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ABSTRACT OF THE THESIS 

 

Integrating Affective and Cognitive Correlates of Heart Rate Variability: 

A Structural Equation Modeling Approach 

By SARAH L. MANN 

Thesis Director: 

Richard J. Contrada, Ph.D. 

 

High frequency heart rate variability (HRV) is a measure of neurocardiac communication 

that is thought to reflect predominantly parasympathetic cardiac regulation. Low HRV has 

been associated empirically with clinical and subclinical levels of anxiety and depression and, 

more recently, high levels of HRV have been associated with measures of executive 

functioning. These findings have informed theories proposing that HRV may provide an 

autonomic index of a broad, self-regulatory capacity underlying aspects of emotion 

regulation and cognitive control. This study sought to operationalize and test this 

proposition using a structural equation modeling approach by examining the relationships of 

HRV to negative affect (NA) and executive functioning (EF) in a large sample of U.S. adults 

spanning six decades of age (30s–80s). HRV was modeled as a predictor of an NA factor 

(self-reported trait anxiety and depression symptoms) and an EF factor (performance on 

three neuropsychological tests tapping facets of executive abilities). Alternative models also 

were tested to determine the utility of HRV for predicting EF, with and without statistical 

control of demographic and health-related covariates. In the initial structural, model HRV 
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showed a significant relationship to EF and a nonsignificant relationship to NA. When 

covariates were included in the model, HRV’s associations with both constructs were 

nonsignificant. Age emerged as the only significant predictor of NA and EF in the final 

model, showing inverse relationships to both. Findings may reflect population and 

methodological differences between the present thesis and prior research, but they also 

suggest potential refinements to the interpretations of earlier findings and theoretical claims 

regarding HRV. 
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Introduction 

A variety of cognitive and affective measures have been linked to 

psychophysiological markers that reflect the biological bases, concomitants, or consequences 

of health-related psychological processes. Many of these markers are thought to reflect 

mechanisms underlying associations between psychosocial factors, including mental health 

problems, and physical disease (Contrada, 2011). In the study of cardiovascular health, one 

such psychophysiological marker is heart rate variability (HRV), which is measured using 

electrocardiographic data to quantify small variations over time in the intervals between 

successive heart beats. There is evidence to suggest that these beat-to-beat variations reflect 

parasympathetic cardiac regulation, among other influences, providing a measure of the 

deceleratory influence of the vagus nerve on heart rate (Levy, 1990). Consequently, HRV 

often is interpreted as a measure of vagal functioning or vagal tone (Berntson et al., 1997). 

Parasympathetic regulation is thought to exert tonic inhibitory effects on sympathetic 

activity, which is associated with stress and negative emotion and has been shown to mediate 

psychosocial influences on cardiovascular disease (Brooks, McCabe, & Schneiderman, 2011; 

Glick, Braunwald, & Lewis, 1965). As such, low HRV has been studied as possible marker of 

risk for cardiovascular disease (CVD), adverse cardiac events, and all cause mortality (Dekker 

et al., 1997, 2000; Tsuji et al., 1994, 1996).  

Closely related to its significance for cardiovascular health, HRV also has been 

studied as a measure reflecting the bidirectional communication between the brain and the 

cardiovascular system. In particular, it is a possible reflection of brain mechanisms 

underlying various aspects of psychological self-regulation (Bates & Buckman, 2013; 

Benarroch, 1997; Berntson, Cacioppo & Grossman, 2007). Self-regulatory processes are 

defined broadly as individuals’ means of purposefully controlling their predisposed affective, 
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cognitive, or behavioral responses to a situation, including resisting or changing those 

responses and initiating goal-directed efforts (Bandura, 1989; Heatherton, 2011; Shah, 2005). 

In this context, HRV has been linked to both affective and cognitive facets of self-

regulation.  The relationship of low HRV to poor emotional regulation is noteworthy 

because, like HRV, negative emotional states and conditions have been implicated as 

possible risk factors for CVD and other physical health problems (Rozanzki, Blumenthal, & 

Kaplan, 1999; Suls & Bunde, 2005; Gianaros & Sheu, 2009). In addition, since the 1990s, a 

related literature has documented HRV’s inverse relationships to symptoms of anxiety and 

depression in physically healthy individuals (Friedman, 2007; Rottenberg, 2007). Largely in 

parallel to this work, a smaller but growing literature on HRV’s cognitive correlates has 

shown an association between HRV and some neuropsychological measures of executive 

functioning (Thayer et al., 2009). Executive functioning is a cognitive construct within the 

domain of self-regulation (Heatherton, 2011; Hoffman, Schmeichel, & Baddely, 2012) 

defined as cognitive control processes that support goal maintenance and the flexible 

implementation of task rules (e.g., Miller & Cohen, 2001; Miyake et al., 2000).  

The status of HRV as a marker for neurocardiac communication, along with the 

broad range of psychological measures to which it has been linked, have prompted 

theoretical interest in integrating knowledge about autonomic cardiac regulation with 

findings delineating HRV’s affective and cognitive correlates. These theories tend to hold in 

common the notion that HRV may reflect a broad, self-regulatory capacity that underlies 

aspects of emotion regulation and cognitive control, allowing individuals to respond in a 

flexible, adaptive way to a complex, changing environment (Appelhans & Leuken, 2006; 

Beauchaine, 2001; Porges, 2011, Thayer & Lane, 2009). One purpose of the present thesis 

was to test the proposition that HRV might serve as a predictor of individual differences in 
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these emotional and cognitive self-regulatory abilities by modeling its relationships to 

negative affect and executive functioning in a large sample of U.S. adults.  

HRV and Negative Affect 

Research on physically healthy individuals has documented associations between low 

HRV and elevated symptoms of anxiety and depression (Friedman, 2007; Rottenberg, 2007). 

Research into HRV’s relationship to anxiety generally has focused on clinical and mixed 

samples. Among the anxiety disorders, the strongest relationships to low HRV have been 

found in panic disorder (PD) and post-traumatic stress disorder (PTSD), while studies of 

generalized anxiety disorder and phobias have been fewer and shown less consistent results 

(Friedman, 2007). Low HRV also has been associated with biased attention toward threat 

(Miskovic & Schmidt, 2010) and a delay in disengaging attention from threat (Cocia, 

Uscătescu, & Rusu, 2012), which are found in individuals with anxiety disorders (Clark, 

1999). 

As interest has grown in understanding the generalizability of these findings to 

nonclinical populations, a number of studies of nonclinical and mixed samples have 

examined HRV’s relationship to emotion-modulated startle. Emotion-modulated startle is an 

implicit measure in the sense that it does not involve self-report. Instead, emotional states 

are inferred from changes in the amplitude of the eye blink response to a sudden stimulus 

such as an unexpected burst of loud white noise. This manifestation of the startle reflex is 

altered by pre-exposure to emotional stimuli (Grillon & Baas, 2003). This work has linked 

low resting HRV to exaggerated startle response under threat of shock (Melzig et al., 2009) 

as well as to increased startle magnitude following neutral stimuli (Ruiz-Padial, 2003). Based 

on these findings, the authors of these studies suggest that low HRV generally may be 

associated with elevated levels of anticipatory anxiety, which impedes adaptive emotional 
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regulation. This interpretation suggests that the emotion-modulated startle findings may 

point to a broader association between low HRV and higher trait anxiety (TA), a construct 

typically measured explicitly by self report and thought to be relatively stable across 

potentially threatening situations (Spielberger, 1983, 1989). Thus far, a few studies have 

found an inverse relationship between TA and low HRV in medical patient groups (e.g., 

Kogan, Allena, & Weihs, 2012), and the small number of studies to examine this association 

in physically healthy individuals have reported inconsistent findings (Bleil et al., 2008; 

Dishman et al., 2000; Fuller, 1992; Virtanen et al., 2003; Watkins et al., 1998).   

Low HRV also has been associated with depressive symptoms, though much of this 

research has been conducted in patients with CVD, raising the possibility that CVD might 

confound or moderate this HRV–depression association (Kemp et al., 2010). Studies of 

HRV and depression in physically healthy participants are relatively recent and, compared to 

the HRV–anxiety literature, their findings have been more mixed and the associations more 

modest (Kemp et al., 2010; Rottenberg, 2007). Some major causes of inconsistencies in the 

HRV–depression literature include potentially confounding effects of (1) some 

antidepressant medications’ effects on HRV, (2) unmeasured cardiovascular factors linked to 

both HRV and depression, and (3) potential effects on HRV due to unmeasured comorbid 

anxiety—each of which may cause or contribute to lower HRV in this population 

(Rottenberg, 2007).  

One recent study of the relationship of HRV to depression with and without 

comorbid anxiety sought to address these sources of variation by comparing physically 

healthy controls to physically healthy, unmedicated patients diagnosed with either depression 

alone or depression with comorbid anxiety (Kemp et al., 2012). In this case, the comparison 

of controls to patients with depression alone showed a moderate effect, while the 
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comparison of controls to the group with comorbid depression and anxiety yielded a large 

effect. Overall, results showed lower HRV in both patient groups, supporting the 

independent relationship of low HRV to depression and supporting a possible contributory 

role for comorbid anxiety. To our knowledge, only one study has examined HRV’s 

relationship to symptoms of both anxiety and depression in a large community sample. Bleil 

et al. (2008) reported that in young and middle-aged adults (N=653) symptoms of 

depression and anxiety, but not anger, each independently predicted HRV and contributed 

to the higher-order latent variable of negative affect, which also predicted HRV.   

Overall, research on the relationship of HRV to anxiety and depression provides 

some support for independent associations, while generally presenting a clearer relationship 

to anxiety than depression. This appears due, in part, to the medical and medication-related 

confounds in much of the depression-focused work, and the paucity of well-controlled 

studies examining comorbid anxiety and depression. At the same time, this research includes 

even fewer studies seeking to clarify the generalizability of the clinical and laboratory-based 

findings to large nonclinical samples. One way in which the present study aimed to address 

this question of generalizability was by testing the relationships of HRV to both anxiety 

symptoms and depressive symptoms, conceptualized as indicators of the latent variable of 

negative affect, in a large, nonclinical sample with a broad age range. 

HRV and Executive Functioning 

Executive functions (EF) are defined as cognitive control mechanisms for 

maintaining task goals and flexibly implementing task rules (e.g., Miller & Cohen, 2001; 

Miyake et al., 2000). One prominent theoretical framework for characterizing individual 

differences in EF describes a three-factor model comprising (1) monitoring and updating 

information in working memory, (2) task shifting, and (3) inhibition of prepotent responses 
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(Miyake et al., 2000). Factor analyses have shown these three component executive processes 

to be intercorrelated yet functionally separable (Miyake et al., 2000). Given the broad 

cognitive reach of these processes, the proper means of delimiting the executive functioning 

construct has been a topic of debate, as has its status as a coherent construct in cognitive 

research (e.g., Engle, 2002; Parkin, 1998). Nonetheless, there is a working consensus in the 

clinical and neuropsychological literatures that the abilities typically described as EF can 

show distinctive patterns of dysfunction and are critical for psychological and behavioral 

self-regulation in response to changing environmental demands (Chan et al., 2008; 

Heatherton, 2011; Jurado & Rosselli, 2007).  

Several quasi-experimental studies have yielded associations between resting HRV 

and performance on two tasks with executive demands on working memory (Thayer et al., 

2009). One such study, carried out with young, male members of the Royal Norwegian 

Navy, compared cognitive performance in high- and low-HRV participants grouped using a 

median split in resting HRV (Hansen, Johnsen, & Thayer, 2003). Compared to the low-HRV 

group, high-HRV participants showed superior accuracy on a two-back working memory 

measure. In this computerized task, participants are presented with a series of stimuli (e.g., 

letters) one at a time and asked to indicate when the current stimulus matches the one shown 

two steps earlier in the series. They also showed faster responding, with a trend toward 

better accuracy, on the components of a continuous performance test (CPT) interpreted as 

tapping executive functioning. Other studies of the HRV–EF relationship have used the 

same tasks and similar Norwegian Navy samples. They have reported improved executive 

performance under stress among low-HRV but not high-HRV participants, which was 

attributed to low-HRV individuals’ higher anxiety; and coincident increases in HRV and 

improvements in executive task components after physical fitness training (Hansen et al., 
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2004; Hansen, Johnson, & Thayer, 2009). A similarly designed study of the effects of 

physical fitness training on older, sedentary adults likewise found increased HRV and 

improved performance on the Wisconsin Card Sorting Test only in the group assigned to an 

exercise regimen (Albinet et al., 2010).  

Overall, these studies provide some initial support for a correlation between higher 

resting HRV and better performance on several tasks tapping facets of EF. However, this 

work also resembles the HRV-negative affect research, in that it raises similar types of 

questions about the generalizability of findings. First, the extent to which these findings 

reflect associations in the general population is unclear, given their focus on small (N = 24-

65), predominantly male samples drawn from the extremes of the nonclinical population in 

terms of physical fitness. Second, these studies also present a relatively narrow 

conceptualization of executive functioning, based either on a single task (WCST; Albinet et 

al., 2010) or on subdividing executive from nonexecutive components of the same two tasks 

(two-back and CPT; Hansen, Johnson, & Thayer, 2003; Hansen et al., 2004; Hansen, 

Johnson, & Thayer, 2009). Third, among the studies that measured HRV as a predictor of 

individual EF differences rather than change in HRV as an intervention outcome, HRV was 

dichotomized rather than treated as a continuous variable. As a result, it not clear whether 

the findings describe a continuous EF-HRV relationship or one characteristic of their 

extreme values.  

The present thesis aimed to address several of the questions raised by these studies 

about HRV as a potential predictor of EF in the nonclinical adult population. This study 

aimed to shed new light on the strength and nature of the HRV-EF relationship by (1) using 

a larger, more diverse sample than much of the prior research in this area; (2) treating HRV 
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as a continuous variable, rather than dichotomizing it; and (3) conceptualizing EF as a latent 

variable measured by a set of tasks selected to measure its major theorized components.  

Aims and Hypotheses 

This study examined the relationships of both negative affect and executive 

functioning to resting HRV in a large, nonclinical adult sample spanning six decades of age 

(30s-80s). As noted, the relationships of anxiety and depression to HRV have rarely been 

examined together despite their high comorbidity (Gorman, 1998; Kessler et al., 1996), and 

only one study has examined both relationships to HRV in a large, nonclinical adult sample 

(Bleil et al., 2008), albeit one with a narrower age range (30-54 years). In part, the proposed 

analysis sought to provide a conceptual replication of that study by testing a model in which 

symptoms of anxiety and symptoms of depression were hypothesized to underlie a common, 

HRV-related negative affect factor. 

 In addition, this study aimed to extend previous findings by including in the model 

the relationship of HRV to an executive functioning factor. This aspect of the study was 

intended to serve two major purposes. First, as discussed above, it addressed several 

questions about the generalizability of previously reported EF-HRV associations by using a 

large, diverse sample, a more comprehensive conceptualization of EF, and a continuous 

measurement of HRV. Second, by incorporating the major proposed affective and cognitive 

correlates of HRV in a single model, it represents the first effort to operationalize and test 

current theories proposing HRV as a potential “index” reflecting individual differences in 

affective and cognitive self-regulatory processes (Porges, 2011, Thayer & Lane, 2009). Based 

on prior theoretical and empirical work, the hypotheses were: (1) HRV was expected to 

show an inverse relationship to NA and a direct relationship to EF; (2) NA and EF were 
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expected to show an inverse association; (3) age was predicted to relate inversely to EF; no 

prediction was made about its association with NA.  

A structural equation modeling (SEM) approach was adopted for these analyses 

because this method is well-suited to examining relationships between measured and latent 

variables in large samples. It allows for the construction of latent factors (NA and EF) based 

on shared variance among observable indicators, in addition to path analyses to test the 

extent to which the variability in a given measure can explain the variability in other 

constructs in the model. Several limitations of SEM are important in the context of the 

present study: It cannot determine causality; it poses challenges for examining nonlinear 

relationships, which may characterize autonomic functioning; and it shares with other 

methods the potential to yield misleading conclusions if influential variables are omitted 

(Berntson et al., 1994; Tomarkin & Waller, 2005). Nonetheless, its ability to provide a global 

test of model fit for a set of linear relationships makes it appropriate for testing theory-

driven predictions about such relationships between a physiological variable, HRV, and the 

psychological constructs of NA and EF. 

Methods  

Participants  

Data were drawn from the second wave of the Midlife in the United States (MIDUS) 

study (MIDUS II; 2002-2006), which collected biomedical, psychosocial, cognitive, and 

psychophysiological data from a large, diverse sample of U.S. adults (N = 4,975) aged 33 to 

84 years. MIDUS II included 9-year follow-ups of all four of the subsamples that comprised 

its first wave, MIDUS I: (1) a national random digit dialing (RDD) sample, (2) oversamples 

from 5 U.S. cities, (3) siblings of participants from the RDD sample, and (4) a national RDD 

sample of twin pairs. In addition, MIDUS II added an African-American subsample from 
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Milwaukee, Wisconsin. To be eligible to participate, individuals had to be non-

institutionalized English-speakers living in the continental United States and aged 25 to 74 

when they took part in MIDUS I.  

Data for the current analyses were drawn from two study components initiated in 

MIDUS II: the Biomarker Project (n = 1,255), which collected data on psychophysiological, 

biomedical, and psychosocial parameters; and the Cognitive Project (n = 4,512), which 

collected data on cognitive functioning. The eligible sample for the currents study before 

exclusion criteria were applied included the subset of MIDUS II participants who took part 

in both of these new studies and had valid resting HRV data (n = 1,056).  

Several exclusion criteria were applied to limit major confounding influences on 

HRV, executive functioning, and negative affect. First, eligible participants who did not deny 

a history of stroke were excluded (i.e., those who affirmed having had a stroke [n=20] or for 

whom data was missing [n = 59]). Stroke has been associated with low HRV, significant 

decrements in neurocognitive functioning, and a increased risk of depression (Dütsch et al., 

2007; Robinson, 2006). Individuals taking antidepressant medications (ADMs; n = 157) and 

those taking antihypertensive medications (n = 367) also were excluded, as these medications 

are widely prescribed and have been shown to affect cardiac autonomic functioning 

(Lampert et al., 2003; Licht et al., 2008, 2009; Rottenberg, 2007; Toivonen, 1993). Table 1 

presents the demographic and clinical characteristics of the present sample (N=533). 

Procedure 

Data for the MIDUS II Biomarker Project were collected from July 2004 to June 

2006. All MIDUS II participants who completed the MIDUS I follow-up phone interview 

and self-administered questionnaire (Project 1) were eligible to take part, except those drawn 

from the city oversamples. Biomarker Project participants traveled to one of 3 regional 
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research centers (Georgetown University, UCLA, or University of Wisconsin—Madison) for 

an overnight stay (Ryff, Seeman, & Weinstein, 2010). The protocol at all sites included 

collection of medical history and completion of psychosocial self-report questionnaires (day 

1), laboratory-based collection of psychophsyiological data (day 2), and physical exams (both 

days). At all sites, the psychophysiological recording session was conducted in the morning 

of the second day, following a light breakfast with no caffeinated beverages (Ryff, Seeman, & 

Weinstein, 2010).  

HRV data were collected with electrocardiograph (ECG) electrodes placed on each 

shoulder and in the left lower quadrant. Because HRV is sensitive to respiration rate, 

respiration bands on the chest and abdomen were used to measure respiration. The 

participant was seated at a computer that was used later in the session to present the 

cognitive stress tasks. Participants received instructions for two stress tasks (mental 

arithmetic and a the Stroop color–word task) and practiced keyboard-based responding; 

these tasks were administered later in the session, after the baseline resting HRV recording. 

After this brief practice interval, recording instruments were calibrated (up to 10 min), signal 

quality was checked (up to 10 min), and instruments were recalibrated as needed (up to 4.67 

min; Kimhy et al., 2013). Following the instruction to breathe normally, the two 5-min 

baseline ECG and respiration recordings were obtained.  

As described elsewhere (Shcheslavskaya et al., 2010), a National Instruments A/D 

board was used to digitize the analog ECG signals at 500 Hz and to pass them to a 

microcomputer. Proprietary event detection software was used to submit the ECG 

waveform to an R-wave detection routine, which yielded an RR interval series. Errors in R-

wave marking were corrected following established procedures (see Shcheslavskaya et al., 

2010). The spectra of the RR interval series were calculated using an interval method for 
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computing Fourier transforms, in which the mean of the RR interval series was first 

subtracted from each series value (see DeBoer, Karemaker, & Strackee, 1984). Next, the 

series was then filtered using a Hanning window (Harris, 1978) and the variance (in msec2), 

over the LF (0.04-0.15 Hz) and HF (0.15-0.50 Hz) bands was summed. Estimates of spectral 

power were adjusted to offset any attenuation caused by this filter (Harris, 1978).  

All MIDUS II participants were eligible to take part in the Cognitive Project. Those 

who participated were administered the Brief Test of Adult Cognition by Telephone 

(BTACT) to collect data on six domains of cognitive functioning: episodic verbal memory, 

inductive reasoning, speed of processing, working memory span, verbal fluency, and task-

switching (Lachman & Tun, 2008; Tun & Lachman, 2006). A detailed description of BTACT 

administration is available elsewhere (Tun & Lachman, 2006).  

Measures 

Resting Heart Rate Variability. High-frequency R-R interval variability (HF-HRV; 

bandwidth 0.15-0.40 Hz, msec2) was used to measure resting HRV. Time- and frequency-

domain measures of HRV are closely correlated (Berntson, Lozano, & Chen, 2005) and both 

are available in the MIDUS II data. The frequency domain measure was selected for these 

analyses because time-domain measures include some low-frequency contributions to R-R 

interval, which may conflate sympathetic and vagal influences (Berntson, Lozano, & Chen, 

2005). The MIDUS II Biomarker Project collected baseline data on resting HRV in 2 epochs 

of 300 seconds each, prior to a series of stress responsivity assessments. Only the first 

recording epoch was used in these analyses, as all participants who lacked valid epoch 1 data 

also lacked valid data for epoch 2. Resting HRV has shown good test-reliability over 

intervals of three weeks (.81–.99; Bertsch et al., 2012) to several months (.76–.80; Sinnreich 

et al., 1998) in healthy adults. 
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Spielberger State Trait Anxiety Inventory—Trait version (STAI-T). This widely 

used, 20-item inventory uses a 4-point Likert scale to measure individual differences in the 

likelihood of experiencing anxiety symptoms in response to potentially stressful situations 

(Spielberger, 1983, 1989). The trait scale has shown high test-retest reliability and good 

convergent validity with other self-report anxiety measures (Spielberger, 1983). Its reliability 

in the current sample was adequate (Cronbach’s alpha = .75). 

Center for Epidemiologic Studies Depression Scale (CESD). The CESD is 20-

item measure of depressive symptoms designed for large-scale surveys (Radloff, 1977; 

Roberts & Vernon, 1983). It has shown a stable factor structure across large clinical and 

nonclinical samples, high internal and adequate test-retest reliability, and good convergent 

and discriminant validity (Contrada et al., 2006; Radloff, 1977). Given the broad age span of 

MIDUS II participants and concerns about the accuracy of some common depression 

measures with elderly populations (Christensen et al., 1999), it is notable that the CESD has 

shown good psychometric properties in older populations (Herzog et al., 1990). It showed 

good reliability in the present sample (Cronbach’s alpha =.88). 

Digits Backward. The Digits Backward task, which measures the longest series of 

digits an individual can mentally resequence in reverse order, is a common measure of 

sustained attention and working memory (Tun & Lachman, 2006). This task demands 

sustained attention and active manipulation of information (Kaneko et al., 2011), making it a 

viable indicator of the executive capacity for continuous monitoring and updating 

information in working memory (Engle, 2002). Reliability data are unavailable for the 

present sample, to whom the cognitive battery was administered only once. Among a large, 

demographically representative sample of U.S. adults, it has shown good test-retest reliability 

(r = .83; Weschler, 1981). 
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Red/Green. The BTACT Red/Green task is a variant of the classic Go/No Go 

measure; this version of the task requires verbal responses only and can therefore be 

administered by telephone. Like the classic task, it is thought to draw on the executive 

processes of task switching and inhibition of prepotent responses (Kramer, Hahn, & 

Gopher, 1999; Tun & Lachman, 2006). In the BTACT protocol, this measure included a 

“normal” block of trials (participants said “stop” when the examiner said red and “go” when 

the examiner said green) a “reverse” block (“stop”—green; “go”—red), and a mixed block. In 

the mixed block, participants were cued with the words normal and reverse to switch between 

response types at unpredictable intervals. Earlier analyses of age and gender effects on these 

data indicated high accuracy (> 94%) across age groups and task conditions and reported 

that speed was not compromised for accuracy, even when controlling for age (Tun & 

Lachman, 2008). The present analyses used the average response latency of the switch and 

non-switch trials during the mixed block. For ease of interpretation in the context of the 

other cognitive measures, for which better performance corresponded to higher values, the 

latency values were subtracted from zero prior to analyses. Test-retest reliability over a 6-

month interval was examined in a representative subset of Cognitive Project participants a 

and found to be adequate (r = .77) for the mixed-task condition (Tun & Lachman, 2008).  

Category Fluency. The Category Fluency task measures the number of unique 

items from a semantic category (e.g., animals) an individual can generate in 1 minute. This 

task is conventionally interpreted as a measure of the executive processes of active self-

monitoring and inhibition (Lezak, Howieson, & Loring, 2004; Tun & Lachman, 2006). This 

measure has shown adequate test-retest reliability (r = .70) in middle-aged and elderly 

samples (Harrison, Buxton, & Husain, 2000; Snow et al., 1988). 

HRV Covariates 
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Demographic Factors. The demographic factors of age and sex, which have been 

associated with differences in resting HRV in previous research (e.g., Kou et al., 1999; Stein, 

Kleiger, & Rottman, 1997), were included in the analyses in order to account for their 

potential influence on HRV and for potential age- and sex-related differences in negative 

affect and executive functioning. Differences in resting HRV across racial groups also have 

been reported (e.g., Choi, 2006; Liao et al., 1995), but the relative lack of racial diversity in 

the sample (see Table 1) precluded an examination of race as a major factor in this study.  

Cardiovascular Health. Given that low HRV has been associated with poor 

cardiovascular heath (Dekker et al., 1997, 2000; Tsuji et al., 1994, 1996), the relationships of 

several major CVD risk factors to HRV were also examined. These included hypertension, 

hypercholesterolemia, diabetes, smoking, low levels of physical activity, and BMI (NHLBI, 

2012), each of which previously has been associated with low HRV (Thayer & Lane, 2007).  

Data Analytic Strategy 

The general mode of analysis involved structural equation modeling (SEM), which 

incorporates both measured and latent variables and can model interrelationships between 

multiple variables simultaneously, allowing a test of the hypothesized models’ respective fits 

to the MIDUS II data. The maximum likelihood (ML) method was used to analyze 

covariance matrices. This method uses all available data to compute parameters, standard 

errors, and test statistics that are unbiased when data is missing at random or completely at 

random and data are multivariate normal (Brown, 2006); it also has performed well relative 

to other available methods when data is nonnormal (Savelei & Bentler, 2005).  

Model fit was evaluated using the normed chi square (χ2/df), comparative fit index 

(CFI), root mean square error of approximation (RMSEA), and Non-normed Fit Index 

(NFI; Kline, 2005). According to standard criteria, values of (χ2/df) < 5 were considered a 
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good fit (Bollen, 1989). Model fit was considered good at RMSEA values ≤ 0.05, reasonable 

at values 0.5 to 0.8, or poor at values > 0.10 (Browne & Cudeck, 1993). CFI and NFI values 

≥ 0.95 each were considered a good fit (Hu & Bentler, 1999). The respective fits of nested 

models were compared using the chi-square difference test, in which a significant difference 

indicates that the additional estimated parameters in the more complex model provide a 

sufficiently improved fit to the data to justify less parsimony, compared to the simpler model 

(Hoyle, 2012). In addition, the models’ Akaike information Criterion (AIC) and Browne-

Cudeck Criterion (BCC) values were compared, with a decrease on these measures of at least 

10 units indicating a significantly better fitting model (Burnham & Anderson, 2004). 

Results 

Preliminary Analyses 

Preliminary analyses were performed in SPSS Statistics 20 (IBM Corporation, 2012) 

to check for skew, kurtosis, and univariate outliers with z-scores greater than ±4.0 (Kline, 

2005). Because HRV and the responses on the CESD and STAI were not normally 

distributed, these variables were subjected to a logarithmic transformation (after adding 1 to 

each observed CESD score to eliminate values of zero) that improved normality. Two 

variables included univariate outliers with z-scores greater than ±4.0. For BMI, 2 such 

outliers (BMI = 57.40, z = 5.12; BMI = 57.28, z = 5.00) were “brought to the fence” and set 

to the highest non-outlier value (BMI = 50.15, z =  3.77). For Red/Green (RG) task 

response latency, 3 outliers (RG = -2.30 s; z = -6.06; RG = -2.01 s, z = -4.69; RG = -1.91 s; 

z = -4.20) were likewise “brought to the fence” and set to the lowest non-outlier value of -

1.79 s (z = -3.65). The means, standard deviations, and skewness and kurtosis statistics for all 

variables are shown in Table 2, and simple bivariate correlations between variables are 
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shown in Table 3. Multicollinearity was evaluated using tolerance values (O’Brien, 2007) and 

found to be inconsequential.  

Measurement Model 

 Modeling analyses were conducted with AMOS 21 software (Arbuckle, 2012). 

Following recommended practices (e.g., Kline, 2005), the measurement model was examined 

first, followed by the structural model. The measurement model included two correlated 

latent variables, NA and EF functioning. NA was modeled with two indicators: the Center 

for Epidemiological Studies Depression Scale (CESD) and the Spielberger Trait Anxiety 

Inventory (STAI). EF was modeled with three indicators: category fluency, backward digit 

span, and the Red/Green task. Results are shown in Figure 1. Based on accepted standards 

(e.g., Kline, 2005), the model showed good fit to the data (χ2 = 2.723, df = 4, p = .605, NFI 

= .994, CFI = 1.00, RMSEA < .001). All indicators had significant factor loadings (p < .05). 

NA and EF showed a relationship in the expected direction but that was vanishingly small in 

magnitude (-.01) and did not reach significance (p = .092). 

 In light of theories proposing that HRV may reflect individual differences in a broad 

self-regulatory capacity for adaptive responding that underlies both cognitive and affective 

self-regulation (Porges, 2011, Thayer & Lane, 2009), an additional measurement model also 

was evaluated. In this model, a higher-order construct potentially reflecting a broad 

dimension of flexible responding was added as a predictor of the negative affect and 

executive functioning constructs. This additional higher-order factor failed to improve 

model fit. Consequently, structural analyses proceeded based on the model that included the 

first-order latent variables (NA and EF) without the higher-order flexible responding 

construct. 

 



18 
 

 
 

Structural Model 

The full model showed good fit to the data (χ2 = 5.981, df = 7, p = .542, NFI = .998, 

CFI = 1.00, RMSEA < .001; Figure 2). The path from HRV to executive functioning was 

significant (β = .16, B = .014, SE = .006, p < .05). However, the path from HRV to negative 

affect was not significant (β = -.03, B = -.015, SE = .023, p >.05). The path from negative 

affect to executive functioning showed a trend toward significance (β = -.13, B = -.022, SE = 

.011, p = .05).  

Alternative Model  

 An alternative model was also evaluated in which the subset of hypothesized 

covariates that showed significant bivariate correlations with HRV was incorporated . This 

analysis estimated these covariates’ respective relationships to HRV, as well as their utility as 

predictors of negative affect and executive functioning. As shown in Table 4, among the 

hypothesized demographic- and CVD-related covariates, HRV showed significant bivariate 

correlations with age (r = - .31, p < .001), BMI (r = -.12 p < .01), and the presence of 

hyperglycemia or diabetes in the past 12 months (r = -.10, p < .05),. In the alternative model, 

these three covariates were hypothesized to be correlated with one another and with HRV 

(NHLBI, 2012; Thayer & Lane, 2007), and they were examined as predictors of negative 

affect and executive functioning. 

The alternative model yielded a significant chi-square (χ2 = 32.52, df = 16, p < .05), 

indicating inadequate fit (Figure 3). However, the chi-square test is known to be inflated by 

large sample size and the presence of higher correlations within a model (Kenny, 2014), so 

additional fit indices also were examined. These indicated a good fit to the data (NFI = .951, 

CFI = .973, RMSEA = .044). In this model, the path from negative affect to executive 

functioning was significant (β = -.22, B = -.03, SE =.010, p < .01). Age significantly 
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predicted both executive functioning (β = -.48, B = -.005, SE =.001, p < .001) and negative 

affect (β =-.20, B =-.014, SE =.004, p < .001. The path from HRV to executive functioning 

was no longer significant (β =-.005, B < .001, SE =.005, p >.05).  

Model Comparison 

In a final analysis, the alternative model including covariates was compared to a 

version of this model in which the covariates were allowed to intercorrelate, but their 

relationships with the key variables (HRV, negative affect, and executive functioning) were 

constrained to zero (Figure 4). Retaining the full set of paths in the model while constraining 

the covariates’ relationships to the variables of interest allows for a direct comparison of two 

structurally identical, nested models: one in which the covariates’ relationships to HRV are 

accounted for, and a second model, nested within the first, in which HRV is the sole 

predictor of NA and EF. The aim of this comparison was to determine the utility of HRV as 

an independent predictor of NA and EF relative to its predictive value after accounting for 

variance in these relationships that is attributable to covariates. 

The constrained version of the model showed poor fit to the data across all indices 

(χ2 = 174.855, df = 25, p < .001, NFI = .738, CFI = .759, RMSEA = .106; Figure 5). A chi-

square difference test yielded a significant result (χ2 diff = 142.334, df diff = 9, p < .001), 

indicating that the model in which covariates’ relationships to key variables were measured 

provided a significantly better fit to the data compared to the model in which these 

relationships were constrained to zero. Comparing these models’ AIC and BCC values 

likewise showed that the model in which covariates’ relationships to the variables of interest 

were estimated (AIC = 108.521, BCC = 109.977) was superior to the model in which these 

paths were constrained (AIC = 232.855, BCC = 233.966). 
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Discussion 

In light of the aim to examine relationships between HFV, negative affect, and 

executive functioning, the most salient findings from this thesis are as follows: (1) Contrary 

to expectations, resting HRV showed a negligible relationship to negative affect and no 

relationship to executive functioning when the demographic- and health- related covariates 

were included in the model. (2) As expected, the negative affect and executive functioning 

constructs showed a significant inverse relationship to one another. (3) Among the variables 

included in the final model, age was the only significant predictor of NA and EF, showing 

the expected inverse relationship to EF and an inverse relationship to NA.  

 The finding that HRV did not predict NA (self-reported symptoms of anxiety and 

depression) or EF in this sample contrasts with several prior findings of such relationships. 

These disparities raise several possibilities. First, the current results can be interpreted in light 

of methodological differences between this thesis and the prior research, as well as some 

limitations of this study which could be addressed in follow-up analyses. Second, it suggests 

some potential limitations on or refinements to the interpretations of prior findings and to 

theories proposing HRV as an “index” measure reflecting a broad capacity for efficient 

emotional and cognitive self-regulation (e.g., Porges, 2011; Thayer et al., 2009).  

HRV and Negative Affect  

In the present analyses HRV showed a negligible relationship to NA, which contrasts 

with a number of prior findings associating low HRV with symptoms of anxiety and 

depression. One set of factors that distinguish this study from much of the prior research in 

this area, and which likely contributed to the discrepant findings, concerns population 

differences. The majority of previous findings have described associations between low 

HRV in clinical populations, whereas the current study examined an epidemiological, largely 
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nonclinical sample. (e.g., Friedman, 2007; Levin et al., 2007; Rottenberg, 2007, though see 

also Bleil, 2008). Therefore, the predominantly subclinical levels of negative affect in this 

epidemiological sample may help to explain its lack of association with HRV. Along similar 

lines, another factor that may have contributed to the lack of relationship between NA and 

HRV was the exclusion of potential participants who were taking antidepressant medications 

(ADMs), in order to control for the potential negative effects of antidepressants on HRV 

(Rottenberg, 2007). It is possible that this exclusion criterion may have prevented the 

detection of a real but modest NA-HRV relationship, if such a relationship were to be driven 

by persistent, clinical levels of depression and/or anxiety among participants taking ADMs 

(Kemp, 2012).  

A second interpretation is that the relationship between low HRV and depression in 

the clinical literature may be overstated due insufficient controls for ADM use. In this case, 

excluding those participants taking ADMs from the present study may have eliminated a 

spurious NA-HRV relationship reflected in the literature, driven by the effects of ADMs on 

HRV. Consistent with this possibility, findings from the Netherlands Study of Depression 

and Anxiety, which examined very large samples (N > 2000) comprised of individuals with 

current psychological disorders, those with remitted disorders, and healthy controls, showed 

that the effects on HRV of major depression (Licht et al., 2008) and of three anxiety 

disorders (panic disorder, social phobia, and generalized anxiety disorder; Licht et al., 2009) 

were due to autonomic effects of ADMs rather than clinical symptoms per se. Although the 

current biomarker and cognitive data is cross-sectional, future waves of MIDUS data 

collection will allow longitudinal analyses that could help to disentangle the HRV-NA 

relationship from effects of ADM use. 
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Given that anxiety generally has shown stronger, more reliable associations with low 

HRV than depression has (Kemp et al., 2010; Rottenberg, 2007) and that this line of 

research has focused less consistently on clinical samples, an additional difference between 

the analyses reported here and prior studies reporting HRV–anxiety relationships also comes 

to the fore. This issue pertains to the ways anxiety has been defined and operationalized. 

Several prior investigations have linked low resting HRV with greater emotion-modulated 

startle magnitude and potentiation, in order to infer a relationship between low resting HRV 

and high anticipatory anxiety under laboratory induction of mild arousal or “threat” (e.g., 

Melzig et al., 2009; Ruiz-Padial, 2003). By contrast, self-reported trait anxiety (TA), which 

was examined in this study, is a construct generally measured by explicit self-report, and 

which pertains to individual differences in the level of subjectively experienced anxiety 

elicited by threatening situations (Spielberger, 1983, 1989). Findings of a lack of relationship 

between TA and fear-potentiated startle in nonclinical samples (Cook et al., 1992; Grillon et 

al., 1993) suggest that caution is warranted in inferring greater anticipatory anxiety in those 

with low HRV based on the reported association of low HRV with greater startle magnitude, 

or at least in equating this anxiety construct with that associated with TA. To explain the 

discrepancy between TA and startle measures, the latter have been interpreted more 

conservatively as a function of the fear elicited by the immediate stimulus, rather than as an 

indicator of generally higher anxiety levels (Grillon & Baas, 2003).  

Interestingly, this narrower interpretation of the startle measure may shed some light 

on the more reliable findings of low HRV in panic disorder (PD) and posttraumatic stress 

disorder (PTSD) compared to other anxiety disorders (Friedman, 2007). These two disorders 

are characterized by experiences of acute physiological hyperarousal associated with fear of 

imminent threat (Blechert et al., 2007; Tuescher et al., 2011). In physiological terms, this 
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hyperaroused state may more closely resemble the induced fear in the startle paradigm than 

it does the persistent, pervasive distress seen in some other anxiety disorders—which have 

more often shown blunted startle response and little relationship to HRV(Friedman, 2007; 

McTeague & Lang, 2012). Taken together, these variations in the HRV findings across 

different anxiety disorders and anxiety-related measures suggest that resting HRV may be 

more associated with implicit, physiological measurements of acute, reactive fear than with 

explicit, trait-level anxiety. 

HRV and Executive Functioning 

Executive functioning showed a significant relationship to HRV before covariates 

(age, BMI, diabetes/hyperglycemia) were included in the model, but this relationship was 

reduced to zero when covariates were incorporated. This null finding after controlling for 

covariates contrasts with associations between EF and HRV found in smaller, more 

homogenous samples in which such controls were not required (reviewed in Thayer et al., 

2009). However, one recent investigation of HRV and executive functioning using MIDUS 

II data likewise found a significant relationship between a multifaceted EF factor and resting 

HF-HRV that was no longer significant after adding demographic covariates (age, sex, 

education) to the model. Those findings and the present results raise questions about how to 

interpret a significant EF-HRV association that appears to be “accounted for” by age. Age 

was the most powerful predictor of both HRV and EF in the present model, whereas sex 

showed no significant relationship to HRV (see Table 4). Potential pitfalls of controlling for 

education in analyses of EF are discussed below, in the context of the present study’s 

limitations. 

On one hand, the significant relationship between EF and HRV in the structural 

model before the addition of covariates (Figure 2) may have been spurious (Type I error), in 
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the sense that it can be statistically attributed to both variables’ significant age-related 

decline. Given the myriad of psychological and physiological changes with age, these two 

variables’ respective associations with age need not reflect any meaningful common 

influence or shared mechanism of change. Yet, on the other hand, the finding that HRV and 

EF each showed stronger relationships to age than to one another does not preclude the 

possibility that their initial significant association reflected a meaningful relationship in which 

both variables also show significant age-related change. Age essentially provides a summary 

measure of a multitude of physiological and psychological changes over time, without 

reference to mechanisms. Therefore, controlling for age, particularly in a sample with a 

broad age range, runs the risk of “washing out” subtler associations between age-affected 

processes (Type II error; Consonni, Bertazzi, & Zocchetti, 1997).  

To take a purely speculative example, if age-related decline in both HRV and EF 

were due in part to one or more common underlying mechanisms, such as age-related 

decline in the functional integrity of prefrontal cortical structures, which have been 

associated with both processes (Thayer et al., 2012), a real HRV–EF relationship 

theoretically could be reduced to nonsignificance by introducing age as a covariate. Thus, 

under the current conditions, the extent to which controlling for age simply reallocates to 

the age variable a moderate but real HRV–EF association subserved by mechanisms that, 

themselves, undergo age-related change, remains unclear. While the wide age range of the 

present sample is a strength of the study, it also increases the likelihood that the strong 

relationship of age to both HRV and EF, particularly among the oldest participants, could 

overshadow a more nuanced HRV–EF relationship. The planned tests of these models in 

subsamples with narrower age ranges will help shed light on this issue.    
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In addition to these questions about the interpretation of age as a covariate, several 

key difference between these two compatible analyses of MIDUS data and the prior reports 

of an association between HRV and executive abilities (Thayer et al., 2009) may help to 

explain the discrepant results. First, the prior studies have generally collected cognitive and 

HRV data at the same time points (Hansen, Johnson, & Thayer, 2003; Hansen et al., 2004; 

Hansen, Johnson, & Thayer, 2009), whereas in MIDUS II collected these measures 

separately, sometimes with several years intervening. While resting HRV is considered 

reasonably stable over time (and more stable than HRV reactivity to stress; Bertsch et al., 

2012; Kleiger et al., 1991; Sinnreich et al., 1998), it remains possible that the interval between 

data collection points allowed confounding influences to reduce a relationship between these 

measures that would have been evident had they been collected at closer time points. 

A second methodological difference that may have contributed to the disparity in 

findings is that some prior studies (e.g., Hansen, Johnson, & Thayer, 2003; 2009) have used 

median splits based on their respective HRV measures to define “high” versus “low” HRV 

groups for comparison on cognitive tasks. In these cases, dichotomizing the HRV variable 

may have sharpened HRV-related group differences that might have been less evident in 

analyses that incorporated both cognitive performance and HRV as continuous measures, 

such as the present study and that of Kimhy et al. (2013). 

Perhaps most importantly, the positive and negative findings are based on different 

approaches to defining and measuring EF. The present study and Kimhy et al.’s (2013) 

recent MIDUS study each modeled executive functioning as a latent variable measured with 

cognitive tests thought to tap different facets of executive functioning (Miyake, 2000; Tun & 

Lachman, 2006). In contrast, the few prior studies in which HRV was used as a predictor of 

EF have examined a narrower set of individual differences in cognitive performance. These 
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studies examined performance on subtasks of a continuous performance task (CPT) and a 

two-back working memory task (WMT) by conducting separate analyses of response times 

on specific components of the measures and the number of true and false positive responses 

on particular task components (Hansen, Johnson, & Thayer, 2003; Hansen et al., 2004; 

Hansen, Johnson, & Thayer, 2009). Based on their assessments of these subtasks’ cognitive 

demands, the authors effectively split moment-to-moment task performance into 

nonexecutive and executive components, highlighting HRV- related differences in the latter. 

Interestingly, one of these studies also included a “threat” condition, in which the threat of 

shock was never carried out; in this condition only the low HRV group’s performance 

improved. This was interpreted as indicative of their greater anxiety under threat (Hansen, 

Johnson, & Thayer, 2009), although the converse seems equally plausible. 

This study aimed to extend Hansen and colleagues’ findings by testing whether 

resting HRV, as a continuous variable, could predict performance on a multifaceted EF 

construct in a large, diverse sample. The lack of a significant HRV-EF relationship under 

these conditions contrasts with Hansen et al.’s work, yet it parallels findings by Kimhy and 

colleagues (2013). They also used a multifaceted EF construct, which was comprised of the 

three indicators used in the current study and two additional tests tapping processing speed 

and fluid intelligence/reasoning. They also found no relationship between EF and either 

resting or post-challenge HRV. Their exploratory post hoc analyses of individual tests’ 

relationships to HRV at rest and during recovery from cognitive stressor revealed one 

significant relationship: Faster vagal recovery from stress was significantly associated with 

faster response on the mixed-trial Red/Green task (Kimhy et al., 2013). This task’s demands 

for rapid task-switching and inhibition of rote, prepotent responses bares some notable 

resemblance to the demands of the CPT used by Hansen and colleagues, suggesting that 
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these measures requiring rapid switching between rote tasks under time pressure may show a 

relationship to HRV, though the extent to which this relationship is due to “executive” task 

demands or other features of task performance is unclear. Overall, these findings suggest 

that the relationships between HRV and cognitive performance may be best understood by 

focusing analyses and interpretations on specific, implicated abilities rather than generalized 

relationships to “executive” tasks at large. Furthermore, Kimhy’s (2013) results parallel the 

startle findings in the suggestion that HRV’s relations to these cognitive abilities reflect 

individual differences in a particular state of physiological arousal—in this case, induced by 

reactivity to cognitive challenge—rather than differences in specific types of cognitive 

abilities per se. 

Effects of Age 

Age and HRV. The introduction of age as a covariate drove many of the significant 

relationships in the analyses. Among all study variables, age showed the strongest 

relationship with HRV. This finding is consistent with the substantial support in the 

literature for an inverse relationship between age and HRV (e.g., O’Brien, O’Hare, & Corrall, 

1986; Kuo, 1999; Sinnreich et al., 1998). In addition, although race was not included in the 

analyses due to the large proportion of white participants, the racial make-up of the sample 

may have accentuated the age-HRV relationship. Earlier research has shown that on average 

the magnitude of the age-HRV association is stronger in whites than in African-Americans, 

due to lower HRV earlier in adulthood among African-Americans (Choi, 2006).  

Age and Negative Affect. Age was also the only significant predictor of EF and 

NA in the study, exempting the significant relationship between NA and EF themselves. 

Though research into the effects of age on adults’ anxiety and depression symptoms has 

yielded mixed results, those studies that have controlled for covarying risk factors (e.g., sex, 
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education, marital status, socioeconomic status) generally have shown a clearer pattern of 

decreased anxiety and depression risk with increasing age (Jorm, 2000). In addition, several 

characteristics of the sample may have strengthened the inverse relationship between age and 

NA in the present study.  

First, there are several reasons why older participants in the current sample may have 

had lower NA than older adults in the U.S. population at large. Among older individuals, ill 

health is one of the most powerful predictors of anxiety and depression (Jorm, 2000; Wade 

& Cairney, 2000). A recent comparison of longitudinal retention of participants from 

MIDUS I to MIDUS II cohorts found health status to be a key modifier of older individuals’ 

continued participation. That is, older participants in MIDUS I who were in poor physical 

health were among the least likely individuals to be retained in MIDUS II (44%), whereas the 

likelihood of retention was unusually high among older first-wave participants in excellent 

health (83%; Radler & Ryff, 2010). Along similar lines, participation in the MIDUS II 

Biomarker Study involved an overnight stay at a psychophysiology laboratory in order to 

standardize data collection conditions. This requirement would have prevented participation 

by otherwise-eligible MIDUS II participants whose physical health was too poor to 

accommodate it.  

 The present study’s exclusion criteria also may have had differential effects on levels 

of NA across the age range represented in the sample. As noted, depression is associated 

with poor physical health among older people (Jorm, 2000). Excluding individuals who had 

suffered a stroke and those taking antihypertensives from the sample is likely to have 

excluded a larger proportion of older participants than young ones, due the greater 

prevalence of these conditions with advanced age (Davies, Chung, & Juarez, 2011). 

Furthermore, among the participants excluded by this criterion, the prevalence of comorbid 
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conditions such as high cholesterol, diabetes, and heart disease was likely higher among the 

older adults, based on these conditions’ comorbidity patterns across the lifespan (Davies, 

Chung, & Juarez, 2011). Thus, the exclusion of individuals taking antihypertensives may 

have disproportionately removed older individuals from the sample whose ill health—

hypertension and its common comorbid conditions—put them at increased risk of anxiety 

and depression. As a point of contrast, an especially strong predictor of depression among 

younger adults is social stress (Wade & Cairney, 2000), which is unlikely to have interacted 

with any exclusion criteria apart from ADM use.  

One caveat to the current finding of an inverse relationship between age and NA is 

that this pattern may be specific to the portion of the lifespan represented in MIDUS II data. 

Some large-scale studies examining anxiety and depression symptoms cross-sectionally 

across the whole adult lifespan, rather than from midlife to old-age, have reported a 

quadratic relationship in which, on average, negative affect is relatively low during early 

adulthood, peaks at midlife, and declines in old age (Blanchflower & Oswald, 2008). In this 

case, the present finding of a linear, inverse relationship between age and NA may capture 

only the down-slope of a more complex curvilinear relationship.  

 Age and Executive Functioning. In the present study, age also showed an inverse 

relationship with executive functioning. This finding is consistent with prior research on the 

differential decline of various cognitive abilities with age (e.g., Bryan & Luszcz, 2000; van 

Hooren et al., 2007; reviewed in Luszcz, 2011). It also accords with neurobiological evidence 

that some frontal lobe structures that subserve executive abilities may show relatively early 

and/or more pronounced structural and functional changes compared to other cortical 

regions in normal aging (Raz et al., 1997, 2005; Spreng, Wojtowicz, & Grady, 2010; West, 

1996, 2000).  
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Against the background of generally broad support for age-related decline in 

executive functioning, the individual studies within this body of research continue to reckon 

with differences in the ways that executive functioning is conceptualized and 

operationalized, which have compromised generalizability and contributed to some 

discrepant findings (Luszcz, 2011). As a result, one question that has arisen in this area 

pertains to the role of processing speed in many tasks used to measure executive 

functioning. Some theorists have proposed that “global” age-related declines in processing 

speed, rather than more “local” declines in capacities for specific types of  processing (i.e., 

executive functioning), might better explain patterns of cognitive aging (Salthouse, 1996). 

This alternative theory suggests that caution is warranted in interpreting the present finding 

specifically as an age-EF relationship, given that two of the three EF measures (Category 

Fluency and Red/Green) were timed tasks dependent on rapid performance.  

This potential confounding of the effects of slowed processing and executive decline 

with age, however, may be inherent to these cognitive constructs themselves, which have 

been shown to make interrelated and/or partially overlapping contributions to age-related 

decline (e.g., Albinet et al., 2012; Borella, Ghisletta, & de Ribaupierre, 2011; Matthews, 

2011;), suggesting that the competing frontal/executive and processing speed theories of cognitive 

aging are not mutually exclusive (Albinet et al., 2012; Schretlen et al., 2000). In this context, 

one advantage of the structural equation modeling approach to operationalizing EF is that it 

allows EF to be measured in terms of the shared variance among several types of tasks 

thought to tap different kinds of executive processes (Miyake et al., 2000). By partialling out 

the tasks’ shared variance, this method helps to account for the inherent “task impurity” in 

measures of higher-order processes, which, by definition, rely on the efficient use of other 
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capacities such as attentional control and speed of processing (Albinet et al., 2012; Miyake et 

al., 2000). 

In addition, the present study’s exclusion criteria may have had differential effects on 

EF that interacted with the effects of age. That is, excluding individuals who were taking 

antihypertensive medications may have attenuated the age-EF relationship somewhat by 

removing from the sample a subgroup of older individuals who were at greater risk than age-

matched study participants for executive deficits. Older individuals with hypertension have 

shown significantly increased risk of executive dysfunction relative to normotensive 

individuals, even when they have been carefully screened for common comorbidities 

(Vicario et al., 2005) and when hypertension is medically controlled (Raz, Roderigue, & 

Acker, 2003). Furthermore, as discussed in the context of the age-NA relationship, the 

individuals excluded for use of antihypertensives were, by virtue of the diagnosis of 

hypertension, also at increased risk for certain comorbidities including vascular risk factors 

(e.g., diabetes, high cholesterol; Davies, Chung, & Juarez, 2011) and cardiac diseases (e.g., 

atrial fibrillation, coronary heart disease, congestive heart failure; Stamler, Stamler, & 

Neaton, 1993). These conditions would, if present, further increase the risk of executive 

impairments among those who were excluded from the sample (Pugh et al., 2003; Roberts et 

al., 2013). 

Limitations 

A number of limitations of the present study should be kept in mind. First, the use 

of cross-sectional rather than longitudinal data precludes any causal or developmental 

inferences regarding the observed associations (Kraemer et al., 2000). This is a common 

issue for large epidemiological studies in which follow-up may not be practical. However, 

future waves of MIDUS will continue to gather cognitive and psychophysiological data using 
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the protocols initiated in MIDUS II. These data will allow for future analyses of longitudinal 

change in the variables of interest, including the extent to which low resting HRV is a 

predictor versus a symptom of the health-related covariates to which it was related. Second, 

as noted earlier, the low representation of racial and ethnic minorities among MIDUS II 

participants for whom cognitive and biomarker data were available limits the generalizability 

of the current findings, particularly given the differences in resting HRV and in its patterns 

of age-related change between U.S. racial groups (Choi, 2006; Liao et al., 1995). Third, 

although the medication-based exclusion criteria were selected to avoid confounding effects 

on HRV, they may have enhanced the age-NA relationship and/or attenuated the age-EF 

relationship somewhat. Both of these possibilities reflect the increased risk of poorer 

cardiovascular health among the excluded individuals, which is associated with increased risk 

of depression and anxiety as well as with a vascular risk profile thought to confer executive 

impairments.  

Fourth, as in any large, cross-sectional study including a broad age range, cohort 

effects on the relationships of key variables to age cannot be ruled out. Along these lines, 

meta-analyses comparing the levels of anxiety and neuroticism, a trait-like construct closely 

related to NA, across birth cohorts found that younger cohorts report significantly higher 

levels of both traits than older cohorts did at comparable ages (Twenge, 2000). This effect 

complicates the inference of developmental change from the inverse age-NA relationship—

an interpretation that will be testable when longitudinal data on the MIDUS II Biomarker 

Project measures become available.  

Similar cohort effects are possible on EF, in relation to the unexamined variable of 

educational attainment. That is, older participants, whose HRV has declined with age (Stein, 

Kleiger, & Rottman, 1997), also may tend to be less educated, given the increasing 
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proportion of U.S. adults attending college and earning advanced degrees in recent decades 

(U.S. Bureau of the Census, 1977, 1987; U.S. Department of Education, 1996).Given that 

educational attainment has shown associations with measures of executive skills (e.g., Tun & 

Lachman, 2008; van Hooren et al., 2007), education level may interact with age as a 

confounding influence on EF. However, controlling EF for education level from the outset 

also could be problematic, because the causal connection between education and many 

aspects of cognitive functioning is theoretically bidirectional (Cesi, 1991), so that controlling 

initially for education level might artificially reduce real EF variance. 

Conclusion 

Under the conditions of the current analyses, resting high frequency HRV showed 

no predictive value in relation to either NA or EF. As described above, population and 

methodological differences may help to explain the discrepancy between these null findings 

and those of prior studies linking HRV to related aspects of emotional and cognitive self-

regulation. However, it is also notable that individual findings in this area often have been 

interpreted broadly, as being consistent with theories such as the Polyvagal Theory (Porges, 

2011) and the Neurovisceral Integration Model (Thayer et al., 2009). These theories’ claims 

for HRV as a potential “physiological metaphor for the regulation of emotional states” or 

indicator of “[ability] to produce context appropriate responses, including appropriate 

recovery after [a] stressor has ended” (Thayer et al., 2012) strongly suggest that it might 

provide a meaningful, easily accessible, implicit metric for assessing individual differences in 

these aspects of psychosocial functioning. To the contrary, in the current study the utility of 

a readily accessible demographic factor, age, significantly outstripped that of HRV for 

predicting NA and EF, respectively. Nonetheless, this finding does not preclude meaningful, 

psychologically relevant interpretations of individual differences in HRV. Instead, it suggests 
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that refinements in the theoretical understanding of HRV’s significance could be informed 

by (1) more conservative interpretations of the constructs with which HRV has been 

associated in individual studies, and (2) more large-scale tests of those interpretations in 

demographically diverse samples that allow controls for medication effects on autonomic 

functioning. Rather than remaining a potential correlate of self-regulation or adaptive 

responding at large, HRV could become a more clearly interpretable variable in the study of 

neurocardiac communication, stress responsivity, and the psychophysiological relations 

between personality, psychological disorders, and medical health.  
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Tables 
 
Table 1. Demographic and clinical characteristics of the sample 
  N (%) Mean (SD) 

DEMOGRAPHICS 

Age  533 (100) 54.9 (10.7) 

Sex Male 247 (46.3) -- 

 Female 286 (53.7) -- 

Racial Origin White 493 (92.5)  

 Black / African-American 11 (2.1) -- 

 
Native American or Alaska Native / Aleutian 
Islander / Eskimo 8 (1.5) -- 

 Asian 3 (0.6) -- 

 Other 17 (3.2)  

 Refused 1 (0.2)  

Highest Level of Education 
Completed No school / some grade school  1 (0.2)  

  Some high school (no diploma/no GED)  12 (2.3) -- 

 Graduated from high school or received GED  109 (20.5) -- 

 1-2 Years of college, no degree  78 (14.6) -- 

 3 or More years of college, no degree  25 (4.7) -- 

 Graduated from 2-year college, vocational 
school, or associate degree  37 (6.9) -- 

 Graduated from a 4- or 5-year college, or 
bachelor degree  138 (25.9) -- 

 
Some graduate school  22 (4.1) -- 

 
Master’s degree  84 (15.8) -- 

 PhD, EdD, MD, LLB, JD, or other professional 
degree 24 (4.5) -- 

CLINICAL CHARACTERTISTICS 

Health-Related Covariates    

 Body Mass Index (BMI) 533 (100) 28.18 (5.7) 

 Have ever had heart disease 17 (3.2) -- 

 Have had high BP / hypertension ever (12 mo) 29 (5.4) -- 

 
Have had  diabetes / high blood sugar ever  
(12 mo) 22 (4.1) -- 

 Blood LDL  cholesterol (mg/dL) 532 (99.8) 110.2 (34.0) 

 Ever smoked cigarettes regularly 203 (38.1) -- 

 Getting regular exercise at least 20 min. 3x/wk  493 (82.4) -- 

Additional Health-Related 
Characteristics    

 Currently smoke cigarettes regularly 59 (11.1) -- 

 Have ever had depression 74 (13.9) -- 

 Have ever had cholesterol problems 162 (30.4)  

 
Taking corticosteroid medications 52 (9.8) -- 

 
Taking cholesterol medications 85 (15.9) -- 



45 
 

 
 

Table 2. Mean, standard deviation, skewness, and kurtosis statistics for HRV and measures 

of negative affect and executive functioning.  

 Mean SD Skewness Kurtosis 

B1 natural log of HF-HRV 4.89 1.25 .074 .380 

Category Fluency 20.44 5.82 .372 .446 

Digits Backward 5.18 1.42 .116 -.074 

Red/Green -1.03 .201 -1.20 1.72 

log CESD + 1 1.76 .877 -.211 -.524 

log STAI 3.46 .246 .437 -.383 

     

Non-normally distributed variables 

before log transformation 

    

HF-HRV 309.40 815.37 13.14 227.04 

STAI 32.74 8.55 .988 .666 

CESD 7.23 7.12 1.84 4.25 

 
 

Table 3. Simple bivariate correlations between HRV and measures of negative affect and 

executive functioning.  

 log HF-

HRV 

log 

STAI 

log CESD 

+ 1 

Category 

Fluency 

Digits 

Backward 

Log STAI 
Pearson r -.031     

Sig. .482     

Log CESD + 1 
Pearson r .021 .727

**
    

Sig. .635 .000    

Category Fluency 
Pearson r .064 -.105

*
 -.067   

Sig. .141 .015 .125   

Digits Backward  
Pearson r .053 -.041 -.042 .143

**
  

Sig. .226 .347 .331 .001  

Red/Green 
Pearson r .108

*
 -.033 -.046 .281

**
 .159

**
 

Sig. .013 .447 .292 .000 .000 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 4. Simple bivariate correlations between HRV and hypothesized covariates. 
 

 

LN  HF-

HRV  

LN  HF-

HRV 

DEMOGRAPHIC COVARIATES 

Age Pearson r -.310
**

 BMI Pearson r -.123
**

 

Sig. (2-tailed) .000 Sig. .004 

Gender Pearson r .047  

Sig. .279 

HEALTH-RELATED COVARIATES 

Diabetes/high blood 

sugar ever (12 mo) 

Pearson r .103
*
 High BP/hypertension 

ever (12 mo) 

Pearson r .035 

Sig. (2-tailed) .018 Sig. .423 

Ever had heart disease Pearson r .054 Blood LDL  

Cholesterol (mg/dL) 

Pearson r -.040 

Sig. .216 Sig.  .356 

Reg exercise at least  

20 mins 3 times/wk 

Pearson r -.045 Ever smoked 

cigarettes regularly 

Pearson r -.070 

Sig.  .299 Sig. .182 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Figures 

 

Figure 1. Measurement model. (N=533) χ2 = 2.723, df = 4, p = .605, NFI = .994, CFI = 

1.00, RMSEA < .001. 

 

 

Figure 2. Structural model. (N=533) χ2 = 5.981, df = 7, p = .542, NFI = .998, CFI = 1.00, 

RMSEA < .001. ++ p = .05;  * p <.05. 
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Figure 3. Full alternative model including covariates. (N=533) χ2 = 32.52 (p < .05); NFI = 

.951, CFI = .973, RMSEA = .044. * p < .05;  ** p < .01; *** p < .001. 

 
Figure 4. Alternative nested model with covariates allowed to intercorrelate  

   and their relationships to HRV, NA, and EF set to zero. 
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Figure 5. Alternative nested model. (N=533) χ2 = 174.855, df = 25, p < .001, NFI = .738, 

CFI = .759, RMSEA = .106. ++ p = .05;  * p <.05. 

 


