
TWO APPLICATIONS OF COMBINATORIAL
OPTIMIZATION

BY MATTHEW R. OSTER

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Operations Research

Written under the direction of

Professor Jonathan Eckstein

and approved by

New Brunswick, New Jersey

May, 2014

c© 2014

Matthew R. Oster

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Two applications of combinatorial optimization

by Matthew R. Oster

Dissertation Director: Professor Jonathan Eckstein

This thesis presents two applications of combinatorial optimization. The first part con-

tains a detailed description of a conference scheduling problem. We model the problem

as a symmetric clustering problem, or a variant of minimum k-partition we call

capacitated k-partition. This problem is proved to be NP-hard to solve to optimal-

ity, and further, unless P = NP, no constant factor polynomial-time approximation

algorithm exists. We also propose a branch-and-cut algorithm with semidefinite pro-

gramming relaxations enhanced with polyhedral cuts found at each tree node. Many

cutting planes are demonstrated to be satisfied, or provably close to being satisfied,

by semidefinite matrices in the variable space [−1/(k − 1), 1], which is in contrast to

basic linear programming relaxations. Our algorithm also relies on a novel heuristic

strategy when attempting to generate feasible solutions at every tree node. We test an

implementation of our algorithm on random k-partition instances as well as a particular

conference data set which comes from the 13th Annual INFORMS Computing Society

Conference and was solved to within 0.85% of optimum in under 4 hours. The results

here are promising and provide a starting point for future projects.

In the second part, we describe a project called the Boat Allocation Module, where

a team comprised of United States Coast Guard (USCG) analysts, and Command,

Control, and Interoperability Center for Advanced Data Analysis researchers worked

ii

together in building a decision support system for USCG analysts. The software was

designed to solve the problem of allocating boats of the Coast Guard to the nation’s

coastal stations, so as to meet station requirements, while adhering to particular budget

and capability limitations. We model the problem as a resource allocation problem and

prove that it is NP-hard to solve. We relax the problem slightly by allowing a single

boat type to be shared, or assigned among disjoint subsets of stations rather than

to individual stations, but show that implementing “seasonal” sharing is NP-hard.

A mixed integer linear programming formulation is proposed, and an implementation

within a decision support system for USCG analysts is tested as per USCG Verification

and Validation standards. The software provides an intuitive interface and allows for a

variety of scenarios. Tests have shown that our tool may save the Coast Guard millions

of dollars a year.

iii

Acknowledgements

I would like to thank the members of my dissertation committee. I am especially

indebted to my advisor, Professor Jonathan Eckstein, for initiating and guiding the

research found in Part I, and for outlining the first reduction found in Appendix B.

This work as a whole would not have been possible without his patience, support, and

expertise. I would also like thank Professor Endre Boros for his mentorship during the

project found in Part II, and for his overall energy brought to every discussion. I want

to thank Professor Vladimir Gurvich for introducing me early on to many interesting

research problems. I want to also thank Professors Farid Alizadeh and Miguel Anjos

for their influential works in Semidefinite Programming, a critical tool used in Part I.

I need to thank Professor Adi Ben-Israel for joining the committee, especially on such

short notice.

Throughout the past six years as a Ph.D. student, I have encountered many inspiring

individuals at Rutgers University. I need to thank Professor Fred Roberts for mentoring

and believing in me, as well as for turning my interests towards all things Discrete

Mathematics. Professor Paul Kantor has helped shape me as a researcher and was

a key figure in guiding the successful research found in Part II. I would also like to

thank Dr. Gene Fiorini for his support and his amiable demeanor. I want to thank

Professor András Prékopa for his passionate teaching and his encouraging comments

on a particular class project. Dr. Tami Carpenter has been a great source of support

and continues to keep me on the path to success as an interdisciplinary researcher. I

would like to thank Robert DeMarco and Jake Baron for providing a starting point for

the second reduction found in Appendix B. Others include the RUTCOR staff: Terry

Hart, Clare Smietana, Lynn Agre, Katie D’Agosta, and Chong; I have enjoyed and

benefited from all of our conversations.

iv

I could not have enjoyed the last six years of my studies as much as I had if not for

the tremendous unconditional support of my wife and best friend Lauren Matricardi.

I also want to acknowledge the supportive comradery felt among my fellow graduate

students. In particular, I want to thank my good friend, office mate, and eXtremely

knowlEdgeable individual, Aritanan Gruber. The light-hearted attitude of Minh Pham

has always brought about a good laugh. Ozlem Cavus demonstrated an air of un-

matched dedication and kindness. I also want to thank office mates Noam Goldberg,

Chris Gaffney, Gianluca Gazolla, and Anh Ninh, as well as fellow class mates Dávid

Papp, Kunikazu Yoda, Wang Yao, Mohammad Ranjbar, Olga Myndyuk, and Jinwook

Lee for interesting discussions and many adventures.

This material is based upon work supported by the Command, Control, and In-

teroperability Center for Advanced Data Analysis (CCICADA) at Rutgers University,

and the U.S. Department of Homeland Security, under Grant Award Numbers 2008-

ST-104-000016 and 2009-ST-061-CCI002-05. The views and conclusions contained in

this document are those of the authors and should not be interpreted as necessarily

representing the official policies, either expressed or implied, of the U.S. Department of

Homeland Security.

v

Dedication

To my family, for their endless support.

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

List of Tables . x

List of Figures . xi

I Optimizing conference schedules 1

1. Introduction . 2

1.1. Related work . 3

1.2. Our contributions . 7

1.3. Outline . 9

2. The conference scheduling problem . 10

2.1. Problem description . 10

2.1.1. Symmetry . 12

2.1.2. Computational complexity . 14

2.2. Modeling the problem . 17

2.2.1. The maximum k-cut model . 19

2.2.2. Reformulation into capacitated k-partition 22

2.3. Valid inequalities of capacitated k-partition polyhedron 25

2.3.1. Triangle and clique inequalities 27

2.3.2. 2-partition inequalities . 31

vii

2.3.3. Lower and upper clique inequalities 36

2.3.4. Generalized inequalities for node-weighted case 40

3. A branch-and-cut algorithm for ConSP 47

3.1. Subproblems . 49

3.1.1. Representation . 49

3.1.2. Model: a weighted capacitated k-partition problem 50

3.2. Preprocessing . 52

3.3. Lower bounding procedure . 57

3.3.1. Semidefinite programming relaxations 58

3.3.2. Strengthening with linear inequalities 61

3.4. Upper bounding procedure . 68

3.4.1. Capacitated bin packing heuristic 70

3.4.2. Capacitated bin swapping extension 72

3.5. Branching strategy . 76

4. Test results and discussion . 80

4.1. Implementation . 80

4.1.1. Branch-and-bound framework . 80

4.1.2. Semidefinite programming solver 81

4.2. Random data . 83

4.3. Case study: ICS-2013 . 97

4.3.1. Data set and parameter choices 98

4.3.2. ConSP schedule vs. actual schedule 98

4.4. Concluding remarks . 100

II A United States Coast Guard resource allocation problem 103

5. USCG Boat Allocation Module (BAM): A software tool 104

5.1. Introduction . 104

viii

5.1.1. Motivation and background . 105

5.1.2. Related works . 106

5.1.3. Our contributions . 108

5.2. BAM model . 109

5.3. Implementation . 117

5.4. Results . 118

5.4.1. Data set . 118

5.4.2. Tests . 122

5.5. Concluding remarks . 132

Appendix A. Constructing input parameters to ConSP 134

Appendix B. Computational complexity of BAM 137

References . 141

ix

List of Tables

4.1. k = 3, α and β trivial . 87

4.2. k = 3, α and β tight . 89

4.3. k = 5, α and β trivial . 91

4.4. k = 5, α and β tight . 92

4.5. k = 7, α and β trivial . 94

4.6. k = 7, α and β tight . 95

x

List of Figures

4.1. Progress of our algorithm applied to the ICS-2013 data set 100

5.1. USCG boats by type and associated BAM model parameters; FY09 data

from 2009 [98]; remaining data acquired for tests in 2012. 119

5.2. Xpress B&B statistics for solving each sharing plan with optimum budgets123

5.3. Matrix statistics for BAM input to Xpress IVE, sharing disallowed . . . 123

5.4. Difference between USCG, BAT [98], and BAM allocations 124

5.5. Difference between USCG original, BAT [98], and BAM measures of success126

5.6. Optimal budget effect on unused resources (hours) 126

5.7. Dinstinct boat types vs. δ . 128

5.8. P5 and sharing vs. γ . 129

5.9. P1 and P8 vs. ε . 129

5.10. P1 and P8 vs. λ . 130

5.11. Xpress branch-and-bound statistics for solving each sharing plan with

respective optimum budgets and maximum needed RB-S 131

5.12. RB-S allocations given unlimited supply 131

xi

Part I

Optimizing conference schedules

1

2

Chapter 1

Introduction

The structure of a general conference schedule can be viewed as having sessions of

grouped talks, time slots over many days, and various rooms spread across multiple

nearby venues. The goal is typically to find a schedule, or an assignment of sessions

to distinct times and places, which has no participant required to be in two places

at once. Naturally, many more constraining factors arise, e.g. speakers preferring or

forbidding to be scheduled at certain times, subsets of rooms unavailable at the end of

a conference, or advisor-advisee pairs each requesting to be at the other’s presentation.

Not all constraints, however, are achievable when constructing a schedule, and thus

those deemed inessential are relaxed. For example, consider the INFORMS Annual

Meeting 2012 scheduling problem, with over 1,000 sessions of technical presentations,

15 time slots, and nearly 70 rooms available [35]. While it was observed that no speaker

was to give two talks at once, at least one conflict may have been avoidable: the two

authors of this thesis gave two separate talks in parallel, one of which was on this very

collaboration.

On the other hand, some properties arise automatically from the restrictions im-

posed upon the schedule structure. For instance, the tightly constrained 13th IN-

FORMS Computing Society Conference (ICS-2013) exposed a “balanced” problem

structure: there were 61 technical sessions to be scheduled over the course of 9 time

slots, with at most 7 sessions allowed per time slot, and thus every time slot was forced

to contain at least 5 sessions [36]. Our model for the conference scheduling problem

is flexible enough to allow the inclusion of constraints similar to the above two types,

i.e. it can produce balanced schedules without having participants assigned to be in

two places at once.

3

A basic multi-track structure exists in the aforementioned conferences (the 2012 In-

ternational Symposium on Mathematical Programming [91] is another example), where

talks similar in topic are grouped and placed one after another in the same physical

area of the conference. While a sequential ordering allows audience members—whom

we suppose have concentrated interests—to potentially stay in close proximity through-

out the duration of the conference, it may only incidentally produce schedules which

reduce total parallel topic overlap, or a measure of similarity between sessions appearing

together within some time slot.1 We, however, are interested in guaranteeing that such

parallel topic overlap is minimal. By doing so, we complementarily increase the variety

and overall appeal of talks offered in each time slot.

In the sequel, we give a general definition of the conference scheduling problem,

but primarily focus on a symmetric sub-problem arising from attempting to minimize

total parallel topic overlap. Indeed, similarity between presented topics is independent

of when and where such talks are given, and thus allows the elimination of time slot

and room labels. Therefore, we are able to concentrate on the “core” structure of the

scheduling problem: clustering sessions into time slots. Although this approach may

limit the model’s ability to satisfy certain secondary constraints (e.g. individuals’ time

preferences), it significantly reduces the size and complexity of the problem. Moreover,

the symmetric problem can be modeled as a capacitated variant of the minimum k-

partition problem—or the well-studied complementary maximum k-cut problem—

since the set of clusters forms a partition of the sessions. We borrow from the structure

of these known models, as well as other related combinatorial problems, and so we

provide a detailed review of relevant literature, next.

1.1 Related work

There are many types of scheduling problems that have been successfully modeled and

solved by combinatorial optimization methods, such as job shop scheduling [7] or flight

1Note that at quick glance of the ICS-2013 schedule [36], swapping the Critical Infrastructure session
in the DeVargas room held during Sunday’s B-slot with the “Other” session appearing in Sunset Room
held on Sunday’s C-slot, could potentially result in a reduced amount of parallel topic overlap, judging
only by track titles and assuming that no conflicts would be introduced.

4

and airline crew scheduling [43]. Outside of the optimization community, there exist

general methodologies such as timetabling for handling e.g. education-based scheduling

problems (see surveys [89] and [84]). We give a review of results pertaining to several

specific combinatorial problems which are related to our conference scheduling problem.

The maximum cut problem asks for a 2-partition of a given weighted graph G

with a corresponding cut—the set of edges with endpoints in opposite parts of the

partition—of maximum total weight. It is a combinatorial problem that has received

significant attention over the last two decades, both theoretical [12, 28] and practical

[13, 83]. The groundbreaking result of Goemans and Williamson [42] was the first use of

semidefinite programming (SDP)2 to achieve a (randomized) approximation guarantee

for a combinatorial optimization problem. The algorithm, hereby denoted GW, is

guaranteed on average to produce αGW-approximations, i.e. solutions within a factor

αGW of optimality, for αGW := 0.87856. Karloff [60] showed that any additional valid

inequalities included in the SDP relaxation of Goemans and Williamson could not

improve upon this factor. H̊astad [52] proved that unless P = NP, the best one can

hope for in designing any α-approximation algorithm for maximum cut, is at most

16
17 ≈ 0.94118. This upper limit can be reduced, under the assumption that the Unique

Games Conjecture holds [62], to αGW, showing that GW conditionally achieves the best

quality guarantee in polynomial-time computable approximations.

The randomized rounding approach of Goemans and Williamson [42] was extended

to the more general maximum k-cut problem in Frieze and Jerrum [38]. For a weighted

graph G and integer k ≥ 2, the problem seeks a maximum-weight k-cut, or set of edges

with endpoints in separate parts of a corresponding k-partition. The αk-approximation

guarantee for maximum k-cut—which arises from a non-standard formulation with

variables Y ∈
{
−1
k−1 , 1

}n×n
, which is discussed further in section 2.2)—can be asymp-

totically written as αk ∼ 1− 1
k + log k

2k2
. Kann et al. [59] showed that each αk has limited

room for improvement by proving that no α-approximation algorithm with factor larger

2Semidefinite programming is a sub-class of convex optimization problems and a generalization of
linear programming; the first SDP-specific polynomial-time algorithm was developed by Alizadeh [4]
(see also [44]).

5

than 1− 1
34k can exist, unless P = NP. They also proved that, contrary to maximum

k-cut, the complementary minimum k-partition problem cannot be approximated

to within a factor of |E(G)|—the number of edges of the corresponding graph—unless

P = NP.

Related hardness results for maximum k-cut exist. For instance, Guruswami and

Sinop [50] proved the problem to be NP-hard even when the input graph G is known to

be k-colorable—a problem sometimes called maximum k-colorable subgraph. For

smaller values of k, de Klerk et al. [26] marginally improved upon the αk-approximation

ratio of Frieze and Jerrum [38], by using a similar randomized rounding procedure, only

applied to an SDP relaxation of a problem related to the Lovász theta function [72]

(see also the notes of Knuth [63]).

Despite the hardness results, many authors have successfully implemented exact

algorithms for the above problems. For maximum cut, the Binary quadratic and

Max cut solver, or BiqMac (available from [1]), can handle up to 100 nodes even when

the input graph is dense, by using a branch-and-bound algorithm equipped with an

SDP relaxation, which is further tightened by polyhedral cuts [86]. A more recent solver

for maximum cut instances is BiqCrunch [64]. On the other hand, linear programming

(LP) methods reportedly performed better on sparse instances and graphs with special

structure (e.g. grids) arising from statistical physics application, e.g. the Ising spin glass

problem in Barahona et al. [11].

For maximum k-cut—and therefore for the complementary problem minimum

k-partition—with k ≥ 2, Ghaddar et al. [41] developed a branch-and-cut algorithm

using SDP relaxations and an iterative clustering heuristic (ICH), and were able to

solve dense instances containing up to 60 nodes, and over 100 nodes for sparse grid-like

graphs related to the Potts glass problem [71]. The runtimes were further improved

by Anjos et al. [5], using a bundle method to solve the SDP relaxations. For small

k and dense instances, the bundle method of Anjos et al. compared favorably against

the LP-based branch-and-bound method of Kaibel et al. [58], which employed orbitopal

fixing—a symmetry-breaking branching method based on the algebraic orbits of feasible

solutions. Without symmetry breaking, it was observed in Ghaddar et al. [41] and Anjos

6

et al. [5] that the LP relaxations were very weak compared to the corresponding SDP

relaxations, and resulted in almost complete enumeration in the search for optimal

solutions.

Heuristic techniques without approximation guarantees have also been developed

for maximum cut, such as the Rank Two heuristic of Burer et al. [19]. The meth-

ods of Festa et al. [34], which combine greedy randomized adaptive search procedure

(GRASP), variable neighborhood search (VNS), and path-relinking (PR), have been

shown to be practical improvements—both in solution quality and runtime performance—

over the GW algorithm found in [42]. For the more general maximum k-cut problem,

the ICH heuristic of [41] was seen to be competitive with the provably good randomized

rounding procedure of [38].

The structure of the cut polytope, or the convex hull of all incidence vectors encoding

feasible cuts of the maximum cut problem, and the structure of the elliptope, a convex

object arising from a particular SDP relaxation of partition matrices, have both been

extensively studied in the book of Deza and Laurent [28]. The polyhedral structure of

the complementary, and more general problem, minimum k-partition, can be found in

Chopra and Rao [20, 21]. Eisenblätter [31] discusses the strength of a related, truncated

elliptope containing all r-partition matrices with r ≤ k. These structures are described

more in the forthcoming chapter (in particular, see §2.3).

The minimum graph bisection problem asks for a graph’s maximum-weight cut

with upper-bounded part sizes of the corresponding 2-partition. Polyhedral results for

this problem can be found in Armbruster et al. [9], whereas computations comparing

LP-based vs. SDP-based branch-and-cut algorithms are found in their follow-up paper

[8]. Brunetta et al. [18] describe an algorithm for minimum equicut: a subclass of

minimum graph bisection asking for a graph’s minimum-weight cut with “balanced”

parts—2-partition classes of equal size when the number of vertices is even, and differing

by one otherwise. The algorithm was later improved by Anjos et al. [6].

The minimum k-equipartition problem, which can be seen as a generalized vari-

ant of minimum equicut, asks for a k-partition with “balanced” parts and corre-

sponding k-cut of minimum weight. A polyhedral study and LP-based branch-and-cut

7

algorithm were analyzed in Mitchell [75], and an application of this algorithm to sports

scheduling is found in Mitchell [74].

Labbé and Öszoy [65] analyzed the structure of the constrained graph parti-

tion problem’s polytope; this problem asks for a partition of a graph’s vertex set into

an arbitary number of parts, each bounded above and below in size, so that the cor-

responding multi-cut is of optimal weight (maximum or minimum can be specified).

This definition is general enough to include: simple graph partition, which asks for

a graph partition with upper-bounded part sizes (cf. [92]); clique partition, which

asks for a graph partition with no constraint on part sizes (cf. [45, 46]); size con-

strained clique partition, which asks for a graph partition with lower-bounded part

sizes (cf. [57]); and the aforementioned k-equipartition and equipartition problems

studied, respectively, by Mitchell [75] and Conforti et al. [22, 23].

Ferreira et al. [32, 33] studied a generalization to simple graph partition, known as

node capacitated graph partition, where vertices have arbitrary weights and upper

bounds are placed on the sum of each part’s constituent weights. Some constraints

developed in this work are covered in section §2.3.4, since node weights arise in certain

subproblems solved by our algorithm (see Chapter 3).

There has been research on obtaining successively better relaxations of binary com-

binatorial problems. The well-known hierarchies of both linear and semidefinite relax-

ations were proposed by Sherali-Adams [90], Lovasz-Schrijver [73], and Lasserre [68].

A comparison of the three can be found in Laurent [69], where it was determined that

the Lasserre hierarchy is strongest.

1.2 Our contributions

In this thesis, we study the problem of scheduling conferences, and are motivated by

the seemingly ad hoc approaches apparent in example schedules. We first introduce a

general definition of the conference scheduling problem (ConSP), but focus on a

symmetric sub-problem, the conference clustering problem (ConCP), which arises

when time slot and room labels are ignored. This particular structure was chosen to

8

accomodate a novel comparison measure of schedules; namely, parallel topic overlap.

Several ways of computing this measure are proposed.

We prove that ConCP, and hence ConSP, is not only an NP-hard combinatorial

optimization problem, but that it is NP-complete to determine whether a feasible

solution exists. This, we prove, implies that no α-approximation algorithm exists, for

any constant α.

After modeling ConCP as a variant of the familiar maximum k-cut problem, we

explore the structure of our particular problem’s polytope. We determine which closely-

related polytopes provide valid inqualities for our polytope, and consider when these

inequalities are facet-defining. On the other hand, we demonstrate the strength of a

semidefinite programming formulation of the problem when compared to the polytope in

{0, 1} space. In particular, we display known results showing when the SDP relaxations

are provably “close” to satisfying the many valid inequality types, and use them to prove

when in fact such inequalities are satisfied by the SDP relaxation. All cuts are displayed

in both the natural {0, 1} variables space as well as the “shifted” space
{
−1
k−1 , 1

}
.

We design a branch-and-bound algorithm for solving the computationally difficult

clustering problem ConCP. We argue for our choice of SDP-based relaxations as op-

posed to LP methods. We also find evidence for our branching choice in a related

algorithm solving the restricted subclass minimum k-partition. Since feasible solu-

tions are NP-hard to generate, we develop a bin-packing-based heuristic that works

well in practice—it has been observed to find solutions often, and those found tend to

be relatively close to optimal.

We test our algorithm on random data as well as on the ICS-2013 data set (see

beginning of this chapter). The random data instances were solvable in reasonable

amounts of time for instances with up to 60 nodes, and otherwise the SDP relaxations

were strong at the root. Our case study showed particularly promising results. The

algorithm provided a feasible conference schedule which was within 1% of the optimum,

within a 4-hour period, and reduced the actual implemented schedule’s total parallel

similarity by more than 20%.

9

1.3 Outline

The outline of this part of the dissertation is as follows. In Chapter 2 we present

a general definition of the conference scheduling problem (§2.1), as well as the

symmetric subproblem, and main focus: the conference clustering problem (§2.1.1).

This chapter also explores the computational complexity of ConSP (§2.1.2), showing

that the problem is theoretically as “hard” to optimize as to generate feasible solutions.

A particular model of ConCP based on the maximum k-cut formulation that yields a

strong SDP relaxation is presented in section §2.2. Polyhedral structures and borrowed

valid inequalities from problems related to ConCP appear in section §2.3.

In Chapter 3, we propose a branch-and-bound algorithm intended to solve instances

of ConCP to optimality. The main points discussed are the structure of the tree nodes

(§3.1.1), the model of a contracted subproblem (§3.1.2), a method of preprocessing

subproblems (§3.2), the lower bounding procedure (§3.3), the upper bounding procedure

(§3.4), and the algorithm’s branching rule (§3.5). The lower bounding procedure section

includes subsections discussing a subproblem’s semidefinite relaxation (§3.3.1), as well

as the accompanying cutting plane subroutine (§3.3.2). The upper bounding procedure

includes two heuristic strategies for generating feasible solutions; namely a bin-packing

and a bin-swapping subroutine, which are presented, respectively, in sections §3.4.1 and

§3.4.2.

Chapter 4 presents our computational results. First we discuss our choice of software

and implementation issues (§4.1). Then, testing on random data appears in section §4.2.

We also include the tuning of our parameters and runs on the ICS-2013 data set (§4.3).

Concluding remarks are recorded in the last section (§4.4). An accompanying appendix

provides methods for constructing the similarity measures and other inputs to ConSP

(§A).

In the sequel, we assume the reader is familiar with basic terminology of integer pro-

gramming [76], semidefinite programming [102], graph theory [101], complexity theory

[81], and the analysis of algorithms [70]. Definitions will be clarified as needed.

10

Chapter 2

The conference scheduling problem

This chapter defines and explores the properties of the optimization problem we call

the conference scheduling problem, which can intuitively be described as that of

finding an assignment of small groups of presentations to times and places, so that the

total similarity between talks appearing at the same time is minimal.

2.1 Problem description

The input I to the conference scheduling problem is referred to as a conference,

and contains the following: n sessions, or sets containing pre-assigned talks which are

to be presented at distinct times and places; k time slots, or blocks of time reserved

for the presentation of sessions; and m rooms, in which sessions are to appear. There

are also integers α and β, which represent the lower and upper bounds, respectively,

on the allowed number of sessions in any time slot. Further, a conference I contains a

subset S consisting of all distinct pairs of sessions which cannot appear together in any

identical time slot. For any pair {i, j} ∈ S, i and j are said to be in conflict. We refer

to sessions, time slots, and rooms by index, e.g. the set of n sessions is represented by

[n] := {1, . . . , n}. The parameters must satisfy 2 ≤ k ≤ n ≤ km, and 1 ≤ α ≤ n
k ≤

β ≤ min{m,n}, for otherwise the problem is not meaningful or interesting (e.g. k = 1),

is infeasible (e.g. n > km), or can be redefined to fit these inequalities (e.g. if β >

min{m,n}, we can reset β := min{m,n}, since no time slot can receive more sessions

than this amount).

A schedule of a conference I is defined as an assignment of each session i ∈ [n] to a

distinct time-and-place pair (t, r) ∈ [k]× [m]. More formally, a schedule is an injective

map f : [n] → [k] × [m], i.e. f(i) = f(j) implies i = j for each i, j ∈ [n]. A schedule

11

f is said to be feasible for I, if (1) f assigns at least α and at most β sessions to each

time slot t ∈ [k], and (2) f does not assign any conflicting pair of S to the same time

slot. We rewrite these constraints, respectively, as:

α ≤ |gf (t)|≤ β for all t ∈ [k], (2.1)(
gf (t)

2

)
∩ S = ∅ for all t ∈ [k], (2.2)

where gf (t) :=
⋃
r∈[m] f

−1(t, r) for each t ∈ [k], and
(
X
r

)
denotes the family of r-element

subsets of X. Note that since α ≥ 1, a feasible schedule does not contain empty time

slots.

Consider a schedule f of I, and a pair of sessions {i, j} ∈
(
[n]
2

)
. If we have {i, j} ⊆(gf (t)

2

)
, for some t ∈ [k], then the sessions i and j are grouped by f or together, and are

otherwise said to be separated by f . If a pair {i, j} ∈ S is grouped by f , then f is said

to have a session conflict.

The cost of a schedule f , c(f), is defined to be the total similarity in topics appearing

in parallel sessions. To calculate c(f), we suppose a symmetric matrix W ∈ Rn×n is

given, where the value Wij represents the similarity or overlapping topics between

sessions i and j relative to that of all other pairs, for each distinct pair i, j ∈ [n] (see

Appendix §A for a method of constructing such measures). In other words, Wij < Wh`

signifies that sessions i and j have less overlap in subject matter than do sessions h and

`. We normalize such values so that 0 ≤Wij ≤ 1, and define the diagonal entries of W

to be 0, i.e. Wii := 0. Thus the cost of any schedule is formally written as:

c(f) :=
∑
t∈[k]

∑
{i,j}∈(gf (t)

2
)

Wij . (2.3)

The conference scheduling problem calls for a feasible schedule f with minimal

c(f). Letting F(I) be the set of schedules satisfying constraints (2.1)–(2.2), the problem

can be restated in terms of solving the following optimization problem for a given

conference I := (n, k,m, α, β, S,W) as described above:

(ConSP) minimize c(f)

subject to f ∈ F(I).
(2.4)

12

A solution f to (2.4) is said to be an optimal schedule. Next we show that there is

much symmetry in the definition of a schedule, which allows a certain reformulation of

the problem.

2.1.1 Symmetry

By definition of the set F(I) for any conference I, and corresponding cost function c

(see (2.3) and (2.4)), the labels t ∈ [k] and r ∈ [m] do not influence the cost of an

optimal solution. More precisely, if we define the family C(f) := {gf (t) | t ∈ [k]} as the

session clustering of f , then the following symmetric structure can be observed. First,

for any positive integers x and y, y ≤ x, note that the value xy := x·(x−1) · · · (x−y+1)

counts the number of injective maps from a set of size y to a set of size x.

Proposition 2.1.1. For any conference I and schedule f of I, the total number of

schedules f ′ satisfying C(f ′) = C(f) is:

k! ·ΠP∈C(f) m
|P | = Θ

(
ek log k ·ΠP∈C(f) m

|P |
)
. (2.5)

Moreover, each such schedule is of equal cost, i.e. c(f ′) = c(f) whenever C(f ′) = C(f).

Proof. First notice that, by definition, any schedule f ′ is such that the session clustering

C(f ′) is a partition of [n] into k non-empty parts, each of size at most β. Further, since

it is required that β ≤ min{m,n}, the part sizes of C(f ′) are at most the number of

rooms available, m. Thus counting the number of schedules f ′ for which C(f ′) = C(f),

amounts to counting the number of distinct ways of assigning the k non-empty parts

P ∈ C(f) to distinct time slots t ∈ [k], and assigning the |P | constituents of any cluster

P to distinct rooms r ∈ [m], i.e. count the number of bijections on k elements, and

the number of injections from |P | to m elements, for each P ∈ C(f). Since these

assignments can be performed independently, the first statement is immediate.

The right-hand side of the first claimed equality follows from the well-known prop-

erty

log(x!) = Θ(x log x)

which holds for any positive integer x (see for instance [70]).

13

The final claim is trivial by definition of cost function c (cf. (2.3)) and the supposition

C(f ′) = C(f).

Since the above result holds for all schedules, and thus those which are feasible, the

number of optimal schedules of a given conference I is exponential in the input. How-

ever, the proof of Proposition 2.1.1 suggests an approach to finding optimal schedules

which bypasses the symmetries of schedules: namely, by focusing on session clusterings.

To this end, define a cost function ĉ(C) := c(f) for any schedule f and session clustering

C of a conference I with C(f) = C—this is well-defined by the above proposition. Fur-

ther, denote a session clustering C of I as feasible if it satisfies the following constraints,

which can be seen as analogous to a feasible schedule’s defining constraints (2.1) and

(2.2), respectively:

α ≤ |F |≤ β for all F ∈ C (2.6)(
F

2

)
∩ S = ∅ for all F ∈ C. (2.7)

Now, letting F̂(I) denote the set of all feasible session clusterings of conference I,

i.e. F̂(I) :=
{
C ∈ 2[n]

∣∣ ∃f ∈ F(I) : C(f) = C
}

, where 2X denotes the power set of a

set X, the conference clustering problem is defined as the following optimization

problem:

(ConCP) minimize ĉ(C)

subject to C ∈ F̂(I).
(2.8)

Notice that any optimal session clustering of (2.8) can be converted to an optimal solu-

tion of ConSP (cf. (2.4)) in polynomial time, with respect to the same input conference

I. Indeed, by definition, every schedule f has a session clustering C(f), and every ses-

sion clustering C maps to some schedule f . Furthermore, by Proposition 2.1.1, a session

clustering C and all schedules f for which C = C(f) are of equal cost, i.e. ĉ(C) = c(f).

Thus any labeling of the time slots and rooms for an optimal session clustering C suffices.

In other words, given optimal solution C to ConCP, an arbitrary bijection σ: C → [k]

and any injections γF :F → [n], for each F ∈ C, are enough to form an optimal schedule

to ConSP, in linear time.

14

It is clear now that the number-of-rooms parameter m of an input schedule for

the conference scheduling problem is irrelevant for the purpose of solving ConCP,

and so, with slight abuse of notation, the input tuple for the conference clustering

problem will be a schedule I with m suppressed, i.e. I := (n, k, α, β, S,W). Next, we

prove that in fact ConCP is NP-hard to solve to optimality, and therefore so is ConSP.

2.1.2 Computational complexity

For the following complexity results, we restate the conference clustering prob-

lem as a constrained version of a known graph problem: minimum k-partition.

Here the input is a tuple (n, k,W) where n and k are integers satisfying 2 ≤ k ≤

n, and W is an n × n non-negative, symmetric matrix. The problem asks to find

a k-partition (V1, . . . , Vk) of vertices V := [n]—a partition of V into k non-empty,

pairwise disjoint subsets Vi called classes or parts—of minimum total cost or weight∑
h∈[k]

∑
{i,j}∈(Vh2)Wij . Indeed, the session clusterings of a conference I := (n, k,

α, β, S, W) can be viewed as a particularly structured k-partition of [n], and for

any session clustering C = (V1, . . . , Vk) of [n], the total weight is written ĉ(C) =∑
F∈C

∑
{i,j}∈(F2)Wij =

∑
h∈[k]

∑
{i,j}∈(Vh2)Wij . This capacitated k-partition problem

is formally defined as follows.

Definition 2.1.2. capacitated k-partition: given input (n, k, α, β, S,W) where n,

k, α, and β are integers satisfying 2 ≤ k ≤ n and 1 ≤ α ≤ n
k ≤ β ≤ n; S is a

subset of edges or distinct pairs from vertex set V := [n]; and W is an n × n non-

negative, symmetric matrix; find a k-partition (V1, . . . , Vk) of V so that ĉ(V1, . . . , Vk) =∑
h∈[k]

∑
{i,j}∈VhWij is minimum, and the following constraints are satisfied:

1. α ≤ |Vi|≤ β, for i ∈ [k];

2.
(
Vi
2

)
∩ S = ∅, for i ∈ [k].

A feasible solution to capacitated k-partition, i.e. a k-partition (V1, . . . , Vk) of [n]

satisfying the two constraints of 2.1.2, is called a capacitated k-partition, and ĉ(V1, . . . , Vk)

is written in place of the more cumbersome ĉ((V1, . . . , Vk)) = ĉ(C) for any k-partition

C = (V1, . . . , Vk).

15

Proposition 2.1.3. Given integers n, k, α, and β, where 2 ≤ k ≤ n and 1 ≤ α ≤ n
k ≤

β ≤ n, as well as a set of pairs S ⊆
(
[n]
2

)
, forming graph G := ([n], S), any capacitated

k-partition (V1, . . . , Vk) of [n] (see Definition 2.1.2) must satisfy:

n− β · (k − 1) ≤ |Vh|≤ min{n− α · (k − 1), α(G)},

where α(G) is the stable set number of G.

Proof. Suppose on the contrary that some k-partition (V1, . . . , Vk) has a part, without

loss of generality Vk, of size less than n− β(k − 1). Since we have
∑

h∈[k]|Vh|= n, and

the inequality
∑

h∈[k−1]|Vh|> β(k − 1) is implied. An application of the pigeonhole

principle now yields |V`|> β for some part ` 6= k. But, by definition, we must also have

α ≤ |Vh|≤ β for each h ∈ [k], which is a contradiction. A similar argument follows for

the case |Vk|> n− α(k − 1).

Now suppose |Vk|> α(G). By definition of α(G), there must be some pair {i, j} ∈

S = E(G) which is contained in Vk. But this contradicts the fact that in any capacitated

k-partition, we have
(
Vk
2

)
∩ S = ∅, and thus the claim is proved.

Proposition 2.1.3 provides a method of tightening either capacity bound α or β,

by respectively resetting them to the dominant values of max{α, n − β · (k − 1)} and

min{β, n−α ·(k−1), α(G)}, where G := ([n], S) and α(G) denotes the size of the largest

stable set in G. Unfortunately, the exact computation of α(G) is NP-hard in general

[40], though a known polynomial-time computable upper bound called the Lovász-theta

function, ϑ(G) [72], suffices as to potentially tighten β.

The maximum k-cut problem is a problem related to minimum k-partition,

which takes similar input (n, k,W), and asks for a maximum-weight k-cut of W , i.e. a

maximum total sum over W of all pairs {i, j} which are separated by a k-partition

of [n], over all such partitions. In fact, the problems are complementary in the sense

that the weight of a k-partition (V1, . . . , Vk) of [n] (i.e.
∑

h∈[k]
∑
{i,j}∈(Vh2)Wij) plus the

weight of the corresponding k-cut (i.e.
∑

h<`

∑
(i,j)∈Vh×V`Wij) is the constant value

∑
1≤i<j≤n

Wij .

16

Thus since maximum k-cut is an NP-hard problem (cf. Karp [61] for the special

case k = 2, maximum cut), capacitated k-partition is at least as computationally

difficult. Moreover, the equivalent conference clustering problem and, ultimately,

the conference scheduling problem must also be NP-hard to solve to optimality.

These observations can be strengthened as follows: first, define the feasibility version

of optimization problem capacitated k-partition as the question asking whether or

not the input I := (n, k, α, β, S,W) permits a feasible capacitated k-partition, i.e. a

k-partition of [n] satisfying the two constraints of 2.1.2.

Proposition 2.1.4. The feasibility version of capacitated k-partition, for k ≥ 3, is

NP-complete, even for input with fixed parameters α = 1, and β = n− k + 1.

Proof. The result follows by a reduction from the NP-complete decision problem ver-

tex coloring (cf. [61]), which asks to decide whether an input graph G is k-colorable,

i.e. whether a function on the vertices ξ:V (G)→ [k] exists so that ξ(u) 6= ξ(v) for each

{u, v} ∈ E(G). Indeed, it is sufficient to produce such a reduction from the case k ≥ 3,

and to show that capacitated k-partition is in NP.1 The latter claim is trivial since

a family of k subsets of [n] of input I can be easily verified as being a capacitated

k-partition or not, in time polynomial in n and k.

For the reduction, take any instance (k,G) of vertex coloring, let n := |V (G)|,

and define a tuple I := (n, k, 1, n−k+1, E(G),W) as the input to the feasibility version

of capacitated k-partition, where W can be arbitrary. Here, supposing V (G) = [n],

a given k-coloring ξ of G defines a k-partition (V1, . . . , Vk) of V (G) where Vh := ξ−1(h),

h ∈ [k], and conversely any given k-partition (V1, . . . , Vk) of V (G) trivially yields the

coloring function defined by ξ(i) := h, i ∈ Vh, h ∈ [k]. Thus a k-coloring of G exists if

and only if a k-partition of [n] exists which satisfies both constraints of 2.1.2 (the first

is satisfied trivially), and so the first claim holds.

The last claim now holds trivially, since α = 1 and β = n− k + 1 were fixed in the

reduction.

1The decision problem vertex coloring with k = 2 is indeed in P, as the problem asks whether a
graph is 2-colorable, i.e. bipartite, which can be answered—and in fact a bipartition can be produced—
in linear time via a breadth-first search (see e.g. [70]).

17

The above result now implies the following.

Proposition 2.1.5. The capacitated k-partition problem, for k ≥ 2, is NP-hard.

Moreover, assuming P 6= NP and k ≥ 3, for every constant c, there does not exist a

polynomial time c-approximation algorithm.

Proof. The first claim is obvious from 2.1.4.

As for the second claim, suppose instead that a polynomial-time c-approximation

algorithm does exist for an instance (n, k, α, β, S,W). This implies that we have a

polynomial-time procedure which generates feasible (and in fact, provably good) k-

partitions of [n], in polynomial time. But, under the assumption P 6= NP, Proposition

2.1.4 is then contradicted, and thus our supposition must be false.

The above results show that not only is solving capacitated k-partition to opti-

mality a computationally intractable problem, but even designing a heuristic procedure

to generate feasible solutions, regardless of quality guarantee, is just as difficult. This

justisfies our use of potentially exponential running time tools like branch-and-bound

in our algorithm design, discussed in the next chapter.

2.2 Modeling the problem

A natural first step towards modeling an instance I := (n, k, α, β, S,W) of capacitated

k-partition is to define decision variables which assign each vertex one of k labels,

i.e. for i ∈ [n] and h ∈ [k], let Zih ∈ {0, 1} be a variable encoding the labeling of

vertex i ∈ [n] with h if and only if Zih = 1. However, relating Proposition 2.1.1 to

the terminology of capacitated k-partition, there are exponentially many choices of

matrices Z ∈ {0, 1}n×k which encode k-partitions of identical costs, since the number

of ways of labeling parts is k! = Θ(ek log k). Thus we reduce the number of variables by

eliminating labels and focusing on choosing which vertices are grouped together, i.e. for

each i, j ∈ [n] let Xij ∈ {0, 1} be such that Xij = 1 if and only if vertices i and j of

[n] are placed together—by convention, let Xii := 1. This change of variables yields

a tradeoff in problem complexity, since now a quadratic relationship X = ZZ> exists

18

between the two binary matrices Z ∈ {0, 1}n×k and X ∈ {0, 1}n×n.

The encoding of ‘TRUE’ and ‘FALSE’ as integers ‘1’ and ‘0’, respectively, in the

above decision variables is an intuitive and convenient choice, but perhaps arbitrary.

In general one can define a decision variable ζ ∈ R to take on a value of ‘b’ whenever

‘TRUE’ and ‘a’ whenever ‘FALSE’, so long as a 6= b. For example, consider the maxi-

mum k-cut problem, where we recall that the input consists of integers n and k, and

a non-negative, symmetric matrix W ∈ Rn×n, and the objective is to find a maximum-

weight k-cut with respect to W . For general k ≥ 2, Frieze and Jerrum [38] modeled

the problem geometrically, by focusing on assigning each vertex of V to an element

of a set A ⊆ Rk−1 of size k.2 The particular choice of A enabled a reformulation of

the problem in terms of pairing vertices together, where for each i, j ∈ V , a decision

variable Yij ∈
{
−1
k−1 , 1

}
, was interpreted as Yij = −1

k−1 if and only if vertices i and j were

separated by the k-partition. In other words, for the property “vertex pair is grouped

together”, ‘TRUE’ is represented by the usual b = 1, but ‘FALSE’ is encoded by the

fractional value a = −1/(k − 1). As mentioned earlier in §1.1, a semidefinite program-

ming (SDP) relaxation of the maximum k-cut model in the
{
−1
k−1 , 1

}
space results in

an αk-approximation algorithm, for each k ≥ 2, where αk is a provably “good” constant

factor (cf. [38]). Furthermore, it was shown in [31] that this SDP relaxation is strong

in relation to a corresponding LP relaxation, which is discussed further in the sequel.

Though we cannot guarantee any reasonable approximation for capacitated k-

partition (cf. Proposition 2.1.5), the variable space mentioned above for the max-

imum k-cut problem is chosen, since it may still yield strong convex relaxations in

practice. Thus we explicitly present the model for maximum k-cut in the next sec-

tion, and follow up with a formulation for the capacitated problem.

2The set A contains k vectors of the form ai := bi − c, where {bi | i ∈ [k]} are the endpoints of an
equilateral k-simplex with centroid c, and each ai is scaled so that ‖ai‖= 1. This was proved in [38] to
yield ai · aj = −1

k−1
if and only if i 6= j.

19

2.2.1 The maximum k-cut model

Let Y(n, k) denote the set of all k-partition matrices Y ∈
{
−1
k−1 , 1

}n×n
, where, for any

i, j ∈ V := [n], we have Yij = −1
k−1 if and only if vertices i and j are not grouped

together. The maximum k-cut problem, with input (n, k,W), can then be written as:

(MKC) maximize k−1
k

∑
{i,j}∈(V2)Wij(1− Yij)

subject to Y ∈ Y(n, k).
(2.9)

Indeed, for any pair {i, j} ∈
(
V
2

)
, the term k−1

k Wij(1 − Yij) reduces to Wij whenever

Yij = −1
k−1 , and 0 otherwise. Eisenblätter [31] proved that the slightly larger set of

matrices
⋃
r≤k Y(n, r) is characterized by the set of Y ∈

{
−1
k−1 , 1

}n×n
with Yii = 1, for

each i ∈ [n], and Y positive semidefinite, i.e. the eigenvalues of Y are non-negative. We

write the latter property as Y ∈ Sn+, where Sn denotes the space of symmetric, n × n

matrices and Sn+ denotes the convex cone containing all positive semidefinite matrices

Y ∈ Sn which are positive semidefinite.

Defining A • B :=
∑

i∈[m],j∈[n]AijBij for any m × n matrices A and B, e as the

vector of ones and J := ee> as the matrix of all ones (dimension can be found from

context), and diag(A) to be the vector of diagonal entries (Aii : i ∈ [n]), we can rewrite

maximum k-cut as follows:

(MKC) maximize k−1
2k W • (J − Y) (2.10)

subject to diag(Y) = e (2.11)

Y ∈ Sn+ (2.12)

Y ∈
{
−1
k−1 , 1

}n×n
. (2.13)

The SDP relaxation of the above system (2.10)–(2.13) is obtained by replacing the

binary constraint Y ∈
{
−1
k−1 , 1

}n×n
with the continuous bounds −1

k−1 ≤ Yij ≤ 1, for

each i, j ∈ [n]. Notice that the upper bound is superfluous, as the semidefiniteness of

Y implies that all off-diagonal entries Yij are bounded in magnitude by the diagonals

Yii and Yjj , which are both of value 1. The set of matrices of this relaxation coincides

with the truncated elliptope

E(n, k) :=
{
Y ∈ Sn+

∣∣∣ diag(Y) = e, Y ≥ −1
k−1J

}
,

20

or the intersection of half-spaces Y ≥ −1
k−1J with the elliptope E(n) := E(n, 2) ={

Y ∈ Sn+
∣∣ diag(Y) = e

}
.

It is curious that solving the SDP relaxation of MKC in the
{
−1
k−1 , 1

}
space yields

provably strong approximation guarantees. Frieze and Jerrum [38] prove that, in ex-

pectation, a randomized rounding procedure applied to the above SDP relaxation of

MKC, yields a factor which is strictly greater than 1 − 1
k , but is asymptotically close

to 1 − 1
k + log(k)

2k2
. Intuitively, their rounding approach is as follows, for a given SDP

solution matrix Y ∈ E(n, k): first find a set of unit vectors {vi | i ∈ [n]} ⊆ Rn so that

v>i vj = Yij , for each i, j ∈ [n] (by, e.g. Cholesky factorization); then generate k random

hyperplanes, i.e. a set of unit vectors {ri | i ∈ [k]} ⊆ Rn; and finally form a k-partition

of [n] by defining parts Vi :=
{
j ∈ [n]

∣∣∣ v>j ri ≥ v>j rh, ∀h ∈ [k]
}

, breaking ties arbitrarily.

The intersection of the elliptope E(n, k) with valid inequalities, or linear inequalities

satisfied by all feasible points Y ∈ Y(n, k), can only strengthen the quality of the

actual SDP relaxation of MKC, yet there is theoretical evidence against the possibility

of strict improvements [60, 59, 62], as well as practical evidence in support of the

addition of inequalities [5, 31]. Towards the latter point, for any Y ∈
{
−1
k−1 , 1

}n×n
with diag(Y) = e, matrix Y is positive semidefinite if and only if it satisfies a set of

(exponentially many) well-known inequalities—the triangle and clique inequalities.

The triangle inequalities encode the fact that the partitioning of vertices is transitive,

i.e. if vertices i and j are together in some part, and j and h are also grouped together,

then i and h must certainly be together. Thus, each Y ∈ Y(n, k) must satisfy:

Yij + Yjh − Yhi ≤ 1

Yij − Yjh + Yhi ≤ 1 for {i, j, h} ∈
(

[n]

3

)
(2.14)

− Yij + Yjh + Yhi ≤ 1.

Indeed, these inequalities essentially cut away matrices Y ∈
{
−1
k−1 , 1

}n×n
, which have

Yih = Yjh = 1 and Yij = −1
k−1 for any triangle {i, j, h} ∈

(
[n]
3

)
. We succinctly rewrite the

3
(
n
3

)
triangle inequalities as ∆(Y) ≤ e.

The clique inequalities impose the condition that for any subset K ⊆ [n] of k + 1

21

vertices, at least one pair must be grouped together, for otherwise K is a (k + 1)-

partition. Thus the following holds for each Y ∈ Y(n, k):∑
{i,j}∈(K2)

Yij ≥
−k
2

for K ⊆ [n] : |K|= k + 1. (2.15)

To see this, the summand of matrix entries Yij over pairs {i, j} ∈ K must be at least

−1

k − 1

((
k + 1

2

)
− 1

)
+ 1 =

−k
2
.

Thus, letting K(Y) ≥ −k2 e denote the set of clique inequalities, we can rewrite MKC as

a linear disjunctive programming formulation

(MKC) maximize k−1
2k W • (J − Y) (2.16)

subject to diag(Y) = e (2.17)

∆(Y) ≤ e (2.18)

K(Y) ≥ −k2 e (2.19)

Y ∈
{
−1
k−1 , 1

}n×n
. (2.20)

Although the triangle and clique inequalities are strong enough to replace the non-

linear semidefinite constraint Y ∈ Sn+ in the MKC formulation above, this represen-

tation is unfortunately an exponential-sized system since the number of k + 1-cliques

amounts to
(
n
k+1

)
, which is at least

(
n
k+1

)k+1
, or Ω(2k+1). However, we will show in

the next section that the truncated elliptope E(n, k) provides a strong relaxation to

MKC, i.e. it contains matrices which are provably “close” to satisfying the triangle and

clique inequalities, as well as a more general class of inequalities encompassing these

constraints. If we define PMKC(n, k) to be the MKC polyhedron—the convex hull of all

k-partition incidence vectors x ∈ {0, 1}(
n
2), where xij = 1 if and only if vertices i and j

are grouped together—then these results also show that any Y ∈ E(n, k), when trans-

lated to [0, 1](
n
2) in a natural way (details to follow), is much “closer” to satisfying the

valid inequalities of PMKC(n, k) then any corresponding LP relaxation in which x = 0

is a feasible point.

The above discussion motivates the formulation of our capacitated k-partition

model in the
{
−1
k−1 , 1

}
variables, rather than in the typical {0, 1} setting, which is

22

discussed next. We conclude this section by displaying the SDP relaxation of MKC

equipped with the triangle and clique inequalities below:

(SMKC) maximize k−1
2k W • (J − Y) (2.21)

subject to diag(Y) = e (2.22)

∆(Y) ≤ e (2.23)

K(Y) ≥ −k2 e (2.24)

Y ≥ −1
k−1J (2.25)

Y ∈ Sn+. (2.26)

2.2.2 Reformulation into capacitated k-partition

Now we are able to present the initial model of the capacitated k-partition problem

as defined in Definition 2.1.2, by extending the MKC formulations found in the previous

section, i.e. the SDP-based model (2.10)–(2.13), the IP-based formulation (2.16)–(2.20),

and the SDP-relaxation (2.21)–(2.26). Recall that the input tuple is denoted I =

(n, k, α, β, S,W), and that we are searching for a particular k-partition matrix Y ∈

Y(n, k) of minimum cost: one whose corresponding k-partition has parts with sizes

bounded between α and β, and forbids such parts from containing any pair {i, j} ∈ S.

Let Y(n, k, α, β, S) denote the set of feasible matrices. The cost of any such Y is

complementary to its cost in MKC, and is written as:∑
{i,j}∈([n]2)

Wij −
(
k−1
2k W • (J − Y)

)
= k−1

2k W •
(

1
k−1J + Y

)
.

Since the polyhedra described in the sequel arise from convex combinations of arbi-

trary partition incidence vectors x ∈ {0, 1}(
n
2), we present valid inequalities in terms of

such variables, and then linearly transform them to inequalities in terms of symmetric

matrices Y ∈ Y(n, k) ⊆
{
−1
k−1 , 1

}n×n
. Indeed, this is done via the linear map f :R→ R

defined as f(z) := k−1
k z + 1

k . In particular, notice that f(0) = −1
k−1 and f(1) = 1, and

so applying this to any linear constraint satisfied by x ∈ {0, 1}(
n
2), we have∑

{i,j}∈([n]2)

Aijxij ≤ b (2.27)

23

if and only if the unique symmetric matrix Y ∈
{
−1
k−1 , 1

}n×n
with diag(Y) = 1, and

satisfying f(Yij) = xij for {i, j} ∈
(
[n]
2

)
, is such that

∑
{i,j}∈([n]2)

Aijf(Yij) ≤ b

⇐⇒
∑

{i,j}∈([n]2)

Aij
(
k−1
k Yij + 1

k

)
≤ b (2.28)

⇐⇒
∑

{i,j}∈([n]2)

AijYij ≤ k
k−1b+ −1

k−1

∑
{i,j}∈([n]2)

Aij .

Now, given I = (n, k, α, β, S,W), we represent the capacitated k-partition incidence

vectors x ∈ {0, 1}(
n
2) as per Definition 2.1.2. There are two additional constraints which

must be satisfied by x. The first constraint asks for the size of each part of a k-partition

be bounded between α and β, which is clearly encoded by

α− 1 ≤
∑

j∈[n]\{i}

xij ≤ β − 1, for i ∈ [n].

The second condition asks for every pair {i, j} ∈ S to cross distinct parts, and so we

have

xij = 0 for {i, j} ∈ S.

With appropriate transformation, each Y ∈ Y(n, k) must now satisfy
∑

j∈[n]\{i} Yij ≤
k
k−1(β − 1)− 1

k−1(n− 1) = kβ−n
k−1 − 1 and, similarly,

∑
j∈[n]\{i} Yij ≥

kα−n
k−1 − 1, for each

i ∈ [n], and further Yij = −1
k−1 , for each {i, j} ∈ S. Noting that Yii = 1 for each i ∈ [n],

the former pair of constraints can be rewritten as

αk−n
k−1 e ≤ Y e ≤

βk−n
k−1 e.

The model for capacitated k-partition can now be formed by intersecting the

SDP-based constraint set of MKC, i.e. (2.11)–(2.13), with the two new types of con-

straints (note the change in objective):

(CKP) minimize k−1
2k W •

(
1

k−1J + Y
)

(2.29)

subject to diag(Y) = e (2.30)

Yij = −1
k−1 for {i, j} ∈ S (2.31)

24

kα−n
k−1 e ≤ Y e ≤

kβ−n
k−1 e (2.32)

Y ∈ Sn+ (2.33)

Y ∈
{
−1
k−1 , 1

}n×n
. (2.34)

Similarly to the maximum k-cut problem, we can relax this formulation of CKP to a

semidefinite program, by simply replacing the binary constraint (2.34) of (2.29)–(2.34),

with the lower bound inequality

Y ≥ −1
k−1J. (2.35)

Furthermore, we can encode the problem as a linear IP by intersecting the constraint

set (2.16)–(2.20) of MKC with the newly introduced constraints (2.31) and (2.32):

(CKP) minimize k−1
2k W •

(
1

k−1J + Y
)

(2.36)

subject to diag(Y) = e (2.37)

Yij = −1
k−1 for {i, j} ∈ S (2.38)

kα−n
k−1 e ≤ Y e ≤

kβ−n
k−1 e (2.39)

∆(Y) ≤ e (2.40)

K(Y) ≥ −k2 e (2.41)

Y ∈
{
−1
k−1 , 1

}n×n
. (2.42)

The next section explores the known inequalities of polyhedra of optimization prob-

lems related to capacitated k-partition, which will be used when appropriate to

partially describe its polyhedron PCKP(n, k, α, β, S)—shortened to PCKP when param-

eters are clear from context—i.e. the convex combination of all k-partition incidence

vectors x ∈ {0, 1}(
n
2) which represent capacitated k-partitions. In turn, such inequali-

ties will be used to strengthen the convex SDP relaxation of CKP, which will aid in the

overall algorithm design for solving capacitated k-partition to optimality (Chapter

3).

25

2.3 Valid inequalities of capacitated k-partition polyhedron

In this section we review the structure of various polyhedra corresponding to op-

timization problems closely related to capacitated k-partition (2.1.2). First let

(n, k1, k2, α, β, S, a) be a tuple where n, k1, k2, α, and β are positive integers satis-

fying 2 ≤ k1 ≤ k2 ≤ n and 1 ≤ α ≤ β ≤ n, S is a subset of pairs of vertices [n],

and a = (ai : i ∈ [n]) is an n-vector with positive, integral entries. Now define the

parameterized polyhedron

P(n, k1, k2, α, β, S, a) ⊆ R(n2),

to be the convex hull of the set of all incidence vectors x ∈ {0, 1}(
n
2) corresponding to

partitions V of [n] with k1 ≤ |V|≤ k2, where each part P ∈ V has bounded total weight,

i.e.

α ≤
∑
i∈P

ai ≤ β,

and no part contains any pair {i, j} ∈ S. Note that whenever a = e, i.e. the vector of

all ones, this reduces to the case where the total weight of P is simply its cardinality

|P |. We include the weighted case, as it will be needed in our algorithm.

This parameterized polyhedron encompasses many known structures. First notice

that for any fixed n ∈ Z+ and weight vector a ∈ Zn+, we have the following containment:

P(n, k1, k2, α, β, S, a) ⊆ P(n, k′1, k
′
2, α
′, β′, S′, a), (2.43)

for any integers satisfying k′1 ≤ k1, k2 ≤ k′2, α
′ ≤ α, β ≤ β′, and sets S′ ⊆ S.

Indeed, every feasible partition of the former polyhedron, is also feasible in the latter

polyhedron. This will be helpful in generating valid inequalities for PCKP, since for any

P ⊇ PCKP, valid inequalities of P cannot be violated by points of PCKP.

In particular, whenever k := k1 = k2, we have

PCKP(n, k, α, β, S) = P(n, k, k, α, β, S, e),

and so the containment

PCKP(n, k, α, β, S) ⊆ P(n, k′1, k
′
2, α
′, β′, S′, e),

26

holds for any integers k′1 ≤ k ≤ k′2, α
′ ≤ α, β ≤ β′, and S′ ⊆ S. As an example,

consider the MKC polyhedron:

PMKC(n, k) = P(n, k, k, 1, n, ∅, e).

This clearly contains the CKP polyhedron for any integers n, k, 1 ≤ α ≤ β 6= n, and

any set S ⊆
(
[n]
2

)
. Our goal now is to explore polyhedra which contain PCKP, and

ultimately provide tight valid inequalities.

For each type of inequality presented, we describe at least one separation algorithm,

which may be heuristic in nature—especially if the corresponding separation problem is

NP-hard, i.e. the problem of determining whether or not some inequality of the given

type is violated by an arbitrary point x∗ ∈ R(n2). We focus on inequalities which are both

empirically and theoretically strong, e.g. those which are facet-defining, or necessary

to the polyhedral description. We note that such inequalities will be first presented in

terms of variables x ∈ {0, 1}(
n
2), and then transformed to the space Y ∈

{
−1
k−1 , 1

}n×n
,

so that any valid inequality of PCKP(n, k, α, β, S) yields a “shifted” valid inequality of

Y(n, k, α, β, S).

Since our algorithm (cf. Chapter 3) for solving CKP instances uses SDP relaxations

equipped with cutting planes, we would like to compare the strength of semidefinite

matrices in E(n, k) prior to the addition of any valid inequalities. We do so by linearly

transforming solutions in the space
[
−1
k−1 , 1

]n×n
to the [0, 1] setting, and then quantify-

ing a measure of violation for each valid inequality of PMKC(n, k). To this end, we first

define a “shifted” set of vectors, using the previously defined linear function f :

θ(n, k) :=

{
x ∈ R(n2)

∣∣∣∣xij = f(Yij),∀{i, j} ∈
(

[n]

2

)
,∀Y ∈ E(n, k)

}
.

Notice that E(n, k) and Y(n, k) share the same set of k-partition matrices, and so the

transformed set θ(n, k) and PMKC(n, k) share the same set of k-partition incidence

vectors. Now recall the fact that Y ∈ Sn+ if and only if b>Y b ≥ 0 for each b ∈ Rn, and,

letting V+ := {i ∈ [n] | bi > 0} and V− := {i ∈ [n] | bi < 0}, we rewrite this inequality as:

∑
{i,j}∈(V−2)∪(V+2)

Yij |bibj |−
∑

(i,j)∈V−×V+

Yij |bibj |≥ −12
∑
i∈[n]

b2i , (2.44)

27

for each b ∈ Rn. This inequality holds for any Y ∈ E(n, k), and so the linearly trans-

formed version: ∑
{i,j}∈(V−2)∪(V+2)

xij |bibj |−
∑

(i,j)∈V−×V+

xij |bibj |≥ (2.45)

k−1
k

−1
2

∑
i∈[n]

b2i

+ 1
k

 ∑
{i,j}∈(V−2)∪(V+2)

|bibj |−
∑

(i,j)∈V−×V+

|bibj |

 ,

must hold for each x ∈ θ(n, k). We use this generic inequality to derive bounds on

the amount each valid inequality of PMKC(n, k) is violated. In particular, if a valid

inequality is of the form
∑
{i,j}∈([n]2)Aijxij ≤ B, and we can decompose Aij = bibj , for

each {i, j} ∈
(
[n]
2

)
, and some b ∈ Rn, then the amount this valid inequality is violated is

precisely the value on the right-hand side of (2.45), less B. Fortunately, the form of the

above inequality is general enough contain many of the valid inequalities we present in

the sequel as sub-classes, thus enabling such a comparison of E(n, k) to Y(n, k).

2.3.1 Triangle and clique inequalities

For any positive integers n and k such that 2 ≤ k ≤ n, define the polytopes P≤KP(n, k)

and P≥KP(n, k) to be the convex hull of all r-partition incidence vectors, for 2 ≤ r ≤ k

and k ≤ r ≤ n, respectively. Thus these two polyhedra can be rewritten as special

cases of the parameterized polyhedron P introduced in the beginning of the previous

section:

P≤KP(n, k) = P(n, 2, k, 1, n, ∅, e)

P≥KP(n, k) = P(n, k, n, 1, n, ∅, e).

With this equivalence, it is clear that the following series of containments holds, where

(n, k, α, β, S,W) is the typical input tuple for capacitated k-partition:

PCKP(n, k, α, β, S) ⊆ PMKC(n, k) = P≤KP(n, k) ∩ P≥KP(n, k)

Thus, any valid inequality for P≤KP(n, k) or P≥KP(n, k) is valid for PCKP(n, k, α, β, S).

However, it can seen that r-partitions with large r are desirable when minimizing the

function
∑

i<jWijxij , for given entries Wij ≥ 0 and variables xij ≥ 0. Indeed, the

28

bounds in Turán’s Theorem 2.3.1 (below) tells us that the minimum number of non-

zero entries of any r-partition incidence vector x ∈ {0, 1}(
n
2), i.e. the minimum size of

the support supp(x) :=
{
{i, j} ∈

(
[n]
2

) ∣∣∣xij 6= 0
}

, is strictly less than than that of any r′-

partition with r′ < r. Furthermore, since a majority of the valid inequalities discussed

in [20] for P≥KP(n, k) are of the form
∑

i<j Aijxij ≤ b with Aij ≥ 0 and b ≥ 0, it is

unlikely that these types of inequalities with be violated (see also [27]). Hence we only

focus on P≤KP(n, k), and in our branch-and-bound algorithm, any arising k′-partitions

with k′ > k are found and eliminated in the branching procedure (§3.5).

Proposition 2.3.1 (Turán’s Theorem [95]). For any graph G, let n := |V |, q :=
⌊
n
k

⌋
,

and r := n mod k. If the maximum size of a clique in G is at most k, i.e. ω(G) ≤ k,

then

|E(G)| ≤ nq(k − 1)

2
+

(
r

2

)
=
n2

2

(
1− 1

k

)
− r (k(n− r + 1)− n)

2k

≤ n2

2

(
1− 1

k

)
.

Equivalently, if the maximum size of a stable in the complement G is at most k,

i.e. α(G) ≤ k, then

|E(G)| ≥
(
q

2

)
k + qr

=
n(n− k)

2k
+
r(k − r)

2k

≥ n(n− k)

2k
.

The first bound in each is tight when G is the disjoint union of k − r cliques of size q,

and r cliques of size q+ 1, and the second bound in each is tight when further k divides

n, i.e. r = 0.

The triangle inequalities

xih + xjh − xij ≤ 1 for distinct i, j, h ∈ [n],

and lower bounds xij ≥ 0, for {i, j} ∈
(
[n]
2

)
are satisfied by each incidence vector

x ∈ P≤KP(n, k), and are therefore valid for PCKP(n, k, α, β, S). Indeed, the triangle

29

inequalities encode that fact that grouping vertices into parts is a transitive binary

relation (see also (2.14)). Such inequalities are completely enumerable in polynomial

time, since there are 3
(
n
3

)
in total, and thus we have a simple separation algorithm.

The clique inequalities, defined as∑
{i,j}∈(K2)

xij ≥ 1 for K ⊆ [n] : |K|= k + 1, (2.46)

are another class of valid inequalities for P≤KP(n, k), since any k+ 1 vertices cannot all

lie in separate parts of a partition (see also (2.15)).

It was shown in [20] that the above three types of inequalities—lower bound, triangle,

and clique—are facet-defining and enough to completely describe P≤KP(n, k). However,

as mentioned earlier (§2.2.1), the number of clique inequalities becomes prohibitively

large even for small values of k, since their number is
(
n
k+1

)
≥
(
n
k

)k
, or Ω(nk) for fixed

k. Moreover, the corresponding separation problem is NP-hard. Indeed, determining

whether or not a point x∗ ∈ [0, 1](
n
2) violates some clique inequality is equivalent to

determining if the graph on n vertices with edge weights x∗ij ≥ 0 for each {i, j} ∈
(
[n]
2

)
permits a (k+1)-clique of minimum weight at most 1, i.e. the right-hand side of (2.46).

Testing whether or not a clique of bounded weight exists is a well-known NP-hard

problem [40].3

The clique inequalities were shown by Eisenblätter [31] to be the “least dense” facet-

defining inequalities of P≤KP(n, k) for which the zero-vector x = 0 is not feasible. In

other words, for any facet
∑
{i,j}∈([n]2)Aijxij ≤ b with b < 0, must have |suppA|≥

(
k+1
2

)
.

Thus, we attempt to separate them in our algorithm’s cutting plane procedure using a

simple “greedy” heuristic of Ghaddar et al. [41]. The algorithm, known as Greedy Clique

Cover (GCC), contains a sub-routine (Algorithm 1) meant to find a single violated

clique inequality, if one exists. Given positive integers n and k, an index v ∈ [n],

and a fractional point x∗ ∈ R(n2)—e.g. a feasible point of convPKP(n, k)—initially set

K := {v}, and until |K|= k + 1, iteratively find a vertex outside of K, i.e. u ∈ [n]\K,

for which the value δK(u) :=
∑

ij∈(K∪{u}2) x
∗
ij −

∑
ij∈(K2) x

∗
ij is minimum, and replace K

3On the other hand, complete enumeration of the Θ(n2) lower bounds and Θ(n3) triangle inequalities
can be performed in polynomial time.

30

Algorithm 1: greedy clique covering

Input : positive integers n and k, index v ∈ [n], and x ∈ R(n2)

Output: a set K ⊆ [n] of size k + 1

Initialize K := {v};

while |K|< k + 1 do

Find an index i ∈ [n]\K which minimizes
∑

j∈K xij ;

Add index i to set K;

with K∪{u}. The resulting K encodes a violated clique inequality if
∑
{i,j}∈(K2) x

∗
ij < 1.

This procedure can be called for each vertex v ∈ [n]—which is exactly what GCC does—

testing for up to n possible violated clique inequalities. If ties are broken arbitrarily at

any iteration when selecting u ∈ arg mini∈[n]\K δK(i), then the sub-routine may result

in more than n possible violated inequalities. GCC was successful in practice in [41],

and further tested with positive results in Anjos et al. [5].

The above valid inequalities of PCKP(n, k, α, β, S) are transformed to the
{
−1
k−1 , 1

}
space using (2.27) and (2.28). It is easy to see that the triangle inequalities remain

unchanged in form, i.e. ∆(Y) ≤ e (2.14) holds for any capacitated k-partition matrix

Y . However, the lower bounds appear as Y ≥ −1
k−1J , and the clique inequalities, take

on the form ∑
{i,j}∈(K2)

Yij ≥ −k2 for K ⊆ [n] : |K|= k + 1, (2.47)

which confirms their appearances as such in CKP (cf. (2.36)–(2.42)).

To determine the strength of an SDP relaxation of MKC solved without the triangle

or clique inequalities, we first bound the quantity −xij + xih + xjh from above, for

any distinct indices i, j, h ∈ [n], and x ∈ θ(n, k)—the set of vectors corresponding to

“shifted” points of E(n, k). Recalling that inequality (2.45) is valid for any x ∈ θ(n, k),

and choosing a particular vector b ∈ Rn with bi = bj = 1 and bh = −1 for any distinct

three vertices i, j, h ∈ [n], and setting the remaining entries set to zero, we can simplify

the expression to:

−xij + xih + xjh ≤ 1 +
(
1
2 −

1
2k

)
, for x ∈ θ(n, k).

31

This shows that for k ≥ 2, any semidefinite matrix Y ∈ E(n, k) yields a corresponding

x = f(Y) ∈ θ(n, k), which violates the triangle inequalities by a “distance” of at most

1
2 −

1
2k . This bound is can be tightened, as the next proposition shows.

Proposition 2.3.2 (Prop. 5, Eisenblätter [31]). For any integers k and n satisfying

4 ≤ k ≤ n, and any triangle {i, j, h} ∈
(
[n]
3

)
, every x ∈ θ(n, k) must satisfy

−xij + xih + xjh ≤ 1 +

√
2(k − 2)(k − 1)− (k − 2)

k

[
<
√

2
]

and the bound is tight.

Now to compare any x ∈ θ(n, k) against the clique inequalities, consider a set

K ⊆ [n] of size k + 1 and defining bi = 1 for each i ∈ K, and 0 otherwise. Simplifying

(2.45), the following inequality is satisfied by each x ∈ θ(n, k):

∑
{i,j}∈(K2)

xij ≥ 1−
(
1
2 −

1
2k

)
.

This bound is in fact tight, which is also demonstrated in a more general setting (to be

discussed) by Eisenblätter [31].

Similar to the triangle constraints, the above bound proves that no x ∈ θ(n, k), for

k ≥ 2, can violate the clique inequalities by more than 1
2 −

1
2k <

1
2 . Also, since x = 0 is

trivially a solution to the LP relaxation of MKC in the {0, 1} setting—i.e. the problem

(2.10)–(2.13) with both the semidefinite constraint removed and the binary constraints

xij ∈ {0, 1} replaced with continuous interval constraint xij ∈ [0, 1]—we see that any

x′ ∈ θ(n, k) is at least twice as “close” as x is to satisfying the clique inequalities of

PMKC(n, k). In fact, this is true even when all constraints not cutting the 0-vector are

included; the set of triangle inequalities are one example.

2.3.2 2-partition inequalities

For positive integers n, α, and β, such that 1 ≤ α ≤ β ≤ n, PCGP(n, α, β) :=

P(n, 2, n, α, β, ∅, e) denote the polyhedron arising from the instance (n, α, β) of con-

strained graph partition, a problem studied in Labbé and Öszoy [65]. In other words,

this polytope is the convex hull of all r-partition incidence vectors x ∈ PMKP(n, r) with

32

corresponding r-partition having parts of size bounded between α and β, for 2 ≤ r ≤ n.

Obviously, the only integers r for which such an r-partition exists are those values

satisfying rα ≤ n ≤ rβ, i.e.
⌈
n
β

⌉
≤ r ≤

⌊
n
α

⌋
. Thus we must have

PCKP(n, r, α, β, S) ⊆ PCGP(n, α, β) for
⌈
n
β

⌉
≤ r ≤

⌊
n
α

⌋
.

We also observe

PCGP(n, α, β) ⊆ PKP(n, r) for r ≥
⌊
n
α

⌋
,

PCGP(n, α, β) ⊆ PMKC(n, k) ⇐⇒ k =
⌈
n
β

⌉
=
⌊
n
α

⌋
.

The above containments indicate that the constrained graph partition problem

is defined generally enough to encompass other known problems as subclasses. Indeed,

it is shown in [65] that the following problems previously described briefly in §1.1 arise

from CGP for particular input tuples (n, α, β): simple graph partition [92], clique

partition [45, 46], size constrained clique partition [57], and k-equipartition [75,

22, 23]. General conditions for full-dimensionality, as well as valid inequalities and

criteria for when they are facet-defining can be found in [65]. Here we recall a few such

relevant facts.

A k-partition (V1, . . . , Vk) of [n] is said to be 2-loose if β − α ≥ 2 and there exist

two parts Vi and Vj satisfying the strict inequalities:

α < |Vi|< β,

α < |Vj |< β.

Proposition 2.3.3 ([65]). If input parameters (n, α, β) to constrained graph par-

tition permit a 2-loose k-partition, for
⌈
n
β

⌉
≤ k ≤

⌊
n
α

⌋
, then PCGP(n, α, β) is full-

dimensional.

Note that in fact there exists a 2-loose partition if and only if αk+ 1 < n < βk− 1.

We record the following result since it demonstrates the strength of triangle inequalities

in a capacitated class of partition problems. Furthermore, we notice that the data of

our case study ICS-2013 (cf. §4)—a conference with n = 61, α = 5, β = 7, and k = 9—

allows 2-loose partitions (see §2.1 for a description of the original ConSP problem).

33

Proposition 2.3.4 ([65]). If the input parameters (n, α, β) to constrained graph

partition permit a 2-loose k-partition and
⌊
n
α

⌋
≥ 2, i.e. n ≥ 2α + 2, then the triangle

inequalities are facet-defining for PCGP(n, α, β).

Proposition 2.3.4 was only a remark in [65], appearing after it was proved that the

following more general 2-partition inequalities can be facet-defining, under some fairly

modest conditions. The 2-partition inequalities of Grötschel and Wakabayashi [46] are

defined for any non-empty, disjoint subsets S, T ⊆ [n], as:∑
(i,j)∈S×T

xij −
∑

{i,j}∈(S2)∪(
T
2)

xij ≤ min{|S|, |T |} (2.48)

Intuitively, assuming without loss of generality |S|≤ |T |, the summand on the left-hand

side of (2.48) is maximum over all r-partition incidence vectors x ∈ {0, 1}(
n
2), 1 ≤ r ≤ n,

when the parts P of partition V which intersect S also intersects T in the same number

of vertices (i.e. |P ∩S|= |P ∩T |), and the remaining |T |−|S| vertices of T are in distinct

parts of V. With some manipulation, such a vector x yields the following summand∑
P∈V

(
|P ∩ S|·|P ∩ T |−

(
|P ∩ S|

2

)
−
(
|P ∩ T |

2

))
= |S|2−2

(
|S|
2

)
= |S|,

and |S|= min{|S|, |T |} (see [46] for details). Thus the 2-partition inequalities are valid

for P≤KP(n, n), or equivalently, PMKP(n, k) for each k = 2, . . . , n, and hence for poly-

hedra PCKP.

Indeed, 2-partition inequalities are general enough to contain the triangle inequali-

ties, particularly when |S|= 1 and |T |= 2. The 2-partition inequalities were introduced

by Grötschel and Wakabayashi [46] for the simple graph partition or clique parti-

tion problem which asks for a maximum-weight r-partition, for any r. Oosten et al. [80]

generalized the 2-partition inequalities further, and also showed the NP-hardness of

the separation problem: given a set S of fixed size (even the case |S|= 1), determine

if there exists a disjoint set T such that the corresponding 2-partition inequality is vi-

olated.4 The inequalities have been show to be facet-defining, for example, whenever

|S|6= |T |.

4As far as the author knows, the general separation problem, i.e. where |S| is not fixed, still remains
an open problem as presented in [80].

34

Algorithm 2: 2-partition randomized heuristic

Input : positive integer n, index s ∈ [n], and non-negative vector x ∈ R(n2)
+

Output: a set T ⊆ [n]

Initialize T := ∅, V := {i ∈ [n]\{s} |xis > 0};

Let π: {1, . . . , |V |} → V be an arbitrary permutation of V ;

for i = 1, . . . , |V | do

Let u := π(i);

if xus −
∑

v∈T xuv > 0 then

Add vertex u to set T ;

Grötschel and Wakabayashi [45] present a useful separation heuristic algorithm,

denoted GWA, which has the following sub-routine (Algorithm 2) for finding a violated

2-partition inequality with S fixed to be of size |S|= 1. Given a vertex s ∈ [n], and

fractional point x ∈ R(n2), define S := {s}, T := ∅, let V be all remaining indices i for

which xsi 6= 0, i.e. V := {i ∈ [n]\{s} |xsi > 0}, and let π: {1, . . . , |V |} → V be some

permutation of V . For i = 1, . . . , |V |, if u := π(i) satisfies

xus >
∑
v∈T

xuv,

then add u to the set T . After the sub-procedure finishes, the set T is output, and

({s}, T) defines a violated 2-partition inequality if∑
i∈T

xis −
∑

{i,j}∈(T2)

xij > 1.

The overall algorithm GWA calls this subroutine for each vertex s ∈ [n] and some

random permutation πs with respect to the computed set V , and then again for each

vertex, but where V is searched in the reverse order determined by πs. Thus, O(n)

violated 2-partition inequalities may be generated.

Using the transformation in (2.27) and (2.28), any k-partition matrix Y ∈ Y(n, k)

must satisfy the following, for any disjoint subsets S, T ⊆ [n] with s := |S| and t := |T |:∑
(i,j)∈S×T

Yij −
∑

{i,j}∈(S2)∪(
T
2)

Yij ≤ k
k−1 min{s, t}+ −1

k−1

(
st−

(
s

2

)
−
(
t

2

))
, (2.49)

35

the right-hand side of which simplifies to

min{s, t}+
1

k − 1

(
|s− t|

2

)
where, by convention,

(
i
j

)
:= 0 whenever i < j.

To determine the strength of an SDP relaxation of MKC solved without the 2-

partition inequalities, consider any two disjoint sets S, T ⊆ [n], and define a vector

b ∈ Rn so that bi = 1 for i ∈ S, bi = −1 for i ∈ T , and bi = 0 for i ∈ [n]\(S ∪ T).

Substituting b into inequality (2.45), and reversing the inequality by multiplying both

sides by −1, we have the following inequality satisfied by all x ∈ θ(n, k):

∑
(i,j)∈S×T

xij −
∑

{i,j}∈(S2)∪(
T
2)

xij ≤ −(k−1)k

(
−(s+ t)

2

)
+ −1

k

(
st−

(
s

2

)
−
(
t

2

))
, (2.50)

where the right-hand side simplifies to

min{s, t}+ 1
2k |t− s|

(
k − |t− s|

)
.

The bound here is tight under particular conditions, which are reported in the following

proposition.

Proposition 2.3.5 (Prop. 7, Eisenblätter [31]). For any integers k and n satisfying

4 ≤ k ≤ n, and any disjoint subsets S, T ⊆ [n] with s := |S|, t := |T |, and s ≤ t, every

x ∈ θ(n, k) must satisfy

∑
(i,j)∈S×T

xij −
∑

{i,j}∈(S2)∪(
T
2)

xij ≤ min{s, t}+ 1
2k |t− s|

(
k − |t− s|

)
.

The bound is tight if either

1. s = 1 and t ≥ k − 1, or

2. s ≥ 2, s+ t ≤ k, either

• t ≤ s2, or

• t > s2 and k ≤ t2−s2
t−s2 .

We see now that any x ∈ θ(n, k) violates any 2-partition inequality by at most

k
8 , which by the above proposition is attained when |t − s|(k − |t − s|) is maximized,

36

i.e. whenever |t − s|∈
{⌊

k
2

⌋
,
⌈
k
2

⌉}
.5 Furthermore, whenever |t − s|= 0 or |t − s|≥ k,

the corresponding 2-partition inequality is already satisfied, and in the case |t− s|> k,

the satisfaction is always strict. This implies that for any SDP-based cutting plane

algorithm with matrix variables in the
{
−1
k−1 , 1

}
setting, it suffices to only generate 2-

partition inequalities with 1 ≤ |t− s|≤ k− 1 for k ≥ 2, where the potentially “deepest”

cuts are those for which
⌊
k
2

⌋
≤ |t−s|≤

⌈
k
2

⌉
. This new result is recorded in the following

proposition.

Proposition 2.3.6. Let n and k be integers satisfying 2 ≤ k ≤ n, Y be a matrix in

E(n, k), and S, T ⊆ [n] be disjoint subsets with s := |S|, t := |T |. If the 2-partition

inequality (2.49) with respect to S and T is violated by Y , then 1 ≤ |s− t|≤ k − 1

For the special case where s = 1 and 2 ≤ t ≤ k, the 2-partition inequalities are

potentially violated most when
⌊
k
2

⌋
+ 1 ≤ t ≤

⌈
k
2

⌉
+ 1. The next proposition tightens

this bound, and immediately yields Proposition (2.3.2), for the case s = 1, and t = 2.

Proposition 2.3.7 (Prop. 8, Eisenblätter [31]). For any integers k and n satisfying

4 ≤ k ≤ n, and any disjoint subsets S, T ⊆ [n] with |S|= 1, t := |T |, and 2 ≤ t ≤ k− 2,

every x ∈ θ(n, k) must satisfy

∑
(i,j)∈S×T

xij −
∑

{i,j}∈(S2)∪(
T
2)

xij ≤ 1 +

√
t(k − t)(k − 1)− (k − t)

k
<
√
t.

Furthermore, this bound is tight.

2.3.3 Lower and upper clique inequalities

In [65], lower and upper clique inequalities are discussed; the former generalizes the

clique inequalities (2.46). For any two integers n and k, a lower clique inequality with

respect to a set K ⊆ [n] of size c := |K|≥ k + 1, is of the form:

∑
{i,j}∈(K2)

xij ≥
(
q

2

)
k + qr, (2.51)

5In fact, k/8 is the largest violation possible for the class of so-called hypermetric inequalities, which
are known to contain the triangle, clique, and 2-partition inequalities [31].

37

where q :=
⌊
c
k

⌋
and r := c mod k. Notice that if k divides c, i.e. r = 0, then the

right-hand simplifies to k
(
c/k
2

)
= 1

2kc(c − k). To see that this inequality holds for any

k-partition x ∈ P≤KP(n, k), recall Turán’s theorem (2.3.1), which yields

|supp(x)|≥
(
q

2

)
k + qr for x ∈ P≤KP(n, k).

It can now be seen that we have a generalized version of the original clique inequal-

ities (2.46). Indeed, when the set K ⊆ [n] is of size c := |K|= k+ 1, we have c = qk+ r

with q = 0 and r = 1, which yields a simplified right-hand side value in (2.51) of 1. Thus

the NP-hardness of the separation of original clique inequalities immediately implies

the NP-hardness of separating the upper clique inequalities. Note that Algorithm 1,

which heuristically attempts to separate clique inequalities, can be altered to handle

the more general inequalities: simply stop the ‘while’ loop after c iterations, where

we can now have c ≥ k + 1. Lower clique inequalities are facet-defining for simple

graph partition [20] polytope whenever 1 ≤ r < k, and for size constrained clique

partition [75] polytope whenever r > 1, or r = 1 and c = n.

The lower inequalities are both valid for any capacitated k-partition vector x ∈

P≤KP(n, k), and can be transformed using (2.27) and (2.28) to a valid inequality of

Y(n, k) as follows. Let K ⊆ [n] be a subset of size c := |K|≥ k + 1, and let q :=
⌊
c
k

⌋
and r := c mod k. Now we have

∑
{i,j}∈(K2)

Yij ≥ k
k−1

((
q

2

)
k + qr

)
+ −1

k−1

(
c

2

)
(2.52)

=
−c
2

+
r(k − r)
2(k − 1)

,

for any Y ∈ Y(n, k). The strength of such constraints in the {0, 1} setting is found by

choosing a vector b ∈ Rn with bi = 1 for i ∈ K and bi = 0 for i ∈ [n]\K, and simplifying

the expression in (2.45) to:

∑
{i,j}∈(K2)

xij ≥ k−1
k

(−1
2 c
)

+ 1
k

(
c

2

)
. (2.53)

The above right-hand side simplifies further to

1

2k
c(c− k),

38

and is tight by the following proposition (which also implies the claimed strength of the

original clique inequality (2.46)).

Proposition 2.3.8 (Prop. 6, [31]). For any integers k and n satisfying 3 ≤ k ≤ n, and

subset K ⊆ [n], with c := |K|> k, every x ∈ θ(n, k) must satisfy

∑
{i,j}∈(K2)

xij ≥
1

2k
c(c− k).

This bound is tight.

Now we rewrite the right-hand side,
(
q
2

)
k + qr, of the valid lower clique inequality

(2.51) of PMKC(n, k), in the form

B := 1
2kc(c− k)− ξ

for some ξ, where we recall q =
⌊
c
k

⌋
and qk = c− r. The expression B now simplifies to

B = 1
2k (c− r)(c− r − k),

which, after simple algebra, yields

ξ = 1
2kr(2c− k − r).

The maximum value of ξ denotes the largest absolute amount any x ∈ θ(n, k) can violate

a lower clique inequality (2.51). Clearly, r = 0 implies that every lower clique inequality

with corresponding clique K of size divisible by k is satisfied by every Y ∈ E(n, k). Now,

for any K with c = |K|> k, we must have r = c mod k < k, and so the value of ξ, is

maximized when r is as large as possible, i.e. r = k − 1. When fixing r = k − 1, the

value of ξ is maximized for the largest size of a clique c ≤ n with c mod k = k − 1.

Thus the largest potential violation of the inequality (2.51) for any Y ∈ E(n, k) occurs

when K has size c = qk + k − 1 = (q + 1)k − 1, for the largest possible integer q,

i.e. q + 1 =
⌊
n+1
k

⌋
, which yields c =

⌊
n+1
k

⌋
k − 1.

Proposition 2.3.9. For any two integers k and n satisfying 4 ≤ k ≤ n, matrix

Y ∈ E(n, k), and subset K ⊆ [n], if the corresponding lower clique inequality (2.52)

is violated by Y , then 1 ≤ |K| mod k ≤ k − 1.

39

For any instance (n, k, α, β, S,W) of CKP, with S = ∅, and for any subset K ⊆ [n],

the upper clique inequalities defined in [65] encode the fact that any capacitated k-

partition (V1, . . . , Vk) must have an upper bound on the total number of pairs {i, j} ∈(
[n]
2

)
contained in any subset Vh ∩K, h ∈ [k]. Let us define

φi := max
{
φ ∈ Z+

∣∣∣φ ≤ β, Ri−φk−i ≥ α
}
,

where φ0 := 0, R0 := n and Ri := Ri−1 − φi. Here φi denotes the ith largest part in

capacitated k-partition of [n]. Indeed, this recursive procedure is correct, since n
k ≥ α

if and only if n−φ
k−1 ≥ α for some φ ≤ β, which implies α ≤ φi ≤ β, for i ∈ [k], and∑

i∈[k] φi = n. Further, (φi : i ∈ [k]) must be lexicographically maximum, i.e. for

any capacitated k-partition (φ′i : i ∈ [k]), the smallest ` ∈ [k] for which φ` 6= φ′`

must yield φ` > φ′`, and so φ` must be the `th largest part in any capacitated k-

partition of [n]. Thus, for any Q ⊆ [n], if we let kQ := max
{
i ∈ [k]

∣∣∣∑j≤i φi ≤ |Q|
}

and nQ := |Q|−
∑

i∈[kQ] φi, we have the following valid inequality for PCKP(n, k, α, β, ∅):

∑
{i,j}∈(Q2)

xij ≤
∑
i∈[kQ]

(
φi
2

)
+

(
nQ
2

)
. (2.54)

Since it can be heuristically argued, using Turán’s Theorem 2.3.1, that the objective

function of capacitated k-partition—
∑
{i,j}∈([n]2)Wijxij—attains small values at r-

partition vectors for large r, and which are “balanced”, i.e. each part is of size
⌊
n
r

⌋
or
⌈
n
r

⌉
, we see that the lower clique inequalities (2.51) which give lower bounds on∑

{i,j}∈([n]2)Xij are more likely to be violated by an optimal fractional x ∈ P≤KP(n, k)

than the above upper bounds. Furthermore, we expect the upper clique inequalities to

be NP-hard to separate.

Transforming the inequality (2.54) by using (2.28), we have the following inequality

which is valid for any Y ∈ Y(n, k, α, β, S) and Q ⊆ [n] with (φi : i ∈ [k]) defined as

above:

∑
{i,j}∈(Q2)

xij ≤ k
k−1

 ∑
i∈[kQ]

(
φi
2

)
+

(
nQ
2

)+ −1
k−1

(
|Q|
2

)
. (2.55)

We note here that we cannot prove the strength of E(n, k) with respect to this last

inequality—as well as those discussed in the remaining subsections—using the valid

40

inequality of the form (2.45) for θ(n, k). It would be interesting to explore this area

further.

2.3.4 Generalized inequalities for node-weighted case

So far we have only discussed valid inequalities for polyhedra whose corresponding

partitions were not weighted, in the sense that Ferreira et al. [32, 33] considered

when studying the polytope of the node capacitated graph partition, denoted

PNCGP(n, β, a) := P(n, 1, n, 1, β, ∅, a)—recall that a = (ai : i ∈ [n]) is a vector of posi-

tive, integral vertex weights. The problem asks for a maximum-weight r-partition V of

[n], for any r ∈ [n], with each part P ∈ V bounded above in weight, i.e.
∑

i∈P ai ≤ β.

This generalizes the simple graph partition problem studied by Sørensen [92], where

vertex weights are restricted to be 1, i.e. the unweighted case. We present a few valid

inequalities of [32], since it can be seen that

PCKP(n, k, α, β, S) ⊆ PNCGP(n, β, e),

for any input (n, k, α, β, S,W) to capacitated k-partition. Furthermore, as we will

see we in the following chapter (Chapter 3), our algorithm contains a subroutine where

solving a weighted version of capacitated k-partition—known as weight capac-

itated k-partition—is necessary. Thus we define the corresponding polyhedron as

PWCKP(n, k, α, β, S, a), where a = (ai : i ∈ [n]) encodes the vertex weights of [n], and

noting that

PCKP(n, k, α, β, S) = PWCKP(n, k, α, β, S, e).

The inequalities of [32] are displayed below in their original form, where the variables

zij for {i, j} ∈
(
[n]
2

)
are complementary to k-partition incidence vectors x ∈ P≤KP(n, k),

i.e. for any i, j ∈ [n], zij = 1 if and only if vertices i and j are separated by the

corresonding k-partition; denote z a k-cut incidence vector. Nevertheless, we can trans-

form any valid inequality of PNCGP(n, β, a) into one valid for PWCKP(n, k, α, β, S, a),

by applying the unique linear function f :R→ R with f(1) = 0 and f(−1k−1) = 1. Here,

41

we have f(x) := k−1
k −

k−1
k x. Thus, for any k-cut vector z satisfies

∑
{i,j}∈([n]2)

Aijzij ≤ b, (2.56)

if and only if the unique k-partition matrix Y ∈ Y(n, k) such that zij = f(Yij), for each

{i, j} ∈
(
[n]
2

)
, satisfies:

∑
{i,j}∈([n]2)

Aijf(Yij) ≤ b,

⇐⇒
∑

{i,j}∈([n]2)

Aij
(
k−1
k −

k−1
k Yij

)
≤ b, (2.57)

⇐⇒
∑

{i,j}∈([n]2)

AijYij ≥
∑

{i,j}∈([n]2)

Aij − k
k−1b

The following are valid inequalities for PNCGP(n, β, a)—and thus are valid for the con-

tained polytope PWCKP(n, k, α, β, S, a). First, note that a sufficient condition for full-

dimensionality of the NCGP is that n < kα − 1. The paper [32] also presents mild

sufficient conditions in which all the inequalities presented below are facet-defining.

Let n and β be integers satisfying 1 ≤ β ≤ n, and a = (ai : i ∈ [n]) a positive,

integral vector denoting weights of a vertex set V := [n]. For any positive integer q,

define a q-cover of V to be a set C ⊆ V such that
∑

i∈C ai > qβ. In other words, by

the pigeon-hole principle, any partition of V into parts with weights at most β, is such

that the vertices of a q-cover must be split into at least q + 1 parts. Further denote a

q-cover C as minimal if for each j ∈ C, we have
∑

i∈C\{j} ai ≤ qβ, i.e. if the removal of

any vertex from the q-cover causes the remaining set to not have the q-cover property.

For any q-cover C of V and subset EC ⊆
(
C
2

)
, if the graph (C,EC) defines a tree,

then

∑
{i,j}∈EC

zij ≥ q, (2.58)

is valid, whereas if the graph (C,EC) is a cycle or an ear decomposition (see [101]),

then the following inequality is valid:

∑
{i,j}∈EC

zij ≥ q + 1. (2.59)

42

To see the first inequality (2.58), note that any partition of C into q + 1 or more parts

must cut at least q edges of any connected graph over C—where the latter (2.59) follows

since each part of a partition must cut at least two edges of C.

A strengthening of inequality (2.58) is also found in [32]: whenever C ⊆ V is a

1-cover and the tree (C,EC) is a star, i.e. all |EC |= |C|−1 edges of the tree are incident

upon a single vertex r ∈ C, called the root, the following inequality holds for any k-cut

vector z:

∑
{i,j}∈EC

zij ≥ |EC |−max

{
|U |

∣∣∣∣∣U ⊆ C\{r},∑
i∈U

ai + ar ≤ β

}
(2.60)

Furthermore, given a q-cover, the cycle inequalities above can be strengthened by the

so-called cycle-with-tails inequality; see [32] for details. We omit the remaining facet-

defining inequalities of Ferreira et al. due to their rarely being violated on our “side” of

the polyhedron, i.e. the transformations of the above inequalities yield upper bound on

non-negative combinations of non-negative variables which appear in a minimization

problem, and hence tend to be small in value in relaxation solutions.

The inequalities (2.58), (2.59), and (2.60), can be transformed using (2.56) and

(2.57) into valid inequalities with respect to k-partition matrices Y ∈
{
−1
k−1 , 1

}n×n
, as

follows. First let C ⊆ [n] be a q-cover of [n] with given vertex weight vector a = (ai :

i ∈ [n]) ∈ Zn+. For any subset of edges EC so that (C,EC) is a tree on C, Y must

satisfy:

∑
{i,j}∈EC

Yij ≤ |EC |− k
k−1q, (2.61)

whereas if EC is such that (C,EC) is a cycle of C, then

∑
{i,j}∈EC

Yij ≤ |EC |− k
k−1(q + 1), (2.62)

must hold. Notice that the right-hand side of former inequality simplifies to

|C|−k(q+1)
k−1 + 1

k−1 ,

since |EC |= |C|−1, while the right-hand side of the latter inequality becomes

|C|−k(q+1)
k−1 ,

43

since |EC |= |C|.

Now suppose C is a 1-cover, and EC is a set of edges so that (C,EC) is a star of C

with root r ∈ C. Letting nr := max
{
|U |
∣∣U ⊆ C\{r},∑i∈U ai + ar ≤ β

}
, we can now

transform (2.60) into:

∑
{i,j}∈EC

Yij ≤ |EC |− k
k−1 (|EC |−nr) , (2.63)

where the right-hand side can be simplified to

k
k−1nr + −1

k−1 (|C|−1) ,

since |EC |= |C|−1.

The upper capacity constraints
∑

j∈[n]\{i} ajxij ≤ β, for each i ∈ [n], of our poly-

hedron PCKP(n, k, α, β, S) are in the form of a knapsack constraint, and we saw above

that knapsack-like valid inequalities arose. Since the knapsack polytope is well-studied

(see e.g. [10, 100]), and our variables xij ∈ {0, 1}, we transform the lower capacity

constraints
∑

j∈[n]\{i} ajxij ≥ α, for each i ∈ [n], into the alternate form:

∑
j∈[n]\{i}

ajzij ≤ m− α, (2.64)

where zij := 1− xij for each {i, j} ∈
(
[n]
2

)
, and m :=

∑
j∈[n] aj .

The knapsack polytope was first characterized by Balas [10] using the set of all

strong minimal covers, where in our setting, for a given index i ∈ [n], a cover of the

variables in (2.64) is a set C ⊆ Ni := [n]\{i}, such that
∑

j∈C aj > m− α. Clearly, for

any cover C of Ni, we must have

∑
j∈C

zij ≤ |C|−1.

In other words, for any cover C, not all edges of {{i, j} | j ∈ C} can be cut. When

translated back to variables x = e− z, this tells us that at least some entry xij , j ∈ C,

is of value 1. Since
∑

i∈[n] ai = m, this statement must be true for each i ∈ [n]\C, i.e.

∑
j∈C

xij ≥ 1, for i ∈ [n]\C (2.65)

is a valid inequality of PWCKP(n, k, α, β, S, a), which we denote as a star cover inequality.

44

A cover C is minimal if
∑

j∈Q aj ≤ m − α for each proper subset Q (C. The

extension of C is denoted E(C) := C ∪ C ′ where C ′ = {j ∈ Ni\C | aj ≥ maxh∈C{ah}}.

Thus an extension of a cover C yields the following strengthening of (2.65):

∑
j∈E(C)

xij ≥ |E(C)|−|C|+1 for i ∈ [n]\E(C). (2.66)

Denote this inequality as an extended star cover inequality. A minimal cover C is said

to be strong if no other minimal cover C ′ of the same cardinality |C|= |C ′| is such that

E(C ′) ⊆ E(C). Unfortunately, generating all such covers is NP-hard, and there may

be exponentially many such covers in the worst case.

A simple heuristic for separating valid star covering inequalities with respect to x∗

is as follows. First choose a vertex v ∈ [n] with av < α, and let C := [n] \ {v}. Then

iteratively remove vertices from C until
∑

j∈C aj > m−α, and
∑

j∈C aj−minh∈C{ah} ≤

m−α. Vertex selection here can either be random, or greedy with respect to the cover

(e.g. remove from C the index i ∈ C for which ai is the maximum weight satisfying∑
j∈C aj − ai > m − α), or greedy with respect a point x∗ we attempt to separate

(e.g. remove ` ∈
{
i ∈ C

∣∣∣∑j∈C aj − ai > m− α
}

which maximizes x∗ij). The former

greedy strategy will potentially yield a larger right-hand side of (2.66), whereas the

latter greedy strategy is more likely to end with a small sum of the left-hand side of

(2.66). Clearly, C will be a minimal cover, and so we construct E(C), and test whether

x∗ violates any of the m− |E(C)| extended star cover inequalities (2.66), i.e. test

∑
j∈E(C)

x∗ij < |E(C)|−|C|+1 for i ∈ [n] \ E(C).

By the transformation in (2.27) and (2.28), the cover inequalities with respect to

a cover C ⊆ [n] of m − α, take on the following form, and must be valid for any

Y ∈ Y(n, k, α, β, S, a):

∑
j∈C

Yij ≥
k

k − 1
+
−1

k − 1
|C| for i ∈ [n] \ C, (2.67)

where the right-hand side simplifies to

1− |C|−1

k − 1
.

45

This is strengthened whenever C is minimal, to

∑
j∈E(C)

Yij ≥
k

k − 1
(|E(C)|−|C|+1) +

−1

k − 1
|E(C)| for i ∈ R(P), (2.68)

with right-hand side simplifying to

|E(C)|−|C|+1− |C|−1

k − 1
.

If α > 1, one type of inequality which bypasses the use of the knapsack polyhedron

is the following slight generalization of the flower inequalities of Ji and Mitchell [57].

Here, we consider the unweighted case first, i.e. a = e, and take a partition of the set

[n] into two parts F and [n]\F . The inequalities

∑
{i,j}∈(F2)

xij +
∑

(i,j)∈F×[n]\F

xij ≥
(
α

2

)
q +

(
r

2

)
+ r(α− r), (2.69)

are valid for each x ∈ PCKP(n, k, α, β, S, e), where q :=
⌊
|F |
α

⌋
and r := |F | mod α. To

see this, consider an incidence vector x ∈ {0, 1}(
n
2) of a k-partition of [n] in which F is

the disjoint union of q cliques of size α, and 1 clique of size r—for this argument we

ignore k. The total number of edges here is precisely the right-hand side of (2.69). This

value is minimum since any edge removed from within a part in F must be replaced

by 2 new edges in
(
F
2

)
∪ (F × [n]\F), to keep part sizes at least α. Further, any edge

removed from the part spanning F and [n]×F must be replaced by another edge, again,

to keep the part size of the resulting partition above α. This bound of valid inequality

(2.69) can only be attained when n and the size of F ⊆ [n] permit a “packing” of α-

cliques, i.e. when |F |≤ αkα where kα := max{i ∈ [k] |φk−i+1 = α}, and (φi : i ∈ [k]) is

as in the previous section—φk−i+1 here is the ith smallest part size in any capacitated

k-partition. Note that kα ≥ 1 by prop 2.1.3. It would be interesting to tighten the

bound whenever |F |> αkα.

A heuristic proposed by Ji and Mitchell for separating the flower inequalities is to

partition the set [n] into components, and then check for violation of the corrseponding

inequalities. Inuitively, for a given fractional solution x∗ ∈ [0, 1](
n
2), the components of

the graph G = (V,E) with V = [n] and E =
{
{i, j} ∈

(
[n]
2

) ∣∣∣xij > δ
}

, where δ ∈ [0, 1],

46

are likely to violate the flower inequality, since the edges between components have

xij ≤ δ.

The flower inequalities can be transformed into valid inequalities for Y ∈ Y(n, k, α,

β, ∅, e), via (2.27) and (2.28), for any F ⊆ [m], with:

∑
{i,j}∈(F2)

Yij +
∑

(i,j)∈F×[m]\F

Yij ≥ k
k−1

((
α

2

)
q +

(
r

2

)
+ r(α− r)

)

+ −1
k−1

((
c

2

)
+ c(n− c)

)
, (2.70)

where c := |F |, q :=
⌊
c
α

⌋
, and r := c mod α.

It is easy to see that, for any m-partition of [n] with parts of size at most β and

having weights ai, for i ∈ [m], the flower inequalities imply the following inequality

which is valid for all Y ∈ Y(m, k, α, β, ∅, a), and any F ⊆ [n]:

∑
{i,j}∈(F2)

aiajYij +
∑

(i,j)∈F×[n]\F

aiajYij ≥ k
k−1

(α
2

)
q +

(
r

2

)
+ r(α− r)−

∑
i∈[m]

(
ai
2

)
+ −1

k−1

((
c

2

)
+ c(n− c)

)
, (2.71)

where c :=
∑

i∈F ai, n :=
∑

i∈[m] ai, q :=
⌊
c
α

⌋
, and r := c mod α. Indeed, aiaj

represents the number of pairs between parts i and j of the m-partition, and
(
ai
2

)
is the

number of pairs within part i ∈ [m]. Since Yii = 1, we simply subtract the summand∑
i∈[m]

(
ai
2

)
from both sides of the original inequality (2.69).

47

Chapter 3

A branch-and-cut algorithm for ConSP

In this chapter we describe in detail the main components of our proposed branch-and-

cut algorithm for solving instances of capacitated k-partition (2.2.2), and ultimately,

for producing optimal schedules in the conference scheduling problem (cf. 2.1).

First we provide a summary of our algorithm in procedural form.

Let I := (n, k, α, β,D,W) be a tuple denoting an arbitrary input to capacitated

k-partition, where:

• n, k, α, and β are integers satisfying 2 ≤ k ≤ n and 1 ≤ α ≤ n
k ≤ β ≤ n;

• D ⊆
(
[n]
2

)
;

• W is an n× n nonnegative, symmetric matrix—typically diag(W) = 0;

and the optimization problem asks for a minimum-weight capacitated k-partition of

vertices [n], i.e. a k-partition (V1, . . . , Vk) of V satisfying

• α ≤ |Vh|≤ β, for each h ∈ [k];

•
(
Vh
2

)
∩D = ∅, for each h ∈ [k];

•
∑

h∈[k]
∑
{ij}∈(Vh2)Wij is minimum.

A subproblem J of I is a tuple (S, T, z) encoding a subset of feasible capacitated k-

partitions of I. Here S, T ⊆
(
[n]
2

)
are disjoint subsets of pairs of vertices which are to

be separated and grouped together, respectively, in any capacitated k-partition of I

found in J , and z ∈ R denotes a lower bound on the total weight of any such feasible

partition. If a subproblem J encompasses at least one feasible solution, we say it is

feasible or non-empty, otherwise infeasible or empty. Whenever J is infeasible, we let

48

+∞ be a lower bound, by convention. We write R(I,J) as a formal instance (to be

discussed) to a relaxation of an optimization problem which encodes the solution set

of J with respect to I—thus R(I,J) provides lower bounds for J . The algorithm,

hereafter denoted as semidefinite branch-and-cut or SBC, can be summarized as follows,

with details provided in the sequel.

0. Initialization. Initialize global solution variables Vub and zub to be any a priori

capacitated k-partition and its cost, respectively; if none are known, then assign

Vub := ∅ and zub := ∞. Initialize the pool P := {J ∗} with the root subproblem

J ∗ = (∅, ∅,−∞) of I. Go to Step 1.

1. Node selection. If P = ∅, exit and output Vub and zub; otherwise, select a

subproblem J := (S, T, z) ∈ P which minimizes a real-valued function f(z)

(e.g. f(z) := z) and remove it from the pool, i.e. P := P\{J }.

2. Preprocessing. If z ≥ zub or J is proved to be infeasible, then go back to Step 1;

otherwise, go to Step 3.

3. Lower bounding. Solve R(I,J), producing a solution V∗ with value z∗. If z∗ ≥

zub, go back to Step 1; otherwise test if V∗ encodes a feasible solution to J : if so,

update Vub := V∗ and zub := z∗, and go back to Step 1; otherwise update z := z∗,

and go to Step 4.

4. Upper bounding. Attempt to generate a global feasible solution to I, or a local

solution to subproblem J . If a solution V∗ of value z∗ < zub is found, update

Vub := V∗ and zub := z∗, and if further z∗ ≤ z, then go back to Step 1. Otherwise,

go to Step 5.

5. Branching. Find a pair of vertices e ∈
(
[n]
2

)
to branch on, i.e. a pair e /∈ S∪T , which

is used to form two subproblems J0 := (S ∪ {e}, T, z) and J1 := (S, T ∪ {e}, z),

and finally update the pool P := P ∪ {J0,J1}. Go back to Step 1.

49

3.1 Subproblems

In this section we discuss an alternate representation of the subproblems of our algo-

rithm, and how this affects the modeling of the optimization problem solved at each

subproblem.

3.1.1 Representation

Suppose I := (n, k, α, β, D, W) is some input to our SBC algorithm, and let J :=

(S, T, z) ∈ P be an arbitrary subproblem of I. Recall that the set T represents the

subset of pairs i, j ∈ [n] which must be grouped together in any feasible solution found

in J . Since grouping pairs is a transitive relation, T must form an m-partition of [n]

with k ≤ m ≤ n, where each part is a connected component of T , i.e. a maximally

connected subset of vertices in T . Thus, we can represent T by an m-partition map τ

of [n], i.e. an map τ : [m] 7→ 2[n], satisfying τ(i) ∩ τ(j) = ∅ for distinct i, j ∈ [m] and

∪i∈[m]τ(i) = [n]. For any i ∈ [m], we call τ(i) ⊆ [n] the ith τ component or part of the

m-partition (τ(1), . . . , τ(m)) of [n].

For a given m-partition map τ and subset S ⊆
(
[n]
2

)
, we can contract S with respect

to τ , i.e. replace S ⊆
(
[n]
2

)
with S′ ⊆

(
[m]
2

)
, where {i, j} ∈ S′ if and only if S ∩

(τ(i)× τ(j)) 6= ∅. In other words, we treat each of the m τ -components as vertices,

and connect vertex pairs in S′ whenever the corresponding τ -components are adjacent

in S. We can also form S′ by defining a vertex placement map ρ: [n]→ [m], where ρ(v)

is the unique index h ∈ [m] with v ∈ τ(h). In this setting, {ρ(u), ρ(v)} ∈ S′ only if

{u, v} ∈ S and ρ(u) 6= ρ(v).

We now write each subproblem J as a tuple (m,S, τ, z), where k ≤ m ≤ n,

S ⊆
(
[m]
2

)
, τ is an m-partition map of [n], and z is a lower bound on the value of

all capacitated k-partitions encompassed by J . Note that the corresponding vertex

placement map of τ can be formed in linear time, and is thus not part of the input of

J . To ensure that each such subproblem of I has a unique representation, we choose

τ : [m] 7→ 2[n] so that the ith part τ(i) has the ith smallest representative rep(τ(i)), where

we define rep(τ(i)) := min{v ∈ [n] | v ∈ τ(i)}, and write rep(i) := rep(τ(i)) whenever

50

τ is clear from context. In the next section, we show how this representation yields a

weighted version of the original capacitated k-partition problem, which may be of

smaller size.

3.1.2 Model: a weighted capacitated k-partition problem

Let (m, k, α, β, S′,W ′, a) be a tuple where m, k, α, and β are integers satisfying 2 ≤

k ≤ m and 1 ≤ α ≤ m
k ≤ β ≤ m; a = (ai : i ∈ [k]) is a positive, integral vector;

S′ ⊆
(
[m]
2

)
; and W ′ is an m×m nonnegative, symmetric matrix—note that diag(W) is

not required to be 0-valued. The weight capacitated k-partition problem asks for a

minimum cost weight-capacitated k-partition, i.e. a k-partition V = (V1, . . . , Vk) of [m]

satisfying:

• α ≤
∑

i∈Vh ai ≤ β for each h ∈ [k]

•
(
Vh
2

)
∩ S′ = ∅ for each h ∈ [k]

•
∑

h∈[k]
∑
{i,j}∈(Vh2)W

′
ij is minimum

Now it is easy to check that any k-partition matrix Y ∈
{
−1
k−1 , 1

}m×m
which encodes a

feasible weight-capacitated k-partition, or weight-capacitated k-partition matrix, must

satisfy the following knapsack-like constraint—analogous to the cardinality constraint

(2.39) of CKP, where here n :=
∑

i∈[m] ai:

kα−n
k−1 e ≤

∑
j∈[m]

ajYij ≤ kβ−n
k−1 for i ∈ [m].

Thus a model for the weighted capacitated k-partition problem, given arbitrary input

(m, k, α, β, S′, W ′, a), is:

(WCKP) minimize k−1
2k W

′ •
(

1
k−1J + Y

)
(3.1)

subject to diag(Y) = e (3.2)

Yij = −1
k−1 for {i, j} ∈ S′ (3.3)

kα−n
k−1 e ≤ Y a ≤

kβ−n
k−1 e (3.4)

Y ∈ Sm+ (3.5)

Y ∈
{
−1
k−1 , 1

}m×m
. (3.6)

51

Now for an input I := (n, k, α, β,D,W) to our SBC algorithm—i.e. an unweighted

capacitated k-partition instance—any subproblem J := (m,S, τ, z) of I, can be

bounded by solving a relaxation of the weight capacitated k-partition problem with

input tuple R(I,J) := (m, k, α, β, S′,W ′, a), where

• a = (ai : i ∈ [m]) is defined ai := |τ(i)|, for each i ∈ [m]—note
∑

i∈[m] ai = n;

• S′ ⊆
(
[m]
2

)
is defined to be the set D′ ∪S, where D′ is such that {i, j} ∈ D′ if and

only if (τ(i)× τ(j)) ∩D 6= ∅; and

• W ′ ∈ Rm×m is the symmetric matrix where W ′ij :=
∑

(h,`)∈τ(i)×τ(j)Wh`, for each

i, j ∈ [m].

Essentially, we are forcing the weights of our vertices in the instance R(I,J) to corre-

spond with the size of each τ component. We also want pairs of vertices {i, j} ∈
(
[m]
2

)
separated, i.e. in the set S′, if and only if there exists an adjacency between correspond-

ing parts τ(i) and τ(j) in D or the pair {i, j} is already in S. Finally, we define W ′ so

that entry W ′ij denotes the cost of including the weight edges between τ(i) and τ(j) if

i and j are grouped together, which can be rewritten as

W ′ij = χ>τ(i)Wχτ(j), for i, j ∈ [m],

with χR ∈ {0, 1}m defined to be the characteristic vector of R ⊆ [m], where χR,r = 1 if

and only if r ∈ R. Note that since Whh = 0 for each h ∈ [m], the diagonal entries of

W ′ can be written

W ′ii = 2
∑

{h,`}∈(τ(i)2)

Wij , for i ∈ [m].

Thus the total cost 1
2W

′ • Y ′ of any k-partition (V1, . . . , Vk) of [m], represented by

Y ′ ∈ {0, 1}m×m, is the total cost of the corresponding k-partition (V ′1 , . . . , V
′
k) of [n]

represented by Y ∈ {0, 1}n×n, where V ′h :=
⋃
i∈Vh τ(i). To see this, we have the following

equalities:

1
2W

′ • Y ′ = 1
2

∑
i,j∈[m]

W ′ijY
′
ij

=
∑

{i,j}∈([m]
2)

W ′ijY
′
ij + 1

2

∑
i∈[m]

W ′ii

52

=
∑
h∈[k]

∑
{i,j}∈(Vh2)

W ′ij + 1
2

∑
h∈[k]

∑
i∈Vh

W ′ii

=
∑
h∈[k]

 ∑
{i,j}∈(Vh2)

∑
(r,s)∈τ(i)×τ(j)

Wrs +
∑
i∈Vh

∑
{r,s}∈(τ(i)2)

Wrs


=
∑
h∈[k]

 ∑
{u,v}∈(V

′
h
2

)

Wuv


= 1

2W • Y.

This argument easily translates to the setting in which partition matrices Y have entries

in
{
−1
k−1 , 1

}
.

We note that the use of graph contractions was used by Anjos et al. [5] in the design

of an algorithm similar to our SBC, but for the minimum k-partition , or maximum

k-cut problem. Vertex weights in this case are not needed, since no capacity on original

part sizes is required.

3.2 Preprocessing

In section §2.1.2 we showed that determining whether an instance I of capacitated

k-partition has a feasible solution is NP-complete, and thus so is the slightly more

general weighted version (described in the previous section). This implies that it is

hard to decide if a given subproblem J of I is empty or not. Since, further, we solve

multiple SDP relaxation problems R(I,J) at each J—the bottleneck procedure of our

algorithm (see the next section)—we propose a few heuristic tests which are at least as

efficient as the SDP relaxation problem, and aim to either find the best solution of J ,

or determine that none exists. If one is able to accomplish such a task, then no further

exploration of J is needed, and thus we avoid solving multiple SDPs.

Let J := (m,S, τ, z) be a subproblem of I := (n, k, α, β,D,W), and let R :=

R(I,J) := (m, k, α, β, S′,W ′, a) be the associated weight capacitated k-partition in-

stance. Recall that Vub and zub denote the best found global solution and its associated

value, respectively. We start preprocessing the input by adding to S′ any known implied

separations, or those pairs e ∈
(
[m]
2

)
\S′ which can be shown as not appearing together

53

in any feasible solution of J which has value better than zub. We give two simple ways

of checking for such adjacencies. For each {i, j} ∈
(
[m]
2

)
\S′:

1. if ai + aj > β, append {i, j} to S′;

2. if W ′ij + 1
2 tr(W ′) ≥ zub, append {i, j} to S′.

Here we define the trace tr(A) :=
∑

i∈[m]Aii for any square m ×m matrix A. Indeed,

any pair {i, j} ∈
(
[m]
2

)
having total weight more than the maximum capacity, β, cannot

appear together in any feasible solution of J . Furthermore, if {i, j} costs more than the

residual cost of the current m-partition of [n] represented by τ , that is, zub − 1
2 tr(W ′),

then grouping i and j cannot yield a feasible solution cheaper than zub.

Once S′ has been updated to include all implied separations, we check whether

m = k+ 1. If so, then the best solution of subproblem J can be found by the following

exhaustive search. Note first that the above preprocessing step implies S′ must have

the following properties:

ai ≤ β for i ∈ [m],

ai + aj ≤ β for {i, j} ∈
(

[m]

2

)
\S′,

W ′ij + 1
2 tr(W ′) < zub, for {i, j} ∈

(
[m]

2

)
\S′,

and so our search reduces to scanning the
(
m
2

)
= O(k2) pairs {i, j} ∈

(
[m]
2

)
\S′, and

testing whether:

ah ≥ α for h ∈ [m]\{i, j},

ai + aj ≥ α,

while keeping track of the pair for which W ′ij is smallest. Clearly, if any solution is

found, then a best solution has been found for J which must be cheaper than zub, and

we can therefore update the global solution. Otherwise we have proved that no better

solution exists in J . In either case, we exit this preprocessing phase and move on to

the next step of SBC (Step 3; Lower bounding; see next section). Note that by not

branching on such subproblems with m = k + 1, no subproblem of I will proceed past

the preprocessing step with size m ≤ k + 1.

54

Now, if m > k+1, we continue by attempting to prune subproblem J , i.e. determine

that no feasible solution exists of cost less than zub, and proceed back to Step 1 of

SBC. First, we associate a graph G := ([m], S′) with the pairs or edges of S′. Since

a capacitated k-partition can be viewed as finding a restrictive type of coloring of the

edges in G—namely, a k-coloring in which color classes have bounded total vertex

weights (see, for the unweighted vertex instance, the reduction in Proposition 2.1.4)—

we can prune J whenever it is determined that we cannot color G with k or fewer

colors. Denoting χ(G) as the minimum number of colors needed to color the edges of

G, i.e. the chromatic number, we see that this sufficient condition for the pruning of J

is equivalent to testing whether or not

χ(G) > k.

Since computing χ(G) is NP-hard in general [40], we recall a few known bounds on

χ(G).

Graph G is clearly not k-colorable if it has a clique of size k+1. Furthermore, letting

G :=
(
V (G),

(
V (G)
2

)
\E(G)

)
denote the complement graph of G, any clique of G is also

a stable set—a subset of pairwise non-adjacent vertices—in G. The maximum size of a

clique in G is denoted ω(G), and is known as the clique number, while the maximum

size of a stable set is G is denoted α(G), and is known as the stable set number (see

West [101]). Thus we have the following relations between the above graph quantities:

χ(G) ≥ ω(G) = α(G).

Unfortunately, each quantity is NP-hard to compute, so we look for further bounds on

α(G) and ω(G).

Applying Turán’s Theorem 2.3.1 to G, we have

ω(G) ≤ k ⇒ |E(G)|≤ mq(k − 1)

2
+

(
r

2

)
, (3.7)

where we define q :=
⌊
m
k

⌋
and r := m mod k—recall |V (G)|= m. Thus, the contrapos-

itive tells us that whenever enough edges are present, i.e. |E(G)|> mq(k−1)
2 +

(
r
2

)
, there

exists a subgraph of G, namely a k+1-clique, which is too large for k colors. This obser-

vation is formalized in the following proposition, where we substitue m(m− r)(1−1/k)

55

for mq(k − 1) since q = qk/k and qk = m− r.

Proposition 3.2.1. For any subproblem J of input I to capacitated k-partition, if

R(I,J) = (m, k, α, β, S′,W ′, a) is such that

|S′|> m(m− r)
2

(
1− 1

k

)
+

(
r

2

)
,

where r := m mod k, then J is infeasible.

The bound in the above proposition is easy to calculate, but perhaps too strong a

condition, since Proposition 2.3.1 bounds the right-hand side of (3.7) from below by

m2

2

(
1− 1

k

)
,

or, roughly, a fraction of 1− 1/k of the total number of possible edges.

A bound dominant to that found in Proposition 3.2.1 is one provided by the random

process in the following proposition.

Proposition 3.2.2. Let G be a graph with n := |V (G)|, and π : [n] 7→ V (G) be

a random permutation of the vertices of G. Consider the iterative process where we

initially set S := ∅ and create duplicate graph G′ := G. Then, at the ith step, if vertex

v := π(i) ∈ V (G′), append v to S, and remove both the closed neighborhood NG′ [v] from

V (G′) and all incident edges, i.e.
⋃
u∈NG′ [v]

δG′(u)—proceed to step i+ 1. This process

yields the property that S is a stable set of G with expected size:

E [S] =
∑

v∈V (G)

1

dG(v) + 1
,

where dG(v) denotes the degree of v in G.

Proof. S is clearly a stable set in G, since exactly one vertex from any closed neigh-

borhood NG[v] of v ∈ V (G) is selected to be in S. This, along with the choice of π,

implies that any u ∈ NG[v] has equal probability 1
dG(v)+1 of being selected to be in S,

where dG(v) denotes the degree, or the size of the open neighborhood |NG(v)|. Thus

the expected size of S immediately follows by linearity of expectation.

56

Applying the above proposition to the complement of G = ([m], S′) yields a similar

process in which a clique of G is produced, and is of expected size γ(G):

γ(G) :=
∑

v∈V (G)

1

n− dG(v)
≤ χ(G),

since dG(v) + dG(v) = m − 1 for each v ∈ V (G). Thus, if γ(G) > k—which is easy to

test—then there must exist a clique of size k+1 in G, proving then that χ(G) > k, and

ultimately implying that the corresponding subproblem J is infeasible. Otherwise, we

can run the random procedure multiple times, e.g. O(m) times, and prune J as soon

as a stable set S of G of size |S|> k is found.

If the previous heuristic checks were not enough to prune the current subproblem J ,

there is a more computationally expensive, but tighter bound: the Lovász-theta function

of graph G, which is the only known polynomial time computable bound sandwiched

between the two NP-hard numbers α(G) and χ(G) [72, 63]. The value ϑ(G) satisfies

χ(G) ≥ ϑ(G) ≥ α(G),

and can be computed by solving the following semidefinite program:

ϑ(G) := maximize J •X (3.8)

subject to Xij = 0 for {i, j} ∈ E(G) (3.9)

tr(X) = 1 (3.10)

X ∈ Sm+ . (3.11)

Thus if ϑ(G) > k, then χ(G) > k, and we can prune J . If not, then we proceed

to the next step in the main branch-and-bound algorithm. Note that it may not be

wise to solve for ϑ(G) at each subproblem, since for sparse graphs (e.g. any ancestor of

an initially sparse root), the bound may be weak and the time spent solving an SDP

may be non-negligible. For this reason we calculate ϑ(G) only when the maximum or

average degrees are “large enough”, e.g. maxv∈G dG(v) ≥ (1− ε1)m, or
∑

v∈[m] dG(v) =

2|E(G)|≥ (1− ε2) · 2
(
m
2

)
for small fractional values ε1, ε2 ∈ (0, 1). Intuitively, the more

edges present, the more likely there is to be large clique, or at least a large value of

ϑ(G). However, in practice, we observed that the amount of time spent solving for

57

ϑ(G) at any subproblem was negligible when compared to the main lower bounding

procedure. This is due, in part, to the initial set of pairs D ⊆
(
[n]
2

)
of I being sparse,

and to the strength of the SDP relaxations which tend to prune subproblems before

branching deeply, i.e. the subproblem pairs S′ ⊆
(
[m]
2

)
, and thus G = ([m], S′), remain

sparse.

We summarize this subprocedure applied at Step 2 of SBC to a subproblem J of I

as follows:

1. Add all implied adjacencies S′ of R(I,J) = (m, k, α, β, S′,W ′, a), and go to Step

2.

2. Ifm = k+1, then exhaustively search theO(k2) possible solutions of J and update

global structures appropriately, and go back to the Step 1 of SBC. Otherwise, let

G := ([m], S′) and go to Step 3 below—note m > k + 1.

3. If |S′|> m(m−r)
2

(
1− 1

k

)
+
(
r
2

)
(cf. Proposition 3.2.1), then go back to Step 1 of

SBC; otherwise go to Step 4 below.

4. If γ(G) > k (cf. Proposition 3.2.2), then go back to Step 1 of SBC; otherwise go

to Step 5 below.

5. If a random stable set C of G is generated as in Proposition 3.2.2, and is of size

|C|> k, after at most O(m) tries, then go back to Step 1 of SBC; otherwise, if G

is “dense enough”, then go to Step 6 below; else go back to Step 1 of SBC.

6. If ϑ(G) > k (cf. 3.8–3.11), the go back to Step 1 of main algorithm; otherwise

continue to Step 3 in SBC (described in next section).

3.3 Lower bounding procedure

In this section, we present a detailed explanation of the lower bounding subproce-

dure of our algorithm (Step 3) which is used to generate strong local bounds to any

subproblem J of an input I to capacitated k-partition. In particular, we first de-

scribe the semidefinite programming, or SDP, relaxation of the weight capacitated

58

k-partition problem, which takes input R(I,J) := (m, k, α, β, S′,W ′, a) (see §3.1.2).

This is followed by a discussion of how to strengthen the relaxation with valid linear

inequalities.

We choose to solve the SDP-relaxation of WCKP (3.1)–(3.6), as opposed to the

corresponding LP relaxation—obtained by simply removing the semidefinite restriction

on variables—since we have observed the latter relaxation to be much weaker in our

tests, i.e. the number of subproblems explored was much larger. Eisenblätter [31]

presents compelling evidence for choosing the
{
−1
k−1 , 1

}
setting over the {0, 1} for solving

such SDP relaxation; this is described in some detail in §2.3. Furthermore, SDPs such

as ours can be solved in polynomial time using potential reduction methods [4] and

primal-dual interior-point methods [53] (see also Vandenberghe and Boyd [96] for more

information on SDP, and Nesterov et al. [77] for more on general convex programming

interior-point methods).

Unfortunately, however, available SDP software tends to be slow when compared to

standard LP solvers. Notable slowdown can occur in a setting such as ours—branch-

and-bound with SDP relaxations solved at each subproblem—due to the general lack of

warm-starting abilities in SDP solvers, as opposed to the non-polynomial-time simplex

method [37] which is still widely used in practice in [25, 9] due to efficiencies provided

by warm-starting. Another disadvantage present in SDP solvers is the lack of stability

due to degeneracy, which can be caused by the problem not satisfying a strict com-

plementarity condition, e.g. Slater’s condition (see more on strong duality in Ramanal

et al. [85]). Fortunately, for our particular binary optimization problems, stability

is not an issue (see Tunçel [94] and Pataki and Tunçel et al. [82]). Our particular

implementation details are found in the next chapter (cf. §4.1).

3.3.1 Semidefinite programming relaxations

Our lower-bounding procedure for a given subproblem J of I, where we suppose

R(I,J) = (m, k, α, β, S′,W ′, a), and z is a lower bound on the optimum solution of J , is

comprised of solving multiple, progressively stronger SDP relaxations of WCKP. In par-

ticular, we attempt to improve upon the bound z by solving the following optimization

59

problem “SWCKP” iteratively. Here, we let C be a subset of C∗ := C(I,J), the set of

valid inequalities for all weight-capacitated k-partition matrices Y ∈ Y(m, k, α, β, S′, a),

i.e. (A, b) ∈ C∗ if and only if
∑
{i,j}∈([m]

2)AijYij ≤ b.

(SWCKP) minimize k−1
2k W

′ •
(

1
k−1J + Y

)
(3.12)

subject to diag(Y) = e (3.13)

Yij = −1
k−1 for {i, j} ∈ S (3.14)∑

{i,j}∈([m]
2)

AijYij ≤ b for (A, b) ∈ C (3.15)

Y ∈ Sm+ (3.16)

A summary of the iterative procedure is as follows. First recall that global variables

Vub and zub represent the best known capacitated k-partition of I and its associated

objective value, respectively. Also, define a matrix Y ∈ Rm×m to be integral if it

represents a feasible weight-capacitated k-partition of the associated WCKP problem,

and otherwise it is fractional. Further, we define D to be a set of triples (A, b, δ),

where (A, b) ∈ C∗ is a valid inequality which has not been violated or binding—satisfied

with equality—in the last δ consecutive iterations, e.g. (A, b, 2) ∈ D tells us that the

inequality
∑
{i,j}∈([m]

2)AijYij ≤ b is valid, and was non-binding—satisfied with strict

inequality—with repect to either of the last two iterations’ corresponding optimum

matrices.

0. Initialization. Choose ε ∈ (0, 1) and cmin, cmax, dmax, tmax ∈ Z+, and define

C0,D0,D := ∅, and z0 := −∞. Set counter t := 0, and go to Step 1.

1. Solving SDP. Solve SWCKP with given valid inequalities C ⊆ C(I,J), letting Y ∗

be the solution and z∗ its cost. If z∗ ≥ zub, exit and go back to Step 1 of SBC;

otherwise, check if Y ∗ is integral. If so, update zub := z∗ and Vub appropriately,

then exit and go back to Step 1 of SBC; if not, then test further if the solution

sequence is tailing off, i.e. if z∗−z0
max{|z0|,1} ≤ ε, or t = tmax. If so, update z := z∗,

then exit and go to next step of SBC (Step 3); otherwise increment t := t+ 1 go

to Step 2 below.

60

2. Removing non-binding inequalities. Let D0 ⊆ C be the set of non-binding inequal-

ities with respect to Y ∗, i.e. inequalities (A, b) ∈ C for which∑
{i,j}∈([m]

2)

AijY
∗
ij < b.

Then remove C := C\D0, and go to Step 3 below.

3. Additional cutting planes. Let C0 := ∅, and go to Step 3a.

(a) From the pool D. For each element (A, b, δ) ∈ D: if (A, b) is violated by Y ∗,

then update C0 := C0∪{(A, b, δ)} and remove D := D\{(A, b, δ)}; else if (A, b)

is binding, then reset δ := 0; otherwise (A, b) is non-binding, so we increment

δ := δ+1, and if now δ ≥ dmax, then remove D := D\{(A, b, δ)}. After search

is complete, update D := D ∪ D0, and if |C0|≥ min{cmin, cmax − |C|}, then

update C := C ∪ C0 and go back to Step 1; otherwise go to Step 3b.

(b) Generated (details in §3.3.2). For each type of valid inequality T in C: find

a subset CT ⊆ C∗\C of cuts, or violated inequalities, of type T , and update

C0 := C0 ∪ CT ; if |C0|≥ min{cmin, cmax − |C|}, then update C := C ∪ C0 and

immediately go back to Step 1. After search is complete, if C0 = ∅, then

update z := z∗ and exit (proceeding to Step 3 of SBC); otherwise, update

C := C ∪ C0 and go back to Step 1.

Indeed, the above procedure will improve the bound z on J until either the problem is

proved infeasible (z ≥ zub), a better integral solution is found, tailing off is observed, or

not enough cuts are being generated. Note that after each iteration we remove all non-

binding inequalities—placing them into a pool D—due to the increase in computational

demand correlated with solving SDPs with large constraint sets. For this same reason,

we limit the total number of cuts per SDP solve, e.g. cmax = 2, 000; we resolve an

SDP as soon as a minimum number of new cuts have been generated, e.g. cmin = 300;

we leave inequalities in the pool D for dmax = 5 rounds; and we limit the number of

consecutive SDP relaxations solved, e.g. tmax := 20. The improvement at each iteration

is dependent upon the quality of the relaxation, i.e. the strength of the cuts found in

Step 3. This is discussed more in the next section.

61

3.3.2 Strengthening with linear inequalities

For any subproblem J of I defining input R(I,J) = (m, k, α, β, S′,W ′, a) to the

weight capacitated k-partition (see §3.1.2), we solve multiple semidefinite program-

ming relaxations of the form SWCKP (3.12)–(3.16). The quality of each depends on

the set of cuts C maintained in each step of the procedure summarized in the previous

section. Since each subproblem comes equipped with an initial set C—the formulation

of which is discussed below—we present a description of how we attempt to generate

cuts at a single, arbitrary iteration. In particular, since in Step 3a, all violated inequal-

ities of D are added to C, we give the separation procedures of each inequality type

(Step 3b), for a given fractional solution Y ∗ ∈ Rm×m. Note that some inequalities may

be duplicated using our cut generation techniques, in which case any implementation

of our algorithm must check whether a given violated inequality (A, b) ∈ C∗ has already

been included in C; a standard hash table would suffice. Also, recall that a detailed

description of each of the valid inequalities can be found in §2.3.

1. Lower bound inequalities: Yij ≥ −1
k−1 . Let L ⊆

(
m
2

)
\S′ denote the (largest) set of

pairs for which the lower bound inequalities are violated by the point Y ∗, i.e.

Y ∗ij <
−1
k−1 for {i, j} ∈ L.

All O(m2) inequalites can be exhaustively scanned in polynomial time, which

allows us to eliminate the storage of such cuts in D. If |L|≥ c+ := cmax−(|C|+|C0|),

then add to C0 only the c+ most violated such inequalities, i.e. those corresponding

to the c+ largest values of −1k−1 −Y
∗
ij > 0. Otherwise, add all |L| inequalities to C0.

In general, obtaining the most violated inequalities is accomplished by pushing

each cut and its residual onto a priority queue, and popping the desired number

of entries.

If at the root, and C0 = ∅, i.e. during the first cutting plane iteration, we generate

1
4

(
m
2

)
random lower bound inequalities.

2. Triangle inequalities: −Yij+Yih+Yjh ≤ 1. Let T ⊆ [n]3 denote the (largest) set of

distinct triples—triangles—(i, j, h), with i < j, for which the triangle inequalities

62

Algorithm 3: greedy lower clique coverings

Input : positive integers m, k, index v ∈ [m], and symmetric Y ∈ Rm×m

Output: a family F ∈ 2[m] of size |F |≤ n− k − 1, with |F |> k for each F ∈ F

Initialize F := ∅, K := {v}, V := [n]\{v}, and z := 0;

while V 6= ∅ do

Find index ` = arg mini∈V

{∑
j∈K Yij

}
;

Increase z := z +
∑

j∈K Y`j ;

Update K := K ∪ {`}, and remove V := V \{`};

Let r := |K| mod k;

if |K|> k and z < −|K|
2 + r(k−r)

2(k−1) then

Update F := F ∪ {K};

are violated by Y ∗, i.e.

−Y ∗ij + Y ∗ih + Y ∗jh > 1 for (i, j, h) ∈ T.

Scanning all O(n3) inequalities is not particularly prohibitive—hence, we also

eliminate triangles from being stored in the poolD. If |T |≥ c+ := cmax−(|C|+|C0|),

then add to C0 only the c+ most violated such inequalities; otherwise, include all

|T | inequalities in C0.

If at the root, and C0 = ∅, i.e. during the first cutting plane iteration, we generate

up to 1
4

(
m
2

)
random triangle inequalities, and immediately resolve the SDP.

Of the inequalities we generate, the lower and triangle inequalities above are the

only polynomial-time separable cuts for WCKP. Since they are facet-defining for the

polyhedra which contain that of the weight capacitated k-partition problem, we

include as many as possible. Recall that the procedure which calls the cutting plane

subroutine exits the cut generation process as soon as “enough” cuts are generated,

i.e. when |C0|≥ min{cmin, cmax−|C|}, which is implicit to our current presentation. The

remaining inequalities have NP-hard separation problems, and thus our algorithms are

heuristic in nature.

63

3. (Lower) clique inequalities (2.52). Here, we attempt to generate cuts of the form:

∑
{i,j}∈(K2)

Yij ≥
−|K|

2
+
r(k − r)
2(k − 1)

, (3.17)

where K ⊆ [m] is of size |K|> k, and we define r := |K| mod k. In particular,

we call the greedy lower clique covering heuristic (GLCC), or Algorithm 3—a

modification of GCC (Algorithm 1)—on the solution matrix Y ∗ ∈ Rm×m and

each vertex v ∈ [m], which outputs a family F ∈ 2[m] of subsets K ⊆ [m], each of

which defines a violated lower clique inequality (3.17). The algorithm essentially

grows a set K starting with the single vertex v, and at each iteration it finds a

vertex ` ∈ [m] \K which increases the expression

∑
{i,j}∈(K∪{`}2)

Y ∗ij −
∑

{i,j}∈(K2)

Y ∗ij (3.18)

by the least amount. WhenK is large enough (|K|> k) and the sum
∑
{i,j}∈(K2) Y

∗
ij

is small enough—less than the right-hand side of (3.17)—then K is appended to

the family F .

This clique separation heuristic runs in O(m3) time. To see this, note that GLCC

can be implemented to run in O(m2) time by maintaining the value of (3.18)

at each iteration. Indeed, for each of the O(m) iterations within GLCC, we can

update this value for each of O(m) vertices in constant time. Since the algorithm

is called for each vertex in [m], the claim holds. The total number of distinct

clique inequalities produced is at most m(m − k) − (m − 1) = O(m2), since the

clique K = [m] may be duplicated m − 1 times. In fact, this bound can be

reduced by an amount of m
⌊
m
k

⌋
: if Y ∗ satisfies the lower bound inequalities1,

then we can invoke Proposition 2.3.9, which tells us that whenever k divides |K|,

the corresponding lower clique inequality is satisfied automatically by Y ∗. Notice

that the bound on the total number of cliques becomes m
(
m−

⌊
m
k

⌋
− k − 1

)
+1,

or roughly m(m− k)
(
1− 1

k

)
.

1This condition may be relaxed, as the semidefiniteness of Y ∗ implies χ>KY χK ≥ 0 for any subset
K ⊆ [m], i.e.

∑
{i,j}∈(K2) Y

∗
ij ≥ −|K|2

.

64

Note that if the GLCC procedure is altered to only output the first violated

lower clique inequality, rather than all of them, then the running time of our

separation heuristic is still O(m3) in the worst case, but no more than m cliques

may be generated. Thus we choose to implement the former, since furthermore,

Proposition 2.3.8 tells us that the elliptope E(m, k) contains matrices which violate

all lower clique inequalities, barring the case where k divides |K|. LettingK denote

the final set of clique inequalities generated, if |K|≥ c+ := cmax − (|C|+|C0|), then

add to C0 only the c+ most violated such inequalities; otherwise, include all |K|

inequalities in C0.

4. 2-Partition Inequalities (2.49). We attempt to generate valid inequalities of the

following form, for disjoint sets S, T ⊆ [m], defining s := |S|, t := |T |:∑
(i,j)∈S×T

Yij −
∑

{i,j}∈(S2)∪(
T
2)

Yij ≤ min{s, t}+ 1
k−1

(
|t− s|

2

)
. (3.19)

In particular, since the separation problem is NP-hard even when s = 1, we

choose S and T so that we have sizes s = 1 and 3 ≤ t ≤ k. Indeed, Proposition

2.3.6 tells us that whenever |t − s|= 0 or |t − s|≥ k, and Y ∗ is in the truncated

elliptope E(m, k), then the corresponding 2-partition inequalities are satisfied au-

tomatically. In fact, the inequalities cannot be binding for |t−s|> k. On the other

hand, Proposition 2.3.7 states that there exist matrices in E(m, k) which violate

each 2-partition for 1 ≤ |t − s|≤ k − 1. Note that the triangle inequalities arise

whenever s = 1 and t = 2, and thus we restrict attention to t ≥ 3. Furthermore,

the 2-partition inequalities are only generated when k ≥ 3 (though the triangle

inequalities are still separated above for k = 2; see point 2. above).

A heuristic procedure similar to GWA (Algorithm 2), is our randomized partition

search (RPS), displayed as Algorithm 4. We call RPS for each vertex s ∈ [m], and

aim to form a family of valid 2-partition inequalities that Y ∗ violates, i.e. find

T ⊆ [m] \ {s}, 3 ≤ |T |≤ k, so that the following holds:∑
j∈T

Y ∗sj −
∑

{i,j}∈(T2)

Y ∗ij > 1 + 1
k−1

(
t− 1

2

)
. (3.20)

65

Algorithm 4: randomized partition search

Input : positive integers m and k, index s ∈ [m], and non-negative, symmetric

Y ∈ Rm×m

Output: A family T ∈ 2[n]\{s} of size |T |≤ m− 4, in which 3 ≤ |T |≤ k for each

T ∈ T

Initialize T := ∅, T := ∅, and z := 0;

Define V :=
{
i ∈ [m]\{s}

∣∣∣Yis > −1
k−1

}
;

Let π : {1, . . . , |V |} → V be an arbitrary permutation of V ;

for i = 1, . . . , |V | do

Let v := π(i);

if |T |< k then

Define δ := Yvs −
∑

j∈T Yvj ;

if δ > 0 then

Increase z := z + δ;

if |T |≥ 3 and z > 1 + 1
k−1
(|T |−1

2

)
then

Update T := T ∪ {T};

else

for ` ∈ T do

Define δ` :=
(
Yvs −

∑
j∈T\{`} Yvj

)
−
(
Y`s −

∑
j∈T\{`} Y`j

)
;

Let t := arg max`∈T {δ`};

if δt > 0 then

Update T := (T \{t}) ∪ {v};

Increase z := δt;

/* Recall that here, |T |= k */

if z > 1 + 1
k−1
(|T |−1

2

)
= k

2 then

Update T := T ∪ {T}

66

In RPS, the vertices [m]\{s} are searched in a random order, and at each iteration,

the considered vertex ` ∈ [m]\T is appended to T only if |T |< k and the expression

Y`s −
∑
j∈T

Yuv > 0 (3.21)

holds, or, when |T |= k, if there exists a vertex in u ∈ T such that replacing u

with ` results in a net increase, i.e.Y ∗s` +
∑

j∈T\{u}

Y ∗j`

−
Y ∗su +

∑
j∈T\{u}

Y ∗ju

 > 0. (3.22)

If the latter holds, then u ∈ T is selected so that (3.22) yields the largest net

increase. Each time the set T is altered, and |T |≥ 3, RPS adds T to the family

of 2-partition inequalities T only if (3.20) holds for Y ∗, i.e. if the corresponding

2-partition inequality is violated.

This separation algorithm runs in O(m2k2), since we call RPS n times, and each

call takes O(mk2). Indeed, RPS scans O(m) vertices, each time comparing the

left-hand side sum of (3.21)—which is the sum of O(|T |) entries—to that of at

most |T | vertices of T . Since |T |= O(k), the claim follows. The total number of

distinct 2-partitions generated is at most m(m−4) = O(m2). If RPS is altered to

only output the first violated 2-partition found, the overall separation procedure

would still run in O(m2k2), but not more than m violated inequalities would be

produced. We choose the former routine, since Proposition 2.3.7 implies that it

is possible for all inequalities with |S|= 1 and 3 ≤ |T |≤ k to be violated by Y ∗.

5. Star cover inequalities (2.65). Here, we attempt to separate the extended start

cover inequality: ∑
j∈C

Yij ≥ |E(C)|−|C|+1− |C|−1

k − 1
, (3.23)

for some minimal cover C ⊆ [m] and its extension

E(C) = C ∪
{
` ∈ [m]\C

∣∣∣∣ a` ≥ max
h∈C

ah

}
,

where index i ∈ [m] \C. The heuristic separation of such inequalities is as

follows. For each v ∈ [m], find a minimal cover C ⊆ [m] \ {v}, by itera-

tively appending a vertex ` ∈ [m] \ (C ∪ {v}) for which Y ∗v` is maximum over

67

{
h ∈ [m] \ (C ∪ {v})

∣∣∑
i∈C ai − ah > n− α

}
, i.e. at each step, choose the vertex

external to C for which C\{`} is still a cover, and minimizes
∑

i∈C Y
∗
vi−Y ∗v`. Once

the set is found, extend it to E(C), and test the inequalities 3.23 for violation,

for each u ∈ [m]\E(C).

Note that this star covering separation heuristic is not entered if α ≤ mini∈[m] ai.

6. Flower inequalities (2.71) Finally, we attempt to separate the weighted flower

inequalities:

∑
{i,j}∈(F2)

aiajYij +
∑

(i,j)∈F×[m]\F

aiajYij ≥ k
k−1

((
α

2

)
q +

(
r

2

)
+ r(α− r) (3.24)

−
∑
i=1

m

(
ai
2

))
+ −1

k−1

((
c

2

)
+ c(n− c)

)
,

for any set F ⊆ [m] which satisfies |F |≤ αkα, where c :=
∑

i∈F ai, q :=
⌊
c
α

⌋
, r := c

mod α, and n =
∑

i∈[m] ai, and where kα denotes the largest number of parts of

minimum size (i.e. α) in any k-partition of [n]—where n is the original size of the

SBC input I—with parts bounded in size between α and β. By Proposition 2.1.3,

we must have kα > 0. Since the number of coefficients of the flower inequalities

are dense, we proceed in a complementary fashion to the greedy clique covering

(GCC), or Algorithm 1. In particular, for each vertex v ∈ [m], we grow the initial

set F := {v}, of cost
∑

u∈[m]\{v} Y
∗
uv, in a greedy fashion, i.e. at each step, we find

an external vertex u ∈ [m] \ F which minimizes

∑
i∈[m]\(F∪{u})

aiauY
∗
iu.

Continue until the first violated flower inequality (3.24) is found, or the maximum

number of allowed iterations has been met—there is to be only a small number

of iterations, e.g. min{α, k}.

Note that this separation heuristic is not called if α ≤ mini∈[m] ai.

In preliminary tests, it was seen that, unless
⌈
n
k

⌉
= β, many of the valid inequalities

of the form
∑
{i,j}∈([m]

2)AijYij ≤ b with positive coefficients Aij and positive right-hand

side b discussed in the previous sections turn out to be too weak for our problem,

68

i.e. are almost never violated. Intuitively, it can be argued that since our objective is

to minimize cW ′ • Y + d for non-negative c and W ′, implies that entries Yij strive to

be close to the lower bound −1
k−1 . Hence these types of inequalities were not included

in our algorithm SBC.

3.4 Upper bounding procedure

In this section, we present a heuristic algorithm called by SBC when attempting

to bound the capacitated k-partition instance I := (n, k, α, β,D,W) from above,

i.e. when generating feasible weight-capacited k-partitions of [n]. Intuitively, the pro-

cedure, denoted BIN, aims to first form any feasible weight-capacitated k-partition V of

I by “packing” vertices one-by-one into k distinct parts or bins, and further “swapping”

vertices between bins. Once the set of bins forms a feasible k-partition, vertices are

further swapped whenever the resulting partition realizes a smaller total weight.2

For the input I to SBC, we define the following auxiliary global variables. At the

start of the main algorithm SBC, we initially let Rglo := Rloc := R(I, I) be respective

tuples denoting global and local instances of weight capacitated k-partition problem.

We also let cglo := cloc := 0 be integer counters of the following subroutines, with cmax

denoting an upper bound on both values, and tmax a separate global counter limit (to

be discussed). Further initialize Vglo := Vloc := (∅, . . . , ∅), which are to be, respectively,

global and local k-packings of their corresponding problems Rglo and Rloc, i.e. each

is of the form (V1, . . . , Vk) where subsets Vi are disjoint and possibly empty. Define

∪V :=
⋃
i∈[k] Vi, for any k-packing V = (V1, . . . , Vk).

Once a given a subproblem J = (m,S, τ, z) of I has reached this upper bounding

procedure, we call BIN, which consists of calling first the global subroutine GBIN

(Algorithm 5) on global input I, and then local subroutine LBIN (Algorithm 6) on

local input J . The output of the former algorithm provides a k-packing of R(I, I)

(i.e. a global k-packing), whereas the latter provides a k-packing of R(I,J ′), for some

2There exist successful heuristics for many subcases of our problem, e.g. maximum k-cut—the
case G = ∅, α = 1, and β = n—has a provably good approximation algorithm, in expectation [38]. In
such cases, the associated tailored methods may work better than our more general procedure, and can
therefore be called where appropriate.

69

Algorithm 5: global subroutine of BIN: GBIN

Let n be number of vertices of Rglo;

if cglo = cmax then

reset cglo := 0, and Vglo := (∅, . . . , ∅);

else

increment cglo := cglo + 1;

if ∪Vglo ([n] then

call PACK on (Rglo,Vglo), resulting in solution V ′;

if ∪V ′ = [n] then

call SWAP on (Rglo,V ′), resulting in solution V ′ := V ′′, and reset cglo := 0;

else

call SWAP on (Rglo,Vglo), resulting in solution V ′;

define Vglo := V ′;

subproblem possibly distinct from J . Thus, if either output represents a feasible weight-

capacitated k-partition of I, and is of cheaper cost than the best known solution Vub,

then we update Vub and zub appropriately. Otherwise, the global and local k-packings

found, are stored for future manipulation, respectively, as Vglo and Vloc. The limit cmax

denotes the maximum number of consecutive attempts BIN makes at minipulating a

k-packing into a k-partition3, and similarly, from a k-partition to a weight-capacitated

k-partition. This ensures that neither Vglo or Vloc will be “stuck”, and in the local case,

it allows the exploration of k-packings and k-partitions with respect at least a fraction

of 1
2cmax

distinct subproblems J ′ generated by SBC.

All that remains is an explanation of the subroutines PACK and SWAP found in

both GBIN and LBIN, which are discussed in the following sections.

3Note that, indeed, if the vertex set is [m] and k-packing V of [m] is such that ∪V = [m], then V
can be manipulated into a k-partition by taking any empty bin and “filling” it with half of another
non-empty bin’s constituents. Furthermore, the total weight cannot increase when doing so, since
W ′ ∈ Rm×m is nonnegative.

70

Algorithm 6: local subroutine of BIN: LBIN

Input : subproblem J of I

Let n be number of vertices of Rloc;

if cloc = cmax then

reset cloc := 0, Vloc := (∅, . . . , ∅), and Rloc := R(I,J);

else

increment cloc := cloc + 1;

if ∪Vloc ([n] then

call PACK on (Rloc,Vloc), resulting in solution V ′;

if ∪V ′ = [n] then

call SWAP on (Rglo,V ′), resulting in solution V ′ := V ′′, and reset cloc := 0;

else

call SWAP on (Rloc,Vloc), resulting in solution V ′;

define Vloc := V ′;

3.4.1 Capacitated bin packing heuristic

Supposing that R := R(I,J) = (m, k, α, β, S′,W ′, a) is the weight capacitated k-

partition input with respect to subproblem J = (m,S, τ, z), and V = (B1, . . . , Bk) is

a k-packing of [m], we demonstrate the subroutine PACK (Algorithm 7) with respect

to input (R,V). The algorithm essentially takes the vertices of [m]\∪V, and in some

order, it attempts to place each into some bin Bi, until either V becomes a k-partition

of [m]—possibly not feasible to R—or the number of attempts has reached the limit

tmax. In the former case, we proceed to call SWAP (see next section) which further

attempts to manipulate V into a weight-capacitated k-partition of [m]. In either case,

the call to PACK ends in a k-packing being output and stored in one of the global

variables, Vglo or Vloc. We present a more detailed version of the procedure next. First,

recall that a = (ai : i ∈ [n]), where
∑

i∈[m] ai = n. For convenience, define, for any

subset S ⊆ [m], a(S) :=
∑

i∈[m] ai.

The algorithm PACK (Algorithm 7) is not guaranteed to stop with a k-partition

71

Algorithm 7: packing subroutine of BIN: PACK

Input : input tuple R := (m, k, α, β, S′,W ′, a) of weighted capacitated

k-partition, and k-packing V = (B1, . . . , Bk) of [m]

Output: a k-packing (B1, . . . , Bk) of [m]

Define counter t := 0;

Let Q := [m]\∪V be a “first-in first-out” queue;

while Q 6= ∅ and t < tmax do

select v as “top” of Q, reset Q := Q\{v} and increment t := t+ 1;

define P :=
{
i ∈ [k]

∣∣∣ (Bi∪{v}2

)
∩ S′ = ∅

}
;

if P 6= ∅ then

choose ` ∈ arg mini∈P {a(Bi ∪ {v})};

if a(B` ∪ {v}) ≤ β then

update B` := B` ∪ {v};

else

find minimal F ⊆ B` such that a(B`\F ∪ {v}) ≤ β;

update B` := B`\F ∪ {v};

“push” each u ∈ F onto Q;

else

choose ` ∈ arg mini∈[k]

{
|
(
Bi∪{v}

2

)
∩ S′|

}
;

define F :=
(
B`
2

)
∩ S′ 6= ∅;

if a(B`\F ∪ {v}) ≤ β then

update B` := B`\F ∪ {v};

“push” each u ∈ F onto Q;

else

find minimal F ′ ⊆ Bi\F such that a(Bi\(F ∪ F ′) ∪ {v}) ≤ β;

reset B` := B`\(F ∪ F ′) ∪ {v};

“push” each u ∈ S ∪ F onto Q;

72

of [m], and thus not a weight-capacitated k-partition (cf. Proposition 2.1.4). Indeed,

consider any iteration and a vertex v ∈ [m]\∪i∈[k]Bi (i.e. the “top” of Q). If there

exists a bin Bi with no neighbor of v in S′ (i.e. S′ ∩
(
Bi∪{v}

2

)
= ∅) and is of small

enough weight to include v (i.e. a(Bi ∪ {v}) ≤ β), then v can be placed in Bi. In such

a case, we choose the bin Bi for which a(Bi ∪ {v}) is smallest, since, intuitively, this

encourages an even distribution of bin weights at each iteration. Otherwise, we must

remove vertices from Bi to make “room” for v, and so we attempt to remove only a

small amount of vertices (i.e. minimal F ⊆ Bi so that a(Bi\F ∪ {v}) + av ≤ β and

S′ ∩
(
Bi\F∪{v}

2

)
= ∅). This choice is made so that the queue Q does not grow too large

after “pushing” the removed vertices back (i.e. Q := Q ∪ F). Once PACK exits, the

resulting k-packing V ′ may be a k-partition of [m], in which case BIN calls SWAP (see

next section) on (R,V ′); otherwise, BIN is exited entirely. Note that feasibility of V ′

reduces to checking if

a(Bi) ≥ α for i ∈ [k],

since the remaining properties of a weight-capacitated k-partition

a(Bi) ≤ β for i ∈ [k],(
Bi
2

)
∩ S′ = ∅ for i ∈ [k],

are maintained throughout each iteration. The order in which vertices are placed onto

the queue is randomized, as to allow for variability in the search for a k-partition.

3.4.2 Capacitated bin swapping extension

Once a k-partition V = (V1, . . . , Vk) of [n] is found by PACK (see previous section), for a

given subproblem J = (m,S, τ, z) defining weight capacitated k-partition instance

R := R(I,J) = (m, k, α, β, S′,W ′, a), we proceed to the following SWAP procedure

(Algorithm 8). Essentially, this subroutine of BIN locally swaps vertices between bins

of k-partition V = (V1, . . . , Vk) of [m], in an attempt to reach a weight-capacitated

k-partition of low total cost. In particular, the algorithm starts by searching for a

feasible weight-capacitated k-partition, and if one is reached, it calls another subroutine,

FSWAP (Algorithm 9), which continues swapping while maintaining feasibility and

73

Algorithm 8: swapping subroutine of BIN: SWAP

Input : input tuple R := (m, k, α, β, S′,W ′, a) of weighted capacitated

k-partition, and k-partition V = (V1, . . . , Vk) of [m]

Output: a k-partition of V ′ of [m]

Let L := {i ∈ [k] | a(Vi) < α} be a “first-in first-out” queue;

while L 6= ∅ and t < tmax do

let Q := [k]\L be a “first-in first-out” queue;

select ` from “top” of L, remove L := L\{`}, and increment t := t+ 1;

while Q 6= ∅ and a(V`) < α do

select q from “top” of Q, remove Q := Q\{q};

let F := arg maxH⊆Vq

{
|H|

∣∣∣ (V`∪H2)
∩ S′ = ∅

}
;

find F ′ := arg maxH⊆F {a(H) : a(Vq\H) ≥ α} by greedy search;

update Vq := Vq\F ′ and V` := V` ∪ F ′;

if a(V`) < α then

“push” ` back onto L;

if L = ∅ then

call FSWAP on (R,V, t), letting V ′ be the solution returned;

else

define V ′ := (V1, . . . , Vk);

never increasing the overall cost of the present solution. Note that the latter subroutine,

FSWAP, can be called independently on any feasible weight-capacitated k-partition; for

instance, when creating a parallel algorithm this can be assigned to one thread with

the sole purpose of improving incumbent solutions.

For the given input R and k-partition V of [m], the “closeness” of V to being feasible

can be measured by how many parts Vh, h ∈ [k], are capacitated, i.e. satisfying

a(Vh) ≥ α, (3.25)

a(Vh) ≤ β, (3.26)

74

(
Vh
2

)
∩ S′ = ∅. (3.27)

Indeed, if all parts are capacitated, then the k-partition is a weight-capacitated k-

partition. The algorithm SWAP attempts to manipulate V into a feasible solution by

increasing the number of capacitated parts. In particular, it first partitions [k] into the

set of capacitated parts of V, Q := {h ∈ [k] | a(Vh) ≥ α}, and the set of non-capacitated

parts, L := [m] \ Q. Then, for any ` ∈ L, and some q ∈ Q, the algorithm removes a

maximal set of vertices F ⊆ Vq for which the three properties (3.25)–(3.27) hold for

V ′q := Vq\F , and the latter two properties (3.26)–(3.27) hold for V ′` := V` ∪ F . Clearly,

if F 6= ∅, then |V ′` |> |V`|, and if further |V ′` |≥ α, then the resulting k-partition V ′ is

closer to being feasible—the number of capacitated parts of V ′ is strictly more than V.

To see that finding a maximal such set F yields a(V ′`) = a(V` ∪ F) ≤ β, notice that

a(V`)
′ = a(V`) + a(F) (3.28)

≤ a(V`) + (a(Vq)− α) (3.29)

< α+ a(Vq)− α (3.30)

≤ β, (3.31)

where the second line is due to α ≤ a(Vq \F), and the third line is due to a(V`) < α.

This procedure is performed for each ` ∈ L, until either the secondary search over Q

has been exhausted, or when a(V ′`) ≥ α, in which case ` may be placed into Q.

SWAP is not guaranteed to stop with a weight-capacitated k-partition, hence we

limit the total of iterations spent search for one by tmax. To increase variability in the

search, we push elements onto either queue (L or Q in Algorithm 8), in a randomized

order. If, however a solution is found, we proceed to FSWAP, which attempts to

decrease the overall cost of the input partition.

The FSWAP subroutine takes a weight-capacitated k-partition of [m], i.e. a feasible

solution, and attempts to improve the value of the solution. In particular, the algorithm

runs until a number of iterations has reached a limit, where an iteration is as follows.

First, a part ` ∈ [k] from which some vertex may be removed, i.e. a(V`\{v}) ≥ α for

some v ∈ Vh, is selected randomly. Then the vertices of V` are scanned in some order,

75

Algorithm 9: swapping feasible solutions: FSWAP

Input : t ∈ Z+, input tuple R := (m, k, α, β, S′,W ′, a) of weight capacitated

k-partition, weight-capacitated k-partition V = (V1, . . . , Vk) of [m]

Output: a feasible weight-capacitated k-partition V ′ of [n]

while t < tmax do

choose ` ∈ [k] randomly, and increment t := t+ 1;

let Q := {v ∈ V` | a(V`\{v}) ≥ α} be a “first-in first-out” queue;

while Q 6= ∅ do

let v be “top” of Q, and remove Q := Q\{v};

let L :=
{
h ∈ [k]\{`}

∣∣∣ a(Vh ∪ {v}) ≤ β,
(
Vh∪{v}

2

)
∩ S′ = ∅

}
;

for i ∈ L do

define δi :=
∑

u∈V \̀{v}Wuv −
∑

u∈ViWuv;

let i∗ := arg mini∈L{δi};

if δi∗ < 0 then

update Vi∗ := Vi∗ ∪ {v} and V` := V`\{v};

76

with the intent of removing some v ∈ V` and replacing v into some part h ∈ [k]\{`}.

This can only happen if Vh ∪ {v} would still be a capacitated part, i.e. if

a(Vh ∪ {v}) ≤ β,
(
Vh ∪ {v}

2

)
∩ S′ = ∅. (3.32)

Once these conditions are satisfied, v is replaced only if the net difference in cost is

non-positive, i.e. if ∑
u∈V \̀{v}

Wuv −
∑
u∈Vi

Wuv < 0.

Indeed, this implies that any resulting k-partition output by FSWAP is in fact a feasible

solution of cost not larger than the input partition V. Since the procedure, however, is

not guaranteed to strictly improve this cost, we randomize the order vertices are placed

in the queues, as to increase variability.

3.5 Branching strategy

For given input I = (n, k, α, β,D,W) to SBC, and an arbitrary subproblem J =

(m,S, τ, z) for which the weight capacitated k-partition input becomes R(I,J) =

(m, k, α, β, S′,W ′, a), the branching procedure is as follows. First we select a pair of

vertices of [m] which are not fixed to be together in every feasible solution of J , nor

are they separated by every solution of J , i.e. a pair e := {r, s} ∈
(
[m]
2

)
\S′. Then two

new subproblems J0 and J1 are formed and placed into the pool of active subproblems

P, where J0 := (m,S0, τ0, z) represents the set of solutions of J with r and s separate,

and J1 := (m − 1, S1, τ1, z) represents the set of solutions of J with r and s together

in some part. Here, we must have S0 := S ∪ {e}, and τ0 := τ , since separating the pair

{r, s} does not yield a new k-partition of [m].

On the other hand, for J1, merging τ(r) and τ(s), while maintaining the property

that τ1(i) must be the ith smallest representative, yields the definition:

τ1(i) :=


τ(i) if i < s, i 6= r,

τ(r) ∪ τ(s) if i = s,

τ(i+ 1) if i ≥ s.

77

Indeed, by our choice to represent any part P of an m-partition of [n] by its minimum

constituent in [n], we see that rep(τ(r)) < rep(τ(s)) (see §3.1), and the claim holds.

Since the pairs of S are indices in [m], the auxiliary transformation σ: [m]→ [m− 1]:

σ(i) :=


i if i < s,

r if i = s,

i− 1 if i > s,

allows us to define S∗: {σ(i), σ(j)} ∈ S∗ if and only if {i, j} ∈ S and σ(i) 6= σ(j). Since

{r, s} /∈ S, the expression σ(i) 6= σ(j) holds for every {i, j} ∈ S. It is clear now that J0

and J1 represent the desired partition of J .

Recall from Section 3.3, that each subproblem is equipped with a set of cuts C ⊆

C(I,J), or pairs (A, b) ∈ C which represent valid inequalities of the form∑
{i,j}∈([m]

2)

AijYij ≤ b, for Y ∈ Y(m, k, α, β, S′, a).

After branching on subproblem J , we scan C by type (see §3.3.2), and update indices to

be included in C0 and C1—the cuts to be included in J0 or J1, respectively. In particular,

since J0 shares the same index set [m], we let C0 be C after possibly removing the lower

bound inequality corresponding to {r, s}; we thus proceed as follows for C1:

1. Lower bound inequalities. Suppose C contains lower bound inequalities represented

by a set L ⊆
(
[m]
2

)
. Then include in C1 those inequalities represented by the set

L1 ⊆
(
[m−1]

2

)
, defined to have the pair {σ(i), σ(j)} whenever {i, j} ∈ L and

σ(i) 6= σ(j). Note that σ(i) = σ(j) only if {i, j} = {r, s}.

2. Triangle inequalities. Suppose C contains triangle inequalities encoded by an

ordered set T ⊆ [m]3, where for any (i, j, h) ∈ T , we have i < j and h /∈ {i, j}.

Then include in C1 those inequalities represented by the ordered set T1 ⊆ [m−1]3,

defined to have the triple (min{σ(i), σ(j)},max{σ(i), σ(j)}, σ(h)) ∈ T1 whenever

(i, j, h) ∈ T , and the elements σ(i), σ(j), and σ(h) are distinct. Note that the

three elements are distinct whenever {r, s} 6⊆ {i, j, h}.

3. (Lower) clique inequalities. Suppose C contains lower clique inequalities repre-

sented by a family of sets K ∈ 2[m], where for any K ∈ K, we have |K|≥ k+1 and

78

|K| mod k 6= 0. Then include in C1 those inequalities represented by the family

K1 ∈ 2[m−1], defined to have the set σ(K) := {σ(i) : i ∈ K} whenever K ∈ K

and |σ(K)| mod k 6= 0. Note that |σ(K)| mod k = 0 only if {r, s} ⊆ K and |K|

mod k = 1.

4. 2-partition. Suppose C contains 2-partition inequalities represented by a family

T ∈ [m] × 2[m], where for any (q, T) ∈ T , we have q /∈ T and 3 ≤ |T |≤ k. Then

include in C1 those inequalities represented by the family T1 ∈ [m − 1] × 2[m−1],

defined to have the tuple (σ(q), σ(T)) whenever σ(q) /∈ σ(T) and 3 ≤ |σ(T)|≤ k.

Note that σ(q) ∈ σ(T) if q ∈ {r, s} and {r, s} ∩ T 6= ∅, and |σ(T)|< 3 when

{r, s} ⊆ T .

5. Star cover inequalities. Suppose C contains star cover inequalities represented by

a family of sets Q ∈ 2[m], where for any Q ∈ Q, the Q is a minimal cover of [m]

with respect to capacity n− α. Then include in C1 those inequalities represented

by the family Q1 ∈ 2[m−1], defined to have the set σ(Q) whenever Q ∈ Q and

σ(Q) is a minimal cover of [m] with respect to capacity n−α. Note that σ(Q) is

minimal whenever {r, s} ⊆ Q or {r, s} ∩Q = ∅.

6. Flower inequalities. Suppose C contains flower inequalities represented by a family

of sets F ∈ 2[m], where for any F ∈ F , we have |F |≤ αkα. Then include in C1

those inequalities represented by the family F1 ∈ 2[m−1], defined to have σ(F)

whenever F ∈ F and |σ(F)|≤ αkα. Note that |σ(F)|> αkα cannot occur.

Ideally, our branching choice of {r, s} should partition J into subproblems which

enable improvement upon z—the current best bound on J . To this end, we choose the

least-decided pair i.e.

{r, s} ∈ arg min

{∣∣∣12 (1 + −1
k−1

)
− Yij

∣∣∣ ∣∣∣∣ {i, j} ∈ ([m]

2

)
\S
}
, (3.33)

where ties are broken by selecting, among the least-decided pairs, {r, s} with smallest

Wrs value. This choice was also made in Ghaddar et al. [41] regarding a similar SDP-

based branch-and-cut algorithm which was applied to the minimum k-partition prob-

lem (a subclass of capacitated k-partition) based on empirical evidence presented by

79

Rendl et al. [86] in the maximum cut setting. They both observed that branching on

the least-decided variable did in fact yield the largest margin of improvement in relax-

ation bounds when compared to other branching methods. This is in contrast with the

findings for LP-relaxations (see [3] for a detailed review on branching), however, SDP

interior-point methods differ in that “warm-starting” is difficult (see [8] for success in

this area, applied to minimum graph bisection using spectral bundle methods).

80

Chapter 4

Test results and discussion

In this chapter we present an analysis of tests performed using our branch-and-cut

algorithm SBC (§3). A description of implementation aspects is given first, followed

by results from random tests on instances of the capacitated k-partition problem

(§2.2.2). We end with a report on the performance of SBC when applied to the data

set of a previous conference; namely, the 13th Annual INFORMS Computing Society

(ICS-2013) [36].

4.1 Implementation

Our algorithm, SBC, was implemented in the C++ programming language environ-

ment, compiled with GCC version 4.6.3, on an x86-64 machine with an Intel Core i7

950 chip—clocked at 3.06GHz—with 9Gb of available RAM, and Linux Ubuntu 12.04

LTS.

4.1.1 Branch-and-bound framework

Our optimization algorithm is embedded in a branch-and-bound (B&B) framework,

with subproblems bounded by semidefinite programming (SDP) solutions. We choose

the general B&B shell found in Eckstein et al. [30], known as the Parallel Enumeration

and Branch-and-Bound Library (PEBBL; v1.4). PEBBL is an open source C++ library,

which allows for the customization of the bounding procedure, the enumeration of near-

optimal solution, and the immediate parallelization of an embedded algorithm—our

testing, however, remains in a serial setting. This library is supported by the ACRO

optimization project [66] in that it allows PEBBL to be built with other auxiliary

libraries—one which we particularly find useful is the general utilities library UTILIB

81

[67]. We use PEBBL build 1.4, compiled with optimization, along with many data

structures of UTILIB.

4.1.2 Semidefinite programming solver

The SBC algorithm attempts to solve numerous subproblems, each of which employs an

SDP relaxation of a weighted capacitated k-partition instance (cf. §3.1.2). The SDP

solver chosen here is the open source SemiDefinite Programming Algorithm (SDPA)

of Fujisawa et al. [39, 104], which encodes a Mehrotra predictor-corrector—or primal-

dual—interior point method. We choose this solver for its callability as a C++ package,

and its ability to be parallelized (both in multi-threading, and in MPI setting, though

the latter requires an upgrade to SDPA: SDPARA [105]). Moreover, our preliminary

tests compared SDPA favorably to the SemiDefinite and Dual Minimization (SeDuMi)

software of Sturm [93] on small maximum cut instances, where as much as 10% speed-

ups were observed. We compiled SDPA version 7.3.8, which solves matrix operations

using the BLAS/LAPACK implementation OpenBLAS, version 0.2.8 [103, 99]. The

standard form in which a semidefinite programming problem is represented is specified,

in the SDPA manual, as the following pair of primal and dual problems, respectively:

(P) minimize
∑
i∈[M]

cixi

subject to X =
∑
i∈[M]

Fixi − F0 (4.1)

X � 0,

and

(D) maximize F0 • Y

subject to Fi • Y = ci for i ∈ [M] (4.2)

Y � 0.

Here, the input consists of positive integers M and N , scalars ci, for i ∈ [M], and N×N

matrices Fi, for i ∈ {0, 1, . . . ,M}, x ∈ RM . Furthermore, the vector x = (xi : i ∈ [M])

and N × N matrix X are the primal variables, whereas N × N matrix Y is the dual

variable.

82

Notice that each subproblem J yields a weight capacitated k-partition instance

R := R(I,J) = (m, k, α, β, S′,W ′, a) for which the formulation of optimization model

SWCKP (cf. §3.1.2) does not conform to either the primal or the dual format above.

This is remedied by first replacing the objective

minimize k−1
2k W

′ •
(

1
k−1J + Y

)
,

with

1
2kW

′ • J −maximize
(
−(k−1)

2k W ′
)
• Y.

Thus we now have an objective function which resembles that of a dual problem, only

after an optimum to the problem is found, the answer must be negated and further

translated by 1
2kW

′ • J =
∑
{i,j}∈([m]

2)W
′
ij . In other words, we are finding a maximum-

weight (capacitated) k-cut of J , and then we take the complementary minimum-weight

k-partition solution and send it back to the main SBC algorithm. All that remains is

transforming the set of constraints to appear similar to those in (4.2).

Any system of constraints containing a single linear inequality, A • Y ≤ b, and

semidefinite requirement, Y ∈ Sm+ , can be equivalently represented as the following: A 0

0 1

 •
 Y 0

0 ξ

 = b. (4.3)

 Y 0

0 ξ

 � 0. (4.4)

Note that the instance R formulated as SWCKP (cf. (3.12)–(3.16)) has m-dimensional

matrix variables, where m = O(n) with n denoting the initial size of the input I to SBC.

The problem also contain c = |C| inequality constraints—C contains cuts generated as

in section §3.3.2—and m + |S′| equalities, where s := |S′|= O(m2). Transforming this

model, as above, into the dual form of SDPA results in an (m+ c)-dimensional problem

with m+c+s constraints, all of which are now in equality form. The primal-dual interior

point method used by SDPA (cf. Yamashita et al. [104, 105]), runs in O(NM2), where

our case has N = m + c and M = m + c + s. If S′ is sparse, or s = O(m), then the

run time becomes O((m + c)3). Further, if a large number of constraints are included

83

within C at any iteration—e.g. all Θ(m3) triangle inequalities—then the run-time is

estimated to be O(m9). Clearly, care must be taken when generating C, but regardless,

only small problems instances can be solved to optimality, since SDPA will be called

numerous times per subproblem.

Fortunately, growing a variable matrix increases overall sparsity of the problem,

as the parameter matrices Fi are block matrices, with the first block coinciding with

(possibly dense) matrices of dimension m × m, whereas the second block is a c × c

identity matrix corresponding to the slack variables of all original inequalities (i.e. ‘ξ’

in the above transformation).

As a final note, recall that calculating the Lovász-theta function ϑ(G) for G =

([m], S′) at subproblem J , is part of the proprocessing subroutine of SBC (cf. §3.2),

and it involves solving the SDP (3.8)–(3.11). Since the problem only needs to be solved

at most once, and consists only of equality constraints, the problem size in SDPA format

here—and thus the run-time per calculation—is much smaller relative to the multiple

SDPs solved when bounding the subproblem.

4.2 Random data

In this section, we present the results from running our algorithm on randomly gener-

ated weighted matrices W ∈ Rn×n+ . To do so, we call the Rudy graph generator, com-

piled in C (available in [2]). In particular, we generate four different classes of graphs

we refer to as “2-grid”, “random”, “clique”, and “random grid”. The 2-grid graphs are

planar, bidimensional grids over n2 vertices, where n is specified as part of the input

to Rudy, and edge weights are either 0 or 1. For example our file 2grid_33, represents

the 2-grid on 32 = 9 vertices. The random graphs are completely dense graphs on

n vertices, with edge weights uniformly at random, picked from the set {1, . . . , 10};

random_20_109 is the random graph generated by Rudy, with n = 20 and a seed of 109

for the random number generator. Similarly, random grids are planar, with either 3 or

4 dimensions, and edges randomly generated over the interval {1, . . . , 100}; an example

of a 3-dimensional random grid graph appears in instance 444rand_100_398, denoting

84

that 43 = 64 vertices are present, and edge weights are selected using a random number

generator with seed 398. Finally, the clique graphs are completely dense graphs with

edges weights Wij = |j− i|, for each {i, j} ∈
(
[n]
2

)
; clique_30 is one such graph we use,

where here n = 30.

Many similar graphs have been generated and optimized over in Ghaddar et al. [41]

as well as in the follow-up paper by Anjos et al. [5], both of which studied a branch-

and-cut semidefinite programming algorithm similar to ours, and applied to maximum

k-cut instances. The graphs they generated using Rudy included negative edge weights,

since they were interested in physics applications, such as the Potts spin glass model.

Unfortunately, our algorithm was not designed for such problem instances, as we focus

on the conference scheduling application discussed in the first chapter.

Our algorithm SBC is tested on select instances (n, k, α, β, S,W) of capacitated k-

partition, although for presentation purposes, we display resulting solutions in terms

of the value of the complementary k-cut (i.e.
∑

i<jWij , less the k-partition cost).

In particular, for each n × n matrix W arising from one of the four aforementioned

types, we choose values of k ∈ {3, 5, 7}; two capacity scenarios (α, β) = (1, n) or(⌊
n
k

⌋
+ 1,

⌈
n
k

⌉
− 1
)
, referred to as trivial and tight capacities, respectively; and the set

of separate pairs S (cf. §2.1) is one of three types, S0, S1, or S2, explained next. For

the set of vertices [n], we define S0 := ∅, S1 is a disjoint union of
⌊
n
3

⌋
edges (i.e. S1 :=

{(3i − 2, 3i − 1) : i = 1, . . . ,
⌊
n
3

⌋
}), and S2 is a maximal set of

⌊
n
3

⌋
disjoint triangles

(i.e. S2 :=
{

(3i− 2, 3i− 1), (3i− 2, 3i), (3i− 1, 3i) : i = 1, . . . ,
⌊
n
3

⌋}
. We choose these

settings since S1 or S2, together with tight capacities α and β, since the resulting

problem instance is somewhat restricted and symmetric, yet intuitively hard to solve;

in other words, a large number of k-colorings of the graph S remain.

Tests are reported in separate tables, each corresponding to a particular choice of

parameters k, and α and β. The rows in each table are organized by choice of W , and

the columns are subdivided into three sections corresponding to the particular choice of

S (specified in the column header). For each instance, we present problem statistics of

the average of three distinctly seeded runs. In particular, the columns contain, in order

from left to right: the number of nodes appearing in the branch-and-bound search, the

85

total amount of time (CPU seconds) spent computing, the final relative gap in solution

quality (between worst bound and best solution upon exiting the procedure), the initial

relative gap found at the root, and the time spent solving all SDP instances arising

within the tree nodes.

Some further parameters are specified for our experiments as follows. In each test,

we only allowed 1000 seconds of total run-time, regardless of problem size. Since,

however, the increase in problem size correlates with the increase in computational

work, many of the instances could not be solved to optimality in such a short period

of time. Recall that the representation of our problems in the SDP solver (SDPA)

notation, grows proportionally with the number of cuts included, which in turn grow

at least cubicly in n; this is especially prohibitive if all Θ(n3) triangle cuts are included

(cf. §3.3.2). But since the number of cuts must be adequate for improvement to be made

at each subproblem, and we have observed in preliminary tests that the SDP problems

do not branch too deep, we thus impose a fairly modest cap on the total number of cuts

allowed at any given time, i.e. at 2000. We further stop adding cuts whenever more

than 300 cuts have been added, allowing each subproblem—especially those for large

n—to generate many of the polynomial time separable cuts prior to spending time on

those which have NP-hard separation problems.

After an SDP is solved we remove all non-binding inequalities and store them in a

pool for at most 5 consecutive iterations—in preliminary testing, more than 5 iterations

were unnecessary, and less than 3 showed a decrease in solution quality per SDP solved.

The number of rounds the SDP relaxation is updated with new cuts and solved is at

most 20, or until the increase in objective value is tailing off with relative tolerance

10−5. When solving the SDP, we allow the solver (SDPA) at most 25 iterations to

converge upon an approximate feasible solution. Since SDPA allows multi-threading—

and our algorithm used PEBBL only in serial mode—we found that the optimal number

of threads to use was 2 times the number of cores, thus we set this parameter to 8 for

our given architecture (see §4.1 for specs). Otherwise, the default parameter settings

of SDPA suffice for our tests.

When generating cutting planes, we completely enumerate the lower bound and

86

triangle inequalities, but otherwise the number of attempts at separating the harder

inequalities is limited (see §3.3.2 for details). The clique inequalities turned out to

be very helpful, and a large number appear to be binding at the tailing off of SDP

solutions. On the other hand, many 2-partition inequalities, although violated in the

initial phases of the cutting plane procedure, are ultimately only binding at optimality

when in the form of triangle inequalities. Similarly, larger cliques (c > k + 1) appear

frequently at the outset of the cutting plane procedure, but a majority of the clique

inequalities which remain binding are those with c = k + 1. The last type of cut we

generate, flower inequalities, rarely appeared to be violated, and only so at the root.

Furthermore, we did not include the star covering inequalities in our current tests, as

the clique and triangle inequalities appeared strong enough on their own, and their

number at each iteration remained steadily large (e.g. for example, each dense problem

with more than 60 nodes typically included all 2000 inequalities, which is roughly the

same size as
(
60
2

)
, or the maximum number of lower bound inequalities possible).

In our heuristic procedure, we allowed at most 5 consecutive rounds of a k-packing to

be “loaded” into PACK for packing into a k-partition, or to continue in SWAP towards

a feasible weight-capacitated k-partition (see §3.3). Within either PACK or SWAP, we

allow kn rounds of potential packing or swapping of vertices, respectively. Intuitively,

this means that each of the n vertices has an average of k chances of being packed

into or swapped out of a bin, k of which exist. Indeed, if a particular subproblem does

not contain a feasible solution close to the global optimum, our heuristic cannot turn

a local k-packing into a solution of best value; hence we limit the number of attempts

at improving its value. We also note that the Lovasz-theta function computed in the

preprocessing step is only computed if the size of the graph is large enough, i.e. if |E(G)|

is large and there are at least k + 1 vertices with degrees k + 1.

Tables 4.1 through 4.6 display our tests on instances with the four types of graphs

generated as W , with n ranging from 9 to 90. The first table (4.1) displays statistics

for each instance with k = 3, α and β trivial; here, the columns are broken up into

three blocks according to choice of S, with columns respectively displaying the total

number of nodes explored, total CPU time spent in seconds, relative final gap, relative

87

S
0

S
1

S
2

W
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

a
p

(%
)

R
.

G
a
p

(%
)

S
D

P
(s

)

2g
ri

d
-3

3
1

0.
0

0.
0
0

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
8
.3

3
0
.0

2g
ri

d
-4

4
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
1

0.
00

8.
33

0.
1

1
0
.2

0
.0

0
1
2
.5

0
0
.2

2g
ri

d
-5

5
1

0.
0

0.
0
0

0.
00

0.
0

1
0.

2
0.

00
2.

50
0.

2
2
5

4
.0

0
.0

0
7
.5

0
3
.9

2g
ri

d
-6

6
1

1.
1

0
.0

0
1.

67
1.

0
77

4.
9

0.
00

1.
67

4.
6

2
7
1

5
1
.3

0
.0

0
1
.6

7
4
9
.7

2g
ri

d
-7

7
19

8.
5

0.
00

1.
19

8.
2

13
13
.3

0.
00

5.
95

13
.0

2
8
9

8
7
5
.1

0
.0

0
4
.7

6
8
5
8
.7

2g
ri

d
-8

8
7,

39
3

99
9.

8
5
.5

6
5.

56
95

1.
0

8,
83

7
99

9.
8

0.
69

0.
69

95
9.

4
1
3
5

5
6
.6

0
.0

0
1
2
.5

0
5
5
.0

33
33

ra
n
d
-1

00
-4

00
2,

29
7

1,
00

6.
1

2.
1
2

2.
12

97
5.

0
8,

28
7

99
9.

8
1.

57
1.

57
94

9.
9

8
9
5

3
7
5
.6

0
.0

0
6
.2

7
3
6
4
.8

33
3r

an
d
-1

00
-0

91
29

3.
4

0
.0

0
2.

27
3.

2
1

0.
5

0.
00

3.
52

0.
5

3
7

8
.4

0
.0

0
4
.1

9
8
.2

3g
ri

d
-2

0-
09

1
1

0.
5

0.
0
0

2.
04

0.
5

1
0.

0
0.

00
0.

00
0.

0
4
9

1
1
.1

0
.0

0
2
.3

8
1
0
.8

44
4r

an
d
-1

00
-3

98
71

20
.0

0
.0

0
1.

17
19
.1

63
73
.9

0.
00

2.
57

72
.1

1
9
9

4
2
1
.4

0
.0

0
5
.8

1
4
1
3
.5

cl
iq

u
e-

20
1

0.
7

0.
0
0

0.
00

0.
7

1
0.

3
0.

00
0.

00
0.

3
1

0
.3

0
.0

0
0
.0

0
0
.3

cl
iq

u
e-

30
1

1.
6

0
.0

0
0.

00
1.

6
7

11
.3

0.
00

0.
65

11
.1

3
1
0
.1

0
.0

0
4
.7

9
9
.9

cl
iq

u
e-

40
3

23
.5

0.
00

0.
02

23
.1

1
8.

4
0.

00
0.

00
8.

2
3

2
8
.1

0
.0

0
5
.6

9
2
7
.7

cl
iq

u
e-

50
5

31
.2

0
.0

0
0.

01
30
.7

1
25
.7

0.
00

0.
00

25
.3

5
4
0
.3

0
.0

0
3
.0

7
3
9
.7

cl
iq

u
e-

60
1

16
.1

0.
00

0.
00

15
.8

15
63
.8

0.
00

0.
56

62
.7

1
9

6
5
.9

0
.0

0
7
.9

9
6
4
.7

cl
iq

u
e-

70
19

56
.0

0
.0

0
0.

13
55
.1

1,
17

3
1,

00
3.

5
1.

47
1.

91
98

0.
5

2
7

3
3
.9

0
.0

0
5
.9

2
3
3
.2

cl
iq

u
e-

80
21

11
3.

1
0.

00
0.

13
11

1.
4

1,
30

7
1,

00
0.

1
1.

74
2.

01
97

7.
9

2
7
9

2
6
8
.9

0
.0

0
5
.7

8
2
6
2
.8

cl
iq

u
e-

90
27

25
8.

2
0
.0

0
0.

14
25

4.
8

92
1

1,
00

0.
3

1.
63

1.
89

97
8.

9
2
0
9

3
0
8
.8

0
.0

0
6
.1

2
3
0
2
.5

ra
n
d
om

-2
0-

10
9

3
3.

9
0.

0
0

3.
84

3.
8

3
4.

2
0.

00
1.

51
4.

1
3

5
.6

0
.0

0
3
.6

2
5
.4

ra
n
d
om

-3
0-

01
8

23
94
.4

0
.0

0
1.

13
92
.7

17
60
.4

0.
00

1.
04

59
.3

2
7

1
0
4
.1

0
.0

0
4
.0

1
1
0
2
.1

ra
n
d
om

-4
0-

04
7

14
5

1,
00

0.
5

0.
2
3

1.
05

98
5.

6
13

7
1,

00
1.

9
0.

16
2.

65
98

7.
1

1
2
9

1
,0

0
4
.9

1
.1

8
2
.6

0
9
9
0
.0

ra
n
d
om

-5
0-

22
9

99
1,

00
1.

3
0
.5

2
2.

37
98

8.
9

99
1,

00
5.

4
0.

84
2.

58
99

2.
8

9
1

1
,0

0
8
.1

1
.5

3
2
.1

1
9
9
5
.7

ra
n
d
om

-6
0-

93
5

35
7

1,
00

0.
7

0.
6
7

1.
71

98
2.

1
28

5
1,

00
0.

0
1.

08
2.

19
98

3.
2

2
2
9

1
,0

0
3
.6

1
.2

5
2
.4

7
9
8
7
.6

ra
n
d
om

-7
0-

03
0

1,
95

5
99

9.
9

1
.0

4
2.

41
97

6.
3

1,
43

3
99

9.
7

1.
13

2.
54

97
6.

8
1
,4

7
5

1
,0

0
3
.8

1
.6

0
3
.4

0
9
8
0
.6

ra
n
d
om

-8
0-

70
2

1,
78

7
99

9.
9

1.
9
9

2.
31

97
5.

8
1,

82
5

1,
00

0.
1

1.
96

2.
30

97
5.

6
1
,7

2
7

1
,0

0
0
.0

3
.0

4
3
.3

9
9
7
6
.2

ra
n
d
om

-9
0-

09
9

1,
52

5
1,

00
0.

2
2
.2

7
2.

53
97

6.
8

1,
50

7
1,

00
0.

1
1.

94
2.

21
97

6.
8

1
,4

5
3

1
,0

0
0
.0

2
.8

0
3
.1

0
9
7
7
.0

Table 4.1: k = 3, α and β trivial

88

gap found at root, and total time spent solely on solving SDPs. When S = S0, almost

all of the 2-grid and clique graphs which form W yield problems which are solvable in

under 260 seconds, and where less than 30 tree nodes are searched. In fact, a majority

of them are solved within 5 tree nodes, which implies that the SDP relaxation at the

root is a very strong approximation of the optimum solution, and possibly produces a

matrix which is close to “integral”. The small number of search nodes, along with the

small initial integrality gap found at the root of larger problems such as clique-80,

implies that our heuristic produces feasible solutions which are close to the optimum.

Note, however, that the total time taken increases quickly with the number of vertices:

the time roughly doubles when successively comparing clique-60 through clique-90.

The amount of time dedicated to solving SDPs appears to be at least 90% of the total

time spent on any of the above problems, and in the larger clique graphs, the percentage

is at least 98%.

The other grid graphs yield peculiar behavior. While the 3-grid and random 3-

dimensional grids are solvable in under 20 seconds each, the instances 2grid-88 and

3333rand-100-400 show anomalous behavior. The gaps found at both root nodes

persist until the maximum time limit of 1000 seconds is reached. In each case, many

thousands of nodes are searched, averaging less than 1 second per subproblem in which

multiple SDPs are solved. Upon further inspection, we found that the initial bounds at

each root are equal to the corresponding optimal solution value. However, the resulting

matrices were highly fractional, and our heuristic could not improve upon the sub-

optimal incumbent found at the root. This behavior is also found when S = S1, but is

mitigated when restricted to S = S2.

The completely dense random graphs random-20-109 through random-90-099 show

us that as n grows, the problems become successively harder to solve to optimality. In

particular, while random-20-109 is solvable in 3.9 seconds over only 3 search nodes, the

instance random-30-018 takes an order of magnitude longer to solve, and already the

problem random-40-047 is not solvable to optimality in under 1000 seconds. On the

other hand, each problem with n ≥ 30 is tightly bounded by the SDP relaxations solved

at the root, as the relative gaps are all roughly under 2.5% to start. The improvement

89

S
0

S
1

S
2

W
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

a
p

(%
)

R
.

G
a
p

(%
)

S
D

P
(s

)

2g
ri

d
-3

3
1

0.
0

0.
0
0

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
7

0
.1

0
.0

0
8
.3

3
0
.1

2g
ri

d
-4

4
1

0.
0

0
.0

0
0.

00
0.

0
5

0.
1

0.
00

8.
33

0.
1

5
0
.5

0
.0

0
8
.3

3
0
.5

2g
ri

d
-5

5
1

0.
0

0.
0
0

0.
00

0.
0

5
0.

6
0.

00
7.

50
0.

5
5

1
.4

0
.0

0
7
.5

0
1
.4

2g
ri

d
-6

6
13

1.
6

0
.0

0
1.

67
1.

5
97

11
.9

0.
00

3.
33

11
.2

2
9

4
.7

0
.0

0
1
.6

7
4
.5

2g
ri

d
-7

7
45

8.
6

0.
00

1.
19

7.
9

32
3

40
.7

0.
00

5.
95

37
.2

6
3

1
4
4
.8

0
.0

0
1
4
.2

9
1
4
2
.1

2g
ri

d
-8

8
7,

31
9

99
9.

8
5
.5

6
5.

56
95

1.
7

2,
66

9
99

9.
9

25
.0

0
25
.0

0
96

7.
7

1
3
5

5
6
.0

0
.0

0
5
1
.3

9
5
4
.4

33
33

ra
n
d
-1

00
-4

00
2,

28
9

1,
00

3.
3

5.
4
6

5.
46

97
3.

0
8,

30
9

1,
00

0.
0

28
.0

3
28
.0

3
95

1.
4

8
9
5

3
7
4
.4

0
.0

0
5
7
.7

4
3
6
3
.9

33
3r

an
d
-1

00
-0

91
3

0.
6

0
.0

0
2.

51
0.

6
23

2.
7

0.
00

5.
95

2.
6

2
5

6
.6

0
.0

0
1
1
.0

0
6
.4

3g
ri

d
-2

0-
09

1
9

1.
1

0.
0
0

3.
74

1.
0

5
0.

7
0.

00
3.

74
0.

7
1
1

3
.5

0
.0

0
1
3
.2

7
3
.4

44
4r

an
d
-1

00
-3

98
25

5
15

2.
9

0
.0

0
3.

44
14

6.
9

25
11
.2

0.
00

47
.7

5
10
.5

1
9
1

6
5
6
.8

0
.0

0
3
0
.8

9
6
4
2
.8

cl
iq

u
e-

20
1

0.
6

0.
0
0

0.
00

0.
6

1
0.

3
0.

00
0.

00
0.

3
1

0
.4

0
.0

0
0
.0

0
0
.4

cl
iq

u
e-

30
1

1.
6

0
.0

0
0.

00
1.

5
7

11
.2

0.
00

0.
37

10
.9

5
9
.6

0
.0

0
3
8
.6

6
9
.4

cl
iq

u
e-

40
3

23
.9

0.
00

0.
02

23
.5

1
8.

5
0.

00
0.

00
8.

3
3

2
8
.5

0
.0

0
5
.6

9
2
8
.0

cl
iq

u
e-

50
5

30
.3

0
.0

0
0.

01
29
.8

1
26
.2

0.
00

0.
00

25
.8

5
4
0
.1

0
.0

0
2
.7

5
3
9
.5

cl
iq

u
e-

60
1

16
.7

0.
00

0.
00

16
.4

15
65
.7

0.
00

0.
53

64
.5

1
9

6
4
.2

0
.0

0
3
.9

4
6
3
.1

cl
iq

u
e-

70
19

56
.8

0
.0

0
12
.4

2
55
.9

1,
17

3
1,

00
4.

5
1.

48
69
.0

0
98

1.
6

2
7

3
4
.3

0
.0

0
3
6
.5

4
3
3
.7

cl
iq

u
e-

80
21

11
3.

0
0.

00
0.

13
11

1.
3

1,
30

5
99

9.
9

31
.2

9
31
.4

8
97

7.
7

2
7
9

2
6
9
.2

0
.0

0
6
9
.7

1
2
6
3
.2

cl
iq

u
e-

90
27

26
0.

1
0
.0

0
8.

12
25

6.
7

92
1

99
9.

8
2.

28
2.

54
97

9.
1

2
0
9

3
0
8
.7

0
.0

0
1
0
0
.0

0
3
0
2
.5

ra
n
d
om

-2
0-

10
9

3
3.

4
0.

0
0

4.
58

3.
2

3
4.

0
0.

00
0.

01
3.

8
3

4
.1

0
.0

0
3
.6

4
3
.9

ra
n
d
om

-3
0-

01
8

33
12

9.
3

0
.0

0
0.

95
12

6.
4

15
60
.6

0.
00

0.
62

59
.2

3
1

1
2
0
.7

0
.0

0
3
7
.5

8
1
1
7
.8

ra
n
d
om

-4
0-

04
7

14
3

1,
00

1.
0

0.
2
1

1.
40

98
1.

9
15

5
92

8.
7

0.
00

2.
62

91
0.

9
1
2
1

1
,0

0
4
.7

0
.7

3
2
.1

7
9
8
5
.4

ra
n
d
om

-5
0-

22
9

95
1,

00
7.

8
0
.5

7
2.

91
99

1.
1

97
1,

00
0.

1
1.

22
1.

97
98

2.
9

8
9

1
,0

0
0
.2

1
.7

4
2
.4

6
9
8
3
.1

ra
n
d
om

-6
0-

93
5

35
7

1,
00

2.
5

0.
8
2

2.
13

98
0.

1
29

3
1,

00
3.

2
1.

09
2.

52
98

1.
9

2
3
9

1
,0

0
7
.9

1
.3

8
2
.5

0
9
8
7
.1

ra
n
d
om

-7
0-

03
0

2,
01

7
99

9.
7

1
.0

4
2.

26
97

6.
3

1,
45

3
1,

00
7.

0
1.

18
70
.6

3
98

3.
9

1
,4

7
5

1
,0

0
1
.8

1
.4

8
3
6
.5

8
9
7
8
.6

ra
n
d
om

-8
0-

70
2

1,
78

9
1,

00
0.

1
2.

1
8

2.
70

97
5.

6
1,

82
1

1,
00

0.
4

34
.4

2
34
.6

4
97

6.
0

1
,7

3
1

9
9
9
.7

6
5
.7

3
6
5
.8

6
9
7
6
.2

ra
n
d
om

-9
0-

09
9

1,
52

3
1,

00
0.

0
1
.8

8
2.

92
97

6.
7

1,
50

5
99

9.
6

2.
16

3.
01

97
7.

1
1
,4

5
3

1
,0

0
0
.0

1
0
0
.0

0
1
0
0
.0

0
9
7
6
.3

Table 4.2: k = 3, α and β tight

90

upon the starting integrality gap, unfortunately, is very slow; for instance our algorithm

lowers the initial gap of 2.53% for random-90-099 to 2.27% after searching 1,525 tree

nodes in 1000 seconds—only a 10.3% drop in percentage points. Furthermore, as n

grows, the final integrality gap is increasing, whereas the number of nodes searched is

decreasing; this is expected, since the time limit is fixed and larger SDPs take longer

to solve.

Comparing instances with only S varying—keeping k = 3, and α and β trivial—we

see that many intial integrality gaps become larger as S becomes more restrictive, as S

changes from S0 to S1, and again to S2. For example, the root gap percentages increase

in this order from 0.14% to 1.89% to 6.12% in the instance clique-90. Similarly, the

total CPU time, the number of B&B nodes, and the average time spent per node, are all

increasing for 444rand-100-398. On the other hand, many problems remain solvable,

or unsolvable, within the 1000 seconds time limit, and those which are solvable have

running times which are roughly of the same order of magnitude (e.g. the smaller

random graph instances, or the clique graphs for n ≤ 60). However, the clique graphs

with n ≥ 70 become unsolvable by our algorithm when comparing S0 to S1, but then

become solvable again when considering S2.

Now, comparing k = 3 with the pair (α, β) as either trivial or tight (i.e. Tables 4.1

and 4.2), we first notice that almost every problem remains solvable, or unsolvable, and

the running times are nearly identical. Furthermore, the anomalous behavior found

for the few instances with α and β trivial, is persisent. However, the larger clique and

random graph instances (i.e. n ≥ 70), especially when S = S1 or S2, exhibit very large

initial gaps at the corresponding root nodes. Since in most cases, any positive final

gaps between differing (α, β) instances are comparable, and those solvable for trivial

(α, β) remain solvable for tight capacities, we conclude that the initial SDP bounds are

just as strong, but the heuristic is not generating good enough feasible solutions. This

is expected, as the problems are becoming more restrictive.

If we let k = 5 and (α, β) be trivial, Table 4.3 shows us that all the grid graphs—

2-grid, 3-grid, and random grids—are solvable at the root, barring 3333rand-100-400

91

S
0

S
1

S
2

W
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

a
p

(%
)

R
.

G
a
p

(%
)

S
D

P
(s

)

2g
ri

d
-4

4
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
-5

5
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
-6

6
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
-7

7
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
-8

8
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

33
33

ra
n
d
-1

00
-4

00
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
5
,0

3
1

9
9
9
.8

0
.0

1
0
.0

1
9
3
9
.9

33
3r

an
d
-1

00
-0

91
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

3g
ri

d
-2

0-
09

1
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.0

0
.0

0
0
.0

0
0
.0

44
4r

an
d
-1

00
-3

98
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

cl
iq

u
e-

20
1

0.
6

0
.0

0
0.

00
0.

6
5

4.
8

0.
00

0.
32

4.
7

3
2
.4

0
.0

0
0
.6

5
2
.3

cl
iq

u
e-

30
1

2.
4

0.
00

0.
00

2.
4

1
2.

5
0.

00
0.

00
2.

4
1

2
.8

0
.0

0
0
.0

0
2
.8

cl
iq

u
e-

40
1

7.
4

0
.0

0
0.

00
7.

3
1

12
.4

0.
00

0.
00

12
.2

3
1
9
.1

0
.0

0
1
.3

1
1
8
.8

cl
iq

u
e-

50
1

32
.1

0.
00

0.
00

31
.7

19
12

8.
8

0.
00

0.
22

12
6.

8
7

9
5
.0

0
.0

0
1
.0

0
9
3
.7

cl
iq

u
e-

60
1

38
.7

0
.0

0
0.

00
38
.2

5
67
.9

0.
00

0.
30

66
.9

7
7
8
.1

0
.0

0
1
.2

3
7
7
.0

cl
iq

u
e-

70
11

7
74

8.
4

0.
00

0.
16

73
6.

8
21

7
1,

00
2.

6
0.

63
0.

70
98

6.
3

2
1
3

1
,0

0
1
.7

1
.6

7
1
.8

9
9
8
5
.5

cl
iq

u
e-

80
73

1,
00

7.
6

0
.1

2
0.

36
99

4.
0

13
1

1,
00

3.
5

0.
51

0.
60

98
9.

1
1
0
3

1
,0

0
2
.4

0
.7

1
0
.8

0
9
8
8
.8

cl
iq

u
e-

90
35

1,
00

2.
2

0.
0
7

0.
27

98
8.

6
65

99
9.

9
0.

59
0.

62
98

7.
7

5
3

1
,0

1
7
.1

0
.9

0
0
.9

7
1
,0

0
3
.7

ra
n
d
om

-2
0-

10
9

3
5.

9
0
.0

0
2.

12
5.

7
1

1.
3

0.
00

0.
00

1.
2

3
5
.9

0
.0

0
1
.2

9
5
.7

ra
n
d
om

-3
0-

01
8

53
38

1.
3

0.
0
0

1.
46

37
4.

6
47

30
7.

1
0.

00
1.

66
30

1.
7

3
7

2
4
8
.1

0
.0

0
1
.3

9
2
4
3
.8

ra
n
d
om

-4
0-

04
7

53
1,

01
1.

9
0
.7

9
1.

72
99

9.
5

57
1,

00
7.

3
0.

75
2.

04
99

5.
3

5
5

1
,0

0
6
.3

0
.9

0
1
.8

6
9
9
4
.4

ra
n
d
om

-5
0-

22
9

49
1,

01
6.

8
1.

5
3

2.
19

1,
00

5.
9

45
1,

01
2.

0
1.

62
2.

10
1,

00
1.

2
5
1

1
,0

2
0
.3

1
.8

0
2
.0

5
1
,0

0
9
.2

ra
n
d
om

-6
0-

93
5

85
1,

00
9.

2
1
.7

5
1.

98
99

7.
1

83
1,

01
1.

8
1.

14
1.

95
99

9.
7

7
7

1
,0

2
7
.1

1
.7

3
2
.1

7
1
,0

1
5
.2

ra
n
d
om

-7
0-

03
0

87
1

1,
00

0.
4

1.
78

2.
02

98
0.

2
84

3
1,

00
0.

0
1.

72
2.

21
97

9.
8

8
3
1

1
,0

0
0
.4

2
.3

7
3
.1

6
9
8
0
.4

ra
n
d
om

-8
0-

70
2

63
5

1,
00

0.
9

1
.8

0
2.

18
98

0.
9

62
3

1,
00

0.
1

1.
93

2.
25

97
9.

9
6
0
9

9
9
9
.9

2
.2

7
2
.8

7
9
8
0
.1

ra
n
d
om

-9
0-

09
9

45
3

1,
00

1.
4

1.
79

2.
28

98
2.

0
43

9
1,

00
1.

3
1.

89
2.

24
98

2.
1

4
3
3

1
,0

0
1
.2

2
.0

4
2
.5

7
9
8
2
.2

Table 4.3: k = 5, α and β trivial

92

S
0

S
1

S
2

W
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

a
p

(%
)

R
.

G
a
p

(%
)

S
D

P
(s

)

2g
ri

d
˙4

4.
79

1
0.

0
0.

00
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
˙5

5.
79

1
0.

0
0.

00
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.2

0
.0

0
2
.5

0
0
.2

2g
ri

d
˙6

6.
79

1
2.

7
0.

00
10

0.
00

2.
6

1
2.

4
0.

00
10

0.
00

2.
3

7
1
.5

0
.0

0
1
.6

7
1
.4

2g
ri

d
˙7

7.
79

11
,9

49
99

9.
8

1.
19

1.
19

89
6.

7
1

0.
0

0.
00

0.
00

0.
0

8
,2

2
5

9
9
9
.8

2
.3

8
2
.3

8
9
0
3
.1

2g
ri

d
˙8

8.
79

20
,6

03
99

9.
8

0.
69

0.
69

93
7.

7
18
,2

21
99

9.
9

2.
08

2.
08

94
5.

8
1
2
,3

0
9

9
9
9
.9

1
.3

9
1
.3

9
9
4
8
.7

33
33

ra
n
d
˙1

00
˙4

00
.7

9
4,

35
5

1,
00

0.
6

0.
85

0.
85

88
9.

1
16
,7

65
99

9.
8

0.
48

0.
48

94
2.

9
1

0
.0

0
.0

0
0
.0

0
0
.0

33
3r

an
d
˙1

00
˙0

91
.7

9
1

0.
0

0.
00

0.
00

0.
0

1
0.

4
0.

00
0.

74
0.

4
1

0
.0

0
.0

0
0
.0

0
0
.0

3g
ri

d
˙2

0˙
09

1.
79

1
0.

0
0.

00
0.

00
0.

0
7

0.
5

0.
00

3.
06

0.
4

1
0
.4

0
.0

0
0
.6

8
0
.4

44
4r

an
d
˙1

00
˙3

98
.7

9
4,

56
5

1,
00

0.
0

1.
82

1.
82

87
1.

3
3,

75
9

1,
00

0.
0

2.
08

2.
08

87
1.

6
1

0
.0

0
.0

0
0
.0

0
0
.0

cl
iq

u
e˙

20
.7

9
1

0.
6

0.
00

0.
00

0.
6

5
4.

6
0.

00
0.

16
4.

4
1

1
.8

0
.0

0
0
.0

0
1
.7

cl
iq

u
e˙

30
.7

9
1

2.
4

0.
00

0.
00

2.
4

1
2.

5
0.

00
0.

00
2.

5
1

2
.6

0
.0

0
0
.0

0
2
.5

cl
iq

u
e˙

40
.7

9
1

7.
4

0.
00

0.
00

7.
3

3
14
.4

0.
00

3.
40

14
.2

3
1
9
.1

0
.0

0
3
.8

3
1
8
.7

cl
iq

u
e˙

50
.7

9
1

30
.2

0.
00

0.
00

29
.8

17
12

5.
6

0.
00

1.
24

12
3.

6
7

9
4
.7

0
.0

0
1
.5

1
9
3
.3

cl
iq

u
e˙

60
.7

9
1

38
.2

0.
00

0.
00

37
.6

5
66
.3

0.
00

3.
48

65
.3

7
7
8
.3

0
.0

0
2
.3

9
7
7
.2

cl
iq

u
e˙

70
.7

9
11

7
61

2.
4

0.
00

4.
03

60
2.

9
21

7
1,

00
2.

4
1.

63
2.

47
98

6.
1

2
1
3

1
,0

0
1
.6

1
.6

3
3
.2

4
9
8
5
.4

cl
iq

u
e˙

80
.7

9
73

1,
00

7.
1

6.
37

7.
15

99
3.

5
13

1
1,

00
2.

6
3.

95
4.

67
98

8.
2

1
0
3

1
,0

0
0
.8

4
.3

5
4
.4

3
9
8
7
.2

cl
iq

u
e˙

90
.7

9
35

1,
00

4.
1

3.
51

5.
27

99
0.

5
65

1,
00

1.
4

2.
80

3.
36

98
9.

3
5
3

1
,0

1
0
.9

0
.8

2
3
.5

7
9
9
7
.5

ra
n
d
om

˙2
0˙

10
9.

79
5

5.
3

0.
00

2.
12

5.
2

1
1.

6
0.

00
0.

00
1.

6
3

7
.2

0
.0

0
1
.2

8
6
.9

ra
n
d
om

˙3
0˙

01
8.

79
61

41
7.

2
0
.0

0
1.

03
40

8.
3

53
25

4.
0

0.
00

1.
67

24
8.

8
3
7

2
6
1
.2

0
.0

0
1
.3

8
2
5
5
.7

ra
n
d
om

˙4
0˙

04
7.

79
57

1,
00

9.
7

0.
76

1.
40

99
4.

5
55

1,
00

5.
3

0.
96

1.
60

99
0.

1
5
5

1
,0

1
2
.2

0
.7

8
1
.6

2
9
9
6
.8

ra
n
d
om

˙5
0˙

22
9.

79
47

1,
01

2.
8

1.
14

1.
81

99
8.

9
47

1,
01

8.
5

1.
92

2.
13

1,
00

4.
1

4
7

1
,0

0
7
.3

1
.5

2
1
.7

6
9
9
3
.1

ra
n
d
om

˙6
0˙

93
5.

79
87

1,
00

6.
5

1.
38

2.
19

99
0.

8
81

1,
00

2.
9

2.
46

2.
70

98
7.

5
7
1

1
,0

0
0
.0

2
.0

0
2
.3

9
9
8
4
.9

ra
n
d
om

˙7
0˙

03
0.

79
87

1
1,

00
1.

8
1.

68
2.

26
98

1.
6

84
3

1,
00

1.
2

1.
45

2.
69

98
1.

0
8
3
7

1
,0

0
0
.1

2
.1

0
3
.1

5
9
7
9
.9

ra
n
d
om

˙8
0˙

70
2.

79
63

3
1,

00
0.

8
1.

88
2.

97
98

0.
8

62
3

1,
00

0.
2

2.
06

2.
86

98
0.

3
6
1
1

1
,0

0
0
.9

2
.1

3
3
.0

6
9
8
0
.9

ra
n
d
om

˙9
0˙

09
9.

79
45

1
99

9.
7

1.
98

3.
09

98
0.

6
43

9
1,

00
0.

3
1.

65
2.

97
98

1.
1

4
3
5

1
,0

0
1
.0

2
.4

4
3
.0

1
9
8
1
.8

Table 4.4: k = 5, α and β tight

93

for S2. In fact, in each case, the heuristic found the optimum solution during the pre-

processing phase, and thus no time was spent solving any SDP relaxations. Comparing

k = 5 with k = 3 (Table 4.1), we see that the clique graphs with n ≤ 60 are solvable in

similar amounts of time, and in about half of the cases no branching is required, i.e. the

solution is found at the root node. On the other hand, for k = 5, the remaining clique

instances take much more time to solve, and many are left unsolved within the 1000

second limit. Furthermore, when restricted to the random graph instances for k = 5,

the number of search nodes is cut by a factor of 2–4, and the improvement from initial

gap to final gap percentages is degraded. For example, when W is random-60-030 and

S = S1, the problem with k = 5 searched 83 nodes in 1011.8 seconds, bringing the gap

down from 1.95% to 1.14% for a decrease of 41.6%, while for k = 3, number of nodes

searched was 285, and the gap was improved from 2.19% to 1.08% for a decrease of

50.7%. Of further note, is the increase in time spent solving SDPs; for instance, when

k = 3 and W is clique-70, the 1000 second limit is reached and 980.5 seconds of that

time were spent solving SDPs, whereas for k = 5, the amount of time spent solving

SDPs was 986.3.

As with the comparison of trivial and tight capacities for the case k = 3, the only

significant differences in statistics between Tables 4.3 and 4.4 for k = 5 are the changes

in initial integrality gaps. Again, this may be due to our heuristic not finding good

solutions at the outset of the SBC algorithm. Further, the anomalous behavior found

in larger grid graphs has returned, which is explained by the fact that our feasible

solution heuristic is weak in particular when the instance is highly restrictive, i.e. for

tight (α, β) and non-trivial S. Otherwise, the running times and the number of search

nodes of each instance are comparable between the two cases of capacities α and β.

For the case k = 7 (cf. Table 4.5), we notice that as in the previous case with

k = 5, all grid graphs are easy to solve, i.e. the heuristic finds the optimum at the root

during a preprocessing phase, and bypasses any need to solve the more cumbersome

SDP relaxations. Also similar is the fact that clique graphs for n ≥ 70 cannot be solved

to optimality in under 1000 seconds. We notice that for instance clique-70, and for

S = S0 or S1, the total number of search nodes for k = 7 is about half of the number

94

S
0

S
1

S
2

W
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

a
p

(%
)

R
.

G
a
p

(%
)

S
D

P
(s

)

2g
ri

d
-4

4
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
-5

5
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
-6

6
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
-7

7
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
-8

8
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

33
33

ra
n
d
-1

00
-4

00
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.0

0
.0

0
0
.0

0
0
.0

33
3r

an
d
-1

00
-0

91
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

3g
ri

d
-2

0-
09

1
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.0

0
.0

0
0
.0

0
0
.0

44
4r

an
d
-1

00
-3

98
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

cl
iq

u
e-

20
5

4.
8

0
.0

0
0.

23
4.

7
11

6.
8

0.
00

0.
77

6.
6

1
5

8
.1

0
.0

0
0
.8

5
7
.8

cl
iq

u
e-

30
1

19
.8

0.
00

0.
20

19
.6

9
45
.2

0.
00

0.
53

44
.9

5
3
2
.9

0
.0

0
0
.9

6
3
2
.7

cl
iq

u
e-

40
11

10
0.

3
0
.0

0
0.

54
99
.6

1
22
.8

0.
00

0.
00

22
.7

1
1
6
.1

0
.0

0
0
.0

0
1
6
.0

cl
iq

u
e-

50
7

15
7.

3
0
.0

0
0.

63
15

6.
3

13
13

5.
6

0.
00

0.
40

13
4.

6
7

9
2
.6

0
.0

0
0
.7

9
9
2
.0

cl
iq

u
e-

60
61

1,
09

2.
4

0
.0

0
0.

39
1,

08
6.

0
9

28
5.

7
0.

00
0.

30
28

3.
8

2
7

5
0
2
.2

0
.0

0
1
.5

1
4
9
8
.3

cl
iq

u
e-

70
95

1,
00

3.
8

0.
1
4

1.
13

99
2.

9
11

7
1,

00
3.

3
0.

46
0.

81
99

2.
4

1
0
9

1
,0

0
3
.0

0
.4

9
0
.8

1
9
9
2
.6

cl
iq

u
e-

80
45

1,
01

7.
7

0
.0

8
1.

22
1,

00
7.

9
57

1,
00

8.
7

0.
36

0.
63

99
9.

6
5
3

1
,0

0
2
.4

0
.5

0
1
.0

8
9
9
3
.5

cl
iq

u
e-

90
21

1,
04

8.
7

0.
4
4

1.
64

1,
03

9.
2

45
1,

01
3.

4
0.

37
1.

03
1,

00
3.

9
3
1

1
,0

1
4
.8

0
.4

9
1
.2

9
1
,0

0
5
.4

ra
n
d
om

-2
0-

10
9

1
1.

3
0
.0

0
0.

00
1.

3
1

1.
0

0.
00

0.
00

0.
9

7
5
.6

0
.0

0
0
.5

9
5
.4

ra
n
d
om

-3
0-

01
8

11
15

4.
5

0.
0
0

1.
15

15
3.

2
15

15
3.

3
0.

00
0.

86
15

2.
0

7
5

5
5
5
.3

0
.0

0
1
.3

5
5
4
9
.5

ra
n
d
om

-4
0-

04
7

27
1,

00
4.

1
1
.1

2
1.

28
99

7.
3

27
1,

02
4.

0
0.

69
1.

57
1,

01
7.

3
2
7

1
,0

2
0
.4

1
.5

6
1
.8

0
1
,0

1
3
.6

ra
n
d
om

-5
0-

22
9

9
1,

11
5.

5
1.

49
2.

05
1,

11
2.

0
9

1,
15

6.
2

1.
29

2.
11

1,
15

2.
7

5
1
,0

0
3
.7

1
.6

8
1
.9

5
1
,0

0
0
.7

ra
n
d
om

-6
0-

93
5

15
1,

09
8.

1
1
.3

6
1.

77
1,

09
5.

5
13

1,
03

0.
3

1.
94

2.
15

1,
02

7.
8

1
1

1
,0

8
0
.9

1
.8

0
2
.1

1
1
,0

7
8
.4

ra
n
d
om

-7
0-

03
0

37
7

1,
00

1.
2

1.
33

2.
48

98
7.

5
36

3
1,

00
1.

4
1.

67
2.

13
98

7.
8

3
6
7

1
,0

0
0
.4

1
.5

0
2
.2

1
9
8
6
.7

ra
n
d
om

-8
0-

70
2

22
9

1,
00

3.
6

1
.3

3
2.

31
99

1.
2

22
3

1,
00

1.
5

1.
80

2.
51

98
9.

3
2
1
7

1
,0

0
2
.0

1
.7

3
2
.4

3
9
8
9
.7

ra
n
d
om

-9
0-

09
9

14
3

1,
00

5.
7

1.
77

2.
46

99
4.

5
14

3
1,

00
3.

4
1.

68
2.

38
99

2.
2

1
3
9

1
,0

0
3
.8

1
.6

9
2
.4

0
9
9
2
.6

Table 4.5: k = 7, α and β trivial

95

S
0

S
1

S
2

W
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

ap
(%

)
R

.
G

ap
(%

)
S
D

P
(s

)
#

N
o
d
es

C
P

U
(s

)
F

.
G

a
p

(%
)

R
.

G
a
p

(%
)

S
D

P
(s

)

2g
ri

d
-4

4
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
-5

5
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.0

0
.0

0
0
.0

0
0
.0

2g
ri

d
-6

6
22
,4

65
99

4.
3

0.
00

10
0.

00
84

3.
9

20
,8

05
99

9.
8

10
0.

00
10

0.
00

77
6.

8
1
9
,9

3
1

9
9
9
.7

1
0
0
.0

0
1
0
0
.0

0
8
1
8
.6

2g
ri

d
-7

7
2,

93
3

1,
00

0.
2

3
.5

7
3.

57
93

4.
2

12
,3

73
99

9.
7

2.
38

2.
38

84
9.

6
2
,9

3
9

9
9
9
.8

1
.1

9
1
.1

9
9
1
0
.7

2g
ri

d
-8

8
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
2
,6

5
3

9
9
9
.9

0
.6

9
0
.6

9
9
2
7
.6

33
33

ra
n
d
-1

00
-4

00
13
,0

07
99

9.
9

0
.5

7
0.

57
94

7.
8

13
,1

45
99

9.
8

0.
77

0.
77

94
6.

8
1
,8

0
5

1
,0

0
2
.7

0
.4

6
0
.4

6
9
7
2
.4

33
3r

an
d
-1

00
-0

91
1

0.
0

0.
00

0.
00

0.
0

1
0.

0
0.

00
0.

00
0.

0
1

0
.0

0
.0

0
0
.0

0
0
.0

3g
ri

d
-2

0-
09

1
1

0.
0

0
.0

0
0.

00
0.

0
1

0.
0

0.
00

0.
00

0.
0

1
0
.0

0
.0

0
0
.0

0
0
.0

44
4r

an
d
-1

00
-3

98
1,

93
9

1,
00

0.
1

0.
60

0.
60

93
2.

9
1,

40
9

1,
00

0.
4

2.
37

2.
37

95
4.

4
1
,2

6
9

1
,0

0
0
.2

0
.7

2
0
.7

2
9
5
7
.8

cl
iq

u
e-

20
5

2.
6

0
.0

0
0.

38
2.

5
11

6.
8

0.
00

0.
77

6.
6

1
1

6
.5

0
.0

0
0
.8

5
6
.3

cl
iq

u
e-

30
13

61
.2

0.
00

0.
39

60
.7

7
53
.1

0.
00

0.
41

52
.7

7
3
6
.7

0
.0

0
1
.5

6
3
6
.5

cl
iq

u
e-

40
5

50
.5

0
.0

0
1.

40
50
.2

1
22
.2

0.
00

0.
00

22
.1

1
1
7
.3

0
.0

0
0
.0

0
1
7
.2

cl
iq

u
e-

50
7

17
9.

3
0
.0

0
1.

34
17

8.
2

15
14

2.
5

0.
00

2.
60

14
1.

5
5

8
6
.2

0
.0

0
2
.0

6
8
5
.5

cl
iq

u
e-

60
69

89
8.

9
0
.0

0
2.

13
89

2.
5

9
30

5.
7

0.
00

2.
00

30
3.

7
2
7

5
0
2
.5

0
.0

0
2
.4

4
4
9
8
.6

cl
iq

u
e-

70
95

1,
00

3.
1

2.
1
0

4.
15

99
2.

2
11

7
1,

00
3.

9
0.

32
2.

93
99

3.
3

1
0
9

1
,0

0
5
.0

2
.7

7
3
.9

3
9
9
4
.6

cl
iq

u
e-

80
45

1,
01

7.
4

2
.6

1
4.

82
1,

00
7.

7
57

1,
00

8.
3

1.
89

3.
73

99
9.

3
5
3

1
,0

0
3
.1

0
.8

9
4
.0

4
9
9
4
.2

cl
iq

u
e-

90
21

1,
04

8.
8

1.
2
5

3.
90

1,
03

9.
3

45
1,

01
2.

9
1.

92
3.

72
1,

00
3.

4
3
1

1
,0

1
6
.3

0
.6

3
2
.7

6
1
,0

0
6
.9

ra
n
d
om

-2
0-

10
9

1
1.

5
0
.0

0
0.

00
1.

4
1

1.
0

0.
00

0.
00

0.
9

7
5
.5

0
.0

0
0
.5

9
5
.3

ra
n
d
om

-3
0-

01
8

15
16

6.
3

0.
0
0

1.
20

16
4.

5
9

11
7.

1
0.

00
1.

19
11

6.
0

7
7

5
4
2
.6

0
.0

0
1
.5

3
5
3
6
.0

ra
n
d
om

-4
0-

04
7

27
1,

00
9.

2
1
.0

7
1.

82
1,

00
1.

4
27

1,
03

3.
5

0.
92

1.
43

1,
02

5.
7

2
7

1
,0

3
4
.0

1
.3

1
1
.9

6
1
,0

2
5
.9

ra
n
d
om

-5
0-

22
9

7
1,

10
9.

8
0.

86
1.

66
1,

10
5.

8
7

1,
03

1.
3

1.
32

2.
38

1,
02

7.
6

7
1
,0

1
5
.2

1
.4

6
1
.9

5
1
,0

1
1
.6

ra
n
d
om

-6
0-

93
5

15
1,

11
4.

2
1
.3

0
1.

46
1,

11
1.

1
13

1,
00

9.
5

1.
97

2.
46

1,
00

6.
7

1
1

1
,0

8
0
.3

1
.5

8
1
.9

3
1
,0

7
7
.3

ra
n
d
om

-7
0-

03
0

37
7

99
9.

7
1.

53
2.

47
98

5.
8

36
3

1,
00

0.
1

1.
62

2.
22

98
6.

4
3
6
7

1
,0

0
0
.3

1
.6

9
2
.5

3
9
8
6
.6

ra
n
d
om

-8
0-

70
2

22
7

99
9.

9
1
.7

0
2.

78
98

7.
5

22
3

1,
00

3.
0

1.
73

2.
41

99
0.

6
2
1
7

1
,0

0
1
.8

1
.9

0
2
.5

9
9
8
9
.5

ra
n
d
om

-9
0-

09
9

14
3

99
9.

8
1.

82
2.

67
98

8.
7

14
3

1,
00

4.
2

1.
98

2.
72

99
3.

1
1
3
9

1
,0

0
5
.9

1
.7

3
2
.6

9
9
9
4
.8

Table 4.6: k = 7, α and β tight

96

found in Table 4.3, where k = 5. Furthermore, the total time spent solving SDPs

here has increased by about 6 seconds, and the gap improvement from root to finish

is actually better. This latter claim is supported by the fact that as k grows, more

weighted edges of W will appear in the k-cut (see also Turán’s Theorem 2.3.1).

If we look at the last table (Table 4.6), where k = 7 and the capacities α and β

are tight, we see the same phenomenon as in the previous comparisons: many grid

graphs yield a small gap initially at the root, but then this is not reduced even after

solving thousands of subproblems. In fact, when W is chosen as 2grid-66 and S = S1

or S2, no feasible solution is ever found, hence the final gap of 100%. This further

underscores the need to improve upon our heuristic procedure when generating feasible

solutions for tightly constrained instances of capacitated k-partition. Otherwise, the

solvable problems remain solvable, and the unsolved problems yield comparable gaps

and number of search nodes when comparing trivial vs. tight capacities (i.e. Tables 4.5

and 4.6).

To recap, we noticed that as k grows, the problems become harder, in that both

the running times are longer, and the unsolvable instances yield fewer search nodes.

The relative gaps shown may not be directly comparable, as the number of weighted

edges in a k′-cut for k′ > k tends to be larger in total than that of a k-cut, hence

the objective values are larger and relative gap percentages are smaller. However, in

order to reduce the initial gap found at the root node, a robust heuristic is needed.

In particular, whenever α and β are non-trivial, we saw some cases, over all k and S,

where no improvement was made, yet the SDP relaxation bound had not necessarily

degraded. In order to further strengthen the SDP bounds, it may be necessary to

explore the strength of the flower inequalities, since they were rarely generated in our

experiments, and the strength of the star cover inequalities, as they were omitted from

our tests. Of particular note, is the fact that the structure of W highly affects the

performance of our algorithm, since random graphs are extremely difficult to solve to

optimality, yet the grid graphs—barring the anomalies discussed—are solvable by our

heuristic procedure independent of the choices of k, (α, β), and S.

We end this section by noting that our results above are somewhat comparable

97

to the experiments found in Anjos et al. [5], where maximum k-cut instances were

solved to optimality using a semidefinite branch-and-cut algorithm similar to ours, only

the SDP solver was a bundle method. Here, we restrict attention in our tables to the

first subdivision of columns (S = S0), for (α, β) trivial. They solved many problems

where negative edge weights were allowed, but they also solved instances with the clique

graphs from n = 20 up to n = 70 and random graphs from n = 20 up to n = 50, all for

k = 3, 5, and 7—note, the latter were generated with different seeds and are not directly

comparable. For smaller k and n values, their algorithm was faster when solving the

clique and random graphs than ours. For instance, we solved random-30-018 in 94.4

seconds over 23 nodes, while Anjos et al. reportedly solved a similar problem random-

30-k=3 in 26 seconds over 173 nodes. We solve clique-40 in 23.5 seconds over 3 nodes,

while they solve it in 7 seconds over 15 nodes.

On the contrary, our algorithm is faster when solving larger clique instances for any

k, and small random graphs for k = 5 and k = 7. In particular, for k = 3, clique-70

was solved by Anjos et al. in 830 seconds over 439 nodes, whereas we solved it in 56.0

seconds over 19 nodes. Further, for k = 7, clique-50 was solved by Anjos et al. in 2,179

seconds over 1,853 nodes, whereas we solved the problem in 157.3 seconds over 7 nodes.

Although not entirely comparable, the statistics for our instance random-30-047 on

n = 30 vertices with k = 7 vs. their instance random-30-k=3 on 30 vertices for k = 7,

demonstrate the biggest differences: we solve our instance in roughly 2.5 minutes over

11 nodes, while Anjos et al. solve theirs in about 2.5 hours over almost 29,000 nodes. It

should be noted that the tests in Anjos et al. [5] were performed in a 32-bit environment

with a 2.3 GHz Intel Xeon processor, while we performed ours in a 64-bit environment

on a 3.06 GHz Intel Core i7 processor.

4.3 Case study: ICS-2013

In this section, we discuss an application of our capacitated k-partition algorithm to

the 13th Annual INFORMS Computing Society Conference scheduling problem, which

we denote ICS-2013.

98

4.3.1 Data set and parameter choices

The organizers of ICS-2013 were kind enough to provide the data set to their confer-

ence. Their problem was to schedule n = 61 sessions, each consisting of a handful of

presentations which were given in an equal-length sequential order, into k = 9 time

slots, so as to not cause any time conflicts and to further structure serial talks in a

logical fashion—e.g. into multiple tracks. The number of time slots devoted to these

technical talks—here we assume that the plenary and intermissions are handled man-

ually outside of our algorithm—forced bounds on the size of each to be very close,

i.e. α = 5 and β = 7 (see Proposition 2.1.3 for a brief note on tightening of such pa-

rameters). Other information was also given, which included the session chairpersons,

and the titles, abstracts, and up to five keywords associated with individual talks.

To form the cost function, we first aggregated all appropriate text extracted from

the title, abstract, and keyword set associated with each talk, into a single document

for each session. Then these files were preprocessed and subsequently formed into a

cost matrix W ∈ [0, 1]n×n by feeding them into the Text Mining Generator or TMG

[29] for Matlab (see §A).

The remaining parameter S of input tuple (n, k, α, β, S,W) for capacitated k-

partition is chosen to encode all pairs of participants known to be in conflict if ap-

pearing in parallel time slots. In other words, we first found all persons (not necessarily

speakers) associated with a session s ∈ [n], As, and let S be the intersection graph of

set system (∪s{As : s ∈ [n]}). This graph turns out to have 132 of the possible 1830,

which is 7.2% dense. With k being larger than that of our random tests, α and β tight,

and S somewhat restrictive, the previous section’s experiments tell us that finding an

exact solution may be difficult, but the SDP relaxation may be strong at the root node.

4.3.2 ConSP schedule vs. actual schedule

Solving this problem with the given parameters (n, k, α, β, S,W) as mentioned previ-

ously, involves first solving the capacitated k-partition problem. Since this problem

was tested on random data in the previous section, we adhere to the same parameter

99

choices, e.g. we allow at most 2000 cuts to be added per SDP solve. The only differ-

ence being that we let the problem run for 4 hours, as opposed to 1000 seconds. For

reference, the total sum 1
2W • J is 19,189.01—a trivial upper bound on the cost of

any k-cut—where W is chosen to have entries Wij encoding the similarity between all

talks crossing the pair of sessions i and j (see Appendix A for other suggested simi-

larity measures). Furthermore, the actual schedule of ICS-2013 was of cost 17,400.28,

although with our definition of separate pairs S, this schedule is not feasible—there

were 10 conflicting pairs scheduled in parallel, although the conflicts were only between

author-coauthor pairs (so no presenter was assigned to be in two places at once).

After running the problem on our Intel processor—mentioned at the beginning of

the chapter—on three separate occasions, each with separate seeds an allowed 4 hours

CPU time, the best integrality gap observed was 0.851%, i.e. the relative gap between

the best known lower bound (feasible solution value) 17,797.63, and the worst known

upper bound (maximum of relaxed solution bounds) 17,950.32. At this instance’s root

node, our heuristic produced a solution of 17,776.10, and the relaxation was bounded

by 17,972.50 upon branching, for an initial gap of 1.09%. Thus, our algorithm starts

with a strong bound, and improves the gap by 22.2%. The best known solution is found

within the first few minutes, and so the improvement rate is very slow, i.e. tailing off

is observed early on. The progress over the 4-hour time interval in displayed in Figure

4.1.

When comparing our results with the schedulers’ implementation of ICS-2013, we

first note that our best feasible schedule does not permit any conflicting pairs, whereas

the actual schedule did not directly mitigate author-coauthor conflicting pairs. Sec-

ondly, our schedule has a larger overall weighted k-cut, and thus lower total similarity

between parallel pairs of talks. In particular, our proposed schedule amounts to roughly,

a 2.3% increase in the weighted k-cut. If we convert the costs in terms of similarity—

our primary interest in ConSP—the similarity of our schedule is 1,391.38, whereas

the schedulers found a schedule of total similarity 1,788.93. Thus, our optimization

approach to this problem yields a decrease of 22.2% in parallel similarity across all

presentations. Although our methods have not provably found the optimum, we can

100

Figure 4.1: Progress of our algorithm applied to the ICS-2013 data set

indeed provide improvements, or at least suggested starting points for schedulers of a

conference.

4.4 Concluding remarks

In this thesis, we proposed an algorithmic framework for scheduling conferences. We

started with a symmetric objective which is well-suited for virtually all participants

of a conference: minimizing similarity between parallel presentations. This novel, yet

simple measure allowed for a reformulation of the problem into a more familiar setting

which calls for finding particularly structured partitions of a set of sessions. The known

properties of related combinatorial optimization problems aided in our formulation of

the scheduling problem as a constrained variant of maximum k-cut—or minimum

k-partition—which we denoted capacitated k-partition. We proved that this new,

more generic problem is not only NP-hard to optimize, but testing for feasibility of the

problem is NP-complete. We also demonstrated the strength of a particular semidefi-

nite programming relaxation of the problem, and proved that particular valid inequali-

ties of the corresponding polyhedron were automatically satisfied by such a relaxation.

101

The algorithm we designed was embedded in a branch-and-bound shell, consisting

of a semidefinite programming relaxation equipped with a cutting plane subroutine as

the bounding procedure, and a novel two-part heuristic method which aims to first

construct k-partitions out of k-packings, and then attempts to modify parts of the

partition to obtain feasible solutions; once the latter is obtained, better feasible solutions

are sought after. The combinatorial nature of this greedy local search heuristic, along

with the consecutive searches favoring “good” solutions, make this a fast and productive

algorithm for improving incumbent values. This also couples well with the bottleneck

procedure of solving muliple SDPs with interior point methods. Indeed, our tests have

shown that the time spent in the SDP solver is at least 90% of the total amount.

After describing our algorithm in detail, we then performed experiments on a va-

riety of randomly generated graphs used to form the cost matrices for input to the

capacitated k-partition problem. The results showed that both the SDP bounds

were strong and the heuristic procedure yielded near-optimum feasible solutions for

many instances. Since maximum k-cut was shown to be a subclass of the problem

we study, we also compared our output statistics with another branch-and-cut heuristic

algorithm which also bounds instances with SDP relaxations. Although, the tailored

algorithm outperformed our generic procedure for small k and n, we observe that our

algorithm is competitive for cost matrices arising from dense random graphs and the

more structured clique graphs.

After the initial tests were performed to fine tune parameters, we let our algorithm

run for only 4 hours on a medium-sized conference known as ICS-2013. The conference

was tightly constrained with little room for time slot size differences, and a modest

density of separated pairs of sessions. Our algorithm resulted in the best feasible solu-

tion being found within the first few minutes, and otherwise reduced the relative gap

between the worst upper bound and this incumbent to less than 1%. While optimality

was not achieved, this seems a reasonably good solution for the allotted amount of

time. This result tells us that the algorithm can be used as a tool for schedulers to

automatically start with a provably good solution to the problem, and then implement

the schedule with possible expert modifications. This combination of mathematical and

102

computational tools with the human interactive side is useful for constructing better

schedules for those choosing to attend such events.

In the future, we plan to re-implement the algorithm so that it becomes faster in

practice. In particular, we plan to exploit the message-passing parallism offered by

PEBBL’s branch-and-bound framework, which would allow many clusters of processors

to solve many SDPs relaxations in parallel. On the other hand, we would like to explore

more efficient ways of solving each individual SDP, for instance, via a bundle method

such as that developed by Anjos et al. [5] for the maximum k-cut problem. It would

also be interesting to explore different methods of constructing the similarity measures

by incorporating more natural language processing tools. Finally, we would like to

expand on the algorithmic framework designed for scheduling conference; particularly,

it would be interesting if the conference scheduling problem incorporated other

constraints, especially ones which adhere to the symmetric structure exploited in the

reformulation of the problem as a clustering problem.

Part II

A United States Coast Guard

resource allocation problem

103

104

Chapter 5

USCG Boat Allocation Module (BAM): A software tool

5.1 Introduction

In this chapter, we describe the current results of an ongoing project known as the

Boat Allocation Module (BAM), which is a joint effort between the CG-771 team of the

United States Coast Guard (USCG) and a dynamic team at the Command, Control, and

Interoperability Center for Advanced Data Analysis (CCICADA).1 This project—one of

many making up the USCG’s Coastal Operation Analytical Suite of Tools (COAST)—

was initiated in early Spring 2012 as part of the “Engage to Excel” initiative (E2E),

with the goal of designing a maritime resource allocation model along with a software

tool for USCG planning analysts.2 Upon completion in late Winter 2012, a thoroughly

tested and documented software package was delivered, and a second, currently ongoing,

phase of the project was begun to explore a notion of sharing allocated resources. The

completed first phase is discussed below, while preliminary results of the second are

deferred to the appendix.

1At CCICADA, the project was headed by Dr. Fred Roberts, CCICADA Director. Dr. Endre Boros,
Director of the RUTCOR Center at Rutgers University served as Principal Scientist for the project,
guiding the work of the model builders. Dr. Paul Kantor, CCICADA Director of Research, was heavily
involved in all phases of the work. The model was built and documented by CCICADA Graduate
Research Assistants Christie Nelson and Matthew Oster. They worked in close coordination with
Coast Guard personnel under the direction of CDR Kevin Hanson, USCG, LT Patrick Ball, USCG,
and LT Chad Conrad, USCG. Other researchers and experts who contributed to the projects success
include: James Wojtowicz, Managing Director of CCICADA, Dr. William M. Pottenger, CCICADA
Director of Transition, Dr. William Wallace, CCICADA PI at RPI, Dr. Tom Sharkey, Senior Researcher
at RPI, Michael Lehocky, USCG, Kim Babcock, USCG, and Todd Aikins, USCG.

2Under the E2E initiative, university Centers of Excellence work closely with agencies of the Depart-
ment of Homeland Security to accelerate the development of cutting edge solutions to real operational
problems by collaborating from the beginning of problem formulation to transition of complete pieces.

105

5.1.1 Motivation and background

The U.S. Coast Guard is the primary Federal agency responsible for “maritime safety,

security, and stewardship” [78]. The task force is comprised of approximately 43,000

active duty members, 7,800 reservists, 8,300 civilians, and 33,000 auxiliary personnel.

In 2012, the USCG responded to almost 20,000 nationwide Search and Rescue (SAR)

cases, saving more than 3,500 lives as well as $77 million in property damages [47, 49].

USCG missions such as SAR are performed primarily by cutters (i.e. marine vessels

above 65 feet in length also serving as quarters for its assigned crews), boats (marine

vessels ranging from 12 to 65 feet in length), and aircraft (fixed- and rotary-wing,

i.e. airplanes and helicopters, respectively). In the sequel, we focus attention on the

USCG boat fleet.

The USCG-patrolled waters of the United States are covered by 178 coastal stations.

Each station is managed by a local sector, which covers at most two dozen stations.

In turn, every sector belongs to a proximal command center known as a district, of

which there are 9 in total. The Office of Boat Forces (OBF) annually distributes

among districts the USCG inventory of small boats—currently 11 types are in use

(see Figure 5.1 for a list of types)—which are further assigned to individual home

or docking stations. This fairly large allocation problem is highly influenced by the

expected demand at the station level for each of the 11 mission types. For example, at

the New York City station, USCG members may spend thousands of hours ensuring the

safety of associated waters by performing a Homeland Security-based mission known

as Ports, Waterways, and Coastal Security (PWCS). Other mission include Search and

Rescue (SAR), Aids to Navigation (AtoN), and Drug Interdiction.

Each boat type has an amount of hours the OBF prefers users not to exceed each

year, after which the boat must undergo routine scheduled maintenance, e.g. the re-

sponse boat-medium (RB-M) has a cap of 600 hours per year, whereas the response

boat-small (RB-S) is allowed up to 1000 hours of use per year. A boat type also has

a set of generic attributes or capabilities desired by stations. For instance, a station

106

with a history of Drug Interdiction operations requires one of the response or law en-

forcement boats, but if it is also designated as requiring a boat with a Big or Heavy

Weather capability, then only the response boat-medium (RB-M) meets both criteria.

Other capabilities include the ability to operate in icy conditions (LH-ICE/SH-ICE) or

tactical scenarios (Tactical).

After the events of September 11, 2001, the stations saw an increase in operational

requirements [79], which has subsequently led to emergency boat acquisitions. For

instance, motor lifeboats (MLB) are expected to jump in number from 106 (2009 data;

cf. Figure 5.1) to 170 by the year 2015 [48]. Although such acquisitions are necessary

to meet increased requirements and replace outdated vessels, they are expensive and

do not necessarily provide a complete solution to the overall allocation problem. We

CCICADA and the USCG team CG-771 of analysts and operational experts worked

together to develop an optimization approach to the annual boat allocation problem by

building a software tool, or decision support system, for use by Coast Guard analysts

and planning managers. We present a model for the allocation problem known as BAM,

its software implementation and adoption within the USCG, and a brief overview of

an extension of the problem to “sharing” resources. First we provide a brief review of

relevant literature.

5.1.2 Related works

The discipline known as Operations Research was born just prior to World War II

[55], and received its first applications in the military during that war. A particularly

well-known optimization topic which arises in military applications is scheduling. For

example, Brown et al. [17], studied the problem of planning routine maintenance of

U.S. Navy combat ships. The problem solved was that of covering so-called primary

and secondary events as well as meeting maintenance and capability requirements. The

schedules were also requested to conform to manually constructed schedules deemed

ideal by Navy analysts, which was approximately modeled by incorporating elastic

constraints—a constraint which may violated, but at a large cost or penalty. This type

of constraint also appears in another maritime scheduling paper, Brown et al. [14], where

107

a decision support tool was developed for assigning U.S. Coast Guard cutters to weekly

patrols in which performing scheduled maintenance and maintaining fleet readiness—a

measure of expected ability to embark on a task—were primary factors in the opti-

mization problem. A follow-up paper [16] articulates the general notion of modeling

persistence, the desire to keep re-optimized solutions close in appearance when data

inputs are slightly modified, and argues that this property is crucial to maintaining the

trust of those in management positions. Other scheduling-related applications within

military departments (not necessarily those in the United States) include deployment

and maintenance scheduling of helicopters [24, 51, 54], procurement planning [17, 87],

capital planning [15], berth assignments [56], and general boat allocation [98].

Many of the aforementioned works focus only on a small part of the general problem

at hand. For instance, in [14], the scheduling of sixteen cutters to a single USCG district

was addressed. The reasons for lack of generality is typically a combination of problem

difficulty, limited computational resources, and agency compartmentalization. In this

thesis, we approach the boat allocation problem of the USCG with generality in mind,

while still including application-specific constraining factors.

The problem we address was also studied independently by Wagner and Radovilsky

[98]; especially, they studied the annual allocation of the U.S. Coast fleet of boats,

or marine vessels of length at most 65, subject to USCG governing policy known as

the Business Rules. Their work included both a deterministic and stochastic modeling

approach, as well as similar resource sharing constraint. They developed a decision

support system in Microsoft Excel, and tested it on data from USCG Fiscal Year

2009 (FY09). While the problem description was identical, our modeling approaches

were not. For instance, they focused on aggregate demands for mission hours at each

station, while we modeled individual mission types. They extended their model to

handle variability by linearizing value-at-risk constraints—typically found in portfolio

optimization—whereas we handle variability by adding a “pseudo” mission meant to

encode discretionary hours reserved for commanding officers. Both efforts, however,

show that an academic-industry collaboration is helpful in addressing both the technical

and operational aspects of military applications.

108

5.1.3 Our contributions

We worked with personnel from CG-771 and designed the first optimization model (aside

from the indpendent paper [98]) which aids in planning yearly boat allocation. This

model allocates to each station a variety of boats which meet capability requirements

and other USCG Business Rules while minimizing a weighted sum of unmet mission

hours. Our model is also able to provide alternative solutions in which a single boat type

is shared within particular subsets of stations—potentially reducing the total amount

spent on maintenance-based costs for the year. A key feature here is that the primary

variables are boat hours by type, rather than by individual vessels, ultimately reducing

the problem size as well as giving the OBF and commanding officers flexibity in terms

of the final implementation.

After agreeing upon a suitable mixed integer programming problem (MIP) model for

BAM, we implemented it in FICO’s Xpress Optimization Suite. The implementation

is able to read and write MS Excel files—in formats determined by CG-771 analysts—

which enables the user to dynamically view real-time changes in output after each run

without manually refreshing the spreadsheets. The user interface was designed to be

straightforward and very flexible in terms of which parameters are tunable, including for

example, linear programming (LP) relaxation solution methods. We performed tests on

the software in accordance to USCG verification and validation (V&V) standards, many

of which were designed and executed with a member of CG-771 present, leading to the

model’s accredidation within the agency. The model was also demonstrated in realtime

to Rear Admiral Mark E. Butt, the Assistant Commandant for Capabilities (CG-7),

among other OBF officials and USCG members. The software package is currently

functioning on the CG-771 analysts’ laptops, and is being used to aid in future boat

allocation and planning decisions.

Aside from the model’s practical contributions, we have also shown that implement-

ing sharing (via our tool’s recommendations or not) is a theoretically hard computa-

tional problem. More accurately, we prove that solving the problem description for

BAM is NP-hard. Moreover, we prove that implementing a shared solution of BAM

109

by “seasonally” assigning the shared boats to individual stations, i.e. boats can be

transferred for use at a new station only at the start of a new season, is an NP-hard

optimization problem when minimizing the number of shared boats in use.

The remainder of this chapter is organized as follows. First we give the formal

model of the boat allocation problem, along with a discussion of each constraint in

section §5.2. The next section (§5.3) is dedicated to the software package development

and testing, as well as the overall implementation within the USCG. This discussion is

followed by computational tests and interpretations in section §5.4. We conclude with a

few remarks and ideas for future projects in section §5.5. The accompanying Appendix

B includes preliminary details of an ongoing project related to the implementation of

sharing resources, including a proof of hardness.

5.2 BAM model

Here we are given a fleet of boats varying in type, and must distribute them among

the set of U.S. coastal stations, so as to meet requirements dictated by the USCG

Business Rules. Rather than minimizing a cost associated with boat allocations, we

fix the total available funds and minimize a measure of overall demand shortfall. In

particular, we optimize a weighted sum of unmet mission hours requirements, over all

stations. Relaxing the demand constraints in this way allows us to find boat allocations

to scenarios where limited funds would otherwise render the problem infeasible. Next

we introduce the defining constraints of BAM. Note that the allocation problem spans

a period of time of one fiscal year.

Let S be the set of stations, M the set of mission types, T the set of boat types,

and C the set of boat type capabilities. We define a variable bts as the total number of

boats of type t ∈ T assigned to station s ∈ S, and let yts be a binary variable encoding

whether or not any boat of type t is allocated to station s. Thus, if bts is to be a positive

integer, then we must have:

yts ≤ bts for t ∈ T, s ∈ S, (5.1)

bts ∈ Z+ for t ∈ T, s ∈ S, (5.2)

110

yts ∈ {0, 1} for t ∈ T, s ∈ S, (5.3)

since having a boat of type t (yts = 1) implies bts is non-zero (bts ≥ 1). If the amount

of inventory of boat type t ∈ T is denoted Bt, and each stations s ∈ S cannot receive

more than B′t boats of type t—with B′t ≤ Bt—then we also have

bts ≤ B′tyts for t ∈ T, s ∈ S, (5.4)∑
s∈S

bts ≤ Bt for t ∈ T. (5.5)

Letting Ps denote pier space available at station s ∈ S, we also include the constraint

∑
t∈T

bts ≤ Ps for s ∈ S. (5.6)

The next set of constraints encode the USCG Business Rules, policies governing a

feasible allocation.

Every station s ∈ S requires a subset of capabilities Cs ⊆ C, where each c ∈ Cs must

be covered by a positive number of capable boats, Rsc. In other words, letting Tc ⊆ T

denote the set of boats of type t ∈ T with capability c ∈ C, we have the constraint:

∑
t∈Tc

bts ≥ Rsc for c ∈ Cs, s ∈ S. (5.7)

We define a similar constraint imposing an upper bound on the number of types allowed

to cover a station’s designated attributes: letting R′sc denote such a bound, we have

∑
t∈Tc

yts ≤ R′sc for c ∈ Cs, s ∈ S. (5.8)

Another variable we introduce is the total amount of time, in hours, assigned to

boats. Letting Mt ⊆ M be the subset of missions types any boat of type t ∈ T is

able to perform, we define htsm to be the amount of hours assigned to missions of type

m ∈M among the bts boats of type t ∈ T at stations s ∈ S. Now we impose bounds on

the average number of hours assigned to each boat of type t ∈ T at station s ∈ S, that

is on
∑

m∈Mt
htsm/bts. In particular, we have a preferred capacity of At per boat of

type t ∈ T , but allow Et extra hours at the station level, and a slightly smaller global

surplus of LtEt, where Lt ∈ [0, 1] is a fractional parameter. This translates into the

111

following set of constraints:

∑
m∈Mt

htsm ≤ (At + Et)bts for t ∈ T, s ∈ S, (5.9)∑
s∈S

∑
m∈Mt

htsm ≤ (At + LtEt)
∑
s∈S

bts for t ∈ T, (5.10)

htsm ≥ 0 for m ∈Mt, t ∈ T, s ∈ S. (5.11)

We also impose a related lower bound at the station level, since otherwise our prelim-

inary tests revealed that the most expensive boats assigned to stations almost always

performed no missions. Letting E′t denote a maximum deficit below At boats of type

t ∈ T are allowed, the constraint is as follows:

∑
m∈Mt

htsm ≥ (At − E′t)bts for t ∈ T, s ∈ S. (5.12)

Every boat type t ∈ T requires the training of capable personnel, and the annual

amount of hours associated with each type’s minimum is Ut. Since also any logged

training hours count towards a boat’s total usage, we let some m∗ ∈ M denote a

“pseudo” mission called Training, and thus the following constraint arises:

ht sm∗ ≥ Utyts for t ∈ T, s ∈ S,m = m∗. (5.13)

This encodes that fact that a station only needs training hours aboard a type if that type

is allocated to the station. Note also that the previous constraints hold for m = m∗.

With any allocation comes a cost. Here we assume that the inventory amounts,

Bt, pertain to boats that have been previously acquired and are ready for use. Thus

we do not include a purchasing cost, but rather a maintenance-based cost for each

boat. In particular, the model has a calendar-based maintenance cost, or fixed cost Ft,

and an engine-based maintenance cost, or variable cost Vt. The latter parameter Vt

is incurred per hour a boat of type t ∈ T is underway or in operation, whereas the

former Ft is incurred per allocated boat. Notice that Vt attributes to the overall cost

of an allocation indepedently of Ft, i.e. the fixed cost is incurred per boat allocated,

whether or not such boats are utilized otherwise. Furthermore, there is an increasing

cost or penalty associated with assigning more than two boat types, since with each

112

new boat type, an increase in training per USCG member at a station is observed.3

Thus the cost was determined to be incremental in the number of extra types, i.e. we

define Ji to be a non-negative cost amount, for i ≥ 3, where
∑

3≤i≤k Ji denotes the

total cost of assigning exactly k distinct boat types to a station. Now by introducing a

variable zsi ∈ {0, 1} which, for any s ∈ S and solution y ∈ {0, 1}T×S , is to be of value 1

whenever i ≤
∑

t∈T yts, and 0 otherwise, the cost constraint is as follows for any given

budget D in U.S. dollars:

∑
s∈S

(∑
t∈T

Ftbts + Vt
∑
m∈Mt

htsm

)
+

|T |∑
i=3

Jizsi

 ≤ D. (5.14)

The variables zsi are encoded properly by enforcing

|T |∑
i=3

zsi ≥
∑
t∈T

yts − 2 for s ∈ S, (5.15)

zs i−1 ≥ zsi for s ∈ S, i = 4, . . . , |T |, (5.16)

zsi ∈ {0, 1} for s ∈ S, i = 3, . . . , |T |. (5.17)

Indeed, whenever k :=
∑

t∈T yts ≥ 3, and constraint (5.15) is satisfied by (zsi : s ∈

S, i = 3, . . . , |T |), the other constraints (5.16) and (5.17) imply that, for any s ∈ S,

we must have zsi ≥ 1 for 3 ≤ i ≤ k. Furthermore, (5.15) is satisfied with equality if

and only if zsi = 1 for 3 ≤ i ≤ k and zsi = 0 for i > k, and so
∑k

i=3 Ji is added to

the left-hand side of the budget constraint (5.14). Note that the |S| binary constraints

(5.17) are necessary if Ji−1 ≤ Ji, for 4 ≤ i ≤ |T |.

Now given the above constraints, we would also like to choose an allocation in which

every station s ∈ S has its hourly requirements Hsm, for each mission type m ∈M met

by any boats able to perform that type of mission, i.e.

∑
t∈T :m∈Mt

htsm ≥ Hsm.

Unfortunately, this is not always possible, especially for small enough budget D. Thus

we choose to make the hourly requirements an elastic constraint, where we penalize

3The USCG Business Rules dictate that at least two boats are to be assigned at each station, and
the capability requirements of the boats typically forces a station to have at least two distinct types;
hence we do not penalize for allocating two or less types per station.

113

only those missions for which there is a shortage of hours. We introduce a nonnegative

weight or penalty multiplier Wsm for each m ∈M and s ∈ S, and minimize

∑
s∈S

∑
m∈M

Wsm ·max

{
0, Hsm −

∑
t∈T :m∈Mt

htsm

}
.

The value of the objective can be seen as a convex combination of all shortage hours

xsm, over m ∈ M , s ∈ S, if we scale the multipliers Wsm so that
∑

s∈S
∑

m∈M Wsm =

1. Thus, when considering some s ∈ S, the values Wsm encode mission preference,

i.e. Wsm0 > Wsm1 implies that meeting mission hour requirements towards m0 one

more important than those towards m1.

To make the objective function linear, we introduce non-negative variables xsm for

each s ∈ S and m ∈M , and impose the following constraints:

xsm ≥ Hsm −
∑

t∈T :m∈Mt

htsm for m ∈M, s ∈ S, (5.18)

xsm ≥ 0 for m ∈M, s ∈ S. (5.19)

and aim to minimize

∑
s∈S

∑
m∈M

Wsmxsm. (5.20)

Let any feasible solution to the above set of constraints (5.1)–(5.19) be called a feasi-

ble allocation, and any feasible allocation which minimizes (5.20) is called an optimal

allocation.

Since the hourly requirements are not rigid constraints, the system (5.1)–(5.19) is

always feasible for large enough budget D, global and local inventories Bt and B′t,

t ∈ T , and pier spaces Ps, s ∈ S. Thus we can include auxiliary variables within the

corresponding constraints which are meant to find where any such parameter might

need an increase in order to achieve feasibility. In our case, to keep the number of

new variables small, we only choose to introduce two sets of variables vt and us, which

denote an increase in Bt, for t ∈ T , or Ps, for s ∈ S, respectively. Now we replace the

corresponding constraints (5.5) and (5.6) with:

∑
s∈S

bts ≤ Bt + vt for t ∈ T, (5.21)

114

vt ∈ Z+ for t ∈ T. (5.22)∑
t∈T

bts ≤ Ps + us for s ∈ S, (5.23)

us ∈ Z+ for s ∈ S, (5.24)

For the system defined by (5.1)–(5.4), (5.7)–(5.19), and (5.23)–(5.22), we call any fea-

sible solution an augmented allocation. Now it is easy to see that a feasible allocation

exists if and only if an augmented allocation exists with
∑

s∈S us +
∑

t∈T vt = 0. Thus,

if the objective is altered to:

∑
s∈S

∑
m∈M

Wsmxsm + α
∑
t∈T

vt + β
∑
s∈S

us, (5.25)

where α and β are penalty multipliers chosen large enough, e.g.
∑

s∈S
∑

m∈M Hsm + 1,

so to meet any augmented allocation of value less than min{α, β} must be a feasible

allocation. Conversely, any lower bound (e.g. from a relaxed solution) on the objective

value (5.25) of any augmented allocation which is at least min{α, β}, proves that no fea-

sible allocation exists. This dichotomy allows the USCG analyst to conduct preliminary

tests to determine whether or not the input parameters define a feasible allocation.

In our model, we give the option of allowing boats of a single type t∗ ∈ T to be

shared, or assigned among subsets of stations rather than assigned only to individual

stations.4 More specifically, given κ disjoint subsets Sk ⊆ S, for k = 1, . . . , κ, which

partition S, we introduce a variable qk denoting how many boats of type t∗ are assigned

to be utilized by any station s ∈ Sk, for k = 1, . . . , κ, and enforce:

qk =
∑
s∈Sk

bt∗ s for k = 1, . . . , κ, (5.26)

qk ∈ Z+ for k = 1, . . . , κ. (5.27)

We then relax the integrality of bt∗ s, eliminating the redundancy that constraint (5.27)

would otherwise have, by replacing (5.2) with:

bts ∈ Z+ for t ∈ T \ {t∗}, s ∈ S, (5.28)

bt∗ s ≥ 0 for s ∈ S. (5.29)

4Though extension to multiple types is easy to model, sharing boats is not typical in the USCG,
hence we restrict the presentation to a single shared boat type.

115

The constraints (5.1), (5.3)–(5.19), and (5.26)–(5.29), provide a relaxation of the

original system which intuitively provides feasible solutions, or shared allocations, in

which the fractional value bt∗ s, for some k and s ∈ Sk, is now only an estimate on

the number of boats of type t∗ which are needed to meet the hours assigned to s,∑
m∈Mt∗

hs t∗m. In other words, this shared allocation problem does not provide a clear

“home” station for each of the boats of type t∗ assigned among sets Sk, and thus we

interpret the solution as a sort of lower bound on the quantitative benefit of sharing

compared to not sharing resources.

When bt∗ s is allowed to be fractional as above, the constraint (5.1) implies that bt∗ s

is either 0 or a real number greater than or equal to 1. We relax this constraint to a

slightly weaker semi-continuous type of constraint:

γ · yt∗ s ≤ bt∗ s for s ∈ S, (5.30)

yts ≤ bts for t ∈ T \ {t∗}, s ∈ S (5.31)

for some γ ∈ (0, 1]. Intuitively, this means that whenever a boat of type t∗ is assigned

to a subset of stations Sk, at least a fraction of γ of any such boat’s hours At should be

utilized. Thus, when implementation of the shared allocation is considered, there are

no stations requiring a small fraction of hours ε with 0 < ε < γ.

The entire model appears together as (5.32)—(5.55).

(BAM) minimize
∑
s∈S

∑
m∈M

Wsmxsm + α
∑
t∈T

vt + β
∑
s∈S

us (5.32)

subject to γ · yt∗ s ≤ bt∗ s s ∈ S (5.33)

yts ≤ bts t ∈ T \{t∗}, s ∈ S (5.34)

bts ≤ B′tyts t ∈ T, s ∈ S (5.35)∑
s∈S

bts ≤ Bt + vt t ∈ T (5.36)∑
t∈T

bts ≤ Ps + us s ∈ S (5.37)∑
t∈Tc

bts ≥ Rsc c ∈ Cs, s ∈ S (5.38)∑
t∈Tc

yts ≤ R′sc c ∈ Cs, s ∈ S (5.39)

116

∑
m∈Mt

htsm ≤ (At + Et)bts t ∈ T, s ∈ S (5.40)∑
s∈S

∑
m∈Mt

htsm ≤ (At + LtEt)
∑
s∈S

bts t ∈ T (5.41)∑
m∈Mt

htsm ≥ (At − E′t)bts t ∈ T, s ∈ S (5.42)

ht sm∗ ≥ Utyts t ∈ T, s ∈ S (5.43)∑
s∈S

(
Ft

(
bts+Vt

∑
m∈Mt

htsm

)
+

|T |∑
i=3

Ji · zsi

)
≤ D (5.44)

|T |∑
i=3

zsi ≥
∑
t∈T

yts − 2s ∈ S, (5.45)

zs i−1 ≥ zsi s ∈ S, i = 4, . . . , |T |, (5.46)

zs3 ∈ {0, 1} s ∈ S, i = 3, . . . , |T |. (5.47)

xsm ≥ Hsm −
∑

t∈T :m∈Mt

htsm m ∈M, s ∈ S (5.48)

xsm ≥ 0 m ∈M, s ∈ S (5.49)

qk =
∑
s∈Sk

bt∗ s k = 1, . . . , κ (5.50)

qk ∈ Z+ k = 1, . . . , κ (5.51)

bts ∈ Z+ t ∈ T \{t∗}, s ∈ S (5.52)

us ∈ Z+ s ∈ S (5.53)

yts ∈ {0, 1} t ∈ T, s ∈ S (5.54)

htsm ≥ 0 m∈Mt, t∈T, s∈S (5.55)

Notice that the constraints above with t∗ singled out may still exist if no sharing is

desired, since the trivial partition Sk, with |Sk|= 1, of S may be chosen. Furthermore,

notice that bt∗ s ≥ 0 is implied by (5.30), and also that constraint vt ∈ Z+ is superfluous

for every t ∈ T , even when t = t∗, since
∑κ

k=1

∑
s∈Sk bt∗ s =

∑
s∈S bt∗ s; thus we omit

them from the overall formulation.

Given any solution to the BAM model (5.32)–(5.55), unless
∑

s∈S us+
∑

t∈T vt > 0,

we post-process the aggregate variables bts, for each t ∈ T \ {t∗}, s ∈ S, into individual

boat allocations by assigning to each boat
∑

m∈Mt
htsm/bts hours, which is possible

since:

At − E′t ≤
∑

m∈Mt
htsm

bts
≤ At + Et.

117

Thus, in the sequel, we refer to a boat’s hours rather than the “average” boat’s hours.

If κ < |S|, then some subset Sk ⊆ S must be non-trivial, i.e. |Sk|> 1, in which

case the qk boats allocated to Sk are given to the corresponding managing sectors or

districts to develop an implemenation strategy; for this reason, we restrict attention to

the partition of S into sectors or districts. Hence, when a shared solution is found, our

model does not explicitly assign a “home” station to the boats shared among subsets

Sk ⊆ S, for each k.

5.3 Implementation

At the onset of the software design of BAM, the USCG requested a tool which could

incorporate Microsoft’s Excel spreadsheets. It was also necessary to provide an intuitive

interface to the optimization solver for USCG analysts. FICO’s Xpress Optimization

Suite (XOS) was a viable solution—we implemented in Xpress IVE v1.23.00, with Mosel

v3.4.0, and Optimizer v23.01.03—as it is able to both read and write Excel files. More-

over, XOS has a Windows-based interface, IVE, equipped with an intuitive algebraic

modeling language (which doubles as a programming language), and is powerful enough

to solve large-scale mixed-integers optimization problems. Many of the parameters in-

ternal to XOS are tunable, some of which we include in our implementations. For

example, to allow for flexibility when solving linear programming (LP) relaxations, we

include a parameter specifying whether the Primal Simplex, Dual Simplex, or Newton

Barrier Method should be used (defaulting to the Dual Simplex, as the number of con-

straints tends to be large). Once a program has been run, the IVE interface also allows

decision-makers to explore solutions to various input data, and to quickly run other

scenarios without having reload the output spreadsheet.

The interface is a text file which can be displayed in the IVE, and has all mod-

ifiable parameters listed in sequence, where each parameter is explained with in-line

comments including suggested default values. An accompanying User Guide drafted

by the development team includes a description of the boat allocation problem, the

formats of corresponding auxiliary files, and a complete step-by-step tutorial. In-depth

118

descriptions of the key parameters are also included in the manual. The user guide was

successfully tested on a member of CG-771 external to the development of the software.

One important auxiliary file is the “core” text file containing the encoding of the

model (5.32)–(5.55). This file is typically not directly needed by an analyst when

running experiments, though it is written in the XOS Mosel language and is thus easily

modifiable. For example, new constraints can be added to the core file with a few extra

lines of code. Other files include input and output Excel spreadsheets, both of which

have been formatted by CG-771 members.

The software tool was designed with flexibility and expansion in mind. In particular,

one can specify scenarios where only a subset of either the inventory of boat types or

coastal stations are available, or the number of shared boat types can be expanded

beyond a single type without having to revisit or modify the Excel input file. On the

other hand, the tool enables the user to introduce, for example, new boat types or

stations by a simple change in the input file.

The USCG analysts of CG-771 were partners throughout the optimization model

development process, and were also major contributors towards testing the credibility

of the tool. In accordance with the Validation and Verification (V&V) standards of

the USCG, we worked together in designing and running tests which would attempt to

expose any flaws of the model or its implementation. This process was a key part in

achieving accredidation status of the BAM software package.

While the tool is still fairly new to those in managerial positions at the USCG, it is

integrated into the CG-771 analysts’ computer systems. It is primarily used to aid in

decision-making for various hypothetical scenarios, many of which are presented in the

following section.

5.4 Results

5.4.1 Data set

The data set used for our experiments was provided by the CG-771 team. Many pa-

rameters (e.g. preferred hourly use At for each boat type) came from USCG databases,

119

Number of Number of Max number of Fixed cost ($) Var cost ($)

Boat name Abbreviation boats FY09 boats Bt hours per boat At per boat ft per hour vt

Motor lifeboat MLB 106 109 600 36,951 120

Response Boat

—Medium RB-M 167 162 600 36,000 120

—Small RB-S 335 231 1,000 5,657 47

—Small Auxiliary RBS-AUX 13 0 500 5,657 47

Special Purpose Craft

—Near-shore lifeboat SPC-NLB 2 3 350 15,000 60

—Heavy weather SPC-HWX 4 4 350 15,000 120

—Law enforcement SPC-LE 41 26 1,000 9,217 87

—Shallow water SPC-SW 47 46 500 4,390 63

—Air SPC-AIR 8 12 100 2,000 45

—Ice SPC-ICE 24 46 50 1,000 15

—Skiff SPC-SKF 56 0 100 500 15

Figure 5.1: USCG boats by type and associated BAM model parameters; FY09 data

from 2009 [98]; remaining data acquired for tests in 2012.

whereas values such as Et—the maximum amount a boat may exceed the preferred

yearly use At—were estimated by observing past allocations. In the subsection that

follows, we present tests performed to determine the effects of changes to some such

parameters. A majority of the tests were performed on an x86-64 machine with an Intel

Core i7 950 chip—clocked at 3.06GHz—with 9Gb of available RAM and the Windows

7 operating system, and were allowed to run up to 300 seconds each.

Figure 5.1 provides the values of many parameters used by the BAM model which

are indexed by boat type. The third column displays the amounts of each boat type

reportedly available in the USCG’s fiscal year of 2009 (FY09), whereas the fourth lists

those available to our model, Bt. Although about half the quantities between columns

FY09 and Bt are relatively similar, it is worth noting that the RBS-AUX and SPC-SKF

boat types were not used in our tests. The former type, RBS-AUX, is absent due to the

ongoing effort by the USCG to update them with the newer model of the same basic

boat, the RB-S. The SPC-SKF type was chosen to be left out of the BAM tests due

to its relatively low hourly availability and maintenance costs. Furthermore, the SPC-

SKF are trailerable, meaning they are much easier than other boat types to transport

120

between stations. Thus both types were deemed to be manageable outside the model.

Another quantity which differs from the FY09 values is the value of the RB-S prefer-

able hours ARB-S. As recorded in the similar work in [98], the USCG determined that

each RB-S can be utilized up to 500 hours each year before calendar-based mainte-

nance becomes mandatory. The CG-771 team along with confirmation from the OBF

informed us, however, that engineers are allowing this number to be extended to as

much as 1000 hour per RB-S. Note that fixing ERB-S = 500 in not equivalent to chang-

ing ARB-S, as the global bound (5.10) in this case can be too restrictive depending on

the value of LRB-S—consider LRB-S = 0. Thus we let ARB-S = 1000 and ERB-S = 0;

see also the fifth column of Figure 5.1. Due to the versatility of RB-S boats as well as

the large quantity available compared to the remainder of the fleet, this increase in At

applies only to the RB-S boat type.

For many boat types, we have B′t = Bt, which denotes that there is no restrictive

limit on the number of boats of type t ∈ T at the station-level. On the other hand,

many of the special-purpose craft have B′t set to 1.

Each Ps was set to the constant value of 14, which was determined to be the min-

imum such constant allowing for a feasible allocation, i.e. the minimum δ ∈ Z+, such

that Ps := δ for all s ∈ S, yielded a solution with
∑

s∈S us +
∑

t∈T vt = 0.

Preliminary testing of BAM showed that choosing the parameter γ ∈ [0.1, 0.9] did

not cause a significant change in objective value, while values below 0.1 were deemed

unreasonable by CG-771, so we chose the least restrictive value γ := 0.1. Of course, any

choice of γ is superfluous if sharing is not desired, i.e. if the partition Sk, k = 1, . . . , κ,

is such that |Sk|= 1 for each k.

The maximum hourly increase of a station’s boat, Et, was set to be 10% of the

preferred amount At, with the exception of RB-S where we recall that ERB-S := 0.

Similarly, the value of the maximum hourly deviation E′t below At was set to 70%,

since many boat types (e.g. SPC-ICE) had not been operational more than an average

of 30% of available hours in the 2012 data provided. Further, the fraction of hours Lt

an average boat of type t ∈ T can be utilized (nationwide) was set to zero. This implies

that although an individual boat at any station is able to perform up to 110% of the

121

preferred hours At, the type, on average, must not exceed this preference. This is due

to the fact that boats are scheduled for annual maintenance, and adhering on average

to the preference hours ensures that such a schedule is followed.

At any station s ∈ S, and for any capability c ∈ Cs, the minimum number of boats of

capability types t ∈ Tc required at s, i.e. the value of Rsc, ranges from 1 to 4 where, for

example, Rs,Tactical = 4 means that s requires at least 4 boats with Tactical capabilities.

On the other hand, the maximum number of types allowed t ∈ Tc to satisfy c ∈ Cs at

s, i.e. the value R′sc, was either 1 or |Tc|, where the latter choice encodes the fact that

station s does not impose such a restriction—in the implementation, this constraint

can be removed. If R′sc = 1, then only one type of boat t ∈ Tc is allowed at station s,

of which there must be at least Rsc in quantity.

The value of each Ji is defined as the incremental cost of assigning one more boat

type, increasing from i − 1 types to i, for each i = 3, . . . , |T |. Recall that the USCG

acknowledges that at least two types are needed at each station to properly carry out

mission requirements, and that increasing the number of distinct types also involves

more operational training for stationed personnel. Furthermore, it is highly undesirable

for a station to have too many types, which is defined as 5 or more. For this reason,

we have chosen to J3 = J4 = $1, 500, and Ji = $10, 000 for i ≥ 5. In our tests, 5

different types were rarely needed, and 6 or more were never assigned to a station. On

the other hand, every test resulted in at least one station being assigned boats of 3 or

more distinct types.

Our model allows at most one type of boat, i.e. t∗ = “RB-S”, to be shared among

stations at the sector or district level. In other words, we only allow the partition Sk,

k = 1, . . . , κ, to be defined with all subsets Sk being either an individual stations (no

sharing), a sector, or a district; in this order, the problems become successively less

restrictive since each district is made up of sectors.

Recall that the set of mission types M contains the “pseudo” mission m∗ = “Train-

ing”. We also include a second “pseudo” mission known as “Command Discretion”,

denoted m∗∗. Here, any hours Hsm∗∗ required by a station s ∈ S are actually hours

122

reserved for those in command to use towards any unexpected variability in the remain-

ing mission hours Hsm, m ∈ M \ {m∗∗}. For our main tests, unless otherwise noted,

we fixed Hsm∗∗ = 0.

The budget value D, the hourly mission requirements at a station Hsm and cor-

responding precedence factor or penalty Wsm, for m ∈ M, s ∈ S, and hourly training

minimum of a type Ut, for t ∈ T , were provided by the CG-771, and have been requested

to remain undisclosed.

Recall that α and β must be large enough to detect whether a feasible solution to

BAM exists. We choose α = β =
∑

s∈S
∑

m∈M Hsm + 1, since 0 ≤ Wsm ≤ 1 for each

m ∈M , s ∈ S.

Preliminary tests showed that with the given data set for BAM, there was no feasible

allocation, as at least 8 SPC-HWX vessels were needed, i.e. an optimum solution to

(5.32)–(5.55) yielded ut = 4 for t = “SPC-HWX”. After further investigation, we

found 4 stations with two capabilities having values of corresponding Rsc and R′sc

cf. (5.7)–(5.8) which were restrictive enough to require at least 2 SPC-HWX vessels

each. A small alteration of replacing R′sc with R′sc + 1 fixed the problem, i.e. allowed

feasible allocations, but it should be pointed out that this step is a relaxation of the

corresponding Business Rules. We feel that this is the least “invasive” possible change,

at least for the purpose of testing.

5.4.2 Tests

We first tested the BAM model with the data discussed in the previous section (§5.4.1)

by finding the smallest budget D in which the value of the objective function is 0—for

each of the three sharing choices—i.e. the first D for which a feasible allocation exists

with no shortage hours; denote the value of D as the corresponding problem’s optimum

budget. We find each optimum budget by a simple binary search starting with an initial

D large enough to allow some feasible allocation, e.g. $100 million, and stopped the

search within a tolerance of $10,000. Here, each individual MIP was solved with a

30 minute limit, and stopped earlier than 30 minutes if either the objective value was

bounded away from 0, or had a worst upper bound less than 100. This amounted to

123

Sharing plan Opt. budget (%) Low bound Abs. gap CPU (s) # Nodes

station 92.88 0.00 73.01 300 16,867

sector 92.37 0.00 98.52 300 22,189

district 91.86 0.00 10.76 300 28,224

Figure 5.2: Xpress B&B statistics for solving each sharing plan with optimum budgets

stopping after solving 10 BAM instances in less than 5 hours. Note that all budget

values are confidential, and so we report those found by our model in percentages of a

value D∗, which represents the actual USCG budget corresponding to the data set we

were provided—denote this data set of FY10.

Each test run presented hereafter was allowed only a 300 second limit, including

the re-running of the data sets with optimum budget values—Figure 5.2 displays these

results. This small amount of time allows the solver enough time to find fairly good

solutions, and is approximately when tailing off is typically observed, i.e. when the

relative improvement between the worst upper bound and best known solution value

slows to within 0.1%, per 100 seconds. In the case the upper bound remains at 0, tailing

off is said to occur when the relative improvement of the feasible solutions drops below

%0.1 per 100 seconds when the value of the solution is 100 or above, and otherwise

when no absolute improvement has occurred in 100 seconds. The size of the matrix for

BAM in Xpress’ standard form for solving the corresponding MIP, and how the XOS

preprocessing reduces the problem size further, is found in Figure 5.3.

To give a sense of the savings our model provides, consider the hypothetical case

D∗ = $100, 000, 000. Here, even without sharing, we find that the optimum budget

is $92, 880, 000, for a savings of over 7 million dollars. When sharing is allowed at

Matrix Preprocessing

rows (constraints) 45,686 9,672

columns (variables) 33,995 17,291

non-zero elements 214,831 83,427

Figure 5.3: Matrix statistics for BAM input to Xpress IVE, sharing disallowed

124

BAT [98] BAM

Original USCG BAT Implemented No Sector-wide District-wide

Boat type allocation FY09 allocation allocation sharing sharing sharing

MLB 106 102 102 58 63 64

RB-M 166 166 158 162 162 158

RB-S 360 208 318 231 231 231

RBS-AUX 10 10 10 0 0 0

SPC-NLB 3 2 3 3 3 3

SPC-HWX 4 0 4 4 4 4

SPC-LE 33 26 20 26 25 26

SPC-SW 47 47 47 46 46 46

SPC-AIR 8 8 12 12 10 12

SPC-ICE 0 24 0 46 46 46

SPC-SKF 67 29 42 0 0 0

total 804 622 716 588 590 590

Figure 5.4: Difference between USCG, BAT [98], and BAM allocations

the sector level, over $500, 000 more could be saved. When sharing is brought up to

the district level, we see that another approximate savings of $500, 000, for a total

(hypothetical) savings of $8, 140, 000. It should noted, however, that with the cost

savings comes an allocation with potentially vast differences. In a future work, it would

be interesting to include a modeling property known as persistence, where consecutive

runs of our model with small data parameter changes result in similar allocations—or

as similar as possible (see for example [16]).

Figure 5.4 records the boat allocations provided by both our tool (BAM)—with

D fixed to the corresponding optimal budgets—and the Boat Allocation Tool (BAT)

along with the comparable original USCG fiscal year 2009 allocation, which are found

in [98]. The two models solve the USCG boat allocation problem, but are not identical

in either the constraint set (e.g. only BAM includes capability constraints (5.7)–(5.8))

or the data set (e.g. BAT utilized FY09 data, whereas ours was modified from FY10).

Unfortunately, the latter data set was not completely disclosed, and thus we cannot

directly compare cost savings between them. However, with the help of a number of

125

unifying measures of success described in [98], we make other comparisons of the impact

of each model. The measures are listed next, with only P8 redefined to take into account

our costs taking percentage form.

• P1: Total number of boats assigned, or
∑

s∈S
∑

t∈T bts.

• P2: Percentage of stations with excess hours, or

|{s ∈ S|
∑
m,t

htsm −
∑
m

Hsm > 0}|/|S|.

• P3: Percentage of station with shortage hours, or

|{s ∈ S|
∑
m

Hsm −
∑
m,t

htsm > 0}|/|S|.

• P4: Average excess hours per station with an excess, or

∑
s∈S

max{0,
∑
m,t

htsm −
∑
m

Hsm}/|{s ∈ S|
∑
m,t

htsm −
∑
m

Hsm > 0}|.

• P5: Average shortage hours per station with a shortage, or

∑
s∈S

max{0,
∑
m

Hsm −
∑
m,t

htsm}/|{s ∈ S|
∑
m

Hsm −
∑
m,t

htsm}|.

• P6: Percentage of stations with more than 2 boat types, |{s ∈ S|
∑

t yts−2 > 0}|.

• P7: Average number of boat types per station, or
∑

s∈S
∑

t∈T yts/|S|.

• P8: Total cost as percentage of USCG budget estimate D∗, D/D∗; BAM only.

• P9: Capacity utilization, or

– USCG allocation: 1−
∑

s∈S max{0,
∑

tAtbts −
∑

mHsm}/
∑

t∈T AtBt;

– BAT/BAM allocations: 1−
∑

s∈S max{0,
∑

m,t htsm−
∑

mHsm}/
∑

t∈T AtBt.

• P10: Demand shortfall, or

– USCG allocation:
∑

s∈S max{0,
∑

mHsm −
∑

tAtbts}/
∑

s∈S
∑

m∈M Hsm;

– BAT/BAM allocation:
∑

s∈S max{0,
∑

m xsm}/
∑

s∈S
∑

m∈M Hsm.

126

BAT [98] BAM

Performance metric Original BAT Impl. No Sector District

alloc. alloc. alloc. sharing sharing sharing

P1: Total size of utilized fleet 804 622 716 588 590 590

P2: Percentage of stations with excess hours (%) 61.2 1.7 41.6 28.2 35.6 33.3

P3: Percentage of stations with a shortage of hours (%) 38.8 0.0 1.1 1.1 3.4 1.1

P4: Average excess hours per station with an excess 556.3 102.0 209.8 90.7 96.2 100.2

P5: Average shortage hours per station with a shortage 563.1 0.0 70.0 2.5 109.4 6.0

P6: Percentage of stations with more than two boat types (%) 37.6 30.9 30.9 35.1 34.5 34.5

P7: Average number of boat types per station 3.1 2.3 2.2 2.3 2.4 2.3

P8: Fleet operating cost relative to est. USCG FY10 (%) * * * 92.88 92.37 91.86

P9: Capacity utilization (%) 85.3 99.0 96.2 99.0 98.7 98.7

P10: Demand shortfall rate (%) 9.90 0.00 0.04 0.00 0.25 0.00

Figure 5.5: Difference between USCG original, BAT [98], and BAM measures of success

Looking at the results of applying the above measures to our solutions with opti-

mum budgets (cf. Figure 5.5), we see that the total number of vessels allocated slightly

increases when sharing is allowed in BAM. This can be partially explained by the ac-

companying Figure 5.6, which shows that a majority of boat types saw an increase in

excess hours, but there was a decrease in excess RB-S hours. In other words, sharing

Figure 5.6: Optimal budget effect on unused resources (hours)

127

boats of type RB-S allows for their more efficient hourly use, which in turn elimi-

nates some hours spent aboard vessels with higher variable costs (e.g. MLB and RB-M;

cf. Figure 5.1). This effort results in a savings, since roughly the same number of total

hours are spent aboard all vessels, and implies that vessels with small minimum hourly

requirements (i.e. small At − E′t in (5.12)) are desirable.

Measures P2–P5 demonstrate that our BAM model does not reduce total excess

hours, which is to be expected, as the objective function (5.25) of our model does

not penalize excess hours assigned. However, excess assignments are not considered

wasteful, so long as vessels adhere to scheduled maintenance, since we are told that

these hours can be transfered to the “Training” or “Command Discretion” missions. In

fact, in our tests, we have observed that any surplus occuring at a station, i.e. Hsm <∑
t∈T htsm, is primarily found for m = m∗, or “Training”. Since our tests were run

with Wsm∗ > minm∈M{Wsm}, we find that the cause is the minimum training amount

Ut required per boat type allocated to the station.

When comparing our performance with BAT, the average excess (P4) is lower in

BAM, but the number of stations having excess hours in BAM is much higher. Further-

more, our optimal budget solutions, whether sharing or not, are improvements—with

respect to P2–P5—upon the allocations made by the USCG with and without the help

of BAT.

The next two measures, P6 and P7, show that BAM’s extra charges Ji for incremen-

tally adding new boat types to a station keep the average number of types per station

relatively low, at approximately 2.3. Furthermore, these values dominate those of the

initial USCG allocation. However, the BAT model and data set yields better P6 values

than BAM, i.e. BAT achieves a smaller number of allocated types across the stations,

and almost identical to the BAM P7 values.

Our measure P8 is incompatible with the BAT, since it represents the ratio of a

problem’s budget D to the USCG FY10 estimate D∗ (see Figure 5.2). Nevertheless,

without sharing we can save over 7.1%, or several million dollars, whereas with sharing,

it may be possible to save up to 8.1%, or an extra several hundred thousand dollars.

Finally, P9 and P10 respectively provide measures of how successfully an allocation

128

∂

∂

Figure 5.7: Dinstinct boat types vs. δ

utilizes the available resources and, respectively, the overall shortfall in hourly demands.

Our statistics are comparable to those of BAT, which can be seen as large improvements

over the USCG initial allocation.

Our next set of tests include varying particular input parameters and measuring

their effect on measures P1–P10. In particular, Figure 5.7 displays the percentage of

stations with strictly more than 2, 3, or 4 distinct boat types, when the Ji values are

scaled by a constant factor δ. It is clear that virtually no station ever receives 5 or more

distinct types, and for large enough δ, no station will be given a fourth distinct type.

On the other hand, as δ grows, the percentage of stations with more than two boat

types tends to decrease as expected, but may never fall below 2 due to constraining

factors such as station capability requirements and a fixed inventory.

Figure 5.8 displays a graph of two related plots. The first plot (squares) shows an

increasing trend in average shortage hours per station with observed shortages (P5)

with respect to γ—the minimum percentage of hours a shared RB-S vessel is operated

at a station. On the other hand, the second plot (diamonds) tells us that as γ increase,

the number of stations with a single vessel which is being shared decreases; these two

129

γ

γ

Figure 5.8: P5 and sharing vs. γ

measures also appear to have an inverse relationship. Indeed, since the total number

of (weighted) unmet hours cannot decrease as γ approaches value 1, i.e. as it becomes

more restrictive, these observations tell us that sharing is most utilized when γ is small.

However, a caveat arises here in the actual implementation of shared allocations. In

particular, for small values of γ, a large number of stations can do without harboring

an RB-S full-time, but still require a (possibly small) amount of the vessel’s utility.

Figure 5.9 depicts two trends as the variability in a boat’s scheduled hours is allowed

ε

ε

Figure 5.9: P1 and P8 vs. ε

130

λ

λ

Figure 5.10: P1 and P8 vs. λ

to increase. The horizontal axis displays ε, where we set Et = E′t = ε, for all t ∈ T , and

so

At − ε ≤
∑

m∈Mt
htsm

bts
≤ At + ε.

The first plot (squares) records the value of P1, or the total number of boats assigned

for each given ε. Here we notice that as the allowed range of assignable hours expands,

more vessels are allocated. One explanation for this behavior is that the capability

constraints force a number of boats to be allocated at the stations. So if at some station

the capable boats are expensive to maintain, i.e. Vt is large, and ε is small enough, it

becomes worthwhile to utilize such boats minimally and to utilize a new boat which has

a cheaper maintenance rate. This is further confirmed by the second plot (diamonds)

of Figure 5.9, which shows that the relative optimal budget decreases—at a decreasing

rate—as ε increases.

Figure 5.10 displays two plots with a horizontal axis consisting of a parameter λ,

defined to be the percentage of the total mission hours
∑

m∈M\{Command Discretion}Hsm

that is set aside for the mission m∗∗ = “Command Discretion”, i.e. to account for

variability. In other words, larger values of λ encode a requirement that stations allow

for larger surpluses in mission hour demand. The first plot (squares) shows that as the

number of hours Hsm∗∗ grows, the total number of boats (i.e. P1) increases at a roughly

linear rate. The second plot (diamonds) shows that the optimum budget (i.e. P8) is

131

Sharing plan # RB-S Opt. budget (%) Low bound Abs. gap CPU (s) # Nodes

station 310 88.47 0.00 34.00 300 18,938

sector 295 88.14 0.00 44.13 300 25,526

district 285 87.90 0.00 30.79 300 37,091

Figure 5.11: Xpress branch-and-bound statistics for solving each sharing plan with

respective optimum budgets and maximum needed RB-S

also an increasing function with respect to λ. However, the seemingly sporadic jumps

in the latter plot are possibly due to the increase in boats of varying fixed costs, as well

as the penalty for introducing new types.

Figures 5.11 and 5.12 provide statistics of what happens to solutions when the

number of RB-S is allowed to be essentially unlimited, i.e. BRB-S →∞. The first table

records the resulting optimal budgets relative to the USCG FY10 estimate. Here we

see that when compared to the optimal budgets with a constrained number of RB-S

(cf. 5.11), the extra savings is around 4%, or a few million dollars more than already

saved, regardless of sharing region. The tradeoff here is an increase in the number of

RB-S used over all stations (cf. Figure 5.12). Here we see that as many as 80 new

RB-S vessels are needed in order to save on maintenance-based costs. This is due to

the versatility in terms of missions it can perform (i.e. MRB-S ⊆ M) and both its

Figure 5.12: RB-S allocations given unlimited supply

132

maintanence-based costs being relatively inexpensive. However, this solution does not

take into account the cost of purchasing the extra vessels, which is worthwhile only if

it amounts to less than the savings gained in maintenance-based costs over the entire

RB-S lifecycle.

5.5 Concluding remarks

In this thesis, we discussed one approach to solving a resource allocation problem of

the USCG. Our use of elastic constraints allowed for an objective of meeting all mission

hour requirements, but if shortage is necessary, then any unmet hours were penalized.

The model was reconstructed many times and tested thoroughly after each change, with

the USCG working beside us closely. This close-knit collaboration was a critical factor

to the successful outcome of a working decision support system, which is currently

installed on the personal computers of USCG analysts.

The boat allocation problem along with provided input data from the USCG showed

that certain resources, e.g. SPC-NLB, were in short supply if the Business Rules were to

be followed precisely. This prompted the investigation of potentially sharing available

resources. While the USCG Business Rules do not currently allow such strategies,

the model nevertheless allows the analyst to explore a multitude of such scenarios.

On the other hand, we do not provide details on a station-level implementation of a

shared allocation provided by BAM, as the model only provides assignments of the

shared boats at the sector or district level—this investigation is part of an ongoing

second phase of BAM. We provide preliminary evidence that an implementation of

“seasonal” sharing—i.e. allocating a shared solution by assigning homes to each shared

boat from quarter to quareter of an annual allocation—is computationally difficult (see

forthcoming Appendix §B).

Our tool provides reasonable quality solutions in short amounts of time, allowing

for quick re-optimization of hypothetical scenarios. It enables cost savings, as well

as utilization of fewer boats than those available in inventory. Practically speaking,

this implies that more savings can be made by selling unused resources, which in turn

133

means that less replacement costs will be incurred in the future. Such a tool is crucial

for planning purposes, whether unforeseen budget cuts arise, new boat types become

available, or the Business Rules evolve.

134

Appendix A

Constructing input parameters to ConSP

Here we present a possible approach to constructing the input parameters (n, k, m, α,

β, S, W) of conference scheduling problem (cf. §2.1). The number of sessions n,

time slots k, and rooms m, we assume are given, and α and β are typically 1 and n,

respectively.

The set S consists of conflicting pairs, which we determine as follows. Suppose each

session i ∈ [n] has a set of participants Ai associated with it, or those persons essential to

at least one presentation within the session. We can create S to be all pairs {i, j} ∈
(
[n]
2

)
such that Ai ∩Aj 6= ∅, i.e. a conflicting pair is one which shares a common participant.

In this case, the set S resembles the edge set of an intersection graph GH = (V,E) of

set system H = (V, E), i.e. E ⊆ 2V , and V := E and E := {(S, T) ∈
(E
2

)
|S ∩ T 6= ∅}.1

With this choice in forming S, the organizers of a conference have an “easier” task of

determining n sets Ai, rather than choosing a subset S ⊆
(
[n]
2

)
directly. It also gives

flexibility in that Ai can contain anyone from a designated speaker or chairperson of

the corresponding session, to a co-author or graduate advisor or advisee involved in

some constituent talk.

The main focus of this section is now on how to form the non-negative, symmetric

matrix W ∈ Rn×n, which is to encode a measure on relative pairwise similarity. In-

tuitively, we wish to identify the topics associated with each session or presentation

therein, and quantify how much overlap lies between them. We assume that every

conference is given some text document associated with each individual presentation,

e.g. a title, abstract, or a set of keywords. Let D be the set of all such documents,

1It is easy to prove that the family of intersection graph coincides with all possible graph: consider
any G and consider the set system over V = 2E(G) with E = {δG(v)|v ∈ V (G)}, and note that
G = G(V,E), since for any i, j ∈ V (G), {i, j} ∈ G if and only if {e} = δG(i) ∩ δG(j).

135

i.e. the corpus. The text documents of D can be preprocessed so that unimportant

word, e.g. articles or prepositions, are removed, and that others are strengthened by

techniques such as collocation. After doing so, let T be the set of words appearing in

at least one document, or terms.

For a given set of text documents D and terms T , a matrix M in the classical vector

space model of Salton, Wong, and Yang [88] can be constructed, i.e. M ∈ RT×D, where

for any t ∈ T , d ∈ D, Mtd represents some function of term t with respect to document

d and corpus D. For example, a standard non-negative function for computing each

entry is the decomposable term-frequency inverse-document-frequency function, denoted

f(t, d,D) := g(t, d) · h(t,D), where g(t, d) is some measure on the frequency of term t

within document d, and h(t,D) is a measure of the term’s relevance across corpus D.

Intuitively, f produces large values whenever a term is both significant to a document

and rarely found across the corpus as a whole, whereas otherwise the value is small,

i.e. close to zero. The following choices of g and h are suitable for a given corpus D:

g(t, d) := log(r(t, d) + 1) for t ∈ T, d ∈ D,

h(t,D) = log
(

|D|
|{d′∈D:r(t,d′)>0}|

)
for t ∈ T,

(A.1)

where r(t, d) is the raw frequency, or the number of times term t appears in document

d.

If we further scale the columns of matrix M := (vd : d ∈ D) so that ‖vd‖= 1

for each d ∈ D, then the inner product of any such pair v>d vd′ yields a fractional

value encoding the relative similarity between documents d and d′. In other words,

Ŵ ∈ RD×D defined as Ŵd,d′ := v>d vd′ is now a similarity matrix encoding topic overlap

between pairs of presentations. However, we ultimately wish to construct the similarity

matrix W ∈ Rn×n representing pairwise session similarity.

One obvious way of determining the similarity between sessions is to simply con-

catenate the text documents withing each session, so that D is a corpus in one-to-one

corresponding with sessions, rather than individual talks. In such a case, W can be

chosen as the above matrix Ŵ .

Another natural choice for similarity matrix W is as follows. Let Ds ⊆ D denote

the set of documents affiliated with constituent presentations of session s ∈ [n], and let

136

W avg denote the average similarity matrix, measuring the average similarity across all

sessions between two sessions, i.e.

W avg
s,s′ :=

1

|Ds|·|Ds′ |
∑
p∈Ds

∑
p′∈Ds′

Ŵp,p′ for s, s′ ∈ [n]. (A.2)

A perhaps more realistic similarity measure arises if we consider only those pairs of

presentations Es,s′ ⊆ Ds ×Ds′ across sessions s, s′ ∈ [n] which may overlap in time if s

and s′ appeared in parallel (e.g. the INFORMS Annual Meeting [35] typically has 3–4

talks per technical session, each given identically intervals in which to present). Thus

we define the time-adjacent similarity matrix W adj as:

W adj
s,s′ :=

1

|Es,s′ |
∑

{p,p′}∈Es,s′

Wp,p′ for s, s′ ∈ [n]. (A.3)

We have thus demonstrated a few natural choices when forming the input for the

conference scheduling problem. We end by mentioning that there are a number of

software packages used for the computation of term-document matrices—among other

text mining and natural language processing tasks—e.g. GenSim for Python [97], and

TMG for Matlab [29].

137

Appendix B

Computational complexity of BAM

Here we give a proof of the NP-hardness of BAM, as well as proof that a “seasonal”

implementation strategy of a shared boat type is NP-hard.

The partition problem is an NP-complete decision problem [40] which takes as

input a multi-set A := {ai : i ∈ [n]} of n positive integers, and asks whether or not a

partition of A exists so that the sum over each set is identical. In other words, we must

find two disjoint subsets N0 and N1 of [n] where N0 ∪N1 = [n], and so that

∑
i∈N

ai =
∑

i∈[n]\N

ai,

or equivalently ∑
i∈N

ai = 1
2

∑
i∈[n]

ai.

We reduce an arbitrary instance of partition problem to our boat allocation prob-

lem, the decision problem which asks whether or not an allocation of boats to stations

exists in which all hourly demands across the stations is met for a fixed budget—BAM is

the optimization version (see §5.2 for details and parameter descriptions). We will show

that if exactly two boat types are available—each with identical capabilities, hourly ca-

pacities, and inventory sizes—and if any station can be allocated only one such boat

type, then whenever the total number of hourly station demands is a particular factor

of
∑

i∈[n] ai, we can meet all mission hour requirements if and only if a partition of A

exists. Since the former problem is known to be NP-complete, this reduction implies

that the latter problem is also an NP-complete decision problem.

Suppose (n,A) is a partition problem instance with A := {ai : i ∈ [n]}. Now

we define an instance of the boat allocation problem as follows. Note first that the

weights Wsm found in the description of BAM do not apply, and the penalties α and β

138

in the model are not part of the input here.

• Let S := [n].

• Let T and C be arbitrary set of size two, i.e. |T |= |C|= 2.

• Let M be a singleton, i.e. |M |= 1, and Mt = M , for t ∈ T—we drop the ‘m’

subscript hereafter.

• Define At := 1, for each t ∈ T .

• Define Bt := B′t := 1
2

∑
i∈[n] ai, for each t ∈ T .

• Let Rsc := R′sc := 1, for each c ∈ C, s ∈ S.

• Define Hs := as for each s ∈ S = [n].

• Define all remaining parameters to be 0, i.e. D = 0, and Et := E′t := Lt := Ut := 0,

for each t ∈ T .

From the above parameter definitions, it is easy to see that since
∑

t∈T Bt =
∑

i∈[n] ai,

and At = 1, Et = E′t for each t ∈ T , then all mission hour requirements can only be met

if all boats are allocated among S and all hours available to each vessel are utilized.

This immediately implies that any partition of A into two sets N0 and N1 with identical

sums can be turned into a feasible allocation of the above instance: designate t0 ∈ T to

be the type assigned among stations s ∈ N0 and let ht0 s = bt0 s = as, and similarly for

t1 ∈ T , let ht1 s = bt1 s = as. Further, since Hs = as, we have Hs =
∑

t∈T hts for each

s ∈ S, i.e. all mission hour requirements are met.

The other direction is trivial, since if no partition exists for A, then for every subset

N ⊆ [n], we must have, without loss of generality,

∑
i∈N

ai >
1
2

∑
i∈[n]

ai.

This implies that whichever set of stations type t0 ∈ T is assigned to, at least one

station will have a shortage of mission hours, i.e.
∑

s∈N bt0 s ≤ Bt <
∑

i∈N ai. Thus we

have proved the claim, which we record in the following theorem.

139

Theorem B.0.1. The boat allocation problem is NP-complete, even if |T |= |C|= 2

and |M |= 1.

Here we define an optimization problem associated with BAM which we call the

boat sharing problem, or BSP. Intuitively, the problem statement is: given a shared

allocation among a partition Sk, k = 1, . . . , κ, of S, and a number λ of seasons which

partition the hours requirements—λ ≥ 3—find the minimum number of boats of the

shared type (e.g. RB-S) to be assigned “home” stations, where boats can be reassigned

to stations at the end of each season, and all hours constraints must be exactly satisfied.

Now we precisely formulate the problem by first defining the following input parameters.

• S: set of stations

• B: number of boats available

• A: preferred number of hours a boat can be used

• E: maximum extra hours an individual boat can work past A

• E′: maximum hours under A an individual boat can work

• λ: number of seasons

• µ: maximum number of times an individual boat can be reassigned between

seasons

• Hs`: number of hours station s ∈ S requires in season ` = 1, . . . , λ

The goal of the problem is to minimize the number of boats assigned among stations

in S, so that each station’s seasonal hours (Hs`) are met exactly. Further constraints

include the necessity for a boat to work up between A − E and A + E hours total

over all seasons.
∑

`Hs` must be positive for each s ∈ S, otherwise we remove such a

station from the problem. This formulation turns out to be an NP-Hard optimization

problem, even when λ is fixed at 3. The decision version of optimization problem BTS

contain the above parameters, along with k, and asks whether or not it is possible to

140

meet all station hour demands with k or less boats in total. We prove this problem to

be NP-complete, which implies the NP-hardness of BTS.

We reduce from the numerical 3-dimensional matching decision problem, or

NTDM, where three equal-sized multi-sets—i.e. duplicates are allowed—of integers X,

Y , and Z, are given, as well as an integer β. This problem asks whether there exists a

subset M of X×Y ×Z, where every element of X ∪Y ∪Z belongs to exactly one triple

(x, y, z) ∈ M . Furthermore, M must also satisfy x + y + z = β for each (x, y, z) ∈ M .

This problem is NP-Complete, as shown in Garey and Johnson [40] by reduction from

the 3-partition problem.

We reduce an arbitrary instance (X,Y, Z, β) of NTDM to the decision problem BSP,

by defining input so that |S|:= k := |X|, A := β, E := E′ := 0, µ := 3, and let Hs 1

be the sth element of the arbitrarily ordered set X, and similarly, let Hs 2 be the sth

element of Y , and Hs 3 the sth element of Z; otherwise Hs ` = 0 for s ∈ S, ` = 4, . . . , λ.

Now it is easy to see that if there exists a solution M to NTDM for our instance at

hand, then for each (x, y, z) ∈ M , we have x + y + z = Hsx 1 + Hsy 2 + Hsz 3 = β, for

a distinct triple of corresponding stations (sx, sy, sz) ∈ S3. Furthermore, since A = β,

exactly one boat can be assigned to station sx, move to sy after season 1 is over, then

onto sz at the end of season 2, and come back to sx—its home station—at the end of

the 3rd period for the remainder of the λ seasons, yielding a total of 3 (= µ) relocations;

let us call such a sequence a “path”. Thus, there exists a solution to decision version

of BSP, since all hours are covered feasibly by |S|≤ k paths—each path corresponding

to a distinct boat. But since |S|≥ k by the fact that there exist kA hours to cover, the

converse holds, i.e. |S|= k implies that the hours must be covered by k distinct and

entry-wise disjoint paths, yielding a feasible numerical 3-dimensional matching M of

X × Y × Z, thus proving our claim.

Theorem B.0.2. The boat sharing problem with input (S,B,A,E,E′, λ, µ,Hs`) is

NP-Hard, even when µ := 3.

141

References

[1] Biqmac solver. http://biqmac.uni-klu.ac.at. → p. 5.

[2] Rudy: a rudimentary graph generator. http://www-user.tu-chemnitz.de/

~helmberg/sdp_software.html. → p. 83.

[3] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations
Research Letters, 33(1):42–54, 2005. → p. 79.

[4] F. Alizadeh. Interior point methods in semidefinite programming with applica-
tions to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51,
1995. → pp. 4 and 58.

[5] Miguel F Anjos, Bissan Ghaddar, Lena Hupp, Frauke Liers, and Ange-
lika Wiegele. Solving k-way graph partitioning problems to optimality:
The impact of semidefinite relaxations and the bundle method. 2012.

→ pp. 5, 6, 20, 30, 52, 84, 97, 97, and 102.

[6] Miguel F Anjos, Frauke Liers, Gregor Pardella, and Andreas Schmutzer. Engi-
neering branch-and-cut algorithms for the equicut problem. In Discrete Geometry
and Optimization, pages 17–32. Springer, 2013. → p. 6.

[7] David Applegate and William Cook. A computational study of the job-shop
scheduling problem. ORSA Journal on computing, 3(2):149–156, 1991. → p. 3.

[8] Michael Armbruster, Marzena Fügenschuh, Christoph Helmberg, and Alexander
Martin. Lp and sdp branch-and-cut algorithms for the minimum graph bisection
problem: a computational comparison. Mathematical Programming Computation,
4(3):275–306, 2012. → pp. 6 and 79.

[9] Michael Armbruster, Christoph Helmberg, Marzena Fügenschuh, and Alexander
Martin. On the graph bisection cut polytope. SIAM Journal on Discrete Math-
ematics, 22(3):1073–1098, 2008. → pp. 6 and 58.

[10] Egon Balas. Facets of the knapsack polytope. Mathematical Programming,
8(1):146–164, 1975. → p. 43 and 43.

[11] Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An
application of combinatorial optimization to statistical physics and circuit layout
design. Operations Research, 36(3):493–513, 1988. → p. 5.

[12] Francisco Barahona and Ali Ridha Mahjoub. On the cut polytope. Mathematical
programming, 36(2):157–173, 1986. → p. 4.

[13] E. Boros and P.L. Hammer. The max-cut problem and quadratic 0–1 optimiza-
tion; polyhedral aspects, relaxations and bounds. Annals of Operations Research,
33(3):151–180, 1991. → p. 4.

http://biqmac.uni-klu.ac.at
http://www-user.tu-chemnitz.de/~helmberg/sdp_software.html
http://www-user.tu-chemnitz.de/~helmberg/sdp_software.html

142

[14] Gerald G Brown, Robert F Dell, and Robert A Farmer. Scheduling coast guard
district cutters. Interfaces, 26(2):59–72, 1996. → pp. 106 and 107.

[15] Gerald G Brown, Robert F Dell, and Alexandra M Newman. Optimizing military
capital planning. Interfaces, 34(6):415–425, 2004. → p. 107.

[16] Gerald G Brown, Robert F Dell, and R Kevin Wood. Optimization and persis-
tence. Interfaces, 27(5):15–37, 1997. → pp. 107 and 124.

[17] Gerald G Brown, Clark E Goodman, and R Kevin Wood. Annual scheduling
of atlantic fleet naval combatants. Operations Research, 38(2):249–259, 1990.

→ pp. 106 and 107.

[18] Lorenzo Brunetta, Michele Conforti, and Giovanni Rinaldi. A branch-and-cut
algorithm for the equicut problem. Mathematical Programming, 78(2):243–263,
1997. → p. 6.

[19] Samuel Burer, Renato DC Monteiro, and Yin Zhang. Rank-two relaxation heuris-
tics for max-cut and other binary quadratic programs. SIAM Journal on Opti-
mization, 12(2):503–521, 2002. → p. 6.

[20] S. Chopra and MR Rao. The partition problem. Mathematical Programming,
59(1):87–115, 1993. → pp. 6, 28, 29, and 37.

[21] S. Chopra and MR Rao. Facets of the k-partition polytope. Discrete Applied
Mathematics, 61(1):27–48, 1995. → p. 6.

[22] Michele Conforti, MR Rao, and Antonio Sassano. The equipartition polytope. i:
Formulations, dimension and basic facets. Mathematical Programming, 49(1):49–
70, 1990. → pp. 7 and 32.

[23] Michele Conforti, MR Rao, and Antonio Sassano. The equipartition polytope.
ii: valid inequalities and facets. Mathematical Programming, 49(1-3):71–90, 1990.

→ pp. 7 and 32.

[24] Cory L Culver. Optimally scheduling distribution of the MH-60s helicopter and
pilots to combat support (HC) squadrons. Technical report, DTIC Document,
2002. → p. 107.

[25] George B Dantzig. Linear programming and extensions. Princeton university
press, 1998. → p. 58.

[26] Etienne de Klerk, Dmitrii V Pasechnik, and Joost P Warners. On approximate
graph colouring and max-k-cut algorithms based on the θ-function. Journal of
Combinatorial Optimization, 8(3):267–294, 2004. → p. 5.

[27] Michel Deza, Martin Grötschel, and Monique Laurent. Clique-web facets for
multicut polytopes. Mathematics of Operations Research, 17(4):981–1000, 1992.

→ p. 28.

[28] Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics, vol-
ume 15. Springer, 1997. → pp. 4 and 6.

143

[29] Eugenia Maria Kontopoulou Dimitrios Zeimpekis and Efstratios Gallopoulos.
Text to matrix generator (tmg). http://scgroup20.ceid.upatras.gr:8000/

tmg/. → pp. 98 and 136.

[30] Jonathan Eckstein, Cynthia A Phillips, and William E Hart. Pebbl 1.0 user guide.
Technical report, RUTCOR Research Report RRR 19-2006. http://rutcor. rut-
gers. edu/pub/rrr/reports2006/19 2006. ps. Last access: 13 May, 2009. → p. 80.

[31] Andreas Eisenblätter. The semidefinite relaxation of the k-partition polytope is
strong. In Integer Programming and Combinatorial Optimization, pages 273–290.
Springer, 2006. → pp. 6, 18, 19, 20, 29, 31, 31, 35, 36, 36, 38, and 58.

[32] Carlos E Ferreira, Alexander Martin, C Carvalho de Souza, Robert Weismantel,
and Laurence A Wolsey. Formulations and valid inequalities for the node capac-
itated graph partitioning problem. Mathematical Programming, 74(3):247–266,
1996. → pp. 7, 40, 40, 40, 41, 42, and 42.

[33] Carlos E Ferreira, Alexander Martin, C Carvalho de Souza, Robert Weisman-
tel, and Laurence A Wolsey. The node capacitated graph partitioning prob-
lem: a computational study. Mathematical Programming, 81(2):229–256, 1998.

→ pp. 7 and 40.

[34] Paola Festa, Panos M Pardalos, Mauricio GC Resende, and Celso C Ribeiro. Ran-
domized heuristics for the max-cut problem. Optimization Methods and Software,
17(6):1033–1058, 2002. → p. 6.

[35] Institute for Operations Research and the Management Sciences. 2012 informs
annual meeting. http://meetings2.informs.org/phoenix2012/index.php.

→ pp. 2 and 136.

[36] Institute for Operations Research and the Management Sciences. 2013 in-
forms computing society. https://www.informs.org/Community/Conferences/
ICS2013. → pp. 2, 3, and 80.

[37] Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick. Subexponential
lower bounds for randomized pivoting rules for the simplex algorithm. In Pro-
ceedings of the 43rd annual ACM symposium on Theory of computing, pages
283–292. ACM, 2011. → p. 58.

[38] A. Frieze and M. Jerrum. Improved approximation algorithms
for maxk-cut and max bisection. Algorithmica, 18(1):67–81, 1997.

→ pp. 4, 5, 6, 18, 18, 18, 20, and 68.

[39] Katsuki Fujisawa, Masakazu Kojima, Kazuhide Nakata, and Makoto Yamashita.
Sdpa (semidefinite programming algorithm) users manualversion 6.2. 0. Dept.
Math. & Comp. Sciences, Tokyo Institute of Technology, Research Report B-308,
1995. → p. 81.

[40] Michael R Garey and David S Johnson. Computers and intractability, volume
174. Freeman New York, 1979. → pp. 15, 29, 54, 137, and 140.

http://scgroup20.ceid.upatras.gr:8000/tmg/
http://scgroup20.ceid.upatras.gr:8000/tmg/
http://meetings2.informs.org/phoenix2012/index.php
https://www.informs.org/Community/Conferences/ICS2013
https://www.informs.org/Community/Conferences/ICS2013

144

[41] B. Ghaddar, M.F. Anjos, and F. Liers. A branch-and-cut algorithm based on
semidefinite programming for the minimum k-partition problem. Annals of Op-
erations Research, pages 1–20, 2009. → pp. 5, 5, 6, 29, 30, 78, and 84.

[42] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Jour-
nal of the ACM (JACM), 42(6):1115–1145, 1995. → pp. 4, 4, and 6.

[43] M Grotschel and L Lovász. Combinatorial optimization. Handbook of combina-
torics, 2:1541–1597, 1995. → p. 4.

[44] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms
and combinatorial optimization. 1988. → p. 4.

[45] Martin Grötschel and Yoshiko Wakabayashi. A cutting plane algorithm
for a clustering problem. Mathematical Programming, 45(1-3):59–96, 1989.

→ pp. 7, 32, and 34.

[46] Martin Grötschel and Yoshiko Wakabayashi. Facets of the clique par-
titioning polytope. Mathematical Programming, 47(1-3):367–387, 1990.

→ pp. 7, 32, 33, 33, and 33.

[47] United States Coast Guard. http://www.uscg.mil/top/about; Retrieved 2013-
12-11. → p. 105.

[48] United States Coast Guard. http://www.uscg.mil/acquisition/programs/

acquisitionprograms.asp; Retrieved 2013-12-11. → p. 106.

[49] United States Coast Guard. Coast guard snapshot 2012. http://www.uscg.mil/
top/about/doc/uscg_snapshot.pdf; Retrieved 2013-12-11. → p. 105.

[50] Venkatesan Guruswami and Ali Kemal Sinop. Improved inapproximability results
for maximum k-colorable subgraph. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, pages 163–176. Springer,
2009. → p. 5.

[51] RA Hahn and Alexandra M Newman. Scheduling united states coast guard heli-
copter deployment and maintenance at clearwater air station, florida. Computers
& Operations Research, 35(6):1829–1843, 2008. → p. 107.

[52] J. H̊astad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001. → p. 4.

[53] Christoph Helmberg, Franz Rendl, Robert J Vanderbei, and Henry Wolkowicz.
An interior-point method for semidefinite programming. SIAM Journal on Opti-
mization, 6(2):342–361, 1996. → p. 58.

[54] Ryusuke Hohzaki, Tatzuya Morimoto, and Sinsuke Omi. Flight scheduling for
the sh-60j military helicopter. Military Operations Research, 16(2):5–17, 2011.

→ p. 107.

[55] HSOR.org. What is or. http://www.hsor.org/what_is_or.cfm; retrieved 2013-
12-24. → p. 106.

http://www.uscg.mil/top/about
http://www.uscg.mil/acquisition/programs/acquisitionprograms.asp
http://www.uscg.mil/acquisition/programs/acquisitionprograms.asp
http://www.uscg.mil/top/about/doc/uscg_snapshot.pdf
http://www.uscg.mil/top/about/doc/uscg_snapshot.pdf
http://www.hsor.org/what_is_or.cfm

145

[56] Akio Imai, Etsuko Nishimura, and Stratos Papadimitriou. The dynamic berth
allocation problem for a container port. Transportation Research Part B: Method-
ological, 35(4):401–417, 2001. → p. 107.

[57] Xiaoyun Ji and John E Mitchell. Branch-and-price-and-cut on the clique parti-
tioning problem with minimum clique size requirement. Discrete Optimization,
4(1):87–102, 2007. → pp. 7, 32, and 45.

[58] Volker Kaibel, Matthias Peinhardt, and Marc E Pfetsch. Orbitopal fixing. Dis-
crete Optimization, 8(4):595–610, 2011. → p. 5.

[59] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the Hardness of Ap-
proximating Max k-Cut and Its Dual. Chicago Journal of Theoretical Computer
Science, page 2, 1997. → pp. 4 and 20.

[60] Howard Karloff. How good is the goemans–williamson max cut algorithm? SIAM
Journal on Computing, 29(1):336–350, 1999. → pp. 4 and 20.

[61] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.
→ p. 16 and 16.

[62] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal
inapproximability results for max-cut and other 2-variable csps? SIAM Journal
on Computing, 37(1):319–357, 2007. → pp. 4 and 20.

[63] Donald E Knuth. The sandwich theorem. Stanford University, Department of
Computer Science, 1993. → pp. 5 and 56.

[64] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. Improved semidefinite
bounding procedure for solving max-cut problems to optimality. Mathematical
Programming, 143(1-2):61–86, 2014. → p. 5.

[65] Martine Labbé and F Aykut Özsoy. Size-constrained graph par-
titioning polytopes. Discrete Mathematics, 310(24):3473–3493, 2010.

→ pp. 7, 31, 32, 32, 32, 33, 33, 36, and 39.

[66] Sandia National Laboratories. Acro: A common repository for optimizers.
https://software.sandia.gov/trac/acro. → p. 80.

[67] Sandia National Laboratories. Utilib library of c++ utilities. https://

software.sandia.gov/trac/utilib. → p. 81.

[68] Jean B Lasserre. Global optimization with polynomials and the problem of mo-
ments. SIAM Journal on Optimization, 11(3):796–817, 2001. → p. 7.

[69] Monique Laurent. A comparison of the sherali-adams, lovász-schrijver, and
lasserre relaxations for 0–1 programming. Mathematics of Operations Research,
28(3):470–496, 2003. → p. 7.

[70] Charles E Leiserson, Ronald L Rivest, Clifford Stein, and Thomas H Cormen.
Introduction to algorithms. The MIT press, 2001. → pp. 9, 12, and 16.

https://software.sandia.gov/trac/acro
https://software.sandia.gov/trac/utilib
https://software.sandia.gov/trac/utilib

146

[71] Frauke Liers, Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. Computing
exact ground states of hard ising spin glass problems by branch-and-cut. New
Optimization Algorithms in Physics, pages 47–68, 2004. → p. 5.

[72] László Lovász. On the shannon capacity of a graph. Information Theory, IEEE
Transactions on, 25(1):1–7, 1979. → pp. 5, 15, and 56.

[73] László Lovász and Alexander Schrijver. Cones of matrices and set-functions and
0-1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991. → p. 7.

[74] J.E. Mitchell. Realignment in the National Football League: Did they do it right?
Naval Research Logistics (NRL), 50(7):683–701, 2003. → p. 7.

[75] John E Mitchell. Branch-and-cut for the k-way equipartition problem. Technical
report, Technical report, Mathematical Sciences, Rensselaer Polytechnic Insti-
tute, Troy, NY 12180, 2001. → pp. 7, 7, 32, and 37.

[76] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial opti-
mization, volume 18. Wiley New York, 1988. → p. 9.

[77] Yurii Nesterov, Arkadii Semenovich Nemirovskii, and Yinyu Ye. Interior-point
polynomial algorithms in convex programming, volume 13. SIAM, 1994. → p. 58.

[78] United States Department of Homeland Security. Homeland security budget-
in-brief fiscal year 2009. http://www.dhs.gov/xlibrary/assets/budget_

bib-fy2009.pdf#page=60, p. 53, 2009. → p. 105.

[79] Goverment Printing Office. Homeland security act of 2002. http://

www.gpo.gov/fdsys/pkg/PLAW-107publ296/pdf/PLAW-107publ296.pdf, 2002.
→ p. 106.

[80] Maarten Oosten, Jeroen HGC Rutten, and Frits CR Spieksma. The clique par-
titioning problem: facets and patching facets. Networks, 38(4):209–226, 2001.

→ p. 33 and 33.

[81] Christos H Papadimitriou and Mihalis Yannakakis. Optimization, approximation,
and complexity classes. Journal of computer and system sciences, 43(3):425–440,
1991. → p. 9.

[82] Gabor Pataki and Levent Tunçel. On the generic properties of convex optimiza-
tion problems in conic form. Mathematical Programming, 89(3):449–457, 2001.

→ p. 58.

[83] Svatopluk Poljak and Zsolt Tuza. Maximum cuts and large bipartite subgraphs.
DIMACS Series, 20:181–244, 1995. → p. 4.

[84] Rong Qu, Edmund K Burke, Barry McCollum, Liam TG Merlot, and Sau Y
Lee. A survey of search methodologies and automated system development for
examination timetabling. Journal of scheduling, 12(1):55–89, 2009. → p. 4.

[85] Motakuri V Ramana, Levent Tunçel, and Henry Wolkowicz. Strong duality for
semidefinite programming. SIAM Journal on Optimization, 7(3):641–662, 1997.

→ p. 58.

http://www.dhs.gov/xlibrary/assets/budget_bib-fy2009.pdf#page=60
http://www.dhs.gov/xlibrary/assets/budget_bib-fy2009.pdf#page=60
http://www.gpo.gov/fdsys/pkg/PLAW-107publ296/pdf/PLAW-107publ296.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-107publ296/pdf/PLAW-107publ296.pdf

147

[86] F. Rendl, G. Rinaldi, and A. Wiegele. Solving max-cut to optimality by in-
tersecting semidefinite and polyhedral relaxations. Mathematical Programming,
121(2):307–335, 2010. → pp. 5 and 79.

[87] Javier Salmeron, Robert F Dell, Gerald G Brown, and Anton Rowe. Capital
investment planning aid (cipa)-an optimization-based decision-support tool to
plan procurement and retirement of naval platforms. Technical report, DTIC
Document, 2002. → p. 107.

[88] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for au-
tomatic indexing. Communications of the ACM, 18(11):613–620, 1975. → p. 135.

[89] Andrea Schaerf. A survey of automated timetabling. Artificial intelligence review,
13(2):87–127, 1999. → p. 4.

[90] Hanif D Sherali and Warren P Adams. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming problems.
SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990. → p. 7.

[91] Mathematical Optimization Society. 21st international symposium on mathemat-
ical programming. http://ismp2012.mathopt.org/. → p. 3.

[92] Michael M Sørensen. Polyhedral computations for the simple graph partitioning
problem. Aarhus School of Business, Department of Accounting, Finance and
Logistics, 2005. → pp. 7, 32, and 40.

[93] Jos F Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmet-
ric cones. Optimization methods and software, 11(1-4):625–653, 1999. → p. 81.

[94] Levent Tunçel. On the slater condition for the sdp relaxations of nonconvex sets.
Operations Research Letters, 29(4):181–186, 2001. → p. 58.

[95] Pál Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48(436-
452):137, 1941. → p. 28.

[96] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review,
38(1):49–95, 1996. → p. 58.

[97] Radim Řeh̊uřek. Gensim. http://radimrehurek.com/gensim/. → p. 136.

[98] Michael R Wagner and Zinovy Radovilsky. Optimizing boat re-
sources at the US coast guard: Deterministic and stochas-
tic models. Operations Research, 60(5):1035–1049, 2012.

→ pp. xi, xi, xi, 107, 107, 108, 119, 120, 124, 124, 124, 125, 126, and 126.

[99] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. Augem: automatically
generate high performance dense linear algebra kernels on x86 cpus. In Pro-
ceedings of SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis, page 25. ACM, 2013. → p. 81.

[100] Robert Weismantel. On the 0/1 knapsack polytope. Mathematical Programming,
77(3):49–68, 1997. → p. 43.

http://ismp2012.mathopt.org/
http://radimrehurek.com/gensim/

148

[101] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall
Englewood Cliffs, 2001. → pp. 9, 41, and 54.

[102] Henry Wolkowicz, Saigal Romesh, and Lieven Vandenberghe. Handbook of
semidefinite programming: theory, algorithms, and applications, volume 27.
Springer, 2000. → p. 9.

[103] Zhang Xianyi, Wang Qian, and Zhang Yunquan. Model-driven level 3 blas perfor-
mance optimization on loongson 3a processor. In Parallel and Distributed Systems
(ICPADS), 2012 IEEE 18th International Conference on, pages 684–691. IEEE,
2012. → p. 81.

[104] Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Kazuhiro Kobayashi,
Kazuhide Nakata, and Maho Nakata. Latest developments in the sdpa family
for solving large-scale sdps. In Handbook on Semidefinite, Conic and Polynomial
Optimization, pages 687–713. Springer, 2012. → pp. 81 and 82.

[105] Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Kazuhide Nakata, and
Maho Nakata. Algorithm 925: Parallel solver for semidefinite programming prob-
lem having sparse schur complement matrix. ACM Transactions on Mathematical
Software (TOMS), 39(1):6, 2012. → pp. 81 and 82.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	I Optimizing conference schedules
	Introduction
	Related work
	Our contributions
	Outline

	The conference scheduling problem
	Problem description
	Symmetry
	Computational complexity

	Modeling the problem
	The maximum k-cut model
	Reformulation into capacitated k-partition

	Valid inequalities of capacitated k-partition polyhedron
	Triangle and clique inequalities
	2-partition inequalities
	Lower and upper clique inequalities
	Generalized inequalities for node-weighted case

	A branch-and-cut algorithm for ConSP
	Subproblems
	Representation
	Model: a weighted capacitated k-partition problem

	Preprocessing
	Lower bounding procedure
	Semidefinite programming relaxations
	Strengthening with linear inequalities

	Upper bounding procedure
	Capacitated bin packing heuristic
	Capacitated bin swapping extension

	Branching strategy

	Test results and discussion
	Implementation
	Branch-and-bound framework
	Semidefinite programming solver

	Random data
	Case study: ICS-2013
	Data set and parameter choices
	ConSP schedule vs. actual schedule

	Concluding remarks

	II A United States Coast Guard resource allocation problem
	USCG Boat Allocation Module (BAM): A software tool
	Introduction
	Motivation and background
	Related works
	Our contributions

	BAM model
	Implementation
	Results
	Data set
	Tests

	Concluding remarks

	Appendix A. Constructing input parameters to ConSP
	Appendix B. Computational complexity of BAM
	References

