such that for j, k = 1, . . . , p,

Eβ{
∂`τ (β)

∂βj

∂`τ (β)

∂βk
}2 < C3/n

2 <∞

and

Eβ{
∂2`τ (β)

∂βj∂βk
}2 < C4/n <∞.

(A3) For i, j, k = 1, . . . , p, assume there are random variables Mi,j,k such that

| ∂
3`τ (β)

∂βi∂βj∂βk
| < Mi,j,k

with probability 1 and there exists a constant C5 > 0 such that

EβM
2
i,j,k < C5 <∞.
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Condition A1 and A2 ensure that the second moment of the likelihood function and

Fisher’s information matrix is positive definite. Due to the complexity of the likelihood

function, we do not have Iτ (β) = Jτ (β). So eigenvalues of Iτ (β) and Jτ (β) are need to

be controlled. Condition A3 ensures that higher orders of the Taylor expansion for the

likelihood function are small enough.

Furthermore, we assume the following conditions on the penalty function.

(A4) lim infn→∞ lim infx→0+ ρ
′
λτ

(x)/λτ > 0

(A5) There are constant D1 and D2 such that ∀ x1, x2 > D1λτ , |ρ′′λτ (x1)− ρ′′λτ (x2)| <

D2|x1 − x2|.

Condition A4 and A5 are regular conditions on the penalty function. It includes a large

family of penalty functions, including L1 norm penalty, the SCAD and the MCP.

Conditions on the tuning parameter and true coefficients β0
τ are given below.

(A6) maxj∈Aτ |ρ′λτ (|β0
τ,j |)| = o(n−1/2).

(A7) maxj∈Aτ |ρ′′λτ (|β0
τ,j |)| = o(1).

Condition A6 and A7 guarantee proper choice of the tuning parameter with respect to

the strength of true non-zero coefficients.

We establish the existence of the penalized likelihood estimator.

Theorem 3.1 Suppose that conditions A1 to A7 are satisfied. If p = o(n1/4), then

there is a local maximizer β̂τ of Qτ (·) such that ‖β̂τ − β0
τ‖2 = Op(

√
p/n).

The sparsity property of proposed penalized estimator is given below.
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Theorem 3.2 Suppose conditions A1 to A7 are satisfied. If
√
p/n/λτ = o(1) and

p = o(n1/4), then with probability approaching 1, the root-n/p consistent estimator β̂τ

satisfies β̂τ,Acτ = 0.

Together with theorem 3.1 and theorem 3.2, we show that penalized quantile asym-

metric Laplace estimator can select true relevant covariates when the number of covari-

ates is large and able to grow to infinity when the number of observations increase to

infinity.

3.4 Algorithm

In this section, we propose an algorithm to compute penalized ALP estimators. Let

βτ,j = β+
τ,j − β

−
τ,j , where β+

τ,j ≥ 0 and β−τ,j ≥ 0, j = 1, . . . , p. Then the optimization

problem is equivalent to

(β+,β−) = arg max
β+,β−

Qτ (y −Xβ+ −Xβ−),

subject to β+
τ,j , β

−
τ,j ≥ 0, where β+ = (β+

τ,j , j = 1, . . . , p) and β− = (β−τ,j , j = 1, . . . , p).

The aforementioned algorithm is computationally intensive because of the compli-

cated likelihood function. Following Zou and Li (2008), given an initial value βint, we

approximate the log-likelihood function by

`τ (β) ≈ `τ (βint) +∇T `τ (βint)(β − βint) +
1

2
(β − βint)T∇2`τ (βint)(β − βint).

Take βint as the maximum likelihood estimate β̃. Since ∇`τ (β̃) = 0, one-step sparse

estimator is given by

β̂ = arg min
1

2
(β − βint)T {−∇2`τ (βint)}(β − βint) +

p∑
j=1

ρλτ (|βj |),
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where

∇`τ (β) = −XTΣ−1
τ µτ − 2v

XTΣ−1
τ ε

εTΣ−1
τ ε

−
K̃ ′v(

√
2 + µTτ Σ−1

τ µτ
√
εTΣ−1

τ ε)

K̃v(
√

2 + µTτ Σ−1
τ µτ

√
εTΣ−1

τ ε)

√
2 + µTτ Σ−1

τ µτ (XTΣ−1
τ ε)√

εTΣ−1
τ ε

and

∇2`τ (β) = −2v
XTΣ−1

τ X

εTΣ−1
τ ε

− 2v
(XTΣ−1

τ ε)(X
TΣ−1

τ ε)
T

(εTΣ−1
τ ε)2

−
2K̃ ′′v (

√
2 + µTτ Σ−1

τ µτ
√
εTΣ−1

τ ε)

K̃v(
√

2 + µTτ Σ−1
τ µτ

√
εTΣ−1

τ ε)

(2 + µTτ Σ−1
τ µτ )(XTΣ−1

τ ε)(X
TΣ−1

τ ε)
T

εTΣ−1
τ ε

−
2{K̃ ′v(

√
2 + µTτ Σ−1

τ µτ
√
εTΣ−1

τ ε)}2

K̃2
v (
√

2 + µTτ Σ−1
τ µτ

√
εTΣ−1

τ ε)

(2 + µTτ Σ−1
τ µτ )(XTΣ−1

τ ε)(X
TΣ−1

τ ε)
T

εTΣ−1
τ ε

−
K̃ ′v(

√
2 + µTτ Σ−1

τ µτ
√
εTΣ−1

τ ε)

K̃v(
√

2 + µTτ Σ−1
τ µτ

√
εTΣ−1

τ ε)

√
2 + µTτ Σ−1

τ µτ (XTΣ−1
τ X)√

εTΣ−1
τ ε

−
2K̃ ′v(

√
2 + µTτ Σ−1

τ µτ
√
εTΣ−1

τ ε)

K̃v(
√

2 + µTτ Σ−1
τ µτ

√
εTΣ−1

τ ε)

(2 + µTτ Σ−1
τ µτ )1/2(XTΣ−1

τ ε)(X
TΣ−1

τ ε)
T

(εTΣ−1
τ ε)3/2

with

K̃v(u) = u−vKv(u) =
1

2v+1

∫ ∞
0

z−v−1 exp(−z − u2

4z
)dz,

and K̃ ′v(u) = −uK̃v−1(u)/2, K̃ ′′v (u) = −K̃v−1(u)/2 + u2K̃v−2(u)/4.

Numerous literatures discuss computing the integral in Lτ (·), see e.g. Amos (1974)

and Jin and Zhang (1996). When n is odd, say n = 2r + 3, we can further reduce the

computational burden by writing the integral in closed form

Kv

(
u
)

=

√
π

2u
e−u

r∑
k=0

(r + k)!

(r − k)!k!
(2u)−k.
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3.5 Numerical studies

3.5.1 Simulation studies

In this section, we present several examples that demonstrate the model selection

property and quantile estimation of the proposed model. We simulate n observations

(xi, yi), i = 1, . . . , n from the following model

y(x) = xβ + ετ (x),

where ετ (x) = σ
√

2W
τ(1−τ)Z(x) + σ 1−2τ

τ(1−τ)W , Z(x) and W are independent, Z(x) is a

stationary Gaussian process and W follows standard exponential distribution. Assume

there are p explanatory variables and the stationary Gaussian process Z(x) has mean

0 and covariance structure cov(Z(x1), Z(x2)) = exp(−
∑p

i=1 |x1i − x2i|/θi), where θi,

i = 1, . . . , p are parameters.

Similar to Wang et al. (2012), we use quantiles τ = 0.5, 0.3 and 0.7 to demonstrate

our approach. Common penalty functions such as L1 norm penalty, the SCAD penalty

and the MCP are applied. In example 1, we take n = 200, p = [n1/4] = 4 and

s = [
√
p] = 2. In example 2, we consider larger number of variables and take p = 50

and s = 5 to further explore the performance of proposed method. Non-zero coefficients

β0
Aτ ≈

√
2p/n. Other model parameters are chosen as θi = 1, i = 1, . . . , p and σ = 1.

BIC is used for tuning parameter selection. Based on 100 replications for a given model,

the performance of proposed approach is evaluated by the following criterion: model size

which is the number of variables with non-zero estimation, variable selection sensitivity

which is defined as the proportion of variables in Aτ that are selected, variable selection

specificity which is the proportion of variables in Acτ are excluded and mean square error

(MSE) of β, defined as
∑p

i=1(β̂i − β0
i )2/p. The results are shown in Table 3.1.
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Table 3.1: Model selection for quantile Gaussian process

model size variable selection variable selection MSE (β)
sensitivity specificity

Example 1: n = 200 p = 4 s = 2

τ = 0.5 LASSO 2.11 (0.37) 99.00% (7.04%) 93.50% (16.90%) 0.10 (0.24)
SCAD 2.02 (0.32) 98.00% (9.85%) 97.00% (11.93%) 0.09 (0.27)
MCP 1.97 (0.22) 98.00% (9.85%) 99.50% (5.00%) 0.09 (0.26)

τ = 0.3 LASSO 1.99 (0.39) 95.50% (16.04%) 96.00% (13.63%) 0.20 (0.45)
SCAD 1.86 (0.38) 92.00% (19.75%) 99.00% (7.04%) 0.26 (0.54)
MCP 1.90 (0.36) 94.00% (16.33%) 99.00% (7.04%) 0.23 (0.54)

τ = 0.7 LASSO 2.02 (0.47) 95.00% (15.08%) 94.00% (16.33%) 0.20 (0.42)
SCAD 1.84 (0.39) 91.50% (18.88%) 99.50% (5.00%) 0.26 (0.53)
MCP 1.82 (0.39) 91.00% (19.31%) 100% (0%) 0.29 (0.55)

Example 2: n = 200 p = 50 s = 5

τ = 0.5 LASSO 6.28 (3.06) 98.20% (12.74%) 96.96% (6.59%) 0.20 (0.93)
SCAD 5.31 (1.84) 98.60% (10.73%) 99.16% (3.93%) 0.17 (0.88)
MCP 5.28 (1.78) 98.60% (10.73%) 99.20% (3.80%) 0.17 (0.86)

τ = 0.3 LASSO 18.40 (10.05) 100% (0%) 70.25% (22.26%) 0.09 (0.11)
SCAD 15.65 (10.85) 97.71% (7.03%) 77.73% (21.62%) 1.26 (2.33)
MCP 15.57 (10.78) 97.71% (7.03%) 77.96% (21.48%) 1.26 (2.34)

τ = 0.7 LASSO 19.37 (10.40) 98.37% (11.37%) 67.41% (22.68%) 0.13 (0.51)
SCAD 11.38 (9.70) 91.22% (16.51%) 85.53% (19.44%) 1.76 (3.13)
MCP 11.25 (9.68) 91.43% (15.99%) 85.85% (19.39%) 1.73 (3.05)
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According to Table 3.1, the proposed approach with different penalty function can

select the true variables with high probability and small estimation bias. The perfor-

mance is the best when τ = 0.5, as shown by higher variable selection sensitivity and

specificity as well as smaller MSE. When the number of variables p is larger, the perfor-

mance of median estimation is still comparable to the case when p is smaller. However,

when τ = 0.3 or τ = 0.7, it is harder to distinguish the noise variables which are in Acτ .

Variable selection specificity drops from more than 90% to about 70% for all penalty

functions. MSE is larger than the scenario with p = 4. In addition, for all examples,

model with SCAD penalty performs similar to model with MCP penalty. Model with

LASSO penalty usually intends to select more variables comparing with model with

SCAD or MCP penalty. All the observations are consistent with the existing theories.

3.5.2 Data center example

A data center is a computing infrastructure facilities that house large amounts of infor-

mation technology (IT) equipment used to process, store, and transmit digital informa-

tion. Data center facilities constantly generate large amounts of heat to the room, which

must be maintained at an acceptable temperature for reliable operation of the equip-

ment. More discussions of data center can be found in Hung et al. (2012). A significant

fraction of the total power consumption in a data center is for heat removal; therefore,

determining the most efficient cooling mechanism has become a major challenge. The

objective of a thermal management study is to model the thermal distribution in a

data center and the final goal is to design a data center with an efficient heat-removal

mechanism.

For a data center thermal study, physical experiments are not always feasible because
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some settings are highly dangerous and expensive to perform. Therefore, simulations

based on computational fluid dynamics (CFD) are widely used. In this example, CFD

simulations are conducted at IBM T. J. Watson Research Center based on a real data

center layout. Detailed discussions about the CFD simulations can be found in López

and Hamann (2011). The first three columns in Table 3.2 list nine factors and their

levels in the CFD simulations, including four computer room air conditioning (CRAC)

units with different flow rates (x1, ..., x4), the overall room temperature setting (x5), the

perforated floor tiles with different percentage of open areas (x6), and spatial location

in the data center (x7 to x9). There are 27,000 temperatures simulated from the CFD

simulator and these temperature outputs are obtained from an irregular grid over the

9-dimensional experimental space. It is of interest to know which CRAC would impact

the room temperatures, especially the place with extreme temperatures. Therefore, we

conduct quantile regression with ALP analysis with τ = 0.1, τ = 0.5 and τ = 0.9. Since

the dataset is huge and it is infeasible to apply quantile regression with ALP to the

entire dataset. We randomly select 500 samples for illustration. L1-norm penalty is

applied. The results are shown in Table 3.2.

According to Table 3.2, tile open area percentage, location in y-axis and height have

impact on 10% temperature, median temperature and 90% temperature. However, unit

2 can influence the areas with low temperature and median temperature but not areas

with high temperature. On the other hand, unit 1, unit 3 can influence the areas with

high temperature and median temperature but not areas with low temperature. In

addition, unit 4 and location in x-axis can only reduce the temperature in areas with

high temperature.
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Table 3.2: Quantile analysis of thermal management data

Variable Levels τ = 0.1 τ = 0.5 τ = 0.9

x0 Intercept - 0.99 39.60 56.20
x1 CRAC unit 1 flow rate (cfm) (0,7000,8500,10000 - -5.39 -7.53

11500,13000)
x2 CRAC unit 2 flow rate (cfm) (0,7000,8500,10000 -5.04 -8.14 -

11500,13000)
x3 CRAC unit 3 flow rate (cfm) (0,2500,4000,5500) - -2.77 -5.89
x4 CRAC unit 4 flow rate (cfm) (0,2500,4000,5500) - - -4.90
x5 Room temperature setting (F) (65,67,69,71,73, 75) - - -
x6 Tile open area percentage (%) (15, 25, 35, 45 0.05 0.26 0.05

(55, 65, 75)
x7 Location in x-axis 8 unequally spaced - - -3.38
x8 Location in y-axis 4 unequally spaced 4.91 4.68 4.35
x9 Height 18 equally spaced 33.18 34.46 32.71

3.6 Discussion

In this chapter, we present a penalized quantile regression with asymmetric Laplace

process that not only incorporate correlations among observations but also select rele-

vant covariates simultaneously. The proposed model is built under the assumption that

for different quantiles, the set of covariates that can impact conditional distribution

of response can be different. We also establish asymptotic model selection consistency

and provide an algorithm for the proposed penalized estimators.

Future work can be explored in the following directions. First, considering infi-

nite collection of quantiles with different relevant covariates, no oracle property has

been established for penalized quantile regression with or without data dependence.

Asymptotic distributions of penalized estimators are not yet known. Second, due to

complicated likelihood function and penalty functions, it is computationally intensive
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to obtain penalized estimators for quantile regression with asymmetric Laplace distri-

bution. An efficient algorithm is desired for practical use on large datasets.

3.7 Appendix

3.7.1 Lemma

Lemma 3.1 Under condition A2 and assume p = o(n1/4), we have

‖∇2`τ (β)− Jτ (β)‖2 = op(1/p)

and

‖n(
∂`τ (β)

∂β
)(
∂`τ (β)

∂β
)T − Iτ (β)‖2 = op(1/p).

Proof: By Chebyshev’s inequality, for any ε > 0,

P (‖∇2`τ (β)− Jτ (β)‖2 ≥ ε/p)

≤ p2

ε2

p∑
i,j=1

E[
∂2`τ (β)

∂βi∂βj
− E{∂

2`τ (β)

∂βi∂βj
}]2 = O(p4/n).

Similarly, we can prove ‖n(∂`τ (β)
∂β )(∂`τ (β)

∂β )T − Iτ (β)‖2 = op(1/p).

3.7.2 Proof of Theorem 3.1

Let αn =
√
p/n and set ‖w‖2 = C where C is a large enough constant. To prove

theorem 1, we only need to show that for any given ε, there exists a C such that

P ( sup
‖w‖2=C

Qτ (β0
τ + αnw) < Qτ (β0

τ )) ≥ 1− ε.

Since ρλτ (0) = 0, we have

Qτ (β0
τ + αnw)−Qτ (β0

τ ))

≤ {`τ (β0
τ + αnw)− `τ (β0

τ )} −
∑
j∈Aτ

{ρλτ (|β0
τ,j + αnwj |)− ρλτ (|β0

τ,j |)}

= I1 + I2.
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Using Taylor expansion, we have

I1 = αn∇T `τ (β0
τ )w +

α2
n

2
wT∇2`τ (β0

τ )w +
α3
n

6
∇{wT∇2`τ (β∗τ )w}w

= I11 + I12 + I13.

By condition A1, |I11| ≤ αn‖∇T `τ (β0
τ )‖2‖w‖2 = αnOp(

√
p/n)‖w‖2. With respect to

I12, by Lemma 3.1, we have

I12 =
α2
n

2
wT {∇2`τ (β0

τ )− E∇2`τ (β0
τ )}w − α2

n

2
wTJτ (β0

τ )w

= −α
2
n

2
wTJτ (β0

τ )w +Op(1/p)α
2
n‖w‖22.

By condition A3, we have

|I13| = |α
3
n

6
∇{wT∇2`τ (β∗τ )w}w|

≤ α3
n

6
(
∑
i,j,k

M2
i,j,k)

1/2‖w‖32 = Op(p
3/2α3

n)‖w‖32.

In addition,

I2 = −
∑
j∈Aτ

[ρ′λτ (|β0
τ,j |)sgn(β0

τ,j)αnwj + ρ′′λτ (|βτ,j|)w2
j α

2
n{1 + o(1)}]

= I21 + I22.

By condition A6 and A7, we have

|I21| ≤
∑
j∈Aτ

|ρ′λτ (|β0
τ,j |)αnwj | ≤

√
sταn‖w‖2 max

j∈Aτ
|ρ′λτ (|β0

τ,j |)| = o(αn
√
p/n),

and |I22| ≤ α2
n‖w‖22 maxj∈Aτ |ρ′′λτ (|β0

τ,j |)| = o(α2
n).

In total, all the terms are dominated by I12 which is negative.

3.7.3 Proof of Theorem 3.2

We first show the sparsity, that is β̂Acτ = 0. Let ε = C
√
p/n. It is sufficient to show

that with probability approaching 1 as n→ 1, for any βAτ such that ‖βAτ −β
0
τ,Aτ ‖2 =
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Op(
√
p/n), we have for i ∈ Acτ ,

∂Qτ (β)

∂βi
< 0, for 0 < βi < ε

∂Qτ (β)

∂βi
> 0, for − ε < βi < 0.

By Taylor expansion, we have

∂Qτ (β)

∂βi
=
`τ (β)

∂βi
− ρ′λτ (|βi|)sgn(βi)

=
`τ (β0

τ )

∂βi
+

p∑
j=1

∂2`τ (β0
τ )

∂βi∂βj
(βj − β0

τ,j)

+

p∑
j,k=1

∂3`τ (β∗τ )

∂βi∂βj∂βk
(βj − β0

τ,j)(βk − β0
τ,k)− ρ′λτ (|βi|)sgn(βi)

= I1 + I2 + I3 + I4,

where β∗τ lies between β0
τ and β.

Using Chebyshev’s inequality, we can show that |I1| = Op(1/
√
n). Rewrite I2, we

have

|I2| =

p∑
j=1

{∂
2`τ (β0

τ )

∂βi∂βj
− E∂

2`τ (β0
τ )

∂βi∂βj
}(βj − β0

τ,j) +

p∑
j=1

E
∂2`τ (β0

τ )

∂βi∂βj
(βj − β0

τ,j)

= I21 + I22.

By Cauchy-Schwarz inequality and Lemma 3.1, we have

|I21| ≤ ‖β − β0
τ‖2[

p∑
j=1

{∂
2`τ (β0

τ )

∂βi∂βj
− E∂

2`τ (β0
τ )

∂βi∂βj
}2]1/2 = Op(n

−1/2p−1/2),

and since the eigenvalues of Jτ (β) are bounded

|I22| ≤ ‖∇
∂`τ (β0

τ )

∂βi
‖2‖β − β0

τ‖2 = Op(
√
p/n).
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Similarly, rewrite I3 as

I3 =

p∑
j,k=1

{ ∂
3`τ (β∗τ )

∂βi∂βj∂βk
− E ∂3`τ (β∗τ )

∂βi∂βj∂βk
}(βj − β0

τ,j)(βk − β0
τ,k)

+

p∑
j,k=1

E
∂3`τ (β∗τ )

∂βi∂βj∂βk
(βj − β0

τ,j)(βk − β0
τ,k)

= I31 + I32.

By condition A3 and Cauchy-Schwarz inequality, we have

|I31| ≤ [

p∑
j,k=1

{ ∂
3`τ (β∗τ )

∂βi∂βj∂βk
− E ∂3`τ (β∗τ )

∂βi∂βj∂βk
}2]1/2‖β − β0

τ‖22 = Op(p
2/n) = op(

√
p/n),

and

|I32|2 ≤ [

p∑
j,k=1

E{ ∂
3`τ (β∗τ )

∂βi∂βj∂βk
}2]‖β − β0

τ‖42 = Op(p
4/n2).

Therefore, we have I1 + I2 + I3 = Op(
√
p/n). By condition A4, from

∂Qτ (β)

∂βi
= −ρ′λτ (|βi|)sgn(βi) + Op(

√
p/n)

= −λτ{ρ′λτ (|βi|)sgn(βi)/λτ + Op(
√

p/n/λτ )},

we can see that the sign of βi determines the sign of the derivative completely.



53

Bibliography

Amos, D. (1974), “Computation of modified Bessel functions and their ratios,” Mathe-

matics of Computation, 28, 239–251.

Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008), “Gaussian predictive

process models for large spatial data sets,” Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 70, 825–848.

Bayarri, M., Berger, J., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J.,

Parthasarathy, R., Paulo, R., Sacks, J., and Walsh, D. (2007), “Computer model

validation with functional output,” The Annals of Statistics, 35, 1874–1906.

Bayarri, M., Berger, J. O., Kennedy, M. C., Kottas, A., Paulo, R., Sacks, J., Cafeo,

J. A., Lin, C.-H., and Tu, J. (????), “Predicting vehicle crashworthiness: Validation

of computer models for functional and hierarchical data,” Journal of the American

Statistical Association, 104, 929–943.

Belloni, A., Chernozhukov, V., et al. (2011), “1-penalized quantile regression in high-

dimensional sparse models,” The Annals of Statistics, 39, 82–130.

Boukouvalas, A., Barillec, R., and Cornford, D. (2012), “Gaussian Process Quantile

Regression using Expectation Propagation,” arXiv preprint arXiv:1206.6391.

Chaudhuri, P., Doksum, K., Samarov, A., et al. (1997), “On average derivative quantile

regression,” The Annals of Statistics, 25, 715–744.



54

Chernozhukov, V. (2005), “Extremal quantile regression,” The Annals of Statistics, 23,

806–839.

Chu, T., Zhu, J., Wang, H., et al. (2011), “Penalized maximum likelihood estimation

and variable selection in geostatistics,” The Annals of Statistics, 39, 2607–2625.

Cressie, N. and Johannesson, G. (2008), “Fixed rank kriging for very large spatial data

sets,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70,

209–226.

Cressie, N. A. and Cassie, N. A. (1993), Statistics for spatial data, vol. 900, Wiley New

York.

DiCiccio, T. and Efron, B. (1992), “More accurate confidence intervals in exponential

families,” Biometrika, 79, 231–245.

DiCiccio, T. J. and Efron, B. (1996), “Bootstrap confidence intervals,” Statistical Sci-

ence, 11, 189–212.

Efron, B. (1979), “Bootstrap methods: another look at the jackknife,” The Annals of

Statistics, 7, 1–26.

Efron, B. and Tibshirani, R. J. (1994), An introduction to the bootstrap, vol. 57, Chap-

man and Hall/CRC press, New York.

Fan, J. and Li, R. (2001), “Variable selection via nonconcave penalized likelihood and

its oracle properties,” Journal of the American Statistical Association, 96, 1348–1360.

Fan, J. and Peng, H. (2004), “Nonconcave penalized likelihood with a diverging number

of parameters,” The Annals of Statistics, 32, 928–961.



55

Fang, K.-T., Li, R., and Sudjianto, A. (2006), Design and modeling for computer ex-

periments, Chapman and Hall/CRC press, New York.

Fuentes, M. (2007), “Approximate likelihood for large irregularly spaced spatial data,”

Journal of the American Statistical Association, 102, 321–331.

Furrer, R., Genton, M. G., and Nychka, D. (2006), “Covariance tapering for interpo-

lation of large spatial datasets,” Journal of Computational and Graphical Statistics,

15, 502–523.
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