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ABSTRACT OF THE DISSERTATION

A product formula for certain Littlewood-Richardson

coefficients for Jack and Macdonald polynomials

by Yusra Fatima Naqvi
Dissertation Director: Siddhartha Sahi

Jack polynomials generalize several classical families of symmetric polynomials, includ-
ing Schur polynomials, and are further generalized by Macdonald polynomials. In 1989,
Richard Stanley conjectured that if the Littlewood-Richardson coefficient for a triple
of Schur polynomials is 1, then the corresponding coefficient for Jack polynomials can
be expressed as a product of weighted hooks of the Young diagrams associated to the
partitions indexing the coefficient. We prove a special case of this conjecture in which
the partitions indexing the Littlewood-Richardson coefficient have at most 3 parts. We

also show that this result extends to Macdonald polynomials.
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Introduction

Jack polynomials Jy(c; ) are a one parameter family of symmetric functions indexed
by an integer partition A. They were first introduced by Henry Jack [6] in 1969 as
generalizations of spherical functions over GL(n,F)/U(n,F), where a = 1/2, 1,2 corre-
spond to the cases of F = H,C,R. Jack polynomials can be characterized in several
ways. They appear as simultaneous eigenfunctions of certain Laplace-Beltrami type
differential operators [14]. In addition, they form an orthogonal basis for the ring of
symmetric functions over the field of rational functions in «. Jack polynomials were
further generalized in 1988 by Macdonald polynomials Jy(q,¢; ) [13], which are a two
parameter family of polynomials that reduce to Jack polynomials under a special limit.

The o = 1 specialization gives us scalar multiples of the well-known Schur poly-
nomials [7, 18], which play a central role in the representation theory of S, as well as
GL(n,C). These polynomials are also indexed by partitions, and can be described com-
binatorially in terms of Young tableaux. Moreover, the coefficients that arise when a
product of two Schur functions is decomposed into a sum of Schur functions have a com-
binatorial description known as the Littlewood-Richardson Rule (see [14, 5]), given by
counting the number of skew tableaux of a certain type. These Littlewood-Richardson
coefficients also appear in various other fields outside of representation theory, such as
in the study of Grassmanians and sums of Hermitian matrices (see [5, 2]).

It is a continuing area of interest to find appropriate generalizations of these results
for Schur polynomials in the context of Jack and Macdonald polynomials. Various works
[19, 14, 10, 3, 15] establish several combinatorial properties of these polynomials and
conjecture others. It is also possible to compute the Littlewood-Richardson coefficients
for such polynomials (see [16, 17]), but currently there are no combinatorial formulas

for these coefficients in the style of the Littlewood-Richardson Rule. In this work,



we prove a special case of one of Richard Stanley’s conjectures [19, Conj. 8.5] which
proposes a combinatorial description for certain Littlewood-Richardson coefficients for
Jack polynomials. In particular, this conjecture generalizes the Littlewood-Richardson
Rule for triples of partitions (A, i, ) such that the corresponding coefficient for Schur
polynomials indexed by this triple is 1. We prove that this conjecture is true when
the triple (A, u,v) is restricted to having at most 3 parts and extend this result to
coefficients of Macdonald polynomials as well.

In Chapter 1, we provide some background about the combinatorics of partitions and
symmetric functions. In Chapter 2, we give a precise statement of Stanley’s conjecture
for Littlewood-Richardson coefficients of Jack polynomials and state our main theorem
regarding the special case of this conjecture in which the coefficients are indexed by
partitions with at most 3 parts. In order to prove this theorem, we first classify all the
partitions that satisfy the hypothesis of Stanley’s conjecture in Chapter 3. Then, in
Chapter 4, we use this classification to experimentally obtain formulas for the coeffi-
cients in each case of our classification, and then develop some general algebraic results
which we use to verify each of the experimental formulas. In Chapter 5, we extend our
result from coefficients for Jack polynomials to coefficients for Macdonald polynomials.
Finally, we describe some ongoing work and further directions relating to our results in

Chapter 6.



Chapter 1

Preliminaries

In this section, we present some basic definitions and background information pertaining
to the theory of partitions and symmetric functions. We refer the reader to [14] for a

more detailed treatment of this material.

1.1 Partitions

Definition 1.1.1. A partition X is a sequence (A1, Ag, ..., \,) of non-negative integers

listed in weakly decreasing order:
ALZ A2 > 2 A 20

Each nonzero \; is called a part of A. We will sometimes write a partition A in
mj

.M Mo .My, .
the form (i7"',45",...,i, "), where i

denotes m; parts equal to i;. We call m; the
multiplicity of i; in .

The length ¢(X\) of a partition A is the number of parts of A. Let P,, denote the set
of partitions of length at most n. We think of A € P, as an n-tuple, with A; = 0 for
i>0(N).

The weight || of A is the sum of its parts:
Al =X+ X+ + Ay

If |A\| = n, then we say A is a partition of n.
Given any two partitions A and pu, we can define A + p as the partition obtained by

taking the sum of A and p as sequences:

(A )i = i + 4.



Given two partitions A, yu of n, we say p < Aif for all ¢ € {1,...,n},
1t <A A

The relation < defines a partial order, known as the dominance order, on the set of all
partitions of n.

Partitions are commonly represented diagramatically.

Definition 1.1.2. The Young diagram of a partion A is a left justified array of boxes
such that there are \; boxes in row 7. (We will use the same symbol A to denote both

the partition and its Young diagram.)

Example 1.1.3. Let A = (5,2,2,1). Then the corresponding Young diagram is:

The conjugate N of a partition \ is the partition whose diagram is the transpose of
the diagram of A, where the transpose is obtained by reflecting across the main diagonal

and thus interchanging rows and columns.

Example 1.1.4. If A = (5,2,2,1) (as in Example 1.1.3), then the transpose of its

Young diagram is:

and so A = (4,3,1,1,1).
We say A D u if the diagram of A contains the diagram of u. Let A — u be the set

theoretic difference between the two diagrams, which we call a skew diagram.

Example 1.1.5. If A = (5,2,2,1) and p = (3,2,1), then the skew diagram \/p is

denoted by the marked boxes in the diagram below:




If the skew diagram consists of » = |A| — |u| boxes and has at most one box in each
column (respectively, row), we refer to it as a horizontal r-strip (respectively vertical
r-strip). In Example 1.1.5, A/ is a horizontal 4-strip. However, it is not a vertical
strip since the first row of the skew diagram contains two boxes.

A skew tableau T is obtained by filling each box of a skew diagram \/p with a
positive number, where A — u is called the shape of T. If m; denotes the number of
times ¢ appears in the skew tableau, we say (mi,...,m,) is the weight of the T, and
the word w(T') of T' is the sequence obtained by reading the entries of T from right to

left in each row.

Example 1.1.6. Let T be the skew tableau given by

—_
—_
w
w

Then:
e the shape of T"is (5,5,2,1) — (3,1).
o the weight of T is (4,2, 3).
e the word of T"is w(T) = (2,1,3,3,1,1,2,1, 3).

A skew tableau T is said to be semistandard if the entries of T weakly increase
across rows (from left to right) and strongly increase down columns. We say that T
satisfies the Yamanouchi word condition if the number of occurrences of an integer %

never exceeds the number of occurrences of i — 1 for any initial segment of w(T).

Definition 1.1.7. A Littlewood-Richardson tableau is a semistandard skew tableau T’

that satisfies the Yamanouchi word condition.

Example 1.1.8. The skew tableau

—_
—_

—_
—_
[\)

is a Littlewood-Richardson tableau.

We will call any filling of a skew diagram that gives a Littlewood-Richardson tableau
an LR filling.



1.2 Symmetric Functions

Let Z[z1,...,z,] denote the ring of polynomials in n independent variables x1, ...,z
with integer coefficients. Let S, be the symmetric group on n letters. Then S, acts on
Z|xy,...,x,] by permuting the variables, and a polynomial is called symmetric if it is

unchanged under this action. The symmetric polynomials form a subring:

Sh
Ny =2z, ..oz
For each a = (a1, ..., ay) € N we can define the monomial
% =it xon.

Then we can define the monomial symmetric function my, where X is a partition of

length at most n, by

ma(z1,...,2Tn) = Z z,

aESp-A

where S, - \ is the orbit of A under the action of S,,. The monomial symmetric functions
form a Z-basis for A,,.
For a partition A, we can also define the skew-symmetric polynomial ay by

ax(xi,...,xy) = Z e(w)z™ ™,

wESy

where e(w) is the sign of the permutation w € S,,. Let ¢ be the partition

(n—1,n—2,...,1,0). Then ays is divisible by as, and the quotient

ax+§
sx(@1,...,xy) = a;: ,

called the Schur polynomial, is a symmetric function. The sy, ¢(\) < n also form a
basis for A,,.

Schur polynomials appear as spherical functions over GL(n,C)/U(n,C). Spherical
functions over GL(n,F)/U(n,F) are further generalized by Jack polynomials
In(e; 21, ..., xy), where a = 1/2, 1,2 correspond to the case of F = H, C, R, respectively.

To define Jack polynomials, we must first define the operator D(a) on A ® Q(«) by

IR R )
Dla) = 2 Zl:xlﬁxf +in—mj8xi'




Then D(«) is upper triangular on the basis of monomial symmetric functions my, ie

D(a)my = Z b, M-
B

Definition 1.2.1. The monic Jack polynomials

P)\:P,\(oz;:rl,...,xn): E U,y
P

are the eigenfunctions of D(«) such that vy ) = 1.

Note that Py(1) = s). We will also find it convenient to consider the following scalar

multiples of Jy:

Definition 1.2.2. The integral Jack polynomials

Iy =z, ... z,) = E VX My
P

are the eigenfunctions of D(a) such that if [A| = m, then vy (3m) = m!.

Jack polynomials are further generalized by Macdonald polynomials which are eigen-

functions of the operator D(q,t) on A ® Q(q,t) defined by:

tr; — x;
D(at)=> ([ — 7]
- $i*$j
where
Toif(z1,...,xn) = f(T1,...,qTi, ..., Zp).

Then, once again,

D(q,t)my = Z b, My
u<A

Definition 1.2.3. The Macdonald polynomials

P)\ = P)\<q,t; L1y .- .,Jin) = Z’U)\”umu
HSA

are the eigenfunctions of D(q,t) such that vy y = 1.

We can recover the Jack polynomials from the Macdonald polynomials by taking
the limit as g,t go to 1, where the parameter « signifies the direction along which this
limit is taken. Thus,

lim PA(1°, 1) = Py(a).



1.3 The Littlewood-Richardson Rule

Schur functions can be interpreted combinatorially, by the following theorem.

Theorem 1.3.1.
= 35D
T

where T is a tableau of shape \, and O(T) is the weight of T.

Example 1.3.2. s(51) € A3 :

L[1] [fa] [1]2] [a]2] [1]3] [1][3] [2]2] [2]3]
2 3 2 3 2 3 3 3

2 2 2 2 2 2
5(2,1) = T1T2 + X1T3 + 123 + 2z1T273 + T173 + T5%3 + T273

This also leads to a way of combinatorially interpreting the coefficients that appear
when a product of Schur polynomials is expanded as a sum of Schur polynomials. This
was developed using two major results. We start with a theorem that tells us how to
expand such a product when one of the polynomials in the product is indexed by a

partition of length 1.

Theorem 1.3.3 (Pieri Rule).
SuS(r) = D Sxs
A

where A/ is a horizontal r-strip.

Example 1.3.4. = (3,1),r =2

i 1) L |
] 1 B 1] 5

5(3,1)8(2) = S(5,1) T 5(4,2) T 5(4,1,1) T 5(3,3) T 5(3,2,1)

Note that we can also consider the transpose of each of the indexing partitions,
to get a way of multiplying two Schur polynomials when one of them is indexed by a
partition consisting of a single column.

Finally, we can extend this result to products of two Schur polynomials indexed by

general partitions. This is done using the Littlewood-Richardson rule.



Theorem 1.3.5 (Littlewood-Richardson Rule).

SuSy = C;/\A,usx\v
A
where Cl/>7V is the number of Littlewood-Richardson tableaux T of shape \/u and weight
V.

Example 1.3.6. 1= (2,1),vr =(2,1),A=(3,2,1)

/
1] 1] 2]
12 1 711

(3,2,1)
€(2,1),(2,1)

=2
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Chapter 2

Stanley’s Conjecture

2.1 Statement of Conjecture

We wish to generalize the Littlewood-Richardson rule to obtain a description of the
coefficients that appear when a product of Jack or Macdonald polynomials is expanded
as a sum of the respective polynomials. While it is possible to compute these coeffi-
cients recursively, there is currently no combinatorial result that clearly reduces to the
Littlewood-Richardson rule as we take the appropriate limit of the Jack or Macdonald
polynomials to recover the corresponding Schur polynomials. However, in [19], Stanley
made some observations and conjectures that give us some steps towards this goal.
While Stanley discusses only the case of Jack polynomials in his paper, all results can
be generalized to Macdonald polynomials as well.

In order to state Stanley’s Conjecture [19, Conj. 8.5], we must first define the hook
length for a box in a Young diagram and some of its analogues. The hook-length hy(b)
of a box b in the partition A is obtained by counting all the boxes to the right of b
(called the arm, denoted ay (b)) and all the boxes below b (called the leg, denoted £(b))

along with b itself.

ax(i,j) = Xi —j

hk(la.]) = a)\(ivj) +£)\(Z7j) +1



11

Example 2.1.1. A = (5,2,2,1),b = (1,2)

x|=[=[-]

hab)=3+2+1=6
We can define 2 a-generalizations of hy(b):
o upper hook-length: h}(b) = a(a(b) + 1) + £(b)
e lower hook-length: h(b) = a(a(b)) + £(b) + 1

In effect, the upper hook treats the corner box as part of the arm, whereas the lower
treats it as part of the leg.

We define the following products of hook lengths:

) =] )

beX

Hy =] 1)
beX

gy = H}) - H}

Then we can relate the integral and the monic Jack polynomials as follows:
Ja(@) = HY Py().
We can also define the dual J3 (o) of J\(«) under the canonical inner product by:
J5(@) = 57 (@),
Finally, we consider the following expansions:
Tudv = gn (@) J3,
A

PP, => c), ()P
A

Then
g)\( ) E[*F[uE[VcA ( )
A A, Gy ().

We are now ready to state Stanley’s conjecture.
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Conjecture 2.1.2 (Stanley, 1989). Given partitions A, ju, v such that Cﬁ,u(l) =1, then

for all a,

() = (n w) 0 (H mb)) | (2.11)

beX beu bev
where he(b) is either hz(b) or hS(b). Moreover, we can choose these hooks such that

there is an equal number of upper and lower hooks.

Unfortunately, while this conjecture states that such a choice is always possible,
there is no canonical way to make such a choice, and no conjecture for an assignment
that might work in general. In fact, as Stanley himself notes in [19], there is often more

than one assignment of upper and lower hooks that would satisfy this conjecture.

Example 2.1.3. A =(2,2,2,1,1),p=(2,1,1),v = (2,1,1)

l
l
?

7] 7]

EE

EE

Of the 6 boxes marked “7?”, 5 must be taken to be upper hooks and 1 to be a lower

hook, so there are 6 possible ways to obtain the correct coefficient.

Since we can get c;\“, by dividing gﬁ‘,y by all the upper hooks in A and all the lower
hooks in p and v, we will call such hooks standard hooks and boxes assigned to have
standard hooks in Equation 2.1.1 to be standard boxes. On the other hand, we will
call lower hooks in A and upper hooks in p and v flipped hooks and boxes with such
an assignment in Equation 2.1.1 flipped bozes. If g;/),v () is given by a product of only
standard hooks, then cl’\w(a) = 1 for all a. In general, cf;,,(a) can be regarded as a
product over flipped boxes of the ratio of the flipped hook to the standard hook. When
a = 1, the upper and lower hooks have the same value, and so any such product reduces
to 1, in agreement with the hypothesis cf;’l,(l) =1.

We will call any triple (A, i, v) of partitions that satisfy the hypothesis cl/)y(l) =1lan
extremal triple. Such triples correspond to the case of a unique Littlewood-Richardson

tableau of shape A\ — u with weight v, but it remains difficult to generate all such triples

in general. Extremal triples lie on the boundary of Horn cones, which are given by the
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eigenvalues of Hermitian matrices A, B, C such that A + B + C = 0. (However, note
that not all boundary triples are extremal.) Extremal triples also play a prominent role
in Fulton’s conjecture, which states that an extremal triple remains extremal under a
scaling of all three partitions by the same factor. (A proof of Fulton’s conjecture is

given by Knutson, Tao and Woodward in [12].)

2.2 Main Theorem

In this work, we prove the following special case of Stanley’s conjecture.
Theorem 2.2.1. Stanley’s conjecture is true for A\, u,v € Ps.

We will show this by first classifying all extremal triples of partitions in P53, which

we do in Chapter 3. We thus divide the problem into several cases and develop an

A

4, 10 each case. A complete

experimental formula in the form of Equation 2.1.1 for ¢
list of these is given in Section 4.3. In Section 4.6, we verify that our experimental
formulas indeed give the correct coefficient, thus completing the proof of Theorem
2.2.1. In Chapter 5, we extend this theorem to get Theorem 5.0.9, which shows that
the coefficient for the corresponding Macdonald polynomials can also be obtained for

extremal triples of partitions in P3 using the same system of upper and lower hook

assignments using a suitable generalization of hook-lengths.

2.3 The Pieri Rule for Jack Polynomials

By Theorem 1.3.3, we see that if v consists of a single row (or column), A, u, v must be
an extremal triple. In fact, we have an analogue of this theorem that gives a proof of

Stanley’s conjecture when v falls into this special case.

Theorem 2.3.1 (Pieri Rule for columns [9, Thm 6.3]). If \/u is a vertical r-strip and

v=(1"), then
A(s) h

Gy = [ D)

sex (v TALS) P (5

= *

>
3S
SN—

where X (\/p) denotes all the bozes (i,7) € pu such that p; = A; and p; < \).
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Example 2.3.2. A = (4,2,2),u = (3,2,1),v = (1,1)

wlululu] 111]1]
ul|l [y
ulu 1]

A 2

Cl””’/:l_i'_a

gp, =320 (3 + 20) (1 + 20)*(2 + @)*(2 + 3)

We define
_ H)No)
Hi(a)

ba(a)

Thus, we can think of by(«) as an operator that switches upper and lower hooks. This

gives us the following equation:

N (1) _ u(@bu(@b(0) 25

C,1
W ba(cv)
Therefore, if A\, u,v is an extremal triple and we transpose all 3 partitions, the
resulting Littlewood-Richardson coefficient corresponds to swapping all the upper and

lower hooks. This allows us to use the Pieri rule for columns as a rule for rows as well.

Example 2.3.3. We consider the triple obtained by transposing the partitions in Ex-
ample 2.3.2:
A=(3,3,1,1),u=(3,2,1),v = (2)

ulu

lu]u]

HEE

‘N‘NNN

A _ 160%(1 +2a)
v 3(1+a)t

gp, =320°(2 + 3a) (1 + 20)*(2 + @)*(3 + 20)

Cc
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Chapter 3

Classification

We present a classification of all extremal triples (\, i, v) consisting of partitions in Ps.
In particular, we show that such triples correspond to each face of co-dimension one of
the n = 3 Horn cone (see [12]). It turns out that this correspondence is no longer true
if we allow partitions of greater length, in which case extremal triples form a proper

subset of the triples that lie on boundary faces of the associated Horn cone.

3.1 Horn’s Inequalities

Horn cones were defined by [4] to answer the following problem: given two n X n
Hermitian matrices A and B with eigenvalues p = (p1,...,4,) and v = (v1,...,vy)
(arranged in weakly decreasing order), we wish to determine the possible eigenvalues
A= (A1,...,Ay) of the sum C' = A+ B. Horn conjectured a list of inequalities involving
A, i, v that, together with the condition |A| = |u| + |v|, determine all possible combina-
tions. These inequalities were verified by the works of Klyachko [8] and of Knutson and
Tao [11], which also show that the Littlewood-Richardson coefficient cf;,, is nonzero if
and only if (A, 4, v) lie in the Horn cone H,,. Later, Knutson, Tao and Woodward [12]
determined the minimal necessary list of such inequalities that determines this cone.

Using this list of inequalities for H3, we have that the Littlewood-Richardson coeffi-
cient cf‘“, is nonzero if the partitions A, u, v € Ps are such that |A| = |u| + |v|, and they
satisfy all of the inequalities in Table 3.1.1 below.

It is known that extremal triples (A, u, v) all lie on a union of some faces of the Horn
cone (see [1, 12]). We will refer to a face of codimension one as a facet. Since each facet
is obtained by changing one of the defining inequalities to an equality, for Hs, we will

refer to each facet by the same number as the corresponding inequality as above.
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Table 3.1.1: Defining Inequalities for Hs

1. pu3 < o 7. A <py+un 13. A3 > uz +v3
2. po <y 8. A< 1+ 11 14. Ao > pu3 + 1o
3. 13< 1 9. Aa <o+ 1y 15. Ay > po + 3
4. vy <14 10. A3 < +vs 16. A1 > us+1
5. A3 < Ag 11. A3 < o+ 1o 17. My > po + 1o
6. A2 <\ 12. A3 < pz+ 11 18. A1 > p1 +v3

In general, not every facet of H,, contains extremal triples. However, this does hold
for H3, and so one can check triples (A, 1, ) on the interior of each face, and determine
that every single facet does indeed give an extremal triple. In the next section, we

present a direct combinatorial proof of this fact.

3.2 Littlewood-Richardson Tableaux

We will show that each facet of 3 contains extremal triples by classifying the possible
Littlewood-Richardson tableaux of shape A/u of weight v in the case that A\, u,v €

P3. The cases presented in this proof were also used to determine the experimentally

A

obtained formulas for c

(@) presented in Section 4.3.

Theorem 3.2.1. For partions A\, u,v € P3, we have cﬁvy(l) =1 if and only if A\, u,v

lie on a facet of the Horn cone Hs.

Proof. A skew diagram of shape A\/u consists of at most three rows. Therefore, if v has
length 3, then any LR filling of A/u of weight v must consist of at least v3 occurrences
of ¢ in row 7. We therefore only need to consider the remaining boxes, and we can thus
assume, without loss of generality, that v has length at most 2. By symmetry, we can
also assume the same for .

Now let T be a Littlewood-Richardson tableau of shape A/u with weight v. Then
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w(T) must be a sequence of 1’s and 2’s of the form (121,22, 1b1,2¢2 1) where ™
denotes m consecutive occurrences of 7. In order to satisfy the Yamanouchi word
condition, we must require that a1 > bs and aj + by > bs + ¢o. For instance, if T7 is the

following diagram:

1[1]1]
1[1]2]2 ;
1]2]2]2

then w(Ty) = (13,22,12,23,11). Note, however, that in this case, a filling of this skew

diagram of weight (6,5) is not unique. We must therefore determine which restrictions
on the set (ay, ba, b1, ¢, c1) of multiplicities in w(7T') lead to an extremal triple (A, p, V).
First, suppose every column in A/ consists of a single box, so that A\/u is a hori-

zontal |v|-strip:

1]

112

In order to have a unique LR filling, either by = 0 (type B) or ¢; = 0 (type C). To see
this, consider the case of an LR filling in which both by and c¢; are nonzero, as in the
diagram above. Then the last 1 in the third row can be swapped with the first 2 in the

second row to get another LR filling,

212

A

¢, (1) must be greater than 1 in this case. However, as this second diagram illus-

SO
trates, requiring that the filling be of type B or C is not sufficient to give an extremal
triple, even though it is a necessary condition. Specifically, in the absence of any ad-
ditional restrictions, it may be possible to swap a 2 in the third row with a 1 in the

second row.

Therefore, for each type, B or C, we require one of the following restrictions:

I. co =0
II. b =0
III. a1 = be

IV. a1 + b1 = by + co.
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Conditions I and II remove one of the quantities that would have been involved in such
a swap to get a new LR filling with the same weight. Conditions III and IV imply that
any such swap would violate the Yamanouchi word condition, since the swap would
have the effect of increasing by while leaving a1, b; and co unchanged.

Finally, we consider the case in which A/ is no longer necessarily a horizontal strip.
Then every column in the skew diagram could have up to two boxes, and whenever it
does contain two boxes, the filling must be a 1 in the upper box and a 2 in the lower
box. We could have an overlap between the first and second rows (denoted by type o01)
or an overlap between the second and third rows (denoted type 02). In the case that o;
does not occur, we denote the number of columns in the gap between the rows of the
skew diagram by g;. Thus, we have 32 cases in all (type B or C, type I-IV, type 01 or
g1, and type oz or g2).

We will use o; and g; not only as a label for each type, but also a count (analogous
to aq, b, ¢;) of the number of overlapping columns in the skew diagram, or the number
of columns in the gap between rows of the skew diagram. Therefore, in general, the

parts of A, u, v are given by:

vi =a1+ by +c1 401+ 02+ 13

vy =by+co+ 01+ 02+ 13

w1 =b1+bx+g1+oa+c1+co+9g2+ 3

M2 = C1+ C2 + g2 + U3

A =bi+byt+g1tortecit+eatgatar+or+pst+vs
Ay =b1+by+o2+ci+catgator+pustvs

A3 =09 +c1+co+ u3+ 3

Therefore, each of the 32 cases corresponds to a restriction on the partitions A, u, v. For
instance, B.I.g1go means that bs = co = 01 = 09 = 0, and therefore vy = 3. Similarly,
B.I1.g102 means that by = co = 01 = g2 = 0, and so we get that pus +v5 = A3. We give a
complete list of restrictions in Table 3.2.1 below, where each number refers to the facet

of H3 determined by the correspondingly numbered Horn inequality above.
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Table 3.2.1: Extremal triples of partitions in Pj

Type || 9192 | g102 | 0192 | 0102

BI | 3) |ayn| ® |16

B.IL || (15) | (5) | (2) | (10)
B.III || (18) | (18) | (6) | (6)
B.IV || (12) | (12) | (17) | (17)
cl ||l @) | @ | a3) |

CI || (7) | 14) | (7) | (14)

CII | @ | 9 | 9 | 9

CIV | (4) | (4) | (4 | (4)

We thus verify that each facet of Hs appears in this table, and therefore each of

them must contain only extremal triples.
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Chapter 4

Proof of Main Theorem

4.1 Division Numbers

Every partition A can be divided into rectangular blocks consisting of all columns of the
same height. We will use w; to denote the block ((A; — Ai41)?). Then if £(\) = n, we

can decompose A as the sum w? + wy + - - + w; of all its blocks.

Example 4.1.1. Let A = (6,4,2). The block w3 is highlighted in the Young diagram

below.

We refer to each part of a block wZ-A as a strip. Thus, each strip consists of a row

within a block.

Example 4.1.2. Let A\ = (6,4,2). The strips (w3)2 and (w3); are highlighted in the

Young diagram below.

It turns out that for an extremal triple (A, u, v) of partitions in Ps, it is possible to
obtain cf;,,/ by an assignment of upper and lower hooks in the corresponding diagrams
such that within each strip, all the upper hooks that occur appear to the left of all the
lower hooks that occur. (Note that a strip may contain only upper hooks or only lower
hooks.) We can thus encode the coefficient c;/\w by a system of division numbers, which
are numbers for each strip in A, p, v indicating the transition point between upper and
lower hooks. By convention, we use the division numbers to count the flipped hooks in
each strip, ie the lower hooks in each strip of A and the upper hooks in each strip of u

and v.
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For each partition, we write the division numbers in a matrix style array, arranged
in the same order (left to right, top to bottom) as the strip to which they correspond.
Note that the division number symbols differ from matrices in that they contain no
entries below the off-diagonal. Moreover, as we prove in Lemma 4.4.2 below, all hooks
in the blocks w} and wj can be taken to be lower hooks, corresponding to division
numbers of 0 for all the strips in those blocks. Therefore, we will write the division

numbers for A within a 3 x 3 array and those for p and v within a 2 x 2 array.

Example 4.1.3. A = (8,7,4),u = (6,3),v = (5,5)

Ul ull

o~

U )

ulelull wlullululu] AN/
MVANAY ulu|l ulu|u|ull
Cl/\w is encoded by the division numbers given as follows.
3 20
2 3 10
A2 2 T v
2 4

3
4.2 Algebraic Structures

To compute c;\“, from the division numbers, we require the following notation.

Let 8 be a multiset. We regard § as the set of vanishing points (counted with
multiplicity) of a polynomial. Therefore, let ¢(x; 3) be the smallest degree polynomial
in = such that ¢(b; 8) = 0 for all nonzero b € 8 and ¢(0; 8) = 1. In particular, we have:

o= T1 (%50):

bes,b#0

Such polynomials give us a natural way to write the coefficients cﬁ,,(a) for extremal
triples. Given an upper hook A%, we can write the ratio of the corresponding lower

hook to the upper hook as
By~ (0 —1)
h3
Also, given a lower hook h%, we can write the ratio of the corresponding upper hook to

the lower hook as
—h —(a—1)
_hf: ’
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Thus, each cf;,,/(a) can we written as ¢(a — 1; F(A, u, v)), where F(A, p,v) is the set of
standards hooks of flipped boxes in A and negatives of standard hooks of flipped boxes
in p and v.

We will also find it convenient to write our hooks in terms of r = 1/a. In this case,

we regard our hook-lengths as

hy(b) = a(b) + 1+ £(b)r

R (b) = a(b) + (£(b) + 1)r

and we have that

(m—1a+n+1 (m—-1)+Mn+1)r
mo+n N m+nr

d(a—1;ma+n) = =¢(1l —r;m+nr).

Succesive flipped r-hooks within a single strip differ by 1, and so we require an
effective way to describe such products. To do this, we will first define the following

notation:
(w:0); = o(w; {a, .., a+j —1}).

When z is fixed and clear from context, we will suppress it and simply write (a) ;-
We will make use of two main identities involving such terms.

For the first identity, observe that if j = j; + jo, then

(a);, (@ +41);, = (@); = {a);, (a +J2),

and so

<a>j1 <a>j2

. = = 4.2.1
(a + j2>j1 (a + j1>j2 ( )
For the second identity, note that if a + b = = then
() (5 - (7))
= — 1
a b a x—a
and more generally that

(), b=+ 1), =1, (1.22)

where the ith term in the first product cancels with the (7 —i+ l)th term in the second
product, since a+ (i — 1)+ (b—j+ 1)+ (j —i) = a+b = z. Note that this is equivalent

to saying that (a); (b); = 1 whenever a +b =1z — j + L.
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Now note that such terms can be used to describe the product of flipped hooks

within a single strip. We will use the notation:
bin|=1-r;b+1), =1 —r;{b+1,0+2,...,b+n}).

Let hg\j denote h3(i,1) — h3(j,1). Then given partitions A, u,v and a set of division
numbers n for each strip in these partitions, we define df;ﬂ,(n) to be the product:
N T g g
duﬂ/(n) = H[hz)\]’ nij] : [_h;f; nZ] ’ [—hf],nl”],
1<j

where ng is the division number corresponding to the ¢*" strip in w;‘, and nfj is the
division number corresponding to the ¢** strip in w§71 for ¢ € {p,v}. We will refer
to the starting point b = j:h? in each term of the form [b;n] as the anchor for the
corresponding strip.

Using equation 4.2.1, we can determine how changes to the anchors or division

numbers affect d:\w(n). In particular, we have that

ij. &

[héj’i;lijg_t] - 15 , (4.2.3)
[hg Qnij] [hg +ng — 1 t]

h ;05 [ 4+ nbt

[ I3 zg] _ [ I3 17 ] (424)

[hd )] [hs1]
4.3 Division Numbers for Extremal Triples in P3

Let 051, encode the quantity |A\; + pj — vx|, and let &;; denote & — §; for any partition
¢. Let p be the positive part of A3 — o — v3, so that p = 0o = max(A3 — pua — v3,0).
Finally, let 2% = z 4 p, where z is either some 0 or some &;j.

We present a complete list of division number formulas below for extremal triples
in P3. These formulas are grouped according to facets of the Horn cone defined by the
inequalities in Table 3.1.1. For each case, we present the division numbers for A, u, v,
and list the proposition in which this formula is verified. These propositions all appear

in Section 4.6.



Table 4.3.1: Division numbers for extremal triples in P

Case: Al W v Prop.
0333 0222 0 - - - -
0 %111 0333 0222
M3 = K2 0333 0929292 4.6.1
10 ] | 0333 i
0333
0111 0213 O - - - -
0 0 0213 0111
H2 = 1 0929 0213 4.6.2
| 0333 | 0213 ]
0111
0333 0222 0 - - -
0333 0222 0 0111
vy = 19 0333 029292 4.6.1
| 0333 0 ]
0333
0111 0231 O - - .
0231 0111 0 0
Vo =1 0222 09231 4.6.2
[ 0231 | 0333
0111
9111 0 O - _ _
0232 0223 0223 0232
)\3 =X 0333 O 4.6.6
| 0222 | 0223 i
0223
0333 0395 0 L 1
0919 M12 0931 0221
)\2 — )\1 p 0231 4.6.7
0221 | 0231 ]
09221
0O 00 - -
0 0 0 0
Al =1+ 0333 0 4.6.4
10333 | 0333
0333
0333 0 0 - .
0 0 0333 0111
A2 = p1 + v 0 0 4.6.4
0333 | 0
0333
0333 0 O
0333 0111 0 0
Ao = g +11 0 0 4.6.4
0 0333
0333

24
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p 0111 a223
10. | Ads =1 +v3 03'21 09923 4.6.4
0323 [ 0221 |
p
0333 0229 0 - i
0332 0223 0323 0232
11. | A3 = g + 1 0333 0992 4.6.3
0 0
0 L i
0—1’_11 0993 O N - 0—
0111 a223 p
12. | A3 =pus+ 11 0;21 0993 4.6.4
0221 _0;23
- p -
0 %1 O - 1 - 1
0 9111 0 o111
13. | A3 = us + v3 0 9111 4.6.5
0 0
0 L i i i
0323 0 0 - . - .
0323 0 0 o111
14. | Ao = uz + 1o 0333 0 4.6.5
| 0333 0 ]
0323
0332 0 0 - . - .
0 0111 0332 0
15. | Ao =2+ 13 V333 0 4.6.5
10 ] | 0333
0332
0333 0232 0 . - _
12 0333 0232
16. | M1 =pus+ 11 0323 09292 4.6.5
0 | 0323 |
0323
0111 D5p3 0 0 e .
0112 0313 0121
17. | M=o+ 1 0322 0113 4.6.8
0221 A3
o7 - §
V121 |
0333 0223 0 0
0333 0203 V12
0332 0
0332

Note that all division numbers that appear in Table 4.3.1 are positive and do not

exceed the size of the strip in which they appear.
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4.4 Extremal Paths

In order to verify the proposed formulas for the coefficient cl)l‘,y, we will typically use
induction on |A| — |u]. In order to do this, we decompose v into two pieces v/ and v”,
and compute the coefficients obtained when we expand the product P, P,/ P, as a sum.

Using associativity, we can expand this product in 2 different ways.

Lemma 4.4.1. For fized A\, i, (, €,

KA noL A
Z C.u"C CH7€ - Z 6476 c#ﬂ?‘

KCA nCA

Proof. We use the associativity of product P, PP, to expand the coefficient of Py in

this product as a sum in 2 different ways:
(P,P:)P. = (Z CQCPH) P.
K
=2 e e B
I3 K

Pu(PcFe) = Py (Z CZ,ePn>
n
- chg,e : C/in Pe.
§

Picking out the coefficient of Py in this expression tells us:
A n A
DG e = D
KCA nCA

O]

It turns out that for extremal triples (A, i, v) of partitions in Ps, we can always de-
compose v (or, equivalently, 1) into subpartitions v/ and v such that all the coefficients
that appear in the expression

§ : K A _,E : A 7
C/L,V’ . CR7UH = C,u777 . Cl/’,l/"

KCA nCA

A

v and we call the

are indexed by extremal triples. We can solve this equation for ¢

resulting expression an extremal path.
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In particular, we can pick v to consist of a single row or column. In this case,
coefficients involving v can be obtained using the Pieri rule. Since v/ is strictly smaller
than v, we can apply our inductive hypothesis or results of a previous case to compute
¢ for £ C A On the other hand, since [n| = [v|, we use the following lemma to
simplify coefficients of the form c;\w] forn C \,n #v.

P e 1)
A—wy —wk

Lemma 4.4.2. c;\W =c

o .
H—ws v —wg

Proof. We first use Lemma 4.4.1 with ¢ = (13) and ( = v — ¢, to get CZ\W el =

A—e )\ A _ A—€
v = C,¢ - We can then

. . U . o )\
Chc " Oee By the Pieri rule, Ce=Chee =1 and so we get ¢

i

iterate this to get cﬁ’,, = 02;330)13,. Finally, we use the symmetry between p and v to
obtain our identity.

O]

A

. . 77 .
Since, in general, n3 > v3 and thus |ws| > |w5], this lemma allows us to reduce c; ,

such that it can also be computed by our inductive hypothesis or results of a previous

case.

4.5 Main Lemmas

We will reduce our extremal path expressions to one of the following 2 identities, de-
pending on whether v is taken to be a row or a column in our decomposition of v.

We will use the notation [n] to denote {1,...,n}.

Lemma 4.5.1. Let n be fized, and let I = [n]. Given sets 0 = {o;},7 = {7;} indexed

by i € I, we can define

Pilo,7) = {oi =0} U{mi + 0j},
qu(l‘;a, T) = d)(x;ﬁj(gvT))’
O(x;0,7) = Zd)j(x;a, T)

J€el
Then for all x,0,T,

O (z;0,7) = ®(x;7,0).
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Proof. We use induction on n. If n = 1, then

Bi(o,7) = pi(1,0) ={0, 71+ 01},

and so
Tm+01—x

O(z;0,7) = O(z;7,0) = p———

For greater n, we note that each ¢;(x;0,7) and ¢;(x; 7,0) is a polynomial of degree
2n — 1 in . We will show that the expression ®(x;0,7) — ®(z;7,0) vanishes at all
points of the form xzy; = (o + 1), k,l € I, and therefore must be identically 0. If we

fix some k and [ in I, we see that

or(zr;0,7) = gu(p; 7,0) = 0.

If j # k, then

0;— 05 — 0 — T Ti—f-Uj—(fk—Tl
bylanionr) = [[ o O
i#j v i v

We factor out the i = k term from the first product and the ¢ = [ term from the second

product to get

(—Jj—Tl)(Jj—Uk) Ui—Jj—O'k—Tl Tz‘-i-Uj—Jk—Tl
¢j(xp;0,7) =
J (O'k—O'j) (Tl—i-O'j) z;lé_][,k 0;— 0 LIZ T+ 0;
Since
(—oj —m) (05— o) _ 4
(o —0j) (n+o;)
we get that

Tit+o;+or—T H 0 —0; — 0k — T

T +0; ik 0; — 0j
9

¢j(zmsont) =[]
il
= G (Tri; Tith, Titl)-
By a similar calculation, we have
Gj(xri; 7, 0) = G5 (This Tit, Titk)-

Therefore

Q(xp;0,7) — ®(Tp15 7, 0) = (TR Oitn, Tit) — P(Tha; Titt, Oite),
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which is identically 0, by the inductive hypothesis.

Lemma 4.5.2. Fiz n and let o = (01,09),7 = (11, 72). Let af denote o; + k. Let

B (j;0,7) U {- k}u{ faﬁ:i#j}U{TffleU;},
1€[2]
ke[n—t]

O (z30,7) = ¢ (2387 (L;0,7)) - ¢ (25 81—y (250, 7))
(x;0,7) Zgbt x;0,T)

Then for all z, 0, T,

Oy (2;0,7) = Pn(2;7,0).

Proof. We prove this identity by induction on n. When n = 1, the result follows from
Lemma 4.5.1.

For general n, we note that each ¢} (z;0,7) and ¢} (z; T, 0) is a polynomial of degree
4n in z, so we must show that ®,,(z;0,7) — &, (z; 7, 0) vanishes at 4n + 1 points. Note
that all terms vanish at x = 1 since 1 is contained in at least one of the sets [n — ]

r [t]. We will show that ®,,(z;0,7) — ®,(x;7,0) also vanishes at the 4n points given
by v = (o1 +7m +k—1),[,m € [2],k € [n]. Since a transposition of o1 and oy takes
¢ (x;0,7) to ¢ _(x;0,7) and keeps ¢} (x;T,0) fixed, we can assume without loss of
generality that [ = m = 1, and so we let x = (01 + 71 + k — 1).

We claim that

0 ift<k
¢r (v30,7) = (4.5.1)
¢?:,f(xk;a+ke1,7+ke1)-c};‘ ift>k

where e; = (1,0) and ¢} is a term that does not depend on ¢, and is symmetric in o
and 7.

We note that if ¢t < k, then for j =k — ¢,

T{71+Jf—:ﬂk:t+j—k:0.
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Since k € [n], j must be in [n — ¢], and so this implies that for ¢ < k
¢ (z;0,7) = 0.
Now assume that ¢t > k. By definition, we have that

o (z50,7) = ¢ (z; 81 (L;0,7)) - ¢ (2381 _ (20, 7))

and so we work with each of these two factors separately.

Let (a); = (zx;a);. We have that

¢ (z; B¢ (L 0,7)) = (—n+1),_ (o2 — 01 — 1),
(mt+oir+t), (n+or+t),,,
é (a:k; Br k(1 0+ key, T+ kel)) =(-n+t), ,(log—0a1—t) ,
(o1 +t), (n+o+k+t), .

Note that the first three factors on the right hand side are the same in both lines.
Therefore, if we divide the first expression by the second, we can simplify the ratio

using 4.2.1 to obtain:

¢ (zx; B (150,7)) Ao tit),,

¢ (xk; B k10 + key, 7+ k:el)> (m+o1+k+t), ,

t
— m. (4.5.2)
<Tl + 01 + n>k

On the other hand, we have that:

¢ (zk; B (2;0,7)) = (=t), - (o1 — o2 = + ),
(ntoptn—t)-(ntogt+n—t),
b (mk; B k(20 + key, 7+ ke1)> =(—t+k), (o1 —0oa+k—n+t), ,
(mi+or+k+n—t), - (nt+o+n—1t), .
Therefore if we divide the first expression by the second, and once again use 4.2.1 to

simplify the ratio, we get

0 (043 57 (%0.7))
& (wi3 B (250 + ker, 7 + hey) )

=(-t)y(or—oa—n+t) (m+oa+n—t) (n+tor+n—k). (453)
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By 4.2.2, we can rewrite the first term on the right hand side of this expression as

1

(=) = (1 + 01 + 1),

since 71 + 01 +t—t = x + k — 1. We can also simplify the the middle two terms using

the same identity. Since
(o1—oa—n+t)+(n+or+n—t)=x,—k+1,
by 4.2.2, we get that
(o1 —oy—n+t), (m+o+n—t), =1

Therefore, we can reduce 4.5.3 to

¢ (w3 By (250, 7)) _<T2+02+”—k>k'

= (4.5.4)
¢<$k; f__kk(Q;a—i—k:el,T—i—kel)) (11 + 01+ 1),
Finally, we multiply the expressions in 4.5.2 and 4.5.4 to get that

oF (wg30,7) A{nitoi+t), (mtort+n—k),

"R (ag o+ ke, T+ key) (1ot (4o +t),

<7'2+02+7’L—k>k
(11 + 01 +n),

)

which completes our proof of equation 4.5.1, with

<7‘2+02+n—k>k
(71+01+n>k '

C —

It is easy to see that this c; does not depend on ¢t and is symmetric in ¢ and 7.

Since each ¢} contains this factor of ¢, whenever ¢ > k, it follows that
D, (xg;0,7) = Pp_i(xp; 0 + ker, 7 + key)cg.
Similarly, by transposing o and 7, we get
D, (z;7,0) = Op_p(xp; T + ke, 0 + keq)cy.
Thus, by the inductive hypothesis:

<I>n($/€a 0-77_) - <I>n('1"ka T, 0) =0.
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4.6 Verification of Division Number Formulas
As in Section 4.3, we will use the following notation:

Vijk = |Ni + pj — viel,
& =& — &,
p = max()\g — M2 — V370)a

xi:xip.

Given a set of division numbers n, recall that

N THEN . -
d) ,(n) = [R5 - [=Ridsnk) - (=R s mi), (4.6.1)

1<j
where nf‘] is the division number corresponding to the ¢ strip in w;-‘, and nfj is the

division number corresponding to the ¢ strip in W§—1 for £ € {p,v}.
For each extremal triple (A, u,v) we have a set of division numbers n(\, u,v), as
listed in Table 4.3.1. Let

), =d),(n(\ p,v)).

We verify that for each case in Table 4.3.1, C;/),u = dl);y.
In order to do this, for each fixed triple (A, p,v), we first decompose v into two
subpartitions ¢ and €, such that e consists of a single row or column. By Lemma 4.4.1,

we then get an extremal path of the form:

k() A _ (i) A
Z c,u,c ’ Cﬁ(i),e - Z CC,e : Cu,n(i)? (462)

where for some i, n(i) = v. For such a path, we can use either a previously established
result or induction to get that each cg ¢, €quals dg; € for all the triples (&1,&2,&3) #
(A, i, v). Therefore, to show that c:\“, = d;\uw it suffices to instead verify the analogous

identity for dj ,:
w(@) X n(@) | A
D e = DAL iy (4.6.3)
? %
When the sums on either side of equation 4.6.3 consist of more than one term, we

can prove this identity by writing each dz(? : dé(i) . and dz(:) . dﬁ (i) 9 the product
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of d;\W . Z,e with additional terms produced by changes to the anchors and division
numbers, as given by equation 4.2.1. We will then show that the additional factors
produced satisfy equation 4.6.3 by showing that they fall into the form of Lemma 4.5.1
(if € is a single column) or 4.5.2 (if € is a single row).

Ao A

C

ny = Cpye any division
K b

In the proofs below, we will also use the fact that since ¢
number formula that we prove for a coefficient based on a condition involving u and v
can be subsequently be used for the condition obtained by interchanging p and v, as

long as one also interchanges the role of 4 and v in the formula.

Proposition 4.6.1. If us = s, then Cﬁw s given by
0333 0222 0
0 D111 0333 0222
A 0333 D22 K v
0 0333
0333
o
Proof. By Lemma 4.4.2, cf; L= c;\L Zi - Since, p1 — wh consists of a single part, we can
) —Wwg,

M
use the Pieri rule to compute c:_Zi - The Pieri rule for rows can be obtained from
3
I
Theorem 2.3.1 and equation 2.3.1. In particular, we get that ciizi , 1s obtained by
3
treating all the hooks in A, u, v as flipped hooks, except those corresponding to boxes

(,7) € v, A such that v, = A, and v; < A;. Finally, we note that the 931 flipped hooks

in w{‘ can be exchanged with the last 9131 flipped hooks in w/’, leaving no flipped hooks
in wlA and only p13 — 0131 = 0111 flipped hooks in w’f. O
Proposition 4.6.2. If uo = 1, then cﬁ’l, s given by:

0111 0213 O

0 O 0213 0111
At 0222 0213 K v
0333 0213
0111

Proof. Let d/’)V by the hypothesized formula. We use induction on (9 — v3) to show

A

1,» using Prop. 4.6.1 with the roles

that c;\W = dl’\w. If v = v3, we can determine c

of u and v reversed in the following way. First, note that by Horn inequality (8),
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A2 < w1 +ve = ug + e, and by inequality (15), Ao > po +v3 = pg + v, S0 Ao = g + vo.
Therefore, 0999 = 0, and 80 D213 = 0200 = 0. Since |A| = |u| + |v|, it also follows that
0111 = 0333. Finally, note that since Ay — 3 —v3 = p1 — p3 in this case, we can exchange
the lower hooks in the second strip of wg‘ with the upper hooks in the first strip of wh,

so that Prop. 4.6.1 gives us the following division numbers:

0 0 0 0111
Al 0 0 T3 v
0333 0
0111

We can verify that this is the same as df;jl, in this case.
If v > v3 then we can decompose v into € = (1,1) and ¢ = v — e. Then by Lemma

4.4.1, we have
A n(i) _ k(1) A
Z Cum(i)C¢e = Z € Cr(i)er (4.6.4)
1<i<3 1<i<3

where (i) = (+(1,1,1) —e; and k(i) = A—(1,1,1) + e;, where €; is a triple consisting

of a 1 in the i*" position and 0’s elsewhere. Note that
nB3) =v.

We will show that our hypothesized coefficients satisfy equation 4.6.4. We can

and dz(i) by the Pieri rule, since e consists of a single column. In

determine d* ( .

k()€

particular, we have that

J

dﬁ(i)’e = ¢ (1 -7 {hl)\] +1, _hi(i) +1:5> l}) )

n(i) _ Ll ij C i~
4 —¢<1—r,{hn(i)+1,—h< F1: >z}).
Note that by this definition, d . = de) =1.

A

by comparing them to dj ,,

We can also write out dz(? and d} since k(i) is

mn(i)’
obtained by modifying the parts of A and 7(i) and ( are obtained by modifying the

parts of v. Therefore, dz(? and d/); o) Can be determined by examining how these

changes to A and v change the anchors and division numbers for each strip.

In the symbols below, the entries denote how the corresponding anchor for each strip

A

. and a * indicates
)

must be changed for that coefficient compared to the anchor of d

a change of —1 to the corresponding division number.



0*

0*

This allows us to determine

A

4.6.4 compared to dw,,

0*
0*

0*
O*

O*
0*

0 0
0*

0 0

(
A
(
(

K
each summand d#

(’L)d)\

+1* 0
+1*
+1 0
¢:
+1
+1* 0
¢:
+1*
+2% 1%
n(1) :
+1*
+1* 1
n(2)
+2*
A ul¢
w(i)e d0d dyde

form [b+ r;n + s| as a product of [b;n] and some additional factors.
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) of equation

since we can use equations 4.2.3 and 4.2.4 to write terms of the

In particular, we factor out d;\u, from each of these terms. In addition, we factor

out terms that appear in a majority of the six summands. Note that these terms come

from the blocks wg for each partition £&. Thus, we factor out % from each expression,

where

X =¢(1—r; A2+ 7+ 023,003, —f123 — 7+ 0333, 1 —v13 — 2r,1 — 193 — 7).



Using the notation of Lemma 4.5.1, we can rewrite X" as ¢3(1

TL=A2+0213+7=A —pg —v3+7r

Ty = 0213 = Ao —p1 — V3
T3 =0333 — {23 — T = A3 — i1 — VU3 — 7T

01:1—1/13—2?"

0‘2:1—1/23—7"

03 = 0.
This allows us to write each term dﬁ( )di(l) . and d# n(l)dgf?
d)\
%(b(l —ri{ay,...,an}).

—r;0,T), where
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as a product of the form

In the table below, we present the elements of the set A corresponding to each term.

We will use k(i) to indicate terms corresponding to d i )d’\(l) . and 7(i) to indicate terms

1 — X3 — 0292 — 27

9213 +1 —vi3 — 27

: A n()
corresponding du,n(i)dc -
ay az ag ay as
K(1) A12 + 0213 + 7 1—-0111 -7 —A13 — 2r X2 — 7 1+ v12 — 0111
©(2) 0213 —X23 — T A2+ 7 0213 +1 —vi3 — 27 1—wvog—r
£(3) A13 + 2r A2z + 1 9333 —p23 — 7 | 1— 13 =111 — 37
n(1) | 1— A3 —0111 — 37 1-0111 -7 vig +2r —1 vig + 7
n(2) | 1—A23 =202 —2r | 1—0111 +vi12 voz +1r—1 —vi2 — T

d9213 +1—wva3 — 7

Using the o; and 7; defined above, and once again using the notation of Lemma

4.5.1, one can check that

ddd,. = “’ bi(l =73 7,0),
(i) dA
dun(%)d Y= ff ¢i(1—r;0,7).

Therefore, we have that

: (5 A d,
Zd%éﬁ Coi)e = %@(1 —rT,0),

o _
Zdun() 26 = 5(’_ (1 —r;0,7).

and so by Lemma 4.5.1, we have that both sums are equal, showing that d;\“,

equation 4.6.4.

satisfies
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By the inductive hypothesis, each CZ(? = dz(?, since p is unchanged and (3 — (3 =

vy —vg — 1. Similarly, cﬁm(i) =d; ;) for i=1,2, since n(1)2 —n(1)s = v —v3 —1 and

A -
(i
A by

n(2)2 —n(2)3 = v2 — v3 — 2. Therefore, we get that the remaining term ¢ () = Cuw

must equal d;\L,I,.

O]

These last two propositions are instrumental in proving all of the remaining cases,
since they allow us to form extremal paths by decomposing v into two pieces ¢ and €
such that e consists of a single part, and ( is such that either (o = (3 or {1 = (2. Then
we can determine coefficients involving € using the Pieri rule for rows, and coefficients
involving ¢ using either Proposition 4.6.1 or 4.6.2.

In particular, Prop 4.6.1 allows us to form an extremal path by decomposing v into

€ = (v —3) and ¢ = (v1,v3,13).

..\H: TGTe

Prop 4.6.2 allows us to form an extremal path by decomposing v into ¢ = w] and

(=v—e=wj+uws.

= +|efe]e]

Proposition 4.6.3. If A3 = po+uo, then cf;,,/ 1s given by the following division numbers:

0333 0229 0
0332 0223 0323 0232
At D333 D222 I v:
0 0
0

Proof. We will first use Lemma 4.4.1 to show that

AN v KA
CH/7VCC76 - CM:CC’fyﬁ’

where € = (vy — 13),( = (v1,v3,v3) and K = X\ — (0,0,5 — v3). For any n such that

c! ¢ # 0, we have that 12 < 19, with equality holding only if n = v. By Horn inequality
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(11), we know that if 9y + po < vo + pa = Ag, then c;\m = 0. On the other hand, if
K3 > o + v3 then since (o = (3 = v3, we have that k3 > ps + (o, which would imply
that CZ,C =0.

Using Prop 4.6.1 and the fact that k = (A1, A2, A3 — 03) and ¢ = (v1,v3,v3), we

have that CZ,C is given by the division numbers:

0333 — /93 0922 + 123 0
0333 — V23 0222 + V23 0 o111
K* 10333 — 123 02022 + Vo3 B :
0333 — /23 0
0333 — V23

where 0;j;, still refers to |A\; — p1; — v4|. Therefore,

i = [M3+ves + 2750333 — vos][Aag + vas + 150333 — v23][0; 0333 — va3]
“[A12 + 750222 — v23][0; D222 — vag][—p13 — 27; 0333 — V23]
“[—pa3 — 150333 — vas][— a2 — 730222 — vas][—va3 — 701l
Note that since A3 = po + 1o in this case, we also have that 0333 — 193 = pos. This
implies that
[—p23 — 150333 — v23][0; 0333 — 123 = 1,
and so these terms can be removed from the product above.

Next, we compute 0276 and ¢f . by the Pieri rule to get that

e = [A1s + 2r; a3 [Aas + 75 vas] [~ A13 + vos + 75 vas] [~ Aas + vas; vas),

CZE = [1/12 +7r; Vgg][*ljlg — T 1/23].
Therefore, we get that

c cCh e = [M3 + vag + 2r; 0333 — v23][Aag + vag + 70333 — vos][A12 + 7 D220 — vog]
+[05 0202 — vo3][—p13 — 2750333 — vag][—p12 — 73 D222 — V3]
[=113 = 750111 [ M3 + 275 vas][Aes + 75 vag]
- [=A13 + vo3 + 75 va3] [~ A2 + vo3; vog]
= [M13 + 275 0333][A23 + 73 0333] [M12 + 75 D222 [0; 0222][— 13 — 275 0332)

=iz — ;0223 [—v13 — 750111
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and so dividing by c’g . gives us that

¢y = [ + 2r; 0333][Aas + 75 0333][A12 + 75 0222][0; 9220][— 113 — 273 D330)]
“[=p12 — 73 0223][—v13 — 73 Daza)[—v12; vag).
This expression corresponds to the desired division numbers. O

A

Proposition 4.6.4. If \; = p; + v1, then cﬁw =}, (Crer Where e = wY,( =v —€ and

k= \—lele;.

Proof. We apply Lemma 4.4.1. For any n such that CZC # 0, we have that n; < v,
with equality holding only if » = v. By Horn inequalities (7),(9) and (12), we know
that if 1 + p; < v1 + p; = A, then c;\w = 0. On the other hand, if k; > \; — |¢|, then
G+ pi =v1 — |e| + pi = Ni — |¢] < ki, which would imply that CZ,C = 0.

O

A

Proposition 4.6.5. If \; = p; + v3, then cﬁjy = ¢}, (Che, Where € = w{,( =v —€ and

K=+ (03) + (1) — voey.

Proof. We apply Lemma 4.4.1. For any n such that CZC # 0, we have that n3 > vs,
with equality holding only if n = v. By Horn inequalities (13), (15) and (18), we know
that if 93 4+ p; > v3 + p; = A;, then C//\w = 0. On the other hand, if xk; < u; + v3, then
ki < i + (3, which would imply that CZ:C =0.

O

Note that Propositions 4.6.4 and 4.6.5 completely determine the coefficients in those

A

cases, since c;.
b

. can be determined by Propositon 4.6.1 and CZ ¢ can be determined by
Propositon 4.6.2. The details are similar to the proof of Proposition 4.6.3.

The remaining cases all make use of Lemma 4.5.2.

Proposition 4.6.6. If \3 = \o, then c;\w is given by
0111 0 O
0232 0223 0223 0232
A 0333 0 W v:
092922 0223

0223
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Proof. Let d;\W be the expression given by the proposition. We use induction on k£ =
0290 = Vo + 2 — A2 to show that cﬁvy = d;)yy. If £k =0, then vo + ps = A2 = A3, and so
cﬁﬂ, can be obtained from Prop. 4.6.3 as follows. We observe that the fact that Ao = A3

implies that 09, = 03, for all j, k, and the fact that 0220 = 0 implies that 0117 = 0333

and 09293 = v93. Thus, Prop 4.6.3 gives us

01117 0 O
0232 0223 0223 0232
At 0333 0 W v:
0 0
0

We can verify that this is the same as the desired formula, by noting that since 0923 =
193, we can swap all the lower hooks in the third strip of wg\ with all the upper hooks
in the second strip of wj.

For k£ > 0, let

e = (2 —v3),

C = (V17V37V3)7
and

77(75) =V- (_t)tv )v

K(t) = (u +k—t, o —vg,u3 +1).

Note that n(0) = v.

By Lemma 4.4.1, we have that

k k
t) . oA — n) X
Z CZ,(E) “Cht), ¢ T Z Cee " Cunt) (4.6.5)
t=0 t=0
We show that our hypothesized coeflicients satisy equation 4.6.5.

We can determine dzg) and dz(:) using the Pieri rule, to get

dzg) = [M12 +k—-2t+ 2T;t][0333 — 1+ ﬂ [O;t] [0213 +k—t+r;n— ]{7][0; Vo3 — k]
[z = 2r;t][—pas — i t|[—pa2 — 15 v03 — K][—veg + 15103 — K+ 1,

dgff) = [v12 + 2t + ;103 — t][0; 123 — t][—v13 — Ty V03 — t][—Vv23 — Ty 03 — 1]
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We can obtain dA( 1), using Proposition 4.6.1, which gives us
di(t),g = [A13 + 2r; 0333 — t][r; 0333 — t][—p13 — k + 2t — 270333 — t][—v13 — 750333 — 1.
Finally, we can determine each df; () by modifying the d;\u, to get that:

dpy ey =[M3 + 2050111 + £)[75 0333][0; 093] [~ 13 — 275 00 + 1] [—praz — 750220 — 1]
“[=pa2 — 7y 002s][—113 — t — 215 0203][—13 + T — 75 0203

[—vi2 — 2t — 150930 + .

Therefore, using equations 4.2.3 and 4.2.4, we get that:

A n(t)
)¢ e _ (0301 + 25 8] [ 0912 — 275 t][0091 + 75 t][—v12 — 2t — i t][—k — 7 ]
dﬁ v . [—p23 —r+k — 6 4)[=0331 — t — rit][viz + it [vae + it [~ = rit]
() A
duc dine  [—pas — 2ryt][us + k — 26+ 205 ][~ oy — 138~k — 73]
dﬁ VA  [poro +r —tit][—p1z — kAt — 25 t][—0331 — t — i t][—t — 73]

[0s11 + 25k — t][pes — ki K]
[—/“3 —2r;k — t”llm +r—k; /f] '

Thus, using the notation of Lemma 4.5.2, we have that:

k
d/\ -dn(:):d’\y-d”e-qst(xaﬂ,
m(t) ¢, pov TG, ’g(x o, 7)
k
dl{(t) d — d)x 2 d)t (CL' )’
i€ K(t),C e lg(w o, 7)
where o = (0,0321 + T) and 7 = (—0331 —7r,—0311 — 3’!“)
This implies that
k A v
d,, -d
dn(t) . d)‘ — MY 6e Ce . @k(g;’ o, 7')’ (466)
Zo Ce  Tum(t) ¢]§(953 o, 7)
k A v
dy , -d
d”(t) d = RV G, O (x;7,0). (4.6.7)
; me THOC T G (aio,7)

Therefore, by Lemma 4.5.2, we have that the hypothesized coefficients satisfy equation
4.6.5.

Finally, we note that ¢ d;) () for ¢ > 0 using the inductive hypothesis, since

pn(t)

12 < va. Therefore, we also have that cﬁvy = di\w'
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Proposition 4.6.7. If Ao = A\, then c//\w s given by

0333 0399 O B N
a212 H12 D231 0221
Al p o o v
0221 0231
09221

Proof. Let dﬁ,v be the expression given by the proposition. We use induction on n =
1 + v9 — A1 — s to show that c;’\W = df;,l,. If n =0, then pu; + 10 = A1 — p = Ao.
If p = 0, this case reduces to that of Prop 4.6.4 (with the role of x4 and v switched).
If p = A3 — o — v3, then p = A\ — 11 — u3, and so the condition n = 0 implies that
v1 + ps = A1, which reduces this case to that of Prop 4.6.5 (once again with the role of
w and v switched).

For n > 0, let

e = (vy — v3),
C: (V17V37V3)a

and

77(t) =V-—= (_t¢t)7

k(t) =X —(0,n —t,t).

Note that n(0) = v.

By Lemma 4.4.1, we have that

n n
K A nt) A
D e e = 2 le  Cuntey
t=0 t=0
We show that our hypothesized coeflicients satisfy this equation.
(*)

We can determine dﬁf? and dg .

using the Pieri rule, dg(t) ¢ using Proposition 4.6.1,
and df; () by the proposed formula for d;)l,u' Using analogous calculations to those in

the proof of Proposition 4.6.6 and using the notation of Lemma 4.5.2, one can check

that:
g g g (@)
dum(t) . d(,e - duy : dC,G ’ ¢8<m7 o, T)’
k() |, g ) N 1 -gb?(:E;T’U)
e’ iy ¢ = uw e o (x;0,7)



43

where o = (2p + 0323 + 7, 13 —n+2r) and 7 = (—p — pog — 1, 0).

The result follows from Lemma 4.5.2. O
Proposition 4.6.8. If A\ = us + va, then cﬁﬂ, s given by

du11 V393 0 _ N
N |12 0 9213 0121
A 0999 0113 I v N
0221 Ag3
ot
121

Proof. Let dl’\u, be the expression given by the proposition. We use induction on n =
11 +v9— A1 —p to show that cﬁﬁu = d//),l/' Suppose n = 0. Then either py = ps (if p = 0),
so that this case reduces to that of Prop. 4.6.2, or Ay = pg +v1 (if p = A3 — po — v3),
which implies that A3 = pg + v3, and so this case reduces to that of Prop 4.6.4 with the

roles of y and v switched.

For n > 0, let
€= wy,
¢ =w;j +w;y,
and

n(t) =v—(=t,1),

k(t)=A—(0,n—t,n),

Note that n(0) = v.

By Lemma 4.4.1, we have that

S IR . R
Z%,c “Ch(t),e = ch,e “Cum(t):
t=0

We show that our hypothesized coefficients satisfy this equation.

(®) (®)

We can determine di(t) . and dz . using the Pieri rule, dZ ¢ using Proposition 4.6.2,

A
and d#m(t)

v _ () _
v, =dY =1.

for ¢ > 0 using the inductive hypothesis. Note that by the Pieri rule,
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Thus, once again by an argument similar to that in the proof of Proposition 4.6.6,

we have that:

Ao g P@oT)
d’u,n(t) dc,e = d/w o (z;0,7) t>0,
dn(t) d _ d)\ QS? (.T; T, U) 7

W T g (w5 0,7)

where 0 = (0,n — p13 — 2r) and 7 = (0333 — p + 7, 0233 + 27).

The result follows from Lemma 4.5.2. O

This completes our proof of Theorem 2.2.1.



45

Chapter 5

Macdonald Polynomials

Jack polynomials Py(«;x) are generalized by Macdonald polynomials Py(q,t; z), where

lim Py (t%, t;x) = Py(a; ).
t—1

Stanley’s conjecture can be extended to Macdonald polynomials in a very straight-
forward way. Just as we had defined a-generalizations of hook-length earlier, we can

also define two (g, t)-generalizations:
e upper hook-length: h3(b) =1 — g (O)+14L(0)
o lower hook-length: h}(b) = 1 — ¢*(®)¢!(®)+1

In fact, using these hook lengths, we can apply the Pieri rule (as stated in Theo-
rem 2.3.1) to Macdonald polynomials as well (see [14, IV.6.24]). We can also get the

appropriate analogue of Equation 2.3.1 by defining

H)(q,t
bala:t) = H*Eq ti’
A\,

which gives us
C/>,\L,l/ (q7 t)b/t(Qa t)bl/(Qa t)
b/\(qa t)

Finally, we use the definitions and theorem above to get the following extension of

Ci\bl,l/, (t, q) =

Theorem 2.2.1.

Theorem 5.0.9. For an extremal triple (A, p,v) of partitions in Ps, cﬁﬂ,(q,t) can

be expressed by the same assignment of upper and lower hooks as cl/)’y(a), using the

corresponding (q,t)-hooks instead of a-hooks.
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Proof. We can still use the same classification as before, as well as the subsequent
division number notation to give an assignment of upper and lower hooks. We can also
once again express the ratio of a flipped to a standard (g, t)-hook in terms of ¢, in the

following way. Given a (g, t)-hook hy(b) (which could be either upper or lower), we

define
j h(b)
ha(b) = m
Then
o(t—a{hm}) = W
A
_h3(b) — (¢ — q)(q*OH®)
B RO
_ hy(b)
B30
and

o (- {-id}) = D=0

—h(b)
_ hA(b) = (g — t)(q* Ot ®)
hz (D)
h3(b)

>
* >

(b)

We can thus express our coefficients in terms of the same ¢ functions, but this time
using the modified hook ﬁ(q,t) instead of the corresponding hook h(«), and using
x = t—q instead of x = a— 1. We can also prove that these expressions give the correct
coefficient using the same lemmas as before with the same modification to x and the

hooks in ¢ and 7. O

A

(@), we note that

To see that lim;_,; cf‘W(to‘, t)y=c

g L ta®DEOFL q(a(b)) + £(b) + 1
=11 — tla®)+1)®) — afa(b) + 1) + £(b)’

as desired.
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Chapter 6

Further Directions

6.1 Extremal triples in P, with n > 3

The algebraic identities we obtain can be used in higher dimensions, but they relate
to a system of extremal paths. As n gets larger, the classification problem becomes
much more complicated, both for unique LR fillings and for faces of Horn cones that
correspond to extremal triples. Given the role played by the codimension one faces
of Horn cones when n = 3, one might wonder if Stanley’s conjecture can be extended
from extremal triples to all boundary triples on this cone. However, this is not true, as

demonstrated by the example below.

Example 6.1.1. Let A = (5,3,2,1), 1 = (3,2,1),v = (2,2,1). This lies on the codi-

mension one face given by A\; = p1 + v1. However, in this case c,’)V(l) =2 and

gl’)w(a) = 480°(1 4 30)(3 + 5a) (3 4+ @) (1 4 2a)?(3 + 20)(2 + @)%(202 + 11a + 2).

We also note that when n = 3, our extremal paths typically involved decomposing
1 or v into rectangular blocks, since all triples involving a rectangle are extremal in this
case. However, when n > 3, it is possible to have a non-extremal triple even if v is a

rectangular partition.
Example 6.1.2. Let A = (4,3,2,1), 0= (3,2,1),v = (2,2). Then cﬁw(l) =2

We therefore need a more efficient technique for determining extremal triples and

for finding ways to expand them as extremal paths.
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6.2 Non-extremal triples in Ps

In general, if cﬁw(l) =k > 1, we cannot write it as the sum of k different hook assign-
ments for A, u, v, each multiplied by a power of a. Stanley and Hanlon demonstrated

this with the following example.
Example 6.2.1. A = (4,2,1),u = (3,1),v = (2,1)
gp (@) =8a°(9 + 97a + 29407 + 3210° + 1310 + 120°)

One can verify that any two experessions f1(a) and fa(«) given by hook assignments
must share a common linear factor not equal to « or a common integer factor not equal
to 8. However, the above expression for 92# has no rational zeros besides 0, and no

integer factors besides 8.

However, if we can expand the coefficients for non-extremal triples as an extremal
path, we might obtain a way to write coefficient as the sum of k positive terms, each of
which factors into linear factors in «, given by k terms of the form found in Lemmas
4.5.1 or 4.5.2. In particular, we could write:

n n
CGuw ™ D+ D i) i = Dt R
t=k+1 t=1
and then write c/);,, in this form as long as the remaining coefficients are sufficient to
find appropriate choices for ¢ and 7. This would give a combinatorial description of

such coefficients, and also show that they are positive expressions in «, as predicted by

another conjecture of Stanley [19, Conj. 8.3].
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