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ABSTRACT OF THE DISSERTATION

A product formula for certain Littlewood-Richardson

coefficients for Jack and Macdonald polynomials

by Yusra Fatima Naqvi

Dissertation Director: Siddhartha Sahi

Jack polynomials generalize several classical families of symmetric polynomials, includ-

ing Schur polynomials, and are further generalized by Macdonald polynomials. In 1989,

Richard Stanley conjectured that if the Littlewood-Richardson coefficient for a triple

of Schur polynomials is 1, then the corresponding coefficient for Jack polynomials can

be expressed as a product of weighted hooks of the Young diagrams associated to the

partitions indexing the coefficient. We prove a special case of this conjecture in which

the partitions indexing the Littlewood-Richardson coefficient have at most 3 parts. We

also show that this result extends to Macdonald polynomials.
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Introduction

Jack polynomials Jλ(α;x) are a one parameter family of symmetric functions indexed

by an integer partition λ. They were first introduced by Henry Jack [6] in 1969 as

generalizations of spherical functions over GL(n,F)/U(n,F), where α = 1/2, 1, 2 corre-

spond to the cases of F = H,C,R. Jack polynomials can be characterized in several

ways. They appear as simultaneous eigenfunctions of certain Laplace-Beltrami type

differential operators [14]. In addition, they form an orthogonal basis for the ring of

symmetric functions over the field of rational functions in α. Jack polynomials were

further generalized in 1988 by Macdonald polynomials Jλ(q, t;x) [13], which are a two

parameter family of polynomials that reduce to Jack polynomials under a special limit.

The α = 1 specialization gives us scalar multiples of the well-known Schur poly-

nomials [7, 18], which play a central role in the representation theory of Sn as well as

GL(n,C). These polynomials are also indexed by partitions, and can be described com-

binatorially in terms of Young tableaux. Moreover, the coefficients that arise when a

product of two Schur functions is decomposed into a sum of Schur functions have a com-

binatorial description known as the Littlewood-Richardson Rule (see [14, 5]), given by

counting the number of skew tableaux of a certain type. These Littlewood-Richardson

coefficients also appear in various other fields outside of representation theory, such as

in the study of Grassmanians and sums of Hermitian matrices (see [5, 2]).

It is a continuing area of interest to find appropriate generalizations of these results

for Schur polynomials in the context of Jack and Macdonald polynomials. Various works

[19, 14, 10, 3, 15] establish several combinatorial properties of these polynomials and

conjecture others. It is also possible to compute the Littlewood-Richardson coefficients

for such polynomials (see [16, 17]), but currently there are no combinatorial formulas

for these coefficients in the style of the Littlewood-Richardson Rule. In this work,
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we prove a special case of one of Richard Stanley’s conjectures [19, Conj. 8.5] which

proposes a combinatorial description for certain Littlewood-Richardson coefficients for

Jack polynomials. In particular, this conjecture generalizes the Littlewood-Richardson

Rule for triples of partitions (λ, µ, ν) such that the corresponding coefficient for Schur

polynomials indexed by this triple is 1. We prove that this conjecture is true when

the triple (λ, µ, ν) is restricted to having at most 3 parts and extend this result to

coefficients of Macdonald polynomials as well.

In Chapter 1, we provide some background about the combinatorics of partitions and

symmetric functions. In Chapter 2, we give a precise statement of Stanley’s conjecture

for Littlewood-Richardson coefficients of Jack polynomials and state our main theorem

regarding the special case of this conjecture in which the coefficients are indexed by

partitions with at most 3 parts. In order to prove this theorem, we first classify all the

partitions that satisfy the hypothesis of Stanley’s conjecture in Chapter 3. Then, in

Chapter 4, we use this classification to experimentally obtain formulas for the coeffi-

cients in each case of our classification, and then develop some general algebraic results

which we use to verify each of the experimental formulas. In Chapter 5, we extend our

result from coefficients for Jack polynomials to coefficients for Macdonald polynomials.

Finally, we describe some ongoing work and further directions relating to our results in

Chapter 6.
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Chapter 1

Preliminaries

In this section, we present some basic definitions and background information pertaining

to the theory of partitions and symmetric functions. We refer the reader to [14] for a

more detailed treatment of this material.

1.1 Partitions

Definition 1.1.1. A partition λ is a sequence (λ1, λ2, . . . , λn) of non-negative integers

listed in weakly decreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Each nonzero λi is called a part of λ. We will sometimes write a partition λ in

the form (im1
1 , im2

2 , . . . , imkk ), where i
mj
j denotes mj parts equal to ij . We call mj the

multiplicity of ij in λ.

The length `(λ) of a partition λ is the number of parts of λ. Let Pn denote the set

of partitions of length at most n. We think of λ ∈ Pn as an n-tuple, with λi = 0 for

i > `(λ).

The weight |λ| of λ is the sum of its parts:

|λ| = λ1 + λ2 + · · ·+ λn.

If |λ| = n, then we say λ is a partition of n.

Given any two partitions λ and µ, we can define λ+ µ as the partition obtained by

taking the sum of λ and µ as sequences:

(λ+ µ)i = λi + µi.
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Given two partitions λ, µ of n, we say µ ≤ λ if for all i ∈ {1, . . . , n},

µ1 + . . .+ µi ≤ λ1 + . . .+ λi.

The relation ≤ defines a partial order, known as the dominance order, on the set of all

partitions of n.

Partitions are commonly represented diagramatically.

Definition 1.1.2. The Young diagram of a partion λ is a left justified array of boxes

such that there are λi boxes in row i. (We will use the same symbol λ to denote both

the partition and its Young diagram.)

Example 1.1.3. Let λ = (5, 2, 2, 1). Then the corresponding Young diagram is:

.

The conjugate λ′ of a partition λ is the partition whose diagram is the transpose of

the diagram of λ, where the transpose is obtained by reflecting across the main diagonal

and thus interchanging rows and columns.

Example 1.1.4. If λ = (5, 2, 2, 1) (as in Example 1.1.3), then the transpose of its

Young diagram is:

and so λ′ = (4, 3, 1, 1, 1).

We say λ ⊃ µ if the diagram of λ contains the diagram of µ. Let λ − µ be the set

theoretic difference between the two diagrams, which we call a skew diagram.

Example 1.1.5. If λ = (5, 2, 2, 1) and µ = (3, 2, 1), then the skew diagram λ/µ is

denoted by the marked boxes in the diagram below:

• •

•
•

.
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If the skew diagram consists of r = |λ| − |µ| boxes and has at most one box in each

column (respectively, row), we refer to it as a horizontal r-strip (respectively vertical

r-strip). In Example 1.1.5, λ/µ is a horizontal 4-strip. However, it is not a vertical

strip since the first row of the skew diagram contains two boxes.

A skew tableau T is obtained by filling each box of a skew diagram λ/µ with a

positive number, where λ − µ is called the shape of T . If mi denotes the number of

times i appears in the skew tableau, we say (m1, . . . ,mr) is the weight of the T , and

the word w(T ) of T is the sequence obtained by reading the entries of T from right to

left in each row.

Example 1.1.6. Let T be the skew tableau given by

1 2
1 1 3 3

1 2
3

.

Then:

• the shape of T is (5, 5, 2, 1)− (3, 1).

• the weight of T is (4, 2, 3).

• the word of T is w(T ) = (2, 1, 3, 3, 1, 1, 2, 1, 3).

A skew tableau T is said to be semistandard if the entries of T weakly increase

across rows (from left to right) and strongly increase down columns. We say that T

satisfies the Yamanouchi word condition if the number of occurrences of an integer i

never exceeds the number of occurrences of i− 1 for any initial segment of w(T ).

Definition 1.1.7. A Littlewood-Richardson tableau is a semistandard skew tableau T

that satisfies the Yamanouchi word condition.

Example 1.1.8. The skew tableau

1 1
1 1 2

2 3

is a Littlewood-Richardson tableau.

We will call any filling of a skew diagram that gives a Littlewood-Richardson tableau

an LR filling.
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1.2 Symmetric Functions

Let Z[x1, . . . , xn] denote the ring of polynomials in n independent variables x1, . . . , xn

with integer coefficients. Let Sn be the symmetric group on n letters. Then Sn acts on

Z[x1, . . . , xn] by permuting the variables, and a polynomial is called symmetric if it is

unchanged under this action. The symmetric polynomials form a subring:

Λn = Z[x1, . . . , xn]Sn .

For each α = (α1, . . . , αn) ∈ Nn we can define the monomial

xα = xα1
1 · · ·x

αn
n .

Then we can define the monomial symmetric function mλ, where λ is a partition of

length at most n, by

mλ(x1, . . . , xn) =
∑

α∈Sn·λ
xα,

where Sn ·λ is the orbit of λ under the action of Sn. The monomial symmetric functions

form a Z-basis for Λn.

For a partition λ, we can also define the skew-symmetric polynomial aλ by

aλ(x1, . . . , xn) =
∑
w∈Sn

ε(w)xw(λ),

where ε(w) is the sign of the permutation w ∈ Sn. Let δ be the partition

(n− 1, n− 2, . . . , 1, 0). Then aλ+δ is divisible by aδ, and the quotient

sλ(x1, . . . , xn) =
aλ+δ
aδ

,

called the Schur polynomial, is a symmetric function. The sλ, `(λ) ≤ n also form a

basis for Λn.

Schur polynomials appear as spherical functions over GL(n,C)/U(n,C). Spherical

functions over GL(n,F)/U(n,F) are further generalized by Jack polynomials

Jλ(α;x1, . . . , xn), where α = 1/2, 1, 2 correspond to the case of F = H,C,R, respectively.

To define Jack polynomials, we must first define the operator D(α) on Λ⊗Q(α) by

D(α) =
α

2

∑
i

x2i
∂2

∂x2i
+
∑
i 6=j

x2i
xi − xj

∂

∂xi
.
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Then D(α) is upper triangular on the basis of monomial symmetric functions mλ, ie

D(α)mλ =
∑
µ≤λ

bλ,µmµ.

Definition 1.2.1. The monic Jack polynomials

Pλ = Pλ(α;x1, . . . , xn) =
∑
µ≤λ

vλ,µmµ

are the eigenfunctions of D(α) such that vλ,λ = 1.

Note that Pλ(1) = sλ. We will also find it convenient to consider the following scalar

multiples of Jλ:

Definition 1.2.2. The integral Jack polynomials

Jλ = Jλ(α;x1, . . . , xn) =
∑
µ≤λ

vλ,µmµ

are the eigenfunctions of D(α) such that if |λ| = m, then vλ,(1m) = m!.

Jack polynomials are further generalized by Macdonald polynomials which are eigen-

functions of the operator D(q, t) on Λ⊗Q(q, t) defined by:

D(q, t) =
∑
i

∏
i 6=j

txi − xj
xi − xj

Tq,i

 ,

where

Tq,if(x1, . . . , xn) = f(x1, . . . , qxi, . . . , xn).

Then, once again,

D(q, t)mλ =
∑
µ≤λ

bλ,µmµ.

Definition 1.2.3. The Macdonald polynomials

Pλ = Pλ(q, t;x1, . . . , xn) =
∑
µ≤λ

vλ,µmµ

are the eigenfunctions of D(q, t) such that vλ,λ = 1.

We can recover the Jack polynomials from the Macdonald polynomials by taking

the limit as q, t go to 1, where the parameter α signifies the direction along which this

limit is taken. Thus,

lim
t→1

Pλ(tα, t) = Pλ(α).
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1.3 The Littlewood-Richardson Rule

Schur functions can be interpreted combinatorially, by the following theorem.

Theorem 1.3.1.

sλ =
∑
T

xθ(T ),

where T is a tableau of shape λ, and θ(T ) is the weight of T .

Example 1.3.2. s(2,1) ∈ Λ3 :

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

s(2,1) = x21x2 + x21x3 + x1x
2
2 + 2x1x2x3 + x1x

2
3 + x22x3 + x2x

2
3

This also leads to a way of combinatorially interpreting the coefficients that appear

when a product of Schur polynomials is expanded as a sum of Schur polynomials. This

was developed using two major results. We start with a theorem that tells us how to

expand such a product when one of the polynomials in the product is indexed by a

partition of length 1.

Theorem 1.3.3 (Pieri Rule).

sµs(r) =
∑
λ

sλ,

where λ/µ is a horizontal r-strip.

Example 1.3.4. µ = (3, 1), r = 2

1 1 1
1

1

1
1 1

1
1

s(3,1)s(2) = s(5,1) + s(4,2) + s(4,1,1) + s(3,3) + s(3,2,1)

Note that we can also consider the transpose of each of the indexing partitions,

to get a way of multiplying two Schur polynomials when one of them is indexed by a

partition consisting of a single column.

Finally, we can extend this result to products of two Schur polynomials indexed by

general partitions. This is done using the Littlewood-Richardson rule.
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Theorem 1.3.5 (Littlewood-Richardson Rule).

sµsν =
∑
λ

cλµ,νsλ,

where cλµ,ν is the number of Littlewood-Richardson tableaux T of shape λ/µ and weight

ν.

Example 1.3.6. µ = (2, 1), ν = (2, 1), λ = (3, 2, 1)

1
1

2

1
2

1

2
1

1

c
(3,2,1)
(2,1),(2,1) = 2
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Chapter 2

Stanley’s Conjecture

2.1 Statement of Conjecture

We wish to generalize the Littlewood-Richardson rule to obtain a description of the

coefficients that appear when a product of Jack or Macdonald polynomials is expanded

as a sum of the respective polynomials. While it is possible to compute these coeffi-

cients recursively, there is currently no combinatorial result that clearly reduces to the

Littlewood-Richardson rule as we take the appropriate limit of the Jack or Macdonald

polynomials to recover the corresponding Schur polynomials. However, in [19], Stanley

made some observations and conjectures that give us some steps towards this goal.

While Stanley discusses only the case of Jack polynomials in his paper, all results can

be generalized to Macdonald polynomials as well.

In order to state Stanley’s Conjecture [19, Conj. 8.5], we must first define the hook

length for a box in a Young diagram and some of its analogues. The hook-length hλ(b)

of a box b in the partition λ is obtained by counting all the boxes to the right of b

(called the arm, denoted aλ(b)) and all the boxes below b (called the leg, denoted `(b))

along with b itself.

aλ(i, j) = λi − j

`λ(i, j) = λ′j − i

hλ(i, j) = aλ(i, j) + `λ(i, j) + 1
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Example 2.1.1. λ = (5, 2, 2, 1), b = (1, 2)

× − − −
|
|

hλ(b) = 3 + 2 + 1 = 6

We can define 2 α-generalizations of hλ(b):

• upper hook-length: h∗λ(b) = α(a(b) + 1) + `(b)

• lower hook-length: hλ∗(b) = α(a(b)) + `(b) + 1

In effect, the upper hook treats the corner box as part of the arm, whereas the lower

treats it as part of the leg.

We define the following products of hook lengths:

Hλ
∗ =

∏
b∈λ

hλ∗(b)

H∗λ =
∏
b∈λ

h∗λ(b)

jλ = Hλ
∗ ·H∗λ

Then we can relate the integral and the monic Jack polynomials as follows:

Jλ(α) = Hλ
∗Pλ(α).

We can also define the dual J∗λ(α) of Jλ(α) under the canonical inner product by:

J∗λ(α) = j−1λ Jλ(α).

Finally, we consider the following expansions:

JµJν =
∑
λ

gλµν(α)J∗λ,

PµPν =
∑
λ

cλµν(α)Pλ.

Then

gλµν(α) = H∗λH
µ
∗H

ν
∗ c
λ
µ,ν(α).

We are now ready to state Stanley’s conjecture.
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Conjecture 2.1.2 (Stanley, 1989). Given partitions λ, µ, ν such that cλµ,ν(1) = 1, then

for all α,

gλµ,ν(α) =

(∏
b∈λ

h̃λ(b)

)∏
b∈µ

h̃µ(b)

(∏
b∈ν

h̃ν(b)

)
, (2.1.1)

where h̃ξ(b) is either h∗ξ(b) or hξ∗(b). Moreover, we can choose these hooks such that

there is an equal number of upper and lower hooks.

Unfortunately, while this conjecture states that such a choice is always possible,

there is no canonical way to make such a choice, and no conjecture for an assignment

that might work in general. In fact, as Stanley himself notes in [19], there is often more

than one assignment of upper and lower hooks that would satisfy this conjecture.

Example 2.1.3. λ = (2, 2, 2, 1, 1), µ = (2, 1, 1), ν = (2, 1, 1)

l l
l l
u ?
l
?

u ?
l
?

u ?
l
?

Of the 6 boxes marked “?”, 5 must be taken to be upper hooks and 1 to be a lower

hook, so there are 6 possible ways to obtain the correct coefficient.

Since we can get cλµ,ν by dividing gλµ,ν by all the upper hooks in λ and all the lower

hooks in µ and ν, we will call such hooks standard hooks and boxes assigned to have

standard hooks in Equation 2.1.1 to be standard boxes. On the other hand, we will

call lower hooks in λ and upper hooks in µ and ν flipped hooks and boxes with such

an assignment in Equation 2.1.1 flipped boxes. If gλµ,ν(α) is given by a product of only

standard hooks, then cλµ,ν(α) = 1 for all α. In general, cλµ,ν(α) can be regarded as a

product over flipped boxes of the ratio of the flipped hook to the standard hook. When

α = 1, the upper and lower hooks have the same value, and so any such product reduces

to 1, in agreement with the hypothesis cλµ,ν(1) = 1.

We will call any triple (λ, µ, ν) of partitions that satisfy the hypothesis cλµ,ν(1) = 1 an

extremal triple. Such triples correspond to the case of a unique Littlewood-Richardson

tableau of shape λ−µ with weight ν, but it remains difficult to generate all such triples

in general. Extremal triples lie on the boundary of Horn cones, which are given by the
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eigenvalues of Hermitian matrices A,B,C such that A + B + C = 0. (However, note

that not all boundary triples are extremal.) Extremal triples also play a prominent role

in Fulton’s conjecture, which states that an extremal triple remains extremal under a

scaling of all three partitions by the same factor. (A proof of Fulton’s conjecture is

given by Knutson, Tao and Woodward in [12].)

2.2 Main Theorem

In this work, we prove the following special case of Stanley’s conjecture.

Theorem 2.2.1. Stanley’s conjecture is true for λ, µ, ν ∈ P3.

We will show this by first classifying all extremal triples of partitions in P3, which

we do in Chapter 3. We thus divide the problem into several cases and develop an

experimental formula in the form of Equation 2.1.1 for cλµ,ν in each case. A complete

list of these is given in Section 4.3. In Section 4.6, we verify that our experimental

formulas indeed give the correct coefficient, thus completing the proof of Theorem

2.2.1. In Chapter 5, we extend this theorem to get Theorem 5.0.9, which shows that

the coefficient for the corresponding Macdonald polynomials can also be obtained for

extremal triples of partitions in P3 using the same system of upper and lower hook

assignments using a suitable generalization of hook-lengths.

2.3 The Pieri Rule for Jack Polynomials

By Theorem 1.3.3, we see that if ν consists of a single row (or column), λ, µ, ν must be

an extremal triple. In fact, we have an analogue of this theorem that gives a proof of

Stanley’s conjecture when ν falls into this special case.

Theorem 2.3.1 (Pieri Rule for columns [9, Thm 6.3]). If λ/µ is a vertical r-strip and

ν = (1r), then

cλµ,ν(α) =
∏

s∈X(λ/µ)

hλ∗(s)

h∗λ(s)

h∗µ(s)

hµ∗ (s)
,

where X(λ/µ) denotes all the boxes (i, j) ∈ µ such that µi = λi and µ′j < λ′j.
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Example 2.3.2. λ = (4, 2, 2), µ = (3, 2, 1), ν = (1, 1)

u u u u
u l
u u

l l l
l u
l

l
l

cλµ,ν =
2α

1 + α

gλµ,ν = 32α5(3 + 2α)(1 + 2α)2(2 + α)2(2 + 3α)

We define

bλ(α) =
Hλ
∗ (α)

H∗λ(α)
.

Thus, we can think of bλ(α) as an operator that switches upper and lower hooks. This

gives us the following equation:

cλ
′
µ′,ν′

(
1

α

)
=
cλµ,ν(α)bµ(α)bν(α)

bλ(α)
. (2.3.1)

Therefore, if λ, µ, ν is an extremal triple and we transpose all 3 partitions, the

resulting Littlewood-Richardson coefficient corresponds to swapping all the upper and

lower hooks. This allows us to use the Pieri rule for columns as a rule for rows as well.

Example 2.3.3. We consider the triple obtained by transposing the partitions in Ex-

ample 2.3.2:

λ = (3, 3, 1, 1), µ = (3, 2, 1), ν = (2)

l l l
l u l
l
l

u u u
u l
u

u u

cλµ,ν =
16α2(1 + 2α)

3(1 + α)4

gλµ,ν = 32α5(2 + 3α)(1 + 2α)2(2 + α)2(3 + 2α)
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Chapter 3

Classification

We present a classification of all extremal triples (λ, µ, ν) consisting of partitions in P3.

In particular, we show that such triples correspond to each face of co-dimension one of

the n = 3 Horn cone (see [12]). It turns out that this correspondence is no longer true

if we allow partitions of greater length, in which case extremal triples form a proper

subset of the triples that lie on boundary faces of the associated Horn cone.

3.1 Horn’s Inequalities

Horn cones were defined by [4] to answer the following problem: given two n × n

Hermitian matrices A and B with eigenvalues µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn)

(arranged in weakly decreasing order), we wish to determine the possible eigenvalues

λ = (λ1, . . . , λn) of the sum C = A+B. Horn conjectured a list of inequalities involving

λ, µ, ν that, together with the condition |λ| = |µ|+ |ν|, determine all possible combina-

tions. These inequalities were verified by the works of Klyachko [8] and of Knutson and

Tao [11], which also show that the Littlewood-Richardson coefficient cλµ,ν is nonzero if

and only if (λ, µ, ν) lie in the Horn cone Hn. Later, Knutson, Tao and Woodward [12]

determined the minimal necessary list of such inequalities that determines this cone.

Using this list of inequalities for H3, we have that the Littlewood-Richardson coeffi-

cient cλµ,ν is nonzero if the partitions λ, µ, ν ∈ P3 are such that |λ| = |µ|+ |ν|, and they

satisfy all of the inequalities in Table 3.1.1 below.

It is known that extremal triples (λ, µ, ν) all lie on a union of some faces of the Horn

cone (see [1, 12]). We will refer to a face of codimension one as a facet. Since each facet

is obtained by changing one of the defining inequalities to an equality, for H3, we will

refer to each facet by the same number as the corresponding inequality as above.
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Table 3.1.1: Defining Inequalities for H3

1. µ3 ≤ µ2

2. µ2 ≤ µ1

3. ν3 ≤ ν2

4. ν2 ≤ ν1

5. λ3 ≤ λ2

6. λ2 ≤ λ1

7. λ1 ≤ µ1 + ν1

8. λ2 ≤ µ1 + ν2

9. λ2 ≤ µ2 + ν1

10. λ3 ≤ µ1 + ν3

11. λ3 ≤ µ2 + ν2

12. λ3 ≤ µ3 + ν1

13. λ3 ≥ µ3 + ν3

14. λ2 ≥ µ3 + ν2

15. λ2 ≥ µ2 + ν3

16. λ1 ≥ µ3 + ν1

17. λ1 ≥ µ2 + ν2

18. λ1 ≥ µ1 + ν3

In general, not every facet of Hn contains extremal triples. However, this does hold

for H3, and so one can check triples (λ, µ, ν) on the interior of each face, and determine

that every single facet does indeed give an extremal triple. In the next section, we

present a direct combinatorial proof of this fact.

3.2 Littlewood-Richardson Tableaux

We will show that each facet of H3 contains extremal triples by classifying the possible

Littlewood-Richardson tableaux of shape λ/µ of weight ν in the case that λ, µ, ν ∈

P3. The cases presented in this proof were also used to determine the experimentally

obtained formulas for cλµ,ν(α) presented in Section 4.3.

Theorem 3.2.1. For partions λ, µ, ν ∈ P3, we have cλµ,ν(1) = 1 if and only if λ, µ, ν

lie on a facet of the Horn cone H3.

Proof. A skew diagram of shape λ/µ consists of at most three rows. Therefore, if ν has

length 3, then any LR filling of λ/µ of weight ν must consist of at least ν3 occurrences

of i in row i. We therefore only need to consider the remaining boxes, and we can thus

assume, without loss of generality, that ν has length at most 2. By symmetry, we can

also assume the same for µ.

Now let T be a Littlewood-Richardson tableau of shape λ/µ with weight ν. Then
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w(T ) must be a sequence of 1’s and 2’s of the form (1a1 , 2b2 , 1b1 , 2c2 , 1c1), where im

denotes m consecutive occurrences of i. In order to satisfy the Yamanouchi word

condition, we must require that a1 ≥ b2 and a1 + b1 ≥ b2 + c2. For instance, if T1 is the

following diagram:
1 1 1

1 1 2 2
1 2 2 2

,

then w(T1) = (13, 22, 12, 23, 11). Note, however, that in this case, a filling of this skew

diagram of weight (6, 5) is not unique. We must therefore determine which restrictions

on the set (a1, b2, b1, c2, c1) of multiplicities in w(T ) lead to an extremal triple (λ, µ, ν).

First, suppose every column in λ/µ consists of a single box, so that λ/µ is a hori-

zontal |ν|-strip:
1

1 2
1 2

In order to have a unique LR filling, either b2 = 0 (type B) or c1 = 0 (type C). To see

this, consider the case of an LR filling in which both b2 and c1 are nonzero, as in the

diagram above. Then the last 1 in the third row can be swapped with the first 2 in the

second row to get another LR filling,

1
1 1

2 2

so cλµ,ν(1) must be greater than 1 in this case. However, as this second diagram illus-

trates, requiring that the filling be of type B or C is not sufficient to give an extremal

triple, even though it is a necessary condition. Specifically, in the absence of any ad-

ditional restrictions, it may be possible to swap a 2 in the third row with a 1 in the

second row.

Therefore, for each type, B or C, we require one of the following restrictions:

I. c2 = 0

II. b1 = 0

III. a1 = b2

IV. a1 + b1 = b2 + c2.
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Conditions I and II remove one of the quantities that would have been involved in such

a swap to get a new LR filling with the same weight. Conditions III and IV imply that

any such swap would violate the Yamanouchi word condition, since the swap would

have the effect of increasing b2 while leaving a1, b1 and c2 unchanged.

Finally, we consider the case in which λ/µ is no longer necessarily a horizontal strip.

Then every column in the skew diagram could have up to two boxes, and whenever it

does contain two boxes, the filling must be a 1 in the upper box and a 2 in the lower

box. We could have an overlap between the first and second rows (denoted by type o1)

or an overlap between the second and third rows (denoted type o2). In the case that oi

does not occur, we denote the number of columns in the gap between the rows of the

skew diagram by gi. Thus, we have 32 cases in all (type B or C, type I-IV, type o1 or

g1, and type o2 or g2).

We will use oi and gi not only as a label for each type, but also a count (analogous

to a1, bi, ci) of the number of overlapping columns in the skew diagram, or the number

of columns in the gap between rows of the skew diagram. Therefore, in general, the

parts of λ, µ, ν are given by:

ν1 = a1 + b1 + c1 + o1 + o2 + ν3

ν2 = b2 + c2 + o1 + o2 + ν3

µ1 = b1 + b2 + g1 + o2 + c1 + c2 + g2 + µ3

µ2 = c1 + c2 + g2 + µ3

λ1 = b1 + b2 + g1 + o2 + c1 + c2 + g2 + a1 + o1 + µ3 + ν3

λ2 = b1 + b2 + o2 + c1 + c2 + g2 + o1 + µ3 + ν3

λ3 = o2 + c1 + c2 + µ3 + ν3

Therefore, each of the 32 cases corresponds to a restriction on the partitions λ, µ, ν. For

instance, B.I.g1g2 means that b2 = c2 = o1 = o2 = 0, and therefore ν2 = ν3. Similarly,

B.II.g1o2 means that b2 = c2 = o1 = g2 = 0, and so we get that µ2 +ν2 = λ3. We give a

complete list of restrictions in Table 3.2.1 below, where each number refers to the facet

of H3 determined by the correspondingly numbered Horn inequality above.
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Table 3.2.1: Extremal triples of partitions in P3

Type g1g2 g1o2 o1g2 o1o2

B.I (3) (11) (8) (16)

B.II (15) (5) (2) (10)

B.III (18) (18) (6) (6)

B.IV (12) (12) (17) (17)

C.I (13) (1) (13) (1)

C.II (7) (14) (7) (14)

C.III (9) (9) (9) (9)

C.IV (4) (4) (4) (4)

We thus verify that each facet of H3 appears in this table, and therefore each of

them must contain only extremal triples.
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Chapter 4

Proof of Main Theorem

4.1 Division Numbers

Every partition λ can be divided into rectangular blocks consisting of all columns of the

same height. We will use ωλi to denote the block
(
(λi − λi+1)

i
)
. Then if `(λ) = n, we

can decompose λ as the sum ωλ1 + ωλ2 + · · ·+ ωλn of all its blocks.

Example 4.1.1. Let λ = (6, 4, 2). The block ωλ3 is highlighted in the Young diagram

below.
• •
• •
• •

We refer to each part of a block ωλi as a strip. Thus, each strip consists of a row

within a block.

Example 4.1.2. Let λ = (6, 4, 2). The strips (ωλ3 )2 and (ωλ2 )1 are highlighted in the

Young diagram below.
• •

• •

It turns out that for an extremal triple (λ, µ, ν) of partitions in P3, it is possible to

obtain cλµ,ν by an assignment of upper and lower hooks in the corresponding diagrams

such that within each strip, all the upper hooks that occur appear to the left of all the

lower hooks that occur. (Note that a strip may contain only upper hooks or only lower

hooks.) We can thus encode the coefficient cλµ,ν by a system of division numbers, which

are numbers for each strip in λ, µ, ν indicating the transition point between upper and

lower hooks. By convention, we use the division numbers to count the flipped hooks in

each strip, ie the lower hooks in each strip of λ and the upper hooks in each strip of µ

and ν.
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For each partition, we write the division numbers in a matrix style array, arranged

in the same order (left to right, top to bottom) as the strip to which they correspond.

Note that the division number symbols differ from matrices in that they contain no

entries below the off-diagonal. Moreover, as we prove in Lemma 4.4.2 below, all hooks

in the blocks ωµ3 and ων3 can be taken to be lower hooks, corresponding to division

numbers of 0 for all the strips in those blocks. Therefore, we will write the division

numbers for λ within a 3× 3 array and those for µ and ν within a 2× 2 array.

Example 4.1.3. λ = (8, 7, 4), µ = (6, 3), ν = (5, 5)

u l l l u l l u
u u l l u l l
u l l l

u u l u u u
u u l

u l l l l
u u u u l

cλµ,ν is encoded by the division numbers given as follows.

λ :


3 2 0

2 2

3

 µ :

2 3

2

 ν :

1 0

4

 .

4.2 Algebraic Structures

To compute cλµ,ν from the division numbers, we require the following notation.

Let β be a multiset. We regard β as the set of vanishing points (counted with

multiplicity) of a polynomial. Therefore, let φ(x;β) be the smallest degree polynomial

in x such that φ(b;β) = 0 for all nonzero b ∈ β and φ(0;β) = 1. In particular, we have:

φ(x;β) :=
∏

b∈β,b 6=0

(
b− x
b

)
.

Such polynomials give us a natural way to write the coefficients cλµ,ν(α) for extremal

triples. Given an upper hook h∗λ, we can write the ratio of the corresponding lower

hook to the upper hook as

h∗λ − (α− 1)

h∗λ
.

Also, given a lower hook hµ∗ , we can write the ratio of the corresponding upper hook to

the lower hook as

−hµ∗ − (α− 1)

−hµ∗
.
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Thus, each cλµ,ν(α) can we written as φ(α− 1;F(λ, µ, ν)), where F(λ, µ, ν) is the set of

standards hooks of flipped boxes in λ and negatives of standard hooks of flipped boxes

in µ and ν.

We will also find it convenient to write our hooks in terms of r = 1/α. In this case,

we regard our hook-lengths as

h∗λ(b) = a(b) + 1 + `(b)r

hλ∗(b) = a(b) + (`(b) + 1)r

and we have that

φ(α− 1;mα+ n) =
(m− 1)α+ n+ 1

mα+ n
=

(m− 1) + (n+ 1)r

m+ nr
= φ(1− r;m+ nr).

Succesive flipped r-hooks within a single strip differ by 1, and so we require an

effective way to describe such products. To do this, we will first define the following

notation:

〈x; a〉j = φ(x; {a, . . . , a+ j − 1}).

When x is fixed and clear from context, we will suppress it and simply write 〈a〉j .

We will make use of two main identities involving such terms.

For the first identity, observe that if j = j1 + j2, then

〈a〉j1 〈a+ j1〉j2 = 〈a〉j = 〈a〉j2 〈a+ j2〉j1

and so
〈a〉j1

〈a+ j2〉j1
=

〈a〉j2
〈a+ j1〉j2

. (4.2.1)

For the second identity, note that if a+ b = x then(
a− x
a

)(
b− x
b

)
=

(
a− x
a

)(
−a
x− a

)
= 1

and more generally that

〈a〉j 〈b− j + 1〉j = 1, (4.2.2)

where the ith term in the first product cancels with the (j− i+1)th term in the second

product, since a+ (i− 1) + (b− j+ 1) + (j− i) = a+ b = x. Note that this is equivalent

to saying that 〈a〉j 〈b〉j = 1 whenever a+ b = x− j + 1.
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Now note that such terms can be used to describe the product of flipped hooks

within a single strip. We will use the notation:

[b;n] = 〈1− r; b+ 1〉n = φ (1− r; {b+ 1, b+ 2, . . . , b+ n}) .

Let hijλ denote h∗λ(i, 1) − h∗λ(j, 1). Then given partitions λ, µ, ν and a set of division

numbers n for each strip in these partitions, we define dλµ,ν(n) to be the product:

dλµ,ν(n) =
∏
i≤j

[hijλ ;nλij ] · [−hijµ ;nµij ] · [−h
ij
ν ;nνij ],

where nλij is the division number corresponding to the ith strip in ωλj , and nξij is the

division number corresponding to the ith strip in ωξj−1 for ξ ∈ {µ, ν}. We will refer

to the starting point b = ±hijξ in each term of the form [b;n] as the anchor for the

corresponding strip.

Using equation 4.2.1, we can determine how changes to the anchors or division

numbers affect dλµ,ν(n). In particular, we have that

[hijξ ;nξij − t]

[hijξ ;nξij ]
=

1

[hijξ + nξij − t; t]
, (4.2.3)

[hijξ + t;nξij ]

[hijξ ;nξij ]
=

[hijξ + nξij ; t]

[hijξ ; t]
. (4.2.4)

4.3 Division Numbers for Extremal Triples in P3

Let dijk encode the quantity |λi + µj − νk|, and let ξij denote ξi − ξj for any partition

ξ. Let p be the positive part of λ3 − µ2 − ν3, so that p = o2 = max(λ3 − µ2 − ν3, 0).

Finally, let x± = x± p, where x is either some dijk or some ξij .

We present a complete list of division number formulas below for extremal triples

in P3. These formulas are grouped according to facets of the Horn cone defined by the

inequalities in Table 3.1.1. For each case, we present the division numbers for λ, µ, ν,

and list the proposition in which this formula is verified. These propositions all appear

in Section 4.6.
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Table 4.3.1: Division numbers for extremal triples in P3

Case: λ: µ: ν: Prop.

1. µ3 = µ2


d333 d222 0

d333 d222

d333


0 d111

0

 d333 d222

d333

 4.6.1

2. µ2 = µ1


d111 d213 0

d222 d213

d111


 0 0

d333

 d213 d111

d213

 4.6.2

3. ν3 = ν2


d333 d222 0

d333 d222

d333


d333 d222

d333

 0 d111

0

 4.6.1

4. ν2 = ν1


d111 d231 0

d222 d231

d111


d231 d111

d231

  0 0

d333

 4.6.2

5. λ3 = λ2


d111 0 0

d333 0

d223


d232 d223

d222

 d223 d232

d223

 4.6.6

6. λ2 = λ1


d333 d−322 0

p d231

d221


d−212 µ12

d221

 d+231 d221

d231

 4.6.7

7. λ1 = µ1 + ν1


0 0 0

d333 0

d333


 0 0

d333

  0 0

d333

 4.6.4

8. λ2 = µ1 + ν2


d333 0 0

0 0

d333


 0 0

d333

 d333 d111

0

 4.6.4

9. λ2 = µ2 + ν1


d333 0 0

0 0

d333


d333 d111

0

  0 0

d333

 4.6.4
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10. λ3 = µ1 + ν3


d+111 d223 0

d+221 d223

p


 p 0

d+223

 d111 d+223

d221

 4.6.4

11. λ3 = µ2 + ν2


d333 d222 0

d333 d222

0


d332 d223

0

 d323 d232

0

 4.6.3

12. λ3 = µ3 + ν1


d+111 d223 0

d+221 d223

p


d111 d+223

d221

  p 0

d+223

 4.6.4

13. λ3 = µ3 + ν3


0 d111 0

0 d111

0


0 d111

0

 0 d111

0

 4.6.5

14. λ2 = µ3 + ν2


d323 0 0

d333 0

d323


d323 0

d333

 0 d111

0

 4.6.5

15. λ2 = µ2 + ν3


d332 0 0

d333 0

d332


0 d111

0

 d332 0

d333

 4.6.5

16. λ1 = µ3 + ν1


d333 d232 0

d323 d222

d323


0 µ12

0

 d333 d232

d323

 4.6.5

17. λ1 = µ2 + ν2


d111 d−223 0

d+222 d113

d+121


d−112 0

d221

 d+213 d121

λ+23

 4.6.8

18. λ1 = µ1 + ν3


d333 d223 0

d332 d222

d332


d333 d223

d332

 0 ν12

0

 4.6.5

Note that all division numbers that appear in Table 4.3.1 are positive and do not

exceed the size of the strip in which they appear.
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4.4 Extremal Paths

In order to verify the proposed formulas for the coefficient cλµ,ν , we will typically use

induction on |λ| − |µ|. In order to do this, we decompose ν into two pieces ν ′ and ν ′′,

and compute the coefficients obtained when we expand the product PµPν′Pν′′ as a sum.

Using associativity, we can expand this product in 2 different ways.

Lemma 4.4.1. For fixed λ, µ, ζ, ε,∑
κ⊂λ

cκµ,ζ · cλκ,ε =
∑
η⊂λ

cηζ,ε · c
λ
µ,η.

Proof. We use the associativity of product PµPζPε to expand the coefficient of Pλ in

this product as a sum in 2 different ways:

(PµPζ)Pε =

(∑
κ

cκµ,ζPκ

)
Pε

=
∑
ξ

∑
κ

cκµ,ζ · cξκ,ε Pξ

Pµ(PζPε) = Pµ

(∑
η

cηζ,εPη

)

=
∑
ξ

∑
η

cηζ,ε · c
ξ
µ,η Pξ.

Picking out the coefficient of Pλ in this expression tells us:∑
κ⊂λ

cκµ,ζ · cλκ,ε =
∑
η⊂λ

cηζ,ε · c
λ
µ,η.

It turns out that for extremal triples (λ, µ, ν) of partitions in P3, we can always de-

compose ν (or, equivalently, µ) into subpartitions ν ′ and ν ′′ such that all the coefficients

that appear in the expression∑
κ⊂λ

cκµ,ν′ · cλκ,ν′′ =
∑
η⊂λ

cλµ,η · c
η
ν′,ν′′

are indexed by extremal triples. We can solve this equation for cλµ,ν , and we call the

resulting expression an extremal path.
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In particular, we can pick ν ′′ to consist of a single row or column. In this case,

coefficients involving ν ′′ can be obtained using the Pieri rule. Since ν ′ is strictly smaller

than ν, we can apply our inductive hypothesis or results of a previous case to compute

cκµ,ν′ for κ ⊂ λ. On the other hand, since |η| = |ν|, we use the following lemma to

simplify coefficients of the form cλµ,η for η ⊂ λ, η 6= ν.

Lemma 4.4.2. cλµ,ν = c
λ−ωµ3−ων3
µ−ωµ3 ,ν−ων3

.

Proof. We first use Lemma 4.4.1 with ε = (13) and ζ = ν − ε, to get cλµ,ν · cνζ,ε =

cλ−εµ,ζ · c
λ
λ−ε,ε. By the Pieri rule, cνζ,ε = cλλ−ε,ε = 1, and so we get cλµ,ν = cλ−εµ,ζ . We can then

iterate this to get cλµ,ν = c
λ−ων3
µ,ν−ων3

. Finally, we use the symmetry between µ and ν to

obtain our identity.

Since, in general, η3 > ν3 and thus |ωη3 | > |ων3 |, this lemma allows us to reduce cλµ,η

such that it can also be computed by our inductive hypothesis or results of a previous

case.

4.5 Main Lemmas

We will reduce our extremal path expressions to one of the following 2 identities, de-

pending on whether ν ′′ is taken to be a row or a column in our decomposition of ν.

We will use the notation [n] to denote {1, . . . , n}.

Lemma 4.5.1. Let n be fixed, and let I = [n]. Given sets σ = {σi} , τ = {τi} indexed

by i ∈ I, we can define

βj(σ, τ) = {σi − σj} ∪ {τi + σj} ,

φj(x;σ, τ) = φ (x;βj(σ, τ)) ,

Φ(x;σ, τ) =
∑
j∈I

φj(x;σ, τ)

Then for all x, σ, τ ,

Φ(x;σ, τ) ≡ Φ(x; τ, σ).
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Proof. We use induction on n. If n = 1, then

β1(σ, τ) = β1(τ, σ) = {0, τ1 + σ1} ,

and so

Φ(x;σ, τ) = Φ(x; τ, σ) =
τ1 + σ1 − x
τ1 + σ1

.

For greater n, we note that each φj(x;σ, τ) and φj(x; τ, σ) is a polynomial of degree

2n − 1 in x. We will show that the expression Φ(x;σ, τ) − Φ(x; τ, σ) vanishes at all

points of the form xkl = (σk + τl), k, l ∈ I, and therefore must be identically 0. If we

fix some k and l in I, we see that

φk(xkl;σ, τ) = φl(xkl; τ, σ) = 0.

If j 6= k, then

φj(xkl;σ, τ) =
∏
i 6=j

σi − σj − σk − τl
σi − σj

∏
i

τi + σj − σk − τl
τi + σj

.

We factor out the i = k term from the first product and the i = l term from the second

product to get

φj(xkl;σ, τ) =
(−σj − τl)
(σk − σj)

(σj − σk)
(τl + σj)

∏
i 6=j,k

σi − σj − σk − τl
σi − σj

∏
i 6=l

τi + σj − σk − τl
τi + σj

 .

Since

(−σj − τl)
(σk − σj)

(σj − σk)
(τl + σj)

= 1,

we get that

φj(xkl;σ, τ) =
∏
i 6=l

τi + σj + σk − τl
τi + σj

∏
i 6=j,k

σi − σj − σk − τl
σi − σj

= φj(xkl;σi 6=k, τi 6=l).

By a similar calculation, we have

φj(xkl; τ, σ) = φj(xkl; τi 6=l, σi 6=k).

Therefore

Φ(xkl;σ, τ)− Φ(xkl; τ, σ) = Φ(xkl;σi 6=k, τi 6=l)− Φ(xkl; τi 6=l, σi 6=k),
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which is identically 0, by the inductive hypothesis.

Lemma 4.5.2. Fix n and let σ = (σ1, σ2), τ = (τ1, τ2). Let σki denote σi + k. Let

βnt (j;σ, τ) =
⋃
i∈[2]

k∈[n−t]

{−k} ∪
{
σk−1i − σtj : i 6= j

}
∪
{
τk−1i + σtj

}
,

φnt (x;σ, τ) = φ (x;βnt (1;σ, τ)) · φ
(
x;βnn−t(2;σ, τ)

)
,

Φn(x;σ, τ) =

n∑
t=0

φnt (x;σ, τ)

Then for all x, σ, τ ,

Φn(x;σ, τ) ≡ Φn(x; τ, σ).

Proof. We prove this identity by induction on n. When n = 1, the result follows from

Lemma 4.5.1.

For general n, we note that each φnt (x;σ, τ) and φnt (x; τ, σ) is a polynomial of degree

4n in x, so we must show that Φn(x;σ, τ)−Φn(x; τ, σ) vanishes at 4n+ 1 points. Note

that all terms vanish at x = 1 since 1 is contained in at least one of the sets [n − t]

or [t]. We will show that Φn(x;σ, τ) − Φn(x; τ, σ) also vanishes at the 4n points given

by x = (σl + τm + k − 1), l,m ∈ [2], k ∈ [n]. Since a transposition of σ1 and σ2 takes

φnt (x;σ, τ) to φnn−t(x;σ, τ) and keeps φnt (x; τ, σ) fixed, we can assume without loss of

generality that l = m = 1, and so we let xk = (σ1 + τ1 + k − 1).

We claim that

φnt (x;σ, τ) =

 0 if t < k

φn−kt−k (xk;σ + ke1, τ + ke1) · cnk if t ≥ k
(4.5.1)

where e1 = (1, 0) and cnk is a term that does not depend on t, and is symmetric in σ

and τ .

We note that if t < k, then for j = k − t,

τ j−11 + σt1 − xk = t+ j − k = 0.
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Since k ∈ [n], j must be in [n− t], and so this implies that for t < k

φnt (x;σ, τ) = 0.

Now assume that t ≥ k. By definition, we have that

φnt (x;σ, τ) = φ (x;βnt (1;σ, τ)) · φ
(
x;βnn−t(2;σ, τ)

)
,

and so we work with each of these two factors separately.

Let 〈a〉j = 〈xk; a〉j . We have that

φ (xk;β
n
t (1;σ, τ)) = 〈−n+ t〉n−t 〈σ2 − σ1 − t〉n−t

· 〈τ2 + σ1 + t〉n−t 〈τ1 + σ1 + t〉n−t ,

φ
(
xk;β

n−k
t−k (1;σ + ke1, τ + ke1)

)
= 〈−n+ t〉n−t 〈σ2 − σ1 − t〉n−t

· 〈τ2 + σ1 + t〉n−t 〈τ1 + σ1 + k + t〉n−t .

Note that the first three factors on the right hand side are the same in both lines.

Therefore, if we divide the first expression by the second, we can simplify the ratio

using 4.2.1 to obtain:

φ (xk;β
n
t (1;σ, τ))

φ
(
xk;β

n−k
t−k (1;σ + ke1, τ + ke1)

) =
〈τ1 + σ1 + t〉n−t
〈τ1 + σ1 + k + t〉n−t

=
〈τ1 + σ1 + t〉k
〈τ1 + σ1 + n〉k

. (4.5.2)

On the other hand, we have that:

φ (xk;β
n
t (2;σ, τ)) = 〈−t〉t · 〈σ1 − σ2 − n+ t〉t

· 〈τ1 + σ2 + n− t〉t · 〈τ2 + σ2 + n− t〉t ,

φ
(
xk;β

n−k
t−k (2;σ + ke1, τ + ke1)

)
= 〈−t+ k〉t−k · 〈σ1 − σ2 + k − n+ t〉t−k

· 〈τ1 + σ2 + k + n− t〉t−k · 〈τ2 + σ2 + n− t〉t−k .

Therefore if we divide the first expression by the second, and once again use 4.2.1 to

simplify the ratio, we get

φ (xk;β
n
t (2;σ, τ))

φ
(
xk;β

n−k
t−k (2;σ + ke1, τ + ke1)

)
= 〈−t〉k 〈σ1 − σ2 − n+ t〉k 〈τ1 + σ2 + n− t〉k 〈τ2 + σ2 + n− k〉k . (4.5.3)
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By 4.2.2, we can rewrite the first term on the right hand side of this expression as

〈−t〉k =
1

〈τ1 + σ1 + t〉k

since τ1 + σ1 + t− t = xk + k− 1. We can also simplify the the middle two terms using

the same identity. Since

(σ1 − σ2 − n+ t) + (τ1 + σ2 + n− t) = xk − k + 1,

by 4.2.2, we get that

〈σ1 − σ2 − n+ t〉k 〈τ1 + σ2 + n− t〉k = 1.

Therefore, we can reduce 4.5.3 to

φ (xk;β
n
t (2;σ, τ))

φ
(
xk;β

n−k
t−k (2;σ + ke1, τ + ke1)

) =
〈τ2 + σ2 + n− k〉k
〈τ1 + σ1 + t〉k

. (4.5.4)

Finally, we multiply the expressions in 4.5.2 and 4.5.4 to get that

φnt (xk;σ, τ)

φn−kt−k (xk;σ + ke1, τ + ke1)
=
〈τ1 + σ1 + t〉k
〈τ1 + σ1 + n〉k

·
〈τ2 + σ2 + n− k〉k
〈τ1 + σ1 + t〉k

=
〈τ2 + σ2 + n− k〉k
〈τ1 + σ1 + n〉k

,

which completes our proof of equation 4.5.1, with

ck =
〈τ2 + σ2 + n− k〉k
〈τ1 + σ1 + n〉k

.

It is easy to see that this ck does not depend on t and is symmetric in σ and τ.

Since each φnt contains this factor of ck whenever t ≥ k, it follows that

Φn(xk;σ, τ) = Φn−k(xk;σ + ke1, τ + ke1)ck.

Similarly, by transposing σ and τ , we get

Φn(xk; τ, σ) = Φn−k(xk; τ + ke1, σ + ke1)ck.

Thus, by the inductive hypothesis:

Φn(xk;σ, τ)− Φn(xk; τ, σ) = 0.
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4.6 Verification of Division Number Formulas

As in Section 4.3, we will use the following notation:

dijk = |λi + µj − νk|,

ξij = ξi − ξj ,

p = max(λ3 − µ2 − ν3, 0),

x± = x± p.

Given a set of division numbers n, recall that

dλµ,ν(n) =
∏
i≤j

[hijλ ;nλij ] · [−hijµ ;nµij ] · [−h
ij
ν ;nνij ], (4.6.1)

where nλij is the division number corresponding to the ith strip in ωλj , and nξij is the

division number corresponding to the ith strip in ωξj−1 for ξ ∈ {µ, ν}.

For each extremal triple (λ, µ, ν) we have a set of division numbers n(λ, µ, ν), as

listed in Table 4.3.1. Let

dλµ,ν = dλµ,ν(n(λ, µ, ν)).

We verify that for each case in Table 4.3.1, cλµ,ν = dλµ,ν .

In order to do this, for each fixed triple (λ, µ, ν), we first decompose ν into two

subpartitions ζ and ε, such that ε consists of a single row or column. By Lemma 4.4.1,

we then get an extremal path of the form:

∑
i

c
κ(i)
µ,ζ · c

λ
κ(i),ε =

∑
i

c
η(i)
ζ,ε · c

λ
µ,η(i), (4.6.2)

where for some i, η(i) = ν. For such a path, we can use either a previously established

result or induction to get that each cξ1ξ2,ξ3 equals dξ1ξ2,ξ3 for all the triples (ξ1, ξ2, ξ3) 6=

(λ, µ, ν). Therefore, to show that cλµ,ν = dλµ,ν , it suffices to instead verify the analogous

identity for dλµ,ν : ∑
i

d
κ(i)
µ,ζ · d

λ
κ(i),ε =

∑
i

d
η(i)
ζ,ε · d

λ
µ,η(i). (4.6.3)

When the sums on either side of equation 4.6.3 consist of more than one term, we

can prove this identity by writing each d
κ(i)
µ,ζ · d

λ
κ(i),ε and d

η(i)
ζ,ε · d

λ
µ,η(i) as the product
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of dλµ,ν · dνζ,ε with additional terms produced by changes to the anchors and division

numbers, as given by equation 4.2.1. We will then show that the additional factors

produced satisfy equation 4.6.3 by showing that they fall into the form of Lemma 4.5.1

(if ε is a single column) or 4.5.2 (if ε is a single row).

In the proofs below, we will also use the fact that since cλµ,ν = cλν,µ, any division

number formula that we prove for a coefficient based on a condition involving µ and ν

can be subsequently be used for the condition obtained by interchanging µ and ν, as

long as one also interchanges the role of µ and ν in the formula.

Proposition 4.6.1. If µ3 = µ2, then cλµ,ν is given by

λ :


d333 d222 0

d333 d222

d333

 µ :

0 d111

0

 ν :

d333 d222

d333



Proof. By Lemma 4.4.2, cλµ,ν = c
λ−ωµ3
µ−ωµ3 ,ν

. Since, µ− ωµ3 consists of a single part, we can

use the Pieri rule to compute c
λ−ωµ3
µ−ωµ3 ,ν

. The Pieri rule for rows can be obtained from

Theorem 2.3.1 and equation 2.3.1. In particular, we get that c
λ−ωµ3
µ−ωµ3 ,ν

is obtained by

treating all the hooks in λ, µ, ν as flipped hooks, except those corresponding to boxes

(i, j) ∈ ν, λ such that ν ′i = λ′i and νj < λj . Finally, we note that the d131 flipped hooks

in ωλ1 can be exchanged with the last d131 flipped hooks in ωµ1 , leaving no flipped hooks

in ωλ1 and only µ13 − d131 = d111 flipped hooks in ωµ1 .

Proposition 4.6.2. If µ2 = µ1, then cλµ,ν is given by:

λ :


d111 d213 0

d222 d213

d111

 µ :

 0 0

d333

 ν :

d213 d111

d213



Proof. Let dλµ,ν by the hypothesized formula. We use induction on (ν2 − ν3) to show

that cλµ,ν = dλµ,ν . If ν2 = ν3, we can determine cλµ,ν using Prop. 4.6.1 with the roles

of µ and ν reversed in the following way. First, note that by Horn inequality (8),



34

λ2 ≤ µ1 + ν2 = µ2 + ν2, and by inequality (15), λ2 ≥ µ2 + ν3 = µ2 + ν2, so λ2 = µ2 + ν2.

Therefore, d222 = 0, and so d213 = d222 = 0. Since |λ| = |µ| + |ν|, it also follows that

d111 = d333. Finally, note that since λ2−µ3−ν3 = µ1−µ3 in this case, we can exchange

the lower hooks in the second strip of ωλ3 with the upper hooks in the first strip of ωµ2 ,

so that Prop. 4.6.1 gives us the following division numbers:

λ :


d111 0 0

0 0

d111

 µ :

 0 0

d333

 ν :

0 d111

0


We can verify that this is the same as dλµ,ν in this case.

If ν2 > ν3 then we can decompose ν into ε = (1, 1) and ζ = ν − ε. Then by Lemma

4.4.1, we have ∑
1≤i≤3

cλµ,η(i)c
η(i)
ζ,ε =

∑
1≤i≤3

c
κ(i)
µ,ζ c

λ
κ(i),ε, (4.6.4)

where η(i) = ζ+ (1, 1, 1)−ei and κ(i) = λ− (1, 1, 1) + ei, where ei is a triple consisting

of a 1 in the ith position and 0’s elsewhere. Note that

η(3) = ν.

We will show that our hypothesized coefficients satisfy equation 4.6.4. We can

determine dλκ(i),ε and d
η(i)
ζ,ε by the Pieri rule, since ε consists of a single column. In

particular, we have that

dλκ(i),ε = φ
(

1− r;
{
hijλ + 1,−hijκ(i) + 1 : j > i

})
,

d
η(i)
ζ,ε = φ

(
1− r;

{
hijη(i) + 1,−hijζ + 1 : j > i

})
.

Note that by this definition, dνζ,ε = d
η(3)
ζ,ε = 1.

We can also write out d
κ(i)
µ,ζ and dλµ,η(i), by comparing them to dλµ,ν , since κ(i) is

obtained by modifying the parts of λ and η(i) and ζ are obtained by modifying the

parts of ν. Therefore, d
κ(i)
µ,ζ and dλµ,η(i) can be determined by examining how these

changes to λ and ν change the anchors and division numbers for each strip.

In the symbols below, the entries denote how the corresponding anchor for each strip

must be changed for that coefficient compared to the anchor of dλµ,ν , and a ∗ indicates

a change of −1 to the corresponding division number.
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κ(1) :


+1∗ +1∗ 0

0 0∗

0∗

 µ :

 0 0

0∗

 ζ :

+1∗ 0∗

+1∗

 ,

κ(2) :


0 −1 0

+1∗ 0

0

 µ :

 0 0

0∗

 ζ :

+1 0

+1

 ,

κ(3) :


−1 0∗ 0

−1 0∗

0

 µ :

0 0

0

 ζ :

+1∗ 0

+1∗

 ,

λ :


0∗ 0∗ 0

0 0∗

0∗

 µ :

 0 0

0∗

 η(1) :

+2∗ +1∗

+1∗

 ,

λ :


0 0∗ 0

0∗ 0∗

0

 µ :

 0 0

0∗

 η(2) :

+1∗ −1

+2∗

 .

This allows us to determine each summand d
κ(i)
µ,ζ d

λ
κ(i),ε and dλµ,η(i)d

η(i)
ζ,ε of equation

4.6.4 compared to dλµ,ν , since we can use equations 4.2.3 and 4.2.4 to write terms of the

form [b+ r;n+ s] as a product of [b;n] and some additional factors.

In particular, we factor out dλµ,ν from each of these terms. In addition, we factor

out terms that appear in a majority of the six summands. Note that these terms come

from the blocks ωξ2 for each partition ξ. Thus, we factor out 1
X from each expression,

where

X = φ (1− r;λ12 + r + d213, d213,−µ23 − r + d333, 1− ν13 − 2r, 1− ν23 − r) .
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Using the notation of Lemma 4.5.1, we can rewrite X as φ3(1− r;σ, τ), where

τ1 = λ12 + d213 + r = λ1 − µ1 − ν3 + r

τ2 = d213 = λ2 − µ1 − ν3

τ3 = d333 − µ23 − r = λ3 − µ1 − ν3 − r

σ1 = 1− ν13 − 2r

σ2 = 1− ν23 − r

σ3 = 0.

This allows us to write each term d
κ(i)
µ,ζ d

λ
κ(i),ε and dλµ,η(i)d

η(i)
ζ,ε as a product of the form

dλµ,ν
X

φ(1− r; {a1, . . . , an}).

In the table below, we present the elements of the set A corresponding to each term.

We will use κ(i) to indicate terms corresponding to d
κ(i)
µ,ζ d

λ
κ(i),ε and η(i) to indicate terms

corresponding dλµ,η(i)d
η(i)
ζ,ε .

a1 a2 a3 a4 a5

κ(1) λ12 + d213 + r 1− d111 − r −λ13 − 2r −λ12 − r 1 + ν12 − d111

κ(2) d213 −λ23 − r λ12 + r d213 + 1− ν13 − 2r 1− ν23 − r

κ(3) λ13 + 2r λ23 + r d333 − µ23 − r 1− λ13 − d111 − 3r 1− λ23 − d222 − 2r

η(1) 1− λ13 − d111 − 3r 1− d111 − r ν13 + 2r − 1 ν12 + r d213 + 1− ν13 − 2r

η(2) 1− λ23 − d222 − 2r 1− d111 + ν12 ν23 + r − 1 −ν12 − r d213 + 1− ν23 − r

Using the σi and τi defined above, and once again using the notation of Lemma

4.5.1, one can check that

d
κ(i)
µ,ζ d

λ
κ(i),ε =

dλµ,ν
X

φi(1− r; τ, σ),

dλµ,η(i)d
η(i)
ζ,ε =

dλµ,ν
X

φi(1− r;σ, τ).

Therefore, we have that

3∑
i=1

d
κ(i)
µ,ζ c

λ
κ(i),ε =

dλµ,ν
X

Φ(1− r; τ, σ),

3∑
i=1

dλµ,η(i)c
η(i)
ζ,ε =

dλµ,ν
X

Φ(1− r;σ, τ).

and so by Lemma 4.5.1, we have that both sums are equal, showing that dλµ,ν satisfies

equation 4.6.4.
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By the inductive hypothesis, each c
κ(i)
µ,ζ = d

κ(i)
µ,ζ , since µ is unchanged and ζ2 − ζ3 =

ν2 − ν3 − 1. Similarly, cλµ,η(i) = dλµ,η(i) for i = 1, 2, since η(1)2 − η(1)3 = ν2 − ν3 − 1 and

η(2)2 − η(2)3 = ν2 − ν3 − 2. Therefore, we get that the remaining term cλµ,η(i) = cλµ,ν

must equal dλµ,ν .

These last two propositions are instrumental in proving all of the remaining cases,

since they allow us to form extremal paths by decomposing ν into two pieces ζ and ε

such that ε consists of a single part, and ζ is such that either ζ2 = ζ3 or ζ1 = ζ2. Then

we can determine coefficients involving ε using the Pieri rule for rows, and coefficients

involving ζ using either Proposition 4.6.1 or 4.6.2.

In particular, Prop 4.6.1 allows us to form an extremal path by decomposing ν into

ε = (ν2 − ν3) and ζ = (ν1, ν3, ν3).

• • = + • •

Prop 4.6.2 allows us to form an extremal path by decomposing ν into ε = ων1 and

ζ = ν − ε = ων3 + ων2 .

• • •
= + • • •

Proposition 4.6.3. If λ3 = µ2+ν2, then cλµ,ν is given by the following division numbers:

λ :


d333 d222 0

d333 d222

0

 µ :

d332 d223

0

 ν :

d323 d232

0

 .

Proof. We will first use Lemma 4.4.1 to show that

cλµ,νc
ν
ζ,ε = cκµ,ζc

λ
κ,ε,

where ε = (ν2 − ν3), ζ = (ν1, ν3, ν3) and κ = λ − (0, 0, ν2 − ν3). For any η such that

cηε,ζ 6= 0, we have that η2 ≤ ν2, with equality holding only if η = ν. By Horn inequality
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(11), we know that if η2 + µ2 < ν2 + µ2 = λ3, then cλµ,η = 0. On the other hand, if

κ3 > µ2 + ν3 then since ζ2 = ζ3 = ν3, we have that κ3 > µ2 + ζ2, which would imply

that cκµ,ζ = 0.

Using Prop 4.6.1 and the fact that κ = (λ1, λ2, λ3 − ν23) and ζ = (ν1, ν3, ν3), we

have that cκµ,ζ is given by the division numbers:

κ :


d333 − ν23 d222 + ν23 0

d333 − ν23 d222 + ν23

d333 − ν23

 µ :

d333 − ν23 d222 + ν23

d333 − ν23

 ζ :

0 d111

0


where dijk still refers to |λi − µj − νk|. Therefore,

cκµ,ζ = [λ13+ν23 + 2r; d333 − ν23][λ23 + ν23 + r; d333 − ν23][0; d333 − ν23]

· [λ12 + r; d222 − ν23][0; d222 − ν23][−µ13 − 2r; d333 − ν23]

· [−µ23 − r; d333 − ν23][−µ12 − r; d222 − ν23][−ν13 − r; d111].

Note that since λ3 = µ2 + ν2 in this case, we also have that d333 − ν23 = µ23. This

implies that

[−µ23 − r; d333 − ν23][0; d333 − ν23] = 1,

and so these terms can be removed from the product above.

Next, we compute cλκ,ε and cνζ,ε by the Pieri rule to get that

cλκ,ε = [λ13 + 2r; ν23][λ23 + r; ν23][−λ13 + ν23 + r; ν23][−λ23 + ν23; ν23],

cνζ,ε = [ν12 + r; ν23][−ν13 − r; ν23].

Therefore, we get that

cκµ,ζc
λ
κ,ε = [λ13 + ν23 + 2r; d333 − ν23][λ23 + ν23 + r; d333 − ν23][λ12 + r; d222 − ν23]

· [0; d222 − ν23][−µ13 − 2r; d333 − ν23][−µ12 − r; d222 − ν23]

· [−ν13 − r; d111][λ13 + 2r; ν23][λ23 + r; ν23]

· [−λ13 + ν23 + r; ν23][−λ23 + ν23; ν23]

= [λ13 + 2r; d333][λ23 + r; d333][λ12 + r; d222][0; d222][−µ13 − 2r; d332]

· [−µ12 − r; d223][−ν13 − r; d111],
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and so dividing by cνζ,ε gives us that

cλµ,ν = [λ13 + 2r; d333][λ23 + r; d333][λ12 + r; d222][0; d222][−µ13 − 2r; d332]

· [−µ12 − r; d223][−ν13 − r; d232][−ν12; ν23].

This expression corresponds to the desired division numbers.

Proposition 4.6.4. If λi = µi + ν1, then cλµ,ν = cκµ,ζc
λ
κ,ε, where ε = ων1 , ζ = ν − ε and

κ = λ− |ε|ei.

Proof. We apply Lemma 4.4.1. For any η such that cηε,ζ 6= 0, we have that η1 ≤ ν1,

with equality holding only if η = ν. By Horn inequalities (7),(9) and (12), we know

that if η1 + µi < ν1 + µi = λi, then cλµ,η = 0. On the other hand, if κi > λi − |ε|, then

ζ1 + µi = ν1 − |ε|+ µi = λi − |ε| < κi, which would imply that cκµ,ζ = 0.

Proposition 4.6.5. If λi = µi + ν3, then cλµ,ν = cκµ,ζc
λ
κ,ε, where ε = ων1 , ζ = ν − ε and

κ = µ+ (ν33) + (ν32)− ν2ei.

Proof. We apply Lemma 4.4.1. For any η such that cηε,ζ 6= 0, we have that η3 ≥ ν3,

with equality holding only if η = ν. By Horn inequalities (13), (15) and (18), we know

that if η3 + µi > ν3 + µi = λi, then cλµ,η = 0. On the other hand, if κi < µi + ν3, then

κi < µi + ζ3, which would imply that cκµ,ζ = 0.

Note that Propositions 4.6.4 and 4.6.5 completely determine the coefficients in those

cases, since cλκ,ε can be determined by Propositon 4.6.1 and cκµ,ζ can be determined by

Propositon 4.6.2. The details are similar to the proof of Proposition 4.6.3.

The remaining cases all make use of Lemma 4.5.2.

Proposition 4.6.6. If λ3 = λ2, then cλµ,ν is given by

λ :


d111 0 0

d333 0

d223

 µ :

d232 d223

d222

 ν :

d223 d232

d223


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Proof. Let dλµ,ν be the expression given by the proposition. We use induction on k =

d222 = ν2 + µ2 − λ2 to show that cλµ,ν = dλµ,ν . If k = 0, then ν2 + µ2 = λ2 = λ3, and so

cλµ,ν can be obtained from Prop. 4.6.3 as follows. We observe that the fact that λ2 = λ3

implies that d2jk = d3jk for all j, k, and the fact that d222 = 0 implies that d111 = d333

and d223 = ν23. Thus, Prop 4.6.3 gives us

λ :


d111 0 0

d333 0

0

 µ :

d232 d223

0

 ν :

d223 d232

0

 .
We can verify that this is the same as the desired formula, by noting that since d223 =

ν23, we can swap all the lower hooks in the third strip of ωλ3 with all the upper hooks

in the second strip of ων2 .

For k > 0, let

ε = (ν2 − ν3),

ζ = (ν1, ν3, ν3),

and

η(t) = ν − (−t, t, ),

κ(t) = (µ1 + k − t, λ2 − ν3, µ3 + t).

Note that η(0) = ν.

By Lemma 4.4.1, we have that

k∑
t=0

cκ(t)µ,ε · cλκ(t),ζ =
k∑
t=0

c
η(t)
ζ,ε · c

λ
µ,η(t). (4.6.5)

We show that our hypothesized coefficients satisy equation 4.6.5.

We can determine d
κ(t)
µ,ε and d

η(t)
ζ,ε using the Pieri rule, to get

dκ(t)µ,ε = [µ12 + k − 2t+ 2r; t][d333 − t+ r; t][0; t][d213 + k − t+ r; ν23 − k][0; ν23 − k]

· [−µ13 − 2r; t][−µ23 − r; t][−µ12 − r; ν23 − k][−ν23 + r; ν23 − k + t],

d
η(t)
ζ,ε = [ν12 + 2t+ r; ν23 − t][0; ν23 − t][−ν13 − r; ν23 − t][−ν23 − r; ν23 − t].
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We can obtain dλκ(t),ζ using Proposition 4.6.1, which gives us

dλκ(t),ζ = [λ13 + 2r; d333 − t][r; d333 − t][−µ13 − k + 2t− 2r; d333 − t][−ν13 − r; d333 − t].

Finally, we can determine each dλµ,η(t) by modifying the dλµ,ν to get that:

dλµ,η(t) =[λ13 + 2r; d111 + t][r; d333][0; d223][−µ13 − 2r; d232 + t][−µ23 − r; d222 − t]

· [−µ12 − r; d223][−ν13 − t− 2r; d223][−ν23 + t− r; d223]

· [−ν12 − 2t− r; d232 + t].

Therefore, using equations 4.2.3 and 4.2.4, we get that:

dλµ,η(t)d
η(t)
ζ,ε

dλµ,νd
ν
ζ,ε

=
[d311 + 2r; t][−d212 − 2r; t][d221 + r; t][−ν12 − 2t− r; t][−k − r; t]

[−µ23 − r + k − t; t][−d331 − t− r; t][ν12 + r; t][ν12 + t+ r; t][−t− r; t]
,

d
κ(t)
µ,ε dλκ(t),ζ

dλµ,νd
ν
ζ,ε

=
[−µ13 − 2r; t][µ12 + k − 2t+ 2r; t][−µ23 − r; t][−k − r; t]

[d212 + r − t; t][−µ13 − k + t− 2r; t][−d331 − t− r; t][−t− r; t]

· [d311 + 2r; k − t][µ23 − k; k]

[−µ13 − 2r; k − t][ν12 + r − k; k]
.

Thus, using the notation of Lemma 4.5.2, we have that:

dλµ,η(t) · d
η(t)
ζ,ε = dλµ,ν · dνζ,ε ·

φkt (x;σ, τ)

φk0(x;σ, τ)
,

dκ(t)µ,ε · dλκ(t),ζ = dλµ,ν · dνζ,ε ·
φkt (x; τ, σ)

φk0(x;σ, τ)
,

where σ = (0, d321 + r) and τ = (−d331 − r,−d311 − 3r).

This implies that

k∑
t=0

d
η(t)
ζ,ε · d

λ
µ,η(t) =

dλµ,ν · dνζ,ε
φk0(x;σ, τ)

· Φk(x;σ, τ), (4.6.6)

k∑
t=0

dκ(t)µ,ε · dλκ(t),ζ =
dλµ,ν · dνζ,ε
φk0(x;σ, τ)

· Φk(x; τ, σ). (4.6.7)

Therefore, by Lemma 4.5.2, we have that the hypothesized coefficients satisfy equation

4.6.5.

Finally, we note that cλµ,η(t) = dλµ,η(t) for t > 0 using the inductive hypothesis, since

η2 < ν2. Therefore, we also have that cλµ,ν = dλµ,ν .
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Proposition 4.6.7. If λ2 = λ1, then cλµ,ν is given by

λ :


d333 d−322 0

p d231

d221

 µ :

d−212 µ12

d221

 ν :

d+231 d221

d231



Proof. Let dλµ,ν be the expression given by the proposition. We use induction on n =

µ1 + ν2 − λ1 − s to show that cλµ,ν = dλµ,ν . If n = 0, then µ1 + ν2 = λ1 − p = λ2.

If p = 0, this case reduces to that of Prop 4.6.4 (with the role of µ and ν switched).

If p = λ3 − µ2 − ν3, then p = λ1 − ν1 − µ3, and so the condition n = 0 implies that

ν1 + µ3 = λ1, which reduces this case to that of Prop 4.6.5 (once again with the role of

µ and ν switched).

For n > 0, let

ε = (ν2 − ν3),

ζ = (ν1, ν3, ν3),

and

η(t) = ν − (−t, t),

κ(t) = λ− (0, n− t, t).

Note that η(0) = ν.

By Lemma 4.4.1, we have that

n∑
t=0

cκ(t)µ,ε · cλκ(t),ζ =
n∑
t=0

c
η(t)
ζ,ε · c

λ
µ,η(t).

We show that our hypothesized coefficients satisfy this equation.

We can determine d
κ(t)
µ,ε and d

η(t)
ζ,ε using the Pieri rule, dλκ(t),ζ using Proposition 4.6.1,

and dλµ,η(t) by the proposed formula for dλµ,ν . Using analogous calculations to those in

the proof of Proposition 4.6.6 and using the notation of Lemma 4.5.2, one can check

that:

dλµ,η(t) · d
η(t)
ζ,ε = dλµ,ν · dνζ,ε ·

φnt (x;σ, τ)

φn0 (x;σ, τ)
,

dκ(t)µ,ε · dλκ(t),ζ = dλµ,ν · dνζ,ε ·
φnt (x; τ, σ)

φn0 (x;σ, τ)
,
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where σ = (2p + d323 + r, µ13 − n+ 2r) and τ = (−p− µ23 − r, 0).

The result follows from Lemma 4.5.2.

Proposition 4.6.8. If λ1 = µ2 + ν2, then cλµ,ν is given by

λ :


d111 d−223 0

d+222 d113

d+121

 µ :

d−112 0

d221

 ν :

d+213 d121

λ+23



Proof. Let dλµ,ν be the expression given by the proposition. We use induction on n =

µ1+ν2−λ1−p to show that cλµ,ν = dλµ,ν . Suppose n = 0. Then either µ1 = µ2 (if p = 0),

so that this case reduces to that of Prop. 4.6.2, or λ2 = µ3 + ν1 (if p = λ3 − µ2 − ν3),

which implies that λ3 = µ1 + ν3, and so this case reduces to that of Prop 4.6.4 with the

roles of µ and ν switched.

For n > 0, let

ε = ων1 ,

ζ = ων3 + ων2 ,

and

η(t) = ν − (−t, t),

κ(t) = λ− (0, n− t, n),

Note that η(0) = ν.

By Lemma 4.4.1, we have that

n∑
t=0

c
κ(t)
µ,ζ · c

λ
κ(t),ε =

n∑
t=0

c
η(t)
ζ,ε · c

λ
µ,η(t).

We show that our hypothesized coefficients satisfy this equation.

We can determine dλκ(t),ε and d
η(t)
ζ,ε using the Pieri rule, d

κ(t)
µ,ζ using Proposition 4.6.2,

and dλµ,η(t) for t > 0 using the inductive hypothesis. Note that by the Pieri rule,

dνζ,ε = d
η(t)
ζ,ε = 1.
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Thus, once again by an argument similar to that in the proof of Proposition 4.6.6,

we have that:

dλµ,η(t) · d
η(t)
ζ,ε = dλµ,ν ·

φnt (x;σ, τ)

φn0 (x;σ, τ)
if t > 0,

d
κ(t)
µ,ζ · d

λ
κ(t),ε = dλµ,ν ·

φnt (x; τ, σ)

φn0 (x;σ, τ)
,

where σ = (0, n− µ13 − 2r) and τ = (d333 − p + r, d233 + 2r).

The result follows from Lemma 4.5.2.

This completes our proof of Theorem 2.2.1.
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Chapter 5

Macdonald Polynomials

Jack polynomials Pλ(α;x) are generalized by Macdonald polynomials Pλ(q, t;x), where

lim
t→1

Pλ(tα, t;x) = Pλ(α;x).

Stanley’s conjecture can be extended to Macdonald polynomials in a very straight-

forward way. Just as we had defined α-generalizations of hook-length earlier, we can

also define two (q, t)-generalizations:

• upper hook-length: h∗λ(b) = 1− qa(b)+1t`(b)

• lower hook-length: hλ∗(b) = 1− qa(b)t`(b)+1

In fact, using these hook lengths, we can apply the Pieri rule (as stated in Theo-

rem 2.3.1) to Macdonald polynomials as well (see [14, IV.6.24]). We can also get the

appropriate analogue of Equation 2.3.1 by defining

bλ(q, t) =
Hλ
∗ (q, t)

H∗λ(q, t)
,

which gives us

cλ
′
µ′,ν′ (t, q) =

cλµ,ν(q, t)bµ(q, t)bν(q, t)

bλ(q, t)
.

Finally, we use the definitions and theorem above to get the following extension of

Theorem 2.2.1.

Theorem 5.0.9. For an extremal triple (λ, µ, ν) of partitions in P3, cλµ,ν(q, t) can

be expressed by the same assignment of upper and lower hooks as cλµ,ν(α), using the

corresponding (q, t)-hooks instead of α-hooks.
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Proof. We can still use the same classification as before, as well as the subsequent

division number notation to give an assignment of upper and lower hooks. We can also

once again express the ratio of a flipped to a standard (q, t)-hook in terms of φ, in the

following way. Given a (q, t)-hook hλ(b) (which could be either upper or lower), we

define

ĥλ(b) =
hλ(b)

qa(b)t`(b)
.

Then

φ
(
t− q;

{
ĥ∗λ(b)

})
=
ĥ∗λ(b)− (t− q)

ĥ∗λ(b)

=
h∗λ(b)− (t− q)(qa(b)t`(b))

h∗λ(b)

=
hλ∗(b)

h∗λ(b)
,

and

φ
(
t− q;

{
−ĥλ∗(b)

})
=
−ĥλ∗(b)− (t− q)

−ĥλ∗(b)

=
hλ∗(b)− (q − t)(qa(b)t`(b))

hλ∗(b)

=
h∗λ(b)

hλ∗(b)
.

We can thus express our coefficients in terms of the same φ functions, but this time

using the modified hook ĥ(q, t) instead of the corresponding hook h(α), and using

x = t−q instead of x = α−1. We can also prove that these expressions give the correct

coefficient using the same lemmas as before with the same modification to x and the

hooks in σ and τ .

To see that limt→1 c
λ
µ,ν(tα, t) = cλµ,ν(α), we note that

lim
t→1

1− tα(a(b))t`(b)+1

1− tα(a(b)+1)t`(b)
=
α(a(b)) + `(b) + 1

α(a(b) + 1) + `(b)
,

as desired.
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Chapter 6

Further Directions

6.1 Extremal triples in Pn with n > 3

The algebraic identities we obtain can be used in higher dimensions, but they relate

to a system of extremal paths. As n gets larger, the classification problem becomes

much more complicated, both for unique LR fillings and for faces of Horn cones that

correspond to extremal triples. Given the role played by the codimension one faces

of Horn cones when n = 3, one might wonder if Stanley’s conjecture can be extended

from extremal triples to all boundary triples on this cone. However, this is not true, as

demonstrated by the example below.

Example 6.1.1. Let λ = (5, 3, 2, 1), µ = (3, 2, 1), ν = (2, 2, 1). This lies on the codi-

mension one face given by λ1 = µ1 + ν1. However, in this case cλµ,ν(1) = 2 and

gλµ,ν(α) = 48α6(1 + 3α)(3 + 5α)(3 + α)(1 + 2α)2(3 + 2α)(2 + α)2(2α2 + 11α+ 2).

We also note that when n = 3, our extremal paths typically involved decomposing

µ or ν into rectangular blocks, since all triples involving a rectangle are extremal in this

case. However, when n > 3, it is possible to have a non-extremal triple even if ν is a

rectangular partition.

Example 6.1.2. Let λ = (4, 3, 2, 1), µ = (3, 2, 1), ν = (2, 2). Then cλµ,ν(1) = 2.

We therefore need a more efficient technique for determining extremal triples and

for finding ways to expand them as extremal paths.
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6.2 Non-extremal triples in P3

In general, if cλµ,ν(1) = k > 1, we cannot write it as the sum of k different hook assign-

ments for λ, µ, ν, each multiplied by a power of α. Stanley and Hanlon demonstrated

this with the following example.

Example 6.2.1. λ = (4, 2, 1), µ = (3, 1), ν = (2, 1)

gλµ,ν(α) = 8α5(9 + 97α+ 294α2 + 321α3 + 131α4 + 12α5)

One can verify that any two experessions f1(α) and f2(α) given by hook assignments

must share a common linear factor not equal to α or a common integer factor not equal

to 8. However, the above expression for gλµ,ν has no rational zeros besides 0, and no

integer factors besides 8.

However, if we can expand the coefficients for non-extremal triples as an extremal

path, we might obtain a way to write coefficient as the sum of k positive terms, each of

which factors into linear factors in α, given by k terms of the form found in Lemmas

4.5.1 or 4.5.2. In particular, we could write:

cλµ,ν · cνν′,ν′′ +
n∑

t=k+1

cλµ,η(t) · c
η(t)
ν′,ν′′ =

n∑
t=1

c
κ(t)
µ,ν′ · c

λ
κ(t),ν′′ ,

and then write cλµ,ν in this form as long as the remaining coefficients are sufficient to

find appropriate choices for σ and τ . This would give a combinatorial description of

such coefficients, and also show that they are positive expressions in α, as predicted by

another conjecture of Stanley [19, Conj. 8.3].
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