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ABSTRACT OF THE DISSERTATION 

 

Robust Gene Set Analysis 

and Robust Gene Expression 

by NING TANG 

Dissertation Director: 

Professor Javier Cabrera 

 

This paper explores various methods of statistical analysis of DNA microarray data. 

First, we review the RMA method which produces estimates of gene expression from a 

microarray data and propose a  new version of RMA  that is not only resistant to outliers 

but also has high efficiency. To construct our new RMA estimator we rely upon M-

estimator of location, including Tukey’s biweight and Huber’s M-estimator. We 

compare the performance of our robust version of RMA with median, the currently used 

one in the RMA method, as well as mean, which is a non-robust estimator of location. 

Second, we review the Gene Set Enrichment Analysis (GSEA) methodology. Currently, 

the GSEA method is performed at gene-level. This requires DNA microarray data be 

transformed from the raw probe-level data to the gene-level data.  This process cannot 

avoid losing subtle but crucial information contained in the probe-level data. Inspired by 

the GSEA method, we extend its idea to the probe-level data. Finally, we develop a 

family of enrichment method - Enrichment Analysis using M-estimator (EAME), which, 

as implied by its name, uses robust M-estimator and take advantage of the idea of gene 

set enrichment. At the end of this paper, we use the R language as a tool to show some 

examples of DNA microarray analysis based on the methodologies discussed in this 

paper.  
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Chapter 1     

Introduction 

 

1.1 An Introduction of DNA Microarray Technology 

The Deoxyribonucleic Acid (DNA) microarray is undoubtedly a fast-developing 

technology in modern biomedical research. The traditional “one gene per 

experiment” approach is now becoming obsolete due to its incapability of 

producing a complete vision of gene functions and overall genome behaviors in a 

reasonable amount of time. Unlike the traditional molecular biology research 

approach, the DNA microarray technology offers biologists a much more 

efficient way to collect the expression information about thousands of genes at 

the same time. 

 Generally speaking, microarrays refer to a lot of distinct platforms that 

can assay large amounts of biological material using high-throughput screening 

methods on a solid support. It can produce thousands to tens of thousands of 

data points in one experiment. There are several types of microarrays, among 

which tissue microarrays, protein microarrays and DNA microarrays are the 

three major ones. Tissue microarrays relocate small amount of tissue from 

biopsies of multiple patients on to glass slides to allow multiplex histological 

analysis; protein microarrays immobilize peptides or intact proteins to track the 

interactions and activities of proteins, and to determine their function. For recent 

years, with the development of gene array detection technologies such as 
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Affymetrix, Illumina and Codelink, etc., DNA microarrays has caught a great 

amount of attention and there are a lot of literatures concentrating on DNA 

microarray analysis. 

In this paper, we will focus on methods of statistical analysis of DNA 

microarrays.  We give an introduction of current procedures for preprocessing 

oligonucleotide microarray in Chapter 2. In Chapter 3, methods of statistical 

analyses on individual genes are introduced. We then review the RMA method 

and discuss the application of robust statistics in the RMA method in Chapter 4. 

The use of robust statistics in RMA makes it possible for us to develop new 

methodologies that are robust and efficient. Next, Gene-level GSEA method and 

Probe-level GSEA method are introduced and compared in Chapter 5 and 

Chapter 6. In Chapter 7, we propose various EAME approaches and compare 

their performance of detection of differentially expressed gene sets. In Chapter 8, 

we use the R language as a tool to show some examples of DNA microarray 

analysis based on the methodologies discussed in this paper. In Chapter 9, we 

give some conclusions and remarks. 

Before we move on to next chapter, an introduction of basic biology of 

gene expression is given in the following sections. 

1.2 Basic Biology of Gene Expression 

Genomics is an interesting and complex subject and it can simply occupy a 

multi-volume book just by itself. However, it is about life after all. The basic unit 

of life is the cell and a very crucial characteristic of life is the ability of 

reproduction. Single-celled organisms reproduce by self-duplication, while 
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multicellular organisms begin with a single cell and develop by the programmed 

division of cells. 

 During the process of reproduction, some information is carried from one 

generation to the next by some sort of a hereditary mechanism. This important 

feature of that mechanism results in that family members tend to exhibit similar 

characteristics. The existence of such hereditary units, now called genes, has been 

firmly established. 

 All living beings depend on genes because they specify all proteins. 

Proteins are involved in performing and regulate most of the important functions 

in a cell. A protein can be represented as a linear sequence of amino acids 

connected by peptide bonds. Each amino acid consists of a central carbon atom to 

which three chemical entities are joined. They are the amine (NH2) group, the 

carboxyl (COOH) group, and the side chain (R). There are 20 commonly 

occurring types of side chains and thus 20 amino acids. 

Proteins do not self-assemble. They are assembled based on information 

contained in genes, which are made of deoxyribonucleic acid (DNA). The 

assembly of proteins requires messenger ribonucleic acid (messenger RNA or 

mRNA) to act as an intermediate. Messenger RNA is synthesized using DNA as 

a template, and is then used for translation into protein. All RNA molecules 

consist of a sequence of nucleotides and each nucleotide in RNA contains a 

ribose sugar, a phosphate group and a nitrogenous base. The base is one of 

adenine (A), cytosine (C), guanine (G) and uracil (U). 

A DNA molecule is also a polymer of nucleotides, in many ways similar 

to RNA. However, there are three major differences between them: 
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(1) A DNA molecule is a double-stranded helix, consisting of two long 

polymers of nucleotides, while RNA is a single-stranded molecule in many 

of its biological roles and has a much shorter chain of nucleotides. 

(2) DNA molecules contain a deoxyribose sugar backbone, rather than a ribose 

sugar backbone as in RNA. 

(3) In DNA, the base thymine (T) replaces uracil (U). 

The double helix structure of DNA is stabilized by chemical bonds 

between pairs of complementary bases on the two strands. The adenines (A) only 

bind with thymines (T) and the guanines (G) only pair with the cytosines (C). 

The pairs so formed are called base pairs (shortly bp). This complementarity of 

bases is a crucial feature of DNA and it is the basis of both cell reproduction and 

gene expression. 

When a gene is being expressed, the two strands of one DNA molecule 

unwind and one mRNA molecule is then synthesized using a segment of one of 

the two DNA strands as a template. This process is called transcription. The DNA 

segment used for mRNA synthesis corresponds roughly to a particular single 

gene. The sequence of bases along the mRNA strand being synthesized is 

identical to the sequence of bases along the inactive DNA strand, except that 

mRNA has uracil (U) where DNA has thymine (T). 

1.3 Hybridization Assays 

If the sequences from two single-stranded DNA molecules are complementary to 

each other, these two DNA molecules usually tend to bind together to form a 

single double-stranded DNA molecule. This process is known as hybridization. 

No matter if two DNA strands (or one DNA strand and one mRNA strand) come 
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from the same source or from two different sources, they will hybridize with 

each other as long as their base pair sequences match according to the 

complementary base-pairing rules. Even when the sequences on the two strands 

do not match exactly, some base pairing will still occur and a hybrid DNA 

molecule will be formed as long as there is sufficient similarity. 

  This property of DNA (also mRNA) strands provides biologists a useful 

tool to observe the current state of a cell at a given period. Because scientists are 

interested in knowing what subsets of an organism’s genes are being expressed 

at a given time, and we know the expressed DNA sequences are transcribed into 

mRNA during the step of transcription in gene expression, it is reasonable to 

believe that from knowledge of what mRNAs are present in the cell and in what 

quantities, we can make some inferences about the current state of that particular 

cell. Thus, a biochemical experiment can be designed in a way as by utilizing a 

probe which consists of a grid or array of single-stranded DNA molecules, whose 

sequence is known, one applies an immobilized target of interest, which consists 

of a heterogeneous mixture of mRNA molecules of unknown composition, to the 

probe and try to measure the amount of presence of hybridization.  

Usually a radioactive or fluorescent substance is used to help label the 

target. Because the probe will hybridize only to sequences complementary to its 

sequence, we can wash off all unhybridized sample probes and the intensity of 

fluorescence should be proportional to the number of molecules of target bound 

to the probe. 
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1.4 Microarray Technologies 

There are two major types of microarrays, cDNA microarrays (Schena et al., 1995) 

and oligonucleotide microarrays (Lockhart et al., 1996). These two microarray 

technologies are the very earliest and are currently the most widely used. 

However some other competing technologies are emerging. A brief description 

of these two most popular microarray technologies is given in this section. 

1.4.1 cDNA Microarrays 

cDNA microarrays, also known as robotically spotted microarrays, were 

introduced into common use at Stanford University and first described by 

Schena et al. in 1995.  It usually consists of probes of cDNA robotically printed on 

a microscope slide. To make the array, a robotic spotter mechanically picks up 

specific cDNA sequence and deposits them in specific locations in the grid on the 

glass slide to create specific probes.  

There are several advantages and disadvantages of using cDNA 

microarrays. (1) The first advantage of using cDNA arrays is that one can 

customize cDNA microarray chips for a specific purpose by designing a layout 

and directing a robotic spotter to make these microarrays. However, this 

wonderful customizability may also lead to more possibilities for errors.  (2) The 

second advantage of cDNA microarrays is that, because the cDNA probes are 

generally several hundred bases long, or even cover the entire cDNA sequences, 

stringent hybridization conditions can be achieved and the likelihood of cross-

hybridization is reduced. However, Kohane et al. (2003) pointed out that, even 

though a long probing subsequence ensures a sufficiently confident 

representative substring of the original gene, it does not mean that hybridization 
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conditions will be fully and equally optimized for all species of cDNA 

subsequences, because the probe-sample probe hybridization rate is known to be 

a function of the guanine-cytosine (GC) content of a transcript. (3) The third 

advantage is that we can apply two different RNA samples, say one treatment 

and one control, on to one common cDNA microarray substrate at the same time.    

1.4.2 Oligonucleotide Microarrays 

Oligonucleotide microarrays have oligonucleotide probes lithographically 

synthesized directly on the array. The array in this case is a silicon chip instead of 

a glass slide (Fodor et al., 1991). Currently, the Affymetrix GeneChip is the most 

popular oligonucleotide expression array technology. In an oligonucleotide array, 

each unique gene is represented by a probe set, which consists of 11-20 probe 

pairs. Each probe pair includes one perfect match (PM) oligonucleotide probe and 

one corresponding mismatch (MM) probe. The perfect match probe consists of a 

25-mer oligonucleotide that is exactly complementary to a 25-mer 

oligonucleotide sequence of an exon of the target gene. It is designed in such a 

way as to hybridize to different regions of the RNA that is corresponding to an 

expressed gene and act a series of multiple independent detectors for the gene.  

The mismatch probe is identical to PM except that the middle base (the 

13th position) of the corresponding perfect match probe is changed to a different 

nucleotide. The purpose of a mismatch probe is to serve as an internal control of 

hybridization specificity peculiar to its particular hybridization site. We expect 

that the mismatch probe should not hybridize well to the target transcript but it 

should hybridize to other transcripts that the perfect match oligonucleotide 

cross-hybridizes to. Thus the hybridization to the gene by the perfect match 

probe should be stronger than any other nonspecific hybridization to the 
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mismatch probe. Theoretically, if the PM intensities are consistently larger than 

the corresponding MM intensities for a probe set (gene), it is more likely to be an 

indication of the actual presence of mRNA corresponding to that gene in the 

sample as opposed to being a random chance event. 

 The oligonucleotide microarray technology has its own advantage over 

the cDNA microarray technology. The oligonucleotide microarray allows for 

more genes to be screened or assayed on one single microarray chip due to its 

higher density of probe pairs. Therefore, it is unnecessary for scientists to restrict 

the number of genes that are to be scanned. However, due to the limitation of the 

current technology, only one experiment can be performed on one single 

microarray chip at one time. Instead, if one needs to compare two different RNA 

samples as would one do in cDNA microarray experiment, he or she has to use 

two separate oligonucleotide arrays. This will undoubtedly introduce variations 

which are not expression changes from a control to a treatment condition. 

Furthermore, the oligonucleotide microarray requires that the entire 

sequence of the target be known. That is, if a scientist is interested in studying a 

specific species while no appropriate oligonucleotide microarray chip exists, then 

he or she cannot take advantage of this technology, because unlike cDNA 

microarray chips, oligonucleotide microarray chips cannot be customized at the 

user’s end easily. 

In this paper, we will mainly focus on oligonucleotide microarrays.  
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Chapter 2    

Current Procedures for Preprocessing 

Oligonucleotide Microarray 

 

2.1 Scanned Image 

At the end of a DNA microarray experiment, that is, after hybridization of 

fluorescently labeled cDNA molecules to the microarray probes, a scanner (laser 

scanning confocal microscope) or a charge-coupled device (CCD) camera is used 

to obtain a series of images, which record the intensity of fluorescence at each 

pixel location on the microarray, and those images are to be stored in a 16-bit 

tagged image file (TIFF) (Simon et al., 2003). Before used for any analysis, the 

image has to be converted into spot intensities. 

Converting scanned images to spot intensities usually requires an 

experimenter to go through three basic steps: gridding, segmentation and 

quantification. During gridding, the location of each spot in the microarray is 

defined by assigning coordinates to the center of each spot; in segmentation, we 

need to separate from the background the set of pixels corresponding to labeled 

cDNA which is hybridized to its complementary DNA sequence, while the 

background refers to the set of pixels that correspond to labeled cDNA 

hybridizing nonspecifically to the microarray; at the end, the quantification step 

assigns intensity values to every spot. More detailed information about this 

procedure is provided by Yang et al. (2000, 2001).  
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2.2 Affymetrix GeneChip Expression Measures 

Once the raw oligonucleotide microarray images are converted into a 

quantitative data set, it is usual to take an appropriate procedure which can 

eventually give a measure of expression that represents the amount of the 

corresponding mRNA species in the microarray experiment. This procedure, 

which aims at obtaining one single expression value for one gene per array, 

instead of values for the 11-20 probe pairs (PM and MM probes) in a probe set, 

usually involves the following three steps: background correction, normalization 

and summarization. 

2.2.1 Background Correction 

Ideally, we would expect the intensities of those pixels, which are not 

corresponding to spots in the scanned microarray images, to be zero, but this 

practically never happens. In fact, those pixels often emit some nonspecific 

fluorescence because of various reasons such as nonspecific binding of the 

labeled sample to the array substrate and auto-fluorescence. Although the level 

of this emission may be low, it is not trivial to ignore anyway. 

 Because of the existence of this background fluorescence, it is more 

reasonable to assume that the observed spot intensity is really the result of the 

additive combination of the true spot intensity and the background one. Thus, it 

would be more proper if an adjustment that subtracts the background from the 

raw spot intensity values can be performed. Currently, there are various 

approaches to achieve background correction, and it has been shown that the 

choice of background correction method can have a large impact on the final 

output such as log ratios (Yang et al., 2002c; Jain et al., 2002). 
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 Current methods of background correction include the followings: 

(1) Global Background Correction 

Global background correction uses the same constant value to represent 

the background for all spots. The constant could be calculated as the 

average intensity of all the pixels not belonging to the spots. Although this 

approach looks simple and easy to perform, it does not take into account 

the fact that the background variations over the entire microarray do exist. 

(2) Spot Background Correction 

The spot background correction, also called regional background 

correction, provides more flexibility than global background correction. 

One can subtract the spot background from the raw spot intensity value to 

yield a spot background-corrected spot intensity value. However, it is 

often found that spots with high intensity tend to have high spot local 

background, whereas spots with low intensity tend to have low spot 

background. This is because the segmentation process is usually imperfect 

and the spot background often contains a contribution from the signal.  

(3) Smoothed Background Correction 

Since the experimental effects such as hybridization artifacts, the washing 

process, and the scanning variation usually vary gradually across slides, 

we have reason to believe the true variation in background across an array 

should be smooth too. The background may be smoothed by running a 

simple smoothing procedure through the array. Yang et al. (2001) applied 

an algorithm called morphological opening for this purpose. 
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2.2.2 Normalization 

Normalization is a crucial step for comparing the gene expression values 

between arrays in the analysis of DNA microarray experiment. Even though 

microarrays may be treated exactly in the same way during a DNA microarray 

experiment, scientists often find substantial differences in intensity 

measurements among microarrays. This annoying phenomenon has nothing to 

do with the samples’ own biological features, but instead is due to a variety of 

systematic effects such as the concentration and amount of DNA placed on the 

microarrays, arraying equipment such as spotting pins that wear out over time, 

mRNA preparation, etc. 

 The objective of normalization is to remove the effects of any systematic 

sources of variation as much as possible by adjusting the gene expression values 

of all genes on the array, so that the genes that are not really differentially 

expressed have similar values across the arrays. Many studies show that the 

normalization step has a great impact on the final expression measures (Bolstad 

et al., 2002). 

 There are a large number of normalization methods that are being used in 

either academia or industry. Generally, they can be divided into two categories: 

global or linear normalization, and intensity-based normalization. Global or linear 

normalization schemes assume that the spot intensities on every pair of arrays 

that is being normalized are linearly related with no intercept. In intensity-based 

normalization, the transformed spot intensity data is normalized using a 

nonlinear normalization function	� → ����. For an intensity-based normalization, 

there must be a reference or baseline microarray to which all the microarrays are 

normalized.  
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2.2.3 Summarization 

In oligonucleotide microarrays, each unique gene is represented by a probe set, 

which consists of 11-20 probe pairs. In order to finally obtain one single 

expression value for each gene, the summarization step has to be performed, in 

which various mathematical or statistical techniques are used. 

2.2.3.1 The Average Difference 

Since each probe pair includes one perfect match (PM) oligonucleotide 

probe and one corresponding mismatch (MM) probe, and if we let �	
�  and 

		
� denote the background-corrected spot intensity measurements for the �th 

perfect match probe and mismatch probe respectively for gene	
 , thus �
� =
�	
� −		
� 	serves as a measure of the hybridization level of the	�th probe of 

gene	
, an intuitive estimate of the expression value for gene	
 would be simply 

the arithmetic mean of the intensity differences between PM and MM for all 

probe pairs. This is called the Average Difference (��
����) and a mathematical 

formula is defined as  

 ( )
1 1

1 1p pN N

g gi gi gi

i ip p

AvgDiff PM MM Y
N N= =

= − =∑ ∑   (2.1)  

, where	��	is the number of probe pairs in a probe set 	
	(gene	
). A modified 

version of this formula was adopted by one of Affymetrix’s early approaches, in 

which any extreme value of 	�
�	(three standard deviations away from the mean) 

is trimmed off. 

  Although the average difference method looks simple and intuitively 

correct, it ignores the fact that MM probes may also measure some specific 
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binding (Wu et al., 2004). Therefore, an ideal mismatch value, denoted by	�	
� , 

should be obtained by adjusting the value of 		
�	before we can subtract it from 

its corresponding 	�	
� . If the value of �	
�  is greater than 			
� , the 

difference	�
� represents a possible measure of the true hybridization level for the 

�th probe of probe set 
, and �	
� is usually set to			
�. However, if the value of 

�	
�  is less than 			
� , the difference �
�  is then negative, hence no longer 

represents a possible measure of the hybridization level. To solve this problem 

Affymetrix recommends using an algorithm they developed for calculating a 

value of	�	
� such that the value of		�	
�, which is then based on the behavior of 

the totality of probes in the 
th probe set, will be between 0 and �	
� . After 

obtaining the values of	�
�, an average based on �
� is then calculated through 

their one-step biweight mean, and finally converted back to the original scale. 

This procedure is called the weighted average difference. 

2.2.3.2 Model-based Approach 

A model-based approach for summarizing gene expression for oligonucleotide 

arrays was proposed by Li and Wong (2001b). For each probe set in an array, let 

�	�� 	and 		�� 	denote the probe intensities for the perfect match and mismatch 

probe respectively, where � refers to the sample (array) index and � refers to the 

probe pair index. Suppose �� 	represents the true expression level of the probe set 

in the �th array, the Li-Wong model assumes that the observed measurements 

for	�	�� 	and 		�� are linear functions of	��; and for a truly expressed gene, there 

exists a factor 	��  that makes the strength of the �	��  versus ��  relationship 

greater than the strength of the 		�� versus �� relationship. The Li-Wong model 

can be defined mathematically as follows: 
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ij j i jMM ν θ α ε= + +   (2.2) 

 
ij j i j i jPM ν θ α θ φ ε= + + +   (2.3) 

, where �� is the baseline response of the �th probe pair due to the nonspecific 

hybridization, �� is the rate of increase of the MM response of the �th probe pair, 

	�� is the additional rate of increase in the corresponding PM response, and � is a 

random error term.  

 The difference between the PM and MM based on the Li-Wong model 

gives an even simpler model as follows: 

 
ij ij ij i j ijy PM MM θ φ ε= − = +   (2.4) 

To make the model identifiable, we need to put a constraint on �� by simply 

letting	∑ �� � = !, where	!	stands for the number of probes in the probe set. The 

model parameters are then estimated using maximum likelihood. 

2.2.3.3 Only Using Perfect Match Probes 

Studies have shown that mismatch (MM) probes often contain too much target 

signal to function as a true measure of nonspecific hybridization. In fact, the MM 

intensities exceed the PM intensities for about one third of the probes (Irizarry et 

al., 2003). This results in a negative estimate of the differences between PM and 

MM probes, which is theoretically impossible. Furthermore, it also makes it 

impossible to apply to the data some types of transformation techniques that 

may be commonly used in statistics (e.g. log-transformation, square-root 

transformation, etc.). Many methods of gene expression summarization now turn 

to only using perfect match (PM) probes instead of utilizing PM and MM 



16 
 

 

 

altogether. For the average difference method, we may now calculate the gene 

expression only based on the PM values. Since the distribution of PM probes is 

usually skewed, instead of directly taking their arithmetic mean, it is often better 

to transform them into log scale. 

 Another method of calculating gene expression level for oligonucleotide 

arrays, which also only uses PM intensities, is the Robust Multi-chip Average 

(RMA) method. In the summarization step, RMA uses an additive model to fit 

the PM probes (after background correction, normalization and log-

transformation) and applies a robust method called median polish to fit the 

additive model. More details will be given in section 2.3.3.  

2.3 Current Popular Methods for Computing Gene Expression 

As the interest in the development of preprocessing methodology for the 

Affymetrix GeneChip technology continues to boom, a great number of various 

procedures for computing gene expression become available to both the 

academia and the industry, and new ones are on the way coming out. Most of 

these preprocessing methods require going through three steps as discussed in 

section 2.2, while some of them may drop the background correction step for 

their own reason. Irizarry et al. (2006) provide a list of some popular methods for 

computing gene expression level. In this section, we will briefly introduce the 

following three well-known methods: dChip (Li and Wong, 2001), MAS 5.0 

(Affymetrix, 2002), and RMA (Irizarry et al., 2003). 
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2.3.1 dChip 

DNA-Chip (dChip) is a Windows software package for probe-level and high-

level analysis of Affymetrix GeneChip Microarrays based on the Li-Wong model 

discussed in section 2.2.3.2. The background correction step for the dChip 

method is theoretically based on Equation (2.2) and (2.3), which include a model-

based expression index (MBEI) �� 	as the measure of gene expression. The model 

is then reduced to a simpler formula as shown in Equation (2.4) by subtracting 

ijMM  from 
ijPM . In the normalization step, dChip uses the invariant set method, 

which attempts to base normalization only on those probes that are not 

differentially expressed between chips. In the summarization step, Equation (2.4) 

is fit using a maximum likelihood method to obtain the estimate of ��. 

2.3.2 MAS 5.0 

The Affymetrix Microarray Suite (MAS) 5.0 method was developed by 

Affymetrix to replace its MAS 4.0 method for its GeneChip system. As discussed 

in section 2.2.3.1, MM probes may also measure some specific binding and as a 

result, the intensity of MM probes sometimes may be greater than the intensity of 

PM probes. This will give a negative difference value for
ij ijPM MM− . MAS 5.0 

uses a multistep process to ensure that no negative intensity will occur for the 

background correction step. For the normalization step, MAS 5.0 conducts a scale 

normalization that adjusts all chips to have the same mean intensity. For the 

summarization step, MAS 5.0 uses the one-step biweight mean { }biwt gi
T X  on the 

log difference, as shown in Equation (2.5), between the PM and IM  

 ( )log log( )
gi gi gi gi

X Y PM IM= = −  , (2.5) 
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where 
giIM  stands for ideal mismatch value which is discussed in section 2.2.3.1. 

The log transformation reduces the skewness of distribution of 
giY  and the use of 

the one-step biweight mean reduces the influence of outliers on the final estimate. 

2.3.3 RMA 

The robust multi-chip average (RMA), which was proposed by Irizarry et al. 

(2003), has become a more and more popular gene expression measure. In RMA 

algorithm, only the values of PM probes are used. RMA method adopts a 

background plus signal model, which is shown in Equation (2.6), where
gijPM ,  

 
gij gij gijPM bg s= +   (2.6) 

 
gijbg and

gijs are the PM intensity, background signal and probe-specific signal 

respectively for the �th probe of the �th array in probe set 
. The background 

signal 
gijbg could be caused by optical noise and non-specific binding. In RMA 

method, the background correction step is accomplished by estimating the 

probe-specific intensities ( )|
gij gij

E S PM . RMA uses the quantile normalization 

method (Bolstad et al., 2003), which is an aggressive form of normalization that 

makes the distribution of the spot intensities as similar as possible over all 

microarray chips. In quantile normalization, either a subset of quantiles or all the 

quantiles may be equated. 

 In RMA method, after background corrected and quantile normalized, the 

PM intensities will be also transformed into a logarithmic scale (usually log2), 

then an additive model  (2.7) will be fit to compute the gene expression level. 

 
gij g gi gj gijy µ α β ε= + + +   (2.7) 
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In model (2.7), 
gµ denotes the overall typical value for the probe set	
, 

giα is the 

probe effect, and
gjβ  represents the array effect. Usually, we assume the error 

term 
gijε follows a normal distribution with mean 0 and variance 2σ . The gene 

expression for probe set	
 (i.e. gene	
) is then computed by adding the estimate 

of 
gµ and

gjβ  as shown in Formula (2.8). 

 ˆˆ
g g gjS µ β= +   (2.8) 

To obtain an additive fit in the form of model (2.7), the RMA method uses 

an iterative process, called median polish, which iteratively finds and subtracts 

row medians and column medians from the data matrix (Hoaglin et al., 2000). 

Median polish is a robust method of fitting an additive model that is in some 

ways analogous to analysis of variance (ANOVA). The iterative process can be 

stopped when all rows and columns have zero median. However, a small 

number of iterations are usually sufficient to obtain satisfactory estimates of the 

factor effects. In practice, as Hoaglin et al. pointed out, it is often good enough by 

using two iterations and usually no more than four iterations will be needed for 

most of the situations. 

As a matter of fact, the three-step procedure of the RMA method 

resembles the median-of-median (MOM) method proposed by Amaratunga and 

Cabrera (2001a, 2001b), which uses a three-step process consisting of (i) 

background subtraction; (ii) standardization by quantiles (i.e. quantile 

normalization), and (iii) median-of-median (MOM) estimates. The third step in 

the MOM method uses a highly resistant estimator for 
gµ  as shown in (2.9) 

 ( )median median
g j i gij

S Y= .  (2.9) 
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It can also be calculated by a one-step median polish. Then one can proceed with 

statistical analyses at the gene level. Table 1 gives a comparison between RMA 

and MOM. 

Table 1 Comparison of RMA and MOM 

 RMA (Irizarry et al., 2003) MOM (Amaratunga and Cabrera, 2001a, 2001b) 

1 Background correction Background subtraction 

2 Quantile normalization Quantile normalization 

3 Median Polish One-step Median Polish 

4 Statistical analysis Statistical analysis 
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Chapter 3 

Statistical Analysis on Individual Genes 

  

3.1 Introduction 

In the previous chapter, we discussed the preprocessing procedures about the 

scanned image from a DNA microarray experiment. Once the scanned images 

from replicate samples have been converted, through a specific preprocessing 

method that usually involves background correction, normalization, and 

summarization (as discussed in Chapter 2), into a numerical data matrix that 

finally contains gene-level expressions for microarrays, a wide variety of 

investigations with a wide variety of objectives can be carried out through 

applying some particular statistical procedures. Many study objectives of interest 

can be classified into the following three categories: 

(1) Class Comparison 

Class comparison is a natural objective for DNA microarray experiments. The 

goal focuses on determining whether gene expression levels of a set of genes 

across two or more conditions are significantly different. The classes may 

represent different tissue types, or the same tissue type but under different 

experimental conditions or under different classes of individuals. For example, 

an experimenter might be interested in comparing the gene expression levels of 

several genes in a cancer study, which may involve healthy liver cells and 
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cancerous liver cells, or for the cancerous liver cells, the tissue taken before or 

after medical treatment or some kind of experimental intervention. 

(2) Class Prediction 

Unlike class comparison, class prediction emphasizes on developing a statistical 

model that can be used to categorize a new specimen (say a new tumor). Because 

it is likely that different genes are expressed in the cells of different tumor classes, 

it should be possible to differentiate among the tumor classes by studying which 

genes are informative for distinguishing the predefined classes, and apply class 

prediction or supervised classification techniques to develop a classification rule 

to discriminate them. It has important role for medical problems in diagnostic 

classification, prognostic prediction, and treatment selection (Simon et al., 2003) 

(3) Class Discovery 

Class discovery focuses on the identification of subtypes of specimens or genes 

within the same population. The idea is that important biological differences 

among specimens that are clinically and morphologically similar may be 

distinguishable at the molecular level. A popular approach to class discovery 

involves grouping similar genes or samples together using methods such as k-

means or hierarchical clustering. Studies using class discovery may help develop 

improved medical treatments by uncovering biological features of diseases. 

In this paper, we will only focus on statistical methods for comparing 

microarrays of two groups. The following sections will provide reviews on 

current statistical methods for two-group comparison of individual genes. 

3.2 Two-group Comparison of Individual Genes 
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In a DNA microarray experiment, scientists are often interested in conducting 

experiments on two groups of mRNA specimens whose biological characteristics 

are different in some manner independent of the expression profiles, and using 

some statistical methodologies to identify genes that are significantly 

differentially expressed over the two groups. Considering a set of	"	genes in two 

groups of microarrays, denoted by Group 1 and Group 2 respectively, suppose 

there are #$ microarrays in Group 1 and #  microarrays in Group 2, thus the total 

number of arrays is	� = #$ + # . Let	�
� 	represent the gene intensity of Group 1 

for the 
th gene and the �th microarray (in Group 1), and similarly let &
� 	be the 

gene intensity of Group 2 for the 
th gene and the �th microarray (in Group 2). 

That is, for each gene	
, Group 1 contains gene intensities �
$ through �
'( and 

Group 2 contains gene intensities &
$	through	&
') (see Table 2). It is assumed 

that all data have been transformed and normalized. For example, in the RMA 

method, the data should be converted from the raw probe-level data to the gene-

level data by going through background correction, quantile normalization, and, 

after log2-transformation, finally summarization using median polish. 

Table 2 DNA Microarray data (gene-level) 

Gene Group 1 Group 2 

1 �$$ … �$'( &$$ … &$') 

…
 

…
 �
�( …
 

…
 &
�) …
 

G �*$ … �*'( &*$ … &*') 

 

3.2.1 Fold Changes 
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The simplest and most common situation is to compare one gene over the two 

groups at a time. Our interest is to know, for one particular gene in the 

microarray data, whether the mean of expression level for Group 1 is 

significantly different from the mean of expression level for Group 2. If we let x

denote the mean of the expression level for Group 1 and y  the mean of the 

expression level for Group 2 (without confusion, we can omit the subscript 
 for 

genes), it is clear that large absolute difference of x  and y  may indicate the gene 

is differentially expressed. To give a quantified rule of determining whether a 

gene is differentially expressed, early analyses adopt a method which compares 

fold increase or fold decrease with a specified threshold. The fold change (or log 

fold change) is defined as x y− . In general, the decision rule that declares a gene 

to be differentially expressed over groups based on an ℎ-fold (or greater) change 

is to see if ( )logx y h− >  holds. A problem with this approach is that it can lead 

to a high probability of declaring a gene to be differentially expressed when it is 

not (Miller et al., 2001) and the choice of fold is somewhat arbitrary. It utterly 

ignores the variability of gene intensities as an influential factor on determining 

whether a gene is significantly differentially expressed (Amaratunga and 

Cabrera, 2004). 

3.2.2 Two-sample t-Test 

The two-sample t-test is the most commonly used method that also takes 

into consideration the variability of gene expression for comparing two groups. It 

assumes that the gene intensities of the two groups follow normal distributions 

independently, that is  

 ( )
1

2

1 2 1 1
, , , . . .  ,

n
X X X i i d Normal µ σ… ∼   (3.1)  
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and  

 ( )
2

2

1 2 2 2
, , , . . .  ,

n
Y Y Y i i d Normal µ σ… ∼ .  (3.2) 

The hypotheses are 

 0 1 2 1 1 2:    vs.  :H Hµ µ µ µ= ≠ .  (3.3) 

If we assume the two samples have equal variances, that is ( )2

1,j
NormaX l µ σ∼

and ( )2

2 ,
j

NormaY l µ σ∼ , we may define the t-test statistic , as 

 

1 2

1 1
p

x y
T

s
n n

−
=

+

,  (3.4) 

  where 

 
( ) ( )2 2

1 1 2 22

1 2

1 1

2
p

n s n s
s

n n

− + −
=

+ −
  (3.5) 

is the pooled variance estimate, and -$ 	and -   are the sample variances for the 

two groups respectively. Under the null hypothesis ./, , follows a t-distribution 

with degrees of freedom #$ + # − 2. A rejection criterion is then based on the 

observed value of ,, denoted by ,123, such that a gene is declared significantly 

differentially expressed if  

 ( )Pr
obs

p T T α= > < ,  (3.6) 

where � is a pre-selected testing level (usually 0.05) and	4 is called the p-value. 
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 A test based on Equation (3.4) is true only when it is reasonable to assume 

that the two populations, which are also assumed normally distributed, have 

equal variances. However, the assumption of equal variances is difficult to be 

substantiated considering the small sample sizes of microarray data. When such 

assumption is untenable, the traditional t-test may tend to have a higher false 

positive rate than expected (Amaradatunga and Cabrera, 2004).  

To overcome this problem, a modified version of t-test with Welch 

correction (also called a Welch’s test) can be used. The Welch correction is to 

provide a valid t-test in the presence of unequal population variances. The 

Welch’s test statistic is defined as follows: 

 
2 2

1 2

1 2

x y
T

s s

n n

−
=

+

.  (3.7) 

The t-statistic shown in Equation (3.7) follows approximately a t-distribution 

with a corrected number of degrees of freedom ν  to assess the significance of the 

t-statistics, where ν  is defined as the next smaller integer of the value obtained 

from the following equation: 

 
( ) ( )

2
2 2

1 2

1 2

2 2
2 2

1 1 2 2

1 21 1

s s

n n

s n s n

n n

ν

 
+ 

 =

+
− −

 . (3.8) 

When the variances of the two groups are equal, Equation (3.8) reduces to the 

usual degrees of freedom	#$ + # − 2 if the two groups have equal numbers of 

observations; however, if the two groups have different numbers of observations, 
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Equation (3.8) gives a smaller value than #$ + # − 2, which makes the t-test 

using Welch correction too conservative. 

3.2.3 SAM t and Conditional t 

The original two-sample t-test should work fine for most of the situations that 

require comparison of two groups; however it may encounter some problems 

when it is applied to DNA microarray data. Because the sample size in a 

common DNA microarray experiment is usually very limited, the original two-

sample t-test often shows low statistical power of detecting differentially 

expressed genes. The very small sample size makes it difficult to estimate the 

standard errors of microarray data well and small standard errors can appear 

completely by chance. This may result in a high false positive rate for genes that 

happen to have low variability and a high false negative rate for genes that 

happen to have high variability.  

 One solution to solve the abovementioned problem is to include a 

carefully chosen constant to the denominator of the t-statistic. A modified t-

statistic then can be defined as follows: 

 ( )

1 2

1 1
p

x y
T c

s c
n n

−
=

+ +

  (3.9) 

The idea is to choose an intermediate positive value of c  such that the 

dependence of ( )T c  on 
1 2

1 1
p

s
n n

+  is minimized. This approach was suggested 

by Tusher et al. (2001) and the statistic ( )T c is often called the SAM t-statistic, 

where SAM means “significance analysis of microarrays”. 
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Another solution to solve the problem discussed in the first paragraph of 

this subsection is proposed by Amaratunga and Cabrera (2003c), which 

addresses the dependence of T on 
1 2

1 1
p

s s
n n

= +  by determining the critical 

value of T  from the distribution of T  conditioned on s . 

3.3 Multiple Testing 

Because of the nature of DNA microarray experiments, usually a very huge 

number of statistical analyses are performed simultaneously. These simultaneous 

tests could result in high false positive rate and thus high expected number of 

false positives. Suppose we have n  many genes in one microarray experiment 

and we want to perform n  many t-tests to compare arrays that are divided into 

two groups (phenotypes). Each test is done at level α . Then, if those tests are 

independent, the probability of making at least one false positive is 

 ( ) ( )Pr at least one false positive in  tests 1 1
n

n α= − −   (3.10) 

 If n  is large (and it is often the case in microarray experiments), Equation (3.10) 

would be very close to one, which implies one may definitely find at least one 

false positive in n  many tests. Furthermore, if n  is large, the expected number of 

false positives, nα , could be an overwhelmingly large number and this makes it 

very difficult to discern the true significant genes. 

Early methods to overcome this problem due to multiple testing focus on 

adjusting the p-values of each test so that the familywise error rate (FWER), the 

probability of having at least one false positive, is less than a specified level. For 

example, in Bonferroni adjustment, the p-value for the kth test is simply 
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k k
p K p= ⋅ɶ , assuming there are K  many tests and 

k
p  is the original p-value for 

the kth test. Apparently, methods like Bonferroni adjustment would be too 

conservative in the sense that while they reduce the number of false positives, 

they also reduce the number of true discoveries. 

Another way to solve the problem due to multiple testing is that, instead 

of controlling the FWER, one can control the ratio of the number of false 

discoveries in those tests that result in a discovery. This ratio, called False 

Discovery Rate (FDR), can be loosely defined as (Storey and Tibshirani, 2001) 

 
V V

FDR E E
V S R

   
= =   

+   
,  (3.11) 

where V stands for the number of false positives and S for the number of true 

positives, thus R would be the number of total discoveries. Benjamini and 

Hochberg (1995) defined the FDR more precisely as  

 ( )0 Pr 0
V

FDR E R R
R

 
= > > 

 
  (3.12) 

Storey (2001a) defined the positive false discovery rate (pFDR) as 

 pFDR E 0
V

R
R

 
= >  

.  (3.13) 

The pFDR emphasizes the fact that we need to do adjustment only if positive 

findings are present.  
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Chapter 4 

Robust Estimators in  

RMA Method 

    

4.1 Review of RMA Method 

The RMA method was proposed by Irizarry et al. (2003), and has become a 

popular gene expression measure. In RMA algorithm, only the values of PM 

probes are used. The PM intensities are to be transformed into a logarithmic scale 

after the background correction and the quantile normalization steps, and then 

an additive model (2.7) is fit to compute the gene expression level. 

The RMA method uses median polish to obtain an additive fit in the form 

of model (2.7), that is, it iteratively finds and subtracts row medians and column 

medians from the data matrix. One could either begin with the rows or begin 

with the columns, until the process results in no more change in rows or columns, 

that is, all rows and columns have zero median. Usually, the median polish 

procedure is done in one step. Figure 1 shows the diagram of the RMA 

procedure. 

 

Background 

Correction 

Quantile 

Normalization 

Median 

Polish 

Step 2 Step 3 Step 1 

Figure 1 Three Steps of RMA 
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4.2 Use Sample Mean in RMA 

As discussed in the previous section, the RMA method takes advantage of 

median polish, which iteratively removes current row and column medians, to 

estimate the row, column and overall effects of an additive model (2.7).  

In fact, any measure of location can be applied in this manner to fit the 

additive model (2.7). A very natural choice of measure of location is the sample 

mean X . The steps to obtain the row, column and overall effects using means are 

similar to the way used in median polish; however it does not need iteration. As 

a matter of fact, one can obtain the row, column and overall effects as well as the 

residuals in one step. First, we could compute the grand mean (i.e. the average of 

all values in the data matrix) and then subtract it from all observations. Second, 

the row means can be computed and subtracted from their corresponding rows, 

and then the column means be computed and subtracted from their 

corresponding columns in the same way. This process can be formularized as 

follows:  

For an additive model (2.7), the estimates for the 
-th probe set are: 

 
1

ˆ                                  
ij

i j

y
IJ

µ = ∑∑   (4.1) 

 ( )1
ˆ ˆ                1,

i ij

i

y i I
J

α µ= − =∑ …   (4.2) 

 ( )1ˆ ˆ                1,
i ij

j

y j J
I

β µ= − =∑ …   (4.3) 

, and the residuals are 
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 ˆˆˆ           1, ; 1,ij ij i jr y i I j Jµ α β= − − − = =… … .  (4.4) 

The estimates in equations (4.1), (4.2) and (4.3) minimizes the sum of the squares 

of the residuals 

 2

ij

i j

SSR r=∑∑  . (4.5) 

However, the sample mean is not a resistant estimator and its performance in 

estimating the central location of a sample, especially for that with a small 

sample size, is greatly subject to the presence of outliers. 

4.3 Use Other Robust Statistics in RMA 

In the previous section, we pointed out that it is possible to adopt other 

estimators of location in lieu of the sample median used in the summarization 

step of the RMA method. Although the sample mean is one of the choices, its 

performance greatly depends on how well the underlying assumptions (e.g. 

normality, outliers, etc.) are satisfied. Considering that the DNA microarray data 

usually involves only a small number of experiments, and the complexity of 

these experiments can often introduce different types of variations along the 

laboratorial processes, a robust estimator of location, such as the sample median, 

is absolutely more preferred than the sample mean. 

4.3.1 Huber’s M-estimator 

Besides the sample median, some other robust estimators are also currently 

available. One of them is Huber’s M-estimator. As a matter of fact, median belongs 

to the family of Huber’s M-estimators. M-estimators are a generalization of 
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maximum likelihood estimators (MLE’s). For MLE’s, we try to find an estimator that 

could maximize the likelihood function (4.6), 

 ( )
1

|
n

i

i

f x θ
=

∏   (4.6) 

or equivalently, minimize (4.7).  

 ( )
1

log |
n

i

i

f x θ
=

−∑   (4.7) 

Huber (1964) proposed to generalize this by minimizing an objective function 

which utilizes some function ( )xρ  and sums over the sample (see Formula (4.8)). 

 ( )
1

|
n

i

i

xρ θ
=

∑   (4.8) 

Thus minimizing ( )
1

|
n

i

i

xρ θ
=

∑  can usually be done by differentiating ρ  and 

solving Equation (4.9) 

 ( )
1

| 0
n

i

i

xψ θ
=

=∑   (4.9) 

where ( ) ( )| |x xψ θ ρ θ
θ

∂
=

∂
.  

The most familiar M-estimator is the sample mean, which is the least 

squares estimate of location. The 5-function for this case is the square of residual 

(4.10) 

 ( ) ( )
2

|x xρ θ θ= −   (4.10) 
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Thus the 6-function can be obtained by differentiating (4.10) with respect to θ : 

( )2 x θ− − . By dropping the leading constant 2 and summing over all samples, we 

can find the estimator by minimizing (4.11), 

 ( )
1

0
n

i

i

x θ
=

− =∑   (4.11) 

in which 1

n

i

i

x

x
n

θ == =
∑⌢

, the sample mean, turns out to solve this equation.  

 Another example of M-estimator is the sample median. For this case, 

the	5-function is the absolute value of the residual (see Formula (4.12)), 

 ( )|x xρ θ θ= −   (4.12) 

 and the corresponding 6-function is (4.13). 

 ( ) ( )| sgnx xψ θ θ= −   (4.13) 

The family of Huber M-estimators uses the following 5- and 6- functions 

given in (4.14) and (4.15) respectively. 

 ( )
( )

2

2

1
if

2
|

1
if

2

k

x x k

x

k x k x k

θ θ
ρ θ

θ θ


− − ≤

= 
 − − − >


  (4.14) 

 ( )
( )

if
|

sgn if
k

x x k
x

k x x k

θ θ
ψ θ

θ θ

 − − ≤
= 

− − >
  (4.15) 

The sample mean and the sample median are special cases of Huber M-

estimators that are corresponding to the limit cases k → ∞  and 0k → respectively 

(Maronna et al., 2006). 
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4.3.2 Tukey’s Biweight 

Tukey’s biweight estimator (also called bisquare) is also a popular M-estimator. It 

was proposed by Tukey in the 1970s. Its corresponding 6-function is given in 

(4.16). 

 ( )
( )

2
2

1 if
|

0 if

x
x x C

x C

x C

θ
θ θ

ψ θ

θ

  −  − − − ≤   =     


− >

  (4.16) 

The family of Tukey’s biweight M-estimators is also known as redescending 

estimator because its corresponding 6-function goes back to 0 when the absolute 

value of x θ−  is greater than a specified positive number C . Hoaglin et al. (2000) 

suggest one-step Tukey’s biweight which uses one step of iteration when 

iteratively reweighting data points starting with an estimator (e.g. the median). 

4.4 Comparison of Mean, Median, Tukey’s Biweight and Huber’s 

M-estimators 

All of the abovementioned estimators except Mean are considered as robust 

statistics in the sense they are not excessively affected by outliers or other small 

departures from model assumptions. A simulation study can be carried out to 

compare the performances of the three robust estimators, Median, Tukey’s 

Biweight and Huber’s M-estimators as well as the sample mean. Usually, one can 

generate a “contaminated” dataset under a mixture model, which may include a 

small amount of contamination. For example, we can use a mixture of 95% an 

underlying distribution and 5% the same distribution with the same mean but 

significantly higher standard deviation to represent outliers. 
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In the following example, we generated a microarray probe-level data 

with 1000 genes and 12 samples. Those 12 samples are divided into two groups, 

one as the control group containing 6 samples, and the other as the treatment 

group containing the other 6 samples. Each gene (also known as probe set) 

consists of 11 probes according to the general Affymetrix GeneChip microarray 

structure. The generated data matrix is thus 11000 by 12 in dimensions. The data 

matrix is generated from a normal distribution with mean 0, and with standard 

deviation 0.5 for 95% of the data points (randomly chosen) and standard 

deviation 1, 2, 3 and 4 respectively for each run for the rest 5% data points. Next 

a list of increasing difference values (in this example, 0, 0.1, 0.2 and 0.4) are 

added to all data points in the data matrix for one of the two groups, and then 

one of the location estimators is used in RMA to obtain the gene expression. We 

want to find out the overall patterns of the discovery rate of significant genes (i.e. 

the proportion of significant genes out of the 1000 genes) when using these 

estimators, by performing a series of two-sample t-test on each gene. 

Theoretically speaking, we should expect to see the discovery rate is around 5% 

when 0 is added to the treatment group (i.e. no differential expression for genes) 

for all estimators provided that we use 5%-significance level and an increasing 

discovery rate when the added difference value is increasing. Meanwhile, we 

also expect to see the discovery rate of significant genes decrease when we 

increase the value of standard deviation of the second normal distribution, as it 

represents the outliers in the “contaminated” data matrix.  

Figure 2 shows the comparisons of the performances of detecting 

differentially expressed genes when using mean, median, Tukey’s biweight and 

Huber’s M-estimator as the location estimator in RMA. For all of the four figures, 

the x-axis represents the standard deviations in the second normal distribution in 
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the mixture, and the y-axis represents the proportion of discovered significant 

genes. Clearly, when no differential expression is present, all estimators perform 

relatively well by giving roughly 5% discovery rate, except that the discovery 

rate using mean drops to below 0.035 when the standard deviation is increased 

to 4 for the second normal distribution. It implies that the sample mean may not 

be a good choice when outliers are present. As the difference value increases, the 
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Figure 2 Comparisons of Estimators in RMA (5% contamination) 

Simulation data generated from a mixture of 95% Normal(0, std = .5) + 5% Normal(0, std = 1, 2, 3, 4). A 

difference value (dif = 0, 0.1, 0.2, 0.4) added to the treatment group for each run. 

a. Dif = 0 : all estimators perform relatively well by giving roughly 5% discovery rate, except that the 

discovery rate using mean drops to below 0.035 when the standard deviation is increased to 4 for the 

second normal distribution. 
b. Dif = 0.1, 0.2, 0.4 : Discovery rate increasing as Dif increasing for all estimators. 

Discovery rate drops as StdDev increasing for mean. 
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discovery rate of significant genes is, as is expected, increasing too. And it is 

obviously going down as the standard deviation is also increasing. This trend 

becomes less obvious when the difference value added to the treatment group 

becomes bigger for median, Tukey’s biweight and Huber’s M-estimator. This 

phenomenon confirms that the robust estimators can still perform well when a 

small amount of outliers exist in the data set. However, for mean, it keeps 

dropping significantly as the standard deviation increases, even if there is bigger 

difference between the control group and the treatment group, which is evidence 

that the sample mean is not robust under unfavorable conditions.  

When the amount of outliers in the dataset increases, the overall 

performances of those estimators of location may change accordingly too. 

Usually, the estimators will “break down” when the proportion of outliers 

becomes too large. Hampel (1968) gives the concept of breakdown point of an 

estimator to describe the sensitivity of an estimator to the presence of outliers in 

a data set. The breakdown point is defined as the maximum fraction of 

observations in a sample that, without greatly changing the value of the location 

estimate, can be outliers.  

Surely the higher the breakdown point of an estimator, the more robust it 

is. The breakdown point of the median is 0.5, and it is the biggest possible one for 

an estimator of location that treats observations on each side of the estimate 

symmetrically (Hoaglin et al., 2000). For the mean, the breakdown point is 0 since 

a big change of a single observation in the data set may make the mean change 

greatly. 

In Figure 3 and Figure 4, we illustrate the performance change of the 

various RMA methods, based on the mean, the median, Tukey’s biweight and 
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Huber’s M-estimators respectively, by adjusting the percentage of outliers in the 

simulated data set. Instead of having 5% outliers, we increase the proportion of 

outliers to 20% and 40%, and go through the same procedures as are mentioned 

above to compare how well the outliers are handled by the four location 

estimators. 

It is not surprising to see the sample mean is still the worst candidate as a 

location estimator in the RMA method, since the breakdown point of the mean is, 

as we already know, zero. Its performance may be only acceptable when the 

standard deviation is small in the second normal distribution, or in another word, 
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Figure 3 Comparisons of Estimators in RMA (20% contamination) 
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it can only perform as similarly well as other candidates do when few or even no 

outliers are present. 

Although we have seen that the performance of Huber’s M-estimator is 

the best choice among others when only a small proportion of outliers exist, it is 

no longer the performance leader after we increased the contamination rate from 

5% to 20% and 40%. It is clear that, compared to the median and Tukey’s 

biweight estimator, Huber’s M-estimator becomes worse when the standard 

deviation of the second normal distribution in the mixture increases. Meanwhile, 

as the contamination rate gets close to 50% (Figure 5), the median becomes the 

best candidate among other estimators for the RMA method, and it is 
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Figure 4 Comparisons of Estimators in RMA (40% contamination) 
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immediately followed by Tukey’s biweight estimator. 

4.5 Conclusion 

In this chapter, we discussed the possibility of application of different types of 

location estimators, including the sample mean, the sample median, Tukey’s 

biweight estimator and Huber’s M-estimator, in the summarization step of the 

RMA procedure. The simulation results turn out to favor, as one can expect, the 

usage of robust estimators such as the median, Tukey’s biweight and Huber’s M-

estimators over the sample mean. In fact, the performance of the sample mean 

for detecting differentially expressed genes drops significantly when outliers are 

more likely to be present. Overall, Huber’s M-estimator outperforms all of the 
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Figure 5 Comparisons of Estimators in RMA (50% contamination) 
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other estimators in the sense its discovery rate of significance is higher than that 

of other estimators provided that the outliers in the data set account for only a 

relatively small proportion. Tukey’s biweight estimator (one-step biweight) also 

does good jobs, and its performance is better than the sample median used in the 

regular median polish process under the same situation. When the proportion of 

outliers in the data set becomes larger, especially when it is close to 50%, the 

median turns out to beat Huber’s M-estimator and the sample mean as well. It 

performs similarly as Tukey’s biweight estimator though. 

 Huber’s M-estimator works much better under the condition that there 

exist only a small proportion of outliers in the data set. And we can reasonably 

presume that it is very unlikely to find a large amount of outliers present in a 

DNA Microarray data set if the DNA Microarray experiments are prudentially 

carried out. We may conclude that the use of Huber’s M-estimator during the 

summarization step of the RMA method shall be an optimal choice.   
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Chapter 5    

Gene Set Enrichment Analysis (GSEA) 

on Gene-level Microarray Data 

   

5.1 Issues of Analysis on Individual Genes 

As discussed in previous chapters, traditional genome-wide Ribonucleic Acid 

(RNA) expression analysis, which usually aims at obtaining a list of significantly 

differentially expressed genes, is based on statistics computed from a collection 

of samples that belong to one of two or more groups of interest. For example, one 

may be interested in knowing whether one or more genes may show different 

expressing behaviors between healthy organisms and diseased ones (e.g. tumor).  

Despite the fact that Deoxyribonucleic Acid (DNA) Microarray technology 

allows biologists to acquire the expression profiles of a large number of genes 

simultaneously, the statistics for comparing groups are still computed 

individually for each row in microarray data, treating the associated genes as 

different entities. Because microarray experiments often come with a 

considerably small number of samples due to either statistical illiteracy or more 

possibly financial burden on each microarray chip, the gene-by-gene analysis 

through the traditional methods of comparison unavoidably shows low 

statistical power of detecting differentially expressed genes. For example, one 

may find that no individual gene may be picked out according to the 

predetermined threshold for statistical significance because the variance among 

samples could be relatively high compared to the relevant biological differences. 
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Similarly, it is also possible to pick out too many statistically significant genes if 

the samples happen to have low variability. Under either circumstance, it could 

be difficult for biologists to give meaningful interpretation of the microarray data 

that is being analyzed. 

Besides the issue of small sample size of microarray data, the gene-by-

gene analysis also ignores the biological knowledge regarding how genes work 

in concert with each other. As Subramanian et al. (2005) pointed out, an increase 

of 20% in all genes encoding members of a metabolic pathway may be more 

important than a 20-fold increase in a single gene because it may dramatically 

alter the flux through the pathway. 

5.2 Introduction of Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis (GSEA) method was recently proposed by 

Subramanian et al. (2005) to remedy those abovementioned problems. Instead of 

simply focusing on each individual gene (row) in a given microarray data set at a 

time, GSEA method tries to determine whether a predefined set of genes would 

statistically reveal concordant and significant differences between two groups of 

microarrays that belong to two different phenotypes. The gene sets are usually 

constructed according to prior biological information like known biochemical 

pathways, coexpression in previous experiments, etc. Annotation databases such 

as Gene Ontology (GO) (The Gene Ontology Consortium, 2005), Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000), etc. can 

provide such information for GSEA. 
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5.3 Gene Set Enrichment Score 

GSEA method can be performed basically in two steps. The first step involves the 

calculation of an Enrichment Score (ES) for each pre-defined gene set. To achieve 

this, suppose we have a collection of pre-defined gene sets	78$, 8 , … , 8;<, which 

group all (say	�) genes in the microarray data into = many gene sets. Then for all 

genes, we compute a list of association scores >?
, 
 = 1, 2, … ,�A for comparing 

the two means of the two different phenotypic groups. We should note that, 

since we want to take advantage of a measurement on the difference of that 

gene’s expression in the two phenotypes to formulate the enrichment score, we 

actually have many choices (e.g. t-test, Wilcoxon rank sum test, etc.) to achieve 

this goal. We can follow the following procedures to calculate the association 

scores for each gene: 

i. Calculate the mean or median for each gene under one phenotype and 

denote it with	�B. 
ii. Calculate the mean or median for each gene under the other phenotype 

and denote it with	�B . 

iii. Calculate the difference between the two means or medians:	�B − �B  . 

iv. Calculate a measure of variability for the difference between the two 

means or medians and denote it with	C.  

v. Calculate the association statistic by dividing the difference between the 

two means or medians by the measure of variability of the difference. If 

we denote it with	?, the formula for obtaining the association score should 

look like	? = 	DBEFBG . 
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If we choose �B and �B  to be the sample means from the two phenotypes for 

each gene and C  to be 	C�11HIJK $
'L +

$
'M , where C�11HIJ	 is the pooled standard 

deviation from the two samples, ?  will follow a student’s t-distribution with 

#N + #O − 2	degrees of freedom and a list of such statistics for each gene can be 

used as the association scores in the following step to obtain the enrichment 

scores of the gene sets. 

Based on the definition of each gene set, the association score (e.g. t-

statistic) for each gene then can be linked to the corresponding gene sets. For 

example, if Gene 
, 
 ∈ Q1, �R  belongs to Gene Set 	8S , T ∈ Q1, =R , then the 

association score ?
 is included in a set of association scores whose corresponding 

genes are also in the same gene set. Intuitively, if the gene set 8S is biologically 

related to the phenotypes, then it is likely to observe higher association scores for 

genes linked to gene set 8S	than those linked to other gene sets that are not 

related to the phenotypes. We can in fact produce a list of genes (let us call it	U) 

based on their association scores and make the list ordered decreasingly with 

large association scores on the top of the list. It is then reasonable to expect near 

the top of the list U a large proportion of genes in 8S 	to show up and a small 

proportion of genes in other gene sets that are not related to the phenotypes. For 

a given position �	in the list U, we can find out the proportion of genes out of the 

genes in Gene Set 8S that are before the position � and the proportion of genes 

out of all genes but not included in Gene Set 8S 	that are also before position �. The 

maximum difference between the two proportions for all possible position	�’s, 

called the Enrichment Score for Gene Set 8S , gives the evidence whether a gene 

set is enriched or not. A large value of the enrichment score (either positive or 

negative) implies an enriched gene set because of the large proportion of genes 
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present near the top of the ordered gene list. If there is no enrichment of Gene Set 

8S , the enrichment score should be close to zero because in that case, we should 

see little difference between the proportion of genes in 8S that appear near the 

top of the list	U	and the proportion of other genes near the top of the list U. As a 

matter of fact, a Gene Set Enrichment Score CS for Gene Set T, T = 1, 2, … , = can be 

seen as a signed version of Kolmogorov-Smirnov statistic between the values of 

>?
, 
 ∈ 8SA and their complement	>?
, 
 ∉ 8SA (Efron and Tibshirani, 2007).  

5.4 Mathematical Formulation 

A mathematical formula can be given as follows: 

For a list of	�	genes,	U = 7
$, 
 , … , 
W<, which is decreasingly ordered based on 

the association scores >?
, 
 = 1, 2, … ,�A	between the two phenotypes, and a 

collection of pre-defined gene sets 8 = 	 78$, 8 , … , 8;< , let �X�Y	 denote the 

proportion of genes out of the genes in Gene Set 8S that are before the position � 
and	�Z�33 	denote the proportion of genes out of all genes but not included in 

Gene Set 8S 	that are also before position �, that is 
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where	�[	represents the number of genes in Gene Set 8S and it sums over all 
�’s 
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where � − �[ represents the number of genes not in Gene Set 8S  and it sums 

over all 
�’s such that � ≤ � (i.e. all 1 �� − �[�⁄ 	terms that appear before position 

�). Then the Enrichment Score (ES) for the k-th gene set is defined as shown in 

(5.3) 

 ( ) ( )max , ,
k h kit miss

i
k

ES P i P i= −  S S   (5.3) 

over all position �	in the list	U. 

5.5 A Weighted Version of Enrichment Score 

As stated in the previous section, a high enrichment score could be attained by a 

gene set in which genes are found to appear more frequently than expected near 

the top of the list	U, however it could also be attained if genes in a gene set are 

found to show up more often than expected around the middle of the list	U. This 

undesired behavior is because the original definition of an Enrichment Score 

ignores the fact that the association scores within the top of the list	U	show more 

evidence that genes are really differentially expressed than those around the 

middle of the list	U. Hence a reasonable modification for the original definition of 

Enrichment Score should include a weight factor such that it will reduce the 

magnitude of enrichment scores for gene sets that are enriched around the 

middle of the list	U, while still be able to maintain or boost the magnitude of 

enrichment scores for those that are really enriched near the top of the list	U. 

Subramanian et al. (2007) proposed an improved version of their original 

definition. Instead of using equal weights on the running-sum statistic �X�Y (5.1), 

the modified formula takes into consideration the association scores of each gene 

according to the two phenotypes and introduce a weighting factor	4 to control 

the manner how the association scores influence the running-sum statistic �X�Y. 
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By introducing the use of the association scores	?� ’s and the weighting 

factor	4, Equation (5.1) can be revised as follows: 
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where �[ = ∑ ^?�^�
_∈8` . Since �[  has a new definition, it does not necessarily 

mean the number of genes in Gene Set 8S  anymore, so we instead use �a to 

denote the number of genes in Gene Set 8S in the new method. Thus, Equation 

(5.2) can be rewritten as follows: 
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If we choose the weighting factor	4 = 0, all ^?�^� terms reduce to 1 and �a 

is still the number of genes in Gene Set	8S, thus we have the same results as given 

by the original Enrichment Score formula; if 4 is chosen to be 1, the formula gives 

a weight to each gene in Gene Set	8S according to the absolute value of their 

association scores	?�. 

5.6 Significance Level of Enrichment Score 

Once we have obtained the enrichment scores	bCS’s for all gene sets in the first 

step, in the next step, we want to find an appropriate way to estimate the 

significance level of them. The enrichment score measures the maximum 

difference between �X�Y and �Z�33 for one gene set and it is supposed to be close 

to zero if that gene set is not enriched. However, if some or all of genes in one 
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gene set have unusual values of the association scores	?�, we should expect the 

enrichment score bC for that gene set to be large in absolute magnitude. 

To determine if a gene set is statistically significant, we need to find a null 

distribution under which we assume that there is no significant difference 

between the two phenotypes among the samples, thus all gene sets should 

behave in a similar way and for each gene set, its corresponding enrichment 

score should be close to zero. However it is reasonable to expect some random 

fluctuation of the enrichment scores around zero, more or less, even if none of 

the gene sets is really enriched.  

Since it is not easy to find the null distribution of the Enrichment Score 

analytically, GSEA method uses an empirical phenotype-based permutation test 

to obtain a sampling distribution instead. Basically, we can permute the sample 

labels (column permutation) and follow exactly the same way as 

abovementioned to compute a new set of gene set enrichment scores for each 

gene set based on the newly permuted dataset, and then repeat this process for a 

number of times (say 1000 times), which finally generates a null distribution for 

the enrichment score. And then the empirical p-values can be calculated by 

 ( )
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p S s

>
= > =   (5.6) 

, where cd'eHH 	is the null distribution based on permutations for the enrichment 

score of Gene Set	T, and -S	is the observed enrichment score for the same gene set. 

This formula is to be used under the assumption that the observed enrichment 

score -S	will appear in the positive portion of the empirical null distribution	cd'eHH . 
However, if -S	shows up in the negative portion of the empirical null distribution, 
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we shall change the inequality sign in the formula from “ > ” to “ < ” in order to 

obtain the correct p-value. A preset significance level � (usually set at 0.05) can be 

used and a gene set is declared to be significantly different from other gene sets 

with regard to the gene expression patterns over the two phenotypes of interest 

if the observed empirical p-value 4S∗  is less than �. 

5.7 Issues with a small number of permutations 

As discussed in Section 5.6, Gene Set Enrichment Analysis (GSEA) usually 

requires the use of an empirical permutation test procedure to help estimate the 

statistical significance (often set at 0.05 ). One can perform either column 

permutations or row permutations based on the method being used, in order to 

obtain the null distribution of Enrichment Scores (ES) for gene sets. In either case, 

a complete set of all possible permutations is undoubtedly desired, if we want to 

compute the exact p-values for enrichment scores of each gene set. 

 However, the nature of microarray data and the computation of required 

intermediate statistics may prohibit us from running complete permutations in 

an affordable way. A microarray data set often contains tens of thousands of 

genes, which could be assigned to tens of thousands of gene sets too. Even 

though the number of arrays for microarray data is generally small, a complete 

column permutation (permutation of arrays) and the subsequent computation of 

statistics (either at the gene level or at the probe level) may halt your computer 

for hours, perhaps days or even weeks. Furthermore, as is usually huge in size, 

microarray data inevitably needs much more room in computer memory when 

computation is in progress. It will not be surprising to see computations be 

stopped unexpectedly due to insufficient memory. It could be even worse for 

row permutations (permutation of genes or probes). 
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 To avoid being stuck in such a dilemma, one needs to ease on the accuracy 

of empirical p-values obtained through permutations, by reducing the number of 

permutations to a lower level. The estimator of a proportion is given in Equation 

(5.7),  

 ˆ
X

p
m

=   (5.7) 

where X  represents the number of positive observations. When the observations 

are independent, the estimator p̂  follows a binomial distribution, hence 

approximately a normal distribution with the same mean and variance as the 

binomial distribution has. Then the approximate 95% confidence interval for a 

proportion estimated to be p̂  from m  permutations is 

 
( )ˆ ˆ1 ˆ

ˆ ˆ2 2
p p p

p p
m m

−
± ≈ ± ,  (5.8) 

when p̂  is small. If we are required to estimate a p-value to two decimal places, 

which means the maximum length of the confidence interval would be 0.01, then 

we must have 

 
ˆ

4 0.01
p

m
< .  (5.9) 

Solving Equation (5.9) for m , we have ˆ16 10000m p> × × . If p̂  is to be 0.01, which 

is the smallest possible value of two decimal places, we should have 1600m > ; if 

p̂  is 0.05, then we need to have 8000m > . Since we usually do not care about p-

values smaller than 0.01, a good rule of thumb is to have between 1,000 and 

10,000 permutations. 
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5.8 A Simulation Example 

Here we give a simulation example to help understand the picture of the GSEA 

method. The simulation was performed in the following way. We generated a 

microarray probe-level data with 1000 genes and 12 samples. Each consecutive 

non-overlapping block of 50 genes is considered to be one gene set. Those 12 

samples are divided into two groups, one as the control group containing 6 

samples and the other as the treatment group containing the other 6 samples. 

Each gene (also known as probe set) consists of 11 probes according to the 

general Affymetrix GeneChip microarray structure. More detailed explanation of 

Affymetrix GeneChip microarray is given in Chapter 1. 

Two simulations were done to show the picture of the GSEA method. For 

both of the two simulations, we first generated each data 

value	���S	as	�. �. l. �m?nop�0,1�, where	�	represents for probes and ranges from 1 

to 11 in our example; �	for arrays and ranges from 1 to 12; T	for genes and ranges 

from 1 to 1000. Next, we kept the data intact for the first simulation, and for the 

second simulation a constant value of 0.6 was added to all probes in the first 

gene set for the treatment group, meanwhile all other data values remain 

unchanged. Then a gene expression summarization process using the median 

polish method was applied to obtain the gene-level data. Details about methods 

of preprocessing microarray probe-level data are given in Chapter 2. Finally, we 

obtained two microarray gene-level dataset with one 1000	 × 12	matrix for each 

simulation respectively. For the first simulation, since all data are from the same 

normal distribution independently, there should be no average difference 

between the two groups (the control and treatment groups). In the meantime, for 

the second simulation, since we added a positive value to all probes in the first 



54 
 

 

 

gene set for the treatment group, it is reasonable to expect to see the first gene set 

shows higher average expressions for each gene in the treatment group and no 

average difference for other gene sets between the two groups. 

Once we have the simulated microarray data ready, we can perform the 

GSEA procedure as described in Section 5.5 and carry out a number of 

permutations as described in Section 5.6 to obtain a null distribution of the gene 

set enrichment scores. In our example, we did 1000 permutations for each of the 

simulations. In Figure 6, the left panel shows the histogram (solid lines with blue 

shades) of the gene set enrichment scores for the 50 gene sets for the first 

simulation. It also shows the histogram (dashed lines with gray shades) of the 

empirical null distribution based on the permutations. Clearly, we can see no 

gene set stand out of the pattern of the null distribution, which implies that all 

gene sets may be expressed in a similar manner. Similarly, the right panel shows 

those histograms for the second simulation. One gene set stands out to the right 

side as expected with an ES score of 0.72. The results show that the GSEA 

method works reasonably well for microarray gene-level data. 
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Simulation 1 

(no value added to treatment) 

Simulation 2 

(0.6 added to treatment) 
Figure 6: A simulation example for the GSEA method on microarray gene-level data 

a. left panel shows the histogram (solid lines with blue shades) of the gene set enrichment scores for 

the 50 gene sets for Simulation #1. No gene set stands out. 

b. right panel shows the histogram (solid lines with blue shades) of the gene set enrichment scores for 

the 50 gene sets for Simulation #2. Gene Set #1 stands out fairly clearly with an ES score of 1. 
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Chapter 6 

Probe-Level GSEA 

 

6.1 Introduction 

In previous chapters, we introduced the basic structure of the microarray 

technology and several relevant analytical methods were discussed. Despite the 

differences among those statistical methodologies, all of them are currently 

carried out at the gene level, though the microarray technology actually gives the 

probe intensities rather than the gene intensities. As discussed in Chapter 2, one 

has to go through a preprocessing stage to obtain the gene intensities from the 

raw probe intensities. The preprocessing steps are important for microarray data 

analysis, because it can greatly enhance the quality of downstream analyses. For 

example, in the processing stage, the background correction step removes the 

nonspecific binding signals so that the true DNA expression level can be 

obtained; the normalization step eliminates the systematic effects so that the data 

can better describe the samples’ own biological features, etc. 

 The last step in the preprocessing stage is the summarization step. Prior to 

any further analysis, the background corrected and normalized probe intensities 

are usually required to be summarized into a single measure of expression level 

for each gene (probe set). There are a variety of statistical algorithms being used 

in the summarization step. The advantage of summarizing the probe intensities 

into the gene intensities is that it greatly reduces the data size. For example, 

suppose there is a microarray dataset which contains 1,000 probe sets and each 
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probe set in that microarray dataset contains 11 probes, then for each array, the 

probe intensities would contain 11,000 data points. However, for gene intensities, 

it would only contain 1,000 data points. The data reduction is useful and 

preferred if the computing capability is limited because by reducing the size of 

the microarray dataset, it not only lowers the requirement on the computer’s 

memory size, but on its computing speed as well. However the current rapid 

development of computer hardware as well as software has made fast 

computing easily accessible. The issues related to hardware bottleneck may have 

become unimportant and even nonexistent. 

 Despite the differences in summarization algorithms, the major drawback 

of summarization is that a substantial amount of probe level information is 

discarded. Many researches have been done on comparing the methods using 

probe level data and those conventional methods using gene level data. For 

example, Lemon et al. (2003) argued about this issue by comparing the 

coefficients of variation found at the probe level with the coefficients of variation 

found in the corresponding gene level expression, using the MAS5.0 and dChip 

expression algorithms, for the Affymetrix Latin Square dataset.  It turns out that 

the gene level expression measures failed to reach the optimal efficiency 

predicted by sampling theory. This is one of the examples that show the current 

popular algorithms used in the summarization step may not be able to work 

perfectly as expected to capture all the crucial biological information held in each 

individual probe. 

 Without any doubt, efforts on improving the current algorithms and 

developing new methods for summarizing probe level measures have never 

been reduced. However, an alternative approach that directly takes advantage of 
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the probe level data could be another viable path to help researchers better 

understand and solve the problems in current bioinformatics research. 

6.2 Extension of GSEA Method to Microarray Probe-level Data 

In Chapter 5, we introduced the GSEA method, which is a knowledge-based 

approach for interpreting genome-wide profiles. The GSEA method currently is 

used at the gene level, which requires summarizing gene level expression 

measures from the probe level expression measures (after the background 

correction and the normalization steps). The first step of the GSEA method 

involves the calculation of an Enrichment Score (ES) for each pre-defined gene 

set, and the Enrichment Score depends on the values of a set of association scores 

(e.g. t-test, Wilcoxon rank sum test, etc.) that measures the difference of each 

gene’s expression in the two phenotype for that gene set based on the gene level 

expression measures. If the gene level expression measures do not capture all of 

the information contained in the individual probes, then those association scores 

would become less powerful in detecting the difference level of genes using gene 

level intensities, which makes it difficult to believe that the subsequent steps in 

the GSEA method would work efficiently as is supposed to be. 

6.2.1 GSEA at probe level 

To overcome the problem of potentially losing information contained in the 

microarray data because of summarizing the probe level data into the gene level 

intensities, we may modify the GSEA method in a way such that it would allow 

us to directly take advantage of the probe level intensities. To achieve this, 

suppose we have a collection of pre-defined gene sets	78$, 8 , … , 8;<, which group 

all	�	many probe sets (genes) in the microarray data into = many gene sets. Each 
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probe set contains 
g

N  many probes, where g  ranges from 1	through	� and 
g

N  

may usually range from 11 to 20 in an Affymetrix GeneChip. The location of each 

probe can be represented by a pair of indexes ( ),
g

g n . For example, the pair ( )10,3  

refers to the 3rd probe in the 10th probe set. Then for each probe across all arrays, 

we compute a list of association scores { }, gg nr for comparing the two means of the 

two different phenotypic groups. Based on the definition of each gene set, the 

association score for each probe then can be linked to the corresponding gene 

sets. For example, if Gene [ ], 1,g g N∈  belongs to Gene Set	8S , T ∈ Q1, =R, then the 

association scores{ },1 ,2 ,, ,
gg g g Nr r r…  of all 

g
N  probes in Gene g  are included in a 

set of association scores whose corresponding probes (so that their 

corresponding genes) are also in the same gene set. 

 Once the association scores at probe level are obtained, similarly to the 

algorithm at gene level, we can produce a list 	U	of probes based on their 

association scores and make the list ordered decreasingly with large association 

scores on the top of the list. Then for each gene set in the collection of pre-defined 

gene sets	78$, 8 , … , 8;<, the Enrichment Score 
k

ES  for the Tth gene set 8S would 

be the maximum difference between two proportions: the proportion of probes 

out of all probes in Gene Set 	8S  that are before some position � , and the 

proportion of probes out of all probes but not included in Gene Set 8S 	that are 

also before position	�.  

Similar to what is discussed in Section 5.5, we should note that a high 

enrichment score could be attained by a gene set in which probes of those genes 

in that gene set are found to appear more frequently than expected near the top 

of the list	U, however it could also be attained if probes of those genes in a gene 
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set are found to show up more often than expected around the middle of the 

list 	U . Thus we should also modify the algorithm to introduce a weighting 

factor	4 to control the manner how the association scores influence the running-

sum statistic (see Equation (6.1)). 

After computing the Enrichment Scores for each gene set, the significance 

level of each gene set then can be obtained by performing a permutation test. 

This has been discussed in Section 5.6. 

6.2.2 Mathematical Formulation for Probe Level Data 

For a microarray probe level data set, suppose there are �	many probe sets, and 

each probe set contains 
g

N  many probes, hence the total number of probes in the 

data set would be
1

N

probe g

g

N N
=

=∑ . If we assume all probe sets contain equal 

number of probes, then the total number of probes in the data set would be 

simply 
probe g

N N N= × . Let { }1 2, ,
probeNL p p p= …  be the list of all probes, which is 

decreasingly ordered based on the association scores

{ }, , 1,2, , , 1,2, , 1,2, ,
gi g n g g prober r g N n N i N= = = =… … …  between the two phenotypes, 

and a collection of pre-defined gene sets	8 = 	 78$, 8 , … , 8;<, let �X�Y 	denote the 

proportion of probes out of all probes in Gene Set 	8S  that are before some 

position �, and �Z�33 denote the proportion of probes out of all probes but not 

included in Gene Set 8S	that are also before position	�, that is 

 ( ),
ki

p

j

hit

p R

k

j i

r
P i

N∈
≤

= ∑
S

S   (6.1) 
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where
i k

p

R j

p

N r
∈

= ∑
S

. When 0p = , 
R

N  represents the number of probes in Gene 

Set 8S  and ( ),
khit

P iS  sums over all 4� ’s such that � ≤ �  (i.e. all 1 �[⁄ 	terms that 

appear before position �). For the same reason shown in Section 5.5, when 0p > , 

�[ does not necessarily mean the number of genes in Gene Set 8S anymore, so 

we use �a  instead to denote the number of genes in Gene Set 8S  in the new 

method. 

 ( )
1

,
ki

miss

p H
j

k

i

P i
N N∉

≤

=
−

∑
S

S   (6.2) 

where � − �a represents the number of probes not in Gene Set 8S and it sums 

over all 4�’s such that � ≤ � (i.e. all 1 �� − �a�⁄ 	terms that appear before position 

�). Then the Enrichment Score (ES) for the k-th gene set is defined as 

 ( ) ( )max , ,
k h kit miss

i
k

ES P i P i= −  S S   (6.3) 

over all position �	in the list	U. 

6.2.3 A Simulation Example 

To illustrate the picture of the GSEA method at the probe level, we can perform a 

simulation in a way exactly the same as what we did in Section 5.8, except that 

no summarization is needed for the probe-level GSEA. Details about how the 

probe-level intensities were generated can be found in Section 5.8. As a summary, 

the generated data set contains 1000 probe sets and 12 arrays. Each probe set 

contains 11 probes. Then the data set would be a 11000 12×  numerical matrix. 

Each consecutive non-overlapping block of 50 probe sets (genes) is considered to 

be one gene set. Those 12 arrays are divided into two groups, one as the control 
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group containing 6 arrays and the other as the treatment group containing the 

other 6 arrays. 

We still use two simulations to show the pictures of the probe-level GSEA. 

We kept the data intact for the first simulation, and for the second simulation a 

constant value of 0.6 was added to all probes in the first gene set for the 

treatment group, meanwhile all other data values remain unchanged. We expect 

to see no average difference between the control and the treatment groups for the 

first simulation because the data in the first simulation was independently 

generated from the same normal distribution. In the meantime, we expect to see 

the first gene set show higher average expressions for each probe in the 

treatment group and no average difference for other gene sets between the two 

groups. 

After generating the probe-level intensities, we can follow the procedure 

outlined in Section 6.2.1 to perform the probe-level GSEA. In the example, 1000 

permutations for each simulation were done to obtain a null distribution of the 

gene set enrichment scores.  

The pictures of the observed GSEA enrichment scores (ES) and the null 

distribution for the two simulations are shown in Figure 7. In Figure 7, the left 

panel shows the histogram (solid lines with blue shades) of the gene set 

enrichment scores for the 50 gene sets from the first simulation. It also shows the 

histogram (dashed lines with gray shades) of the empirical null distribution 

based on the 1000 permutations. Obviously, no gene set stands out of the pattern 

of the null distribution and it indicates that all gene sets may be expressed in a 

similar manner. The right panel shows the two histograms from the second 
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simulation. One gene set stands out significantly to the right side as expected 

with an ES score close to 0.38.  

Simulation 1 

(no value added to treatment) 

Simulation 2 

(0.6 added to treatment) 
Figure 7: A simulation example for the GSEA method on microarray gene-level data 

a. left panel shows the histogram (solid lines with blue shades) of the gene set enrichment scores for 

the 50 gene sets for Simulation #1. No gene set stands out. 

b. right panel shows the histogram (solid lines with blue shades) of the gene set enrichment scores for 

the 50 gene sets for Simulation #2. Gene Set #1 stands out significantly with an ES score close to 1. 

6.2.4 Comparison with the gene-level GSEA 

We can compare the results from the probe-level GSEA (pGSEA) with the results 

from the gene-level GSEA (gGSEA). When there is no difference present between 

the control group and the treatment group, both pGSEA and gGSEA works 

reasonably well. However, if a difference between the two groups becomes 

present, the histogram from the pGSEA method looks much stronger than the 

histogram from the gGSEA method. 
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 To compare testing methods, we usually look at the power of each testing 

method. However, an analytical approach to calculating the power of gGSEA or 

pGSEA methods is difficult to acquire. An alternative approach using 

simulations can be used instead to obtain the power of those methods. Basically, 

the power of a statistical test is the probability that the test will reject the null 

hypothesis when the alternative hypothesis is true. For the gGSEA and pGSEA 

methods, the null hypothesis would be that the interested gene set behaves 

similarly as other gene sets do, which implies no significant difference should be 

found across the treatment group and the control group for that gene set, and the 

alternative hypothesis would be the opposite. Therefore, we can create a series of 

simple alternative hypotheses such that in each of those alternative hypotheses, 

one value will be added to the probe intensities in the first gene set for the 

treatment group, then a number of simulations can be carried out for each simple 

alternative. The rejection rate, given in Equation (6.4) where d  represents the 

difference value that would be added to the probes in the treatment group, can 

be used as the empirical power for the corresponding method under the 

particular alternative. 

 
#{rejections}

#{total simulations}
d

β =   (6.4)  

Steps for calculating powers for gGSEA and pGSEA: 

1. Create a list of simple alternative hypotheses (i.e. a list of difference values 

that would be added to the treatment group). 

2. For each difference value, do a number of simulations based on the 

gGSEA and pGSEA methods. 

3. Compute the rejection rate 
d

β  at each difference value.  
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Figure 8 shows an example of the powers of the gGSEA and the pGSEA 

methods in the same graph, which is based on the following settings: 

• Each data value 	���S 	 was generated as 	�. �. l. �m?nop�0,1� , 

where	�	represents for probes and ranges from 1 to 11 in the example; 

�	for arrays and ranges from 1 to 12; T	for genes and ranges from 1 to 

1000. 

• Difference values starting from 0 through 0.6 with an interval of 0.05 in 

length (i.e. 0, 0.05, 0.10, 0.15, … , 0.60) were added for each run 

respectively to all probes of the first gene set under the treatment 

group. 

• 1000 simulations were done for each run to compute the rejection rate 

d
β . 

Apparently, the picture in Figure 8 shows that the power of the pGSEA method 

is unanimously higher than the power of the gGSEA method at all times, which 

is evidence that the pGSEA method works better than the gGSEA method in 

detecting gene sets that are differentially expressed across the control and the 

treatment groups.  
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Figure 8: A simulation example for comparing the power of gGSEA and the power of pGSEA 

a. The red solid line represents the powers of the gGSEA method, with circles representing the 

powers at each difference value being added to the probes in the first gene set under the treatment 

group. 

b. The blue dashed line represents the powers of the pGSEA method, with triangles representing the 

powers at each difference value being added to the probes in the first gene set under the treatment 

group.  
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Table 3 Empirical Power (GSEA Methods) 

Distance gGSEA pGSEA 

0 0.052 0.066667 

0.05 0.07 0.123333 

0.1 0.136667 0.21 

0.15 0.266667 0.426667 

0.2 0.293333 0.463333 

0.25 0.313333 0.493333 

0.3 0.466667 0.753333 

0.35 0.666667 0.893333 

0.4 0.676667 0.903333 

0.45 0.733333 0.973333 

0.5 0.876667 0.996667 

0.55 0.93 1 

0.6 0.963333 1 
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Chapter 7 

Enrichment Analysis 

with Robust M-estimators (EAME) 

 

7.1 Why Use Robust Methods 

Both the traditional gene-level GSEA method and the modified probe-level 

GSEA method employ the sample mean X  and the sample standard deviation s  

as a vehicle to compare the difference between the treatment group and the 

control group, either based on the gene-level expression intensities after 

summarizing from the probe-level expression intensities, or directly using the 

probe-level expression intensities. These statistics are optimal in many sense if 

the underlying distribution of the sample, or equivalently the error term ε , 

follows a normal distribution. If such assumption is not valid, the result would 

become unreliable. Furthermore, due to the complexity of DNA microarray 

experiment, many levels of variation can be introduced at different stages of the 

experiments, and outliers are basically impossible to avoid. 

 For example, the affydata package (Gautier, 2011) from Bioconductor 

(http://www.bioconductor.org/) includes an example data set containing part of 

the data from a Dilution experiment. The data in Dilution is a small sample of 

probe sets from 2 sets of duplicate arrays hybridized with different 

concentrations of the same RNA. After performing the background correction 

and the normalization steps as well as log-transformation, we used the rlm() 
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function in the MASS package to fit a linear model (Equation (7.1)) by robust 

regression using an M-estimator on each probe set across arrays, and obtain the 

residual matrices. 

 
ij i j ij

y µ α β ε= + + +   (7.1) 

Since traditionally
ij

y ’s, hence 
ij

ε ’s,  are assumed to follow a normal distribution, 

we should expect to see the p-values from a normality test on the residual 

matrices for each probe set follow roughly a uniform distribution. That is, if we 

are going to reject the null hypothesis in the normality test at the 0.05α =  level, 

then we should expect to see the proportion of those p-values that are less than 

0.05 is also around 0.05, since it is possible by chance to reject 5% of all of the null 

hypotheses in the normality test. In our example, we used the Shapiro–Wilk test 

 

Figure 9: Histogram of p-values from the  Shapiro–Wilk test for the residual matrix of each probe set 

a. The histogram obviously shows a non-uniform pattern. 

b. It also implies a large portion of the null hypotheses are rejected.  
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(Shapiro and Wilk, 1965) to test the normality assumption. Figure 9 shows the 

histogram of p-values from the Shapiro-Wilk test for the residual matrix of each 

probe set. It clearly illustrates a non-uniform pattern, which is against the 

traditional assumption that the error terms follow a normal distribution. 

Moreover, it also illustrates a large portion of the null hypotheses are rejected. As 

a matter of fact, the proportion of p-values that are less than 0.05 is 0.749, far from 

0.05. It could be evidence that the normality assumption may not necessarily be 

valid for this example. 

7.2 Robust Method - Median 

To overcome the issues discussed in Section 7.1, we can choose resistant 

estimators, which does not require the assumption of a normal distribution and 

the influence of outliers is limited. The most reasonable resistant estimators of 

the mean µ  and the standard deviation σ  are the median Xɶ  (Equation (7.2)) and 

the median absolute deviation from the median (MAD) (Equation (7.3)). 

 { }1 2median , , ,
n

X X X X=ɶ …   (7.2) 

 { }MAD median i
i

X X= − ɶ   (7.3) 

Based on the median and the MAD, we can construct a robust statistic that 

measures the difference between two samples. Equation (7.4) gives the formula 

for computing the robust statistic.  

 

( )

1 2

1 2

*
1

MAD MAD
2

X X
t

−
=

+

ɶ ɶ

  (7.4) 

7.2.1 A Robust Gene Set Score 
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Here we propose a new method for detecting differentially expressed gene sets 

based on the robust statistic given in Equation (7.4). After obtaining the robust 

statistic *t ’s for each probe in the first step, secondly we can compute the mean 

of all *t ’s within the same probe set for every probe set. Then thirdly we can 

take average over the absolute value of all the means computed for each probe 

set from the second step that are in the same gene set. This would in fact produce 

a gene set score 
k

GS  for each gene set similar to the gene set enrichment score 

used in the GSEA method. Although taking median over all *t ’s within the same 

probe set is seemingly preferred, a numerical average in the second step as well 

as in the third step should be good enough because any extreme situation has 

been taken care of within the first step when the robust statistic *t  is computed 

using the medians and the MAD’s. Another reason for using the mean instead of 

the median at these two steps is that it may underestimate the level of differential 

expression because it does not take into consideration of the magnitude of the 

actual values obtained from the first step or the second step. For example, if in 

the same probe set, 5 probes show big differences across the treatment and the 

control groups, and the other 6 probes do not show any differences (assuming 11 

probes in the probe set), we would expect to see no evidence that the gene is 

differentially expressed if we are about to use the median. We will see the same 

situation in the third step because there will be no sign that the corresponding 

gene set is differentially expressed if, for example, only 24 out of 50 probe sets in 

one gene set are actually differentially expressed, and the other 26 probe sets are 

not. This is definitely not a desired phenomenon. 

The steps to compute the robust gene set score are given as follows: 

i. Compute the robust statistic *t ’s for each probe (Equation (7.4)). 
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ii. Compute the mean of all *t ’s within the same probe set for every 

probe set. 

iii. For each gene set, compute the mean over the absolute value of all the 

means computed for each probe set in that gene set from the second 

step. 

7.2.2 Mathematical Formulation 

For a microarray probe level data set, suppose there are �	many probe sets, and 

each probe set contains 
g

N  many probes, hence the total number of probes in the 

data set would be
1

N

probe g

g

N N
=

=∑ . Let *

ijk
t  be the robust statistic defined as in 

Equation (7.4) for comparing probes across the treatment and the control groups, 

where i  represents for probe sets which range from 1 through N ; j  represents 

for probes in a probe set which range from 1 through 
g

N ; k  represents for gene 

sets which range from 1 through K . The robust gene set score ( GS ) is then 

defined as in Equation (7.5): 

 

( ){ }

( )

*

,1 ,2

,1 ,2

mean mean

mean mean
1

MAD MAD
2

k ijk
i j

ijk ijk

i j

ijk ijk

GS t

X X

=

  
  − 

=   
  +

   

ɶ ɶ
,  (7.5) 

where ,1ijk
Xɶ  and ,2ijk

Xɶ  are the medians of probes, which correspond  to the i th 

probe set (gene) and j th probe in the k th gene set, for the treatment and the 

control groups respectively. 
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7.2.3 Significance Level 

Once the robust gene score 
k

GS ’s for all gene sets are obtained, we will 

use a permutation test, which permutes rows of the probe-level expression 

intensities, to estimate the significance level. Basically, we will permute the probe 

labels (row permutation) and follow the exactly the same way as discussed in 

Section 7.2.1 and 7.2.2 to compute a set of gene set scores for each gene set based 

on the newly permutated dataset, and then repeat this process for a number of 

times (say 1000 times), which finally generates a null distribution for the gene set 

scores. The null hypothesis under the row permutations is that the gene set 
k
S  is 

chosen by random selection of 
k

g

g

N
∈

∑
S

 probes from the full set of 
1

N

probe g

g

N N
=

=∑

probes. And then the empirical p-values can be calculated using Equation (5.6). A 

preset significance level � (usually set at 0.05) can be used and a gene set is 

declared to be significantly differentially expressed with regard to the gene 

expression patterns over the two phenotypes of interest if the observed empirical 

p-value 4S∗  is less than �. 

7.3 Huber M-estimator 

In previous sections, we introduced a new method for detecting differentially 

expressed gene sets based on the robust statistic given in Equation (7.4), which is 

based on the medians and the MAD’s across the treatment and the control 

groups. 

 As a matter of fact, median belongs to the family of Huber M-estimators. 

We have introduced Huber M-estimator in Chapter 4. Here we give a brief 

review. M-estimators are a generalization of maximum likelihood estimators 
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(MLE’s). For MLE’s, we try to find an estimator that could maximize the 

likelihood function (7.6), 

 ( )
1

|
n

i

i

f x θ
=

∏   (7.6) 

 or equivalently, minimize (7.7).  

 ( )
0

1

log |
i

i

f x θ
=

−∑   (7.7) 

Huber (1964) proposed to generalize this by minimizing an objective function 

which utilizes some function ( )xρ and sums over the sample (7.8). 

 ( )
1

|
n

i

i

xρ θ
=

∑   (7.8) 

Thus minimizing ( )
1

|
n

i

i

xρ θ
=

∑  can usually be done by differentiating ρ  and 

solving Equation (7.9) 

 ( )
1

| 0
n

i

i

xψ θ
=

=∑   (7.9) 

where ( ) ( )| |x xψ θ ρ θ
θ

∂
=

∂
.  

The most familiar M-estimator is the sample mean, which is the least 

squares estimate of location. The 5-function for this case is the square of residual 

(7.10) 

 ( ) ( )
2

|x xρ θ θ= −   (7.10) 
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Thus the 6-function can be obtained by differentiating (7.10) with respect to θ : 

( )2 x θ− − . By dropping the leading constant 2 and summing over all sample, we 

can find the estimator by minimizing (7.11), 

 ( )
1

0
n

i

i

x θ
=

− =∑   (7.11) 

in which 1

n

i

i

x

x
n

θ == =
∑⌢

, the sample mean, turns out to solve this equation.  

 Another example of M-estimator is the sample median. For this case, 

the	5-function is the absolute value of the residual (7.12), 

 ( )|x xρ θ θ= −   (7.12) 

 and the corresponding 6-function is (7.13). 

 ( ) ( )| sgnx xψ θ θ= −   (7.13) 

The family of Huber M-estimators uses the following 5- and 6- functions 

given in (7.14) and (7.15) respectively. 

 ( )
( )

2

2

1
if

2
|

1
if

2

k

x x k

x

k x k x k

θ θ
ρ θ

θ θ


− − ≤

= 
 − − − >


  (7.14) 

 ( )
( )

if
|

sgn if
k

x x k
x

k x x k

θ θ
ψ θ

θ θ

 − − ≤
= 

− − >
  (7.15) 

The sample mean and the sample median are special cases of Huber M-

estimators that are corresponding to the limit cases k → ∞  and 0k → (Maronna 

et al., 2006). 
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The value k  for the Huber estimators is called a tuning constant. There is a 

trade-off between robustness and efficiency. Smaller values of k  produce more 

resistance to outliers, but at the expense of lower efficiency when errors are 

normally distributed. Maronna et al. (2006) gave an example to illustrate how 

different values of k  can affect the asymptotic variances of Huber M-estimate for 

a contaminated normal distribution F (7.16) 

 ( )1F G Hε ε= − +   (7.16) 

with � = 0, 0.05 and 0.10, where ( )0,1G N∼  and ( )0,10H N∼ . It turns out when 

1.4k = , the variance of the M-estimator at the normal is only 4.7% larger than 

that of the sample mean and much smaller than that of the sample median. And 

it clearly shows a smaller value than that of the sample mean and the sample 

median for the contaminated normal distributions with � = 0.05 and	0.10. 

 Therefore, it is reasonable to consider Huber M-estimators as an 

alternative to the conventional sample mean and sample standard deviation used 

in Equation (7.5). 

One approach is to use Huber estimators instead of taking sample means 

at the second and third steps (see page 72) to compute the robust gene set score. 

Then Equation (7.5) can be rewritten as  

 

( )

( )

*

L L

,1 ,2

L L

,1 ,2

huber huber

huber huber
1

MAD MAD
2

k ijk
i j

ijk ijk

i j

ijk ijk

GS t

X X

 
=  

 

  
  − 

=   
  +

   

ɶ ɶ
  (7.17) 

, where Lhuber  means the Huber M-estimator of location. 
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The second approach is to use Huber estimators for the location and the 

scale in Equation (7.4) instead of the median and the MAD. Then the gene set 

score (Equation (7.5)) can be rewritten as  

 

( ){ }

( )
,1 ,2

,1 ,2

mean mean

mean mean
1

2

H

k ijk
i j

H H

ijk ijk

i j H H

ijk ijk

GS t

X X

σ σ

=

  
  − 

=   
  +

   

ɶ ɶ

⌢ ⌢

  (7.18) 

, where HXɶ  and Hσ
⌢

 are the Huber location and scale estimators. 

 The third approach is to replace all the conventional estimators (mean, 

median and MAD) in Equation (7.5) with Huber M-estimators of location and 

scale. The revised equation is given as follows: 

 

( )

( )

L L

,1 ,2

L L

,1 ,2

huber huber

huber huber
1

2

H

k ijk
i j

H H

ijk ijk

H Hi j

ijk ijk

GS t

X X

σ σ

 
=  

 

  
  − 

=   
  +

   

ɶ ɶ

⌢ ⌢

  (7.19) 

 

Since the process described in this chapter utilizes the idea of enrichment 

analysis and takes advantage of robust M-estimators, we will call it the method 

of Enrichment Analysis with M-estimators (EAME). Table 4 shows a summary of all 

above-mentioned EAME methods. 
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Table 4 Summary of EAME Methods 

Method Description of 

each Step 
Formula 

1 

i. Use median and MAD 

ii. Use sample mean 

iii. Use sample mean 

( ){ }

( )

*

,1 ,2

,1 ,2

mean mean

mean mean
1

MAD MAD
2

k ijk
i j

ijk ijk

i j

ijk ijk

GS t

X X

=

  
  − 

=   
  +

   

ɶ ɶ
   

2 
(as a 

comparison 

to Method 1) 

i. Use median and MAD 

ii. Use sample median 

iii. Use sample median 

( ){ }

( )

*

,1 ,2

,1 ,2

median median

median median
1

MAD MAD
2

k ijk
i j

ijk ijk

i j

ijk ijk

GS t

X X

=

  
  − 

=   
  +

   

ɶ ɶ
  

3 

i. Use median and MAD 

ii. Use Huber M-

estimator of location 

iii. Use Huber M-

estimator of location  

 

( )

( )

*

L L

,1 ,2

L L

,1 ,2

huber huber

huber huber
1

MAD MAD
2

k ijk
i j

ijk ijk

i j

ijk ijk

GS t

X X

 
=  

 

  
  − 

=   
  +

   

ɶ ɶ
 

4 

i. Use Huber M-

estimators 

ii. Use sample mean 

iii. Use sample mean 

( ){ }

( )
,1 ,2

,1 ,2

mean mean

mean mean
1

2

H

k ijk
i j

H H

ijk ijk

i j H H

ijk ijk

GS t

X X

σ σ

=

  
  − 

=   
  +

   

ɶ ɶ

⌢ ⌢

 

5 

i. Use Huber M-

estimators 

ii. Use Huber M-

estimator of location 

iii. Use Huber M-

estimator of location 

 

( )
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L L

,1 ,2
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huber huber
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i j

H H
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σ σ

 
=  

 

  
  − 

=   
  +

   

ɶ ɶ

⌢ ⌢

  

 



79 
 

 

 

7.4 A Simulation Example 

Here we give a simulation example to show the picture of the robust method 

with row permutations. With the same initial settings as used in Chapter 5 and 

Chapter 6, the generated data set contains 1000 probe sets and 12 arrays. Each 

probe set contains 11 probes. Each consecutive non-overlapping block of 50 

probe sets (genes) is considered to be one gene set. Those 12 arrays are divided 

into two groups, one as the control group containing 6 arrays and the other as 

the treatment group containing the other 6 arrays. 

Two simulations were carried out to illustrate how well the robust 

methods work. We kept the data intact for the first simulation, and for the 

second simulation a constant value of 0.6 was added to all probes in the first 

gene set for the treatment group, meanwhile all other data values remain 

unchanged. There should be no average difference between the control and the 

treatment groups for the first simulation because the data in the first simulation 

was independently generated from the same normal distribution. Meanwhile for 

the second simulation, we expect to see the first gene set show higher average 

expressions for each probe in the treatment group and no average difference for 

other gene sets between the two groups. 1000 permutations for each simulation 

were done to obtain a null distribution of the gene set scores.  
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Simulation 1 

(no value added to treatment) 

Simulation 2 

(0.6 added to treatment) 
Figure 10: A simulation example for the EAME Method 1 based on Median and MAD (probe-level data) 

a. left panel shows the histogram (solid lines with blue shades) of the gene set scores for the 50 gene 

sets for Simulation #1. No gene set stands out. 

b. right panel shows the histogram (solid lines with blue shades) of the gene set scores for the 50 gene 

sets for Simulation #2. Gene Set #1 stands out significantly with a GS score around 0.8. 
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Simulation 1 

(no value added to treatment) 

Simulation 2 

(0.6 added to treatment) 
Figure 11: A simulation example for the EAME Method 2 based on Median and MAD (probe-level data) 

a. left panel shows the histogram (solid lines with blue shades) of the gene set scores for the 50 gene 

sets for Simulation #1. No gene set stands out. 

b. right panel shows the histogram (solid lines with blue shades) of the gene set scores for the 50 gene 

sets for Simulation #2. Gene Set #1 stands out significantly with a GS score around 0.6. 

The pictures of the observed gene set scores (GS) and the null distribution 

for the two simulations based on Method 1 and 2 (using the median and the 

MAD (Equation (7.18))) are shown in Figure 10 and Figure 12. In Figure 10, the 

left panel shows the histogram (solid lines with blue shades) of the gene set 

scores for the 50 gene sets from the first simulation. It also shows the histogram 

(dashed lines with gray shades) of the empirical null distribution based on the 

1000 permutations. Obviously, no gene set stands out of the pattern of the null 

distribution and it indicates that all gene sets may be expressed in a similar 

manner. The right panel shows the two histograms from the second simulation. 

One gene set stands out significantly to the right side as expected with a GS score 
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around 0.8. We have similar histograms shown in Figure 12 for Method 2. 

Although the GS score for the first gene set in Method 2 stands out clearly, it is 

smaller than the GS score obtained from Method 1. 

 

Simulation 1 

(no value added to treatment) 

Simulation 2 

(0.6 added to treatment) 
Figure 12: A simulation example for the EAME Method 3 based on Median and MAD (probe-level data) 

a. left panel shows the histogram (solid lines with blue shades) of the gene set scores for the 50 gene 

sets for Simulation #1. No gene set stands out. 

b. right panel shows the histogram (solid lines with blue shades) of the gene set scores for the 50 gene 

sets for Simulation #2. Gene Set #1 stands out significantly with a GS score around 0.7. 

 

Figure 12 shows the histograms for Method 3, which is based on the 

median and the MAD and uses Huber M-estimator of location at the second and 

third steps. As expected, there is no gene set standing out when no value was 

added to the treatment group, and one gene set stands out with a GS score 

around 0.7 when a value was added to the treatment group. 



83 
 

 

 

 

Simulation 1 

(no value added to treatment) 

Simulation 2 

(0.6 added to treatment) 
Figure 13: A simulation example for the EAME Method 4 based on Huber M-estimators (probe-level data) 

a. left panel shows the histogram (solid lines with blue shades) of the gene set scores for the 50 gene 

sets for Simulation #1. No gene set stands out. 

b. right panel shows the histogram (solid lines with blue shades) of the gene set scores for the 50 gene 

sets for Simulation #2. Gene Set #1 stands out significantly with a GS score around 0.6. 
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Simulation 1 

(no value added to treatment) 

Simulation 2 

(0.6 added to treatment) 
Figure 14: A simulation example for the EAME Method 5 based on Huber M-estimators (probe-level data) 

a. left panel shows the histogram (solid lines with blue shades) of the gene set scores for the 50 gene 

sets for Simulation #1. No gene set stands out. 

b. right panel shows the histogram (solid lines with blue shades) of the gene set scores for the 50 gene 

sets for Simulation #2. Gene Set #1 stands out significantly with a GS score around 0.6. 

 

The histograms of the observed gene set scores (GS) and the null 

distribution for the two simulations based on the Huber M-estimators are given 

in Figure 13 and Figure 14. Figure 13 shows the histograms for Method 4, which 

takes average of H

ijk
t ’s over probes and probe sets at the second and third steps. 

Figure 14 shows the histograms for Method 5, which uses Huber M-estimator of 

location at the second and third steps. For both of the two methods, no gene set 

stands out of the pattern of the null distribution for Simulation #1, and it 

indicates that all gene sets may be expressed in a similar manner. For Simulation 
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#2, one gene set stands out, as expected, significantly to the right side with GS 

scores between 0.5 and 0.6. 

In general, all of the above-mentioned EAME methods perform 

reasonably well and identify the differentially expressed gene set successfully. 

7.5 Comparison of Methods 

In this section, we will compare all of the seven methods that have been 

discussed in the previous chapters: Gene-level GSEA (gGSEA) (discussed in 

Chapter 5), Probe-level GSEA (pGSEA) (discussed in Chapter 6), and Enrichment 

Analysis with M-estimators (EAME Method 1-5) (discussed in Chapter 7). 

 The simulation examples, which are given in Section 5.8, Section 6.2.3 and 

Section 7.4, show overlays of the observed enrichment scores and the underlying 

permutated null distributions for the methods of gGSEA, pGSEA and EAME 

respectively. All of the seven methods seem to achieve the goal by successfully 

identifying the differentially expressed gene set from the simulations. 

 To further compare the seven methods, we can look at the power of each 

of them. As discussed in Section 6.2.4, we can use simulations to obtain an 

empirical power of a testing method without working out an analytical formula. 

Details about the steps of comparison are given in Section 6.2.4. As a summary, 

the data set was generated according to the following: 

• Each data value 	���S 	 was generated as 	�. �. l. �m?nop�0,1� , 

where	�	represents for probes and ranges from 1 to 11 in the example; 

�	for arrays and ranges from 1 to 12; T	for genes and ranges from 1 to 

1000. 
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• Difference values starting from 0 through 0.6 with an interval of 0.05 in 

length (i.e. 0, 0.05, 0.10, 0.15, …, 0.60) were added for each run 

respectively to all probes of the first gene set under the treatment 

group. 

• 1000 simulations were done for each run to compute the rejection rate 

d
β  (see Equation (6.4)). 

In section 6.2.4, we compared the empirical power of the gGSEA method 

and the empirical power of the pGSEA method (see Figure 8). It turns out the 

pGSEA method is more powerful in detecting the differentially expressed gene 

set. 

Figure 15 shows the comparison of the powers of the three EAME 

methods that are based on the median and the MAD (Method 1, 2, and 3). It is 

clear to see that the power of the EAME method #3, which adopts Huber M-

estimators of location at the second and third steps, is unanimously higher than 

the other two methods. The EAME method #1, which takes numeric average at 

the second and third steps, follows the EAME method #3, and the least powerful 

method turns out to be the EAME method #2 as expected. 

Figure 16 shows the comparison of the powers of the EAME method #4 

and #5. These two methods are both based on Huber M-estimators of location 

and scale. The difference between these two methods is that Method #4 uses the 

sample mean at the second and third steps, while Method #5 uses a Huber M-

estimator of location. The empirical power plot shows almost no difference 

between these two methods. This example may imply that the Huber M-

estimators perform very well when dealing with small sample size, and it may be 

unnecessary to use robust estimators in the subsequent steps. 
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A grand comparison of the powers of all of the five EAME methods is 

given in Figure 17. Apparently, the EAME method #4 and #5, which are based on 

the Huber M-estimators of location and scale, are slightly more powerful than 

the EAME method #3, and undoubtedly outperform the other two EAME 

methods (#1 and #2) that are based on the median and the MAD. The result 

confirms that the Huber M-estimator is an optimal choice for the family of the 

EAME methods. 

In Figure 18, we compare the GSEA methods (gene-level and probe-level) 

and the EAME methods (Method 1 - 5) altogether. Although the EAME method 

#4 and #5 are slightly more powerful than the EAME method #3, the graph 

shows that the empirical power of the EAME method #4 and #5 are the best 

among these gene set enrichment methods. Meanwhile the EAME method #1 and 

the pGSEA methods are roughly in a tie when the difference is small, and when 

it becomes large, the EAME method #1 gradually beat the pGSEA method. 

However, the pGSEA method is still more powerful than the EAME method #2 at 

all time, and it turns out that the gGSEA seems to be the least powerful method 

amongst all. Numerical results are shown in Table 5. 
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Figure 15: A simulation example for comparing the power of the EAME methods based on Median and MAD 

a. The red solid line represents the powers of the EAME method #1, with circles representing the 

powers at each difference value being added to the probes in the first gene set under the treatment 

group. 

b. The blue dotted line represents the powers of the EAME method #2, with triangles representing the 

powers at each difference value being added to the probes in the first gene set under the treatment 

group. 

c. The green dashed line represents the powers of the EAME method #3, with plus signs representing 

the powers at each difference value being added to the probes in the first gene set under the 

treatment group. 
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Figure 16: A simulation example for comparing the power of the EAME methods based on Huber M-estimators 

a. The red solid line represents the powers of the EAME method #4, with circles representing the 

powers at each difference value being added to the probes in the first gene set under the treatment 

group. 

b. The blue dotted line represents the powers of the EAME method #5, with triangles representing the 

powers at each difference value being added to the probes in the first gene set under the treatment 

group. 
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Figure 17: A simulation example for comparing the power of all of the EAME methods (Method 1 - 5) 
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Figure 18: A simulation example for comparing the power of the GSEA methods and  all of the EAME methods 

(Method 1 - 5) 
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Table 5 Empirical Power (All GSEA and EAME Methods) 

Distance gGSEA pGSEA EAME  

(Method 1) 

EAME  

(Method 2) 

EAME 

(Method 3) 

EAME  

(Method 4) 

EAME  

(Method 5) 

0 0.052 0.066667 0.043333 0.043333 0.053 0.06 0.063333 

0.05 0.07 0.123333 0.06 0.053333 0.07 0.09 0.09 

0.1 0.136667 0.21 0.113333 0.08 0.23 0.236667 0.236667 

0.15 0.266667 0.426667 0.306667 0.163333 0.503333 0.59 0.573333 

0.2 0.293333 0.463333 0.533333 0.246667 0.883333 0.926667 0.906667 

0.25 0.313333 0.493333 0.793333 0.406667 0.99 1 1 

0.3 0.466667 0.753333 0.94 0.603333 1 1 1 

0.35 0.666667 0.893333 0.99 0.85 1 1 1 

0.4 0.676667 0.903333 1 0.876667 1 1 1 

0.45 0.733333 0.973333 1 0.953333 1 1 1 

0.5 0.876667 0.996667 1 0.996667 1 1 1 

0.55 0.93 1 1 0.996667 1 1 1 

0.6 0.963333 1 1 1 1 1 1 

 

92 



93 

 

 

 

Chapter 8  

An R package for Robust DNA Microarray 

Analysis and Examples 

  

8.1 R Packages and Data 

R is a programming language and a free software environment for statistical 

analysis and visual illustration. It was initially written by Ross Ihaka and Robert 

Gentleman at the Department of Statistics of the University of Auckland in 

Auckland, New Zealand, and currently developed by the R Development Core 

Team.  

The base R distribution comes with a lot of commonly widely used 

statistical functionalities, and it can also be easily extended via packages when 

tasks cannot be fulfilled using the base R. A package in R is a user-created block 

of R codes (or scripts from other programming languages such as C) that 

includes specialized statistical techniques, graphical devices, import and/or 

export capabilities, reporting tools, etc. To handle Affymetrix DNA microarray 

data, we will need the affy package, which contains functions for the storage, 

management and analysis of Affymetrix probe-level data (Gautier et al., 2003). 

Another useful R package for DNA microarray analysis is the DNAMR package1, 

developed and maintained by D. Amaratunga and J. Cabrera. This package 

                                                           
1
 The DNAMR package can be downloaded from 

http://www.rci.rutgers.edu/~cabrera/DNAMR/  
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contains many useful routines for microarray data analysis. The advantage of 

using the DNAMR package instead of using the similar functions in the base R is 

that the computing speed of the former is usually much faster than the latter, 

especially for data sets with a huge amount of entries (e.g. DNA microarray data). 

To further meet the needs of analytical methods discussed in this paper, some 

modifications and supplements to the DNAMR package, and implementations of 

new methodologies discussed in this paper have been done and compiled as a 

new package called DNARA. 

In the following section, we will use two real DNA microarray datasets to 

illustrate the usage of the abovementioned statistical tools. The data sets, called 

RMA0 and RMA18, come from an experiment conducted to study whether mice 

whose Slc17A5 gene had been knocked out could be distinguished from wild-

type mice at the gene expression level (Amaratunga, Cabrera and Lee, 2008). It 

recorded the gene expression measurements from 0-day-old (newborn) and 18-

day-old mice using Affymetrix Mouse430_2 GeneChips. 

8.2 An Example 

In this section, we will use an example to illustrate the methodologies discussed 

in this paper. First, we need to make sure the affy package and the DNARA 

package have been installed properly. To install the affy package, start R and 

type in the R console the following codes: 

source("http://bioconductor.org/biocLite.R") 

biocLite("affy") 

To install the DNARA package, you want to click the “Packages” tab on the menu 

of the R window, and click “install package(s) from local zip files…”, then locate 

the zip file and click the “open” button. 



95 

 

 

 

The following code is used to read the raw Affymetrix DNA microarray 

data into R: 

library(affy) 

rawcelf <- ReadAffy(filenames = celf) 

# celf is a vector containing the filenames of the raw data 

8.2.1 Obtaining Gene Expressions 

To obtain gene expression from probe-level DNA microarray data using 

the regular RMA method, we need to go through the following steps: 

background correction, quantile normalization and summarization. This can be 

done by using the rma() function offered in the affy package: 

gene <- rma(rawcelf) 

, or we can compute the RMA gene expression step by step, by using 

bg.correct() and normalize() offered in the affy package, and then use 

medpolish()1 offered in the base R distribution: 

y <- bg.correct(rawcelf, method = 'rma') # background correction 

y <- normalize(z, method = 'quantiles') # quantile normalization 

ymat <- intensity(y)    # get intensity matrix 

pindex <- indexProbes(y, which = 'pm');  # get index of PM probes 

  

# function to perform median polish on ONE probe set 

doMedPolish <- function(p.index, y.mat, method) 

{ 

 Z <- y.mat[p.index, ]; 

  obj <- polish(z, method = method, maxiter = 40, trace.iter = FALSE); 

  g <- obj$overall + obj$col; 

  return(g); 

} 

  

# take log2 on the intensity matrix 

# after background correction and quantile normalization 

log2y <- log2(ymat); 

                                                           
1
 In the example shown below, a function called polish(), a modified version of medpolish(), was 

adopted. The new version takes one more parameter that tells which location estimator (i.e. mean, 

median, Tukey’s biweight or Huber’s M-estimator) is to be used.  
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# apply median polish for each probe set (gene) 

gene <- t(sapply(pindex, doMedPolish, log2y, "med")); 

doMedPolish() performs central polish for one probe set (gene). It gives 

the same summarization result as rma() does, when using method = “med” 

option. As discussed in Chapter 4, we can also use the mean, Tukey’s biweight 

estimator or Huber’s M-estimator by submitting method = “mean”, method 

= “biweight”, or method = “huber” respectively. 

To find out significantly differentially expressed genes, we can perform a 

two-sample t-test for every gene. The following graph (Figure 19) compares the 

Figure 19  Comparison of Location Estimators in the summarization step of RMA 

A two-sample t-test was performed on the gene expressions based on the RMA method using median, Tukey’s 

biweight (1-step) and Huber’s M-estimator respectively. The ratios of p-values /  RMA p-values were drawn.   
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performances of Median, Tukey’s biweight and Huber’s M-estimator for the 

RMA18 data. We use the p-values from the regular RMA method (i.e. using 

median) as the baseline, and compute the ratio of p-values from Tukey’s 

biweight and Huber’s over the baseline. It is clear to see that both of Tukey’s 

biweight and Huber’s M-estimator perform better than median since the ratios 

are below 1, with an exception for Tukey’s biweight when its p-values are near 0. 

Nonetheless, it beats median for most of the time. Huber’s M-estimator shows 

the best performance among the three location estimators.  

8.2.2 Gene Set Enrichment Analysis (GSEA) – Gene-level and Probe-level 

In this section, we will introduce how to use R to perform Gene Set 

Enrichment Analysis on both gene-level and probe-level. We will still use the 

RMA0 and RMA18 datasets. After reading in the data set using ReadAffy() 

function, we can type the variable name (rawcelf) in the R console and a 

summary of the data set will be printed as follows: 

 

The summary shows some information about the DNA microarray data, 

including the number of samples, genes, and the annotation information of the 

data. This data set contains 12 samples and we know they are divided into two 

groups, one as control and the other as treatment.  
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To perform GSEA, we also need to acquire the information about gene 

sets. This can be done by installing and loading the relevant annotation data. For 

the RMA18 dataset, we need Affymetrix Mouse Genome 430 2.0 Array 

annotation data (chip mouse4302). To install it, type the following in R console: 

source("http://bioconductor.org/biocLite.R") 

biocLite("mouse4302.db") 

, or we can obtain the annotation information and load the package automatically. 

The following code will determine which annotation data is going to be used, 

and will install (if not installed yet) and load the package automatically. 

# get gene set information. GO term. 

# "object" is the affy data  

anno <- annotation(object); 

pkg  <- paste(anno, ".db", sep = ""); 

  

# check if the required annotation pkg exists? 

# DNARA package required 

if(!is.PkgInstalled(pkg)) 

{  

 source("http://bioconductor.org/biocLite.R"); 

 biocLite(pkg); 

} 

  

b_PkgLoaded <- require(pkg, character.only = TRUE, quietly = TRUE); # load the 

package 

The mapping between the gene sets (GO terms1) and genes (or probes) is 

stored in mouse4302GO, an R object. Since the number of gene sets described in 

mouse4302GO is too large, we will intentionally choose genes containing exactly 

11 probes, and gene sets that contain exactly 50 such genes. By doing so, we 

reduce the number of gene sets to 14. The following code does the job as 

described above:   

## -- control and treatment group 

grp <- rep(1:2, each = 6) # two groups 

                                                           
1
 For detailed information about Gene Ontology (GO), please visit http://www.geneontology.org/ 
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permutations <- col.permute(500, c(6, 6));# pre-create a permutation table  

  

## -- GO info -- ## 

n <- length(grp); 

n.probes <- 11; 

############################### 

## --- choose probe sets --- ## 

ip <- indexProbes(object, 'pm'); 

ps <- ip[sapply(ip, length) == n.probes]; 

ps.name <- names(ps); 

GO.info <- paste(anno, "GO", sep = ""); 

GO <- eval(parse(text = GO.info)); 

GO.table <- toTable(GO[ps.name]); # create a gene-to-GO table 

  

gn <- unique(GO.table[,"probe_id"]); # gn is the genes in GO.table AND 

that have #probes == 11 (or specified number in the parameter) 

gsets <- split(GO.table[, 'probe_id'], GO.table[, 'go_id']); 

goid <- names(gsets); 

gsets2 <- gsets[goid[sapply(gsets, length) == 50]] 

To perform GSEA at gene-level: 

## -- gene-level GSEA -- ## 

xg <- exprs(rma(object))[ps.name, ]; 

zg <- gsea(xg, grp, gsets2, permutations); 

To perform GSEA at probe-level: 

## -- probe-level GSEA -- # 

xp <- probes(object, which = 'pm'); 

zp <- gsea(xp, grp, gsets2, permutations); 

The gsea() function will return a list containing two objects. One is a 

vector containing the GSEA geneset scores of the sample, and the other is a 

matrix containing the GSEA geneset scores of the permutations, which will be 

served as the null distribution for p-value calculation. 

The following code will draw histograms of the geneset scores for the 

sample and the permutations as well.  

## -- draw histogram  

hist.gsea(zg$es1, zg$es0) 
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hist.gsea(zp$es1, zp$es0) 

The histograms are shown in Figure 20.  
   

 

Gene-level Probe-level 

R
M

A
0 

  

R
M

A
1

8 

  

Figure 20  Histograms of GSEA geneset scores for RMA0 and RMA18 data sets at Gene-level and Probe-level 

The following code will tell which gene sets are significant at 5% level: 

pvg <- p.value(zg$es1, zg$es0) 

sum(pvg < 0.05) 

which(pvg < 0.05) 

  

pvp <- p.value(zp$es1, zp$es0) 
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sum(pvp < 0.05) 

which(pvp < 0.05) 

We can also use the following code to find the terms associated with the gene 

sets after installing the GO.db package: 

### use GO.db to find the Terms associated with those GOIDs 

source("http://bioconductor.org/biocLite.R") 

biocLite("GO.db") 

library("GO.db") 

Term(names(which(pvg < 0.05))) 

The significant gene sets found by using GSEA method at gene-level as well as 

probe-level are shown in Table 6. 

Table 6 Significant Gene Sets (GSEA method) 

  GOID Description 

R
M

A
0 

G
e

n
e

-l
ev

e
l 

GO:0005201 extracellular matrix structural constituent 

GO:0008652 cellular amino acid biosynthetic process 

GO:0019001 guanyl nucleotide binding 

GO:0070577 histone acetyl-lysine binding 

P
ro

b
e

-l
e

v
e

l 

GO:0005201 extracellular matrix structural constituent 

GO:0017075 syntaxin-1 binding 

GO:0045880 positive regulation of smoothened signaling pathway 

GO:0070577 histone acetyl-lysine binding 

R
M

A
1

8 G
e

n
e

-l
ev

e
l 

No significant gene set found. 

P
ro

b
e

-l
e

v
e

l 

GO:0005201 extracellular matrix structural constituent 
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8.2.3 Enrichment Analysis using M-estimators (EAME) 

This section shows examples for EMME methods using R. Assuming raw 

DNA microarray data has been read and PM intensities have been extracted, we 

can use eame() function included in the DNARA package to perform EAME 

analysis. For each of the five different methods discussed in this paper, we can 

submit the method= option in the eame() function. For example, to perform 

EAME using method 3, we can use the following code: 

e3 <- eame(xp, grp, gsets2, method = 3) 

Similar to the gsea() function, eame() function will return a list containing 

two slots, one with the EAME geneset scores for the sample, and the other for the 

permutations. To draw the histograms of the geneset scores and find out the 

significant gene sets, we can use the following code: 

e3 <- eame(xp, grp, gsets2, method = 3) 

hist.gsea(e3$es1, e3$es0) 

pv <- p.value(e3$es1, e3$es0) 

sum(pv < 0.05) 

e3.goid <- names(which(pv < 0.05)) 

The histograms are shown in Figure 21 through Figure 25. 
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Figure 21  Histograms of EAME geneset scores for RMA0 and RMA18 data sets (Method 1) 
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Figure 22  Histograms of EAME geneset scores for RMA0 and RMA18 data sets (Method 2) 
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Figure 23  Histograms of EAME geneset scores for RMA0 and RMA18 data sets (Method 3) 
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Figure 24  Histograms of EAME geneset scores for RMA0 and RMA18 data sets (Method 4) 

 

  



105 

 

 

 

   
 

RMA0 RMA18 

M
e

th
o

d
 5

 

  

Figure 25  Histograms of EAME geneset scores for RMA0 and RMA18 data sets (Method 5) 

In Table 7 and Table 8, there list significant gene sets found by various 

GSEA and EAME methods for the RMA0 and RMA18 data sets. For both the 

RMA0 and RMA18 data, GO:0005201 and GO:0070577 are found to be significant 

by most of the methods.  

  



 

 

 

 

Table 7 Significant Gene Sets for RMA0 Data 

Method 
GO ID 

GO:0005201 GO:0045880 GO:0048745 GO:0070577 GO:0071837 GO:2000134 GO:2001243 GO:0008652 GO:0019001 GO:0017075 

G
S

E
A

 

(g
en

e)
 

RMA0   RMA0    RMA0 RMA0  

G
S

E
A

 

(p
ro

b
e)

 

RMA0 RMA0  RMA0      RMA0 

E
A

M
E

 

(1
) RMA0 RMA0 RMA0 RMA0 RMA0 RMA0 RMA0    

E
A

M
E

 

(2
) RMA0 RMA0 RMA0 RMA0 RMA0 RMA0 

 

 
   

E
A

M
E

 

(3
) RMA0 RMA0 RMA0 RMA0 RMA0 RMA0     

E
A

M
E

 

(4
) RMA0 RMA0 RMA0 RMA0 RMA0 RMA0 RMA0    

E
A

M
E

 

(5
) RMA0 RMA0 RMA0 RMA0 RMA0 RMA0     

GO Terms : 

GO:0005201 "extracellular matrix structural constituent"; GO:0045880 "positive regulation of smoothened signaling pathway"; GO:0048745 "smooth muscle tissue 

development"; GO:0070577  "histone acetyl-lysine binding"; GO:0071837 "HMG box domain binding"; GO:2000134 "negative regulation of G1/S transition of 

mitotic cell cycle"; GO:2001243 "negative regulation of intrinsic apoptotic signaling pathway"; GO:0008652 "cellular amino acid biosynthetic process"; GO:0019001 

"guanyl nucleotide binding"; GO:0017075 "syntaxin-1 binding" (significant gene sets are marked with RMA0) 
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Table 8 Significant Gene Sets for RMA18 Data 

Method 
GO ID 

GO:0005201 GO:0032809 GO:004301 GO:0045880 GO:0048745 GO:0070577 GO:0071837 GO:0008652 GO:0019001 GO:0042562 GO:2001243 

G
S

E
A

 

(g
en

e)
 

           

G
S

E
A

 

(p
ro

b
e)

 

RMA18           

E
A

M
E

 

(1
) RMA18 RMA18 RMA18 RMA18 RMA18 RMA18 RMA18     

E
A

M
E

 

(2
) RMA18   RMA18  RMA18 RMA18 RMA18 RMA18   

E
A

M
E

 

(3
) RMA18 RMA18 RMA18 RMA18 RMA18 RMA18 RMA18  RMA18 RMA18  

E
A

M
E

 

(4
) RMA18 RMA18  RMA18 RMA18 RMA18 RMA18   RMA18 RMA18 

E
A

M
E

 

(5
) RMA18 RMA18  RMA18 RMA18 RMA18 RMA18   RMA18  

GO Terms : 

GO:0005201 "extracellular matrix structural constituent"; GO:0032809 "neuronal cell body membrane"; GO:0043015 "gamma-tubulin binding"; GO:0045880 

"positive regulation of smoothened signaling pathway"; GO:0048745 "smooth muscle tissue development"; GO:0070577 "histone acetyl-lysine binding"; 

GO:0071837 "HMG box domain binding"; GO:0008652 "cellular amino acid biosynthetic process"; GO:0019001 "guanyl nucleotide binding"; GO:0042562 "hormone 

binding"; GO:2001243 "negative regulation of intrinsic apoptotic signaling pathway" (significant gene sets are marked with RMA18) 
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Chapter 9 

Conclusion and Remarks 

 

In this paper, we first introduced and discussed several current methodologies 

that deal with DNA microarray data, and then we discussed in details about the 

application of robust estimators of location in the summarization step in the 

RMA method. We compared the performance of several candidates including 

mean, median (currently used in RMA), Tukey’s biweight and Huber’s M-

estimator, and find that robust estimators beat the sample mean when outliers 

are present in the data. Also we found that Huber’s M-estimator works much 

better than others under the condition that there exist only a small proportion of 

outliers in the data set. 

In the following chapters, we focused on the methodologies that take 

advantage of the idea of Gene Set Enrichment. We talked about the Gene Set 

Enrichment Analysis (GSEA) method that is currently carried out at the gene-

level, which is called gGSEA in this paper. The method requires the data set be 

converted from the raw probe-level data into the gene-level data before further 

analysis. This step is called the preprocessing step of DNA microarray data, and 

usually it contains a sequence of three major substeps: background correction, 

normalization and summarization.  

Although there are a great number of various methods that have been 

developed to handle the three steps, and improvements and new methods are 
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being studied, it is inevitable to lose important information that is contained in 

the probe-level microarray data through the preprocessing stage of microarray 

data analysis. It is reasonable to believe that the analysis directly based on the 

probe-level data may give more reliable result. Therefore, we made several 

proposals to solve this issue. 

First, we extended the gene-level GSEA method (gGSEA) by modifying 

the algorithm to allow us to apply the method directly onto the probe-level 

microarray data, which is called the probe-level GSEA method (pGSEA) in this 

paper. A simulation comparison shows that the pGSEA method works much 

better than the original gGSEA method because the empirical power of the 

pGSEA method for detecting differentially expressed gene sets is higher than 

that of the gGSEA method. 

Secondly, we proposed another gene set enrichment method that utilizes 

the robust M-estimators. Since this method adopts the idea of enrichment 

analysis and takes advantage of robust M-estimators, we call it the Enrichment 

Analysis with M-estimators (EAME) method. We first used the median and the 

MAD, and then generalized it as Huber M-estimators, of which sample mean 

and sample median are both a special case. A simulation comparison was 

performed and it showed that the EAME methods (Method #4 and #5) with 

Huber M-estimators has the highest power for detecting the differentially 

expressed gene set, and is followed by the EAME methods (Method #1, #2 and #3) 

based on median and MAD.  

When comparing the GSEA method and the EAME methods altogether, it 

turns out that the EAME method #4 and #5 outperform both of the gGSEA 

method and the pGSEA method, while the EAME method #1 performs roughly 
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as well as the pGSEA method when the difference value is small, and it 

gradually beats the pGSEA method when the difference value becomes larger 

and larger. However, the EAME method #2 is still not a competitor compared to 

the pGSEA method. Finally, it turns out that the least powerful method among 

all of the GSEA and the EAME methods is the gGSEA method. 

 

  



111 
 

 

 

References 

1. Amaratunga, D. and J. Cabrera (2004), “Exploration and Analysis of DNA 

Microarray and Protein Array Data”, Wiley. 

2. Amaratunga, D. and J. Cabrera (2001a), “Outlier resistance, standardization 

and modeling issues for DNA microarray data”, In L. T. Fernholz, S. 

Morgenthaler, and W. Stahel, eds., Statistics and Genetics for the Envirnmental 

Sciences, Basel: Birkhauser-Verlag. 

3. Amaratunga, D. and J. Cabrera (2001b), “Statistical analysis of viral microchip 

data”, J. Am. Stat. Assoc., 96, 1161-1170. 

4. Amaratunga, D., J. Cabrera and Y.-S. Lee (2008), “Enriched random forests”, 

Bioinformatics, 24:2010-2014.   

5. Benjamini, Y. and Y. Hochberg (1995), “Controlling the False Discovery Rate: 

A practical and power ful approach to multiple testing”, Journal of the Royal 

Statistical Society, B57, 289-300. 

6. Bolstad, B. M., R. A. Irizarry, M. Astrand, and T. P. Speed (2003), “A 

Comparison of Normalization Methods for High Density Oligonucleotide 

Array Data Based on Bias and Variance”, Bioinformatics, 19(2):185-193 

7. Carlson, M. (). “GO.db: A set of annotation maps describing the entire Gene 

Ontology”. R package version 2.10.1. 

8. Carlson, M. (). “mouse4302.db: Affymetrix Mouse Genome 430 2.0 Array 

annotation data (chip mouse4302)”. R package version 2.10.1. 

9. Efron, B. and R. Tibshirani (2007), “On Testing the Significance of Sets of 

Genes”, Annals of Applied Statistics, Volume 1, Number 1, 107-129. 

10. Fodor, S. P., J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu and D. Solas (1991), 

“Light-directed, spatially addressable parallel chemical synthesis”, Science, 

251:767-773. 

11. Kanehisa, M. and S. Goto (2000), “KEGG: Kyoto Encyclopedia of Genes and 

Genomes”, Nucleic Acids Res. 28, 27-30. 

12. Kohane, I. S., A. T. Kho and A. J. Butte (2003), “Microarrays for an Integrative 

Genomics”, The MIT Press. 

13. Gautier, L. (2011). “affydata: Affymetrix Data for Demonstration Purpose”. R 

package version 1.11.18. 

14. Gautier, L., L. Cope, B. M. Bolstad and R. A. Irizarry (2004), “affy – analysis of 

Affymetrix GeneChip data at the probe level”, Bioinformatics, 20(3):307-315. 

15. Hampel, F. R. (1968), “Contributions to the theory of robust estimation”, PhD 

thesis, University of California, Berkeley. 



112 
 

 

 

16. Hoaglin, D. C., F. Mosteller, and J. W. Tukey (2000), “Understanding Robust 

and Exploratory Data Analysis”, Wiley. 

17. Hornik, K. (2013), “The R FAQ”, http://CRAN.R-project.org/doc/FAQ/R-

FAQ.html 

18. Huber, P. J. (1964). “Robust estimation of a location parameter”, Annals of 

Mathematical Statistics, 35,73-101. 

19. Irizarry, R. A., B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs and T. P. Speed 

(2003), “Summaries of Affymetrix GeneChip probe level data”, Nucleic Acids 

Research, 31(4):e15. 

20. Irizarry, R. A., B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. 

Scherf and T. P. Speed (2003), “Exploration, normalization, and summaries of 

high density oligonucleotide array probe level data”, Biostatistics, 4(2):249-64. 

21. Irizarry, R. A., Z. Wu and H. A. Jaffee (2006), “Comparison of Affymetrix 

GeneChip expression measures”, Bioinformatics, ;22(7):789-94.  

22. Lemon, W. J., S. Liyanarachchi, and M. You (2003), “A high performance test 

of differential gene expression for oligonucleotide arrays”, Genome Biology, 

4:R67. 

23. Li, C. and W. H. Wong (2001a), “Model-based analysis of oligonucleotide 

arrays: model validation, design issues and standard error application”, 

Genome Biology, 2(8):research 0032.1 – 0032.11 

24. Li, C. and W. H. Wong (2001b), “Model-based analysis of oligonucleotide 

arrays: expression index computation and outlier detection”, Proc. Nat. Acad. 

Sci., 98:31-36. 

25. Lockhart, D., H. Dong, M. Byrne, M. Follettie, M. Gallo, M. Chee, M. 

Mittmann, C. Wang, M. Kobayashi, H. Horton and E. Brown (1996), 

“Expression monitoring by hybridization to high-density oligonucleotide 

arrays”, Nature Biotechnology, 14, 1675-1680.  

26. Maronna, R. A., R. D. Martin, and V. J. Yohai (2006), “Robust Statistics: 

Theory and Methods”, Wiley, 26. 

27. Miller, R. A, A. Galecki, and R. J. Shmookler-Reis (2001), “Interpretation, 

design, and analysis of gene array expression experiments”, Journal of 

Gerontology, 56A:B52-B57. 

28. Naef, F., D. A. Lim, N. Patil and M. O. Magnasco (2001), “From features to 

expression: High-density oligonucleotide array analysis revisited”, Proc 

DIMACS Workshop on Analysis of Gene Expression Data. 

29. Schena, M., D. Shalon, R. W. Davis and P. O. Brown (1995), “Quantitative 

monitoring of gene expression patterns with a complementary DNA 

microarray”, Science, 270, 467-470. 

30. Shapiro, S. S., and M. B. Wilk (1965). "An analysis of variance test for 

normality (complete samples)". Biometrika, 52 (3-4): 591–611. 



113 
 

 

 

31. Simon, R. M., E. L. Korn, L. M. McShane, M. D. Radmacher, G. W. Wright and 

Y. Zhao (2003), “Design and Analysis of DNA Microarray Investigations”, 

Springer. 

32. Storey, J. D. (2001), “The positive False Discovery Rate: A Bayesian 

interpretation and the q-value”, Technical Report of the Stanford University 

Department of Statistics. 

33. Storey, J. D. and R. Tibshirani (2001), “Estimating false discovery rates under 

dependence, with applications to DNA microarrays”, Technical Report of the 

Stanford University Department of Statistics. 

34. Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. 

Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. 

Mesirov (2005), “Gene set enrichment analysis: A knowledge-based approach 

for interpreting genome-wide expression profiles”, Proc. Natl. Acad. Sci. USA. 

102(43): 15545–15550. 

35. The Gene Ontology Consortium (2005), “Gene ontology: tool for the 

unification of biology.” Nature Genetics, 25(1):25-9. 

36. Wu, Z., R. A. Irizarry, R. Gentleman, F. M. Murillo and F. Spencer (2004), “A 

Model Based Background Adjustment for Oligonucleotide Expression 

Arrays”, Johns Hopkins University, Dept. of Biostatistics Working Papers. 

Working Paper 1. http://biostats.bepress.com/jhubiostat/paper1 

37. Yang, Y. H., M. J. Buckley, S. Dudoit and T. P. Speed (2000). “Comparison of 

methods for image analysis on cDNA microarray data”, Technical Report of the 

Department of Statistics, University of California at Berkeley. 

 

 

 

 


