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ABSTRACT OF THE DISSERTATION

On the structure of principal subspaces of standard

modules for affine Lie algebras of type A

by Christopher Michael Sadowski

Dissertation Directors: Yi-Zhi Huang and James Lepowsky

Using the theory of vertex operator algebras and intertwining operators, we obtain pre-

sentations for the principal subspaces of all the standard ŝl(3)-modules. Certain of these

presentations had been conjectured and used in work of Calinescu to construct exact

sequences leading to the graded dimensions of certain principal subspaces. We prove

the conjecture in its full generality for all standard ŝl(3)-modules. We then provide a

conjecture for the case of ŝl(n), n ≥ 4. In addition, we construct completions of certain

universal enveloping algebras and provide a natural setting for families of defining rela-

tions for the principal subspaces of standard modules for untwisted affine Lie algebras.

We also use the theory of vertex operator algebras and intertwining operators, along

with conjecturally assumed presentations for certain principal subspaces, to construct

exact sequences among principal subspaces of certain standard ŝl(n)-modules, n ≥ 3.

As a consequence, we obtain the multigraded dimensions of the principal subspaces

W (k1Λ1 + k2Λ2) and W (kn−2Λn−2 + kn−1Λn−1). This generalizes earlier work by Ca-

linescu on principal subspaces of standard ŝl(3)-modules, where similar assumptions

were made.
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4.1. A proof of the presentations . . . . . . . . . . . . . . . . . . . . . . . . . 38

5. Presentations of principal subspaces of standard modules and a com-

pletion of U(n̄) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1. A reformulation of the presentation problem . . . . . . . . . . . . . . . . 67

6. Exact sequences and multigraded dimensions . . . . . . . . . . . . . . 74

6.1. Exact sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2. Multigraded dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vi



7.1. A completion of the universal enveloping algebra of certain nilpotent Lie

algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



1

Chapter 1

Introduction

There is a long-standing connection between the theories of vertex operators and vertex

operator algebras ([B], [FLM], [LL], etc.) and affine Lie algebras (cf. [K]) on the one

hand, and Rogers-Ramanujan-type combinatorial identities (cf. [A]) on the other hand

([LM], [LW1]–[LW4], [LP1]–[LP2], and many other references). In this introduction, we

briefly sketch the results found in this thesis about several closely related problems. The

first of these problems concerns finding presentations for principal subspaces of standard

modules. In particular, we give new results concerning presentations of the principal

subspaces of the standard ŝl(3)-modules. This set of results is the subject of Chapter

4 and can also be found in [S1]. The second of these problems concerns providing a

natural setting for families of operators from which such presentations arise. Using

a completion of certain universal enveloping algebras, we provide such a setting, and

reformulate all known and conjectured presentations in this context. This is carried out

in Chapter 5 and the Appendix. The third and final of these problems concerns finding

families of exact sequences and q-difference equations. In Chapter 6, we derive such

exact sequences, and obtain the multigraded dimensions of certain principal subspaces,

which are related to the sum sides of Rogers-Ramanujan-type combinatorial identities.

The results concerning the latter two problems can also be found in [S2]. We begin

this introduction by first sketching a brief history of some of the connections between

affine Lie algebras, vertex operator algebras, and Rogers-Ramanujan-type combinatorial

identities.

Many difference-two type partition conditions have been interpreted and obtained

by the study of certain natural substructures of standard (i.e., integrable highest weight)

modules for affine Lie algebras. In particular, in [FS1]–[FS2], Feigin and Stoyanovsky,
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motivated by the earlier work by Lepowsky and Primc [LP2], introduced the notion of

“principal subspace” of a standard module for an affine Lie algebra, and in the case

of A
(1)
1 (= ŝl(2)) and A

(1)
2 (= ŝl(3)) obtained, under certain assumptions (presentations

for these principal subspaces in terms of generators and relations) the multigraded

dimensions (“characters”) of the principal subspaces of the “vacuum” standard mod-

ules. Interestingly enough, these multigraded dimensions were related to the Rogers-

Ramanujan partition identities, and more generally, the Gordon-Andrews identities,

but in a different setting than the original vertex-algebraic interpretation of these iden-

tities in [LW2]–[LW4]. A more general case was considered by Georgiev in [G], where

combinatorial bases were constructed for the principal subspaces associated to cer-

tain standard A
(1)
n -modules. Using these bases, Georgiev obtained the multigraded

dimensions of these principal subspaces. More recently, combinatorial bases have been

constructed for principal subspaces in more general lattice cases ([P], [MiP]), for the

principal subspaces of the vacuum standard modules for the affine Lie algebras B
(1)
2

[Bu], for principal subspaces in the quantum ̂sl(n+ 1)-case [Ko], and for certain natu-

ral substructures of principal subspaces ([Pr], [J1]–[J3], [T1]–[T4], [Ba], [JPr]).

In [CLM1]–[CLM2], the authors addressed the problem of vertex-algebraically in-

terpreting the classical Rogers-Ramanujan recursion and, more generally, the Rogers-

Selberg recursions (cf. [A]) by using intertwining operators among modules for vertex

operator algebras to construct exact sequences leading to these recursions. In particular,

the solutions of these recursions gave the graded dimensions of the principal subspaces

of the standard A
(1)
1 -modules. In [CLM1]–[CLM2] (as in [FS1]–[FS2]), the authors as-

sumed certain presentations for the principal subspaces of the standard ŝl(2)-modules

(presentations that can be derived from [LP2]; the nontrivial part is the completeness of

the relations). In [CalLM1]–[CalLM2], the authors gave an a priori proof, again using

intertwining operators, of the completeness of the presentations assumed in [FS1]-[FS2]

and [CLM1]–[CLM2]. These results were extended to the level 1 standard ̂sl(n+ 1)-

modules by Calinescu in [C4], and later to the level 1 standard modules for the untwisted

affine Lie algebras of type ADE in [CalLM3]. The desired presentations were proved,

and exact sequences were obtained leading to recursions and the graded dimensions of
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the principal subspaces of the level 1 standard modules. In [CalLM4], the authors have

initiated the study of principal subspaces for standard modules for twisted affine Lie

algebras, extending the past work of [CLM1]–[CLM2], [CalLM1]–[CalLM3] to the case

of the level 1 standard module for the twisted affine Lie algebra A
(2)
2 .

In the work [C3], Calinescu considered the principal subspaces of certain higher

level standard ŝl(3)-modules. In this work, she conjecturally assumed presentations for

certain principal subspaces, and using the theory of vertex operator algebras and inter-

twining operators, she constructed exact sequences among these principal subspaces.

Using these exact sequences, along with the multigraded dimensions in [G], Calinescu

was able to find the multigraded dimensions of principal subspaces which had not pre-

viously been studied.

A different variant of principal subspace was considered in [AKS] and [FFJMM].

In [AKS], the authors cite well-known presentations for standard modules, and use

these to provide (without proof) a set of defining relations for each principal subspace.

In [FFJMM], in which the authors consider A
(1)
2 , they do indeed prove that certain

relations form a set of defining relations for their variant of principal subspace. In

the case of the vacuum modules, the principal subspaces in [FFJMM] are essentially

identical to the principal subspaces considered in the present work, and their defining

relations indeed agree with those in Chapter 4 of the present work. For the non-

vacuum modules, the principal subspaces considered in the present work can be viewed

as proper substructures of those considered in [FFJMM], and correspondingly, the

defining relations we obtain are different. Our method for proving the completeness of

our defining relations is completely different from the method in [FFJMM].

We now give a brief overview of the structure of this thesis. In Chapter 2, we recall

certain vertex-algebraic constructions of standard ̂sl(n+ 1)-modules and of intertwining

operators among these modules. In Chapter 3, we recall the notion of principal subspace

of a standard module and prove certain useful properties of principal subspaces. We

now very briefly recall some of these notions. Given a complex semisimple Lie algebra

g, a fixed Cartan subalgebra h, a fixed set of positive roots ∆+, and a root vector xα

for each α ∈ ∆+, consider the subalgebra n =
∐
α∈∆+

Cxα ⊂ g spanned by the positive
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root vectors. The affinization n̄ = n ⊗ C[t, t−1] of n is a subalgebra of the affine Lie

algebra ĝ = g ⊗ C[t, t−1] ⊕ Cc. Let L(Λ) be the standard module of ĝ with highest

weight Λ and level k, a positive integer, and let vΛ ∈ L(Λ) be a highest weight vector.

The principal subspace of L(Λ) is defined by

W (Λ) = U(n̄) · vΛ, (1.1)

where U(·) is the universal enveloping algebra. We also have natural surjective maps

fΛ : U(n̄)→W (Λ). (1.2)

By presentation of W (Λ), we mean a complete description of kerfΛ in terms of its

generators.

Chapter 4 in this thesis is another step forward in the spirit of [CalLM1]-[CalLM3].

We exploit intertwining operators among vertex operator algebra modules to solve the

problem of giving an a priori proof of presentations for the principal subspaces of all

the standard modules for A
(1)
2 (= ŝl(3)), including those assumed conjecturally and used

in [C3]. The methods used in the proof of these presentations are similar to those in

[CalLM1]–[CalLM3], in that certain minimal counterexamples are postulated and shown

not to exist. However, in the general case, we needed to introduce certain new ideas to

prove our presentations. We then proceed to formulate the presentations for principal

subspaces of all the standard modules for A
(1)
n as a conjecture. In particular, we take

g = sl(3). We precisely determine KerfΛ in terms of certain natural left ideals of U(n̄).

Specifically, in terms of the fundamental weights of A
(1)
2 , which we label Λ0,Λ1, and

Λ2, we may express Λ as

Λ = k0Λ0 + k1Λ1 + k2Λ2,

for some nonnegative integers k0, k1, and k2. We define an ideal IkΛ0 in terms of left

ideals generated by the coefficients of certain vertex operators associated with singular

vectors in a natural way. This left ideal is then used to define a larger left ideal

IΛ = IkΛ0 + U(n̄)xα1(−1)k0+k2+1 + U(n̄)xα2(−1)k0+k1+1 + U(n̄)xα1+α2(−1)k0+1,



5

where we use x(n) to denote the action of x ⊗ tn ∈ ĝ for x ∈ g and n ∈ Z. We then

proceed to show that

KerfΛ = IΛ.

The proof of this result is similar in structure to the proof of the presentations in

[CalLM2]. Considering all dominant integral weights together, we choose minimal coun-

terexamples (certain elements in KerfΛ \ IΛ) and show that a contradiction is reached

for each Λ. Certain maps used in [CalLM3] are also generalized and used in the proof,

but these ideas do not extend to the most general case. We develop a method for reach-

ing the desired contradictions for each Λ which “rebuilds” the minimal counterexample

to show that it is in fact an element of IΛ. This “rebuilding” technique can also be used

to show all of the presentations proved in the works [CalLM1]-[CalLM3] in the type A

case with suitable modifications (see remarks at the end of Section 4).

In [C3], certain of these presentations were conjectured and used to construct ex-

act sequences among principal subspaces. Using these exact sequences, Calinescu ob-

tained the previously unknown graded dimensions for principal subspaces whose highest

weights are of the form k1Λ1 + k2Λ2, where k1, k2 are positive integers. The problem of

constructing exact sequences for more general highest weights is still unsolved.

Chapter 5 of this thesis, along with the Appendix, focuses on providing a more

natural setting for the annihilating ideals which give presentations of the principal

subspaces of the standard modules. In [CLM1]–[CLM2] and [CalLM1]–[CalLM3], the

annihilator of the highest weight vector of each principal subspace is written in terms

of certain elements of U(ĝ) which, when viewed as operators, annihilate the highest

weight vector. An important set of these operators arises from certain null vector

identities given by powers of vertex operators and are written as infinite formal sums

of elements of U(ĝ) also viewed as operators. The ideals which annihilate the highest

weight vectors can be expressed using operators defined by certain truncations of these

formal sums, in order to view these operators as elements of U(ĝ). We provide the

details of the construction of a completion of the universal enveloping algebra U(n̄) to

give more natural presentations (without such truncations) for the defining annihilating
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ideals of principal subspaces. This completion was discussed in [C1]–[C2] and [CalLM3],

but the details of this construction were not supplied. We prove various properties of

this completion and the defining ideals for principal subspaces, including their more

natural definition inside this completion. These completions may be generalized to the

twisted setting used in [CalLM4] (as in [LW3], where similar completions were originally

constructed in a general twisted or untwisted setting).

Our main result in Chapter 6 is a natural generalization of [C3] to the case of

̂sl(n+ 1), n ≥ 2. Although our methods recover the same information as in [CLM1]–

[CLM2] when n = 1, we take n ≥ 2 for notational convenience. In the case where

n = 2, we recover the results in [C3] with a slight variant of the methods. As in [C3],

we conjecturally assume presentations for certain principal subspaces, and use these

to provide exact sequences among principal subspaces of certain standard ̂sl(n+ 1)-

modules. Using these exact sequences, along with the multigraded dimensions found

in [G], we give previously unknown multigraded dimensions of principal subspaces. To

state the main result of this chapter, we let Λ0, . . . ,Λn denote the fundamental weights

of ̂sl(n+ 1). The dominant integral weights Λ of ̂sl(n+ 1) are k0Λ0 + · · · + knΛn

for k0, . . . , kn ∈ N, and we use L(Λ) to denote the standard module with highest

weight Λ, W (Λ) to denote its principal subspace, and χ′W (Λ)(x1, . . . , xn, q) to denote its

multigraded dimension. Our result states:

Theorem 1.0.1 Let k ≥ 1. For any i with 1 ≤ i ≤ n − 1 and ki, ki+1 ∈ N such that

ki + ki+1 = k, the sequences

W (kiΛi + ki+1Λi+1)
φi−→ (1.3)

W (kiΛ0 + ki+1Λi)
1⊗ki−1⊗Yc(eλi ,x)⊗1⊗ki+1

−→

W ((ki − 1)Λ0 + (ki+1 + 1)Λi) −→ 0

when ki ≥ 1, and

W (kiΛi + ki+1Λi+1)
ψi−→ (1.4)

W (ki+1Λ0 + kiΛi+1)
1⊗ki+1−1⊗Yc(eλi+1 ,x)⊗1⊗ki−→

W ((ki+1 − 1)Λ0 + (ki + 1)Λi+1) −→ 0
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when ki+1 ≥ 1, are exact.

The maps φi, ψi, and Yc(eλi , x) are maps naturally arising from the lattice construc-

tion of the level 1 standard modules and intertwining operators among these modules.

As a consequence of this theorem, we obtain results about multigraded dimensions when

the first map φi or ψi is injective, and we have the following theorem and its corollary:

Theorem 1.0.2 Let k ≥ 1. Let k1, k2, kn−1, kn ∈ N with k1 ≥ 1 and kn ≥ 1, such that

k1 + k2 = k and kn−1 + kn = k. Then

χ′W (k1Λ1+k2Λ2)(x1, . . . , xn, q) =

= x−k1
1 χ′W ((k1−1)Λ0+(k2+1)Λ1)(x1q

−1, x2q, x3 . . . , xn, q) (1.5)

−x−k1
1 χ′W (k1Λ0+k2Λ1)(x1q

−1, x2q, x3, . . . , xn, q)

and

χ′W (kn−1Λn−1+knΛn)(x1, . . . , xn, q) =

= x−knn χ′W ((kn−1)Λ0+(kn−1+1)Λn)(x1, . . . , xn−1q, xnq
−1, q) (1.6)

−x−knn χ′W (knΛ0+kn−1Λn)(x1, . . . , xn−1q, xnq
−1, q).

Theorem 1.0.2 immediately gives us:

Corollary 1.0.3 In the setting of Theorem 1.0.2, we have that

χ′W (k1Λ1+k2Λ2)(x1, . . . , xn, q) =

=
∑ (

q
r
(1)
1

2
+...+r

(k)
1

2
+
∑k
t=k1+1 r

(t)
1 +

∑k
t=1 r

(t)
2 −r

(t)
1 (1− qr

(k1)
1 )

(q)
r
(1)
1 −r

(2)
1

. . . (q)
r
(k−1)
1 −r(k)

1

(q)
r
(k)
1

)
×

×
(
qr

(1)
2

2
+...+r

(k)
2

2
−r(1)

2 r
(1)
1 −...−r

(k)
2 r

(k)
1

(q)
r
(1)
2 −r

(2)
2

. . . (q)
r
(k−1)
2 −r(k)

2

(q)
r
(k)
2

)
×

× · · · ×
(
qr

(1)
n

2
+...+r

(k)
n

2
−r(1)

n r
(1)
n−1−...−r

(k)
n r

(k)
n−1

(q)
r
(1)
n −r

(2)
n
. . . (q)

r
(k−1)
n −r(k)

n
(q)

r
(k)
n

)
x
−k1+

∑k
i=1 r

(i)
1

1 · · ·x
∑n
i=1 r

(i)
n

n

and

χ′W (kn−1Λn−1+knΛn)(x1, . . . , xn, q) =
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=
∑ (

qr
(1)
1

2
+...+r

(k)
1

2

(q)
r
(1)
1 −r

(2)
1

. . . (q)
r
(k−1)
1 −r(k)

1

(q)
r
(k)
1

)(
qr

(1)
2

2
+...+r

(k)
2

2
−r(1)

2 r
(1)
1 −...−r

(k)
2 r

(k)
1

(q)
r
(1)
2 −r

(2)
2

. . . (q)
r
(k−1)
2 −r(k)

2

(q)
r
(k)
2

)
×

× · · · ×
(
qr

(1)
n

2
+...+r

(k)
n

2
−r(1)

n r
(1)
n−1−...−r

(k)
n r

(k)
n−1+

∑k
t=kn+1 r

(t)
n

(q)
r
(1)
n −r

(2)
n
. . . (q)

r
(k−1)
n −r(k)

n
(q)

r
(k)
n

)
×

×q
∑k
t=1 r

(t)
n−1−r

(t)
n (1− qr

(kn)
n )x

∑k
i=1 r

(i)
1

1 · · ·x−kn+
∑n
i=1 r

(i)
n

n

where the sums are taken over decreasing sequences r
(1)
j ≥ r

(2)
j ≥ · · · ≥ r

(k)
j ≥ 0 for

each j = 1, . . . , n.

The expressions in Corollary 1.0.3 can also be written as follows: As in [G], for

s = 1, . . . , k − 1 and i = 1, . . . , n, set p
(s)
i = r

(s)
i − r

(s+1)
i , and set p

(k)
i = r

(k)
i . Also, let

(Alm)nl,m=1 be the Cartan matrix of sl(n+ 1) and Bst := min{s, t}, 1 ≤ s, t ≤ k. Then,

χ′W (k1Λ1+k2Λ2)(x1, . . . , xn, q) =

∑
p

(1)
1 ,...,p

(k)
1 ≥0

...

p
(1)
n ,...,p

(k)
n ≥0

q
1
2

∑s,t=1,...,l
l,m=1,...,n AlmB

stp
(s)
l p

(t)
m∏n

i=1

∏k
s=1(q)pi(s)

qp̃1q
∑k
t=1 p

(t)
2 +···+p(k)

2 −p
(t)
1 −···−p

(k)
1 ×

×(1− qp
(k1)
1 +···+p(k)

1 )x−k1
1

n∏
i=1

x
∑k
s=1 sp

(s)
i

i

where p̃1 = p
(k1+1)
1 + 2p

(k1+2)
1 + · · ·+ k2p

(k)
1 and

χ′W (kn−1Λn−1+knΛn)(x1, . . . , xn, q) =

∑
p

(1)
1 ,...,p

(k)
1 ≥0

...

p
(1)
n ,...,p

(k)
n ≥0

q
1
2

∑s,t=1,...,l
l,m=1,...,n AlmB

stp
(s)
l p

(t)
m∏n

i=1

∏k
s=1(q)pi(s)

qp̃nq
∑k
t=1 p

(t)
n−1+···+p(k)

n−1−p
(t)
n −···−p

(k)
n ×

×(1− qp
(kn)
n +···+p(k)

n )x−knn

n∏
i=1

x
∑k
s=1 sp

(s)
i

i

where p̃n = p
(kn+1)
n + 2p

(kn+2)
n + · · ·+ kn−1p

(k)
1 .
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Similar multigraded dimensions for different variants of principal subspaces have

been studied in [AKS] and [FFJMM]. Modularity properties of certain multigraded di-

mensions, in the context of principal subspaces of standard modules, have been studied

in [St], [WZ], and more recently in [BCFK].
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Chapter 2

Preliminaries

2.1 Constructions in the ̂sl(n + 1) case

We begin by recalling certain vertex-algebraic constructions for the untwisted affine Lie

algebra ̂sl(n+ 1), n a positive integer. We shall be working in the setting of [FLM] and

[LL].

Fix a Cartan subalgebra h of sl(n + 1). Also fix a set of roots ∆, a set of simple

roots {α1, . . . , αn}, and a set of positive roots ∆+. Let 〈·, ·〉 denote the Killing form,

rescaled so that 〈α, α〉 = 2 for each α ∈ ∆. Using this form, we identify h with h∗.

Let λ1, . . . , λn ∈ h ' h∗ denote the fundamental weights of sl(n + 1). Recall that

〈λi, αj〉 = δij for each i, j = 1, . . . , n. Denote by Q =
∑n

i=1 Zαi and P =
∑n

i=1 Zλi the

root lattice and weight lattice of sl(n+ 1), respectively.

For each root α ∈ ∆, we have a root vector xα ∈ sl(n + 1) (recall that [h, xα] =

〈α, h〉xα for each h ∈ h). We define

n =
∑
α∈∆+

Cxα,

a nilpotent subalgebra of sl(n+ 1).

We have the corresponding untwisted affine Lie algebra given by

̂sl(n+ 1) = sl(n+ 1)⊗ C[t, t−1]⊕ Cc,

where c is a non-zero central element and

[x⊗ tm, y ⊗ tp] = [x, y]⊗ tm+p +m〈x, y〉δm+p,0c

for any x, y ∈ sl(n+ 1) and m, p ∈ Z. If we adjoin the degree operator d, where

[d, x⊗ tm] = mx⊗ tm
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[d, c] = 0,

we obtain the affine Kac-Moody Lie algebra ˜sl(n+ 1) = ̂sl(n+ 1) ⊕ Cd (cf. [K]). We

define two important subalgebras of ̂sl(n+ 1):

ĥ = h⊗ C[t, t−1]⊕ Cc

and the Heisenberg subalgebra

ĥZ =
∐

m∈Z\{0}

h⊗ tm ⊕ Cc

(in the notation of [FLM], [LL]). We extend our form 〈·, ·〉 to h⊕ Cc⊕ Cd by defining

〈c, c〉 = 0

〈d, d〉 = 0

〈c, d〉 = 1.

Using this form, we may identify h⊕Cc⊕Cd with (h⊕Cc⊕Cd)∗. The simple roots of

̂sl(n+ 1) are α0, α1, . . . , αn and the fundamental weights of ̂sl(n+ 1) are Λ0,Λ1, . . . ,Λn,

given by

α0 = c− (α1 + α2 + · · ·+ αn)

and

Λ0 = d, Λi = Λ0 + λi

for each i = 1, . . . , n.

An ̂sl(n+ 1)-module V is said to have level k ∈ C if the central element c acts as

multiplication by k (i.e. c · v = kv for all v ∈ V ). Any standard (i.e. irreducible

integrable highest weight) module L(Λ) with Λ ∈ (h⊕Cc⊕Cd)∗ has nonnegative inte-

gral level, given by 〈Λ, c〉 (cf. [K]). Let L(Λ0), L(Λ1), . . . , L(Λn) denote the standard

̂sl(n+ 1)-modules of level 1 with vΛ0 , vΛ1 , . . . , vΛn as highest weight vectors, respec-

tively.

Continuing to work in the setting of [FLM] and [LL], we now recall the lattice

vertex operator construction of the level 1 standard modules for ̂sl(n+ 1). We use U(·)
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to denote the universal enveloping algebra. The induced module

M(1) = U(ĥ)⊗U(h⊗C[t]⊕Cc) C

has a natural ĥ-module structure, where h ⊗ C[t] acts trivially and c acts as identity

on the one-dimensional module C. Let s = 2(n + 1)2. We fix a primitive sth root of

unity νs, and a central extension P̂ of the weight lattice P by the finite cyclic group

〈κ〉 = 〈κ | κs = 1〉 of order s,

1→ 〈κ〉 → P̂ −̄→P → 1

with associated commutator map c0 : P × P −→ Z/sZ, defined by aba−1b−1 = κc0(ā,b̄)

for a, b ∈ P̂ . Let c : P × P −→ C× denote the alternating Z-bilinear map defined by

c(λ, µ) = ν
c0(λ,µ)
s for λ, µ ∈ P . We require that

c(α, β) = (−1)〈α,β〉 for α, β ∈ Q.

Such a central extension P̂ of P does indeed exist (see Remark 6.4.12 in [LL]).

We define the faithful character χ : 〈κ〉 −→ C× by χ(κ) = νs. Let Cχ be the one

dimensional 〈κ〉-module, where the action of κ is given by κ · 1 = νs, and form the

induced P̂ -module

C{P} = C[P̂ ]⊗C[〈κ〉] Cχ.

For any subset E ⊂ P , we define Ê = {a ∈ P |ā ∈ E}, and we form C{E} in the obvious

way. Then, the space

VQ = M(1)⊗ C{Q}

carries a natural vertex operator algebra structure, with 1 as vacuum vector, and the

space

VP = M(1)⊗ C{P}

is naturally a VQ-module. We now recall some important details of this construction

(cf. [LL]).
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Choose a section

e : P −→ P̂ (2.1)

α 7→ eα,

(i.e. a map which satisfies ¯◦ e = 1) such that e0 = 1. Let ε0 : P × P −→ Z/sZ the

corresponding 2-cocycle, defined by the condition eαeβ = κε0(α,β)eα+β for α, β ∈ P and

define the map ε : P × P −→ C× by ε(α, β) = ν
ε0(α,β)
s For any α, β ∈ P we have

ε(α, β)/ε(β, α) = c(α, β) (2.2)

and

ε(α, 0) = ε(0, α) = 1. (2.3)

We use this choice of section (2.1) identify C{P} and the group algebra C[P ]. In

particular, we have a vector space isomorphism given by

C[P ] −→ C{P} (2.4)

eα 7→ ι(eα)

for α ∈ P , where, for a ∈ P̂ , we set ι(a) = a⊗ 1 ∈ C{P}. By restriction, we also have

the identification C[Q] ' C{Q}. There is a natural action P̂ on C[P ] given by

eα · eβ = ε(α, β)eα+β,

κ · eβ = νse
β

for α, β ∈ P. As operators on C[P ] ' C{P} we have

eαeβ = ε(α, β)eα+β. (2.5)

We make the identifications

VP = M(1)⊗ C[P ],

VQ = M(1)⊗ C[Q]

and we set

VQe
λi = M(1)⊗ C[Q]eλi , i = 1, . . . , n
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Given a Lie algebra element a ⊗ tm ∈ ̂sl(n+ 1), where a ∈ sl(n + 1),m ∈ Z, we will

denote its action on an ̂sl(n+ 1)-module using the notation a(m). In particular, for

h ∈ h and m ∈ Z, we have the operators h(m) on VP :

h(0)(v ⊗ ι(eα)) = 〈h, α〉(v ⊗ ι(eα))

h(m)(v ⊗ ι(eα)) = (h(m)v ⊗ ι(eα)).

For a formal variable x and λ ∈ P , we define the operator xλ by

xλ(v ⊗ ι(eµ)) = x〈λ,µ〉(v ⊗ ι(eµ))

for v ∈M(1) and µ ∈ P . For each λ ∈ P , we define the vertex operators

Y (ι(eλ), x) = E−(−λ, x)E+(−λ, x)eλx
λ, (2.6)

where

E±(−λ, x) = exp

(∑
±n>0

−λ(n)

n
x−n

)
∈ (End VP )[[x, x−1]]

Using the identification (2.4) we write Y (eλ, x) for Y (ι(eλ), x). In particular, for

any root α ∈ ∆ we have the operators xα(m) defined by

Y (eα, x) =
∑
m∈Z

xα(m)x−m−1. (2.7)

It is easy to see that

xλeµ = x〈λ,µ〉eµx
λ (2.8)

and

λ(m)eµ = eµλ(m) (2.9)

for all λ, µ ∈ P and m ∈ Z. Using (2.2), (2.5) and (2.6)-(2.9) we obtain, for α ∈ ∆,

µ ∈ P ,

xα(m)eµ = c(α, µ)eµxα(m+ 〈α, µ〉). (2.10)

Along with the action of ĥ, the operators xα(m), m ∈ Z, give VP a ̂sl(n+ 1)-module

structure. In particular, we have that

VP = VQ ⊕ VQeλ1 ⊕ · · · ⊕ VQeλn
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and that VQ, VQe
λ1 , . . . , VQe

λn are the level 1 basic representations of ̂sl(n+ 1) with

highest weights Λ0, Λ1, . . . ,Λn and highest weight vectors vΛ0 = 1 ⊗ 1, vΛ1 = 1 ⊗

eλ1 , . . . , vΛn = 1⊗ eλn , respectively. We make the identifications

L(Λ0) = VQ

L(Λi) = VQe
λi

for each i = 1, . . . , n. Moreover, taking

ω =
1

2

n∑
i=1

u(i)(−1)2vΛ0

to be the standard conformal vector, where {u(1), . . . , u(n)} is an orthonormal basis of

h, the operators L(m) defined by

Y (ω, x) =
∑
m∈Z

L(m)x−m−2 (2.11)

provide a representation of the Virasoro algebra of central charge n. The vertex op-

erators (2.6) and (2.22) give L(Λ0) the structure of a vertex operator algebra whose

irreducible modules are precisely L(Λ0),L(Λ1), . . . , L(Λn). We shall write

vΛ0 = 1, vΛ1 = eλ1 , . . . , vΛn = eλn . (2.12)

As in [G], [CLM1]–[CLM2], [C3]–[C4], and [CalLM1]–[CalLM3], we need certain

intertwining operators among standard modules. We recall some facts from [FHL]

and [DL] about intertwining operators and, in particular, the intertwining operators

between L(Λ0), L(Λ1), . . . , L(Λn).

Given modules W1, W2 and W3 for the vertex operator algebra V , an intertwining

operator of type  W3

W1 W2


is a linear map

Y(· , x) : W1 −→ Hom(W2,W3){x}

w 7→ Y(w, x) =
∑
n∈Q

wnx
−n−1
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such that all the axioms of vertex operator algebra which make sense hold (see [FHL]).

The main axiom is the Jacobi identity:

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)Y(w(1), x2)w(2)

−x−1
0 δ

(
x2 − x1

x0

)
Y(w(1), x2)Y (u, x1)w(2)

= x−1
2 δ

(
x1 − x0

x2

)
Y(Y (u, x0)w(1), x2)w(2)

for u ∈ V , w(1) ∈W1 and w(2) ∈W2.

Define the operators eiπλ and c(· , λ) on VP by:

eiπλ(v ⊗ eβ) = eiπ〈λ,β〉v ⊗ eβ,

c(· , λ)(v ⊗ eβ) = c(β, λ)v ⊗ eβ,

for v ∈M(1) and β, λ ∈ P . We have that

Y(·, x) : L(Λr) −→ Hom(L(Λs), L(Λp)){x} (2.13)

w 7→ Y(w, x) = Y (w, x)eiπλrc(·, λr)

defines an intertwining operator of type L(Λp)

L(Λr) L(Λs)

 (2.14)

if and only if p ≡ r + s mod (n+ 1) (cf. [DL]).

If we take u = eα and w1 = eλr (for r = 1, . . . , n) in the Jacobi identity (2.13) and

apply Resx0 (the formal residue operator, giving us the coefficient of x−1
0 ), we have

[Y (eα, x1),Y(eλr , x2)] = 0, (2.15)

whenever α ∈ ∆+, which means that each coefficient of the series Y(eλr , x) commutes

with the action of xα(m) for positive roots α.

Given such an intertwining operator, we define a map

Yc(eλr , x) : L(Λs) −→ L(Λp)
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by

Yc(eλr , x) = Resxx
−1−〈λr,λs〉Y(eλr , x)

and by (2.15) we have

[Y (eα, x1),Yc(eλr , x2)] = 0, (2.16)

which implies

[xα(m),Yc(eλr , x2)] = 0 (2.17)

for each m ∈ Z.

Consider the space

V ⊗kP = VP ⊗ · · · ⊗ VP︸ ︷︷ ︸
k times

. (2.18)

We extend the operators eλ, λ ∈ P , to operators on V ⊗kp , k a positive integer, by

defining:

e⊗kλ = eλ ⊗ · · · ⊗ eλ : V ⊗kP → V ⊗kP .

For any standard ̂sl(n+ 1)-module L(Λ) of positive integral level k, its highest weight

Λ is of the form

Λ = k0Λ0 + · · ·+ knΛn

for some nonnegative integers k0, . . . , kn satisfying k0 + · · · + kn = k. Any standard

̂sl(n+ 1)-module L(Λ) of positive integral level k, may be realized as an ̂sl(n+ 1)-

submodule of V ⊗kP . Indeed, let

vi1,...,ik = vΛi1
⊗ · · · ⊗ vΛik

∈ V ⊗kP , (2.19)

where exactly ki indices are equal to i for each i = 0, . . . , n. Then, we have that vi1,...,ik

is a highest weight vector for ̂sl(n+ 1), and

L(Λ) ' U( ̂sl(n+ 1)) · vi1,...,ik ⊂ V
⊗k
P (2.20)

(cf. [K]). Here, the action of ̂sl(n+ 1) on V ⊗kP is given by the usual diagonal action of

a Lie algebra on a tensor product of modules:

a · v = ∆(a)v = (a⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ a)v (2.21)
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for a ∈ ̂sl(n+ 1), v ∈ V ⊗kP and is extended to U( ̂sl(n+ 1)) in the usual way. We

also have a natural vertex operator algebra structure on L(kΛ0) and L(kΛ0)-module

structure on L(Λ) given by:

Theorem 2.1.1 ([FZ], [DL], [Li1]; cf. [LL]) The standard module L(kΛ0) has a nat-

ural vertex operator algebra structure. The level k standard ̂sl(n+ 1)-modules provide

a complete list of irreducible L(kΛ0)-modules.

Let ω denote the Virasoro vector in L(kΛ0). We have a natural representation of

the Virasoro algebra on each L(Λ) given by

YL(Λ)(ω, x) =
∑
m∈Z

L(m)x−m−2 (2.22)

The operators L(0) defined in (2.22) provide each L(Λ) of level k with a grading, which

we refer to as the weight grading:

L(Λ) =
∐
s∈Z

L(Λ)(s+hΛ) (2.23)

where hΛ ∈ Q and depends on Λ. In particular, we have the grading

L(kΛ0) =
∐
s∈Z

L(Λ)(s). (2.24)

We denote the weight of an element a · vΛ ∈W (Λ) by wt(a · vΛ). We will also write

wt(xα(m)) = −m,

where we view xα(m) both as an operator and as an element of U(n̄).

We also have n distinct charge gradings on each L(Λ) of level k, given by the

eigenvalues of the operators λi(0) for i = 1, . . . , n:

L(Λ) =
∐
ri∈Z

L(Λ)[ri+〈λi,Λ〉]. (2.25)

We call these the λi-charge gradings. An element of L(Λ) with λi-charges ni for i =

1, . . . , n has total charge
∑n

i=1 ni. The gradings (2.23) and (2.25) are compatible, and

we have that

L(Λ) =
∐

r1,...,rn,s∈Z
L(Λ)r1+〈λ1,Λ〉,...,rn+〈λnΛ〉;s+hΛ

. (2.26)
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2.2 The case of g = sl(3)

In chapter 4 we work in the case where n = 2, and we recall some important details.

The finite-dimensional simple Lie algebra sl(3) has a standard basis

{hα1 , hα2 , x±α1 , x±α2 , x±(α1+α2)};

we do not need to normalize the root vectors. We fix the Cartan subalgebra

h = Chα1 ⊕ Chα2

of sl(3). Under our identification of h with h∗, we have

α1 = hα1 and α2 = hα2 .

We also have the fundamental weights λ1, λ2 ∈ h∗ of sl(3), given by the condition

〈λi, αj〉 = δi,j for i, j = 1, 2. In particular, we have

λ1 =
2

3
α1 +

1

3
α2 and λ2 =

1

3
α1 +

2

3
α2

and

α1 = 2λ1 − λ2 and α2 = −λ1 + 2λ2.

The level 1 standard modules of ŝl(3) are L(Λ0), L(Λ1), and L(Λ2). Given the

intertwining operators (2.13), we have that

Yc(eλi , x)vΛ0 = r1vΛi (2.27)

Yc(eλi , x)vΛi = r2xαi(−1) · vΛj = r′2eλi · vΛi (2.28)

Yc(eλi , x)vΛj = r3xα1+α2(−1) · vΛ0 = r′3eλi · vΛj (2.29)

for i, j = 1, 2, i 6= j and some constants r1, r2, r3, r
′
2, r
′
3 ∈ C×.

For any level k standard ŝl(3)-module L(Λ), its highest weight Λ is of the form

Λ = k0Λ0 + k1Λ1 + k2Λ2

for some nonnegative integers k0, k1, k2 satisfying k0 + k1 + k2 = k. We now give a

realization of these modules. Consider the space

V ⊗kP = VP ⊗ · · · ⊗ VP︸ ︷︷ ︸
k times

, (2.30)
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and let

vi1,...,ik = vΛi1
⊗ · · · ⊗ vΛik

∈ V ⊗kP , (2.31)

where exactly k0 indices are equal to 0, k1 indices are equal to 1 and k2 indices are

equal to 2. Then, we have that vi1,...,ik is a highest weight vector for ŝl(3), and

L(Λ) ' U(ŝl(3)) · vi1,...,ik ⊂ V
⊗k
P (2.32)

(cf. [K]).

The operators L(0) defined in (2.22) provide each L(Λ) of level k with a grading,

which we refer to as the weight grading:

L(Λ) =
∐
s∈Z

L(Λ)(s+hΛ) (2.33)

where

hΛ =
〈Λ,Λ + α1 + α2〉

2(k + 3)
.

In particular, we have the grading

L(kΛ0) =
∐
s∈Z

L(Λ)(s). (2.34)

We denote the weight of an element a · vΛ ∈W (Λ) by wt(a · vΛ). We will also write

wt(xα(m)) = −m,

where we view xα(m) both as an operator and as an element of U(n̄).

We also have two different charge gradings on each L(Λ) of level k, given by the

eigenvalues of the operators λ1(0) and λ2(0):

L(Λ) =
∐
ri∈Z

L(Λ)[ri+〈λi,Λ〉] (2.35)

for each i = 1, 2. We call these the λ1-charge and λ2-charge gradings, respectively. An

element of L(Λ) with λ1-charge n1 and λ2-charge n2 is said to have total charge n1 +n2.

The gradings (2.23) and (2.25) are compatible, and we have that

L(Λ) =
∐

r1,r2,s∈Z
L(Λ)r1+〈λ1,Λ〉,r2+〈λ2Λ〉;s+hΛ

. (2.36)
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Chapter 3

Principal subspaces of standard modules

3.1 General definitions

We are now ready to define our main object of study. Consider the ̂sl(n+ 1)-subalgebra

n̄ = n⊗ C[t, t−1]. (3.1)

The Lie algebra n̄ has the following important subalgebras:

n̄− = n⊗ t−1C[t−1]

and

n̄+ = n⊗ C[t]

Let U(n̄) be the universal enveloping algebra of n̄. We recall that U(n̄) has the decom-

position:

U(n̄) = U(n̄−)⊕ U(n̄)n̄+. (3.2)

Given a ̂sl(n+ 1)-module L(Λ) of positive integral level k with highest weight vector

vΛ, the principal subspace of L(Λ) is defined by:

W (Λ) = U(n̄) · vΛ.

W (Λ) inherits the grading (2.36), and we have that

W (Λ) =
∐

r1,...,rn,s∈Z
W (Λ)r1+〈λ1,Λ〉,...,rn+〈λnΛ〉;s+hΛ

(3.3)

For convenience, we will use the notation

W (Λ)′r1,...,rn;s = W (Λ)r1+〈λ1,Λ〉,...,rn+〈λnΛ〉;s+hΛ
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As in [CLM1]-[CLM2], [CalLM3], [C1]-[C2], define the multigraded dimension of W (Λ)

by:

χW (Λ)(x1, . . . , xn, q) = trW (Λ)x
λ1
1 · · ·x

λn
n qL(0)

and its modification

χ′W (Λ)(x1, . . . , xn, q) = x−〈λ1,Λ〉 . . . x−〈λn,Λ〉q−hΛχW (Λ)(x1, . . . , xn, q) ∈ C[[x1, . . . xn, q]]

In particular, we have that

χ′W (Λ)(x1, . . . , xn, q) =
∑

r1,...,rn,s∈N
dim(W (Λ)′r1,...,rn;s)x

r1 · · ·xrnqs.

For each such Λ, we have a surjective map

FΛ : U(ĝ) −→ L(Λ) (3.4)

a 7→ a · vΛ

and its surjective restriction fΛ:

fΛ : U(n̄) −→ W (Λ) (3.5)

a 7→ a · vΛ.

A precise description of the kernels KerfΛ for every each Λ =
∑n

i=0 kiΛi gives a presen-

tation of the principal subspaces W (Λ) for ̂sl(n+ 1), as we will now discuss.

For each λ ∈ P and character ν : Q −→ C×, we define a map τλ,ν on n̄ by

τλ,ν(xα(m)) = ν(α)xα(m− 〈λ, α〉)

for α ∈ ∆+ and m ∈ Z. It is easy to see that τλ,ν is an automorphism of n̄. In the

special case when ν is trivial (i.e., ν = 1), we set

τλ = τλ,1.

The map τλ,ν extends canonically to an automorphism of U(n̄), also denoted by τλ,ν ,

given by

τλ,ν(xβ1(m1) · · ·xβr(mr)) = ν(β1 + · · ·+βr)xβ1(m1−〈λ, β1〉) · · ·xβr(mr−〈λ, βr〉) (3.6)
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for β1, . . . , βr ∈ ∆+ and m1, . . . ,mr ∈ Z. Notice that if λ = λi for i = 1, . . . , n, we have

that

wt(τ−λ(a)) ≤ wt(a)

for each a ∈ U(n̄). We will use this fact frequently without mention.

Define the formal sums

Rit =
∑

m1+···+mn=−t
xαi(m1)xαi(m2) · · ·xαi(mk+1) (3.7)

and their truncations

RiM,t =
∑

m1 + · · ·+mk+1 = −t,

m1, . . . ,mk+1 ≤M

xαi(m1) · · ·xαi(mk+1) (3.8)

for t ∈ Z, M ∈ Z and i = 1, . . . , n. Note that each RiM,t ∈ U(n̄) and the infinite sum

Rit /∈ U(n̄), but Rit is still well-defined as an operator on W (Λ), since, when acting on

any element of W (Λ), only finitely many of its terms are nonzero. Let J be the left

ideal of U(n̄) generated by the elements Ri−1,t for t ≥ k + 1 and i = 1, 2:

J =
n∑
i=1

∑
t≥k+1

U(n̄)Ri−1,t. (3.9)

Define a left ideal of U(n̄) by:

IkΛ0 = J + U(n̄)n̄+

and for each Λ =
∑n

i=0 kiΛi, define

IΛ = IkΛ0 +
∑
α∈∆+

U(n̄)xα(−1)k+1−〈α,Λ〉.

Conjecture 3.1.1 For each Λ = k0Λ0 + · · ·+ knΛn with k0, . . . , kn, k ∈ N, k ≥ 1, and

k0 + · · ·+ kn = k, we have that

KerfΛ = IΛ

In particular,

Kerfk0Λ0+kiΛi = IkΛ0 + U(n̄)xαi(−1)k0+1 (3.10)
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In the case that g is of type ADE and k = 1 or g = sl(2) or g = sl(3) and k ≥ 1,

this conjecture has been proved. The presentations (3.10) are suggested by the bases

found in [G], but an a priori proof is lacking. This proof will be the focus of future

work.

3.2 Details for the ŝl(3) case

We define certain operators that will be needed for the proof of Conjecture 3.1.1 when

n = 2. These operators have natural generalization for n ≥ 2 and generalize the τλ,ν

maps above. Define the injective maps

τk0Λ0+k1Λ1+k2Λ2
λ1,ν

: U(n̄) −→ U(n̄) (3.11)

a 7→ τλ1,ν(a)xα1(−1)k1xα1+α2(−1)k2 .

and

τk0Λ0+k1Λ1+k2Λ2
λ2,ν

: U(n̄) −→ U(n̄) (3.12)

a 7→ τλ2,ν(a)xα2(−1)k2xα1+α2(−1)k1 .

Let ωi = αi−λi ∈ P for i = 1, 2. Generalizing the idea of [CalLM3], we define, for each

character ν : Q→ C×, injective linear maps

σk1Λ1+k2Λ2
ω1,ν : U(n̄) −→ U(n̄) (3.13)

a 7→ τω1,ν(a)xα1(−1)k1 .

and

σk1Λ1+k2Λ2
ω2,ν : U(n̄) −→ U(n̄) (3.14)

a 7→ τω2,ν(a)xα2(−1)k2 .

The following facts about U(n̄) will be useful:

Lemma 3.2.1 Given r, k ∈ N and root vectors xα, xβ ∈ sl(3) with α, β, α + β ∈ ∆+
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and [xα, xβ] = Cα,βxα+β for some constant Cα,β ∈ C×, we have

xβ(m1) . . . xβ(mr)xα(−1)k

=

k∑
p=0

xα(−1)k−p
r∑

j1,··· ,jp=1

j1<···<jp

Cj1,...,jpxβ(m1) · · · (3.15)

· · ·xα+β(mj1 − 1) . . . xα+β(mjp − 1) · · ·xβ(mr)

for some constants Cj1,...jp ∈ C. The constants Cj1,...jp are understood to be 0 when

p > r.

Proof: We induct on k ∈ N. For k = 1 we have:

xβ(m1) · · ·xβ(mr)xα(−1)

= xα(−1)xβ(m1) · · ·xβ(mr) (3.16)

+
r∑
j=1

Cβ,αxβ(m1) · · ·xα+β(mj − 1) · · ·xβ(mr) (3.17)

and so our claim is true for k = 1. Assume that our claim is true for some k ≥ 1. Then
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we have:

xβ(m1) · · ·xβ(mr)xα(−1)k+1

=

k∑
p=0

xα(−1)k−p
r∑

j1,...,jp=1

j1<···<jp

(
Cj1,...,jpxβ(m1) · · ·xα+β(mj1 − 1) · · ·

· · ·xα+β(mjp − 1) · · ·xβ(mr)xα(−1)

)
=

k∑
p=0

xα(−1)k−p+1
r∑

j1,...,jp=1

j1<···<jp

(
Cj1,...,jpxβ(m1) · · ·

. . . xα+β(mj1 − 1) · · ·xα+β(mjp − 1) · · ·xβ(mr)

)
+

k∑
p=0

xα(−1)k−p
r∑

s 6=jq ,s=1

q=1,...,p

r∑
j1,...,jp=1

j1<···<jp

(
Cj1,...,jpCβ,αxβ(m1) · · ·xα+β(mj1 − 1) . . .

· · ·xα+β(ms − 1) · · ·

. . . xα+β(mjp − 1) · · ·xβ(mr)

)
=

k+1∑
p=0

xα(−1)k+1−p
r∑

j1,...,jp=1

j1<···<jp

C ′j1,...,jpxβ(m1) · · ·xα+β(mj1 − 1) · · ·

· · ·xα+β(mjp − 1) · · ·xβ(mr)

for some constants C ′j1,...,jp ∈ C, concluding our proof.

Corollary 3.2.2 For 0 ≤ m ≤ k and simple roots αi, αj ∈ ∆+ such that αi+αj ∈ ∆+,

we have

Ri−1,txαj (−1)m

= xαj (−1)mRi−1,t + r1xαj (−1)m−1[Ri−1,t+1, xαj (0)] + . . .

+rm[. . . [Ri−1,t+m, xαj (0)], . . . , xαj (0)] + bxαi+αj (−1) + c

for some r1 . . . rm ∈ C, b ∈ U(n̄), and c ∈ U(n̄)n̄+. In particular, we have that

Ri−1,txαj (−1)m ∈ IkΛ0 + U(n̄)xαi+αj (−1).

Moreover, if a ∈ IkΛ0 then

axαj (−1)m ∈ IkΛ0 + U(n̄)xαi+αj (−1).
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The next two lemmas show that the maps τk0Λ0+k1Λ1+k2Λ2
λi,ν

and σk1Λ1+k2Λ2
ωi,ν , i = 1, 2,

allow us to move between the left ideals we have defined.

Lemma 3.2.3 For every character ν, we have that

τk0Λ0+k1Λ1+k2Λ2
λ1,ν

(Ik0Λ0+k1Λ1+k2Λ2) ⊂ Ik2Λ0+k0Λ1+k1Λ2

and

τk0Λ0+k1Λ1+k2Λ2
λ2,ν

(Ik0Λ0+k1Λ1+k2Λ2) ⊂ Ik1Λ0+k2Λ1+k0Λ2 .

Proof: We prove the claim for τk0Λ0+k1Λ1+k2Λ2
λ1,ν

. The claim for τk0Λ0+k1Λ1+k2Λ2
λ2,ν

follows

similarly. Since Ik0Λ0+k1Λ1+k2Λ2 is a homogeneous ideal, it suffices to prove our claim

for ν = 1.

We have that

τk0Λ0+k1Λ1+k2Λ2
λ1

(R1
−1,t)

= τk0Λ0+k1Λ1+k2Λ2
λ1

( ∑
m1+...+mk+1=−t, mi≤−1

xα1(m1) · · ·xα1(mk+1)

)

=
∑

m1+···+mk+1=−t, mi≤−1

τλ1

(
xα1(m1) · · ·xα1(mk+1)

)
xα1(−1)k1xα1+α2(−1)k2

=
∑

m1+···+mk+1=−t, mi≤−1

xα1(m1 − 1) · · ·xα1(mk+1 − 1)xα1(−1)k1xα1+α2(−1)k2

= xα1(−1)k1xα1+α2(−1)k2R1
−1,t+(k+1) + axα1(−1)k1+1xα1+α2(−1)k2

= xα1(−1)k1xα1+α2(−1)k2R1
−1,t+(k+1) + b[xα2(0), . . . [xα2(0), xα1(−1)k1+k2+1] . . . ]

for some a, b ∈ U(n̄). Clearly

xα1(−1)k1xα1+α2(−1)k2(−1)R1
−1,t+(k+1)

+s[xα2(0), . . . [xα2(0), xα1(−1)k1+k2+1] . . . ] ∈ Ik2Λ0+k0Λ1+k1Λ2

and so

τk0Λ0+k1Λ1+k2Λ2
λ1

(R1
−1,t) ∈ Ik2Λ0+k0Λ1+k1Λ2 .
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We also have

τk0Λ0+k1Λ1+k2Λ2
λ1

(R2
−1,t)

= τk0Λ0+k1Λ1+k2Λ2
λ1

( ∑
m1+...+mk+1=−t, mi≤−1

xα2(m1)...xα2(mk+1)

)

=
∑

m1+···+mk+1=−t, mi≤−1

τλ1

(
xα2(m1) · · ·xα2(mk+1)

)
xα1(−1)k1xα1+α2(−1)k2

=
∑

m1+···+mk+1=−t, mi≤−1

xα2(m1) · · ·xα2(mk+1)xα1(−1)k1xα1+α2(−1)k2

= R2
−1,txα1(−1)k1xα1+α2(−1)k2

= a+ bxα1+α2(−1)k2+1

for some a ∈ IkΛ0 and b ∈ U(n̄), with the last equality following from Corollary 3.2.2.

So we have that

τk0Λ0+k1Λ1+k2Λ2
λ1,ν

(R2
−1,t) ∈ Ik2Λ0+k0Λ1+k1Λ2 .

Since J is the left ideal of U(n̄) generated by R1
−1,t and R2

−1,t, we have that

τk0Λ0+k1Λ1+k2Λ2
λ1

(J) ⊂ Ik2Λ0+k0Λ1+k1Λ2 .

We now show that τk0Λ0+k1Λ1+k2Λ2
λ1

(U(n̄)n̄+) ⊂ Ik2Λ0+k0Λ1+k1Λ2 . If m ∈ N, we have

have that

τk0Λ0+k1Λ1+k2Λ2
λ1

(xα1(m)) = xα1(m− 1)xα1(−1)k1xα1+α2(−1)k2

= xα1(−1)k1xα1+α2(−1)k2xα1(m− 1) ∈ U(n̄)n̄+

if m > 0 and

τk0Λ0+k1Λ1+k2Λ2
λ1

(xα1(m)) = xα1(−1)k1+1xα1+α2(−1)k2

= r[xα2(0), . . . , [xα2(0), xα1(−1)k1+k2+1] . . . ]

∈ Ik2Λ0+k0Λ1+k1Λ2

for some r ∈ C if m = 0. We also have

τk0Λ0+k1Λ1+k2Λ2
λ1

(xα2(m)) = xα2(m)xα1(−1)k1xα1+α2(−1)k2

= xα1(−1)k1xα1+α2(−1)k2xα2(m)

+rxα1(−1)k1−1xα1+α2(−1)k2xα1+α2(m− 1)
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for some r ∈ C and so

τk0Λ0+k1Λ1+k2Λ2
λ1

(xα2(m)) ∈ Ik2Λ0+k0Λ1+k1Λ2 .

Finally, we have that, for m ≥ 0,

τk0Λ0+k1Λ1+k2Λ2
λ1

(xα1+α2(m)) = xα1+α2(m− 1)xα1(−1)k1xα1+α2(−1)k2

= xα1(−1)k1xα1+α2(−1)k2xα1+α2(m− 1)

∈ Ik2Λ0+k0Λ1+k1Λ2 .

Since U(n̄)n̄+ is a left ideal of U(n̄), we have that

τk0Λ0+k1Λ1+k2Λ2
λ1,ν

(U(n̄)n̄+) ⊂ Ik2Λ0+k0Λ1+k1Λ2

and so we have

τk0Λ0+k1Λ1+k2Λ2
λ1,ν

(IkΛ0) ⊂ Ik2Λ0+k0Λ1+k1Λ2 .

We now check the remaining terms. We have

τk0Λ0+k1Λ1+k2Λ2
λ1

(xα1(−1)k0+k2+1)

= xα1(−2)k0+k2+1xα1(−1)k1xα1+α2(−1)k2

= cxα1+α2(−1)k2R1
−1,2(k0+k2+1)+k1

+ a1xα1(−1)k1+1xα1+α2(−1)k2

= cxα1+α2(−1)k2R1
−1,2(k0+k2+1)+k1

+ a2[xα2(0), . . . [xα2(0), xα1(−1)k1+k2+1]

∈ Ik2Λ0+k0Λ1+k1Λ2

for some c, a1, a2 ∈ U(n̄). So, since U(n̄)xα1(−1)k0+k2+1 is the left ideal of U(n̄) gener-

ated by xα1(−1)k0+k2+1, we have that

τk0Λ0+k1Λ1+k2Λ2
λ1,ν

(U(n̄)xα(−1)k0+k2+1) ⊂ Ik2Λ0+k0Λ1+k1Λ2 .
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By Lemma 3.2.1 we have

τk0Λ0+k1Λ1+k2Λ2
λ1

(xα2(−1)k0+k1+1)

= xα2(−1)k0+k1+1xα1(−1)k1xα1+α2(−1)k2

= xα1(−1)k1xα2(−1)k0+k1+1xα1+α2(−1)k2

+r1xα1(−1)k1−1xα1+α2(−2)xα2(−1)k0+k1xα1+α2(−1)k2

+ · · ·+ rk1xα1+α2(−2)k1xα2(−1)k0+1xα1+α2(−1)k2

= r′0xα1(−1)k1 [xα1(0), . . . [xα1(0), R2
−1,k+1] . . . ]

+r′1xα1(−1)k1−1[xα1(0), . . . [xα1(0), R2
−1,k+2] . . . ]

+ . . . r′k1
[xα1(0), . . . [xα1(0), R−1,2k1+k0+k2+1] . . . ] + axα1+α2(−1)k2+1

∈ Ik2Λ0+k0Λ1k1Λ2

for some a ∈ U(n̄) and r′0, r1, r
′
1, . . . , rk1 , r

′
k1
∈ C. So, since U(n̄)xα2(−1)k0+k1+1 is the

left ideal of U(n̄) generated by xα2(−1)k0+k1+1, we have that

τk0Λ0+k1Λ1+k2Λ2
λ1

(U(n̄)xα2(−1)k0+k1+1) ⊂ Ik2Λ0+k0Λ1+k1Λ2 .

Finally, we have that

τk0Λ0+k1Λ1+k2Λ2
λ1

(xα1+α2(−1)k0+1)

= xα1+α2(−2)k0+1xα1(−1)k1xα1+α2(−1)k2

= r[xα2(0), . . . [xα2(0), R1
−1,2k0+2+k1+k2

], . . . ] + axα1+α2(−1)k2+1

for some a ∈ U(n̄) and some constant r ∈ C. So, since U(n̄)xα1+α2(−1)k0+1 is the left

ideal of U(n̄) generated by xα1+α2(−1)k0+1, we have that

τk0Λ0+k1Λ1+k2Λ2
λ1

(U(n̄)xα1+α2(−1)k01) ⊂ Ik2Λ0+k0Λ1+k1Λ2 .

This concludes our proof.

Lemma 3.2.4 For every character ν, we have that

σk1Λ1+k2Λ2
ω1,ν (Ik1Λ1+k2Λ2) ⊂ Ik1Λ0+k2Λ1

and

σk1Λ1+k2Λ2
ω2,ν (Ik1Λ1+k2Λ2) ⊂ Ik2Λ0+k1Λ2 .
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Proof: We prove the claim for σk1Λ1+k2Λ2
ω1,ν . The claim for σk1Λ1+k2Λ2

ω2,ν follows similarly.

Since Ik1Λ1+k2Λ2 is a homogeneous ideal, it suffices to prove our claim for ν = 1. We

have that

σk1Λ1+k2Λ2
ω1

(R1
−1,t)

= σk1Λ1+k2Λ2
ω1

( ∑
m1+···+mk+1=−t, mi≤−1

xα1(m1) · · ·xα1(mk+1)

)

=
∑

m1+···+mk+1=−t, mi≤−1

σω1

(
xα1(m1) · · ·xα1(mk+1)

)
xα1(−1)k1

=
∑

m1+···+mk+1=−t,mi≤−1

xα1(m1 − 1) · · ·xα1(mk+1 − 1)xα1(−1)k1

= R1
−1,t+(k+1) + axα1(−1)k1+1

for some a ∈ U(n̄) and so σk1Λ1+k2Λ2
ω1

(R1
−1,t) ∈ Ik1Λ0+k2Λ1 . We also have, by Lemma

3.2.1, that

σk1Λ1+k2Λ2
ω1

(R2
−1,t)

= σk1Λ1+k2Λ2
ω1

( ∑
m1+···+mk+1=−t, mi≤−1

xα2(m1) · · ·xα2(mk+1)

)

=
∑

m1+···+mk+1=−t, mi≤−1

σω1

(
xα2(m1) · · ·xα2(mk+1)

)
xα1(−1)k1

=
∑

m1+···+mk+1=−t, mi≤−1

xα2(m1 + 1) · · ·xα2(mk+1 + 1)xα1(−1)k1

=
∑

m1+···+mk+1=−t, mi≤−1

k1∑
p=0

xα1(−1)k1−p
k+1∑

j1,...,jp=1

j1<···<jp

(
Cj1,...,jpxα2(m1 + 1) · · ·

· · · xα1+α2(mj1) · · ·xα1+α2(mjp) · · ·xα2(mk+1 + 1)

)
=

k1∑
p=0

xα1(−1)k1−p[. . . [R2
−1,t−(k+1−p), xα1(0)], . . . , xα1(0)] + bxα2(0)

for some b ∈ U(n̄) and constants Cj1,...,jp ∈ C. Since J is the left ideal of U(n̄) generated

by R1
−1,t and R2

−1,t, we have that

σk1Λ1+k2Λ2
ω1,ν (J) ⊂ Ik1Λ0+k2Λ1 .

We now show that σk1Λ1+k2Λ2
ω1

(U(n̄)n̄+) ⊂ Ik1Λ0+k2Λ1 . We have

σk1Λ1+k2Λ2
ω1

(xα1(m)) = xα1(m− 1)xα1(−1)k1 ∈ U(n̄)n̄+ + U(n̄)xα1(−1)k1+1
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σk1Λ1+k2Λ2
ω1

(xα2(m)) = xα2(m+ 1)xα1(−1)k1

= cxα1(−1)k1−1xα1+α2(m) + xα1(−1)k1xα2(m+ 1)

∈ U(n̄)n̄+

and

σk1Λ1+k2Λ2
ω1

(xα1+α2(m)) = xα1+α2(m)xα1(−1)k1

= xα1(−1)k1xα1+α2(m)

∈ U(n̄)n̄+

for m ≥ 0. Since U(n̄)n̄+ is the left ideal of U(n̄) generated by n̄+, we have that

σk1Λ1+k2Λ2
ω1

(U(n̄)n̄+) ⊂ Ik1Λ0+k2Λ1

and so we have

σk1Λ1+k2Λ2
ω1,ν (IkΛ0) ⊂ Ik1Λ0+k2Λ1 .

We now check the remaining terms. We have

σk1Λ1+k2Λ2
ω1

(xα1(−1)k2+1) = xα1(−2)k2+1xα1(−1)k1

= rR1
−1,2k2+2+k1

+ axα1(−1)k1+1

for some a ∈ U(n̄) and r ∈ C, and so

σk1Λ1+k2Λ2
ω1

(xα1(−1)k2+1) ∈ Ik1Λ0+k2Λ1 .

We also have, by Lemma 3.2.1,

σk1Λ1+k2Λ2
ω1

(xα2(−1)k1+1) = xα2(0)k1+1xα1(−1)k1

= xα1(−1)k1xα2(0)k1+1

+r1xα1(−1)k1−1xα1+α2(−1)xα2(0)k1

+ · · ·+ rk1xα1+α2(−1)k1xα2(0)

for some constants r1, . . . , rk1 ∈ C, and so

σk1Λ1+k2Λ2
ω1

(xα2(−1)k1+1) ∈ U(n̄)n̄+ ⊂ Ik1Λ0+k2Λ1 .
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Finally,

σk1Λ1+k2Λ2
ω1

(xα1+α2(−1)) = xα1+α2(−1)xα1(−1)k1

= r[xα2(0), xα1(−1)k1+1]

for some constant r ∈ C. So we have that

σk1Λ1+k2Λ2
ω1

(xα1+α2(−1)k1+1) ∈ U(n̄)xα1(−1)k1+1 ⊂ Ik1Λ0+k2Λ1 .

This concludes our proof.

Remark 3.2.5 Lemmas 3.2.3 and 3.2.4 here directly generalize Lemma 3.1 and Lemma

3.2 in [CalLM3], respectively. Lemma 3.2.4 in this paper does not have an analogue for

Ik0Λ0+k1Λ1+k2Λ2 , and will be the main reason our proof of the presentations needs ideas

other than those found in [CalLM1]-[CalLM3].

Remark 3.2.6 Note that τkΛ0
λi,ν

= τλi,ν , so that, as in [CalLM1]-[CalLM3], we have

τλi,ν(IkΛ0) ⊂ IkΛi .

For any λ ∈ P we have the linear isomorphism

eλ : VP −→ VP .

In particular, for i, j = 1, 2 with i+ j = 3 we have

eλi · vλ0 = vλi

eλi · vλi = ε(λi, λi)xαi(−1) · vλj

eλi · vλj = ε(λi, λj)xα1+α2(−1) · vλ0

Since

eλixα(m) = c(α,−λi)xα(m− 〈α, λi〉)eλi for α ∈ ∆+ and m ∈ Z
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we have that

eλi(a · vλ0) = τλi,c−λi (a) · vλi , a ∈ U(n̄). (3.18)

For any λ ∈ P , we define linear isomorphisms on V ⊗kP by

e⊗kλ = eλ1 ⊗ · · · ⊗ eλ1︸ ︷︷ ︸
k times

: V ⊗kP −→ V ⊗kP .

In particular, we have

e⊗kλ1
(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸

k0 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= ε(λ1, λ1)k1ε(λ1, λ2)k2
1

k1!

1

k2!
xα1(−1)k1xα1+α2(−1)k2

·(vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k1 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k2 times

).

and

e⊗kλ2
(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸

k0 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= ε(λ2, λ1)k1ε(λ2, λ2)k2
1

k1!

1

k2!
xα2(−1)k2xα1+α2(−1)k1

·(vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k0 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2 times

).

This, along with the fact that

e⊗kλi xα(m) = c(α,−λi)xα(m− 〈α, λi〉)e⊗kλi for α ∈ ∆+ , i = 1, 2, and m ∈ Z

gives us

e⊗kλ1
(a · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸

k0 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

))

= ε(λ1, λ1)k1ε(λ1, λ2)k2
1

k1!

1

k2!
τk0Λ0+k1Λ1+k2Λ2
λ1,c−λ1

(a)

·(vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k1 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k2 times

).
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and

e⊗kλ2
(a · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸

k0 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

))

= ε(λ1, λ2)k1ε(λ2, λ2)k2
1

k1!

1

k2!
τk0Λ0+k1Λ1+k2Λ2
λ2,c−λ2

(a)

·(vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k0 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2 times

).

In particular, the above gives us:

Theorem 3.2.7 For any k0, k1, k2 ∈ N such that k = k0 + k1 + k2, we have injective

maps

e⊗kλ1
: W (k0Λ0 + k1Λ1 + k2Λ2) −→W (k2Λ0 + k0Λ1 + k2Λ2)

and

e⊗kλ2
: W (k0Λ0 + k1Λ1 + k2Λ2) −→W (k1Λ0 + k2Λ1 + k0Λ2).

Remark 3.2.8 Notice that the maps e⊗kλi , i = 1, 2, cyclically permute the weights.

Remark 3.2.9 The maps e⊗kλ1
and e⊗kλ2

were the motivation for the definitions of

τk0Λ0+k1Λ1+k2Λ2
λ1,ν

and τk0Λ0+k1Λ1+k2Λ2
λ2,ν

, respectively.

Recall that ωi = αi − λi for i = 1, 2. For i, j = 1, 2 with i+ j = 3 we have maps

eωi · vλi = ε(ωi, λi)xαi(−1) · vλ0

eωi · vλj = ε(ωi, λj)vλi

As operators, we have that

eωixα(m) = c(α,−ωi)xα(m− 〈α, ωi〉)eωi for α ∈ ∆+ and m ∈ Z

For any such ωi ∈ P , we define linear isomorphisms on V ⊗kP by

e⊗kωi = eωi ⊗ · · · ⊗ eωi︸ ︷︷ ︸
k times

: V ⊗kP −→ V ⊗kP .
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In particular, we have

e⊗kω1
(vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸

k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= ε(ω1, λ1)k1ε(ω1, λ2)k2
1

k1!
xα1(−1)k1 · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸

k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2 times

).

and

e⊗kω2
(vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸

k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= ε(ω2, λ1)k1ε(ω2, λ2)k2
1

k2!
xα2(−1)k2 · (vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸

k1 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k2 times

).

This, along with the fact that

e⊗kωi xα(m) = c(α,−ωi)xα(m− 〈α, ωi〉)e⊗kωi for α ∈ ∆+ , i = 1, 2, and m ∈ Z

give us

e⊗kω1
(a · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸

k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

))

= ε(ω1, λ1)k1ε(ω1, λ2)k2
1

k1!
σk1Λ1+k2Λ2
ω1,c−ω1

(a) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2 times

).

and

e⊗kω2
(a · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸

k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

))

= ε(ω2, λ1)k1ε(ω2, λ2)k2
1

k2!
σk1Λ1+k2Λ2
ω2,c−ω2

(a) · (vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k1 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k2 times

).

In particular, the above gives us:

Theorem 3.2.10 For any k1, k2 ∈ N such that k = k1 + k2, we have injective maps

e⊗kω1
: W (k1Λ1 + k2Λ2) −→W (k1Λ0 + k2Λ1)
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and

e⊗kω2
: W (k1Λ1 + k2Λ2) −→W (k1Λ1 + k2Λ0).

Remark 3.2.11 The maps e⊗kω1
and e⊗kω2

were the motivation for the definitions of

σk1Λ1+k2Λ2
ω1,ν and σk1Λ1+k2Λ2

ω2,ν , respectively.
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Chapter 4

Presentations of the principal subspaces of the standard

ŝl(3)-modules

4.1 A proof of the presentations

We are now ready to prove Conjecture 3.1.1 in the case where n = 2. Recall that for

each Λ = k0Λ0 + k1Λ1 + k2Λ2, we defined

IΛ = IkΛ0 +
∑
α∈∆+

U(n̄)xα(−1)k+1−〈α,Λ〉.

Theorem 4.1.1 Let k ∈ N. For every k0, k1, k2 ∈ N such that k0 + k1 + k2 = k and

weight Λ = k0Λ0 + k1Λ1 + k2Λ2, we have that

KerfΛ = IΛ.

Proof: The fact that IΛ ⊂ KerfΛ is clear. Indeed, the (k + 1)-power of each vertex

operator Y (eαj , x), j = 1, . . . , n, is equal to 0 on V ⊗kP , and so we have Y (eαj , x)k+1 = 0

on each W (Λ) of level k. In particular, we have

Y (eαj , x)k+1 =
∑
t∈Z

Rjtx
t−(k+1)

which implies

Resxx
−t+kY (eαj , x)k+1 · vΛ = Rj−1,t · vΛ = 0,

and so we have that J ⊂ KerfΛ. The fact that U(n̄)n̄+ ⊂ KerfΛ is clear. Finally, the

fact that

xα1(−1)k0+k2+1 · vΛ = 0

xα2(−1)k0+k1+1 · vΛ = 0

xα1+α2(−1)k0+1 · vΛ = 0
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follow from the fact that, in the level 1 case, we have

xα1(−1) · vΛ1 = 0

xα2(−1) · vΛ2 = 0

and

Y (eα, x)2 = 0

on VP for each α ∈ ∆+. Thus, we have that IΛ ⊂ KerfΛ.

It remains to show that KerfΛ ⊂ IΛ. We proceed by contradiction. Consider the

set of elements

{a ∈ U(n̄)|a ∈ KerfΛ and a /∈ IΛ for some Λ = k0Λ0 + k1Λ1 + k2Λ2}. (4.1)

We may and do assume that homogeneous elements of (4.1) have positive weight (oth-

erwise, if a is such an element with non-positive weight, we have a ∈ U(n̄)n̄+ ⊂ IkΛ0 ,

by our decomposition (3.2)). Among all elements in (4.1), we look at those of lowest

total charge. Among all elements of lowest total charge in (4.1), we choose a nonzero

element of lowest weight. We call this element a.

First, we show that Λ 6= kΛ1 (that is, we show that a /∈ (KerfkΛ1) \ IkΛ1). Indeed,

suppose that Λ = kΛ1. Then

a · (vΛ1 ⊗ · · · ⊗ vΛ1) = 0

We have two cases to consider: when the λ1-charge of a is nonzero, and when the

λ1-charge of a is zero. If the λ1-charge of a is nonzero, then we have:

a · (vΛ1 ⊗ · · · ⊗ vΛ1) = e⊗kλ1
(τ−1
λ1,c−λ1

(a) · (vλ0 ⊗ · · · ⊗ vλ0)) = 0

and so, by the injectivity of e⊗kλ1
, we have

τ−1
λ1,c−λ1

(a) · (vλ0 ⊗ · · · ⊗ vλ0) = 0.

Now, we have wt(τ−1
λ1,c−λ1

(a)) < wt(a), and so by assumption on a, we have that

τ−1
λ1,c−λ1

(a) ∈ IkΛ0 .
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But then, by Lemma 3.2.3, we have that τλ1,c−λ1
(τ−1
λ1,c−λ1

(a)) = a ∈ IkΛ1 , a contradic-

tion. So a cannot have positive λ1-charge. Suppose that a has λ1-charge equal to 0,

and so the λ2-charge of a is positive. In this case, we have that τ−1
λ1,c−λ1

(a) is a nonzero

constant multiple of a. As before, we have

a · (vΛ1 ⊗ · · · ⊗ vΛ1) = e⊗kλ1
(τ−1
λ1,c−λ1

(a) · (vλ0 ⊗ · · · ⊗ vλ0)) = 0

which implies

e⊗kλ1
(a · (vλ0 ⊗ · · · ⊗ vλ0)) = 0.

By the injectivity of e⊗kλ1
, we have that

a · (vλ0 ⊗ · · · ⊗ vλ0) = 0.

Applying the map Yc(eλ2 , x)⊗k, we have that

a · (vλ2 ⊗ · · · ⊗ vλ2) = 0.

This gives that

a · (vλ2 ⊗ · · · ⊗ vλ2) = e⊗kλ2
(τ−1
λ2,c−λ2

(a) · (vλ0 ⊗ · · · ⊗ vλ0)) = 0.

By injectivity of e⊗kλ2
, we have that

τ−1
λ2,c−λ2

(a) · (vλ0 ⊗ · · · ⊗ vλ0) = 0

Since wt(τ−1
λ2,c−λ2

(a)) < wt(a), we have that τ−1
λ2,c−λ2

(a) ∈ IkΛ0 , and so

τλ2,c−λ2
(τ−1
λ2,c−λ2

(a)) = a ∈ IkΛ2 = IkΛ0 + U(n̄)xα2(−1).

So we may write

a = b1 + c1xα2(−1)

for some b1 ∈ IkΛ0 and c1 ∈ U(n̄). Since a /∈ IkΛ1 , we have that c1 6= 0 (otherwise,

a = b1 ∈ IkΛ0 ⊂ IkΛ1 , which is a contradiction). So we have

c1xα2(−1) · (vλ0 ⊗ · · · ⊗ vλ0) = (a− b1) · (vλ0 ⊗ · · · ⊗ vλ0) = 0
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Applying Yc(eλ1 , x)⊗ Yc(eλ2 , x)⊗k−1, we have

c1xα2(−1) · (vλ1 ⊗ vλ2 ⊗ · · · ⊗ vλ2) = 0

which implies

c1 · (eλ2vλ2 ⊗ vλ2 ⊗ · · · ⊗ vλ2) = e⊗kλ2
(τ−1
λ2,c−λ2

(c1) · (vλ2 ⊗ vλ0 ⊗ · · · ⊗ vλ0)) = 0.

By the injectivity of e⊗kλ2
, we have that

τ−1
λ2,c−λ2

(c1) · (vλ2 ⊗ vλ0 ⊗ · · · ⊗ vλ0) = 0.

Since the total charge of τ−1
λ2,c−λ2

(c1) is less than the total charge of a, we have that

τ−1
λ2,c−λ2

(c1) ∈ I(k−1)Λ0+Λ2
.

Applying τ
(k−1)Λ0+Λ2

λ2,c−λ2
, we have

τ
(k−1)Λ0+Λ2

λ2,c−λ2
(τ−1
λ2,c−λ2

(c1)) = c1xα2(−1)

∈ IΛ1+(k−1)Λ2

by Lemma 3.2.3. So we have that

c1xα2(−1) ∈ IkΛ0 + U(n̄)xα2(−1)2 + U(n̄)xα1(−1)k + U(n̄)xα1+α2(−1).

Since the λ1-charge of a is 0, we may write

c1xα2(−1) = b′ + c′xα2(−1)2

for some b′ ∈ IkΛ0 and c′ ∈ U(n̄). Thus, we have that

a = b+ b′ + c′xα2(−1)2 = b2 + c2xα2(−1)2,

where we set b2 = b + b′ ∈ IkΛ0 and c2 = c′. Continuing in this way, and applying the

operator Yc(eλ1 , x)⊗j ⊗ Yc(eλ2 , x)⊗(k−j) at each step, we eventually obtain that

a = bk + ckxα2(−1)k

for some bk ∈ IkΛ0 and ck ∈ U(n̄). We have that

ckxα2(−1)k · (vλ0 ⊗ · · · ⊗ vλ0) = (a− b) · (vλ0 ⊗ · · · ⊗ vλ0) = 0,
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which implies

e⊗kω2
e⊗kλ2

(τ−1
α2,c−α2

(ck) · (vλ0 ⊗ · · · ⊗ vλ0))

= ε(ω2, λ2)kckxα2(−1)k · (vλ0 ⊗ · · · ⊗ vλ0) = 0.

By injectivity of both e⊗kλ2
and e⊗kω2

, we have that τ−1
α2,c−α2

(ck)(vλ0⊗· · ·⊗vλ0) = 0. Since

τ−1
α2,c−α2

(ck) is of lower total charge than a, we have that τ−1
α2,c−α2

(ck) ∈ IkΛ0 . Thus, by

Lemmas 3.2.3 and 3.2.4, we have that

(σω2,c−ω2
◦ τλ2,c−λ2

)(τ−1
α2,c−α2

(ck)) = ckxα2(−1)k ∈ IkΛ0 .

Hence

a = bk + ckxα2(−1)k ∈ IkΛ0 ⊂ IkΛ1 ,

a contradiction. So we have that Λ 6= kΛ1. Similarly, we have that Λ 6= kΛ2.

We now show that Λ 6= k0Λ0 + k1Λ1 for some k0, k1 ∈ N with k0 + k1 = k. We’ve

already shown this for k0 = 0, so we proceed by induction on k0 as k0 ranges from 0 to

k. Suppose we’ve shown that Λ 6= k0Λ0 + k1Λ1 for some k0, k1 ∈ N with k0 + k1 = k

and k1 > 1, and suppose Λ = (k0 + 1)Λ0 + (k1 − 1)Λ1. In this case, we have that

a · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1−1 times

) = 0.

Applying the operator 1⊗k0 ⊗ Yc(eλ1 , x)⊗ 1⊗k1−1, we have that

a · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

) = 0.

By our inductive hypothesis, we have that

a ∈ Ik0Λ0+k1Λ1 = IkΛ0 + U(n̄)xα1(−1)k0+1,

so we may write

a = b+ cxα1(−1)k0+1
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for some b ∈ IkΛ0 and c ∈ U(n̄)xα1(−1)k0+1. Here, c 6= 0 (otherwise, a = b ∈ IkΛ0 , a

contradiction). So we have that

cxα1(−1)k0+1 · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1−1 times

)

= (a− b) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1−1 times

)

= 0

and this, using the diagonal action (2.21) of xα1(−1)k0+1, implies that

c · (xα1(−1)vΛ0 ⊗ · · · ⊗ xα1(−1)vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1−1 times

) = 0.

We may rewrite this as

c · (xα1(−1)vΛ0 ⊗ · · · ⊗ xα1(−1)vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1−1 times

)

= ε(ω1, λ1)−(k0+1)ε(ω1, λ2)−(k1−1)e⊗kω1

(
τ−1
ω1,c−ω1

(c) ·

·(vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k1−1 times

)

)
= 0

and so, by the injectivity of e⊗kω1
, we have that

τ−1
ω1,c−ω1

(c) · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k1−1 times

) = 0.

Now, since the total charge of τ−1
ω1,c−ω1

(c) is less than the total charge of a, we have that

τ−1
ω1,c−ω1

(c) ∈ I(k0+1)Λ1+(k1−1)Λ2
. Using Lemma 3.2.4, we obtain

σ(k0+1)Λ1+(k1−1)Λ2
ω1,c−ω1

(τ−1
ω1,c−ω1

(c)) = cxα1(−1)k0+1 ∈ I(k0+1)Λ0+(k1−1)Λ1

and so

a = b+ cxα1(−1)k0+1 ∈ I(k0+1)Λ0+(k1−1)Λ1
,

a contradiction. Hence, Λ 6= (k0 + 1)Λ0 + (k1 − 1)Λ1, completing our induction.
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This gives us that Λ 6= k0Λ0 + k1Λ1 for any choice of k0, k1 ∈ N with k0 + k1 = k.

A similar argument shows that Λ 6= k0Λ0 + k2Λ2 for any choice of k0, k2 ∈ N with

k0 +k2 = k. We now proceed to show that Λ 6= k1Λ1 +k2Λ2 for any choice of k1, k2 ∈ N

with k1 + k2 = k.

Suppose, for contradiction, that Λ = k1Λ1 +k2Λ2 for some k1, k2 ∈ N with k1 +k2 =

k. We show by induction that, given 1 ≤ j ≤ k2, a can be written in the form

a = b+ cxα1(−1)j

for some b ∈ Ik1Λ1+k2Λ2 and c ∈ U(n̄). First, we prove the claim for j = 1. We have

that

a · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

) = 0.

Applying the operator 1⊗k1 ⊗ Yc(eλ1 , x)⊗k2 , we have that

a · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
k2 times

) = 0

so that

a · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
k2 times

)

= e⊗kλ1
(τ−1
λ1,c−λ1

(a) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

))

= 0.

Since e⊗kλ1
is injective, we have that

τ−1
λ1,c−λ1

(a) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

) = 0.

Now, τ−1
λ1,c−λ1

(a) has the same total charge as a, and satisfies wt(τ−1
λ1,c−λ1

(a)) ≤ wt(a).

Since we’ve shown that Λ = k1Λ0 + k2Λ2 does not give the element smallest weight

among those of smallest total charge in (4.1), we have that

τ−1
λ1,c−λ1

(a) ∈ Ik1Λ0+k2Λ2 = IkΛ0 + U(n̄)xα2(−1)k1+1.
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Applying τλ1,c−λ1
and using Lemma 3.2.3, we see that

a ∈ IkΛ1 + U(n̄)xα2(−1)k1+1 = IkΛ0 + U(n̄)xα1(−1) + U(n̄)xα2(−1)k1+1.

So we may write

a = b+ cxα1(−1)

for some b ∈ IkΛ0 + U(n̄)xα2(−1)k1+1 ⊂ Ik1Λ1+k2Λ2 and c ∈ U(n̄) and our claim holds

for j = 1. Now, suppose for induction that we may write

a = b+ cxα1(−1)j

for some b ∈ Ik1Λ1+k2Λ2 , c ∈ U(n̄), 1 ≤ j ≤ k2 − 1. We have

cxα1(−1)j · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= (a− b) · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= 0.

Applying the operator 1⊗k1 ⊗ Yc(eλ1 , x)k2−j ⊗ 1⊗j , we have

cxα1(−1)j · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
k2−j times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
j times

) = 0

which, using the diagonal action (2.21), implies

c · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
k2−j times

⊗ eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
j times

) = 0

so that

c · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
k2−j times

⊗ eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
j times

)

= e⊗kλ1
(τ−1
λ1,c−λ1

(c) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2−j times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
j times

))

= 0.

Since e⊗kλ1
is injective, we have

τ−1
λ1,c−λ1

(c) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2−j times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
j times

) = 0.
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Now, since the total charge of τ−1
λ1,c−λ1

(c) is less than the total charge of a, we have that

τ−1
λ1,c−λ1

(c) ∈ Ik1Λ0+jΛ1+(k2−j)Λ2
.

Recall

Ik1Λ0+jΛ1+(k2−j)Λ2
= IkΛ0 + U(n̄)xα1(−1)k1+k2−j+1 + U(n̄)xα2(−1)k1+j+1

+U(n̄)xα1+α2(−1)k1+1

so that, applying τλ1,c−λ1
, Lemma 3.2.3 gives us

c ∈ IkΛ1 + U(n̄)xα1(−2)k1+k2−j+1 + U(n̄)xα2(−1)k1+j+1 + U(n̄)xα1+α2(−2)k1+1.

So we may write

c = c1 + c2xα1(−1) + c3xα1(−2)k1+k2−j+1 + c4xα2(−1)k1+j+1 + c5xα1+α2(−2)k1+1

so that

cxα1(−1)j = c1xα1(−1)j + c2xα1(−1)j+1 + c3xα1(−2)k1+k2−j+1xα1(−1)j

+c4xα2(−1)k1+j+1xα1(−1)j + c5xα1+α2(−2)k1+1xα1(−1)j

for some c1 ∈ IkΛ0 and c2, c3, c4, c5 ∈ U(n̄). We now analyze each of these terms.

By Corollary 3.2.2, we have that c1xα1(−1)j is of the form c′1 + c′′1xα1+α2(−1) for

some c′1 ∈ IkΛ0 , c
′′
1 ∈ U(n̄), so that in particular c1xα1(−1)j ∈ Ik1Λ1+k2Λ2 . Clearly

c2xα1(−1)j+1 is of the desired form. For c3xα1(−2)k1+k2−j+1xα1(−1)j , we have that

c3xα1(−2)k1+k2−j+1xα1(−1)j = c′3R
1
−1,2(k1+k2−j+1)+j + c′′3xα1(−1)j+1

for some c′3, c
′′
3 ∈ U(n̄) which means that c3xα1(−2)k1+k2−j+1xα1(−1)j is of the desired

form. For c4xα2(−1)k1+j+1, we use Lemma 3.2.1 to obtain

c4xα2(−1)k1+j+1xα1(−1)j

= c4(xα1(−1)jxα2(−1)k1+j+1 + n1xα1(−1)j−1xα1+α2(−2)xα2(−1)k1+j

+ · · ·+ njxα1+α2(−1)jxα2(−1)k1+1)
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for some constants n1, . . . , nj ∈ C, which is clearly an element of Ik1Λ1+k2Λ2 . Finally,

for c5xα1+α2(−2)k1+1xα1(−1)j , again using Lemma 3.2.1, we have that

c5xα1+α2(−2)k1+1xα1(−1)j

= c5(xα1(−1)k1+1+jxα2(−1)k1+1 − xα2(−1)k1+1xα1(−1)k1+1+j

+n1xα2(−1)k1xα1+α2(−2)xα1(−1)k1+j + . . .

+nk1xα2(−1)xα1+α2(−2)k1xα1(−1)j+1)

for some constants n1, . . . , nk1 ∈ C, which is clearly of the desired form. This completes

our induction. In particular, we have that a has the form b + cxα1(−1)k2 for some

b ∈ Ik1Λ1+k2Λ2 and c ∈ U(n̄). This gives us

cxα1(−1)k2 · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= (a− b) · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= 0.

which, using the diagonal action (2.21), implies that

c · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
k2 times

)

= e⊗kλ1
(τ−1
λ1,c−λ1

(c) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2 times

))

= 0.

By the injectivity of e⊗kλ1
, we have that

τ−1
λ1,c−λ1

(c) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2 times

) = 0

Now, since τ−1
λ1,c−λ1

(c) has lower total charge than a, we have that

τ−1
λ1,c−λ1

(c) ∈ Ik1Λ0+k2Λ1 = IkΛ0 + U(n̄)xα1(−1)k1+1.

So, by Lemma 3.2.3, we have that

c ∈ IkΛ1 + U(n̄)xα1(−2)k1+1.
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We may thus write

c = c1 + c2xα1(−1) + c3xα1(−2)k1+1

for some c1 ∈ IkΛ0 and c2, c3 ∈ U(n̄) and so

cxα1(−1)k2 = c1xα1(−1)k2 + c2xα1(−1)k2+1 + c3xα1(−2)k1+1xα1(−1)k2 .

By Lemma 3.2.2, we have that

c1xα1(−1)k2 ∈ IkΛ0 + U(n̄)xα1+α2(−1) ⊂ Ik1Λ1+k2Λ2 .

Clearly, c2xα1(−1)k2+1 ∈ Ik1Λ1+k2Λ2 . Finally,

c3xα1(−2)k1+1xα1(−1)k2 = c′3R
1
−1,2(k1+1)+k2

+ c′′3xα1(−1)k2+1 ∈ Ik1Λ1+k2Λ2

for some c′3, c
′′
3 ∈ U(n̄). So we have that

a = b+ cxα1(−1)k2 ∈ Ik1Λ1+k2Λ2 ,

which is a contradiction. Hence, we have that Λ 6= k1Λ1 + k2Λ2 for some k1, k2 ∈ N

such that k1 + k2 = k.

We now proceed to show, via induction, that Λ 6= k0Λ0 + k1Λ1 + k2Λ2 for all

k0, k1, k2 ∈ N such that k0 + k1 + k2 = k. We’ve already shown this in the case when

k0 = 0. Suppose now for induction that we’ve shown Λ 6= k0Λ0 + k1Λ1 + k2Λ2 for some

0 ≤ k0 < k and for all k1, k2 ∈ N such that k0 + k1 + k2 = k. Consider the weight

Λ = (k0 + 1)Λ0 + k1Λ1 + k2Λ2 such that k0 + k1 + k2 + 1 = k. In this case, we have that

a · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

) = 0

We now claim that, for any m,n ∈ N satisfying 1 ≤ m ≤ k0 + 1 and 0 ≤ n ≤

k0 + k2 + 2−m, there exist b ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
and c, d ∈ U(n̄) such that

a = b+ cxα1(−1)nxα1+α2(−1)m + dxα1+α2(−1)m+1.

To show this, we use a nested induction. First, we show the claim for m = 1 and n = 0,

and then proceed to show it is true for m = 1 and all 0 ≤ n ≤ k0 + k2 + 1.



49

Applying the operators 1⊗k0 ⊗ Yc(eλ1 , x)⊗ 1⊗(k1+k2), we obtain

a · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1+1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

) = 0. (4.2)

By our inductive hypothesis, we have that

a ∈ Ik0Λ0+(k1+1)Λ1+k2Λ2
= IkΛ0 + U(n̄)xα1(−1)k0+k2+1 + U(n̄)xα2(−1)k0+k1+2

+U(n̄)xα1+α2(−1)k0+1.

So we may write

a = a1 + a2xα1(−1)k0+k2+1 + a3xα2(−1)k0+k1+2 + a4xα1+α2(−1)k0+1

for some a1 ∈ IkΛ0 and a2, a3, a4 ∈ U(n̄). Clearly,

a1, a3xα2(−1)k0+k1+2 ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
.

We thus have that

(a2xα1(−1)k0+k2+1 + a4xα1+α2(−1)k0+1)

·(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= (a− a1 − a3xα2(−1)k0+k1+2)

·(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= 0.

Applying the operator 1⊗k0 ⊗ Yc(eλ2 , x)⊗ 1⊗k1+k2 , we obtain

(a2xα1(−1)k0+k2+1 + a4xα1+α2(−1)k0+1)

·(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0 times

⊗vΛ2 ⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= a2xα1(−1)k0+k2+1 · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0 times

⊗vΛ2 ⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= 0,
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since a4xα1+α2(−1)k0+1 ∈ Ik0Λ0+k1Λ1+(k2+1)Λ2
. In particular, we may write

a2xα1(−1)k0+k2+1 · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2+1 times

) = 0.

Applying the operator Yc(eλ2 , x)⊗k0 ⊗ 1⊗k1+k2+1, we have that

a2xα1(−1)k0+k2+1 · (vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k0 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2+1 times

) = 0

which, using the diagonal action (2.21), implies

a2 · (xα1(−1)vΛ2 ⊗ · · · ⊗ xα1(−1)vΛ2︸ ︷︷ ︸
k0 times

⊗

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗xα1(−1)vΛ2 ⊗ · · · ⊗ xα1(−1)vΛ2︸ ︷︷ ︸
k2+1 times

) = 0.

From this, we have that

a2 · (eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
k0 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
k2+1 times

) = 0

which implies that

e⊗kλ1
(τ−1
λ1,c−λ1

(a2) · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2+1 times

)) = 0.

Now, by injectivity of e⊗kλ1
, we have that

τ−1
λ1,c−λ1

(a2) · (vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2+1 times

) = 0.

Since the total charge of τ−1
λ1,c−λ1

(a2) is less than the total charge of a, we have that

τ−1
λ1,c−λ1

(a2) ∈ Ik1Λ0+(k0+k2+1)Λ1
= IkΛ0 + U(n̄)xα1(−1)k1+1.

So, in particular, applying τλ1,c−λ1
, we obtain

a2 ∈ IkΛ1 + U(n̄)xα1(−2)k1+1.

So we may write a2 = a2,1 + a2,2xα1(−1) + a2,3xα1(−2)k1+1 for some a2,1 ∈ IkΛ0 and

a2,2, a2,3 ∈ U(n̄). So we have that

a2xα1(−1)k0+k2+1

= a2,1xα1(−1)k0+k2+1 + a2,2xα1(−1)k0+k2+2 + a2,3xα1(−2)k1+1xα1(−1)k0+k2+1.
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By Lemma 3.2.2, we have that

a2,1xα1(−1)k0+k2+1 ∈ IkΛ0 + U(n̄)xα1+α2(−1).

Clearly,

a2,2xα1(−1)k0+k2+2 ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
.

Finally,

a2,3xα1(−2)k1+1xα1(−1)k0+k2+1 = rR−1,2(k1+1)+k0+k2+1 + a′2,3xα1(−1)k0+k2+1

∈ I(k0+1)Λ0+k1Λ1+k2Λ2

for some constant r ∈ C. Thus, we have that

a2xα1(−1)k0+k2+1 ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
+ U(n̄)xα1+α2(−1).

Clearly

a1, a3xα1(−1)k0+k2+1, a4xα1+α2(−1)k0+1 ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
+ U(n̄)xα1+α2(−1)

and so we may write

a = b+ cxα1+α2(−1)

for some b ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
and c ∈ U(n̄), and so our claim holds for m = 1, n = 0

(notice here the d term is 0).

Now, we assume our claim holds for m = 1 and for some n ∈ N satisfying 0 ≤ n ≤

k0 + k2. We show that it holds for n+ 1. Suppose

a = b+ cxα1(−1)nxα1+α2(−1) + dxα1+α2(−1)2

for some b ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
and c, d ∈ U(n̄). We must now consider the cases when

0 ≤ n < k2 and k2 ≤ n ≤ k0 + k2 separately. First assume 0 ≤ n < k2. In this case, we

have

a · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

) = 0
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which implies

(cxα1(−1)nxα1+α2(−1) + dxα1+α2(−1)2)

·(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= (a− b) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= 0.

Applying the operator 1⊗ Yc(eλ1 , x)⊗k0 ⊗ 1⊗k1 ⊗ Yc(eλ1 , x)⊗k2−n ⊗ 1⊗n, we obtain

(cxα1(−1)nxα1+α2(−1) + dxα1+α2(−1)2)

·(vΛ0 ⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k1 times

⊗ eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
k2−n times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
n times

)

= cxα1(−1)nxα1+α2(−1)

·(vΛ0 ⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k1 times

⊗ eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
k2−n times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
n times

)

= 0.

This implies that

c · (eλ1vΛ2 ⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k1 times

⊗ eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
k2−n times

⊗ eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
n times

) = 0

which gives us

e⊗kλ1
(τ−1
λ1,c−λ1

(c) · (vΛ2 ⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2−n times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
n times

)) = 0.

By the injectivity of e⊗kλ1
, we have that

τ−1
λ1,c−λ1

(c) · (vΛ2 ⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2−n times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
n times

) = 0.

Since τ−1
λ1,c−λ1

(c) is of lower total charge than a, we have that

τ−1
λ1,c−λ1

(c) ∈ I(k0+k1)Λ0+nΛ1+(k2−n+1)Λ2

= IkΛ0 + U(n̄)xα1(−1)k0+k1+k2−n+2 + U(n̄)xα2(−1)k0+k1+n+1

+U(n̄)xα1+α2(−1)k0+k1+1.
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Applying the map τλ1,c−λ1
, Lemma 3.2.3 gives us

c ∈ IkΛ1 + U(n̄)xα1(−2)k0+k1+k2−n+2 + U(n̄)xα2(−1)k0+k1+n+1

+U(n̄)xα1+α2(−2)k0+k1+1.

So we may write

c = c1 + c2xα1(−1) + c3xα1(−2)k0+k1+k2−n+2

+c4xα2(−1)k0+k1+n+1 + c5xα1+α2(−2)k0+k1+1

for some c1 ∈ IkΛ0 and c2, c3, c4, c5 ∈ U(n̄). This gives us

cxα1(−1)nxα1+α2(−1)

= c1xα1(−1)nxα1+α2(−1) + c2xα1(−1)n+1xα1+α2(−1)

+c3xα1(−2)k0+k1+k2−n+2xα1(−1)nxα1+α2(−1)

+c4xα2(−1)k0+k1+n+1xα1(−1)nxα1+α2(−1)

+c5xα1+α2(−2)k0+k1+1xα1(−1)nxα1+α2(−1).

By Lemma 3.2.2, we may write

c1xα1(−1)nxα1+α2(−1) = c′1 + c′′1xα1+α2(−1)2

for some c′1 ∈ IkΛ0 and c′′1 ∈ U(n̄). Clearly c2xα1(−1)n+1xα1+α2(−1) is already of the

desired form. We may write

c3xα1(−2)k0+k1+k2−n+2xα1(−1)nxα1+α2(−1)

= c′3R
1
−1,2(k0+k1+k2−n+2)+n + c′′3xα1(−1)n+1xα1(−1)n+1xα1+α2(−1)
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for some c′3, c
′′
3 ∈ U(n̄), which gives us an element of the desired form. Using Lemma

3.2.1, we may write

c4xα2(−1)k0+k1+n+1xα1(−1)nxα1+α2(−1)

= c4(xα1(−1)nxα2(−1)k0+k1+n+1xα1+α2(−1)

+m1xα1(−1)n−1xα1+α2(−2)xα2(−1)k0+k1+nxα1+α2(−1)

+ · · ·+mnxα1+α2(−2)nxα2(−1)k0+k1+1xα1+α2(−1))

= c4(m′1xα1(−1)n[xα1(0), . . . [xα1(0), xα2(−1)k0+k1+j+2] . . . ]

+ · · ·+m′nxα1+α2(−2)n[xα1(0), xα2(−1)k0+k1+2]

∈ I(k0+1)Λ0+k1Λ1+k2Λ2

for some constants m1, . . .mn,m
′
1 . . .m

′
n ∈ C,which is an element of the desired form.

Finally, we have that

c5xα1+α2(−2)k0+k1+1xα1(−1)nxα1+α2(−1)

= c′5[xα1(0), . . . [xα1(0), xα2(−1)k0+k1+2+n] . . . ]

∈ I(k0+1)Λ0+k1Λ1+k2Λ2

for some c′5 ∈ U(n̄), which gives us an element of the desired form. So we have that

cxα1(−1)nxα1+α2(−1) ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
+ U(n̄)xα1(−1)n+1xα1+α2(−1)

+U(n̄)xα1+α2(−1)2.

So we may conclude that

a ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
+ U(n̄)xα1(−1)n+1xα1+α2(−1) + U(n̄)xα1+α2(−1)2

proving our claim for n+ 1 when 0 ≤ n < k2.

We now need to consider the case that k2 ≤ n ≤ k0 +k2. In this case, we again have

a · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

) = 0
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which implies

(cxα1(−1)nxα1+α2(−1) + dxα1+α2(−1)2)

·(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= (a− b) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

))

= 0.

Applying the operator 1⊗ Yc(eλ1 , x)⊗k0+k2−n ⊗ Yc(eλ2 , x)⊗n−k2 ⊗ 1⊗k1+k2 , we obtain

(cxα1(−1)nxα1+α2(−1) + dxα1+α2(−1)2)

·(vΛ0 ⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k2−n times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
n−k2 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= cxα1(−1)nxα1+α2(−1)

·(vΛ0 ⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k2−n times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
n−k2 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= 0.

This implies that

c · (eλ1vΛ2 ⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k2−n times

⊗ eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
n−k2 times

⊗

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
k2 times

) = 0

which gives

e⊗kλ1
(τ−1
λ1,c−λ1

(c) · (vΛ2 ⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+k2−n times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
n−k2 times

⊗

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2 times

)) = 0.

Since e⊗kλ1
is injective, we have that

τ−1
λ1,c−λ1

(c) · (vΛ2 ⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+k2−n times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
n−k2 times

⊗

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2 times

) = 0.
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Now, since the total charge of τ−1
λ1,c−λ1

(c) is less than the total charge of a, we have that

τ−1
λ1,c−λ1

(c) ∈ I(k0+k1+k2−n)Λ0+nΛ1+Λ2

= IkΛ0 + U(n̄)xα1(−1)k0+k1+k2−n+2 + U(n̄)xα2(−1)k

+U(n̄)xα1+α2(−1)k0+k1+k2−n+1.

Applying τλ1,c−λ1
, Lemma 3.2.3 gives us

c ∈ IkΛ1 + U(n̄)xα1(−2)k0+k1+k2−n+2

+U(n̄)xα2(−1)k + U(n̄)xα1+α2(−2)k0+k1+k2−n+1.

So we may write

c = c1 + c2xα1(−1) + c3xα1(−2)k0+k1+k2−n+2

+c4xα2(−1)k + c5xα1+α2(−2)k0+k1+k2−n+1

for some c1 ∈ IkΛ0 and c2, c3, c4, c5 ∈ U(n̄), so that

cxα1(−1)nxα1+α2(−1)

= c1xα1(−1)nxα1+α2(−1) + c2xα1(−1)n+1xα1+α2(−1)

+c3xα1(−2)k0+k1+k2−n+2xα1(−1)nxα1+α2(−1)

+c4xα2(−1)kxα1(−1)nxα1+α2(−1)

+c5xα1+α2(−2)k0+k1+k2−n+1xα1(−1)nxα1+α2(−1).

As before, we have that

c1xα1(−1)nxα1+α2(−1), c2xα1(−1)n+1xα1+α2(−1)

∈ I(k0+1)Λ0+k1Λ1+k2Λ2
+ U(n̄)xα1(−1)n+1xα1+α2(−1) + U(n̄)xα1+α2(−1)2

and so have the desired form. We also have that

c3xα1(−2)k0+k1+k2−n+2xα1(−1)nxα1+α2(−1)

= c′3R
1
−1,2(k0+k1+k2−n+2)+n + c′′3xα1(−1)n+1xα1+α2(−1)
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for some c′3, c
′′
3 ∈ U(n̄), which is of the desired form. Using Lemma 3.2.1, we have

c4xα2(−1)kxα1(−1)nxα1+α2(−1)

= c4(xα1(−1)nxα2(−1)kxα1+α2(−1)

+m1xα1(−1)n−1xα1+α2(−2)xα2(−1)k−1xα1+α2(−1)

+ · · ·+mnxα1+α2(−2)nxα2(−1)k−nxα1+α2(−1))

= c4(m′0xα1(−1)n[xα1(0), R2
−1,k+1] +m′1xα1(−1)n−1[xα1(0), [xα1(0), R2

−1,k+2]]

+ · · ·+m′n[xα1(0), . . . [xα1(0), R2
−1,k+n+1] . . . ]) + c′4xα1+α2(−1)2

for some m1, . . .mn,m
′
0, . . .m

′
n ∈ C and c′4 ∈ U(n̄), which is of the desired form. Finally,

c5xα1+α2(−2)k0+k1+k2−n+1xα1(−1)nxα1+α2(−1)

= c5[xα2(0), . . . [xα2(0), R1
−1,2(k−n)+n+1] . . . ] + c′5xα1(−1)n+1xα1+α2(−1)

for some c′5 ∈ U(n̄). So we have that

cxα1(−1)nxα1+α2(−1) ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
+ U(n̄)xα1+α2(−1)n+1xα1+α2(−1)

+U(n̄)xα1+α2(−1)2,

which gives us that

a ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
+ U(n̄)xα1+α2(−1)n+1xα1+α2(−1) + U(n̄)xα1+α2(−1)2,

completing our induction on n. We’ve thus shown that

a = b+ cxα1(−1)nxα1+α2(−1)m + dxα1+α2(−1)m+1

for some b ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
and c, d ∈ U(n̄) holds when m = 1 and 0 ≤ n ≤

k0 + k2 + 2−m.

Now, we induct on m. Assume that we’ve shown, for some m ∈ N satisfying

1 ≤ m ≤ k0 and all 0 ≤ n ≤ k0 + k2 + 2 −m that there exist b ∈ I(k0+1)Λ0+k1Λ1+k2Λ2

and c, d ∈ U(n̄) such that

a = b+ cxα1(−1)nxα1+α2(−1)m + dxα1+α2(−1)m+1. (4.3)
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We show that this holds for m+ 1 as well. We have by (4.3) that

a = b+ cxα1(−1)k0+k2+2−mxα1+α2(−1)m + dxα1+α2(−1)m+1

for some b ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
and c, d ∈ U(n̄). Here, we have that

cxα1(−1)k0+k2+2−mxα1+α2(−1)m = c′[xα2(0), . . . [xα2(0), xα1(−1)k0+k2+1] . . . ]

∈ I(k0+1)Λ0+k1Λ1+k2Λ2
,

for some c′ ∈ U(n̄), so a ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
+ U(n̄)xα1+α2(−1)m+1. In this case, we

have that

a = b′ + c′xα1(−1)0xα1+α2(−1)m+1 + d′xα1+α2(−1)m+2

for some b′ ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
and c′, d′ ∈ U(n̄) (here, d = 0). So our claim holds for

m+ 1 and n = 0. Now, assume that we have shown

a = b+ cxα1(−1)nxα1+α2(−1)m+1 + dxα1+α2(−1)m+2

for some b ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
, c, d ∈ U(n̄) and n satisfying 0 ≤ n ≤ k0 + k2 − m.

As with m = 1, we need to consider the cases 0 ≤ n < k2 and k2 ≤ n ≤ k0 + k2 −m

separately. First, suppose 0 ≤ n < k2. Here, we have that

(cxα1(−1)nxα1+α2(−1)m+1 + dxα1+α2(−1)m+2)

·(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= (a− b) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= 0.

Applying the operator 1⊗m+1⊗Yc(eλ1 , x)⊗k0−m⊗1⊗k1⊗Yc(eλ1 , x)⊗k2−n⊗1⊗n, we have

cxα1(−1)nxα1+α2(−1)m+1 · ( vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
m+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k1−m times

⊗

eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
k2−n times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
n times

) = 0,
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which implies that

c · ( eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
m+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k1−m times

⊗

⊗ eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
k2−n times

⊗ eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
n times

) = 0

and so we have

e⊗kλ1
(τ−1
λ1,c−λ1

(c) · (vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
m+1 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+k1−m times

⊗

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2−n times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
n times

)) = 0.

Since e⊗kλ1
is injective, we have that

τ−1
λ1,c−λ1

(c) · (vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
m+1 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+k1−m times

⊗

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2−n times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
n times

) = 0.

Now, since τ−1
λ1,c−λ1

(c) has lower total charge than a, we have that

τ−1
λ1,c−λ1

(c) ∈ I(k0+k1−m)Λ0+nΛ1+(k2−n+m+1)Λ2

= IkΛ0 + U(n̄)xα1(−1)k−n+1 + U(n̄)xα2(−1)k0+k1−m+n+1

+U(n̄)xα1+α2(−1)k0+k1−m+1.

Applying the map τλ1,c−λ1
, by Lemma 3.2.3 we have that

c ∈ IkΛ1 + U(n̄)xα1(−2)k−n+1

+U(n̄)xα2(−1)k0+k1−m+n+1 + U(n̄)xα1+α2(−2)k0+k1−m+1.

So we may write

c = c1 + c2xα1(−1) + c3xα1(−2)k−n+1

+c4xα2(−1)k0+k1−m+n+1 + c5xα1+α2(−2)k0+k1−m+1
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for some c1 ∈ IkΛ0 and c2, c3, c4, c5 ∈ U(n̄), and we have

cxα1(−1)nxα1+α2(−1)m+1 = c1xα1(−1)nxα1+α2(−1)m+1

+c2xα1(−1)n+1xα1+α2(−1)m+1 + c3xα1(−2)k−n+1xα1(−1)nxα1+α2(−1)m+1

+c4xα2(−1)k0+k1−m+n+1xα1(−1)nxα1+α2(−1)m+1

+c5xα1+α2(−2)k0+k1−m+1xα1(−1)nxα1+α2(−1)m+1.

By Lemma 3.2.2, we have that

c1xα1(−1)nxα1+α2(−1)m+1 ∈ IkΛ0 + U(n̄)xα1+α2(−1)m+2.

The summand c2xα1(−1)n+1xα1+α2(−1)m+1 is clearly of the desired form. We have

that

c3xα1(−2)k−n+1xα1(−1)nxα1+α2(−1)m+1

= c′3xα1+α2(−1)m+1R1
−1,2(k−n+1)+n + c′′3xα1(−1)n+1xα1+α2(−1)m+1

for some c′3, c
′′
3 ∈ U(n̄), which is clearly of the desired form. For the next summand, by

Lemma 3.2.1 we have that

c4xα2(−1)k0+k1−m+n+1xα1(−1)nxα1+α2(−1)m+1

= c4(xα1(−1)nxα2(−1)k0+k1−m+n+1xα1+α2(−1)m+1

+m1xα1(−1)n−1xα1+α2(−2)xα2(−1)k0+k1−m+nxα1+α2(−1)m+1

+ · · ·+mnxα1+α2(−2)nxα2(−1)k0+k1−m+1xα1+α2(−1)m+1)

= c4(m′0xα1(−1)n[xα1(0), . . . [xα1(0), xα2(−1)k0+k1+2+n] . . . ]

+m′1xα1(−1)n−1xα1+α2(−2)[xα1(0), . . . [xα1(0), xα2(−1)k0+k1+n+1] . . . ]

+ · · ·+m′nxα1+α2(−1)n[xα1 , . . . [xα1(0), xα2(−1)k0+k1+2] . . . ])

for some m1, . . .mn,m
′
0, . . .m

′
n ∈ C, which is an element of I(k0+1)Λ0+k1Λ1+k2Λ2

. Finally,

applying Lemma 3.2.1, we have that

c5xα1+α2(−2)k0+k1−m+1xα1(−1)nxα1+α2(−1)m+1

= c5(m0[xα1(−1)k0+k1−m+1+n, xα2(−1)k0+k1−m+1]

+m1xα2(−1)xα1+α2(−2)k0+k1−mxα1(−1)n+1

+ · · ·+mk0+k1−mxα2(−1)k0+k1−mxα1+α2(−2)xα1(−1)k0+k1−m+n)xα1+α2(−1)



61

for some m0, . . . ,mk0+k1−m ∈ C. Notice, all the terms in the right hand side are ele-

ments of

U(n̄)xα1(−1)n+1xα1+α2(−1)m+1

except for the term

m0c5xα1(−1)k0+k1−m+1+nxα2(−1)k0+k1−m+1xα1+α2(−1)m+1.

This term, however, may be written as

m0c5xα1(−1)k0+k1−m+1+nxα2(−1)k0+k1−m+1xα1+α2(−1)m+1

= c′5xα1(−1)k0+k1−m+1+n[xα1(0), . . . [xα1(0), xα2(−1)k0+k1+2] . . . ]

∈ I(k0+1)Λ0+k1Λ1+k2Λ2

for some c′5 ∈ U(n̄) Hence, we have that

cxα1(−1)nxα1+α2(−1)m+1 ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
+ U(n̄)xα1(−1)n+1xα1+α2(−1)m+1

+U(n̄)xα1+α2(−1)m+2

and is of the desired form. From this, we conclude that we may write

a = b′ + c′xα1(−1)n+1xα1+α2(−1)m+1 + d′xα1+α2(−1)m+2

for some b′ ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
and c′, d′ ∈ U(n̄), completing our induction for 0 ≤

n < k2.

We now assume that k2 ≤ n ≤ k0 + k2 −m. As before, we have that

a = b+ cxα1(−1)nxα1+α2(−1)m+1 + dxα1+α2(−1)m+2

for some b ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
and c, d ∈ U(n̄). So, as before, we have that

(cxα1(−1)nxα1+α2(−1)m+1 + dxα1+α2(−1)m+2)

·(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= (a− b) · (vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= 0.
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Applying the operator 1⊗(m+1)⊗Yc(eλ1 , x)⊗(k0+k2−m−n)⊗Yc(eλ2 , x)⊗(n−k2)⊗1⊗(k1+k2),

we have that

(cxα1(−1)nxα1+α2(−1)m+1 + dxα1+α2(−1)m+2)

·(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
m+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k2−m−n times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
n−k2 times

⊗

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= (cxα1(−1)nxα1+α2(−1)m+1)

·(vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
m+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k2−m−n times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
n−k2 times

⊗

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

)

= 0.

This implies that

cxα1(−1)n · ( eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
m+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k2−m−n times

⊗

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
n−k2 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
k2 times

) = 0

which implies

c · ( eλ1vΛ2 ⊗ · · · ⊗ eλ1vΛ2︸ ︷︷ ︸
m+1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k0+k2−m−n times

⊗

⊗ eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
n−k2 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k1 times

⊗ eλ1vΛ1 ⊗ · · · ⊗ eλ1vΛ1︸ ︷︷ ︸
k2 times

) = 0.

From this, we have that

e⊗kλ1
(τ−1
λ1,c−λ1

(c) · (vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
m+1 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+k2−m−n times

⊗

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
n−k2 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2 times

)) = 0.
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Since e⊗kλ1
is injective, we have that

τ−1
λ1,c−λ1

(c) · ( vΛ2 ⊗ · · · ⊗ vΛ2︸ ︷︷ ︸
m+1 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k0+k2−m−n times

⊗

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
n−k2 times

⊗ vΛ0 ⊗ · · · ⊗ vΛ0︸ ︷︷ ︸
k1 times

⊗ vΛ1 ⊗ · · · ⊗ vΛ1︸ ︷︷ ︸
k2 times

) = 0.

Since the total charge of τ−1
λ1,c−λ1

(c) is less than the total charge of a, we have that

τ−1
λ1,c−λ1

(c) ∈ I(k0+k1+k2−m−n)Λ0+nΛ1+(m+1)Λ2

= IkΛ0 + U(n̄)xα1(−1)k0+k1+k2−n+2 + U(n̄)xα2(−1)k0+k1+k2−m+1

+U(n̄)xα1+α2(−1)k0+k1+k2−m−n+1.

Applying τλ1,c−λ1
to both sides, Lemma 3.2.3 gives us

c ∈ IkΛ1 + U(n̄)xα1(−2)k0+k1+k2−n+2 + U(n̄)xα2(−1)k0+k1+k2−m+1

+U(n̄)xα1+α2(−2)k0+k1+k2−m−n+1.

So we may write

c = c1 + c2xα1(−1) + c3xα1(−2)k0+k1+k2−n+2

+c4xα2(−1)k0+k1+k2−m+1

+c5xα1+α2(−2)k0+k1+k2−m−n+1

for some c1 ∈ IkΛ0 and c2, c3, c4, c5 ∈ U(n̄), which gives

cxα1(−1)nxα1+α2(−1)m+1

= c1xα1(−1)nxα1+α2(−1)m+1

+c2xα1(−1)n+1xα1+α2(−1)m+1

+c3xα1(−2)k0+k1+k2−n+2xα1(−1)nxα1+α2(−1)m+1

+c4xα2(−1)k0+k1+k2−m+1xα1(−1)nxα1+α2(−1)m+1

+c5xα1+α2(−2)k0+k1+k2−m−n+1xα1(−1)nxα1+α2(−1)m+1.

As before, we analyze each summand and show that it is of the desired form. By

Corollary 3.2.2, we have that

c1xα1(−1)nxα1+α2(−1)m+1 ∈ IkΛ0 + U(n̄)xα1+α2(−1)m+2.
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The summand c2xα1(−1)n+1xα1+α2(−1)m+1 is clearly of the desired form. For

c3xα1(−2)k0+k1+k2−n+2xα1(−1)nxα1+α2(−1)m+1

we have that

c3xα1(−2)k0+k1+k2−n+2xα1(−1)nxα1+α2(−1)m+1

= c′3R
1
−1,2(k0+k1+k2+2−n)+n + c′′3xα1(−1)n+1xα1+α2(−1)m+1

for some c′3, c
′′
3 ∈ U(n̄), which is of the desired form. We also have, by Lemma 3.2.1,

that

c4xα2(−1)k0+k1+k2−m+1xα1(−1)nxα1+α2(−1)m+1

= c4(xα1(−1)nxα2(−1)k0+k1+k2−m+1xα1+α2(−1)m+1

+m1xα1(−1)n−1xα1+α2(−2)xα2(−1)k0+k1+k2−mxα1+α2(−1)m+1

+ · · ·+mnxα1+α2(−2)nxα2(−1)k0+k1+k2−m−n+1xα1+α2(−1)m+1)

= c4(m′0xα1(−1)n[xα1(0), . . . [xα1(0), R2
−1,k+1] . . . ]

+m′1xα1(−1)n−1[xα1(0), . . . [xα1(0), R2
−1,k+2] . . . ]

+ · · ·+m′n[xα1(0), . . . [xα1(0), R2
−1,k+n+1] . . . ]) + c′4xα1+α2(−1)m+2

for some constants m1, . . .mn,m
′
0, . . .m

′
n ∈ C and c′4 ∈ U(n̄), which is of the desired

form. Finally, we have that

c5xα1+α2(−2)k0+k1+k2−m−n+1xα1(−1)nxα1+α2(−1)m+1

= c′5[xα2(0), . . . [xα2(0), R1
2(k0+k1+k2−m−n+1)+n+m+1] . . . ]

+c′′5xα1(−1)n+1xα1+α2(−1)m+1

for some c′5, c
′′
5 ∈ U(n̄), which is of the desired form. Hence, we may write

a = b′ + c′xα1(−1)n+1xα1+α2(−1)m+1 + d′xα1+α2(−1)m+2

for some b′ ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
and c′, d′ ∈ U(n̄), completing our induction.

So, in particular, we may find b ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
and c, d ∈ U(n̄) such that

a = b+ cxα1(−1)k2+1xα1+α2(−1)k0+1 + dxα1+α2(−1)k0+2.
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Clearly we have that b, dxα1+α2(−1)k0+2 ∈ I(k0+1)Λ0+k1Λ1+k2Λ2
. We also have that

cxα1(−1)k2+1xα1+α2(−1)k0+1

= c′[xα2(0), . . . [xα2(0), xα1(−1)k0+k2+2] . . . ]

which is an element of I(k0+1)Λ0+k1Λ1+k2Λ2
. So we have that a ∈ I(k0+1)Λ0+k1Λ1+k2Λ2

, a

contradiction, and so Λ 6= (k0 + 1)Λ0 + k1Λ1 + k2Λ2, completing our proof.

Remark 4.1.2 The proof of the main theorem is similar in structure to the proof found

in [CalLM2], in that we show that our “minimal counterexample” element a cannot be

in (KerfΛ)\ IΛ for each Λ by eliminating each Λ in a certain order. In [CalLM2], it was

shown that Λ 6= kΛ1, Λ 6= Λ0 + (k − 1)Λ1, Λ 6= 2Λ0 + (k − 2)Λ1, . . . ,Λ 6= kΛ0, in that

order. This choice was incredibly important in the proof. In the proof above, the order

in which the possible Λ are eliminated is equally important, but more choices have to be

made. We show that Λ 6= kΛi, Λ 6= Λ0 +(k−1)Λi, Λ 6= 2Λ0 +(k−2)Λi, . . . ,Λ 6= kΛ0 for

i = 1, 2. Then, we proceed to show that Λ 6= k1Λ1 + k2Λ2 for each k1, k2 ∈ N satisfying

k1 + k2 = k, and this can only be shown once all Λ = k0Λ0 + kiΛi with k0, ki ∈ N

satisfying k0 + ki = k, i = 1, 2 have been ruled out. Once we have Λ 6= k1Λ1 + k2Λ2,

we then proceed to show that Λ 6= k0Λ0 + k1Λ1 + k2Λ2 for all remaining choices of

k0, k1, k2 ∈ N with k0 + k1 + k2 = k by taking k0 = 1, k0 = 2, . . . until all remaining

choices of Λ have been eliminated.

Remark 4.1.3 The part of the proof which considers weights of the form kΛi and

k0Λ0 + kiΛi for i = 0, 1, 2 uses generalizations of ideas of [CalLM1]-[CalLM3]. These

ideas no longer work in the general case, so a new method was developed to handle the

remaining cases. This method “rebuilds” the element the “minimal counterexample”

element a in order to reach certain desired contradictions. This new method works

equally well for weights of the form kΛi and k0Λ0 + kiΛi.

Remark 4.1.4 The method developed in the above proof, which “rebuilds” our “min-

imal counterexample” element a to show that it is actually in the ideal IΛ can be used

to show all the presentations considered in [CalLM1]–[CalLM3] in the type A case.

In this sense, it is a unifying method, and should be able to be generalized to prove
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presentations for the principal subspaces of all the standard ̂sl(n+ 1)-modules, but at

this stage it is not completely clear how this can be done in the case where n > 2 and

k > 1.

Remark 4.1.5 Unlike in [CalLM2] and [C3], we use only intertwining operators for

level 1 standard modules to prove certain inclusions of kernels inside other kernels. For

example, when we we wanted to show that

Kerf(k0+1)Λ0+k1Λ1+k2Λ2
⊂ Kerfk0Λ0+(k1+1)Λ1+k2Λ2

in (4.2), we simply applied the operator 1⊗k0 ⊗ Yc(eλ1 , x)⊗ 1⊗k1+k2 to

a · v(k0+1)Λ0+k1Λ1+k2Λ2
= 0

to obtain

a · vk0Λ0+(k1+1)Λ1+k2Λ2
= 0,

so that if a ∈ Kerf(k0+1)Λ0+k1Λ1+k2Λ2
then a ∈ Kerfk0Λ0+(k1+1)Λ1+k2Λ2

. Such methods

work equally well in the cases considered in [CalLM2] and [C3] in showing similar

inclusions. Using these types of maps gives an alternate technique for proving such

inclusions which does not require use of intertwining operators for higher level standard

modules as in [CalLM2] and [C3].
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Chapter 5

Presentations of principal subspaces of standard modules

and a completion of U (̄n)

5.1 A reformulation of the presentation problem

In this section we reformulate Conjecture 3.1.1, along with all known presentations of

principal subspaces, in terms of a natural completion of U(n̄), which we denote by Ũ(n̄).

A version of this completion was constructed in [LW3], and we recall this construction,

suitably adapted to our present setting, in the appendix. In this section only, for

α ∈ ∆ and n ∈ Z, will use the notation xα(n) for completion elements Xα(n) from the

appendix, and no confusion should arise.

We may define a natural “lifting” of the maps fΛ:

f̃Λ : Ũ(n̄) −→ W (Λ) (5.1)

a 7→ a · vΛ.

Indeed, given a ∈ Ũ(n̄), we may uniquely express a as a = b + c for some b ∈ U(n̄−)

and c ∈ Ũ(n̄)n̄+ (by (7.7)), and define a · vΛ = b · vΛ. That is, we let c act as 0.

We now reformulate Conjecture 3.1.1 in terms of finding Kerf̃Λ. Recall the formal

sums

Rit =
∑

m1+···+mk+1=−t
xαi(m1) · · ·xαi(mk+1),

which are well defined as operators on each W (Λ). It is important to note that each

Rit is not an element of Ũ(n̄), so we seek natural representatives for Rit in Ũ(n̄), in the

sense that, when viewed as operators on W (Λ), these representatives are equal to Rit.

Let A denote the set of finite sequences of integers. Given a sequence of integers
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A = (m1, . . . ,mk+1) ∈ A, define a function

# : Z×A −→ N (5.2)

(n,A) 7→ number of occurrences of n in A.

For any sequence in (m1, ...,mk+1) ∈ A, define

Am1,...,mk+1
= {#(n,A)|n ∈ Z} \ {0} = {n1, . . . , nj}

where n1, . . . , nj are positive integers and n1 + · · ·+ nj = k + 1. Define integers

cm1,...,mk+1
=

(
k + 1

n1, ..., nj

)
=

(k + 1)!

(n1)! . . . (nj)!
.

We define

Rit = Ri−1,t +
∑

m1 ≤ · · · ≤ mk+1,

m1 + · · ·+mk+1 = −t,

mk+1 ≥ 0

cm1,...,mk+1
xαi(m1) · · ·xαi(mk+1), (5.3)

which is clearly in Ũ(n̄). We may also write, for each Rit,

Rit = RiM,t +
∑

m1 ≤ · · · ≤ mk+1,

m1 + · · ·+mk+1 = −t,

mk+1 ≥M + 1

cm1,...,mk+1
xαi(m1) · · ·xαi(mk+1), (5.4)

and, as elements of Ũ(n̄), (5.3) and (5.4) are equal.

Remark 5.1.1 As mentioned above, the formal sums

Rit =
∑

m1+···+mk+1=−t
xαi(m1) · · ·xαi(mk+1).

are not elements of Ũ(n̄). Informally, Rit is in a sense a “limit” of (5.4), i.e.

Rit = lim
M→∞

(
RiM,t +

∑
m1 ≤ · · · ≤ mk+1,

m1 + · · ·+mk+1 = −t,

mk+1 ≥M + 1

cm1,...,mk+1
xαi(m1) · · ·xαi(mk+1)

)
,
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where infinitely many relations in Ĩ need to be applied to obtain Rit from Rit. However,

as operators on W (Λ), Rit and Rit are equal.

Lemma 5.1.2 Let α ∈ ∆+ and m ∈ N. Then, for any i = 1, . . . , n and t ∈ Z we have

that

Ritxα(−m) = xα(−m)Rit + xα(0)Rit+m + c

for some c ∈ Ũ(n̄)n̄+. In particular,

Ritxα(−m) ∈ IkΛ0 + Ũ(n̄)n̄+.

Proof: First, suppose that α+ αi ∈ ∆+. We may write

Rit = Rim,t +
∑

m1 ≤ · · · ≤ mk+1,

m1 + · · ·+mk+1 = −t,

mk+1 ≥ m+ 1

cm1,...,mk+1
xαi(m1) · · ·xαi(mk+1).

By definition of Ũ(n̄)n̄+,

∑
m1 ≤ · · · ≤ mk+1,

m1 + · · ·+mk+1 = −t,

mk+1 ≥ m+ 1

cm1,...,mk+1
xαi(m1) · · ·xαi(mk+1)xα(−m) ∈ Ũ(n̄)n̄+.
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For Rim,txα(−m), we may write

Rim,txα(−m)

=
∑

m1 + · · ·+mk+1 = −t,

m1, . . . ,mk+1 ≤ m

xαi(m1) · · ·xαi(mk+1)xα(−m)

=
k+1∑
j=1

∑
m1 + · · ·+mk+1 = −t,

m1, . . . ,mk+1 ≤ m

Cαi,αxαi(m1) · · ·xαi+α(mj −m) · · ·xαi(mk+1)

+xα(−m)Rim,t

=
k+1∑
j=1

∑
m1 + · · ·+mk+1 = −t−m,

m1, . . . ,mk+1 ≤ m

Cαi,αxαi(m1) · · ·xαi+α(mj) · · ·xαi(mk+1)

+b+ xα(−m)Rim,t

for some b ∈ U(n̄)n̄+. We have that

k+1∑
j=1

∑
m1 + · · ·+mk+1 = −t−m,

m1, . . . ,mk+1 ≤ m

Cαi,αxαi(m1) · · ·

· · ·xαi+α(mj) · · ·xαi(mk+1) + b+ xα(−m)Rim,t

= [xα(0), Rim+t] + b+ xα(−m)Rim,t,

establishing our claim when α+ αi ∈ ∆+. If α+ αi /∈ ∆+ the claim is clear since

Ritxα(−m) = xα(−m)Rit ∈ IkΛ0 + Ũ(n̄)n̄+,

concluding our proof.

Using an almost identical argument, we have that

Corollary 5.1.3 If a ∈ U(n̄−) and t ∈ Z, we have that

Rita ∈ IkΛ0 + Ũ(n̄)n̄+.
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Proof: It suffices to show that the claim holds for monomials

xβ1(−m1) . . . xβj (−mj) ∈ U(n̄).

This follows immediately using the same argument as above, and writing

Rit = Rim1+···+mj ,t +
∑

m1 ≤ · · · ≤ mk+1,

m1 + · · ·+mk+1 = −t,

mk+1 ≥ m1 + · · ·+mj + 1

cm1,...,mk+1
xαi(m1) · · ·xαi(mk+1).

As in [C1]-[C2] and [CalLM3], let J be the two sided ideal of Ũ(n̄) generated by the

Rit, i = 1, . . . , n and t ≥ k + 1. As in [CalLM3], we have the following theorem:

Theorem 5.1.4 We may describe IkΛ0 by:

IkΛ0 ≡ J modulo Ũ(n̄)n̄+. (5.5)

and moreover, for IΛ, we have:

IΛ ≡ J +
∑
α∈∆+

U(n̄)xα(−1)k+1−〈α,Λ〉 modulo Ũ(n̄)n̄+. (5.6)

Proof: We first show that

IkΛ0 ⊂ J modulo Ũ(n̄)n̄+.

Indeed, any element a ∈ IkΛ0 may be written as

a =
n∑
i=1

aiR
i
−1,t + b

for some ai ∈ U(n̄) and b ∈ U(n̄)n̄+. It suffices to show that each aiR
i
−1,t ∈ J + Ũ(n̄)n̄+.

Indeed, we may write Ri−1,t = Rit + c for some c ∈ Ũ(n̄)n̄+, and we clearly have that

aiR
i
−1,t = aiR

i
t + aic ∈ J + Ũ(n̄)n̄+.

It remains to show that

J ⊂ IkΛ0 modulo Ũ(n̄)n̄+.

It suffices to prove

aRitb ∈ IkΛ0 + Ũ(n̄)n̄+
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for all a, b ∈ Ũ(n̄). By (7.7), we may write b = b1 + b2 for some b1 ∈ U(n̄−) and

b2 ∈ Ũ(n̄)n̄+. Clearly aRitb2 ∈ Ũ(n̄)n̄+, and so

aRitb ≡ aRitb1 modulo Ũ(n̄)n̄+.

By Corollary 5.1.3, we have that

Ritb1 ∈ IkΛ0 + Ũ(n̄)n̄+,

so it suffices to show that

aRi−1,t ∈ IkΛ0 + Ũ(n̄)n̄+.

Using the notation from the appendix, we have that a = [µ] for some µ ∈ F (∆+), and

we may write

µ =
∑

c∈Supp(µ)

µ(c)X(c) =
∑

c∈Suppt(µ)

µ(c)X(c) +
∑

c∈Supp(µ)\Suppt(µ)

µ(c)X(c).

The sum
∑

c∈Suppt
µ(c)X(c) is finite, so we have that

∑
c∈Suppt(µ)

[µ(c)X(c)]Ri−1,t ∈ IkΛ0 ,

and by definition of Ũ(n̄)n̄+ we have that

∑
c∈Supp(µ)\Suppt(µ)

[µ(c)X(c)]Ri−1,t ∈ Ũ(n̄)n̄+,

establishing

IkΛ0 ≡ J modulo Ũ(n̄)n̄+.

The fact that

IΛ ≡ J +
∑
α∈∆+

U(n̄)xα(−1)k+1−〈α,Λ〉 modulo Ũ(n̄)n̄+

follows immediately, establishing our theorem.

As a consequence of Theorem 5.1.4, along with the results of [CalLM1] - [CalLM3]

and Chapter 4, we have that:

Theorem 5.1.5 In the case where g = sl(n+ 1) with:
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• n = 1 and Λ = k0Λ0 + k1Λ1 with k0 + k1 = k ≥ 1

• n = 2 and Λ = k0Λ0 + k1Λ1 + k2Λ2 with k0 + k1 + k2 = k ≥ 1

• n ≥ 3 and Λ = Λi with i = 0, . . . , n

or g is of type D or E with k = 1 we have that

KerfΛ ≡ ĨΛ modulo Ũ(n̄)n̄+.

We reformulate Conjecture 3.1.1 as follows:

Conjecture 5.1.6 Suppose g = sl(n+ 1), k0, . . . , kn, k ∈ N with k ≥ 1 and k0 + · · ·+

kn = k. For each Λ = k0Λ0 + · · ·+ knΛn, we have that

KerfΛ ≡ ĨΛ modulo Ũ(n̄)n̄+

or that

Conjecture 5.1.7 In the context of Conjecture 5.1.6, for each Λ = k0Λ0 + · · ·+knΛn,

we have that

Kerf̃Λ = ĨΛ.
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Chapter 6

Exact sequences and multigraded dimensions

6.1 Exact sequences

In this section, we construct exact sequences among the principal subspaces of certain

standard modules, and use these to find multigraded dimensions.

Given λ ∈ P and character ν : Q −→ C∗, we define a map τλ,ν on n̄ by

τλ,ν(xα(m)) = ν(α)xα(m− 〈λ, α〉)

for α ∈ ∆+ and m ∈ Z. It is easy to see that τλ,ν is an automorphism of n̄. The map

τλ,ν extends canonically to an automorphism of U(n̄), also denoted by τλ,ν , given by

τλ,ν(xβ1(m1) · · ·xβr(mr)) = ν(β1 + · · ·+βr)xβ1(m1−〈λ, β1〉) · · ·xβr(mr−〈λ, βr〉) (6.1)

for β1, . . . , βr ∈ ∆+ and m1, . . . ,mr ∈ Z. In particular, we have that

e⊗kλ (a · vΛ) = τλ,c−λ(a) · e⊗kλ vΛ (6.2)

where λ ∈ P , Λ is a dominant integral weight of ̂sl(n+ 1), and c−λ(α) = c(−λ, α) for

all α ∈ ∆+.

For each j = 1, . . . , n, set ωj = αj − λj . For each 1 ≤ i ≤ n − 1 and ki, ki+1 ∈ N

with ki + ki+1 = k ≥ 1, define maps

φi = e⊗kωi ◦ (1⊗ki ⊗ Yc(eλi−1 , x)⊗ki+1)

ψi = e⊗kωi+1
◦ (1⊗ki ⊗ Yc(eλi+2 , x)⊗ki+1)

In the case that i = 1, we take φ1 = e⊗kω1
and in the case that i = n − 1 we take

ψn−1 = e⊗kωn .
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Theorem 6.1.1 For every ki, ki+1 ∈ N with ki + ki+1 = k and k ≥ 1, we have

φi : W (kiΛi + ki+1Λi+1)→W (kiΛ0 + ki+1Λi) (6.3)

and

ψi : W (kiΛi + ki+1Λi+1)→W (ki+1Λ0 + kiΛi+1) (6.4)

Moreover, for r1, . . . , rn, s ∈ Z,

φi : W (kiΛi + ki+1Λi+1)′r1,...,rn;s (6.5)

→W (kiΛ0 + ki+1Λi)
′
r1,...,ri+ki,...,rn;s−ri−1+ri−ri+1+ki

(6.6)

and

ψi : W (kiΛi + ki+1Λi+1)′r1,...,rn;s (6.7)

→W (ki+1Λ0 + kiΛi+1)′r1,...,ri+1+ki+1,...,rn;s−ri+ri+1−ri+2+ki
, (6.8)

where we take r0 = rn+1 = 0.

Proof: We prove only (6.3) since (6.4) follows analogously. Let a · vkiΛi+ki+1Λi+1
∈

W (kiΛi + ki+1Λi+1) for some a ∈ U(n̄). We have that

φi(a · vkiΛi+ki+1Λi+1
)

= φi(a · (eλi ⊗ · · · ⊗ eλi︸ ︷︷ ︸
ki−times

⊗ eλi+1 ⊗ · · · ⊗ eλi+1︸ ︷︷ ︸
ki+1−times

))

=

(
e⊗kωi ◦ (1⊗ki ⊗ Yc(eλi−1 , x)⊗ki+1)

)
(a · (eλi ⊗ · · · ⊗ eλi︸ ︷︷ ︸

ki−times

⊗ eλi+1 ⊗ · · · ⊗ eλi+1︸ ︷︷ ︸
ki+1−times

))

= e⊗kωi (a · (eλi ⊗ · · · ⊗ eλi︸ ︷︷ ︸
ki−times

⊗ eλi−1
eλi+1 ⊗ · · · ⊗ eλi−1

eλi+1︸ ︷︷ ︸
ki+1−times

))

= c1τωi,c−ωi (a) · (eαi ⊗ · · · ⊗ eαi︸ ︷︷ ︸
ki−times

⊗ eλi ⊗ · · · ⊗ eλi︸ ︷︷ ︸
ki+1−times

)

= c2τωi,c−ωi (a)xαi(−1)ki · (1⊗ · · · ⊗ 1︸ ︷︷ ︸
ki−times

⊗ eλi ⊗ · · · ⊗ eλi︸ ︷︷ ︸
ki+1−times

)

∈ W (kiΛ0 + ki+1Λi)

for some constants c1, c2 ∈ C. The fourth equality follows from the fact that λi−1 +

λi+1 + ωi = λi. This concludes our proof.
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Using the presentations (3.10), we construct exact sequences which give the multi-

graded dimensions of certain principal subspaces (compare to [C1]).

Theorem 6.1.2 Let k ≥ 1. For any i with 1 ≤ i ≤ n − 1 and ki, ki+1 ∈ N such that

ki + ki+1 = k, the sequences:

W (kiΛi + ki+1Λi+1)
φi−→ (6.9)

W (kiΛ0 + ki+1Λi)
1⊗ki−1⊗Yc(eλi ,x)⊗1⊗ki+1

−→

W ((ki − 1)Λ0 + (ki+1 + 1)Λi) −→ 0,

when ki ≥ 1, and

W (kiΛi + ki+1Λi+1)
ψi−→ (6.10)

W (ki+1Λ0 + kiΛi+1)
1⊗ki+1−1⊗Yc(eλi+1 ,x)⊗1⊗ki−→

W ((ki+1 − 1)Λ0 + (ki + 1)Λi+1) −→ 0,

when ki+1 ≥ 1, are exact.

Proof: We prove that (6.9) is exact. The exactness of (6.10) can be proved analogously.

We first show that Imφi ⊂ Ker(1⊗ki−1⊗Yc(eλi , x)⊗1⊗ki+1). Suppose that w ∈ Imφi.

We have that

(1⊗ki−1 ⊗ Yc(eλi , x)⊗ 1⊗ki+1)(w) = vxαi(−1)ki · vkiΛ0+ki+1Λi = 0

for some v ∈ U(n̄), and so w ∈ Ker(1⊗ki−1 ⊗ Yc(eλi , x) ⊗ 1⊗ki+1). Hence Imφi ⊂

Ker(1⊗ki−1 ⊗ Yc(eλi , x)⊗ 1⊗ki+1).

We now show that Ker(1⊗ki−1 ⊗ Yc(eλi , x) ⊗ 1⊗ki+1) ⊂ Imφi by characterizing the

elements of each set. If w ∈ Ker(1⊗ki−1 ⊗ Yc(eλi , x) ⊗ 1⊗ki+1), we may write w =

fkiΛ0+ki+1Λi(u) for some u ∈ U(n̄). We have that

(1⊗ki−1 ⊗ Yc(eλi , x)⊗ 1⊗ki+1)(fkiΛ0+ki+1Λki
(u)) = 0 iff f(ki−1)Λ0+(ki+1+1)Λi(u) = 0

and by (3.10) we have

f(ki−1)Λ0+(ki+1+1)Λi(u) = 0 iff u ∈ I(ki−1)Λ0+(ki+1+1)Λi
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so that

w = fkiΛ0+ki+1Λi(u) ∈ Ker(1⊗ki−1 ⊗ Yc(eλi , x)⊗ 1⊗ki+1) iff u ∈ I(ki−1)Λ0+(ki+1+1)Λi .

On the other hand, if w ∈ Imφi, we may write

w = vxαi(−1)ki · vkiΛ0+ki+1Λi = fkiΛ0+ki+1Λi(vxαi(−1)ki)

for some v ∈ U(n̄). We may also write

w = fkiΛ0+ki+1Λi(u)

for some u ∈ U(n̄). Putting these together, we have that

(u− vxαi(−1)ki) · vkiΛ0+ki+1Λi = 0

which implies

u− vxαi(−1)ki ∈ IkiΛ0+ki+1Λi .

We therefore have that

w = fkiΛ0+ki+1Λi(u) ∈ Imφi iff u ∈ IkiΛ0+ki+1Λi + U(n̄)xαi(−1)ki

Noticing that

I(ki−1)Λ0+(ki+1+1)Λi = IkΛ0 + U(n̄)xαi(−1)ki ⊂ IkiΛ0+ki+1Λi + U(n̄)xαi(−1)ki ,

we have that

w = fkiΛ0+ki+1Λi(u) ∈ Ker(1⊗ki−1 ⊗ Yc(eλi , x)⊗ 1⊗ki+1)

⇔ u ∈ I(ki−1)Λ0+(ki+1+1)Λi

⇒ u ∈ IkiΛ0+ki+1Λi + U(n̄)xαi(−1)ki

⇔ w = fkiΛ0+ki+1Λi(u) ∈ Imφi,

completing our proof.

Remark 6.1.3 Notice that, in general, the first map in each exact sequence is not

injective like it is in [CLM1]–[CLM2],[C1]–[C2], and [CalLM1]–[CalLM3]. In fact, there

are only a few cases where injectivity holds, given in the corollaries below.
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Corollary 6.1.4 In the setting of Theorem 6.1.2, following sequences are exact:

0 −→W (k1Λ1 + k2Λ2)
e⊗kω1−→ (6.11)

W (k1Λ0 + k2Λ1)
1⊗ki−1⊗Yc(eλi ,x)⊗1⊗ki+1

−→

W ((k1 − 1)Λ0 + (k2 + 1)Λ1) −→ 0

and

0 −→W (kn−1Λn−1 + knΛn)
e⊗kωn−→ (6.12)

W (knΛ0 + kn−1Λn)
1⊗ki−1⊗Yc(eλi ,x)⊗1⊗ki+1

−→

W ((kn − 1)Λ0 + (kn−1 + 1)Λn) −→ 0

Remark 6.1.5 It is important to note that (6.9), (6.10), (6.11), and (6.12) are fun-

damentally different from the exact sequences used in [C1] and [CalLM2]. In [C1] and

[CalLM2], exact sequences are constructed using intertwining operators among level k

standard modules. The sequences (6.9), (6.10), (6.11), and (6.12) only require inter-

twining operators among level 1 standard modules and recover the same information

about multigraded dimensions, as we will see below.

Corollary 6.1.6 For each i = 1, . . . , n the following sequences are exact:

0 −→W (kΛi)
e⊗kωi−→W (kΛ0)

1⊗k−1⊗Yc(eλi ,x)−→ W ((k − 1)Λ0 + Λi) −→ 0

Remark 6.1.7 These exact sequences in Corollary 6.1.6 are the level k analogues of

the exact sequences found in [CalLM3].

6.2 Multigraded dimensions

We now use the exact sequences (6.11) and (6.12) to obtain the multigraded dimensions

χ′W (k1Λ1+k2Λ2)(x1, . . . , xn, q) and χ′W (kn−1Λn−1+knΛn)(x1, . . . , xn, q).

Theorem 6.2.1 Let k ≥ 1. Let k1, k2, kn−1, kn ∈ N with k1 ≥ 1 and kn ≥ 1, such that
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k1 + k2 = k and kn−1 + kn = k. Then

χ′W (k1Λ1+k2Λ2)(x1, . . . , xn, q) =

= x−k1
1 χ′W ((k1−1)Λ0+(k2+1)Λ1)(x1q

−1, x2q, x3 . . . , xn, q) (6.13)

−x−k1
1 χ′W (k1Λ0+k2Λ1)(x1q

−1, x2q, x3, . . . , xn, q)

and

χ′W (kn−1Λn−1+knΛn)(x1, . . . , xn, q) =

= x−knn χ′W ((kn−1)Λ0+(kn−1+1)Λn)(x1, . . . , xn−1q, xnq
−1, q) (6.14)

−x−knn χ′W (knΛ0+kn−1Λn)(x1, . . . , xn−1q, xnq
−1, q).

Proof: It is easy to see that the maps used in (6.11) and (6.12) have the property that:

W (k1Λ0 + k2Λ1)′r1,...,rn,s
1⊗k1−1⊗Yc(eλ1 ,x)⊗1⊗k2

−→ W ((k1 − 1)Λ0 + (k2 + 1)Λ1)′r1,...,rn,s

and

W (knΛ0+kn−1Λn)′r1,...,rn,s
1⊗kn−1⊗Yc(eλn ,x)⊗1⊗kn−1

−→ W ((kn−1)Λ0+(kn−1+1)Λn)′r1,...,rn,s.

Combining this fact with the exactness of (6.11) and (6.12), along with (6.5) and (6.7)

give

χ′W (k1Λ0+k2Λ1)(x1, . . . , xn, q) =

xk1
1 q

k1χ′W (k1Λ1+k2Λ2)(x1q, x2q
−1, x3 . . . , xn, q) (6.15)

+χ′W ((k1−1)Λ0+(k2+1)Λ1)(x1, . . . , xn, q)

and

χ′W (knΛ0+kn−1Λn)(x1, . . . , xn, q) =

xknn q
knχ′W (kn−1Λn−1+knΛn)(x1, . . . , xn−1q

−1, xnq, q) (6.16)

+χ′W ((kn−1)Λ0+(kn−1+1)Λn)(x1, . . . , xn, q).

which may be rewritten as

χ′W (k1Λ1+k2Λ2)(x1q, x2q
−1, x3 . . . , xn, q) =

= x−k1
1 q−k1χ′W (k1Λ0+k2Λ1)(x1, . . . , xn, q) (6.17)

−x−k1
1 q−k1χ′W ((k1−1)Λ0+(k2+1)Λ1)(x1, . . . , xn, q)
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and

χ′W (kn−1Λn−1+knΛn)(x1, . . . , xn−1q
−1, xnq, q) =

= x−knn q−knχ′W (knΛ0+kn−1Λn)(x1, . . . , xn, q) (6.18)

−x−knn q−knχ′W ((kn−1)Λ0+(kn−1+1)Λn)(x1, . . . , xn, q).

Making the substitutions

x1 7→ x1q
−1, x2 7→ x2q

in (6.17) and

xn 7→ xnq
−1, xn−1 7→ xn−1q

in (6.18) immediately proves our theorem.

We now use Theorem 6.2.1 to write down explicit expressions for

χ′W (k1Λ1+k2Λ2)(x1, . . . , xn, q) and χ′W (kn−1Λn−1+knΛn)(x1, . . . , xn, q). In [G], Georgiev ob-

tained:

χ′W (k0Λ0+kjΛj)
(x1, . . . , xn, q) =

=
∑ (

qr
(1)
1

2
+...+r

(k)
1

2
+
∑k
t=1 r

(t)
1 δ1,jt

(q)
r
(1)
1 −r

(2)
1

. . . (q)
r
(k−1)
1 −r(k)

1

(q)
r
(k)
1

)
×

×
(
qr

(1)
2

2
+...+r

(k)
2

2
−r(1)

2 r
(1)
1 −...−r

(k)
2 r

(k)
1 +

∑k
t=1 r

(t)
2 δ2,jt

(q)
r
(1)
2 −r

(2)
2

. . . (q)
r
(k−1)
2 −r(k)

2

(q)
r
(k)
2

)
×

× · · · ×
(
qr

(1)
n

2
+...+r

(k)
n

2
−r(1)

n r
(1)
n−1−...−r

(k)
n r

(k)
n−1+

∑k
t=1 r

(t)
n δn,jt

(q)
r
(1)
n −r

(2)
n
. . . (q)

r
(k−1)
n −r(k)

n
(q)

r
(k)
n

)
x
∑k
i=1 r

(i)
1

1 · · ·x
∑n
i=1 r

(i)
n

n

where the sums are taken over decreasing sequences r
(1)
j ≥ r

(2)
j ≥ · · · ≥ r

(k)
j ≥ 0 for

each j = 1, . . . , n and jt = 0 for 0 ≤ t ≤ k0 and jt = j for k0 < t ≤ k, j = 1, . . . , n,

where (q)r =
∏r
i=1(1− qi) and (q)0 = 1. In particular, we have that

χ′W (k1Λ0+k2Λ1)(x1, . . . , xn, q) =

=
∑

r
(1)
1 ≥...≥r

(k)
1 ≥0

...

r
(1)
n ≥...≥r

(k)
n ≥0

(
q
r
(1)
1

2
+...+r

(k)
1

2
+
∑k
t=k1+1 r

(t)
1

(q)
r
(1)
1 −r

(2)
1

. . . (q)
r
(k−1)
1 −r(k)

1

(q)
r
(k)
1

)
×
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×
(
qr

(1)
2

2
+...+r

(k)
2

2
−r(1)

2 r
(1)
1 −...−r

(k)
2 r

(k)
1

(q)
r
(1)
2 −r

(2)
2

. . . (q)
r
(k−1)
2 −r(k)

2

(q)
r
(k)
2

)
×

× · · · ×
(
qr

(1)
n

2
+...+r

(k)
n

2
−r(1)

n r
(1)
n−1−...−r

(k)
n r

(k)
n−1

(q)
r
(1)
n −r

(2)
n
. . . (q)

r
(k−1)
n −r(k)

n
(q)

r
(k)
n

)
x
∑k
i=1 r

(i)
1

1 · · ·x
∑n
i=1 r

(i)
n

n

and

χ′W (knΛ0+kn−1Λn)(x1, . . . , xn, q) =

=
∑

r
(1)
1 ≥...≥r

(k)
1 ≥0

...

r
(1)
n ≥...≥r

(k)
n ≥0

(
qr

(1)
1

2
+...+r

(k)
1

2

(q)
r
(1)
1 −r

(2)
1

. . . (q)
r
(k−1)
1 −r(k)

1

(q)
r
(k)
1

)
×

×
(
qr
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Applying these two expressions to Theorem 6.2.1 immediately gives:

Corollary 6.2.2 In the setting of Theorem 6.2.1, we have
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and
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×q
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t=1 r

(t)
n−1−r
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(kn)
n )x
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where the sums are taken over decreasing sequences r
(1)
j ≥ r

(2)
j ≥ · · · ≥ r

(k)
j ≥ 0 for

each j = 1, . . . , n.

Remark 6.2.3 Corollary 6.2.2 above is ̂sl(n+ 1)-analogue of Corollary 4.1 in [C1]. The

multigraded dimension for χ′W (k1Λ1+k2Λ2) in [C1] can be recovered from the expression

above for χ′W (k1Λ1+k2Λ2) by taking n = 2.

Remark 6.2.4 Throughout this work we have been assuming that n ≥ 2 for notational

convenience. In the case that n = 1 (that is, when g = sl(2)), the above results recover

the recursions and multigraded dimensions found in [CLM1]-[CLM2].

Remark 6.2.5 The expressions in Corollary 6.2.2 can also be written as follows: As

in [G], for s = 1, . . . , k − 1 and i = 1, . . . , n, set p
(s)
i = r

(s)
i − r

(s+1)
i , and set p

(k)
i = r

(k)
i .

Also, let (Alm)nl,m=1 be the Cartan matrix of sl(n+1) and Bst := min{s, t}, 1 ≤ s, t ≤ k.

Then,

χ′W (k1Λ1+k2Λ2)(x1, . . . , xn, q) =
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Chapter 7

Appendix

7.1 A completion of the universal enveloping algebra of certain nilpo-

tent Lie algebras

Above, we needed the construction of a completion of a certain universal enveloping

algebra. In this section, we work in a natural generality and recall a construction

in [LW3] and use it to construct a completion of the universal enveloping algebra of

certain subalgebras of affine Lie algebras associated to a finite dimensional semisimple

Lie algebras.

Let g be a finite dimensional semisimple Lie algebra. Fix a Cartan subalgebra h ⊂ g,

a set of roots ∆, a set of simple roots Π = {α1, ..., αn}, a set of positive roots ∆+, and

a symmetric invariant nondegenerate bilinear form 〈·, ·〉, normalized so that 〈α, α〉 = 2

for long roots α ∈ ∆. For each α ∈ ∆+, let xα ∈ g be a root vector associated to the

root α. We have that

[xα, xβ] = Cα,βxα+β (7.1)

for some constants Cα,β ∈ C. Let S ⊂ ∆+ be a nonempty set of positive roots such

that if α, β ∈ S and α + β ∈ ∆+, then α + β ∈ S. Define the nilpotent subalgebra

nS ⊂ g by

nS =
∑
α∈S

Cxα.

In the case that S = ∆+, we write nS = n.

We have the corresponding untwisted affine Lie algebra given by

ĝ = g⊗ C[t, t−1]⊕ Cc,
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where c is a non-zero central element and

[x⊗ tm, y ⊗ tp] = [x, y]⊗ tm+p +m〈x, y〉δm+p,0c

for any x, y ∈ g and m, p ∈ Z and

n̄S = nS ⊗ C[t, t−1],

a Lie subalgebra of ĝ. The Lie algebra n̄S has the following important subalgebras:

n̄S− = nS ⊗ t−1C[t−1]

and

n̄S+ = nS ⊗ C[t].

Let U(n̄S) be the universal enveloping algbera of n̄S . Using the Poincare-Birkhoff-

Witt theorem, it is easy to see that U(n̄S) has the decomposition

U(n̄S) = U(n̄S−)⊕ U(n̄S)n̄S+. (7.2)

Let M(S) denote the free monoid on Z× S. We may write

M(S) = ∪n≥0M(S)n

where

M(S)n = Zn × Sn

and composition of elements ◦ is given by juxtaposition:

(n1, . . . , nk; γ1, . . . γk) ◦ (m1, . . . ,ml;β1, . . . , βl)

= (n1, . . . , nk,m1, . . .ml; γ1, . . . γk, β1, . . . βl)

where

(n1, . . . , nk; γ1, . . . γk) ∈M(S)k,

(m1, . . . ,ml;β1, . . . , βl) ∈M(S)l,

and

(n1, . . . , nk,m1, . . .ml; γ1, . . . γk, β1, . . . βl) ∈M(S)k+l.
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As in [LW3], define, for n ≥ 0, a map

τ : Zn −→ Zn (7.3)

(i1, . . . , in) 7→ (i1 + · · ·+ in, i2 + · · ·+ in, . . . , in).

For any b = (n1, . . . , nk;β1, . . . , βk) ∈M(S)k and i ∈ Z, we write

b ≤ i if τ(n1, . . . , nk) ≤ (i, . . . , i).

In other words, we have

n1 + · · ·+ nk ≤ i,

n2 + · · ·+ nk ≤ i,

...

nk ≤ i.

The set Map(M(S),C) of all functions

f : M(S) −→ C

has the structure of of an algebra given by taking the identity element to be the function

which is 1 on M(S)0 and 0 elsewhere, and by setting

(rµ)(a) = r(µ(a)),

(µ1 + µ2)(a) = µ1(a) + µ2(a),

and

(µ1µ2)(a) =
∑
a=b◦c

µ1(b)µ2(c)

for r ∈ C, µ, µ1, µ2 ∈ Map(M(S),C), and a ∈ M(S). As in [LW3], for each µ ∈

Map(M(S),C) and i ∈ Z, we define sets

Supp(µ) = {a ∈M(S)|µ(a) 6= 0}

and

Suppi(µ) = {a ∈M(∆+)|a ≤ i} ∩ Supp(µ).
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Note that if i ≤ j then

Suppi(µ) ⊂ Suppj(µ)

and that

Supp(µ) = ∪i∈ZSuppi(µ).

Define F (S) ⊂ Map(M(S),C) by

F (S) := {µ : M(S) −→ C | Suppi(µ) is finite for all i ∈ Z}

and F0(S) ⊂ F (S) by

F0(S) := {µ ∈ F (S) | Supp(µ) is finite}

We have that

Proposition 7.1.1 ([LW3]) F (S) is a subalgebra of Map(M(S),C), and F0(S) ⊂ F (S)

is a subalgebra of F (S). Moreover, F0(S) is the free algebra on Z× S.

For each a ∈M(S), define maps X(a) ∈ F0(S) by

X(a)(b) = δa,b.

In particular, for (n;β) ∈M(S)1, write

Xβ(n) = X((n;β))

and extend this so that for any a = (n1, . . . , nk;β1, . . . , βk) ∈M(S)

X(a) = Xβ1(n1) . . . Xβk(nk).

For any µ ∈ Map(M(S),C), we may write

µ =
∑

a∈Supp(µ)

µ(a)X(a).

Consider the ideal IS of F0(S) generated by

[Xα(n), Xβ(m)]− Cα,βXα+β(m+ n)

for α, β ∈ S and m,n ∈ Z, where Cα,β are the structure constants (7.1). We have the

following proposition:
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Proposition 7.1.2 U(n̄S) ' F0(S)/IS

Proof: Let T (n̄S) denote the tensor algebra on n̄S . Let φ be the bijection

φ : Z× S −→ n̄S (7.4)

(n, β) 7→ xβ(n).

Since F0(S) is the free algebra on Z×∆+ and T (n̄S) is the free algebra on n̄S , we extend

φ to a map of free algebras

φ : F0(S) −→ T (n̄S) (7.5)

Xβ1(n1) . . . Xβk(nk) 7→ xβ1(n1) . . . xβk(nk),

extended linearly to all of F0(S). The fact that φ is an algebra isomorphism is clear.

The proposition follows immediately.

We now impose similar natural relations on F (S). Consider the ideal ĨS of F (S)

generated by

[Xα(n), Xβ(m)]− Cα,βXα+β(m+ n)

for α, β ∈ S and m,n ∈ Z, where Cα,β are the structure constants (7.1).

Definition 7.1.3 Define the completion of U(n̄S) by:

Ũ(n̄S) := F (S)/ĨS . (7.6)

Denote by [µ] the coset of µ ∈ F (S) in Ũ(n̄S).

We now introduce some important substructures of Ũ(n̄S) and prove some useful

facts about these substructures. Let

M(S)− = {(m1, . . . ,mk;β1, . . . , βk) ∈M(S)|k ∈ N,mi ≤ −1 for each i = 1, . . . , k}.

Define

Ũ(n̄S−) = {a ∈ Ũ(n̄S) | a = [µ] for some µ ∈ F (S) with Supp(µ) ⊂M(S)−}.
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Lemma 7.1.4 We have that

Ũ(n̄S−) ' U(n̄S−).

Proof: Suppose [µ] ∈ Ũ(n̄S−) for some µ with Supp(µ) ⊂M(S)−. We may write

µ =
∑

a∈Supp(µ)

µ(a)X(a)

and so

[µ] =
∑

a∈Supp(µ)

[µ(a)X(a)].

By definition, Supp−1(µ) is finite, so that there are finitely many

a = (m1, . . . ,mn;β1, . . . , βn) ∈ Supp(µ), k ∈ N

such that

m1 + · · ·+mk ≤ −1

m2 + · · ·+mk ≤ −1

...

mk ≤ −1.

Since each such mi ≤ −1, i = 1, . . . k, have have that Suppn(µ) = Supp−1(µ) for all

n ≥ 0. In particular, we have that

Supp(µ) = ∪n∈ZSuppn(µ) = Supp−1(µ)

and so Supp(µ) is finite and µ ∈ F0(S). By the proof of Proposition 7.1.2, we have that

Ũ(n̄S−) ' U(n̄S−),

concluding our proof.

Let

M(S)+ = {(m1, . . . ,mk;β1, . . . , βk) ∈M(S) | k ∈ N and ∃i ≤ k with mi+· · ·+mk ≥ 0}

We define

˜U(n̄S)n̄S+ = {a ∈ Ũ(n̄S) | a = [µ] for some µ ∈ F (S) with Supp(µ) ⊂M(S)+}.
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Remark 7.1.5 The space ˜U(n̄S)n̄S+ is the collection of all elements of Ũ(n̄S) which

have at least one representation as “infinite sums” of elements of U(n̄S)n̄S+. Indeed,

any element X(a) ∈ U(n̄S) with a ∈M(S)+ can be written as

X(a) = X(b)X(c),

where

b = (m1, . . . ,mi−1;β1, . . . , βi−1),

c = (mi, . . . ,mk;β1, . . . , βk),

and mi + . . .mk ≥ 0. By (7.2), X(c) ∈ U(n̄S)nS+ and X(b) ∈ U(n̄S), and so X(a) ∈

U(n̄S)nS+.

Proposition 7.1.6 Ũ(n̄S) has the decomposition

Ũ(n̄S) = U(n̄S−)⊕ ˜U(n̄S)n̄S+ (7.7)

Proof: Given any u ∈ U(n̄S), using (7.2) we may write

u = u1 + u2

where u1 ∈ U(n̄S−) and u2 ∈ U(n̄S)n̄S+. Suppose [µ] ∈ Ũ(n̄S) for some µ ∈ F (S).

Writing

µ =
∑

a∈Supp(µ)

µ(a)X(a),

we have

[µ] =
∑

a∈Supp(µ)

[µ(a)X(a)]

and each [µ(a)X(a)] ∈ U(n̄S). Since µ ∈ F (S), there are only finitely many a ∈ Supp(µ)

such that a ∈ Supp−1(µ), so that, ranging over all k ∈ Z, there are only finitely many

a = (m1, . . . ,mk;β1, . . . , βk) with

m1 + · · ·+mk ≤ −1

m2 + · · ·+mk ≤ −1

...
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mk ≤ −1.

For these finitely many a ∈ Supp−1(µ), we write

[µ(a)X(a)] = [µ1,a] + [µ2,a]

for some [µ1,a] ∈ U(n̄S−) and [µ2,a] ∈ U(n̄)n̄S+. By definition of U(n̄S−), we have that

∑
a∈Supp−1(µ)

[µ1,a] ∈ U(n̄S−)

since the sum is finite, and

∑
a∈Supp−1(µ)

[µ2,a] +
∑

a∈Supp(µ)\Supp−1(µ)

[µ(a)X(a)] ∈ ˜U(n̄)n̄S+,

since

Supp(µ) \ Supp−1(µ) ⊂M(S)+.

This shows [µ] ∈ U(n̄S−) + ˜U(n̄S)n̄S+. The fact that U(n̄S−) ∩ ˜U(n̄S)n̄S+ = 0 follows

from the fact that U(n̄S−) ∩ U(n̄S)n̄S+ = 0, proving our proposition.
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preprint.

[St] A. V. Stoyanovsky, Lie Algebra Deformation and Character Formulas, Func-
tional Anal. Appl. 32, (1998), 66-68
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