
ALTERNATING LINEARIZATION FOR STRUCTURED

REGULARIZATION PROBLEMS

BY MINH PHAM

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Operations Research

Written under the direction of
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ABSTRACT OF THE DISSERTATION

Alternating linearization for structured regularization problems

by Minh Pham

Dissertation Director: Andrzej Ruszczyński - Xiaodong Lin

We adapt the alternating linearization method for proximal decomposition to structured regu-

larization problems. The method is related to two well-known operator splitting methods, the

Douglas-Rachford and the Peaceman-Rachford method, but it has descent properties with re-

spect to the objective function. Its convergence mechanism is related to that of bundle methods

of nonsmooth optimization. A block coordinate descent method is developed to facilitate fast

convergence. We also discuss implementation for large problems, with the use of specialized

algorithms and sparse data structures. We present numerical results for several synthetic and

real-world examples, including a three-dimensional fused lasso problem, which illustrate the

scalability, efficacy, and accuracy of the method. We further extend the alternating lineariza-

tion framework to the structured regularization problems with non-convex penalties. In this

framework, the non-convex part of the objective function is approximated via a linear model.

Therefore, in each iteration, the method solves a structured regularization problem. We present

several numerical studies with synthetic data and cancer research data.
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Chapter 1

Introduction

Optimization techniques devised for achieving parsimonious model estimations have drawn

great attention across different communities including statistics, computer science, and opera-

tions research. The reemergence of these regularization methods is the driving force for recent

advances in statistical learning and machine learning. These methods have a long history dat-

ing back to Tikhonov’s contribution for solving ill-posed problems. Regularization refers to

the introduction of additional information, usually in the form of a penalty for solving an ill-

posed inverse problem to prevent overfitting. The ℓ1 penalty is one of the most well-known and

widely-used type of penalty functions in practice. There are several reasons to its popularity.

The solution to the problem is usually sparse since the important features remain in the model

and non-important features are shrinked to zero. Computation of the solution is also simple due

to the separability of the penalty. The coordinate descent method has achieved huge success in

solving this formulation by exploiting the separability of the penalty.

In many applications, especially in image processing, brain imaging, or biology, certain

physical and domain constraints might impose structures on the solution. This extra piece of

information is crucial to the solvability of the problem and the quality of the solution. However,

a nonsmooth non-separable penalty function makes the optimization problem hard to solve.

In addition, the large size of the resulting optimization problems, in the order of millions of

variables, poses a huge computational challenge. An optimization method for this class of

problem is required to be fast, reliable, accurate and scalable.

This dissertation focuses on developing an unified optimization framework based on alter-

nating linearization for the structural regularization problem. Chapter one and two will give an

introduction on the problem of interests, literature reviews, and several selected optimization
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techniques that play an important role in the success of our framework. Chapter three intro-

duces the idea of alternating linearization and the application of the method to the Generalized

Lasso problem. Numerical studies involving interesting problems in neuro-imaging and image

processing are also provided in this chapter. Chapter four presents an extension of alternating

linearization to solve the regularization problem with structured non-convex penalties. Struc-

tured non-convex penalty is a new concept although the convex equivalence has been studied

rigorously. Chapter four also provides some numerical studies on synthetic data and cancer

research data to show that structured non-convex penalty can boost the perfomance of current

supersived learning methods. Overall, numerical studies show that alternating linearization can

be very competitive against competing methods in the literature, in most cases outperform them

by a factor of two or three in terms of running time while still providing accurate solutions.
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Chapter 2

Preliminaries

2.1 Literature review

First, we consider the class of Generalized Lasso regularization problem defined as follows:

min
β∈Rp

f(β) + λ‖Rβ‖1,

where f(β) is a loss function, R ∈ Rk×p is a specified penalty matrix. The matrix R is

determined according to the structural information from the domain and the nature of the data

set so that Rβ has some desired parsimonious structure. Several well-known regularization

problems can be casted in this form. For specific choices of matrix R, many efficient algorithms

have been proposed to solve the problem. These algorithms can be categorized into four main

frameworks: path algorithm, proximal gradient algorithm, alternating direction algorithm, and

methods for constrained optimization. There are a few exceptions in the case R = I but these

methods are either not directly applicable or not very efficient in the general framework.

When R = I, the resulting ℓ1-regularization is the most simple form of the structured reg-

ularization problem. It has been applied extensively in almost all learning problems from both

supervised and unsupervised perspective. A large amount of literature has been devoted to

studying efficient computation of the solutions and its theoretical properties. There are a few

reasons for this popularity. First, it can be formulated as a convex programming problem and

there exists many methods in optimization to solve the formulation efficiently. Moreover, espe-

cially when the dimensions of data sets are large, ℓ1 penalty can be used to obtain a parsimonious

model by letting significant features into the model and shrinking others to 0. The formulation

of a ℓ1 regularization problem takes the form:

min
β

f(β) + λ
∑

i

|βi|
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where f(β) is a convex loss function and λ is a positive parameter.

In the context of linear regression, f(β) is the least square loss. In logistic regression and

support vector machine, f(β) are the logistic loss function and hinge loss respectively. The

tuning parameter λ is used to balanced regularization and loss terms. The problem in general

produces a sparse solution, and the degree of sparsity depends on the magnitude of λ.

Many efficient techniques have been proposed to solve this problem. The earlier and more

straight-forward approach is to reformulate it as a constrained optimization problem. In the

least square setup, we solve the following constrained optimization problem:

minβ
1
2‖y −Xβ‖22

subject to:
∑p

i |βi| ≤ t

where X ∈ Rn×p is the design matrix, y ∈ Rn×1 is the vector of response variables, and

β ∈ Rp×1 is the vector of coefficients. In this approach [Tibshirani, 1996], the absolute value

constraint is replaced by a number of linear inequality constraints with new variables introduced.

The quadratic programming problem can be solved by many optimization methods including

interior point and active-set methods. This approach, however, can not be directly applied to

more general setting such as Generalized Linear Models (GLM). Moreover, in high dimensional

scenarios, solving such a large quadratic programming problem is computational challenging.

[Tibshirani, 1996] also proposed an alternative that works with the unconstrained formulation.

It is an iterative method where in each iteration, |βi| is approximated by
β2
i

|βi|
. Then a solution for

each iteration can be obtained with closed form formula. This method is efficient but proved to be

numerically unstable. In another line of work, [Kim et al., 2007] and [Koh et al., 2007] proposed

an interior-point approach for solving large scale ℓ1 regularized problem with logistic loss and

least square loss to solve the constrained quadratic programming. They used preconditioned

conjugated gradient method to solve the sub-problems. Another interesting method that can

be used to solve the box constrained quadratic programming problem is the spectral gradient

method [Birgin and Martínez, 2002]. In this method, each iteration moves from a face of the box

constraints to another to find a new estimate of the solution. In each face, a modified conjugate

gradient method is used to find the best estimate. The algorithm terminates when the spectral

gradient is small. This method tends to have slow convergence when X has p≫ n.
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The most popular method in many aspects such as efficiency, ease of implementation, and

practicality is the coordinate descent method. Coordinate descent is a classical method in

optimization. In each iteration, it keeps all but one variable fixed and the task remained is

minimizing a one-variable function. For the least square loss function, the sub-problem is very

simple and has a closed form solution. The variables can be chosen in a cyclic manner (Gauss-

Seidel method) [Tseng and Yun, 2007]. Some other important related works are [Wu and Lange,

2008] and [Friedman et al., 2007]. Although, the method works very well for least square loss

function, its extension to logistic loss function and hinge loss is not straight-forward. A more

detailed review in this aspect is given in [Yuan et al., 2010].

Another popular methods for the ℓ1 regularized problem are proximal gradient methods and

path-following methods. As described in [Liu et al., 2009], [Becker et al., 2011], and [Beck

and Teboulle, 2009], proximal gradient method relies on approximating the objective function

with a quadratic function at a carefully chosen point. This method scales very well and is very

popular in image processing community due to its capability of dealing with a large number of

variables. Another advantage of this method is its flexibility. Given that the proximity operator

can be calculated efficiently, it can be applied to a wide range of penalty functions.

Path-following algorithms produce the whole piecewise linear solution path with respect

to the parameter λ. These methods are very efficient although some can not be extended to

other types of loss function such as logistic loss. Moreover, they tend to be sensitive when the

independent varibles have high degree of multicollinearity. [Efron et al., 2004], [Rosset and

Zhu, 2007], [Zhao and Yu., 2007] are examples of this type of algorithms. A modifified Least

Angle Regression (LAR) algorithm was one of the earliest methods invented to solve the Lasso

problem. It can compute the entire path of lasso solution for λ varied from 0 to∞.The algorithm

starts with all coefficients β equal to 0. The coefficient corresponding to the predictor with most

correlation with the residual is picked and moved from 0 towards its least square estimate until

another predictor has as much correlation with the current residual is selected. The method

iterates until all coefficients have been estimated. For a Lasso coefficient path, there are only a

few critical points where new predictors enter the model.

For many practical applications, physical constraints and domain knowledge may mandate

additional structural constraints on the parameters. For example, in cancer research, it may be
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important to consider groups of interacting genes in each pathway rather than individual genes.

In image analysis, it is natural to regulate the differences between neighboring pixels in order to

achieve smoothness and reduce noise. In light of these popular demands, a variety of structured

penalties have been proposed to incorporate prior information regarding model parameters.

One of the most important structural penalties is the fused lasso proposed in [Tibshirani et al.,

2005]. It utilizes the natural ordering of input variables to achieve parsimonious parameter

estimation on neighboring coefficients. This penalty was used with much success in spatial

smoothing and hotspot detection of CGH data in cancer research. [Tibshirani et al., 2005]

formulated this problem as a constrained quadratic programming with sparse linear constraints.

[Rapaport et al., 2008] proposed a similar Fused Lasso formulation in support vector machine.

In these approaches, the numbers of constraints can extremely highg which makes conventional

quadratic programming solver infeasible. Several attempts were made to solve this fused lasso

penalty using path algorithm. [Hoefling, 2010] proposed a fast path algorithm for Fused Lasso

Signal Approximator when X = I. The method can be extended to solve more complex design

matrix X ∈ Rm×p when rank(X) = p. However, the bottleneck of this approach is the max

flow algorithm. Although the method was shown to be faster than the quadratic programming

formulation, it is still very slow for high dimensional settings.

Another framework that attracts much attention is the proximal gradient method with ac-

celeration [Nesterov, 2007]. This method is theoretically and practically attractive since it was

shown to achieve the best convergence rate for first-order methods. Moreover, it is very flexible

and easy to implement. SLEP [Liu et al., 2010b] is a very efficient method built on this frame-

work for solving the fused lasso problem. SLEP proposed a very intelligent gradient descent

method to solve the sub-problem:

min
x∈Rp

f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖22 +

p−1
∑

i=1

|xi+1 − xi|.

which is usually the overall bottleneck. Chen et al. [2010] developed the graph induced fused

lasso that penalizes differences between coefficients associated with nodes in a graph that are

connected. Chen’s method approximates the non-smooth penalty by a smooth function and

utilize gradient method with acceleration.

Alternating direction method of multipliers (ADMM) is another important framework for
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this type of fused lasso penalty. It is also very flexible and easy to implement. Moreover,

it can utilize distributed computing facility for very large scale problem [Boyd et al., 2010].

Split Bregman method belongs to this category [Ye and Xie, 2011]. All these methods are very

efficient and can handle large scale data sets. However, the performance of this implementation

relies heavily on the choice of tuning parameters. Poor choice of the parameters can lead to

very low quality solution. In many practical studies, the convergence of this method can not be

guaranteed.

Discrete total variation penalty is a widely-used regularization in image processing which

also belongs to the class of Generalized Lasso. This penalty penalizes the difference between a

pixel and its neighboring pixels in an image. Thus, a high quality image can be restored from

a noisy and blurred observered image. Beck and Teboulle [2009] proposed the total variation

penalty for image denoising and deblurring, in a similar fashion to the two-dimensional fused

lasso. This method is based on proximal gradient method with acceleration. It is considered

one of the best methods for this line of work. Several methods for total variation deblurring

based on ADMM can be found in [B. Wahlberg, 2012] [C. Li and Zhang, 2013] [D. Goldfarb

and Scheinberg., 2013] [Z. Qin and Ma.].

Similar penalty functions have been successfully applied to several neuroimaging studies

[Michel et al., 2011, Grosenick et al., 2011, 2013]. More recently, Zhang et al. [2012] applied a

generalized version of fused lasso to reconstruct gene copy number variant regions. A general

structural lasso framework was proposed in [Tibshirani and Taylor, 2011], with the following

form:

L(β) = f(β) + λ‖Rβ‖1, λ > 0, (2.1)

where R is an k × p matrix that defines the structural constraints one wants to impose on the

coefficients. Many regularization problems, including high dimensional fused lasso and graph

induced fused lasso, can be formulated in this framework.

In general, the iterative methods that have been proposed to solve the Generalized Lasso can

be cast into three categories: path algorithm, proximal gradient method, and alternating direction

methods and its related algorithms. Several path algorithms have also been proposed to compute

the whole regularization path for the general fused lasso problem. Hoefling [2010] developed

a path algorithm for solving (4.1) when the matrix XTX is nonsingular. This technique is
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not applicable to cases with large dimension of β and small number of observations, such as

gene expression and brain imaging data sets. Tibshirani and Taylor [2011] extended the path

algorithm to include all design matrices X , by computing the regularization path of the dual

problem. Although fairly general, this version of the path algorithm does not scale well with

data dimension, as the knots of the piecewise linear solution path become very dense. [Zhou

and Wu, 2012] proposed a generic path algorithm for Generalized Lasso, however this method

requires certain conditions on the rank of the structured matrix R.

The proximal gradient is a very popular method among machine learning community. It is

mainly based on Nesterov’s method of accelerated gradient [Nesterov, 2007]. A very successful

variation is Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), a method used for image

deblurring with discrete total variation penalty. FISTA minimizes an objective function that is a

composite of two functions: a smooth loss function and a non-smooth penalty function. In each

iteration of FISTA, the smooth loss function is replaced by a linearization at a specific point and

a seperable quadratic term.

min
x

f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖22 + ‖Rx‖1.

This specific point is chosen as a combination of the two previous estimates of the solution.

yk+1 = xk +
k − 2

k + 1
(xk − xk−1).

FISTA is shown to have the optimal convergence rate among the first-order methods. How-

ever, FISTA’s performance depends heavily on approximating the Lipschitz constant of ∇f .

This is not very hard to do in certain image deblurring problem, but in the p≫ n setting of the

linear inverse problem, FISTA can be very slow. In this setting, the Lipschitz constant of ∇f

can not be calculated easily so FISTA has to rely on back-tracking to find the right step-size for

each iteration. This can slow down the algorithm significantly.

Many of the proposed approaches are versions of the operator splitting methods or their dual

versions, alternating direction methods (see, e.g., Boyd et al. [2010], Combettes and Pesquet

[2010], and the references therein). The alternating direction method of multipliers (ADMM)

considers the problem:

min
x,z

f(x) + g(z) s.t : Ax+Bz = c
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In the context of the Generalized Lasso problem, the formulation is:

min
x

1

2
‖Ax− b‖22 + λ‖z‖1 s.t : Rx− z = 0.

The update rule is :

xk+1 = (ATA+ ρF tF )−1(AT b+ ρF tzk − F T yk).

zk+1 = Sλ/ρ(Fxk+1 + yk/ρ).

yk+1 = yk + ρ(Fxk+1 − zk+1).

for ρ is a parameter, Sλ/ρ(x) = sign(x)(|x| − λ/ρ)+. In every iteration of ADMM, the Aug-

mented Lagrangian is minimized with respect to each of the two primal variables x and z.

Following these is a update step for the dual variable. This strategy allows ADMM to exploit

the structures of functions f and g which are very common in many learning problems. With

proper structures, ADMM can be implemented for distributed system to deal with data sets of

high dimensions. ADMM and many related methods have been applied to succesfully solve a

wide variety of problems such as penalized least square, image denoising and deblurring, group

Lasso, and regularized logistic regression [Boyd et al., 2010], [Afonso et al., 2010], [Goldstein

and Osher, 2009]. Although fairly general and universal, they frequently suffer from slow tail

convergence (see [He and Yuan, 2011] and the references therein).

2.2 Mathematical Notation

The set of real number is denoted byR and the n−dimensional Euclidean space byRn. Rm×n

denotes the set of m× n real matrices. Superscript AT denotes the transpose of the matrix A.

The inner product of two vectors x,y ∈ Rn is denoted by:< x, y >= xT y =
∑n

j=1 xjyj . The

Euclidean norm of x ∈ R is denoted by ‖x‖2. ‖x‖0 denotes the ℓ0 norm of x. ‖x‖1 denotes the

ℓ0 norm of x: ‖x‖1 =
∑n

j=1 |xj |. ‖x‖∞ denotes the ℓ∞ norm of x or the largest component of

x.

Diag(s) denotes the matrix with the main diagonal being s or the diagonal of the matrix s.

For x ∈ R, sign(x) is the sign function of x.
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sign(x) =































+1 if x > 0.

0 if x = 0.

−1 if x < 0.

2.3 Selected optimization methods

In this section, we present several building blocks of our computation framework, they are

essential components of our method.

2.3.1 Block coordinate descent method

Block coordinate descent method (BCD) is one of the oldest methods in optimization. The

method has recently gained much attention to solve large scale problems in machine learning

and image processing. BCD is used to solve the following problem:

min
x

f(x) subject to x ∈ X (2.2)

where f(x) is a convex function and X is the product of closed convex sets X1, X2, · · · , Xm.

Decision variable vector x is partitioned into m blocks:

x = (x1, x2, · · · , xm) (2.3)

The constraint x ∈ X is is required to have a special separable structure:

xi ∈ Xi , i = 1, 2, · · · ,m (2.4)

We assume that ∀x ∈ X and ∀i = 1, 2, · · · ,m, the following optimization subproblem has a

solution :

min
ξ

f(x1, · · · , xi−1, ξ, xi+1, · · · , xm) subject to ξ ∈ Xi (2.5)

Block coordinate descent algorithm, given the estimate at iteration k, xk = (xk1, x
k
2, ·, x

k
m)

provides the following estimate in iteration k + 1:

xk+1 = argmin
ξ

f(xk1, · · · , x
k
i−1, ξ, x

k
i+1, · · · , x

k
m) subject to ξ ∈ Xi (2.6)
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The starting point x0 is chosen in X . The blocks are processed in cyclical order or updated

simultaneous. BCD works in practice with large scale problems only if minimization of the

subproblem is fairly easy. This is usually the case when xi is a low dimensional vector.

Theorem 1 [Ruszczyński, 2006] Assume that the function f is continuously differentiable over

the the set X . Moreover, assume that for every block i and x ∈ X the minimization problem

has a unique solution:

min
ξ

f(x1, · · · , xi−1, ξ, xi+1, · · · , xm) subject to ξ ∈ Xi (2.7)

Let xk be the sequence generated by the block coordinate descent method. Then, every limit

point of xk is a stationary point.

In situations where the objective function and constraints have partially decomposable structure

in terms of the decision variables, block coordinate descent method is extremely efficient. This

will be demonstrated later with numerical examples.

2.3.2 Conjugate gradient method

Conjugate gradient method can be used to efficiently minimize a quadratic function:

f(x) =
1

2
xTQx+ cTx (2.8)

where x ∈ Rn, Q is a n× n positive definite matrix.

The idea of conjugate gradient method is successively minimize f(x) along conjugate di-

rections. These conjugate directions can be found with or without knowledge of the Hessian

Q. The method can easily be applied to nonquadratic functions since any twice continuously

differentiable function can be approximated by a quadratic model in some neighborhood of its

minimum point.

Theorem 2 Assume thatd1, d2, · · · , dn are conjugate directions and that the sequencex1, x2, · · · , xn+1

is obtained by successive minimization of function f(x) in directions dk, k = 1, 2, · · · , n:

xk+1 = xk + τkd
k, and

f(xk+1) = min
τ∈R

f(xk + τdk),
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then for every k = 1, 2, · · · , n the points xk+1 is the minimum of f(x) in the linear manifold

Lk = x1 + lin{d1, d2, · · · , dn}. (2.9)

The minimum of f(x) can be found in no more than n steps.

Conjugate gradient method is described with details in the following.

• Step 0: Set k=1.

• Step 1: Calculate ∇f(xk). If ∇f(xk) = 0 then stop; otherwise continue.

• Step 2: Calculate

dk =















−∇f(xk) k = 1

−∇f(xk) + αkd
k−1 k > 1

with

αk =
〈∇f(xk),∇f(xk)−∇f(xk−1〉

‖∇f(xk−1‖2
.

• Step3: Calculate the next point

xk+1 = xk + τkd
k (2.10)

such that

f(xk+1) = min
τ≥0

f(xk + τdk). (2.11)

• Step 4: Increase k by 1 and go to Step 1.

2.4 Problem background

In this thesis, I am proposing a unified framework to solve the problem:

min
β
L(β) = f(β) + λ‖Rβ‖1, λ > 0

In a broader view, an more general problem is:

min
β
L(β) = f(β) + λ‖Rβ‖♦, λ > 0,

where ‖.‖♦ is a norm inRp, and f(β) is a convex loss function. In the context of the regression

problem, we have a matrix X ∈ Rn×p of independent variables, a vector y ∈ Rn×1 is the
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vector of the responses. Note that y can be a binary response vector. For linear regression, the

loss function f(β) is the traditional least square loss function, f(β) = 1
2‖y − Xβ‖22. If the

response vector y is binary, we have a logistic regression problem with logistic loss function

f(β) =
∑n

i=1 log(1 + e−yiX
T
i β). In this thesis, the method is presented to work with smooth

convex loss function but it can be extended to nonsmooth loss functions as well.

The matrixR ∈ Rk×p may have many different forms. WhenR = I, the identity matrix, we

have the Lasso regularization. When R is the linear operator that takes the difference between

neighboring coefficients of β, we have the fusion penalty. The fusion penalty can also be

generalized to problems in 2− d (image processing) or 3− d (neuro-imaging). Other problems

that can be posed in this format can be found in [Tibshirani and Taylor, 2011].
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Chapter 3

Convex penalties

3.1 Introduction

Regularization techniques that encourage sparsity in parameter estimation have gained increas-

ing popularity recently. The most widely used example is lasso [Tibshirani, 1996], where the

loss function f(·) is penalized by the ℓ1-norm of the unknown coefficients β ∈ ❘p, to form a

modified objective function,

L(β) = f(β) + λ‖β‖1, λ > 0, (3.1)

in order to shrink irrelevant coefficients to zero. Many efficient algorithms have been proposed

to solve this problem, including [Fu, 1998, Daubechies et al., 2004, Efron et al., 2004] and

[Friedman et al., 2007]. Some of them are capable of handling massive data sets with tens of

thousands of variables and observations.

For many practical applications, physical constraints and domain knowledge may mandate

additional structural constraints on the parameters. For example, in cancer research, it may be

important to consider groups of interacting genes in each pathway rather than individual genes.

In image analysis, it is natural to regulate the differences between neighboring pixels in order to

achieve smoothness and reduce noise. In light of these popular demands, a variety of structured

penalties have been proposed to incorporate prior information regarding model parameters.

One of the most important structural penalties is the fused lasso proposed in [Tibshirani et al.,

2005]. It utilizes the natural ordering of input variables to achieve parsimonious parameter

estimation on neighboring coefficients. Chen et al. [2010] developed the graph induced fused

lasso that penalizes differences between coefficients associated with nodes in a graph that are

connected. Beck and Teboulle [2009] proposed the total variation penalty for image denoising

and deblurring, in a similar fashion to the two-dimensional fused lasso. Similar penalty functions



15

have been successfully applied to several neuroimaging studies [Michel et al., 2011, Grosenick

et al., 2011, 2013]. More recently, Zhang et al. [2012] applied a generalized version of fused

lasso to reconstruct gene copy number variant regions. A general structural lasso framework

was proposed in [Tibshirani and Taylor, 2011], with the following form:

L(β) = f(β) + λ‖Rβ‖1, λ > 0, (3.2)

where R is an m × p matrix that defines the structural constraints one wants to impose on the

coefficients. Many regularization problems, including high dimensional fused lasso and graph

induced fused lasso, can be cast in this framework.

When the structural matrix R is relatively simple, as in the original lasso case with R = I ,

traditional path algorithms and coordinate descent techniques can be used to solve the optimiza-

tion problem efficiently [Friedman et al., 2007]. For more complex structural regularization,

these methods cannot be directly applied. One of the key difficulties is the non-separability

of the nonsmooth penalty function. Coordinate descent methods fail to converge under this

circumstances [Tseng, 2001]. Generic solvers, such as interior point methods, can sometimes

be used; unfortunately they become increasingly inefficient for large size problems, particularly

when the design matrix is ill-conditioned [Chen et al., 2011].

In the past two years, many efforts have been devoted to developing efficient optimization

techniques for solving regularization problems using structured penalties. Liu et al. [2010a] and

Ye and Xie [2011] developed a first-order and a split Bregman scheme, respectively, for solving

similar class of problems. In many practical studies, the convergence of these two methods can

not be guaranteed. Chen et al. [2011] proposed a modified proximal technique for the general

structurally penalized problems. It is based on a first order approximation of the nonsmooth

penalty function, which can become unstable when dimension is high. Meanwhile, several path

algorithms have also been proposed to compute the whole regularization path for the general

fused lasso problem. Hoefling [2010] developed a path algorithm for solving (4.1) when the

matrix XTX is nonsingular. This technique is not applicable to cases with large dimension

of β and small number of observations, such as gene expression and brain imaging analysis.

Tibshirani and Taylor [2011] extended the path algorithm to include all design matrices X , by

computing the regularization path of the dual problem. Although fairly general, this version
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of the path algorithm does not scale well with data dimension, as the knots of the piecewise

linear solution path become very dense. Many of the proposed approaches are versions of the

operator splitting methods or their dual versions, alternating direction methods (see, e.g., Boyd

et al. [2010], Combettes and Pesquet [2010], and the references therein). Although fairly general

and universal, they frequently suffer from slow tail convergence (see [He and Yuan, 2011] and

the references therein).

Thus, a need arises to develop a general approach that can solve large scale structured

regularization problem efficiently. For such an approach to be successful in practice, it should

guarantee to converge at a fast rate, be able to handle massive data sets, and should not rely on

approximating the penalty function. In this dissertation, we propose a framework based on the

alternating linearization algorithm of [Kiwiel et al., 1999], that satisfies all these requirements.

We consider the following generalization of (4.1):

L(β) = f(β) + λ‖Rβ‖♦, λ > 0, (3.3)

where ‖ · ‖♦ is a norm in❘m. Our considerations and techniques will apply to several possible

choices of this norm, in particular, to the ℓ1 norm ‖ · ‖1, and to the total variation norm ‖ · ‖TV

used in image processing.

Formally, we write the objective function as a sum of two convex functions,

L(β) = f(β) + h(β), (3.4)

where f(β) is a loss function, which is assumed to be convex with respect to β, and h(·) is a

convex penalty function. Any of the functions (or both) may be nonsmooth, but an essential

requirement of our framework is that each of them can be easily minimized with respect to β,

when augmented by a linear-quadratic term
∑p

i=1

(

siβi + diβ
2
i

)

, with some vectors s, d ∈ ❘p,

d > 0. Our method bears resemblance to operator splitting and alternating direction approaches,

but differs from them in the fact that it is monotonic with respect to the values of (3.5). We

discuss these relations and differences later in section ??, but roughly speaking, a special test

applied at every iteration of the method decides which of the operator splitting iterations is the

most beneficial one.

In our applications, we focus on the quadratic loss function f(·) and the penalty function in

the form of generalized lasso (3.3), as the most important case, where comparison with other
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approaches is available. This case satisfies the requirement specified above, and allows for

substantial specialization and acceleration of the general framework of alternating linearization.

In fact, it will be clear from our presentation that any convex loss function f(·) can be handled

in exactly the same way.

An important feature of our approach is that problems with the identity design matrix are

solved exactly in one iteration, even for very large dimension.

The remainder of the chapter is organized as follows. In Section 3.3, we introduce the

alternating linearization method and we discuss its relations to other approaches. Section 3.4

briefly discusses the application to lasso problems. In section 3.5 we describe the application

to generalized lasso problems. Section 3.6 presents simulation results and real data examples,

which illustrate the efficacy, accuracy, and scalability of the alternating linearization method.

Concluding remarks are presented in section 4.4. The appendix contains details about the

algorithms used to solve the subproblems of the alternating linearization method.

3.2 Optimality condition

In this section, we consider the optimality condition of the problem:

min
β
L(β) =

1

2
‖y −Xβ‖22 + λ‖Rβ‖1, λ > 0.

The analysis can be easily extended to the case where the loss function f(β) is the log-likehood

function. In addition, a more general formulation of the problem above is:

min
β
L(β) =

1

2
‖y −Xβ‖22 + λ‖Rβ‖♦, λ > 0.

where ‖ · ‖♦ is any norm ∈ Rp. To construct the optimality condition of this problem, we will

need the definition of subgradient and some elements of subdifferential calculus [Ruszczyński,

2006].

Definition 1 Let f : Rn → R be a proper convex function and let x ∈ domf . A vector

g ∈ Rn: f(y) ≥ f(x) + 〈g, y − x〉∀y ∈ Rn is called a subgradient of f at x. ∂f(x) is the set

of subgradients of f at x.

Lemma 1 Let f : Rn → R be a convex function, A ∈ Rm×n, and h(x) = f(Ax), then

∂h(x) = AT∂f(Ax), ∀x.
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Lemma 2 Let ‖ · ‖♦ is any norm ∈ Rn. Define the dual norm as:

‖g‖∗ = sup
d 6=0

〈g, d〉

‖d‖♦
= sup

‖d‖♦=1
〈g, d〉.

then

∂‖x‖♦ = {g ∈ Rn : ‖g‖∗ ≤ 1, 〈g, x〉 = ‖x‖♦}.

When the loss function f(β) = 1
2‖y −Xβ‖22 then we have:

∂L(β) = XTXβ −XT y + ∂h(β).

where h(β) = λ‖Rβ‖♦. In particular, if ‖ · ‖♦ = ‖ · ‖1, then the dual norm ‖g‖∗ = ‖g‖∞, we

have:

∂h(β) = {λRT g : ‖g‖∞ = 1, 〈g,Rβ〉 = ‖Rβ‖1}.

when Rβ 6= 0. At the optimal β, zero is an element of the subdifferential, we have:

0 = XTXβ −XT y + λRT ĝ.

for a ĝ that satisfies the conditions above . Let z = XT y −XTXβ, then we have:


























z = λRT ĝ.

‖g‖∞ = 1.

〈ĝ, Rβ〉 = ‖Rβ‖1.

Let Rj be the jth row of matrix R, denote:

J+ = {j : Rjβ > 0}.

J− = {j : Rjβ < 0}.

J0 = {j : Rjβ = 0}.

From the last two conditions we get:

ĝj =































1 if j ∈ J+.

−1 if j ∈ J−.

pj if j ∈ J0.

for pj ∈ [−1, 1].
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3.3 Alternating linearization method

3.3.1 Outline of the method

In this section, we describe the alternating linearization (ALIN) approach to minimize:

L(β) = f(β) + h(β), (3.5)

It is an iterative method, which generates a sequence of approximations {β̂k} converging to

a solution of the original problem (3.5), and two auxiliary sequences: {β̃k
h} and {β̃k

f}, where

k is the iteration number. Each iteration of the ALIN algorithm consists of solving two sub-

problems: the h-subproblem and the f -subproblem, and of an update step, applied after any

of the subproblems, or after each of them. At the beginning we set β̃0
f = β̂0, where β̂0 is the

starting point of the method. In the description below, we suppress the superscript k denoting

the iteration number, to simplify notation.

The h-subproblem

We linearize f(·) at β̃f , and approximate it by the function

f̃(β) = f(β̃f ) + sTf (β − β̃f ).

If f(·) is differentiable, then sf = ∇f(β̃f ); for a general convex f(·), we select a subgradient

sf ∈ ∂f(β̃f ). In the first iteration, this may be an arbitrary subgradient; at later iterations special

selection rules apply, as described in (3.9) below.

The approximation is used in the optimization problem

min
β

f̃(β) + h(β) + 1
2‖β − β̂‖2D, (3.6)

in which the last term is defined as follows:

‖β − β̂‖2D = (β − β̂)TD(β − β̂),

with a diagonal matrix D = diag{dj , j = 1, . . . , p}, dj > 0, j = 1, . . . , p. The solution of the

h-subproblem (3.6) is denoted by β̃h.
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We complete this stage by calculating the subgradient of h(·) at β̃h, which features in the

optimality condition for the minimum in (3.6):

0 ∈ sf + ∂h(β̃h) +D(β̃h − β̂).

Elementary calculation yields the right subgradient sh ∈ ∂h(β̃h):

sh = −sf −D(β̃h − β̂). (3.7)

The f -subproblem

Using the subgradient sh we construct a linear minorant of the penalty function h(·) as follows:

h̃(β) = h(β̃h) + sTh (β − β̃h).

This approximation is employed in the optimization problem

min
β

f(β) + h̃(β) + 1
2‖β − β̂‖2D. (3.8)

The optimal solution of this problem is denoted by β̃f . It will be used in the next iteration as the

point at which the new linearization of f(·) will be constructed. The next subgradient of f(·)

to be used in the h-subproblem will be

sf = −sh −D(β̃f − β̂). (3.9)

The update step

The update step can be applied after any of the subproblems, or after both of them. It changes

the current best approximation of the solution β̂, if certain improvement conditions are satisfied.

It uses a parameter γ ∈ (0, 1). We describe it here for the case of applying the update step after

the f -subproblem; analogous operations are carried out if the update step is applied after the

h-subproblem.

At the beginning of the update step the stopping criterion is verified. If

f(β̃f ) + h̃(β̃f ) ≥ f(β̂) + h(β̂)− ε, (3.10)

the algorithm terminates. Here ε > 0 is the stopping test parameter.
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If the the stopping test is not satisfied, we check the inequality

f(β̃f ) + h(β̃f ) ≤ (1− γ)
[

f(β̂) + h(β̂)
]

+ γ
[

f(β̃f ) + h̃(β̃f )
]

. (3.11)

If it is satisfied, then we update β̂ ← β̃f ; otherwise β̂ remains unchanged.

If the update step is applied after theh-subproblem, we use β̃h instead if β̃f in the inequalities

(3.10) and (3.11).

The update step is a crucial component of the alternating linearization algorithm; it guar-

antees that the sequence {L(β̂k)} is monotonic, and it stabilizes the entire algorithm (see the

remarks at the end of section 3.6.2).

3.3.2 Convergence

Convergence properties of the alternating linearization method follow from the general theory

developed in [Kiwiel et al., 1999]. Indeed, after the change of variables ξ = D1/2β we see that

the method is identical to Algorithm 3.1 of [Kiwiel et al., 1999], with ρk = 1. The following

statement is a direct consequence of [Kiwiel et al., 1999, Theorem 4.8].

Theorem 3 Suppose that the set of minima of the function (3.5) is nonempty. Then the sequence

{β̂k} generated by the algorithm is convergent to a minimum point β∗ of the function (3.5).

Moreover, every accumulation point (s∗f , s
∗
h) of the sequence {(skf , s

k
h)} satisfies the relations:

s∗f ∈ ∂f(β∗), s∗h ∈ ∂h(β∗), and s∗f + s∗h = 0.

For structured regularization problems the assumption of the theorem is satisfied, because

both the loss function f(·) and the regularizing function h(·) are bounded from below, and one

of the purposes of the regularization term is to make the set of minima of the function L(·)

nonempty and bounded.

3.4 Application to lasso regression

First, we demonstrate the alternating linearization algorithm (ALIN) on the classical lasso re-

gression problem. Due to the separable nature of the penalty function, very efficient coordinate

descent methods are applicable to this problem as well [Tseng, 2001], but we wish to illustrate

our approach on the simplest case first.
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In the lasso regression problem we have

f(β) = 1
2‖y −Xβ‖22, h(β) = λ‖β‖1,

where X is the n× p design matrix, y ∈ ❘n is the vector of response variables, β ∈ ❘p is the

vector of regression coefficients, and λ > 0 is a parameter of the model.

We found it essential to use D = diag(XTX), that is, dj = XT
j Xj , j = 1, . . . , p. This

choice is related to the diagonal quadratic approximation of the function f(β) = 1
2‖y −

Xβ‖22, which was employed (for similar objectives in the context of augmented Lagrangian

minimization) by Ruszczyński [1995]. Indeed, in the h-subproblem in the formula (3.12)

below, the quadratic regularization term is a quadratic form built on the diagonal of the Hessian

of f(·).

The h-subproblem

The problem (3.6), after skipping constants, simplifies to the following form

min
β

sTf β + λ‖β‖1 +
1
2‖β − β̂‖2D, (3.12)

with sf = XT (Xβ̃f − y). Writing τj = β̂ − s̃fj/dj , we obtain the following closed form

solutions of (3.12), which can be calculated component-wise:

β̃hj = sgn(τj)max
(

0, |τj | −
λ

dj

)

, j = 1, . . . , p. (3.13)

The subgradient sh of h(·) at β̃h is calculated by (3.7).

The f -subproblem

The problem (3.8), after skipping constants, simplifies to the unconstrained quadratic program-

ming problem

min
β

sThβ + 1
2‖y −Xβ‖22 +

1
2‖β − β̂‖2D. (3.14)

Its solution can be obtained by solving the following symmetric linear system in δ = β − β̂:

(XTX +D)δ = XT (y −Xβ̂)− sh. (3.15)
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This system can be efficiently solved by the preconditioned conjugate gradient method (see, e.g.,

[Golub and Van Loan, 1996]), with the diagonal preconditioner 2D = 2 diag(XTX). Its appli-

cation does not require the explicit form of the matrix XTX; only matrix-vector multiplications

with X and XT are employed, and they can be implemented with sparse data structures.

3.5 Application to general structured regularization problems

In the following we apply the alternating linearization algorithm to solve more general structured

regularization problems including the generalized Lasso (3.3). Here we assume the least square

loss, as in the previous subsection. The objective function can be written as follows:

L(β) = f(β) + h(β) = 1
2‖y −Xβ‖22 + λ‖Rβ‖♦. (3.16)

For example, for the one-dimensional fused lasso, R is the following (p− 1)× p matrix:

R =



















−1 1 0 . . . 0

0 −1 1 . . . 0

. . . . . . . . . . . . . . . . . . . .

0 0 . . . −1 1



















,

and the norm ‖ · ‖♦ is the ℓ1-norm ‖ · ‖1, but our derivations are valid for any form of R, and

any norm ‖ · ‖♦.

The h-subproblem

The h-subproblem can be equivalently formulated as follows:

min
β,z

sTf β + λ‖z‖♦ + 1
2‖β − β̂‖2D subject to Rβ = z. (3.17)

Owing to the use of D = diag(XTX), and with sf = XT (Xβ̂ − y), it is a quite accurate

approximation of the original problem, especially for sparse X [Ruszczyński, 1995].

The Lagrangian of problem (3.17) has the form

L(β, z, µ) = sTf β + λ‖z‖♦ + µT (Rβ − z) + 1
2‖β − β̂‖2D,

where µ is the dual variable. Consider the dual norm ‖ · ‖∗, defined as follows:

‖µ‖∗ = max
‖z‖♦≤1

µT z, ‖z‖♦ = max
‖µ‖∗≤1

µT z. (3.18)
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We see that the minimum of the Lagrangian with respect to z is finite if and only if ‖µ‖∗ ≤ λ

[Ruszczyński, 2006, Example 2.94]. Under this condition, the minimum value of the z-terms

is zero and we can eliminate them from the Lagrangian. We arrive to its reduced form,

L̂(β, µ) = sTf β + µTRβ + 1
2‖β − β̂‖2D. (3.19)

To calculate the dual function, we minimize L̂(β, µ)overβ ∈ ❘p. After elementary calculations,

we obtain the solution

β̃h = β̂ −D−1(sf +RTµ). (3.20)

Substituting it back to (3.19), we arrive to the following dual problem:

max
µ
−1

2µ
TRD−1RTµ+ µTR(β̂ −D−1sf ) subject to ‖µ‖∗ ≤ λ. (3.21)

This is a norm-constrained optimization problem. Its objective function is quadratic, and the

specific form of the constraints depends on the norm ‖ ·‖♦ used in the regularizing term of (3.3).

The case of the ℓ1-norm

If the norm ‖ · ‖♦ is the ℓ1-norm ‖ · ‖1, then the dual norm is the ℓ∞-norm:

‖µ‖∗ = ‖µ‖∞ = max
1≤j≤m

|µj |.

In this case (3.21) becomes a box-constrained quadratic programming problem, for which many

efficient algorithms are available. One possibility is the active-set box-constrained precondi-

tioned conjugate gradient algorithm with spectral projected gradients, as described in [Birgin

and Martínez, 2002, Friedlander and Martínez, 1994]. It should be stressed that its application

does not require the explicit form of the matrix RD−1RT ; only matrix-vector multiplications

with R and RT are employed, and they can be implemented with sparse data structures.

An even better possibility, due to the separable form of the constraints, is coordinate-wise

optimization (see, e.g., [Ruszczyński, 2006, Sec. 5.8.2]) in the dual problem (3.21). In our exper-

iments, the dual coordinate-wise optimization method strictly outperforms the box-constrained

algorithm, in terms of the solution time.

The solution µ̃ of the dual problem can be substituted into (3.20) to obtain the primal solution.
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The case of a sum of ℓ2-norms

Another important case arises when the vector z = Rβ is split into I subvectors

z1, z2, . . . , zI , and

‖z‖♦ =

I
∑

i=1

‖zi‖2. (3.22)

A special case of it is the total variation norm discussed in section 3.6.4.

We can directly verify that the dual norm has the following form:

‖µ‖∗ = max
1≤i≤I

‖µi‖2.

It follows that problem (3.21) is a block-quadratically constrained quadratic optimization prob-

lem:

max
µ
− 1

2µ
TRD−1RTµ+ µTR(β̂ −D−1sf )

s. t. ‖µi‖22 ≤ λ2, i = 1, . . . , I.

(3.23)

This problem can be very efficiently solved by a cyclical block-wise optimization with respect

to the subvectors µ1, µ2, . . . , µI . At each iteration of the method, optimization with respect to

the corresponding subvector µj is performed, subject to one constraint ‖µj‖22 ≤ λ2. The other

subvectors, µi, i 6= j are kept fixed on their last values. After that, j is incremented (if j < I)

or reset to 1 (if j = I), and the iteration continues. The method stops when no significant

improvements over I steps can be observed. The dual block optimization method performs well

in the applications we are interested in.

Again, the solution µ̃ of the dual problem is substituted into (3.20) to obtain the primal

solution.

The f -subproblem

We obtain the update β̃f by solving the linear equation system (3.15), exactly as in the lasso

case.

The special case of X = I

If the design matrix X = I in (3.16), then our method solves the problem in one iteration, when

started from β̂ = y. Indeed, in this case we have sf = 0, D = I , and the first h-subproblem
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becomes equivalent to the original problem (3.16):

min
β,z

λ‖z‖♦ + 1
2‖β − y‖22 subject to Rβ = z. (3.24)

The dual problem (3.21) simplifies as follows:

max
µ
−1

2µ
TRRTµ+ µTRy subject to ‖µ‖∗ ≤ λ. (3.25)

It can be solved by the same block-wise optimization method, as in the general case. The optimal

primal solution is then β̃h = y −RTµ.

3.6 Numerical experiments

In this section, we present results on a number of simulations and real data studies involving

a variety of non-differentiable penalty functions. We compare the alternating linearization

algorithm (ALIN) with competing approaches in terms of iteration steps, computation time, and

estimation accuracy. All these studies are performed on an AMD 2.6GHZ, 4GB RAM computer

using MATLAB.

3.6.1 ℓ1 regularization

In this section, we compare ALIN with some competing methods for solving the ℓ1 regularization

problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1, λ > 0. (3.26)

The methods that we are comparing with are: SpaRSA, a type of iterative thresholding method,

considered the best method among its variations; FISTA, a variation of the Nesterov method,

considered to be state-of-the-art among the first order methods; and SPG, a spectral gradient

method. We follow the procedure described by [Wright et al., 2009] to generate a data set

for comparisons. The elements of the matrix X are generated independently using a Gaussian

distribution with mean zero and variance 10−2. The dimension of X is n = 210 by p = 212,

p = 213, and p = 214. The true signal, β, is a vector with 160 randomly placed ±1 spikes and

zeros elsewhere. The dependent variables are y = Xβ + ǫ, where ǫ is Gaussian noise with

variance 10−4.
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To make a fair comparison between the methods, we run FISTA on each instance of the

problem. FISTA is set to run to “tol” = 10−5 or 5, 000 iterations, whichever comes first. Then

ALIN, SpaRSA, and SPG are set to run until the objective function values obtained are as

good as that of FISTA. We set a parameter τ = 0.1‖XT y‖∞ and chose values of λ =τ, 10−1τ ,

5×10−2τ , 10−2τ , and 10−3τ . We allow SpaRSA to run its monotone and continuation feature.

Continuation is a special feature of SpaRSA for cases when the parameter λ is small. With this

feature, SpaRSA computes the solutions for bigger values of λ and uses them to find solutions

for smaller values of λ. We did not let SpaRSA use its special feature de-bias since it involves

removing zero coefficients to reduce the size of the data set. This feature makes it unfair for the

other competing methods. In Table 3.1, we report the average time elapsed (in seconds) and the

standard deviation after 20 runs.

Table 3.1: Average run time (in CPU seconds) and standard deviation (in parenthesis) compar-
ison for combinations of dimension p and tuning parameter λ.

p = 212 p = 213 p = 214

λ = τ ALIN 17.99 (10.68) 36.60 (15.08) 105.14 (40.88)
FISTA 8.58 (4.00) 18.63 (9.35) 58.73 (42.01)

SPARSA 8.18 (2.34) 8.18 (3.80) 34.23 (49.55)
SPG 160.72 (27.48) 160.72 (47.82) 404.59 (79.62)

λ = 10−1τ ALIN 9.35 (2.99) 34.01 (15.18) 74.06 (34.27)
FISTA 16.91 (4.57) 36.43 (16.66) 131.91 (33.94)

SPARSA 20.55 (10.08) 36.81 (19.29) 169.88 (73.01)
SPG 136.26 (23.30) 186.94 (46.56) 460.71 (38.93)

λ = 5× 10−2τ ALIN 6.30 (2.73) 21.83 (10.17) 65.79 (39.49)
FISTA 18.88 (2.95) 48.37 (15.77) 158.73 (21.86)

SPARSA 35.56 (11.32) 74.66 (24.49) 234.75 (64.67)
SPG 140.00 (23.15) 190.43 (45.48) 473.78 (6.41)

λ = 10−2τ ALIN 4.58 (2.05) 16.96 (10.99) 28.88 (16.03)
FISTA 18.85 (3.04) 46.58 (14.91) 169.94 (19.76)

SPARSA 33.52 (16.10) 76.69 (28.18) 214.85 (124.56)
SPG 140.63 (22.43) 196.54 (43.96) 483.71 (4.51)

λ = 10−3τ ALIN 3.68 (1.20) 6.67 (2.43) 20.16 (4.31)
FISTA 18.88 (2.84) 45.40 (14.28) 162.85 (36.76)

SPARSA 19.94 (12.10) 39.55 (27.45) 92.76 (102.53)
SPG 138.73 (19.56) 201.74 (48.09) 467.91 (101.32)

We can see that the performance of ALIN is comparable to the other methods. In terms of

running time, ALIN does better than all competing methods for the range of middle and small

values of λ. For large values of λ, ALIN does worse than FISTA and SPARSA. For large values
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of λ, the solution is fairly close to the starting point 0, therefore the overhead cost of the update

steps and the f -subproblem would slow down ALIN. When the value of λ reduces, the benefits

of these steps become more evident, when ALIN outperforms other methods in terms of running

time, by factors of two to three. We should also note that the implementation of FISTA was in

C, and SpaRSA is a very efficient method specially designed for separable regularization. From

our numerical studies, for medium and small values of λ, FISTA makes very small improvement

over 5, 000 iterations and SPARSA has to go through many previous values of λ to reach the

desired level of objective function values.

3.6.2 Fused Lasso regularization

In this experiment, we compare the ALIN algorithm with two different approaches using data

sets generated from a linear regression model y =
∑p

j=1 xjβj+ǫ, with pre-specified coefficients

βj , and varying dimension p. The values of xj are drawn from the normal distribution with zero

mean and unit variance. The noise ǫ is generated from the normal distribution with zero mean

and variance equal to 0.01. Among the coefficients βj , 10% equal 1, 20% equal 2, and the rest

are zero. For instance, with p = 100, we may have

βj =































1 for j = 11, 12, . . . , 20,

2 for j = 21, . . . , 40,

0 otherwise.

Table 3.2 reports the run times of ALIN and three competing algorithms: the generic

quadratic programming solver (SQOPT), an implementation of Nesterov’s method, SLEP, of

[Liu et al., 2011, Nesterov, 2007], and the split Bregman method of [?] (BREGMAN). We

fix the sample size to n=1000 and vary the dimension p of the problem from 1000 to 50000.

Each method is repeated 10 times over different values of turning parameter λ and the average

running time is reported. SLEP’s stopping parameter “tol” was set to 10−5. BREGMAN also

uses stopping parameter “tol”= 10−5. We stop ALIN runs when the objective function value

attained is as good as the last value attained by SLEP. Judging from these results, ALIN clearly

outperforms the other methods in terms of speed for most cases. The relative improvements on

run time can be as much as 8 fold, depending on the experimental setting, and become more
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Table 3.2: Run time (in CPU seconds) comparison for combinations of dimension p and tuning
parameter λ

p = 1000 p = 5000 p=10,000 p=20,000 p=50,000
λ = 10−4 SQOPT 10 1076 NA NA NA

SLEP 3 1 2 3 5
ALIN 6 0.5 1 2 5

BREGMAN 111 24 25 38 52
λ = 10−3 SQOPT 9 1025 NA NA NA

SLEP 4 99 921 2661 4150
ALIN 9 31 248 665 1278

BREGMAN 114 21 23 30 49
λ = 10−2 SQOPT 11 1019 NA NA NA

SLEP 2 109 400 1571 6441
ALIN 6 17 77 313 815

BREGMAN 114 23 57 96 106
λ = 0.1 SQOPT 11 956 NA NA NA

SLEP 0.4 42 145 508 1358
ALIN 4 22 80 280 387

BREGMAN 103 471 879 2133 3633
λ = 0.2 SQOPT 11 1015 NA NA NA

SLEP 1 47 121 387 2251
ALIN 4 52 100 284 1360

BREGMAN 87 492 833 1543 3541
λ = 0.5 SQOPT 11 1029 NA NA NA

SLEP 0.9 36 111 386 1584
ALIN 3 47 144 371 1730

BREGMAN 60 503 924 1633 3543

significant, when the data dimension grows. This is particularly significant in view of the fact

that ALIN was implemented as a MATLAB code, as opposed to the executables in the other

cases. Figure 4.2 presents the solutions obtained by ALIN and SLEP compared to the known

parameters. Both ALIN and SLEP achieve results that are very close to the original β, and

the objective function values are very similar. BREGMAN performs well when the number

of parameters p is not significantly larger than the number of observations n. When p ≫ n,

although BREGMAN has a very good running time, it tends to terminate early and does not

provide accurate results. In Fig 4.2, we can see that the solution obtained by BREGMAN is not

as good as those of SLEP and ALIN.
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Figure 3.1: Results of using fused lasso penalty on a simulated data set withn = 1000, p = 5000,
and λ = 0.2. Plots (a), (b), (c), and (d) correspond to the original β, results from BREGMAN,
SLEP, and ALIN, respectively.

We also investigated how our method approaches the optimal objective function value com-

pared to other methods. Using the above simulated data set with n = 1000, p = 5000, and

λ = 0.1, we run ALIN and SLEP to convergence. At each iteration, we calculated the differ-

ence between the optimal value L∗ (obtained by SQOPT) and the current function value for

each method. Figure 3.2 displays (in a logarithmic scale) the progress of both methods. It is

clear that ALIN achieves the same accuracy as SLEP in a much smaller number of iterations.

Furthermore, the convergence of ALIN is monotonic, whereas that of SLEP is not.

In Figure 3.3 we provide the dependence of the running time of ALIN on the dimensions

of the problem, to illustrate its scalability. The efficiency of the method is due mainly to its

good convergence properties, but also to the efficiency of the preconditioned conjugate gradient

method for solving the subproblems. It employs sparse data structures and converges rapidly.

Usually, between 10 and 20 iterations of the conjugate gradient method are sufficient to find the



31

(a) SLEP

(b) ALIN

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-2

0

2

4

6

8

10

12

14

ln
(E

rr
o
r)

Figure 3.2: Simulated data set with n = 1000, p = 5000, λ=0.1. Plots (a) and (b): ln(Error)
versus iteration number of SLEP and ALIN, respectively. Error is defined as the difference
between the optimal value L∗ (obtained by SQOPT) and those obtained by SLEP and ALIN
respectively.

solution of a subproblem.

The update test (3.11) is an essential element of the ALIN method. For example, in a case

with n = 1000, p = 5000, and λ = 0.1, the update of β̂ occurred in about 80% of the total of

70 iterations, while other iterations consisted only of improving alternating linearizations. If we

allow updates of β̂ at every step, the algorithm takes more than 5000 iterations to converge in this

case. Similar behavior was observed in all other cases. These observations clearly demonstrate

the difference between the alternating linearization method and the operator splitting methods.

3.6.3 CGH data example

In this study we present the results on analyzing the CGH data using fused lasso penalty. CGH is

a technique for measuring DNA copy numbers of selected genes on the genome. The CGH array

experiments return the log ratio between the number of DNA copies of the gene in the tumor

cells and the number of DNA copies in the reference cells. A value greater than zero indicates a
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Figure 3.3: Running time of SLEP and ALIN as dimension changes.
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Figure 3.4: Fused lasso applied to CGH data, λ = 3.

possible gain, while a value less than zero suggests possible losses. Tibshirani and Wang [2008]

applied the fused lasso signal approximator for detecting such copy number variations. This

is a simple one-dimensional signal approximation problem with the design matrix X being the

identity matrix. Thus the advantage of ALIN over the other three methods is not significant, due

to the overhead that ALIN has during the conjugate gradient method implemented in MATLAB.

Indeed the solution time of ALIN is comparable to that of Bregman and SLEP.

Figure 3.4 presents the estimation results obtained by our ALIN method. The green dots

shows the original CNV number, and the red line presents the fused lasso penalized estimates.

3.6.4 Wavelet based and Total variation based image reconstruction

In image recovery literature, two classes of regularizers are well known. One is the Tikhonov

type of operators, where the regularizing term is quadratic, and the other is the discrete total

variation (TV) regularizer. The resulting objective function from the first type is relatively easy
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to minimize, but it tends to over-smooth the image, thus failing to preserve its sharpness [Wang

et al., 2008]. In the following experiment, we demonstrate the effectiveness of ALIN in solving

TV-based image deblurring problems, with discrete TV, as well as a comparison to the Tikhonov

regularizer.

Although of similar form, higher-order fused lasso models are fundamentally different from

the one-dimensional fused lasso, as the structural matrix R appearing in eq. (3.3) is not full-rank

and RTR is ill-conditioned. This additional complication introduces considerable challenges

in the path type algorithms [?], and additional computational steps need to be implemented to

guarantee convergence. The ALIN algorithm does not suffer from complications due to the

singularity of R, because the dual problem (3.21) is always well-defined and has a solution.

Even if the solution is not unique, (3.20) is still an optimal solution of the h-subproblem, and

the algorithm proceeds unaffected.

Let y be an m× n observed noisy image; one attempts to minimize the following objective

function:

L(β) = 1
2‖y −A(β)‖

2
2 + λh(β), (3.27)

where h(β) is an image variation penalty, and A : ❘m×n → ❘m×n is a linear transformation.

WhenA is the identity transformation, the problem is to denoise the image y, but we are rather

interested in a significantly more challenging problem of deblurring, where A replaces each

pixel with the average of its neighbors and itself (typically, a 3 by 3 block, except for the border).

The penalty can be defined as the ℓ1-norm of the differences between neighboring pixels (

ℓ1-TV ),

h(β) =

m−1
∑

i=1

n−1
∑

j=1

(

|βi,j −βi+1,j |+ |βi,j −βi,j+1|
)

+

m−1
∑

i=1

|βi,n−βi+1,n|+
n−1
∑

j=1

|βm,j −βm,j+1|,

(3.28)

or as follows (ℓ2-TV ):

h(β) =

m−1
∑

i=1

n−1
∑

j=1

(

|βi,j−βi+1,j |
2+|βi,j−βi,j+1|

2
)1/2

+

m−1
∑

i=1

|βi,n−βi+1,n|+
n−1
∑

j=1

|βm,j−βm,j+1|.

(3.29)

It is clear that both cases can be cast into the general form (3.3), with the operatorR representing

the evaluation of the differences βi,j−βi+1,j and βi,j−βi,j+1. The regularizing function (3.28)

corresponds to the ℓ1-norm of Rβ, while the function (3.29) corresponds to a norm of form
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(3.22). In the latter case, we have mn blocks, each of dimension two, except for the border

blocks, which are one-dimensional.

In the following experiments, we apply the ℓ1-TV to recover noisy and blurred images to

their original forms. The resulting regularization problems are rather complex. Deblurring a

256 by 256 image results in solving a very large generalized lasso problem (the matrix R has

dimensions of about 262000× 66000). The f -subproblem is solved using the block coordinate

descent method and the h-subproblem is solved using the conjugate gradient method with

“tol” = 10−5, as discussed previously. The fact that A and R are sparse matrices makes the

implementation very efficient, as demonstrated in the numerical study.

First, we blur the image, by replacing each pixel with the average of its neighbors and itself.

This operation defines the kernel operator A used in the loss function 1
2‖y − A(β)‖

2
2. Then

we add N(0, 0.02) noise to each pixel. Clearly, for image deblurring, the design matrix is

no longer the identity matrix, thus the problem is more complicated than the image denoising

problem. The deblurring results on a standard example (“Lena”) are shown in Figure 3.5; similar

deblurring results from ALIN and FISTA are observed.

Next, we run the image deblurring on a 1 Megapixel image. We compare the result of

image deblurring using the ℓ1-TV and a quadratic Tiknonov regularization approach, which

corresponds to formula (3.29) without the square root operations:

h(β) =
m−1
∑

i=1

n−1
∑

j=1

|βi,j−βi+1,j |
2+ |βi,j−βi,j+1|

2+
m−1
∑

i=1

|βi,n−βi+1,n|
2+

n−1
∑

j=1

|βm,j−βm,j+1|
2.

(3.30)

The results are shown in Figure 3.6. It is seen that the ℓ1-TV recovers a sharper image than the

quadratic penalty. Deblurring with the two-dimensional fused lasso penalty yields an MSE of

7.2 with respect to the original image, while that of Tikhonov regularization is 9.3. Deblurring

with the regularizer (3.28) has an almost identical effect as with (3.29).

Another method that is considered for the image deblurring problem is wavelet based deblur-

ring. The basic setting is very similar to the previous one. However, wavelet based deblurring

uses a different penalty function:

min
β

1

2
‖y −A(β)‖22 + λ‖Wβ‖1, λ > 0,

where W is a wavelet transformation, and A is the linear blurring operator. The philosophy
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(a)

(c)

(b)

(d)

Figure 3.5: Results of deblurring using fused lasso penalty. Plots (a), (b), (c), and (d) correspond
to the original image, the blurred image, the ALIN de-blurred image, and the FISTA de-blurred
image, respectively.
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Figure 3.6: Image deblurring on the “lion” data. The left plot is the result from the ℓ1-TV
penalty; the right plot is from the Tikhonov penalty.

behind this formulation is that most image have a sparse representation in the wavelet domain.

We can see that this problem is also an instance of the Generalized Lasso problem. In this

experiment, we attempt to compare the two approach: total variation based and wavelet based.

We use a Haar wavelet transformation for the columns of an image as the Wavelet basis matrix

and ℓ1-TV to make comparision. Deblurring was done on a set of testing images of small scale,

about 40, 000 pixels. To compare the quality of the restored image, we use the signal-to-noise

(SNR) ratio defined as

SNR = 10 log 10
‖u0 − ũ‖2

‖u0 − u‖2
, (3.31)

where u0 is the original image, ũ is the mean intensity of the original image, and u is the restored

image.

Table 3.3: Run time comparison on image deblurring - small sized images.

Method CPU time (secs) SNR MSE
TV based 6.85 11.09 4.21

Wavelet based 6.83 8.94 6.47

We can see that the two methods take up similar amount of time for the deblurring problem.

However, using discrete total variation penalty, we can restore images with higher quality than



37

using wavelet basis.

There have been many efficient iterative methods proposed to solve this problem. Two

outstanding general frameworks are a variation of Nesterov’s gradient method [Nesterov, 2007]

and the method of alternating direction (ADMM). SLEP is a variation of Nesterov method

like FISTA, although it was specifically implemented for fused-lasso penalty. It is not directly

applicable for total variation deblurring problem. We pick two algorithms to compare with ALIN

in this numerical study: FISTA of Beck and Teboulle [2009], a very efficient first-order method

for discrete total variation based image processing; and TVAL, a method based on Augmented

Lagrangian and Alternating Direction algorithm. TVAL solves a model equivalent to (3.27),

but with a coefficient µ in front of the least-squares term, instead of λ at the regularization.

In the first comparison, we pick 10 random grayscale images with small size, typically

205 × 205, or approximately 40, 000 pixels. Following the same procedure as described in

[Beck and Teboulle, 2009] the image is blurred using a 3 × 3 kernel and a Gaussian noise

with variance 10−2 is added. The deblurring procedure is run with a few different values for

λ. We let FISTA runs 100 iterations with the monotone feature, which keeps the objective

function decrease monotonically, and the tolerance is set to 10−5. Then we run ALIN to the

same objective function value. For TVAL, unfortunately, we cannot proceed similarly. Thus

we let TVAL run 10, 000 iterations or to “tol” = 10−5, whichever comes first. In Table 3.4,

we report the running time to produce the best quality restored image, where the regularization

parameter λ = 10−4, similar to what was suggested by [C. Li and Zhang, 2013]. We also report

SNR and the mean squared error (MSE).

Table 3.4: Run time comparison on image deblurring - small size images.

Method CPU time (secs) SNR MSE
FISTA 9.19 11.00 4.21
ALIN 6.85 11.03 4.18
TVAL 3.03 10.56 4.57

Although TVAL has superior performance in terms of running time, when compared to

FISTA and ALIN, it produces an image of lower quality. With the same value of parameter

λ, TVAL was not able to obtain the same objective function value as FISTA and ALIN. This

makes the SNR of the TVAL-restored image lower and the error higher than those of ALIN
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and FISTA. ALIN and FISTA have similar performance in terms of image quality, but ALIN is

more efficient than FISTA. In Figure 3.7, we plot the progression in terms of objective function

values for all three methods. TVAL takes only 52 iterations to terminate. In this plot, ALIN and

FISTA are set to terminate in 52 iterations.

Figure 3.7: Progression in terms of objective function values of ALIN, FISTA, and TVAL

In the second comparison, we pick 10 random grayscale images with medium size, ranging

from 200, 000 to 500, 000 pixels. The experiment is carried out in the same manner as the

previous one. The results are reported in Table 3.5, and we observe the same pattern as in the

previous comparison.

Table 3.5: Run time comparison on image deblurring - medium size images.

Method CPU time (secs) SNR MSE
FISTA 65.41 12.14 5.98
ALIN 41.28 12.14 5.97
TVAL 7.18 8.30 14.36

3.6.5 Application to a narrative comprehension study for children

With high dimensional fused lasso penalty, the constrained optimization problem with identity

design matrix is already difficult to solve, and a large body of literature has been devoted to
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solving this problem. When the design matrix is not full rank, the problem becomes much more

difficult. In this section, we apply the three-dimensional fused lasso penalty to an regression

problem where the design matrix X contains many more columns than rows.

Specifically, we perform regularized regression between the measurement of children’s

language ability (the response y) and voxel level brain activity during a narrative comprehension

task (the design matrix X). Children develop a variety of skills and strategies for narrative

comprehension during early childhood years [Karunanayaka et al., 2010]. This is a complex

brain function that involves various cognitive processes in multiple brain regions. We are not

attempting to solve the challenging neurological problem of identifying all such brain regions

for this cognitive task. Instead, the goal of this study is to demonstrate ALIN’s ability for solving

constrained optimization problems of this type and magnitude.

The functional MRI data are collected from 313 children with ages 5 to 18 [Schmithorst

et al., 2006]. The experimental paradigm is a 30-second block design with alternating stimulus

and control. Children are listening to a story read by adult female speaker in each stimulus

period, and pure tones of 1-second duration in each resting period. The subjects are instructed

to answer ten story-related multiple-choice questions upon the completion of the MRI scan

(two questions per story). The fMRI data were preprocessed and transformed into the Talairach

stereotaxic space by linear affine transformation. A uniform mask is applied to all the subjects

so that they have measurements on the same set of voxels.

The response variable y is the oral and written language scale (OWLS). The matrixX records

the activity level for all the 8000 voxels measured. The objective function is the following:

L(β) = 1
2‖y −Xβ‖22 + λ1h1(β) + λ2h2(β),
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where

h1(β) =

m−1
∑

i=1

n−1
∑

j=1

p−1
∑

k=1

{|βi,j,k − βi+1,j,k|+ |βi,j,k − βi,j+1,k|+ |βi,j,k − βi,j,k+1|}

+
m−1
∑

i=1

p−1
∑

k=1

{|βi,n,k − βi+1,n,k|+ |βi,n,k − βi,n,k+1|}+
n−1
∑

j=1

{|βm,j,p − βm,j+1,p|}

+
n−1
∑

j=1

p−1
∑

k=1

{|βm,j,k − βn,j+1,k|+ |βm,j,k − βm,j,k+1|}+
m−1
∑

i=1

{|βi,n,p − βi+1,n,p|}

+
m−1
∑

i=1

n−1
∑

j=1

{|βi,j,p − βi+1,j,p|+ |βi,j,p − βi,j+1,p|}+

p−1
∑

k=1

{|βm,n,k − βm,n,k+1|},

h2(β) =
m
∑

i=1

n
∑

j=1

p
∑

k=1

|βi,j,k|,

and m = 31, n = 35, and p = 15.

                              

Figure 3.8: Results of regularization regression with combined lasso and 3-d fused lasso penalty.
The tuning parameters of fused lasso is 0.2 for both figures. The tuning parameter for lasso is
0.2 for the left and 0.6 for the right.

While the main purpose of this study is to demonstrate the capability of the ALIN algorithm

for solving penalized regression problems with 3-d fused lasso, there are also some interesting

neurological observations. One objective of this study is to identify the voxels that are significant

for explaining the performance score y. These voxels constitute active brain regions that are

closely related to the OWLS. Figure 3.8 presents the results of fitted coefficients using combined

lasso and fused lasso penalty. The highlighted regions shown in the maps are areas with more

than 10 voxels (representing clusters of size 10 and above). The left plot in the figure is the
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optimal solution obtained using ten-fold cross validation. The optimal tuning parameters are

0.2 for both fused lasso and lasso penalties. Roughly speaking, five brain regions have been

identified. The yellow area to the rightmost side of the brain is situated in the wernicke area,

which is one of the two parts of the cerebral cortex linked to speech. It is involved in the

understanding of written and spoken language. The only difference between the left and right

plots is the value of the tuning parameter for the lasso penalty, which is 0.2 and 0.6 respectively.

Clearly, the right plot shrinks more coefficients to zero, which results in a reduced number of

significant regions, as compared to the left plot.

                               

Figure 3.9: Results of regularization regression with lasso penalty (left plot) and Tiknonov type
penalty (right plot).

We further study this regularization problem using only lasso penalty and Tiknonov type

penalty similar to (3.30). Figure 3.9 shows the fitted maps. The left plot is the case where only

lasso penalty is applied. Comparing this with Figure 3.8, we see that the 3-d fused lasso penalty

imposes smoothing constraints on the neighboring coefficients, thus allowing to identify larger

areas significant for the response variable y. The simple lasso penalty imposes shrinkage on the

coefficients individually, resulting in rather disjoint significant voxels. Such scatterness is much

less informative for neurologists than larger areas identified by the three-dimensional fused lasso

penalty. Meanwhile, the Tiknonov type regularization generates too many significant regions

as shown in the right plot. This is partially due to the over smoothing of the image as discussed

in the previous section.
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For comparison, we have considered a couple of methods designed to solve this particular

problem. Genlasso is the path algorithm designed for the Generalized Lasso in the original

paper. However, it was unable to handle an instance of this magnitude.

Another method is the Augmented Lagrangian and Alternating Direction method. The

problem of interest

min
β

1

2
‖y −Xβ‖22 + λ‖Rβ‖1, λ > 0 (3.32)

can be reformulated as

min
β

1

2
‖y −Xβ‖22 + λ‖z‖1 s.t : Rβ − z = 0. (3.33)

The Augmented Lagrangian is:

L(β, z, u) =
1

2
‖y −Aβ‖22 + λ‖z‖1 + ρuT (Rβ − z) +

ρ

2
‖Rβ − z‖22, (3.34)

where ρ > 0 is the penalty coefficient. This formulation can be solved by the Alternating

Direction method. We implemented this method in Matlab. The update step for β requires

minimizing a quadratic function. The iterative method of choice to solve the sub-problems

is the conjugate gradient method built in Matlab. The performance of this method strongly

depends on the choice of the penalty parameter ρ. As suggested in [B. Wahlberg, 2012], we

choose ρ = λ to keep the algorithm stable for the implementation. It is known that the method

has a nice decrease in the function values but slow tail convergence and an iteration of ADMM

for this particular problem is rather expensive so we let it run for 30 iterations and let ALIN run

until it reached the same objective function value. The running times for different values of λ

are reported in Table 3.6.

Table 3.6: Run time comparison on 3D fused lasso.

Method λ = 0.001 λ = 0.01 λ = 0.05 λ = 0.1 λ = 1

CPU time (secs) CPU time (secs) CPU time (secs) CPU time (secs) CPU time (secs)
ALIN 20.68 12.19 18.58 23.45 129.81

ADMM 72.86 94.69 68.13 74.43 267.01
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We also implemented FISTA for this particular problem. For each iteration k of FISTA, the

following optimization problem is solved:

min
β
QL(β, β

k) = f(βk) + 〈∇f(βk), β − βk〉+
L

2
‖β − βk‖2 + g(β), (3.35)

where f is Gaussian loss function and g(β) = ‖Rβ‖1. The parameter L is the Lipschitz

constant of ∇f . This problem is similar to the f-subproblem of ALIN, so we utilize our own

block-coordinate descent method to solve this problem. Since the Lipschitz constant L cannot

be computed efficiently, we use back-tracking to find the proper L. Back-tracking is a popular

method to find the right step size for FISTA iterations, however it can slow down the algorithm

significantly. We observe that in each iteration, back-tracking will have to solve the sub-problem

20 to 30 times to find a good approximation to the Lipschitz constant of ∇f . Normally, this

quantity is approximated by the maximum eigenvalue of XTX . However, in the p≫ n setting,

it is not computationally efficient to estimate eigenvalues. When FISTA is applied to this data

set with 3-d fused lasso penalty, it needs around 10, 000 iterations to reach the same objective

function value as ADMM, and the running time is more or less an hour. This is also in line with

what we observe from the implementation of FISTA for 1-d fused lasso penalty in the package

SPAMS.
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Chapter 4

Nonconvex penalties

4.1 Introduction

Consider the linear regression setting:

y = Xβ

where X ∈ Rn×p is the matrix of covariates, y ∈ Rn×1 is the vector response variables, and

β ∈ Rp×1 is the vector of coefficients. When n ≥ p, i.e. the number of observations is larger

than the number of independent variables, there is a closed form solution to β. However, when

p ≫ n, the problem has multiple solutions and it can lead to over-fitting or picking too many

variables into the model. In many applications, the true coefficient vector β is sparse, as in there

are only a few influential predictors while many other predictors are zero. We would like to

obtain a sparse model with only a small number of useful predictors which still closely estimate

the true underlying coefficients and facilitate interpretation of the model. Selecting the right

variables among many thousands is a combinatorially hard problem. It can be formulated as an

optimization problem as follows:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖0, λ > 0.

Parameter λ > 0 controls the sparsity of the coefficient estimation, ‖β‖0 =
∑p

i=1 I(|βi| > 0).

Finding the solution to this problem requires enumerating all possible subsets of coefficients

and it is computationally intractable to do so. Many methods have been proposed to find an

approximate solution. The penalized least square with ℓ1 penalty:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1, λ > 0.

is a convex surrogate to the formulation above. The ℓ1 penalty tends to shrink coefficients to

zero. This method has many attractive statistical and computational properties. With certain
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conditions on the matrix X and the sparsity of the underlying model, it can provide estimates

with good accuracy.

A general structural lasso framework was proposed in [Tibshirani and Taylor, 2011], with

the following form:

L(β) = f(β) + λ‖Rβ‖1, λ > 0, (4.1)

where R is an m × p matrix that defines the structural constraints one wants to impose on

the coefficients. Many regularization problems, including high dimensional fused lasso, graph

induced fused lasso, and discrete total variation can be cast in this framework. Fused Lasso

penalty and its higher-order variants have been applied with much success in the problem of

hot-spot detection of CGH data in cancer research [Tibshirani et al., 2005] [Rapaport et al.,

2008]. ArrayCGH is a popular technique in bioinformatics to detect chromosomal abberations

of the genes along the genome. These abberations come in the forms of gains or losses in

the number of DNA copies of a gene. Studies have shown that large structural chromosomal

abberations might be associated with increased risk of cancer. CGH data fit in the p≫ n settings

because the number of genes are usually in high order magnitude of the number of collected

samples. However, variable selection techniques such the Lasso fail to detect the influence of

interacting group of genes. With the assumption that neighboring genes should have similar

effects, utilizing structural penalties such as Fused Lasso is more appropriate.

Although the ℓ1−norm and Generalized Lasso have been successfully in many applications,

they have critical limitations. The most evident one is the biase introduced by the penalty

on large coefficients [Zhang and Huang, 2008]. A good penalty function should have three

desirable properties: Unbiasedness when the true unknown coefficient is large; Sparsity that

results in a sparse solution to reduce model complexity; Continuity of the estimator in terms

of the data to obtain model stability [Fan and Li, 2001]. Many different penalty functions

have been proposed towards these criteria. Among those, we consider two penalties: smoothly

clipped absolute deviation (SCAD) penalty [Fan and Li, 2001] and the minimax concave penalty

(MCP) [Zhang, 2010]. Under mild conditions, these penalties are shown to have the oracle

property, i.e: the penalty can choose the submodel correctly as the size of the problem grows

and the nonzero coefficients can be estimated as if the true model was known in advance.

However, these penalties are nonconvex therefore finding a solution to the optimization problem
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is computationally challenging. With these nonconvex penalties, the general structural lasso

becomes:

L(β) = f(β) + P(|Rβ|;λ; γ), λ > 0. (4.2)

There have been several iterative methods proposed to solve these nonconvex penalty prob-

lem. When R = I, Local Quadratic Approximation (LQA) is the first method proposed for

SCAD penalty [Fan and Li, 2001]. At every iteration, it computes a quadratic approximation to

the penalty function and solves the optimization subproblem using Newton-Raphson method.

LQA requires a starting point being carefully chosen. [Zou and Li, 2008] proposed a Local

Linear Approximation method that utilizes linear approximation instead of quadratic. Starting

from an initial least square solution, it iteratively solves a weighted lasso problem where the

weights are obtained from the previous iterations. Coordinate descent method can also be used

to solve this problem efficiently [Breheny and Huang, 2011], [Mazumder et al., 2011]. Both

methods require to solve the problem on a grid for tuning parameter λ. For a single value

of parameter λ, coordinate descent does not work very well. Its efficiency relies on having a

good starting point, which is the solution of the previous value of λ on the grid, and its descent

property. No function evaluation is needed. However, it is difficult to determine the density of

the grid.

When the structural matrix R is more complicated, which makes the penalty function non-

separable, these methods are not directly applicable. Recently [Zhou and Wu, 2012] propsed a

path algorithm for a general structure penalty. However, this method requires certain conditions

on the rank of the matrix R.

In this chapter, we present a system of methods based on the alternating linearization frame-

work to solve this nonconvex structured penalty problem. We will describe our algorithm and

show how it can be applied to linear regression and logistic regression. The method has been

tested on several simulated data sets and two arrayCGH data sets on melanoma and bladder tu-

mours. The experiments have shown that solutions obtained by using the nonconvex structured

penalties are superior to those obtained by structured penalties.
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4.2 Alternating linearization method for nonconvex structured penalties

4.2.1 Structured nonconvex penalties

In the context of traditional linear regression, variable selection is a very important problem.

Penalized least square methods receive much attention since it can automatically and simulta-

neously select variables unlike classical variable selection methods. Penalized methods often

have the form:

min
β

f(β) +
∑

i

Pλ(|βi|). (4.3)

In linear reression problem, the loss function (β) is the least square loss and it can be extended

to the Generalized Linear Models (GLM) by using different types of loss functions such as log-

likelihood function. One of the most well-known penalty functions is the ℓ1 penalty (LASSO).

The LASSO has been studied intensively in both computational methods and theoretical prop-

erties. The ℓ1 penalty, however, is biased even for large coefficients β since LASSO penalizes

the coefficients with the same rate λ [Fan and Li, 2001], [Zhang and Huang, 2008].

[Fan and Li, 2001] suggests that a good penalty function should be approximately unbiased

when the true unknown coefficient is large. It also suggests that in order to reduce biasedness in

the estimator, the derivative of the penalty function should be 0 for large coefficients. Following

these criteria, two nonconvex penalty functions have been proposed: SCAD and MCAP [Fan

and Li, 2001],[Zhang, 2010]. In this section, we consider these two popular penalties, although

the method is fairly general and can be applied for other penalty functions.

• The SCAD penalty is defined as the follows:

P(|β|;λ; γ) =































λ|β| if |β| ≤ λ.

γλ|β|−0.5(|β|2+λ2)
γ−1 if λ < |β| ≤ λγ.

λ2(γ+1)
2 if |β| > λγ.

∂P(|β|;λ; γ)

∂|β|
=































λ if |β| ≤ λ.

λγ−|β|
γ−1 if λ < |β| ≤ λγ.

0 if |β| > λγ.
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• MCP penalty is defined as follows:

P(|β|;λ; γ) =















λ|β| − |β|2

2γ if |β| ≤ λγ.

λ2γ
2 if |β| > λγ.

∂P(|β|;λ; γ)

∂|β|
=















λ− |β|
γ if |β| ≤ λγ.

0 if |β| > λγ.

The two penalty functions are controlled by two parameters λ and γ. When coefficient β is not

large, the derivative of the penalty functions are the same as in the LASSO. However, when the

coefficient is large enough ( > γλ) for both penalty functions, penalty functions are flattened

out and the corresponding coefficients are not excessively penalized.

Figure 4.1: Plot of different penalty functions including ℓ1, ℓ2, SCAD, and MCP

We propose a new formulation combining the structured penalty and the nonconvex penalty.

As mentioned in the previous chapters, if there was prior knowledge or domain constraints on
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the parameters of the model, this information can be incorporated in the penalty function. These

structured penalty functions, however, are variations of the ℓ1 norm penalty which suffer from

similar estimation bias. The formulation we propose is the following:

min
β
L(β) = f(β) +

k
∑

i=1

P(|Riβ|;λ; γ), (4.4)

where Ri is the ith row of matrix R ∈ Rk×p. When R = I, the function (4.4) becomes the

original nonconvex penalties.

4.2.2 Logistic regression with nonconvex penalties

Logistic regression is a very popular tool in statistics that has seen tremendous applications

acrosss disciplines. As opposed to linear regression, the response vector y is a binary vector,

y ∈ {0, 1}n. The goal is to model the probability that a point xi ∈ ❘p belong to class 1 as a

function of xTi β+c. This is done via a logit transformation of the probability: logit(pi) =
pi

1−pi
.

The resulting model is: logit(pi) = xTi β + c. We have:

P (yi = 1|xi1, xi2, · · · , xip) = pi =
ex

T
i β+c

1 + ex
T
i β+c

, (4.5)

where c is the intercept. The hyperplane xTβ + c = 0 corresponds to P (y = 1|x) = 0.5.

Response variable yi follows Bernoulli distribution with probability pi. The likelihood function

with n observations is:

L(y;β) =
n
∏

i=1

pyii (1− pi)
1−yi . (4.6)

Consider the negative log-likelihood function and substitute pi as above we obtain:

l(y;β; c) = −
n
∑

i=1

{yi log pi + (1− yi) log(1− pi)}

= −
n
∑

i=1

{yi log
ex

T
i β+c

1 + ex
T
i β+c

+ (1− yi) log
1

1 + ex
T
i β+c

}

= −
n
∑

i=1

{yi(x
T
i β + c)− yi log(1 + ex

T
i β+c)− (1− yi) log(1 + ex

T
i β+c)}

=
n
∑

i=1

{−yi(x
T
i β + c) + log(1 + ex

T
i β+c)}.

(4.7)
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The derivatives of l(y;β; c) with respect to c and βj are:

∂l

∂c
=

n
∑

i=1

ex
T
i β+c

1 + ex
T
i β+c

− yi.

∂l

∂βj
=

n
∑

i=1

ex
T
i β+cxij

1 + ex
T
i β+c

− yixij .

(4.8)

We need to compute the parameter estimates β and c that minimize the negative log-

likelihood function. When p >> n, this function l(:;β; c) has multiple minima. In this section,

we consider this loss function with nonconvex and structured nonconvex penalty function:

Q(β; c) =
n
∑

i=1

{−yi(x
T
i β + c) + log(1 + ex

T
i β+c)}+

p
∑

j=1

P(|βj |;λ; γ). (4.9)

and

Q(β; c) =

n
∑

i=1

{−yi(x
T
i β + c) + log(1 + ex

T
i β+c)}+ P(|Rβ|;λ; γ). (4.10)

where P is a nonconvex penalty function.

4.2.3 ALIN for nonconvex penalties with Gaussian loss and Logistic loss

When the structure matrix R = I, we have the original regularization problem with nonconvex

penalty:

min
β
L(β) = f(β) +

p
∑

i=1

P(|βj |;λ; γ)

Loss function f(β) can be the Gaussian loss ‖y −Xβ‖22 or the logistic loss defined above. At

each iteration k, the current estimate is βk. The objective function is approximated by:

f(β) +

p
∑

i=1

∂P(|βk
i |;λ; γ)(|βi| − |β

k
i |).

Simplifying the constant and denote ∂P(|βk
i |;λ; γ) = λk

i , at iteration k we have, the following

sub-problem:

L̃k = f(β) +

p
∑

i=1

λk
i |βi|.

This sub-problem can also be solved via alternating linearization method described in Chapter

3 as shown below:

• Step 1: The f-subproblem is as follows:

min
β

f̃(β) +

p
∑

i=1

λk
i |βi|+

1

2
‖β − β̂k‖2D.
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where f̃(.) is a linear approximation of f(.) and β̂k is the current estimate of the sub-

problem. The f-subproblem is separable and the solution has closed form formula.

• Step 2: Update step and calculate the subgradient of function g(β) =
∑p

i=1 λ
k
i |βi| as

described in Chapter 3.

• Step 3: The h-subproblem is as follows:

min
β

f(β) + g̃(β) +
1

2
‖β − β̂k‖2D.

where g̃(β) is the linear approximation g(β). The h-subproblem is solved using the

conjugate gradient method. In the case when f(β) is the logistic loss function, conjugate

gradient method for nonlinear functions are used.

4.2.4 ALIN for structured nonconvex penalties

In the case of a generic sparse structure matrix R, we have the problem:

min
β
L(β) = f(β) + P(|Rβ|;λ; γ)

At each iteration k, the current estimate is βk. The objective function is approximated by:

f(β) + P(|Rβk|;λ; γ)(|Rβ| − |Rβk|).

Simplifying the constant and denote ∂P(|Rβk|;λ; γ) = λk, at iteration k, the following sub-

problem is solved:

min
β
L̃k = f(β) + 〈λk, |Rβ|〉.

This sub-problem can be solved via alternating linearization method described in Chapter 3.

Here we provide a brief description.

• Step 1: The f-subproblem is as follows:

min
β

f̃(β) + 〈λk, |Rβ|〉+
1

2
‖β − β̂k‖2D.

where f̃(.) is a linear approximation of f(.) and β̂k is the current estimate of the sub-

problem. The dual of the f-subproblem is the minimization of a quadratic function sub-

jected to a box-constraint. Block coordinate descent method can be used to solve this

problem.
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• Step 2: Update step and calculate the subgradient of function g(β) = 〈λk, |Rβ|〉 as

described in Chapter 3.

• Step 3: The h-subproblem is as follows:

min
β
G(β) = f(β) + g̃(β) +

1

2
‖β − β̂k‖2D.

where g̃(β) is the linear approximation g(β). The h-subproblem is solved using the

conjugate gradient method. In the case when f(β) is the logistic loss function, conjugate

gradient method for nonlinear functions are used.

4.2.5 Nonlinear conjugate gradient method

In the previous section, we are interested in solving the following problem:

min
b
G(β) = log(1 + eX

T β)− yTXTβ + sTβ +
1

2
‖β − β̂‖2D.

In this section, we present the application of the nonlinear conjugate gradient method to solve

this problem.

1. Step 0: Set k=1.

2. Step 1: Caculate ∇G(βk) = XT ( eX
T βk

1+eXT βk
− y) + s + (βk − β̂). If ∇G(βk) = 0 then

stop.

3. Step 2: Compute

dk =















−∇G(βk) if k = 1.

−∇G(βk) + αkd
k−1 if k > 1.

where

αk =
〈∇Gβk,∇Gβk −∇Gβk−1〉

‖∇Gβk−1‖2
.

4. Step 3: Find the next point βk+1 = βk + τkd
k such that

G(βk+1) = min
τ≥0
G(βk + τdk).

where τk can be found using methods such as binary search or secant method.

5. Step 4: Increase k by 1 and go to Step 1.
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Notice that, in each sub-problem of ALIN, we can use the result of the previous iteration as the

starting point of the next one and this significantly accelerates the whole algorithm.

4.3 Numerical examples

In this section we demonstrate the ability of ALIN with several competing algorithms for noncon-

vex penalized regression including NCVREG (by Breheny and Huang), another implementation

of coordinate descent method SparseNet (Mazumder), and path following algorithm SparseReg

(Zhou). The criteria that we use to make comparision are prediction error, number of non-zero

coefficients in the model, and misclassification error. We also study the effectiveness of our

method on the problem with structured nonconvex penalties, in particular the fused lasso type

penalty.

4.3.1 Simulation studies - Linear regression

In the simulation studies, we assume a linear model Y = Xβ + ǫ with multivariate Gaussian

predictors X and Gaussian noise. We generate datasets with the number of observations n=400

and the number of covariates p = 500 and p = 1000. 100 observations in the dataset are

used as training dataset and the other 300 observations are used in the testing dataset. The

pre-determined β has block structures as following:

βj =















































































1 for j = 2, 3 . . . , 11,

5 for j = 102, 103, . . . , 111,

10 for j = 202, 203, . . . , 211,

50 for j = 302, 303, . . . , 311,

100 for j = 402, 403, . . . , 49,

0 otherwise.

The covariate matrix X is generated from a multivariate normal distribution with pairwise corre-

lation of ρ between covariates in each block. Two different settings are used in our experiments:

high correlation with ρ = 0.9 and low correlation with ρ = 0.1.
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In the first experiment, we compare the performance of NCVREG, SparseNet, SparseReg,

and ALIN on these two data sets using SCAD and MCP penalties. With SCAD penalty and

ρ = 0.1, the solutions provided by NCVREG, SparseReg, and ALIN are very similar. However,

in the high correlation setting, we can see that the solution by ALIN is much better than those

by CD and SparseReg (Fig 1). NCVREG and SparseReg were able to recover many underlying

coefficients, however the values of these coefficients are not as accurate as ALIN.

a) NCVREG b)               ALIN
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Figure 4.2: Results of using SCAD penalty on data set with n = 100, p = 500, and γ = 3.7,
ρ = 0.9. Plots (a), (b), (c), and (d) correspond to results from NCVREG, ALIN, SparseReg,
and original solution.

We then compare these three algorithms on the testing data set. The comparisons are made

with regards to three criteria: prediction error, the number of non-zero coefficients in the model,

and misclassification error. The discovered models are used to make prediction on the testing

data set and standardized prediction errors are recorded. The number of true non-zero variables

in the original model is 50. In Fig 2., we can see the comparisons between the three algorithms

with regards to those criteria. Although, the model by ALIN is not as sparse as NCVREG

and SparseReg for some values of γ, ALIN was able to recover more parameters and achieve

better accuracy. This explains why the prediction error by ALIN is much better than those

of NCVREG and SparseReg. We further extended this experiment to the data set in higher

dimension, n=100, p=1000, generated in a similar manner. We observed the same results when
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Figure 4.3: Three plots represented prediction error, model sparsity, and misclassification loss.
Plots show solutions for different values of γ of SCAD penalty.

ρ = 0.1. In low correlation setting, NCVREG, SparseReg, and ALIN have similar solutions

but in high correlation case, ALIN performs better than the other two algorithms.

Now we turn to the performance of three agorithms SparseNet, NCVREG, and ALIN on the

same data sets with MCP penalty. The parameters λ and γ are estimated on the a grid of values

via cross-validation. We observe the same phenomena where all three algorithms provide very

similar solutions in low correlation setting, however when ρ = 0.9, ALIN computed a better

solution as demonstrated in the Fig 3. The prediction error by ALIN solution is also much lower

than those by SparseNet and CD.

The following table summarizes the performance of all four algorithms with regards to stan-

dardized prediction error (SPE), % of non-zeros in the recovered models, and misclassification

error. Although ALIN does not provide as sparse models as NCVREG, it is able to recover

more underlying coefficients. As the result, in terms of SPE, ALIN is better than the other three

methods in all simulated datasets, especially in high correlation and high dimension settings.

n=100, p=500, ρ=0.1 ALIN NCVREG SparseNet SparseReg

SPE 0.24 0.28 1.55 3.55

% of non-zeros [10] 19.20 14.00 9.00 15.00

0-1 error 0.49 0.30 0.20 0.56

n=100, p=500, ρ=0.1 ALIN NCVREG SparseNet SparseReg
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Figure 4.4

n=100, p=500, ρ=0.9 ALIN NCVREG SparseNet SparseReg

SPE 0.19 1.10 6.13 2.90

% of non-zeros [10] 18.80 9.00 12.20 15.80

0-1 error 0.51 0.38 0.67 0.73

n=100, p=1000, ρ=0.1 ALIN NCVREG SparseNet SparseReg

SPE 0.56 2.40 10.77 9.10

% of non-zeros [5] 13.40 7.70 11.10 9.30

0-1 error 0.35 0.58 0.75 0.58

n=100, p=1000, ρ=0.9 ALIN NCVREG SparseNet SparseReg

SPE 0.83 2.52 6.48 5.08

% of non-zeros [5] 9.60 4.70 9.00 6.70

0-1 error 0.33 0.49 0.79 0.71

In this section we demonstrate a simulated example using the nonconvex structured penalty and

compare it with the structured penalty. We generate a data set in a similar manner with a block-

structured coefficient vectorβ. Specifically, the number of observationsn = 400 and the number

of attributes p = 500. The coefficient vector β has block structure with 10 blocks and each
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Table 4.1: Comparison between fusion penalty, fusion SCAD, and fusion MCP

∑

(Ŷ − Y )2 ‖β̂ − β‖2 Standard error
Fusion 3.1830 2.2448 0.4490

Fusion SCAD 1.6654 1.5044 0.2554
Fusion MCP 1.8361 1.5657 0.5019

block has 10 consecutive coefficients. The coefficients in each block are randomly generated

by an uniform distribution in [-5,5]. These blocks are randomly positioned between 1 and 500.

The first 100 observations are used as the training data set and the other 300 observations are

for testing. In our experiments, we use the fused lasso penalty. The problem of interest is :

min
β
L(β) = 1

2‖y −Xβ‖22 + P (|Rβ|;λ; γ),

where R is a (p − 1) × p matrix to enforce structure on coefficient estimate β, P (:;λ; γ) is a

nonconvex penalty function. In our experiment, we use the fused lasso structure so matrix R is:

R =



















−1 1 0 . . . 0

0 −1 1 . . . 0

. . . . . . . . . . . . . . . . . . . .

0 0 . . . −1 1



















,

We need to solve the problem:

min
β
L(β) = 1

2‖y −Xβ‖22 +
∑p

i=2 P (|βi−1 − βi|;λ; γ),

where P (.;λ; γ) is the SCAD or MCP penalty. The parameter γ is fixed at 3.7, and λ is chosen

via cross-validation. To make comparisons, we use the traditional fused penalty:

min
β
L(β) = 1

2‖y −Xβ‖22 + λ
∑p

i=2 |βi−1 − βi|.

Parameter λ is also chosen by using cross-validation. As we can see from the illustration, using

the SCAD and MCP structured penalty, ALIN was able to recover the estimate β almost as good

as the original solution while using fused penalty failed to do this. SCAD penalty alone works

very poorly on this simulated data set. The following table reports the result of mean squared

error of predictors and β for fusion penalty, fusion SCAD, and fusion MCP after 10 simulated

experiments. We can see that structured nonconvex penalty such as fusion SCAD and fusion

MCP outperformed traditional fusion penalty in terms of both prediction accuracy and squared

error.
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Figure 4.5: Result of SCAD and MCP structured penalty (a) and (b) compared to Fused penalty
(c), and original solution

4.3.2 Simulation studies - Logistic regression

In this section, we reports the results of our method for solving the fused logistic regression

problem with nonconvex penalties in comparison with fused lasso logistic regression. Using

simulated datasets, we show that when features have natural ordering, structured nonconvex

penalties perform better than fused lasso penalty. Regression coefficients β ∈ R
500 with block

structure is pre-determined. β has 7 blocks; the level of each block is drawn from an uniform

random distribution between [−10, 10]; each level has length 20. A typical β is similar to the

following:

βj =















































l1, for j = 5, 6, · · · , 25

l2, for j = 25, 26, · · · , 45

l3, for j = 100, 101, · · · , 120

· · · · · ·

where l1, l2, l3 are drawn from a uniform random distribution between [−10, 10]. The design

matrixX ∈ R
n×p with n = 200 and p = 500 is drawn from a multivariate Gaussian distribution

N (0, 1)with pairwise correlation between covariatesρ = 0.3. The intercept c is also drawn from
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Gaussian distribution N (0, 1). The success probability pi for each observation xi is calculated

as folllowed: pi =
ex

T
i β+c

1+ex
T
i
β+c

. Response variable yi ∈ {0, 1} is then generated using Bernoulli

distribution with success probability pi. The objective function that we are considering is :

L(β) =
n
∑

i=1

−yi(x
T
i β + c) + log(1 + ex

T
i β+c) +

p−1
∑

j=1

P(|βj+1 − βj |;λ; γ). (4.11)

where P is a nonconvex penalty SCAD or MCP. The strutural matrix R ∈ R
499×500 is :

R =



















−1 1 0 . . . 0

0 −1 1 . . . 0

. . . . . . . . . . . . . . . . . . . .

0 0 . . . −1 1



















,

In comparison, we use a routine for fused lasso logistic regression in the SLEP package by [Liu

et al., 2010b]. The fusion logistic regression objective function is:

F(β) =
n
∑

i=1

−yi(x
T
i β + c) + log(1 + ex

T
i β+c) + λ

p−1
∑

j=1

|βj+1 − βj |. (4.12)

The experiment is repeated 10 times with different levels and non-zero areas for β. For fusion
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Figure 4.6: Result of SCAD structured penalty (a) and (b) compared to fusion penalty (c), and
original solution

penalty, the average mean squared error (MSE) is 2.57. For structured SCAD penalty, MSE is
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2.05. We have similar results as the number of blocks and block levels are varied. The structured

penalty did well in detecting non-zero areas and recovering true levels. Illustration showed that

although fusion penalty did decently when it comes to detecting non-zero areas in estimating

parameter β, it failed to recover the levels of these areas. This phenomena is also observed when

the ℓ1 penalty is used with log-likelihood loss function. We generated a toy dataset for logistic

regression to demonstrate the fact. In the figure, the left handside is a simulated parameter and

the right handside is the coefficient estimate using ℓ1 penalty. We can see that the ℓ1 coefficient

estimates do not correctly recover the accurate levels of the parameters.

Figure 4.7: a) Original β and b) ℓ1 estimates.

4.3.3 Cancer research data

Fused lasso penalty has been used successfully for hot-spot detection. In particular, detection of

regions with gain or loss in DNA copies in the array-based comparative genome hybridization

data (CGH). ArrayCGH is a very popular technique in bioinformatics to detect chromosomal

abberations of the genes along the genome. These abberations come in the forms of gains or

losses in the number of DNA copies of a gene. Array CGH data record the log2 ratio between

the number of DNA copies of the genes in a tumor cell and reference cell. A positive value

represents an amplification in the number of DNA copies and a negative value represents loss.

These deletion or amplication in DNA copies are the hallmarks of cancer.

ArrayCGH data usually have a large number of features while the number of samples is
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small. Moreover, there is a particular structure of correlations between neighboring genes due

to natural orderings. Most regression/classification methods for this type of high-dimensional

data base on selecting a number of distinguished variables and might not be the right tool.

Tibshirani proposed to use the fused lasso penalty for spatial smoothing and hot-spot detection

for CGH data. [Rapaport et al., 2008] proposed a support vector machine method with fused

lasso penalty to do classification on arrayCGH data and showed that with this proper penalty,

classification methods can enhance their performance as opposed to the traditional lasso penalty.

Fused lasso is devised for situations where the variables have some type of natural ordering. It

not only encourages the sparsity of parameter estimates but also sparsity in the difference of

neighboring coefficients.

In our study, we consider two publicly available data sets for cancer search: the bladder

tumor and melanoma tumor data. The bladder tumor data contains arrayCGH profiles of 57

bladder tumor samples [Stransky et al., 2006]. Each profile contains the relative DNA counts

for 2215 spots. We consider the classification problem of the tumor grade: with 12 tumors of

Grade 1 and 45 tumors of higher grades (2 or 3). Tumor grade is a ranking system for how

abnormal a tumor and its tissues appear to be. It is also an indicator of how fast the tumor will

grow and spread. The ranking tends to differ for different types of cancer. In general, Grade

1 tumors appear to be very close to normal cells and tissues. These tumors tend to grow and

spread slowly. Higher grade tumors are more abnormal and more likely to grow and spread fast.

The melanoma data set contains the arrayCGH profiles along 3750 spots of 78 melanoma

tumors.35 of these tumors spread within 24 months and the other 43 tumors did not [Trolet et al.,

2008]. We consider the problem of classifying based on arrayCGH data to determine whether a

tumor will spread within 24 months. For the study, we use logistic regression. The two data sets

are randomly splitted with two third of the data used for training and one third used for testing

purpose. The objective function for fused lasso logistic regression with nonconvex penalty is:

Q(β) =
n
∑

i=1

−yi(x
T
i β + c) + log(1 + ex

T
i β+c) + P(|Rβ|;λ; γ), (4.13)
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Table 4.2: Comparison between fused lasso, lasso, SCAD, MCP, and structured SCAD on
Melanoma data

Melanoma Classification accuracy (%) Standard error

Fused Lasso 51.92 11.07
Lasso 51.92 10.92
SCAD 51.53 6.58
MCP 51.15 8.7

Structured SCAD 74.23 7.70

where P is a nonconvex penalty SCAD or MCP. The strutural matrix R ∈ R
7299×3650 is :

R =













































1 0 0 . . . 0

0 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . .

0 1 0 . . . 1

−1 1 0 . . . 0

0 −1 1 . . . 0

. . . . . . . . . . . . . . . . . . . .

0 0 . . . −1 1













































.

We compare the structured nonconvex penalty with several other penalties: fused lasso, lasso,

SCAD, and MCP. The objective function for fused lasso logistic regression is:

L(β) =
n
∑

i=1

−yi(x
T
i β + c) + log(1 + ex

T
i β+c) + λ1

p
∑

j=1

|βj |+ λ2

p−1
∑

j=1

|βj+1 − βj |. (4.14)

For fused lasso, we use the procedure provided in [Liu et al., 2010a]. For lasso, we use GLMNET

in Matlab. This function implements the coordinate descent method for penalized Generalized

Linear Models (GLM) [Friedman et al., 2007]. For SCAD and MCP, we used NCVREG packge

by [Breheny and Huang, 2011] which implements the coordinate descent method for nonconvex

penalties. The experiments are repeated 10 times and the results are reported in the Table 3.

Best parameters λ1, λ2, λ are found using cross-validation. For nonconvex penalty, parameter

γ = 3.7 is used as suggested by [Fan and Li, 2001]. We can see that non-convex fused lasso

penalty outperforms other penalties in terms of prediction.
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Table 4.3: Comparison between fused lasso, lasso, SCAD, MCP, and structured SCAD on
Bladder data

Bladder Classification accuracy (%) Standard error
Fused Lasso 72.63 7.63

Lasso 76.32 7.94
SCAD 78.94 7.44
MCP 80.52 9.62

Structured SCAD 90.53 12.36

4.4 Conclusion

The alternating linearization method is a specialized nonsmooth optimization method for solv-

ing structured nonsmooth optimization problems. It combines the ideas of bundle methods and

operator splitting methods, to define a descent algorithm in terms of the values of the function

that is minimized. We have adapted the alternating linearization method to structured regular-

ization problems by introducing the idea of diagonal quadratic approximation and developing

specialized methods for solving subproblems. As a result, a new general method for a variety

of regularization problems has been obtained, which has the following theoretical features:

• It deals with nonsmoothness directly, not via approximations,

• It is monotonic with respect to the values of the function that is minimized,

• Its convergence is guaranteed theoretically.

Our numerical experiments on a variety of structured regularization problems illustrate the

applicability of the alternating linearization method and indicate its practically important virtues:

speed, scalability, and accuracy. It clearly outperforms extant methods, and it can solve problems

which were unsolvable otherwise.

Its efficacy and accuracy follow from the use of the diagonal quadratic approximation and

from a special test, which chooses in an implicit way the best operator splitting step to be per-

formed. The current approximate solution is updated only if it leads to a significant decrease

of the value of the objective function. Its scalability is due to the use of highly specialized

algorithms for solving its two subproblems. The algorithms do not require any explicit matrix

formation or inversion, but only matrix–vector multiplications, and can be efficiently imple-

mented with sparse data structures. Our study of image denoising and deblurring in section
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3.6.4, as well as the narrative comprehension for children in section 3.6.5 are illustrations of

broad applicability of the alternating linearization method.

In Chapter 4, we propose the structured nonconvex penalties and present an extension of

the alternating linearization method to solve the problem. This problem was also considered

in [Zhou and Wu, 2012], however the suggested algorithm requires the structured matrix to be

full rank. Our method does not have this constraint. The extended version of ALIN is very

simple to implement with robust performance. Our studies using synthetic and real data sets

have shown that the structured nonconvex penalties are superior to their convex counterparts

previously studied in the literature.

The simplicity and efficiency of the alternating linearization framework suggests that it can

be extended to solve many problems that are currently of interests for the machine learning and

data mining communities. One potential research direction is the problem of recovering and

deblurring of f-MRI image. An f-MRI image is obtained from a partial Fourier transform.

Recently, a model is suggested to obtain a high quality restored image using total variation

penalty and wavelet based penalty. The objective function is composed of three parts: a loss

function, total variation penalty, and the wavelet based penalty. The total variation penalty

has been used extensively in the image deblurring problem. Combined with the wavelet based

penalty, the solution of the problem is not only a high quality restored image but also sparse in

the wavelet domain. This formulation has been shown to have great advantages compared to

previous models. However, with high dimensional images, the formulation is very challenging.

In this dissertation, the framework is used for the problem of minimizing the composite function

as sum of two convex functions. However, it is possible to extend the framework to deal with

this problem with three component objective function.

Another interesting direction is the matrix regression problem with low rank conditions.

This problem is currently studied rigorously due to its application in medical imaging. The

study of children’s brain imaging in chapter 3 is an instance of this problem. To make inference

of a response variable y, the coefficient matrix β is assumed to have some intrinsic structures.

The 3−d fused lasso is a good penalty for this purpose since it assumes coefficients nearby

should exhibit similar characteristics. However, in many cases, the structure does not have to

be smooth, thus using a smoothing penalty like fused lasso will not yield satisfactory results.
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We can assume the matrix of coefficients β to have low rank representation, thus it can be

represented by the outer product of only a small number of components. This not only reduces

the complexity of the model but also gives good insights into which parts of the coefficient matrix

are important to building a good model. The objective function will be more complicated than

the previous ones since it includes a term involving the rank of the matrix coefficient, which can

be approximated by a convex surrogate.

The alternating linearization framework is a powerful tool in nonsmooth optimization. It

is widely applicable in many problems in statistical machine learning and signal processing.

Via this dissertation, it has been shown to be competitive against many state-of-the-art methods

for these problems. Moreover, it has the potential to be extended to many problems that these

methods will have trouble solving especially in high dimensional settings.
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