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In this work we simulate self assembly of icosahedral building blocks using a coarse 

grained model of the icosahedral capsid of virus 1m1c. With significant advancements in 

site-directed functionalization of these macromolecules [1], we propose possible 

application of such self-assembled materials for drug delivery. While there have been some 

reports on organization of viral particles in solution through functionalization, exploiting 

this behaviour for obtaining well-ordered stoichiometric structures has not yet been 

explored. Our work is in well agreement with the earlier simulation studies of icosahedral 

gold nanocrystals, giving chain like patterns [5] and also broadly in agreement with the wet 

lab works of Finn, M.G. et. al., who have shown small predominantly chain-like aggregates 

with mannose-decorated Cowpea Mosaic Virus (CPMV) [22] and small two dimensional 

aggregates with oligonucleotide functionalization on the CPMV capsid [1]. 
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To quantify the results of our Coarse Grained Molecular Dynamics Simulations I 

developed analysis routines in MATLAB using which we found the most preferable nearest 

neighbour distances (from the radial distribution function (RDF) calculations) for different 

lengths of the functional groups and under different implicit solvent conditions, and the 

most frequent coordination number for a virus particle (histogram plots further using the 

information from RDF). 

Visual inspection suggests that our results most likely span the low temperature limits 

explored in the works of Finn, M.G. et al., and show a good degree of agreement with the 

experimental results in [1] at an annealing temperature of 4˚C. Our work also reveals the 

possibility of novel stoichiometric N-mer type aggregates which could be synthesized 

using these capsids with appropriate functionalization and solvent conditions. 
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                                                              Chapter 1 

Introduction 

Soft Materials Design via Self Assembly of Functionalized Icosahedral 

Particles 

With advances in synthetic routes enabling manipulation of icosahedral viral capsids at the 

molecular level [1] and chemical synthesis of metallic nanocrystals, the like of icosahedral 

gold nanocrystals [2], the next stage would be to investigate bottom up materials design 

using these icosahedral building blocks. In this work we aim to simulate the self-

assembly of tethered icosahedral building blocks and our results suggest 

aggregation into n-mer type aggregates, short linear chains and two dimensional 

networks and clusters. We use the Molecular Dynamics simulation technique. 

Viral capsids, owing to their monodisperse morphology, stability, recognition of cell 

surface receptors, rapid replication rates and recent availability of manipulation and 

functionalization methods, would be ideal candidates for targeted drug delivery and could 

also have applications in tissue engineering. N-mer type assemblies can be used to deliver 

multiple drugs with complementary actions. Using tailored functional groups it is also 

possible to generate pH responsive aggregates for application in tumors. DNA directed self 

assembly is being used to effectively control aggregate morphology in bottom-up materials 

design [3]. M. G. Finn et al., functionalized CPMV coat proteins with oligonucleotides and 

observed self assembly into two and three dimensional arrays [4] at different temperatures. 

Also as suggested in the work of Bilalbegović [5] , icosahedral gold nanocrystals can also 

be assembled into linear chains and two dimensional structures for prospective applications 
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in electronic devices[6], catalysis [7, 8], and in diagnostics [9, 10] owing to superior optical 

properties. Our model predicts assembly into extensively networked chains, short chains 

and clusters, and small two dimensional patterns emerging using different anisotropic 

functionalized icosahedral building blocks. 
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Figure 1)                                                                         

 

(1A)                                                                       (1B) 

 

 

(1C)                                                                  (1D) 
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(1E)                                                                  (1F)                                                                       

 

 

(1G)  
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Figure 1) KEY: 

A) Single tether; B) Two opposite tethers ; C) Four tethers, two on each side arranges as 

(B); D) Four tethers in a single plane spaced more symmetrically around the capsid; Five 

tethers forming corners of a rectangular pyramid  E) All vertices on the same side of the 

capsid F) One vertex opposite to the other four vertices ; G) Six tethers at the outer most 

vertices of the capsid along 3D axes. 

Figure 2) 

Auxiliary cartoon: 
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                                                             Chapter 2 

       Model and Methods 

We model assembly dynamics using Molecular Dynamics (MD) simulation [11-13] with 

the LAMMPS [14] open source package. Equation of motion for each bead i is given by 

iii m aF   where, Fi is the force acting on bead i, mi is the mass of bead i and ai is the 

acceleration of bead i. The force can be expressed as the gradient of the potential energy U 

by the relations Uii F  with bondpair UUU  , where Upair and Ubond are the potential 

energies from all  pair and bond interactions, respectively. The dynamics of each bead i is 

determined by the following equations
t

m
t

mmU i
i

i
iiii







 vr
a 

2

2

 and ii rv  , where 

ri and vi are the position and velocity vectors of bead i. The equations of motion will be 

integrated using the Velocity Verlet method [15] which has greater stability, time 

reversibility and preserves the symplectic form on the phase space compared to the Euler 

method [16]. The position ri and velocity vi of a bead i using the Velocity Verlet algorithm 

are calculated as follows: ttttttt iiii  ))()((
2

1
)()( aavv  and 

2)(
2

1
)()()( ttttttt iii  avrri , where ri(t), ri(t+Δt), vi(t) and vi(t+Δt) are 

respectively the position and velocity vectors at time t and t+Δt (Δt is the integration time 

step.) The MD simulations will sample the canonical ensemble and will be run using the 

open source parallelized MD program called LAMMPS.We use ViperDB [17] atom 

information of 1m1c icosahedral cage to generate a 180-bead coarse grained model for the 

icosahedral nanoparticle, which is then  
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functionalized with 1, 2, 4, 5, or 6 tethers of 5, 10, 15 or 20 beads (Figure 1). The 

simulations are executed for 216 nanoparticles in cubic boxes with the number density of 

icosahedral building block varying from 0.002370 to 0.000064 corresponding to box 

dimensions of 45σ and 150σ respectively. As a measure of nanoparticle size, it can be noted 

that twice the radius of gyration of the nanoparticle is 3.744σ, while the size of a bead is 

1.0 σBoth, the attractive and repulsive interactions in the system are modeled using 12-6 

Lennard-Jones (LJ) potential [18-19] as below, with a cut off at 2.5σ and 1.0σ respectively.  

 𝐸 = 4 ∗ Є ∗ [ (
𝜎

𝑟
)

12
− (

𝜎

𝑟
)

6
] 

The bonds between tether beads and connecting the nanoparticle and tether are modeled in 

the bead spring polymer FENE style as below, 

𝐸 = 0.5 ∗ 𝐾 ∗ 𝑅2 ∗ ln [1 − (
𝑟

𝑅
)

2

] +  4 ∗ Є ∗ [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] +  Є 

Where, K is in (energy/distance^2), R in (distance), epsilon in (energy), sigma in 

(distance). 

We model two solvent conditions implicitly, favoring aggregation of nanoparticles over 

tethers (good solubility of tethers in the solvent) and vice-versa. The system is first 

equilibrated at a high temperature of 4.0 and then suddenly cooled to the desired 

temperature of 0.25 at which self assembly is studied, using the Langevin thermostat [20-

22]. 
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Analysis Routines: Methodology 

Table 1: Simulation Parameters for Lammps (lj units) 

 

Time-step for MD 0.001 

K 30 

R 1.5 

Є 0.0 

σ 0.0 

Simulation box Periodic boundary, cubic box 

Langevin thermostat 0.25 temperature, 0.1 damping 

 

 

1) Read final coordinate information from Lammps [14] output file. 

2) Computed the coordinates for the center of mass (COM) for each nanoparticle 

(excluding tether beads). 

3) Calculated distances between all possible pairs of COMs. 

4) Divided the distance range by bin size of 0.5 units. Radial distribution function (RDF) 

plot is generated from this information using the following formula: 

𝑔(𝑟) = lim
𝑑𝑟→0

[
𝑝(𝑟)

{4 ∗ 𝜋 ∗ (
𝑁𝑝𝑎𝑖𝑟𝑠

𝑉 ) ∗ 𝑟2 ∗ 𝑑𝑟}
] 
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Where,  

p(r) is the average number of atom pairs found at a distance between r and r+dr; 

Npairs is the number of unique pairs of atoms. In our simulations it is a constant value of 

(216 X 215)/2; 

And ‘r’ measures distance. 

5) Same information was re-read to give information as the number of neighbors (defined 

by nearest neighbor distance from the RDF plots) for each COMs. This information was 

sorted to present the population plots. 

6) Location of the peaks and area under the peaks for the RDF plots was also calculated. 
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Chapter 3 

 

(3.1)Results and Discussion 

We assess the properties of these mesoscopic assemblies using the radial distribution 

function plot and a histogram of probable coordination numbers for any given arrangement 

and interaction. 

For generating the radial distribution function, we use the center of mass of the icosahedron 

and histogram, 

𝑔(𝑟) = lim
𝑑𝑟→0

𝑝(𝑟)/(4 ∗ 𝜋 ∗ (
𝑁

𝑉
) ∗ 𝑟2 ∗ 𝑑𝑟) 

where r is the distance between a pair of particles, p(r) is the number of atom pairs found 

at a distance between r and r+dr after running the simulation for five million time steps 

with a given interaction potential, V is the total volume of the simulation box, and N is the 

total number of unique pairs of nanoparticles. The ‘radius’ in the radial distribution plot is 

scaled by the factor of 3.744, which is twice the radius of gyration of the naked 

icosahedron. As can be noted the nearest neighbor distance for all simulations lies between 

4.5σ to 6.0σ. The first neighbor peak at 4.5σ is attributed to the deviation from the spherical 

geometry for which the equivalent dimension would only be 3.7441σ, while the occurrence 

of the first nearest neighbor at distances greater than 4.5 is due to the specific arrangement 

and size of tethers or the interaction potential in play. 
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The nearest neighbor histogram plots inform us the most probable coordination number of 

a particle in the box. And when coupled with the radial distribution function plot and visual 

inspection gives us clues to the preferred arrangement of nanoparticles in the box. 
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           Chapter 3.2 

    N-mer type aggregates 

Figure 3) 

 

(3A)                                                                   (3B) 
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(3C)                                                                   (3D) 

 

(3E)                                                                   (3F) 
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(3G)                                                                       (3H)                                                                            

 

(3I)                                                                    (3J)              
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 (3K)                                                                (3L) 

 

   

(3M) 
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Figure 3-Key 

Figures A-K: Solvent conditions under which tethers aggregate                                             

A) 5 beads, single functionalization, dimer 

B) 5 beads, single functionalization, trimer 

C) 5 beads, single functionalization, tetramer 

D) 15 beads, single functionalization, chains attractive- dimer 

E) 15 beads, single functionalization, trimer 

F) 15 beads, single functionalization, tetramer 

G) 5 beads, anisotropy 1C 

H) 5 beads, anisotropy 1E 

I) 5 beads, anisotropy 1G 

J) 5 beads, anisotropy 1D 

 

Figures (K-M): Solvent conditions under which capsids aggregate 

K) 10 beads, 6 tethers, Box dimension 50σ, clusters 

L) 10 beads, 6 tethers, Box dimension 50σ, dimer 

M) 10 beads, 5 tethers of anisotropy 1E, Box dimension 50σ, trimer 
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We frequently observed n-mer type aggregates under solvent conditions favoring the 

aggregation of tethers. This type of aggregation was favored for all densities in the more 

anisotropic structures, 1A, 1E and 1F. And they also appeared in low density systems for 

other arrangements of tethers. The single tethered icosahedron in Figure 1A, for all tether 

lengths results in dimers, trimers and tetramers as captured in figures 3A-3F. Figure 4, 

shows the radial distribution function observed for this morphology 1A, at a density of 

0.00079 nanoparticles per σ3. 

We found that these n-mer type aggregates can have coordinating neighbors at distances 

anywhere from 5.0-6.0, depending on the density and tether length. The first peak for 

systems with 5, 10 and 15 beads in the tether was observed to be at 5.0σ, corresponding to 

1.33 units in the radial distribution plot. For the system with 20 beads in tether, it was 

observed that the first peak shifts to 5.5σ. The second peak appears at 6.0-6.5σ and becomes 

more prominent in systems with more number of beads in the system. As can be seen in 

figure(5), for the single functionalized system with 15 tether beads at a density of 0.00237, 

the fraction of trimers at 6.5σ is 28% while at 5.0σ it is only 15%. At a lower density of 

0.00078, the fraction of dimers and trimers is still higher at 6.0σ (Figure 4, D) compared 

to 5.0σ (Figure 4, C). As these systems only formed N-mer type of aggregates and both 

these distances correspond to the directly coordinating neighbor, we generated histogram 

plot to observe the cumulative numbers of neighbors at any of these distance points. And 

the plot suggests that within aggregates both these coordinating distances can appear and 

thus, the histogram in figure 5(E) and 5(F) show several more trimers, tetramers and 

pentamers which could not be shown using the histogram for each of these distances 

separately. The increase in the fraction of uncoordinated atoms with the decrease in density 



18 
 

is also confirmed at both these distances. To calculate the number of aggregates of each 

type roughly, we can use the following relation: 

Number of N-mers= (Fraction * 216)/N 

While anisotropies in 1B and 1C result mostly in chains type aggregates, other anisotropies 

result in few N-mer type arrangements (Figures 3G-3J) but the confirmations are not 

regular and the probabilities of occurrence of chain like arrangements in these systems 

remains higher compared to N-mer type arrangements. This can be verified by the nearest 

neighbor histogram plots for these systems with higher probabilities of 2 nearest neighbors 

(Figure 6A-D) even for high density systems. From figures 6E-F, the fall in coordination 

numbers with decrease in density can also be deduced. The conditions favoring the 

aggregation of nanoparticles also result in chain like configurations with few N-mer type 

aggregates (Figure 3L-N) observed in simulation runs. 
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Figure 4)  

4A) Beads 5 

 

 

4B) Beads 10 
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4C) Beads 15 

 

 

4D) Beads 20 
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Figure 5) 

5A) Peak at 5.0σ, Density = 0.00237 
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5B) Peak at 6.5σ, Density = 0.00237 
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5C) Peak at 5.0σ, Density = 0.00078 
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5D) Peak at 6.0σ, Density = 0.00078 

 

 

 

 

 

 

 

 

 

 



25 
 

5E) Cumulative histograms for nearest neighbors at first or second nearest 

distances, Density = 0.00237 
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5F) Cumulative histogram for nearest neighbors at first or second nearest distances, 

Density = 0.00078 

 

  



27 
 

                                                            Figure 6 

Cumulative Histograms for 1st and 2nd distances and Radial Distribution plots for 

anisotropies with 10 beads in tethers in a simulation box at high density of 0.001728 

nanoparticles perσ3. 

6A) Anisotropy (1D), peaks at 4.5σ and 6.0σ  

6A-1) 
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6A-2) 
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6B) Anisotropy (1E), peaks at 5.0σ and 6.5σ 

6B-1)  

 

6B-2) 
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6C) Anisotropy (1F), peaks at 4.5σ and 5.5σ 

6C-1) 

 

6C-2) 

  

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9

R
D
F

Radius



31 
 

6D) Anisotropy (1G), peaks at 4.5σ and 7.0σ 

6D-1) 

6D-2) 
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Cumulative Histograms for 1st and 2nd distances 

E) Anisotropy (1F), Density= 0.000296    

  F) Anisotropy (1G), Density = 0.000296 
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          Chapter 3.3 

Chain type aggregates 

As would be expected, chain type aggregates appear under both solvent conditions 

frequently. The radial distribution and histogram plots in Figure 7, show that the anisotropy 

in Figure 1B gives dimers and chains even for the low density system of 0.000296 

nanoparticles per σ3 (Figure 7F) while the high density systems are observed to aggregate 

into clusters (Figure 7C-E). 

Also, the anisotropy 1C results in chain like arrangements which is captured in the radial 

distribution plots in Figure 9, and the corresponding fractional area (area under the 

peak/total area) for the individual peaks, showing several 2nd, 3rd and 4th neighbors for the 

high density systems. It can also be seen that for system with 5 beads in tethers, there is 

only one first neighbor distance at 4.5σ, while for other systems there is a second farther 

directly coordinating first neighbor at 6σ-7.5σ. We can say that these distances correspond 

to the directly coordinating atom because the second neighbors are expected at distances 

greater than 4.5X2σ.   

Radial distribution plots for high density systems, under solvent conditions favoring the 

aggregation of nanoparticles is shown in figure 10. We observed a decrease in the first 

neighbor distance from 4.5σ to 4.0σ for all systems except 1A. This is attributed to the 

direct placement of the nanoparticles with each other as against aggregation through 

tethers.  The aberration from this norm for 1A can be due to the formation of larger clusters 
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owing to the lower excluded volume of this compared to the other systems under the given 

solvent conditions, which would also facilitate formation of N-mer type  

aggregates as also confirmed from the histogram in 10A. The slight increase in the fraction 

of uncoordinated atoms can also be noticed in 10C-G. While we observe some strong bands 

in coordination number 3 of the histogram plots for 10E, other systems (10 C, D, F, G) 

show several dimers and chain like arrangements (corresponding to band in coordination 

numbers 1 and 2 respectively) as in Figure 11 I- J. Also, it can be noted that even the 6 

tethered nanoparticle can arrange in chains and even in sheets as in Figure 11 H. At lower 

densities we observed an overall decrease in coordination numbers but no change in the 

emerging structures.  
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Figure 7) 

Chain like aggregates, Anisotropy in 1B, Number of beads in tether =10, solvent 

conditions such that tethers aggregate: RDF and cumulative histograms 

7A)Radial Distribution at a density of 0.00237, Peaks at 5.0σ and 6.5σ 

 

 

7B) Radial Distribution at a density of 0.00078, Peaks at 5.0σ and 6.5σ 
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7C) Density = 0.00237                                                 

 

7D) Density = 0.001298 
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7E)  Density = 0.000787                                       

 7F) Density = 0.000296 
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Figure 8) 

Anisotropy in (1C) under conditions favoring the attraction of tethers, Number of 

beads in tethers= 5 

 

8A)Radial Distribution at density = 0.00237 
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8B) Histogram for peak at 4.5 at Density = 0.00237 

 

8C)  Cumulative Histogram for peaks at 5.0 and 6.0 for Density = 0.000787 
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8D) Cumulative Histogram for peaks at 4.5 and 6.0 for Density = 0.000296 
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                                                              Figure 9 

Radial Distribution Plots for simulations run under conditions favoring the 

aggregation of tethers in anisotropy 1C for different tether lengths with a high density 

of 0.00237 and tabulated is fractional area under the peaks at different distances (σ 

units) 

9A) 5 beads ,  

 

 

 

Distance (σ) Area under the peak 

4.5 0.262411 

10 0.187775 

13 0.0448427 

15 0.0640664 

16.5 0.0283475 

17.5 0.0269157 
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22 0.0462659 
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25 0.0456584 
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9B) 10 beads 

 

 

 

Distance (σ) Area under the peak 

4.5 0.164974 

7.5 0.168338 

12 0.128892 

14.5 0.113088 

17.5 0.042607 

18.5 0.0268371 

19.5 0.037712 

21.5 0.0560911 

24 0.0507765 

26 0.0265983 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

R
D
F

Radius



43 
 

9C) 15 beads  

 

 

 

 

 

Distance (σ) Area under the peak 

4.5 0.150835 

7 0.127685 

9 0.0424157 

10 0.0572458 

11.5 0.0376835 

12.5 0.0533526 

14.5 0.0508369 

15.5 0.0319117 

17 0.06026 

18.5 0.0277023 
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9D) 20 beads,  

 

 

 

Distance (σ) Area under the peak 
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Figure 10) 

Solvent conditions favoring the aggregation of nanoparticles, Beads 10, Density = 

0.00237, Radial Distribution and Histogram Plots. 
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10 A) Anisotropy 1A, nearest neighbor peak at 4.5σ and corresponding histogram. 

10A-1) 

 

10A-2) 
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10B) Anisotropy 1B, nearest neighbor peak at 4.0σ and corresponding histogram. 
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10C)  Anisotropy 1C, nearest neighbor peak at 4.0σ and corresponding histogram. 
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10D) Anisotropy 1D, nearest neighbor peak at 4.0σ and corresponding histogram.  
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10E) Anisotropy 1E, nearest neighbor peak at 4.0σ and corresponding histogram. 
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10F) Anisotropy 1F, nearest neighbor peak at 4.0σ and corresponding histogram. 
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10G) Anisotropy 1G, nearest neighbor peak at 4.0σ and corresponding histogram. 
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Chapter 3.4 

      2- Dimensional patterns and clusters 

As shown in Figure 11 F and G, the anisotropies in 1D and 1G with 4 and 6 tethers 

respectively can potentially arrange themselves into sheets and 3D networks. These 

structures were observable in systems with 5 tether beads because under the solvent 

conditions favoring attraction in tethers, tethers of the same nanoparticle interact strongly 

with one another preventing interactions with other nanoparticle. This can be confirmed by 

the formation of several dimers even in systems with 5 tether beads for anisotropies 1C and 

1E (Figure 2 G-H). 
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Figure 11) 

11A) 2 Tethers as in 1B 
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11B) 4 tethers as in 1C 

 

 

 

11C) 4 tethers as in 1D 
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11D) Five chains as in 1F 

 

 

 

 

 

 

 

 

11E) 6 tethers as in 1G  
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11F) Sheet like pattern formed for 1D , Density = 0.001298, 5beads in tethers, 

solvent conditions favoring attraction of tethers 
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 11G) Clustered and Membrane like patterns formed for 6 tether symmetric 

arrangement as in 1G, Density = 0.001728 
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11H) Broken sheets under solvent conditions favoring the attraction of nanoparticle, 

anisotropy 1G, Density 0.001728 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

11I) Chains under conditions favoring the attraction of capsids, anisotropy 1D, 

Density= 0.001728, Number of tether beads = 10. 
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11J) Chains under conditions favoring the attraction of capsids, anisotropy 1E, 

Density= 0.001728, Number of tether beads = 10. 
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 Chapter 4 

Conclusions 

We have presented, to our knowledge, the first computational simulations for 

functionalized icosahedral building blocks/coarse grained virus particles, as possible 

candidates for materials design. This architecture comes up frequently in the synthesis of 

gold nanocrystals besides the abundant icosahedral virus capsids being investigated for 

several reasons. This study shows that icosahedral building blocks can form n-mer type 

aggregates, chains and small 2D patterns.  The density region mapped in our simulations 

predominantly gives chain like arrangements, while 2-D patterns and 3-D random clusters 

appear rarely, and only towards upper density limits. In the simulations of  Bilalbegović 

[5] similar chain like architectures were obtained. This might indicate a preference of the 

monomeric icosahedron for forming chain like architectures. Our results indicate that small 

functional groups (5 beads) direct the assembly better under conditions favoring the 

aggregation of tethers while small 2-D patterns under solvent conditions favoring the 

aggregation of nanoparticle, are observed for long tether groups. Also, the number of 

tethers does not seem to affect the nature of aggregates obtained under the latter solvent 

conditions within the density region investigated. We have also developed analysis routines 

for the system giving valuable insights into the final aggregate : Radial Distribution 

function and Population plot.  

The computational materials design approach used in this study can further guide wet lab 

investigations, and the choice of functionalization for bottom up materials design using 

these icosahedral building blocks.  
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