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Mobile platforms are becoming the predominant medium of access to Internet services due

to the tremendous increase in their computation and communication capabilities. Also, as

more and more of these mobile devices are coupled with in-built as well as external sen-

sors capable of monitoring ambient conditions, biomedical and kinematic information, and

location, they can provide spatially distributed measurements regarding the environment

in their proximity. Cumulus, a mobile computing grid, which harnesses the heterogeneous

sensing and computing capabilities of mobile devices in the field as well as that of servers

in remote datacenters is envisioned. Cumulus can be exploited to enable innovative mobile

applications (defined by workflows) that rely on real-time in-situ processing of sensor data.

However, enabling applications that require real-time in-the-field data collection and

processing using mobile platforms is still challenging due to the following concerns: the

inherent uncertainty associated with the quality and quantity of data from mobile sensors as

well as with the availability of mobile computing resources in the field, security, and privacy.

The goal of this research is to design and develop a unified uncertainty-aware (robust),

secure, and privacy-preserving framework for data and computing resource management in

the Cumulus in order to enable execution of mobile application workflows in real time and

in situ and, hence, to generate actionable knowledge from raw data within realistic time

bounds.
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In order to achieve the stated goal, an autonomic (self-organizing, self-optimizing, and

self-healing) middleware that aids in the organization of the sensing, computing, and com-

munication capabilities of static and mobile devices in order to form Cumuli is proposed. As

the relevance of the output of workflows rely heavily on the quality and quantity of raw data

coming from the underlying sensing infrastructure as well as on the computing resources

available to execute them in real time, a unified data and computing resource management

mechanism for data- as well as task-parallel applications is proposed. Finally, Maestro, a

robust, secure, and privacy-preserving framework for concurrent mobile application man-

agement in Cumulus is proposed. The proposed framework is evaluated using experiments

on a prototype testbed as well as through simulations on a purpose-built JavaTM-based

simulator.
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Chapter 1

Introduction

This dissertation describes an uncertainty-aware data and computing-resource management

framework for real-time in-situ processing of ubiquitous mobile application workflows in

mobile computing grids.

1.1 The Case for Mobile Grid Computing

The computation and communication capabilities of mobile hand-held devices such as smart

phones, tablets, and laptops have improved tremendously due to the advances in micropro-

cessor, storage, and wireless technologies. It has been projected that, by 2015, mobile de-

vices will surpass wired desktop PCs as the most preferred medium of access to the Internet

and, therefore, will significantly impact distributed computing paradigms that use Internet-

connected devices (volunteered by their owners [1]) as a source of computing power and

storage. Also, as more and more of these mobile devices are coupled with in-built sensors

capable of monitoring temperature, humidity, atmospheric pressure, sound, luminescence,

acceleration, orientation, and direction, multiple cameras, and Global Positioning System

(GPS) receivers, they can provide spatially distributed observations regarding the environ-

ment in their proximity. In addition, advances in the field of wireless sensors has led to

the development of compact sensor nodes (also called motes) capable of communicating

with other mobile devices and of capturing a wide variety of sensor data from biomedical

to kinematic.

The mobile computing revolution is characterized by two clearly visible trends. The first

trend is the aforementioned increase in mobile devices’ computational capabilities aimed at

improving user experience. The second trend is the growing popularity of the cloud com-

puting paradigm, which pushes processing and storage (required for running applications)
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Figure 1.1: The spectrum of computing resources in a Cumulus – mobile resources in the
proximity, fixed (cloudlets) computing resources in the proximity usually tethered to Wi-Fi
access points, and cloud resources.

to remote servers on the Internet while retaining only a light front-end on the mobile device.

The former is market-/demand-driven and is dictated primarily by users’ purchasing be-

havior as well as by recent innovations in human-computer interaction; while the latter can

be attributed to the gains that cloud computing provides in terms of lower infrastructure

costs and reduced time-to-market for innovative applications (by offering infrastructure and

platform as a service). These diverging trends have rendered the powerful mobile devices

heavily under-utilized on average. We envision that the heterogeneous sensing, computing,

communication, and storage capabilities of these under-utilized mobile devices in the field

as well as that of computing and storage servers in remote datacenters can be collectively

exploited to form a mobile computing grid (also referred to as a “loosely-coupled” mobile de-

vice cloud), which we call Cumulus (depicted in Fig. 1.1). The Cumulus can be harnessed to

enable novel data- and compute-intensive mobile applications that rely on real-time in-situ

processing of data generated in the field.

Mobile grid computing is a form of distributed computing where many networked mobile

devices process massive amounts of locally generated sensor data in parallel. The response

time, quality, and relevance of data- and compute-intensive mobile applications can be
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drastically improved through mobile grid computing. The emphasis on real-time in-situ

processing arises out of the need to generate meaningful and actionable knowledge within

realistic time bounds by processing raw data collected opportunistically from pervasive mo-

bile sensing devices in the order specified by mobile-application workflows (the raw data

→ information → knowledge chain). The primary impediments to real-time in-the-field

data processing are, 1) insufficient sensing and computing capabilities on individual mo-

bile devices, which prevents them from producing meaningful results within realistic time

bounds in isolation, and 2) the prohibitive communication cost and response time involved

in enabling such data-intensive applications using the wired-grid-computing and/or cloud-

computing approaches alone – in which computation and storage are offloaded to remote

computing resources on the Internet.

Opportunistic discovery and exploitation of nearby compute and storage servers – re-

ferred to as cyber foraging [2] – was conceived to augment the computing capabilities of

mobile hand-held devices in the field. Prior work in mobile cloud computing for cyber for-

aging has primarily focused on augmenting the computing capabilities of mobile devices in

the field with dedicated and trusted computing resources, either situated remotely (in the

cloud [3–5]) or proximally (in cloudlets [6, 7]). As cyber foraging was meant to convey a

whole new pervasive computing paradigm based on the principle of “living off the land” [2],

in this dissertation, we explore the feasibility of leveraging the computing and communica-

tion capabilities of other mobile devices in the field. In keeping with the broadest principles

of cyber foraging, the Cumulus computing environment may be composed of (i) purely mo-

bile resources in the proximity, (ii) a mix of mobile and fixed resources in the proximity, or

(iii) a mix of mobile and fixed resources in the proximity as well as in remote datacenters

as shown in Fig. 1.1. In this dissertation, we focus on the “extreme” scenario in which

the Cumuli are composed purely of proximal mobile devices as it brings all the following

concerns to the fore: robustness, security, and privacy. One or more of these concerns do

not arise in the other scenarios and, hence, solutions developed for the extreme case will

easily extend to the other cases.
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Causes:
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Figure 1.2: A sample path of uncertainty propagation in mobile application scenario. Data
and computing-resource uncertainty, if unchecked, may propagate up the data-processing
chain and have an adverse effect on the level of accuracy and timeliness of the final result.

1.2 Research Challenges

Mobile-application workflows are typically made up of several data collection, computation,

and result generation tasks with pre-determined parallelism and order of execution. These

workflows can be data parallel or task parallel. In mobile applications exhibiting data

parallelism, the data is distributed across different parallel computing nodes that perform

the same task while in applications exhibiting task parallelism, the parallel computing nodes

may perform different tasks on the same or different data. The accuracy and timeliness of

the results from mobile-application workflows rely heavily on the quality and quantity of

raw data coming from the underlying multi-modal sensing infrastructure as well as on the

computing resources available to execute them in real time. There are numerous research

challenges associated with our envisioned approach – the execution of mobile application

workflows in mobile computing grids – due to the inherent uncertainty associated with

data quality and quantity as well as with the computing resource availability, security, and

privacy.

Data and computing-resource uncertainty, if unchecked, may propagate up the data-

processing chain and have an adverse effect on the level of accuracy and timeliness of the
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final result as shown in Fig. 1.2. Uncertainty in data quantity and quality can be attributed

to intermittent network connectivity and availability of mobile sensors, measurement errors,

and misleading as well as malicious data sources. Computing resource uncertainty can be

attributed to intermittent device availability (due to unpredictable mobility), varying rate of

battery drain, susceptibility to hardware failures, and lack of a priori knowledge about com-

putational task (in the workflow) performance on different mobile hardware and software

platforms. Note that a large amount of high-quality data does not guarantee good results

as it increases the computational complexity and, hence, the computing-resource require-

ments. A small degree of uncertainty with computing resources (or data) can outweigh the

benefits brought by reliable data (or computing resources). Hence, ensuring reliable mobile

grid coordination and guaranteeing mobile application performance under uncertainty are

significant research challenges.

Prior research efforts in mobile grid computing have aimed at integrating mobile de-

vices into the wired-grid and cloud computing infrastructure mainly as service requesters.

However, real-time in-situ processing of application workflows requires exploitation of mo-

bile devices as service providers and uncertainty-aware resource management for reliable

grid operation even in highly dynamic and unpredictable scenarios. Recently, a comput-

ing paradigm that has gained prominence is approximate computing, which identifies and

captures the limitations arising out of either imperfect/partial data or insufficient comput-

ing resources to provide not-so-accurate yet meaningful results within specified deadlines.

Prior work in the field of approximate computing has focused either on data uncertainty

management or on computing resource uncertainty management in isolation to prevent the

uncertainty from adversely affecting the result. However, approximate computing in the

mobile grid computing domain requires a unified approach as it is affected by uncertainties

arising out of both the sources. The goal of this dissertation is to design and develop a uni-

fied uncertainty-aware (robust), secure, and privacy-preserving management framework for

data and computing resources so to enable approximate computing in mobile sensing and

computing platforms and, hence, to generate actionable knowledge from raw data within

realistic time bounds.
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1.3 Contributions

In order to address the research challenges associated with ensuring reliable mobile grid

coordination and guaranteeing mobile-application performance under uncertainty, in this

dissertation, we make the following contributions.

1.3.1 Autonomic Middleware for Mobile Grid Computing

We proposed a robust autonomic middleware that organizes the sensing, computing, and

communication capabilities of static and mobile devices in order to form an heterogeneous

mobile computing grid [8,9]. The role-based middleware is imparted with autonomic man-

agement capabilities, namely, self-organization, self-optimization, and self-healing. Uncer-

tainty awareness is the defining characteristic of our proposed middleware. Specifically, our

contributions include,

• A role-based service discovery and workflow management module, which imparts the

self-organization capability for handling service request arrivals as well as for task

distribution and management. This module also maintains long-term statistics re-

garding the dynamics of the underlying resource pool to minimize the effect of the

uncertainties on application performance.

• A novel energy- and uncertainty-aware resource allocation engine, which imparts self-

optimization capability for allocating the workload tasks optimally among the com-

puting resources and to ensure application Quality of Service (QoS) even under un-

certainties. This engine is designed for a generic class of data-parallel applications,

which do not require any form of coordination among processing devices.

• The novel concept of application waypoints – which impart the self-healing capabil-

ity – to monitor continuously the effect of uncertainties on application performance.

Waypoints also eliminate unrealistic assumptions such as existence of accurate models

for application performance (CPU cycles, memory, and storage used as well as the

execution time) on different mobile hardware and software platforms.
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1.3.2 Uncertainty-aware Mobile Application Workflow Management

We proposed a unified uncertainty-aware framework for management of data and computing

resources in order to enable ubiquitous mobile-application workflows execution on mobile

sensing and computing platforms [10]. The goal is to generate actionable knowledge from

raw data while meeting end-user-specified requirements in terms of result accuracy and

delay. Our proposed framework builds on the autonomic middleware and is capable of

determining on the fly, 1) the quality and quantity of data to request from the data sources

in the field along with 2) the most appropriate computational model (from a suite of models)

to process the raw data, extract features, and generate actionable knowledge, and 3) the

amount of computing resources to utilize from those available in the field. This capability

enables us to control the propagation of uncertainty up the data-processing chain. While the

resource allocation engine in the autonomic middleware is capable of handling only data

parallel applications, this framework is capable of handling both data and task parallel

applications. Specifically, our contributions include,

• A simple yet powerful generalized workflow representation scheme to construct struc-

tured multi-stage (or multi-level) data-processing chains (tasks and dependencies) for

ubiquitous mobile applications, which are composed multiple parallelizable and/or

sequential computational tasks.

• A procedure for estimating the propagation of uncertainty from raw data to the fi-

nal result using interval arithmetic on confidence intervals in order to determine the

appropriate quality and quantity of data to collect from the sensors in the field.

• Formulation of the problem of assigning parallel independent tasks to computing

resources at every stage of the workflow as a combinatorial optimization problem with

multiple bottleneck objectives (e.g., application execution time and fairness in battery

drain at computing devices).

• A stage-wise threshold-based heuristic, Fast M-CBP algorithm, for solving the afore-

mentioned combinatorial optimization problem with multiple bottleneck objectives in

polynomial-time.
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1.3.3 Robust, Secure, and Privacy-preserving Mobile Grid Computing

We proposed Maestro, a novel framework for robust, secure, and privacy-preserving mobile

grid computing [11]. Often, multiple service requests are generated simultaneously in a

Cumulus and, hence, tasks belonging to multiple workflows have to be allocated and executed

on the Cumulus resources. The aforementioned complex task-allocation problem, however,

also presents opportunities: there may be multiple duplicate service requests and multiple

duplicate tasks that are common across different workflows. Maestro deduplicates similar

tasks across workflows as it lends itself to minimization of duplication in services rendered,

leads to efficient real-time in-situ processing of simplified workflows (with fewer tasks than

before) as well as to better utilization of computing resources. After deduplication, the tasks

of the simplified workflows have to be scheduled for execution on the Cumulus resources.

Specifically, our contributions include,

• Dedup, a sub-graph matching technique for task deduplication among workflows to

address the non-trivial research challenge of identification of task duplicates across

workflows and the creation of simplified workflows.

• A robust replication-based task scheduling mechanism, which employs controlled repli-

cation of critical workflows tasks in order to bestow the self-protection capability in

addition to the aforementioned self-healing using waypoints.

• A mechanism for privacy-preserving computing in the Cumulus through controlled

access to sensitive user data via multiple levels of authorization.

We have performed thorough analysis and evaluation of our proposed solutions for mobile

grid computing through experiments on a prototype testbed of Android- and Linux-based

mobile devices as well as through simulations on a purpose-built JavaTM-based simulator.

1.4 Broader Impact

Augmentation of mobile devices’ capabilities using mobile grid computing will enable novel

compute- and data-intensive mobile applications spanning across multiple domains, from

education to infotainment, from assisted living to ubiquitous healthcare. Such applications
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Figure 1.3: Mobile grid computing enabling ubiquitous health monitoring and care in the
home or hospital setting.

include (but are not limited to) ubiquitous context-aware health and wellness monitoring of

elderly (in home or hospital setting) and soldiers in the battlefield [9,12], distributed rainfall

and urban flood-risk estimation, estimation of pollution level using distributed real-time

air-quality measurements, distributed object recognition and tracking, and distributed user-

generated multimedia search and sharing. Our ideas go beyond the application scenarios

listed here and can be applied to any ubiquitous mobile application that relies on real-time

in-the-field processing of locally generated sensor data. In the following, we elaborate on

two of the aforementioned application scenarios.

Ubiquitous healthcare (home or hospital setting) Future ubiquitous healthcare

systems will be characterized by i) pervasive vital sign monitoring using non-invasive sensors,

ii) real-time processing of monitored data to derive meaningful physiological parameters,

and iii) context-aware data- and patient-centric decision making. Our proposed autonomic

resource management frameworks can harness under-utilized computing resources in the

vicinity to support real-time processing of vital signs (using inherently complex physiolog-

ical models) and to acquire context awareness (using machine-learning-based algorithms).

However, there are multiple challenges associated with this vision of ubiquitous health care.

Firstly, significant amount of preprocessing like noise rejection, data disambiguation, and
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Figure 1.4: Mobile grid computing enabling ubiquitous health monitoring of soldiers in a
battlefield setting.

consistency check has to be performed on the raw data provided by the failure-prone in-

expensive sensors. Secondly, there is a need to prioritize the transmission of huge amount

of preprocessed vital sign data from multiple body sites on a patient and from multiple

patients (say, in a retirement home or hospital setting) in terms of their degree of impor-

tance for diagnosis to avoid network traffic congestion and to maximize reliability. Thirdly,

the collected vital signs have to be input into compute-intensive models to derive mean-

ingful physiological parameters of interest. Our research contributions help overcome these

challenges as envisioned in Fig. 1.3.

Ubiquitous health monitoring (battlefield setting) In warfare, whether conven-

tional or irregular soldiers inevitably get in harm’s way. In such situations, there is a need

for real-time in-situ analysis of neuro/physiological parameters under situational context to

generate actionable knowledge about soldiers’ psychophysiological condition. The knowl-

edge extracted from this analysis can then be exploited 1) to estimate extent of fatigue as

well as mental stress and associate it with the current and past activities and/or experi-

ences of the soldier, 2) to assess the adaptability of individuals and the team to high-stress
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environments, and 3) to infer the overall physical fitness levels and team performance. How-

ever, simultaneously executing compute-intensive models for deriving neuro/physiological

parameters and algorithms for acquiring context awareness in real time requires computing

capabilities that go beyond those of an individual sensor nodes and/or hand-helds requiring

solutions such as ours for harnessing the collective computational capabilities of a mobile

computing grid as depicted in Fig. 1.4.

1.5 Dissertation Organization

This rest of this dissertation is organized as follows.

Chapter 2 reviews related and prior work in the fields of cyber foraging, opportunistic

computing, mobile grid computing, and distributed computing in uncertain environments.

The proposed approaches are discussed in detail along with their pros and cons. The

arguments in favor of our autonomic uncertainty-aware approach are also presented.

Chapter 3 presents Cumulus and details our uncertainty-aware autonomic middle-

ware for mobile grid computing. Details on the mechanisms for self-organization, self-

optimization and self-healing (uncertainty awareness) are presented. Results of a thorough

evaluation of the resource provisioning engine (which imparts the self-optimization capabil-

ity) for data-parallel applications on our prototype testbed are also discussed in detail.

Chapter 4 explains the unified data and computing-resource uncertainty management

framework for a broader class of task-parallel applications. A generic mobile-application

workflow representation scheme is presented followed by mechanisms to capture propagation

of uncertainty up the data-processing chain using interval arithmetic. A novel approach to

workflow task distribution based on multi-objective optimization is presented and along

with details about performance evaluation.

Chapter 5 describes, Maestro, a robust, secure, and privacy-preserving mobile grid

computing framework for orchestrating the execution of concurrent mobile application work-

flows. A sub-graph matching technique, called Dedup, for task deduplication among work-

flows is presented followed by a replication-based task scheduling mechanism that imparts

robustness, security (self-protection), and privacy (via multiple levels of authorization).
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Finally, details of performance evaluation are discussed.

Chapter 6 summarizes our contributions as well as our observations and provides sug-

gestions for future research directions that will push the state of the art in autonomic

resource management of mobile computing grids.



13

Chapter 2

Background and Related Work

Augmentation of mobile devices’ capabilities would enable novel compute- and data-intensive

mobile applications spanning across multiple domains. Therefore, in order to realize seam-

less augmentation, researchers have tried to solve a plethora of research problems in the

broad areas of mobile computing and distributed systems. In this chapter, we present an

overview of prior and simultaneous research in the fields of cyber foraging, uncertainty-

aware resource management, and application workflow management. We also highlight

observations that served as motivations to our approach.

2.1 Cyber Foraging

Research efforts towards realizing the vision of cyber foraging can be broadly classified into

works in the fields of mobile cloud computing, opportunistic computing, and mobile grid

computing. Presently, wired grid and cloud computing are the most popular approaches to

enable compute-intensive scientific and enterprise data processing predominantly operating

on supercomputers and/or on computing and storage clusters [13]. Therefore, many works

in mobile cloud computing have primarily focused on offloading expensive (compute and

energy-intensive) tasks to dedicated and trusted computing resources, either situated re-

motely (in the cloud [3–5,7,14] or in the wired-grid [15–17]) or proximally (in cloudlets [6])

in a transparent manner. However, these approaches are not suitable for enabling data-

intensive applications in real time due to prohibitive communication cost and response

time, significant energy footprint, and the curse of extreme centralization.

As cyber foraging was meant to convey a whole new pervasive computing paradigm

based on the principle of “living off the land” [2], works in the fields of Opportunistic Com-

puting (OC) [18–20] and on mobile grid computing [21,22] emerged due to the ubiquity and
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growing computing capabilities of mobile devices. These works have explored the feasibil-

ity of leveraging the computing and communication capabilities of other mobile devices in

the field to enable innovative mobile applications. Recent research in the areas of mobile

grids (mobile device clouds) [21, 22] and opportunistic computing [18–20] have explored

the potential of code offloading to proximal devices by following two entirely different ap-

proaches. Solutions for mobile grids advocate a structured and robust approach to workflow

and resource management; whereas OC depends entirely on direct encounters and is highly

unstructured with little or no performance guarantees. However, the aforementioned works

do not address the crucial research challenge of “real-time” concurrent applications man-

agement while also taking all of the following concerns into account: robustness, security,

and privacy. We would like to point out that the wired grids and clouds can be vital ele-

ments of our elastic resource pool and can be exploited for complex offline post-processing

of sensor data (stored in remote databases) to profile as well as to extract features and

trends whenever required.

2.2 Mobile Grid Computing

Reliable coordination (i.e., service discovery, workload distribution) is a necessity in mobile

grid for ensuring QoS in terms of response time and energy consumption in the presence

of uncertainties [23, 24]. A simple approach is to employ a centralized coordinator that

possesses grid information (e.g., location, communication cost, and resource availability).

In [25], service discovery as well as workload distribution are performed by a central coor-

dinator. Similarly, the grid may be divided into sub-clusters and be managed by multiple

coordinators (managers). In [26], each cluster has a manager that updates grid information

within its own cluster and communicates with other managers for coordination. These two

approaches are architecturally simple for coordination of grid resources, but they suffer from

the communication bottleneck at the manager and the single point of failure can make the

system vulnerable. Our approach to the use of multiple coordinators (arbitrators) is not

similar to the one by Barbosa et al. [26] as we consider coordination to be only an additional

duty for some of the grid resources and do not maintain strict cluster boundaries.

Optimal job allocation on mobile grids is a significant challenge under uncertainties.
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Table 2.1: Summary of related work in mobile grid computing.
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Chu and Humphrey [21] proposed mobile OGSI.NET, a framework that allows applications

to spread tasks in a purely mobile grid by creating application modules at multiple nodes

and executing tasks in the most appropriate location. However, they focused on making a

reliable framework to distribute tasks to multiple devices, but did not consider the prob-

lem of optimizing resources utilization for energy efficiency. Lima et al. [22] presented a

middleware architecture called MoGrid, which distributes task in a mobile grid based on

a peer-to-peer discovery protocol. Their discovery protocol coordinates the distribution of

grid tasks by exchanging messages between a node and a collaborator. Thus, the framework

allows ad hoc resources to enter or leave the mobile grid and to have the ability to utilize

efficiently the available resources. Ghosh et al. [32] proposed an optimal job-allocation

scheme for mobile-grid computing by drawing upon the Nash Bargaining solution to maxi-

mize grid revenue from the view point of the user. Giurgiu et al. [14] proposed a middleware

that optimizes job distribution for latency, data transferred, and cost between the mobile

devices and a remote servers. However, these job-allocation schemes are employed based

on the current/known resources available, making the solution vulnerable to the changing

environment (uncertainties). In Table 2.1, we summarize previous work in mobile grid com-

puting and position our uncertainty-aware resource provisioning framework for real-time

in-the-field data processing in mobile computing grids.
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2.3 Uncertainty-aware Resource Management

Mobile-grid computing requires robust communication schemes to ensure QoS in the face of

inherent uncertainty in the mobile computing infrastructure, in terms of network connec-

tivity, availability, and high susceptibility to hardware failures. Darby et al. [27] proposed

the idea of creating a peer-to-peer checkpointing agreement (entrusting duplicates of critical

application data and status with trusted peers) for guaranteeing QoS in mobile grids. Costa

et al. [28] presented a middleware focusing on collecting data in wireless sensor network to

send and receive messages in order to coordinate distributed computing resources on a mo-

bile grid for the application where sensing and acting devices are crucial. Huang et al. [29]

proposed an energy-efficient middleware supporting multimedia services to prolong lifetime

of mobile grid by transferring computational load from the underpowered mobile devices to

the more powerful machines in the grid. However, these communication and coordination

solutions for mobile grids are not well integrated with the heterogeneous computing and

storage capabilities of electronic devices in the field.

Data and computing-resource uncertainty, if unchecked, may propagate up the data-

processing chain and have an adverse effect on the relevance of the generated result (level of

accuracy and timeliness). Prior work in the field of data-uncertainty management [33–35]

and on computing-resource-uncertainty management [27, 36] identifies and captures the

limitations arising out of either imperfect/partial data or insufficient computing resources

to provide not-so-accurate yet meaningful results within specified deadlines. However, these

works focus on data- or resource-uncertainty management in isolation to prevent those

from adversely affecting the result. However, uncertainty-aware computing in the mobile

sensing and computing domain requires a unified approach (for both data as well as resource

management) as it is affected by uncertainties arising out of both sources.

2.4 Workflow Management

Concurrent workflows management has been studied before in the context of wired-grid

computing. In [37–39], different strategies for scheduling multiple workflows were investi-

gated – namely, sequential (i.e., one after the other), by interleaving tasks of the different
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workflows in a round robin manner, and by merging the different workflows into one. In-

dependent of the strategy chosen, the workflow tasks are allocated using level-based [38],

list-based [37], duplication-based [40], or clustering-based heuristics [39]. In all these heuris-

tics, all the tasks of a workflow are scheduled at the same time with the option of filling the

“gaps” (schedule holes due to high communication cost between tasks) for efficient resource

utilization.

However, none of the existing solutions can be adopted for workflow management mobile

device clouds as they do not factor in task deduplication (for efficiency), reactive self-healing

and proactive self-protection (for failure handling), security (from malicious resources), and

privacy, which are primary concerns in mobile grid computing. Even though duplication-

based scheduling provides some level of redundancy, it treats only fork tasks (ones with

multiple successor tasks) as critical and does not protect other tasks that may be critical

in the context of the application (or annotated by the developer or user as one). All the

aforementioned shortcomings serve as a motivation for our clean-slate design.

In summary, prior research efforts, have aimed at integrating mobile devices into the

wired-grid and cloud computing infrastructure mainly as service requesters. In contrast, we

exploit mobile devices as service providers, handle concurrent mobile application workflows,

and address uncertainty-aware resource management for ensuring application QoS even in

highly dynamic and unpredictable environments. To the best of our knowledge, ours is the

first work to explore deduplication and scheduling of tasks belonging to concurrent real-time

mobile application workflows on mobile grids.
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Chapter 3

Autonomic Middleware for Mobile Grid Computing

3.1 Overview

This chapter presents a resource provisioning framework for organizing the heterogeneous

sensing, computing, and communication capabilities of static and mobile devices in the

vicinity in order to form the Cumulus – a hybrid static/mobile computing grid. Resource

provisioning in Cumulus is a challenging problem due to inherent uncertainty in terms of

network connectivity and device availability. This uncertainty can be attributed to un-

predictable node mobility, varying rate of battery drain, susceptibility to hardware fail-

ures, and lack of a priori knowledge about the application performance on different mobile

hardware and software platforms. In order to address the research challenges associated

with reliable hybrid grid coordination and application performance (in terms of response

time) under uncertainty, we impart our proposed resource provisioning framework with

autonomic capabilities, namely, self-organization, self-optimization, and self-healing. Our

contributions are geared towards imparting autonomic capabilities to the resource manage-

ment framework. Mechanisms for service discovery and workload management will impart

the self-organization capability. The energy-aware resource provisioning engine will impart

self-optimization while the uncertainty handling mechanism will bestow the self-healing

capability.

3.2 Cumulus

The entities of a Cumulus may at any time play one or more of the following three logical

roles as shown in Fig. 3.1: i) service requester, which places requests for workloads that

require additional data and/or computing resources from other devices, ii) service provider
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Figure 3.1: Overview of the logical roles in a Cumulus and how it can power an ubiquitous
healthcare and monitoring application.

(SP), which can be a data provider (DP), resource provider (RP), or both, and iii) arbi-

trator (also typically known as broker), which processes the requests from the requesters,

determines the set of service providers that will provide or process data, and distributes the

workload tasks among them. Data providers provide scalar or multimedia data while re-

source providers lend their computational (CPU cycles), storage (volatile and non-volatile

memory), and communication (i.e., network interface capacity) resources for processing

data. The arbitrator – an additional role played by some of the service providers – is aided

by a novel uncertainty- and energy-aware resource allocation engine, which will distribute

the workload tasks optimally among the service providers. The arbitrators are in charge

of handling concurrent service requests as well as of orchestrating the execution of mobile

applications on SPs in a robust, secure, and privacy-preserving manner.

This role-based architecture enables easy management and does not suffer from the

problem of extreme centralization. The self-organization capability (for handling service

discovery and service request arrivals as well as for task distribution and management) is

imparted by the role-based architectural framework. It also facilitates interactions among

the mobile entities for coordination and seamless switching among the three logical roles,

namely, service requester, service provider, and arbitrator.
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Service discovery: Service discovery at the arbitrators is achieved through voluntary

service advertisements from the service providers. Service advertisements will include infor-

mation about the current position, amount of computing (γcpun , in terms of normalized CPU

cycles), memory (γmem
n [Bytes]), and communication (γnetn [bps]) resources, the start (tinn )

and end (toutn ) times of the availability of those resources, and the available battery capacity

(eadvn [Wh]) at each service provider n. The arbitrator is aware of the instantaneous power

drawn by the workload tasks of a specific application when running on a specific class of

CPU and memory (together given by ccomp
n [W]) as well as network (cnetn [W]) resources at

each service provider as the information about the different types of devices is known in

advance. The arbitrators use the information from service advertisements of the N com-

puting devices to derive the following: R = {rmn}N×N [m], which conveys the distance rmn

between devices m and n, S = {sn}1×N , where sn ∈ {1, 0}, which conveys whether n is a

resource provider or not, and D = {dn}1×N , where dn ∈ {1, 0}, which conveys whether n is

a data provider or not.

We advocate the use of a distributed self-election mechanism for assigning the appro-

priate number of arbitrators. Distributed arbitrator self-election is a non-trivial challenge

as too many arbitrators can cause network congestion with excessive control overhead (i.e.,

communication messages between arbitrators and data/service providers) while too few

can compromise robustness when arbitrators fail. We leverage our prior experience in dis-

tributed adaptive sampling in wireless sensor networks [41] where we were faced with the

problem of selective representation to reduce communication overhead while still minimiz-

ing the error in reconstruction of the underlying phenomenon. Our self-election mechanism

works as follows: each service provider will determine the potential size of its resource pool,

i.e., the number of service advertisements it has received. Then, all the service providers

advertise this number and determine their rank in their neighborhood in terms of influence

(potential size of their resource pool). The service providers use a pre-determined rank

threshold (depending on the network size and density) to elect themselves as arbitrators.

Workload management: Each arbitrator is composed of two components, namely,

workload manager and scheduler/optimizer, as shown in the top of Fig. 3.1. The workload

manager (also called master) tracks workload requests, allocates workload tasks among
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service providers, and aggregates results. The optimizer identifies the number of service

providers (also called workers) available for the requested duration and determines the

optimal distribution of workload tasks among them. The optimizer shares the workload

submitted by the data providers among the available service providers based on one of

several possible policies.

The different tasks of a workload may be distributed among the available service providers

based on a policy that aims at minimizing the battery drain. This can be achieved through

minimization of computational load on each individual service provider by exploiting par-

allelism while incurring a very low communication cost. Another policy may just place

emphasis on response time without considering battery drain. Our framework applies to

applications exhibiting data parallelism (in which data is distributed across different paral-

lel computing nodes that perform the same task) as well as to applications exhibiting task

parallelism (in which parallel computing nodes may perform different tasks on the same or

different data).

3.3 Resource Allocation Engine

Here, we explain our uncertainty-aware resource allocation engine (an optimization problem

corresponding to one of the aforementioned policies) for hybrid grids in detail. In the

following, we explain the sequence of events happening at one of the arbitrators while

similar events happen simultaneously at the other arbitrators in the computing grid. When

a service requester needs additional data or computing resources, it submits a service request

to the nearest arbitrator and also specifies δmax [s], the maximum duration for which it is

ready to wait for a service response. The arbitrator extracts the following information based

on the service advertisements: the devices’ (service providers’) capability, Γ
x
= {γxn}1×N ,

where x = cpu,mem, net; the associated costs, C
comp

= {ccomp
n }1×N and C

net
= {cnetn }1×N ;

the devices’ availability, T
in

= {tinn }1×N and T
out

= {toutn }1×N ; and their battery status

E
adv

= {eadvn }1×N . The variables that the optimization problem has to find are,

Find : A, U,∆
d
,∆

s
. (3.1)
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Here, U = {un}1×N with un ∈ {1, 0} conveys whether a resource provider n is used for

computing or not, ∆
d
= {δdn}1×N [s] conveys the duration for which the services of each

service provider will be used for data collection, and ∆
s
= {δsn}1×N [s] conveys the duration

for which the resources of each service provider will be used for computation (cpu, mem,

and net) and/or for multi-hop communication (net) as a relay node. In this formulation, the

objective of the optimization problem, given by (3.2) and (3.3), is maximization of minimum

residual battery capacity at all the service providers, max minn eresn [Wh], while ensuring

that the service response is delivered within δmax. This objective maximizes the lifetime

of every single service provider and, thus, maintains the heterogeneity of the resource pool

for longer periods. The set of service providers and the duration for which each of their

capabilities are availed will be determined by considering the trade-offs among the cost

(in terms of battery drain) edatan [Wh] (3.4) for transferring the data locally from data

providers to the resource providers, the computational cost ecomp
n [Wh] (3.5) for availing

the computational capabilities of the resource providers for servicing the request and for

aggregating and generating the final response.

Maximize : min
n

eresn , (3.2)

where, eresn = eadvn − (edatan + ecomp
n ); (3.3)

edatan =
δdn

3600
· cnetn ; (3.4)

ecomp
n = un ·

δsn
3600

· ccomp
n . (3.5)

In (3.3), edatan + ecomp
n is the amount of battery capacity drained at each service provider n.

δdn for a service provider n depends on the amount of data it has to transmit (ω [Bytes] as

a data provider) or aggregate (ω ·
∑N

i=1 ain [Bytes] as a resource provider), and the availed

communication capability, given by,

δdn =


f(ω, γnetn ), if un = 0

f(ω ·
∑N

i=1 ain), if un = 1.

(3.6)
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For simplicity, ω is considered to be the problem size of a trivial task and each data provider

provides the same amount of data. However, this is easily generalizable to a case where

each data provider provides a different amount of data, in which case the problem sizes of

each trivial task will be different.

Matrix A = {aij}N×N conveys the associativity of data provider i with service provider

j, which is determined by the arbitrator. Function f monotonically increases as the amount

of data to be transmitted or received increases. δsn for a service provider n depends on the

amount of data it has to process and the availed computing capabilities specified by γcpun

and γmem
n , given by,

δsn = g(γcpun , γmem
n , ω ·

N∑
i=1

ain). (3.7)

Function g monotonically increases with the amount of data to be processed. The con-

straints to the optimization problem are,

Constraints: ∀n = 1 . . . N,

sn ≥ un; (3.8)

0 ≤ δdn, δ
s
n; (3.9)

δsn ≤ min{toutn , tnow + δmax}+

−max{tnow + δdn, t
in
n }; (3.10)

δdn
3600

· cnetn + un ·
δsn

3600
· ccomp

n ≤ eadvn . (3.11)

Constraint (3.8) ensures that only a resource provider is chosen to perform the computing.

Constraints (3.9) and (3.10) ensure that the consumer’s deadline for service response is

met while also utilizing a service provider only for the duration for which its services are

advertised to be available. Constraint (3.11) ensures that the advertised battery capacity

is not exceeded.
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3.3.1 Uncertainty Awareness

The resource allocation engine of our proposed in-situ data processing system is capable of

handling uncertainties in the highly dynamic hybrid heterogeneous computing environment.

We identify the different sources of uncertainties and bestow the resource allocation engine

with the desired properties to guarantee application QoS (in terms of response time) even

under those uncertainties.

Sources of uncertainty: Inaccurate estimation of the availability (duration) of ser-

vice provider is a major source of uncertainty that results in a large number of incomplete

workload task migrations. The duration of availability specified in the service advertise-

ments is based on the battery drain estimates and may not accurately reflect the duration

for which the service provider will be associated with the arbitrator. One or more of the

service providers may lose network connectivity to the arbitrator or go offline.

Inaccuracy in the estimation of task completion times – function g() in the aforemen-

tioned optimization problem – is one of the sources of uncertainties that affect application

QoS. This is especially true when the behavior of a workload task (execution time and

resource utilization) is not known in advance at the arbitrator. The uncertainty can be

reduced to a certain extent in our application scenario by profiling the behavior of the

workload in advance. However, some models exhibit radically different behaviors depending

on the type of inputs (e.g., sorted/unsorted, dense/sparse).

Uncertainty in workload completion within the response-time bound arises when a ser-

vice provider is experiencing an unexpected increase in the rate of battery drain (and runs

out of energy) due to any of the additional critical operations that it may be performing at

the same time as the workload task. The optimization problem may also over- or under-

provision computing resources due to an inaccurate estimate of task completion time. The

former would result in unnecessary wastage of energy (battery drain) while the latter would

result in violation of QoS (in terms of response time). While the arbitrator can be made

aware of any problems at the service provider using feedback, handling situations such as

loss of network connectivity and hardware failures is a challenging task.

Uncertainty-aware self-organization: We advocate the use of multiple arbitrators
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to avoid a single point of failure. The arbitrators play a very important role in handling

uncertainties caused by the unavailability of service providers or by the inaccuracy of task-

completion-time estimates. In order to ensure that the unavailability of an arbitrator (due to

poor connectivity or hardware failure) does not lead to the failure of the entire system, each

arbitrator shares with all of its active data and service providers a list of alternate arbitrators

– referred to as proxies – ranked according to their proximity (primary key) and physical

addresses (secondary key). In case of an arbitrator failure, the service providers collaborate

with the pre-specified proxy until the end of all active workload tasks. The arbitrators also

share their current state information – namely, data providers and service requests that are

currently being served as well as the list of service providers currently employed – with their

proxies to handle any unexpected failures. This approach has been exploited previously in

grid computing when federating different grids, each with its own resource broker [42,43]. In

addition to robustness and self-organization, the use of a robust underlying overlay network

of arbitrators/proxies can support policies when different arbitrators have access to different

resource providers (heterogeneity across different resource pools). In such a case, existing

techniques and policies could be used to optimally match provider with requirements, as

existing work has already studied in the context of grid computing.

In order to impart the uncertainty-aware self-organization capability to the proposed

resource-allocation framework, we designed mechanisms that help the arbitrator extract

the following long-term statistics from the underlying resource pool: the average arrival

(joining) rate of service providers (W̃ ), the average service provider availability duration

(T̃ ), and the average number of service providers associated with the arbitrator at any point

in time (Ñ). The relationship among these three long-term statistics is given by Little’s

law [44], Ñ = W̃ · T̃ . The arbitrators update continuously these statistics and share at least

two of the three aforementioned averages with its successors if and when an arbitrator’s

handoff happens. Knowledge of these average statistics helps the arbitrators assess the

churn rate of service providers. Churn rate is a measure of the number of service providers

moving into or out of an arbitrator’s resource pool over a specific period of time. Note

that the arbitrators need not extract or be aware of the underlying probability distribution

of service provider arrivals or of availability durations. The long-term averages, which are
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easy to acquire and maintain, are sufficient.

Churn rate of service providers will be different in different geographic location. For

example, the churn rate of service providers at a shopping mall is far greater than the one

at a coffee shop. Also, at a particular location (say, the coffee shop), the churn rate can

vary over time (e.g., depending on the time of the day). When the churn rate of service

providers is high, i.e., the average duration of service providers availability is low, the per-

centage of potentially costly migrated workload tasks will be high if the resource-allocation

engine does not possess uncertainty awareness. When the long-term average of availability

duration is not taken into account at the arbitrator and when the durations advertised by

the service providers are used as constraints in the optimization problem (presented in the

previous section), it results in a mismatch between the ground reality and the optimization

at the arbitrator. However, our framework with uncertainty awareness achieves a smooth

degradation (if any) in QoS (because of the small number of task migrations) when churn

rate increases as it effectively exploits the knowledge gathered over time and/or acquired

from its predecessors.

3.3.2 Uncertainty Handling

To ensure application QoS (in terms of response time) under all of the aforementioned

circumstances, we introduce the novel idea of application waypoints, at which the service

providers report to the arbitrator with intermediate results and their progress. Waypoints

enable the arbitrators to estimate the residual tasks’ execution time for each service provider.

If an arbitrator does not receive any waypoints from a service provider, it marks that service

providers as failed after a timeout and assigns the incomplete tasks to one or more backup

service providers. If an arbitrator receives waypoints from a service provider at a lower

rate than the expected (from offline application profiling), it has to determine when and

how to intervene, i.e., when to relieve the slow service provider of some tasks and which

service providers to use as backup. The details of our proposed reactive measurement-based

self-healing mechanism for heterogeneous mobile computing grids follow.

Application waypoints: Once the arbitrator assigns sets of tasks to the different

service providers, it continuously tracks their progress using application waypoints. In
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data-parallel applications, the completion of every single workload task is used as a way-

point and as an opportunity to collect intermediate results at the result aggregator (in some

cases, the arbitrator itself). Without any loss in generality, let us assume that the tasks in

the data-parallel application are homogeneous. Let vn be the rate of application waypoints

(number of tasks completed in unit time) from a service provider n, which is estimated us-

ing information obtained during application profiling and during resource allocation. The

number of assigned tasks, the time taken for computation δsn, and the time taken for com-

munication δds at the different service providers are taken into account in this estimation

procedure. Therefore, the arbitrator has an initial estimate of the completion time tendn at

n.

As shown in Fig. 3.2(a), every service provider has a deadline t0+δmax
n for the completion

of all the tasks that it has been allocated. Here, δmax
n < δmax in order to give a margin

for result aggregation. As the actual rate of waypoints v′n from the service provider n

will be different from the initial estimate vn, the arbitrator should be able to absorb this

variation and react appropriately depending on where the projected completion time tend
′

n

of all the allocated tasks lies in relation to the individual service provider deadline tmax
n .

We identify four end zones, namely, Blue, Green, Amber, and Red, as depicted in Fig. 3.2:

the arbitrator’s reaction will depend on the zone in which the projected completion time

tend
′

n falls in. This projection is straightforward as the arbitrator is aware of the number of

tasks allocated to each service provider and of the corresponding v estimates.

Red zone (high risk/failure): When v′n ≪ vn and tend
′

n falls in the Red zone (beyond

tmax
n ), it means that the service provider n is completing the allocated tasks very slowly

or the waypoints are not received at the arbitrator. The arbitrator determines that the

particular service provider is unable to complete all the tasks that have been allocated to it

within tmax
n and reallocates “all” the residual tasks to backup service providers. There is,

however, a possibility that this scenario arises due to a very poor estimation of vn, in which

case the profile needs to be updated. This will be done only after ensuring repeatability of

this issue.

Amber zone (low risk): When v′n < vn and tend
′

n falls in the Amber zone (as shown in

Fig. 3.2(a)), it means that the service provider n is completing the allocated tasks slower
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Figure 3.2: Illustration of the use of application waypoints to report progress of workload
task completion at a service provider n. (a) shows the estimated trajectory of task com-
pletion and the relative position of the estimated completion time tendn with respect to the
four end zones Blue, Green, Amber, and Red. The projection at time tnow falls in the
Amber zone triggering a partial reallocation of tasks from this troubled service provider;
(b) shows the new estimated and the actual trajectory of task completion at the troubled
service provider after it has been relieved of some tasks. The service provider is able to
complete its allocated tasks with the service providers’ deadline tmax

n . If the projection had
fallen in the Red zone, it would have triggered a full reallocation, i.e., all the incomplete
tasks at the service provider.
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than what was estimated during profiling. The Amber zone is bounded by tmin
n and tmax

n .

Even though the projected completion time falls within the service provider deadline, the

uncertainty is deemed unacceptable by the arbitrator, which reallocates a “fraction” of the

residual tasks to backup service providers. The arbitrator wants the lower bound of the

Amber zone tmin
n to be as close as possible to the deadline tmax

n so to absorb the effect of

acceptable variation in v′n from vn. On the other hand, the arbitrator also takes into account

the capabilities/limitations of the backup resource pool to complete the reallocated tasks

within the deadline. Therefore, δmin
n – which determines tmin

n – is a function of multiple

factors, i.e.,

δmin
n = Φ(vn, v

′
n, Ñ , T̃ , tendn , tmax

n ). (3.12)

When the average size of the resource pool Ñ and the average availability duration T̃ of the

resource pool are large, δmin
n is large (Amber zone is smaller), i.e., the arbitrator can wait

longer before intervening as the resources at its disposal are capable (in terms of execution

time) of quickly finishing the incomplete tasks after a reallocation is triggered. On the

contrary, when the resources at the disposal of the arbitrator are limited, the Amber zone is

larger as the arbitrator and the resource pool needs more time to react after a reallocation

is triggered.

Green zone (no risk): When tend
′

n falls in the Green zone, it means that the current

operating conditions at the service provider is not significantly different from the one during

profiling. This rate of progress is close to the desired trajectory for workload task completion

and the arbitrator does not react in such a scenario. In other words, the level of uncertainty

is acceptable to still complete all the allocated tasks within tnmax.

Blue zone (no risk but wasteful): When v′n > vn and tend
′

n falls in the Blue zone, it means

that the service provider n is completing the allocated tasks faster than what was estimated

during profiling. This may happen when the profiling is done under non-ideal conditions.

The arbitrator uses this opportunity to tune the application profile for the specific hardware

and software platform on the service provider n. In some cases, the arbitrator may deem it

undesirable if additional energy (battery drain) is being used up for an unnecessary earlier
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completion of the task and may reallocate the tasks to other service providers to avoid

energy wastage. The upper bound for Blue zone tmin
n is a tunable parameter that the

application developer can set. In our prototype, we set tmin
n = tendn − δmin

n .

While the dynamics are presented at the service provider level in Fig. 3.2, the same

phenomenon can be explained at the arbitrator level by combining waypoint information

from all the service providers. Application waypoints could be also seen as indicators of

progress similarly to the approach described in [45], which provided a general-purpose API

and runtime system to implement progress and performance indicators of individual high-

performance computing applications. Similar to the waypoints discussed in this chapter, the

main purpose of the indicators was improving scheduling policies based on dynamic load-

balancing techniques and self-tuning in run time. The concepts and interfaces proposed

in [45] can be extended to implement waypoints also at the mobile-OS layers and not just

at the application layer as it is done now. Such a general-purpose API, in conjunction

with checkpointing [27], will also enable extension of the same principles for self-healing in

task-parallel applications with waypoints built “inside” the tasks.

Reallocation strategy: In response to a partial or full reallocation trigger raised

in the Amber or Red zone, the arbitrator provisions additional computing resources and

reallocates the workload task(s) so to ensure that the workload is completed within the

specified deadline. In contrast to the energy-aware optimization approach for initial task

allocation, the reallocation strategy is a heuristic aimed at minimizing the execution time

of residual tasks. Firstly, this shift from optimization to heuristic is motivated by the need

to react fast. Secondly, the need to reprovision resources and to reallocate tasks arises due

to inaccuracies in the models (for task execution time, service provider availability) used in

the optimization approach. Therefore, during recovery, while the models are being tuned

for future use, a fast heuristic approach is employed. We propose a best-fit heuristic to

reallocate the incomplete tasks to the backup service providers.

Backup resource pool: The backup pool is first created and the tasks are allocated to

these service providers in pool using the best-fit allocation principle [46]. The eligibility

criteria for a service provider to be part of the backup pool is tstartn + T̃ > tmax. The eligible

service providers are then arranged in the decreasing order of i) the rate of application
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waypoints (primary key) and ii) residual availability duration (secondary key). This ordering

gives preference to faster service providers with longer average availability duration.

Task allocation: The fraction of tasks that have to be reallocated depends on the zone in

which the projected completion time lies. When tend
′

n is in the Red zone, “all” the incomplete

tasks at the service provider n are reallocated; whereas when tend
′

n is in the Amber zone,

a “fraction” of tasks at the service provider n are reallocated. This fraction is a tunable

parameter that can either be set to a predefined value or be set on the fly based on the

capability of the backup pool (size as well as heterogeneity). In our prototype, we set the

fraction to be the nearest quartile of the number of incomplete tasks.

The fit criteria in the best-fit heuristic is maximization of the minimum residual idle time

across service providers after the allocation of all incomplete tasks. The philosophy behind

this reallocation approach is load balancing in the backup resource pool so to minimize

makespan while at the same time using as few resources as possible. This reallocation does

not incur significant computational overhead as the size of the allocation problem is very

small. If N is the number of service providers in the backup pool and M is the number

of tasks to be reallocated, then the time complexity is given by O(M · logM + M · N),

where the first component is due to the sorting procedure. Also, note that our heuristic is

different from the best-fit-decreasing algorithm for bin packing as we order the bins (service

providers) and not the objects (tasks).

3.4 Evaluation

We have implemented a small-scale prototype of the proposed autonomic framework and

performed an empirical evaluation. We have also used simulations to show the scalability of

the proposed framework beyond ten nodes (the size of our testbed). In the following sections,

firstly, we present details about our testbed and our experiment methodology. Then, we

discuss specific experiment scenarios and the results that demonstrate the uncertainty-aware

self-organization, self-optimization, and self-healing properties of our proposed framework.
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Table 3.1: Heterogeneity of computing devices in the testbed

Samsung
Galaxy
Tab

Motorola
Atrix 2

Samsung
Galaxy
S

LG Op-
timus

HTC
Desire
HD

Dell
Netbook

Dell In-
spiron
Laptop

CPU 1 GHz
Dual-core
ARM

1 GHz
Dual-core
ARM

1 GHz
ARM

600 MHz
ARM

1 GHz
ARM

1 GHz
Atom

2 GHz
Dual-core
Intel

Memory (RAM) 1 GB 1 GB 512 MB 512 MB 786 MB 1 GB 2 GB
Network 802.11

b/g/n,
Bluetooth

2G,
3G, 4G,
802.11
b/g/n,
Bluetooth

2G, 3G,
802.11
b/g/n,
Bluetooth

3G,
802.11
b/g,
Bluetooth

2G, 3G,
802.11
b/g/n,
Bluetooth

802.11
b/g/n

802.11
b/g,
Bluetooth

Battery capacity 7000 mAh 1740 mAh 1500 mAh 1500 mAh 1400 mAh 4500 mAh 5000 mAh
Battery voltage 4 V 3.8 V 3.8 V 3.7 V 3.8 V 11.1 V 11.1 V

3.4.1 Testbed and Experiment Methodology

Heterogeneous devices: The testbed consists of Android- and Linux-based mobile devices

with heterogeneous capabilities (summarized in Table 3.1). In our prototype, communica-

tions among the master and workers as well as among the optimizer and workers happen

over Comet Space [47], a scalable peer-to-peer content-based coordination space developed

at the Cloud and Autonomic Computing Center, Rutgers University. The messages in

this coordination space (or information space) are constructed in the form of tuples (XML

strings).

The workload: The mobile application that we used for our experiments is distributed

object recognition. In this application, the service requester (which is also the data provider)

submits an image of any object that needs to be recognized while also specifying a deadline.

The predominant workload in this application is matrix multiplication and the most fun-

damental workload task is vector multiplication, which is assigned to the different service

providers. Distributed object recognition is representative of the wide range of data-parallel

applications that our framework can support. Figure 3.3 shows the time taken by the dif-

ferent mobile devices listed in Table 3.1 to complete all the workload tasks when operating

in isolation. For near-real-time performance, the delay needs to be in the order of tens of

seconds and the data from Fig. 3.3 clearly motivates the need to divide the tasks among ser-

vice providers in the vicinity for speed up. A demo of our prototype powering a distributed

object recognition application in Android-based tablets can be found in the Cyber-Physical
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Figure 3.3: Time taken by the individual devices to complete all the workload tasks of the
object recognition application.

Systems (CPS) Lab webpage [48].

Application profiling: As the objective of the optimization problem is maximization

of minimum residual battery capacity, the amount of battery drain in service providers as a

result of running workload tasks needs to be calculated. However, the usage of actual Watt-

hour (Wh) values will result in unfair usage of resources in devices with a higher battery

capacity. Hence, in order to deal with the heterogeneity of mobile devices with different

battery capacities (shown in Table 3.1), in our prototype, the optimization problem uses

the residual battery capacity percentage to make allocation decisions. Usage of percentage

values instead of actual Wh values ensures fairness in usage of the heterogeneous pool of

service providers.

In order to optimize allocation decisions, it is important to get a good estimate of the

instantaneous power drawn in the mobile device while running a workload task. This is ob-

tained as follows: we ran all the workload tasks of our object recognition application on the

individual mobile devices to determine the instantaneous power drawn (i.e., to determine

the current drawn in mA as the voltage drop remains constant) and the total time taken

for the workload completion. Figure 3.4 shows the current drawn (negative values as it is

current drained from the battery) and the time taken for workload completion when all the

76 tasks of the object recognition application are executed in a Samsung Galaxy Tab. The

voltage values did not show significant variability. From these observations, we determined

the average time taken to complete one task. This is straightforward as object recognition
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Figure 3.4: Profiling the current drawn [mA] by the workload tasks of the object recognition
application running on a Samsung Galaxy Tab.

is a data-parallel application whose task (vector multiplication) completion time is not af-

fected by the type of input. In our testbed experiments and simulations, information about

task completion time along with the current drawn by the workload tasks, the number of

tasks allocated to a service provider, and the present current usage in the service provider

helps us calculate the resulting battery drain in Wh. Information about the battery cur-

rent consumption is readily available in most Android-based devices. However, in the rare

case when the battery driver does not make the current consumption information readily

available, it can be estimated from the rate of battery drain and the start and end times

of the application of interest. Current consumption under idle (or standby) conditions can

also be obtained in a similar manner.

3.4.2 Uncertainty-aware Self-organization

Simulation setup: In order to show the uncertainty-aware self-organization capability of

the proposed resource-allocation framework, we performed a simulation to ascertain the

gain in terms of reduction in number of workload task migrations that can be achieved

by using our framework. We performed simulations under different operational scenarios

with different service provider churn rates. In order to achieve different churn rates, we
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progressively decreased the average time a service provider is associated with an arbitrator.

The four scenarios elaborated in the table in Fig. 3.5 represent a progressive increase in

the churn rate of the underlying resource pool (with a corresponding decrease in average

duration of availability). The number (15 in total) and combination of service providers in

the mobile grid, the number of workload tasks, and the deadlines remain the same for all

the four scenarios.

We used percentage of migrated workload tasks to determine the effectiveness of uncer-

tainty awareness. In order to ensure that the uncertainty awareness capability is not dic-

tated by any particular distribution of service-provider-availability duration, it was picked

at random based on i) normal distribution (with mean, µ = 180, 150, 120, 90s and standard

deviation, σ = 60s) and then on ii) Weibull distribution (with scale, λ = 200, 175, 150, 125

and shape, k = 4). Normal distribution is used for its generality while Weibull distribution

is the most popular choice amongst statisticians performing reliability (or survivability)

analysis [49]. In order to give statistical relevance to our experiments, we performed multi-

ple trials (by picking availability durations from the aforementioned distributions) until we

achieved a very small relative confidence interval (less than 10%).

Observations: Figures 3.5(a) and (b) shows how the arbitrator leverages its knowledge

of the long-term average of service provider availability in order to reduce the number of

workload task migrations. As the churn rate of service providers increases, i.e., the average

duration of service providers availability decreases, the percentage of migrated workload

tasks increases when we use our resource allocation engine “without” uncertainty awareness.

This is because, when the long-term average of availability duration is not taken into account

at the arbitrator, the advertised durations (from service providers) are used as constraints

in the optimization problem. This leads to a mismatch between the ground reality and the

optimization at the arbitrator. However, our framework with uncertainty awareness achieves

a smooth degradation (if any) in QoS (because of the small number of task migrations)

when churn rate increases as it effectively exploits the knowledge gathered over time and/or

acquired from its predecessors. Also, another advantage of uncertainty awareness is that

it helps decrease churn rate, especially service provider departures caused by device users

opting out of the application due to undesired battery drain. The service providers will not
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Parameters used in different scenarios.
Scenario 1 Scenario 2 Scenario 3 Scenario 4

# Tasks 300 300 300 300
Deadline [s] 240 240 240 240

Availability (T̃ ) 180 150 120 90

# Atrix 2 8 8 8 8
# Galaxy S 2 2 2 2
# Optimus V 2 2 2 2
# HTC Desire 3 3 3 3

Figure 3.5: Percentage of migrated workload tasks when the resource allocation engine
is uncertainty-aware and otherwise. Effectiveness of uncertainty-awareness when service
providers’ availability duration follows (a) normal distribution and (b) Weibull distribution.
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experience undesired and unfair battery drain, especially the more powerful devices, which

are usually preferred for strict deadline requirements.

3.4.3 Self-optimization

Competing approaches: To assess the self-optimization capability of our framework, we

compare it against two competing approaches, i) Round-robin, in which the workload tasks

are divided equally among all the available service providers and ii) a Pull-based First-

Come-First-Served (P-FCFS) [50], in which service providers pull from a bag of tasks at the

arbitrator whenever they become idle, work on them, and report the result. Round-robin is

chosen for comparison to show the gains (in terms of application response time and battery

drain) that can be achieved by exploiting the heterogeneity in computing capabilities of

service providers. P-FCFS inherently exploits the heterogeneity in computing capabilities.

However, it results in progressively faster devices completing a correspondingly higher num-

ber of tasks over time. It is also robust to service provider failures or loss in connectivity

as it is purely pull based. However, due to lack of self-optimization, there is usually unfair

battery drain at the service providers.

Experiment setup: We performed an experiment with three different service providers

– a Samsung Galaxy Tab, a Motorola Atrix 2, and a HTC Desire HD – with significantly

different computational capabilities and battery capacities (as shown in Table 3.1). The

workload tasks are divided among these service providers based on the result of our re-

source allocation engine (with a deadline of 100 s) as well as on the two aforementioned

competing scheduling mechanisms. The results in Fig. 3.6(a) (workload completion times)

were obtained from one run while the results in Fig. 3.6(b) (residual battery capacity)

were obtained from 100 consecutive runs of the same workload on the service providers (to

achieve a significant battery drain). While the division of tasks among the service providers

remains the same for all 100 runs as far as Round-robin and P-FCFS are concerned, the

number of tasks to be worked on by the different service providers when our framework is

used is determined by the resource allocation engine in every run.

Observations: Figure 3.6(a) shows the performance of the three approaches in terms of

workload completion time. It can be observed that Round-robin misses the deadline and is
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Figure 3.6: (a) Performance of proposed framework (in terms of task completion times [s])
versus P-FCFS and Round-robin approach; (b) Performance of proposed framework (in
terms of battery drain [%]) versus P-FCFS and Round-robin approach.

the slowest of the three as it does not identify and exploit the heterogeneity of the available

service providers in terms of their computational capabilities. P-FCFS is the fastest as

more tasks are completed by faster devices. Our framework meets the specified deadline by

exploiting the heterogeneity of the service providers. The main difference in performance
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Combinations of service providers used in different scenarios
Scenario A Scenario B Scenario C Scenario D

# Tasks 75 150 225 300
Deadline [s] 60 60 60 60

# Galaxy Tab 1 2 3 5
# Atrix 2 1 2 3 3
# Galaxy S 1 1 1 4

# Optimus V 0 1 3 2
# HTC Desire 1 2 3 3
# Netbook 0 1 1 1
# Laptop 1 1 1 2

Figure 3.7: Performance of proposed framework (in terms of fairness) versus round-robin
and P-FCFS approaches.

between our solution and P-FCFS can be observed in Fig. 3.6(b), which shows the residual

battery capacity after 100 consecutive runs. P-FCFS does not appreciate the heterogeneity

of devices in terms of battery capacity resulting in asymmetric battery drain.

In order to show the scalability of the proposed resource-allocation engine and its per-

formance under difference operational scenarios (in terms of number and combination of

service providers) as shown in the table in Fig. 3.7, we performed a simulation to ascertain

the fairness in battery drain when each of the three task-scheduling mechanisms are em-

ployed. We used Jain’s fairness index (1 being the highest and 0 being the lowest) as the

measure of fairness.

Simulation setup: The four scenarios in the table in Fig. 3.7 represent a progressive

increase in the scale and the heterogeneity of the underlying service provider pool as well as

the problem size (in terms of number of tasks). The scaling up is achieved by increasing the
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resolution of the object’s image, which is the input to the object-recognition application. In

order to determine the amount of battery drain while using the three task-scheduling mech-

anisms, we simulated 100 consecutive runs (for significant battery drain) of the workload.

This procedure is referred to as one trial. We in turn performed multiple trials, each with a

different starting condition in terms of available battery capacities in the service providers.

Observations: Figure 3.7 shows the average fairness in terms of residual battery capacity

at the service providers after each trial. In order to obtain the confidence intervals, we

performed multiple trials until we achieved a very small relative confidence interval (less

than 10%). Our proposed solution achieves the best performance in terms of fairness in the

residual battery capacity as it fully exploits the heterogeneity of the devices in the resource

pool to achieve its objective while meeting the user-specified deadline.

3.4.4 Self-healing

Experiment setup: We performed an experiment with four service providers – two Sam-

sung Galaxy Tabs, a Motorola Atrix 2, and a HTC Desire HD – to demonstrate the self-

healing capability of our resource provisioning framework. The workload tasks were divided

among the service providers based on the result of our resource allocation engine (with a

deadline of 120s). One of the Samsung Tabs was disassociated from the arbitrator at the

time instant 30s to show how the arbitrator uses the application waypoints as well as the

service advertisements to identify anomalies (such as node failure, disassociation, etc.) and

reacts to it by reallocating incomplete tasks to the available service providers.

Observations: Initially, the workload tasks are divided among three (one Samsung Galaxy

Tab, one Motorola Atrix 2, and one HTC Desire HD) of the four service providers based on

the result of our resource allocation engine. The second Galaxy Tab is not chosen initially

due to its low residual battery capacity compared to the other devices. Figure 3.8 shows

the trend of estimated task completion times as seen at the arbitrator over time. At the

beginning of the workload execution, the task completion times follow the estimated task

completion time (calculated using function g in our optimization problem). However, when

one of the service provider (a Samsung Galaxy Tab) fails the trajectory of the task com-

pletion time violates the acceptable uncertainty region. This violation is detected by the
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Details of the service providers used in the experiment.
Device type # of devices Residual battery %

Galaxy Tab 2 95,70
Atrix 2 1 80

HTC Desire 1 90

Figure 3.8: Demonstration of the use of application waypoints to handle uncertainty (detect
node failure) and recover through re-allocation of resources.

arbitrator in the detection zone (the acceptable uncertainty region) and it reallocates the

incomplete tasks among the available three service providers so to ensure that the workload

is completed within the original estimated time (as seen in the recovery zone). During this

reallocation, the second Galaxy Tab is used despite its low residual battery capacity as the

other two devices alone cannot complete all the tasks within the specified deadline.
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Chapter 4

Uncertainty-aware Mobile Application Workflow

Management

4.1 Overview

Data and computing-resource uncertainty, if unchecked, may propagate up the data-processing

chain and have an adverse effect on the relevance of the generated result (level of accuracy

and timeliness). Prior work in the field of data-uncertainty management [33–35] and on

computing-resource-uncertainty management [8, 27, 36] identifies and captures the limita-

tions arising out of either imperfect/partial data or insufficient computing resources to

provide not-so-accurate yet meaningful results within specified deadlines. However, these

works focus on data- or resource-uncertainty management in isolation to prevent those from

adversely affecting the result. However, uncertainty-aware computing in the mobile sens-

ing and computing domain requires a unified approach (for both data as well as resource

management) as it is affected by uncertainties arising out of both the sources.

In this chapter, we present a unified uncertainty-aware framework for management of

data and computing resources in order to enable ubiquitous mobile-application workflows

execution on mobile sensing and computing platforms and, hence, to generate actionable

knowledge from raw data within realistic time bounds. Mobile-application workflows are

typically made up of several data collection, computation, and result generation tasks with

a pre-determined parallelism and order of execution. The relevance of the results from

mobile-application workflows rely heavily on the quality and quantity of raw data coming

from the underlying multi-modal sensing infrastructure as well as the computing resources

available to execute them in real time. Note that a large amount of high-quality data does

not guarantee good results as it increases the computational complexity and, hence, the

computing-resource requirements. A small degree of uncertainty with computing resources
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(or data) can outweigh the benefits brought by data (or computing resources) necessitating

a unified management approach.

We build our novel uncertainty-aware management framework on top of our autonomic

mobile grid management middleware. The middleware aids in the organization of the het-

erogeneous sensing, computing, and communication capabilities of static and mobile devices

in order to form an heterogeneous computing grid. When a user application places a service

request to an arbitrator through a requester, it will specify i) the workflow that conveys

the data-processing chain and ii) the acceptable level of approximation in the result (or an

equivalent confidence measure for the response). We introduce a generalized yet powerful

workflow representation to convey the different data sources and the data-processing tasks

as well as to capture their relationships at the different stages of the workflow.

The arbitrator should determine on the fly, 1) the quantity of data to request from

the DPs (referred to as the task size) along with 2) the most appropriate computational

model (from a suite of models) to process the raw data, extract features, and generate

a result (actionable knowledge) that satisfies the requester-specified constraint in terms of

accuracy in the final output, and 3) the amount of computing resources to utilize from those

made available by the RPs so that the result is delivered as soon as possible while ensuring

fairness in battery drain at the RPs. It is evident that this is a complex combinatorial

optimization problem as it involves the choice of the best combination of data, resources,

and the model to generate results that satisfy requester-specified constraints. We propose a

two-phase solution to make the aforementioned complex combinatorial problem tractable.

In the first phase, based on the workflow, user-specified requirement as well as the knowledge

of propagation of uncertainty, we decide on the computational models (tasks) to use and

the corresponding task sizes. In the second phase, we assign the tasks at each stage to RPs.

Our contributions in this chapter are as follows,

• We propose a simple yet powerful generalized workflow representation scheme to con-

struct data-processing chains (tasks and dependencies) for ubiquitous mobile applica-

tions, which are composed multiple parallelizable and sequential tasks.

• We determine the appropriate task sizes at the different stages of the workflow by
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estimating the propagation of uncertainty from raw data to the final result using

interval arithmetic [51].

• We formulate the problem of assigning tasks to RPs at every stage of the workflow as

a combinatorial optimization problem with multiple bottleneck objectives (application

makespan and fairness in battery drain), and propose a polynomial-time stage-wise

threshold-based heuristic called Fast M-CBP algorithm for the same.

4.2 Workflows

Ubiquitous mobile applications are composed of multiple tasks whose order of execution

is specified by a workflow. We have developed a simple yet powerful generalized workflow

representation scheme to construct data-processing chains for mobile applications. First,

we present our workflow representation scheme and then discuss biomedical workflows for

ubiquitous health monitoring in detail.

4.2.1 Generalized Workflow Representation

Our generalized workflow is a Directed Acyclic Graph (DAG) composed of tasks (vertices)

and dependencies (directed edges) as shown in Fig. 4.1. Tasks belong to one of the following

three categories: i) data-collection task, ii) computation task, or iii) final result-generation

task. These tasks are elementary and cannot be split further into micro-tasks. However,

tasks can be grouped together to form macro-tasks. Each task is either in itself or a building

block of a computational model that aids in the extraction of information from data.

The workflow is composed of multiple stages with a set of tasks Ki = {kij}, j =

1, . . . , |Ki|, to be performed at each stage i. Let M be the total number of stages, i.e.,

i = 0, . . . ,M − 1. Stage 0 is composed entirely of data-collection tasks, which can be per-

formed only at the DPs (sensing devices). The computation and final tasks (at any stage

i ≥ 1), however, can be performed at any RP (computing devices). Examples of com-

putation and final tasks include frequency domain analysis, estimation of power spectral

density (PSD), histogram analysis, linear combination, estimation of first order statistics,

rule-based (threshold-based) decision making, etc.
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are n separate data sources and (b) when data from a single source has to be divided
into multiple chunks (pre-processing); (b) Workflow for a task-parallel application (with a
data-parallel sub-graph in it).

This representation is powerful as it captures both data- and task-parallel applications.

Data-parallel applications are also referred to as “embarrassingly parallel” applications in

which an independent set of homogeneous tasks – working on disjoint sets of data – can be

performed in parallel (preceded and succeeded by pre- and post-processing tasks, respec-

tively) as shown in Fig. 4.1(a) and 4.1(b). Task-parallel applications, on the other hand,

have a set of sequential as well as parallel tasks with pre-determined dependencies and de-

gree of parallelism. A task parallel workflow may also have a data-parallel block built into
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it as shown in Fig. 4.1(c).

Different computational models may be suitable to accomplish a specific goal at a par-

ticular stage of the workflow depending on which of the following two criteria is more

important: i) the time taken to achieve the goal or ii) how the model (used to achieve the

goal) propagates uncertainty from the inputs to the output. For instance, if the goal is to

generate one scalar output from ten scalar inputs, the specific model may be estimation of

the maximum, minimum, median, mode, or mean (simple or weighted) depending on the

time taken and/or on how each of these models propagate the uncertainty from the inputs

to the output. Here, we assume that the computational models (i.e., the task types) in the

workflow are fixed and known in advance.

Let S be the set of SPs, which includes both the data providers and the resource

providers. The SPs that perform the tasks at stage i − 1, where i ≥ 1), serve as data

sources dim,m = 1, . . . , |Ki−1| for the tasks that have to be performed at stage i. Tasks at

stage 0 are performed at the DPs themselves (as mentioned earlier) and they do not have

data sources as the data is generated locally. The data sources for tasks at stage 1 are the

DPs themselves (SPs where stage 0 tasks are performed). The mapping of data sources

(SPs at stage i − 1 to tasks at stage i ≥ 1 of the workflow is represented by the matrix

Qi = {qisk}, where s ∈ S and k ∈ Ki. Note that Qi captures only the mapping of data

sources to tasks at stage i. The actual allocation of tasks at any stage i ≥ 1 to SPs takes

multiple objectives into consideration (as detailed in Sect. 4.3.2).

There are no dependencies between the tasks at a particular stage and, hence, they can

be performed in parallel. Also, without any loss in generality, we assume that there can

be dependencies only between tasks of consecutive stages in the workflow. Therefore, we

use “dummy tasks”, whose output equals the input without any propagation of uncertainty

and whose cost of operation (in terms of time and battery drain) is zero, whenever we have

dependencies between tasks of non-consecutive stages. In Fig. 4.1(c), task k33 in stage 3 is

a dummy task that has been introduced to break up the dependency between tasks k23 and

k41 in non-consecutive stages 2 and 4, respectively. Our structured workflow representation

is rich in information. In addition to the regular information like task types and data

dependencies, it includes the following information: task identifiers, task sizes, quality and
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Figure 4.2: Sensor-based biomedical applications that constitute the larger class of ubiqui-
tous healthcare applications.

quantity of inputs, the preferred interfaces to child and parent tasks, the implementation

(when multiple exist), and the task criticality (either boolean or multiple degrees).

4.2.2 Biomedical Workflows

In order to understand the concept of mobile-application workflows and their constituent

computational tasks, let us take the example of sensor-based biomedical applications (shown

in Fig. 4.2). These applications are part of the larger class of ubiquitous mobile healthcare

applications. Figure 4.2 shows the non-invasive sources (sensors) of different vital signs

– Electrocardiogram (ECG), Electromyogram (EMG), breathing rate, temperature, skin

conductance or Galvanic Skin Response (GSR), blood volume pulse, oxygen level, and

Electroencephalogram (EEG) – along with the computational models for data analysis,

data manipulation, and decision making. Some interesting ubiquitous mobile biomedical

applications include mood and stress detection or stress-level rating as well as assessment of

alertness, cognitive performance (individual as well as group), sleep quality, hypoxia (lack

of oxygen) detection etc.

Data analysis here refers to the extraction of features such as first-order statistics, PSD,

degree of correlation, and causality. Data-manipulation models may refer to data-cleaning
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tasks such as artifact removal or tasks for extraction of derived data (like weighted combi-

nations) from multiple independent sources. Models for decision making include threshold-

based anomaly detection and decision trees. Applications employ these tasks at different

stages of their workflows (the data-processing chain) so to extract actionable knowledge

from the raw data acquired in the field.

Stress detection and stress-level rating: Figure 4.3 depicts the workflow for stress

detection and stress-level rating [52,53], which uses vital-sign data acquired from biomedical

as well as kinematic sensors. Stage 1 of this workflow is purely composed of data-analysis

tasks, whereas Stages 2 and 3 are composed of data-manipulation or decision-making tasks.

In Stage 1, Heart Rate (HR), Blood Pressure (BP), GSR, and activity are each given

a score [0, 1] (0 corresponding to low, 1 to high) based on simple manipulations of the

corresponding sensor outputs. Assigning these normalized scores requires domain knowledge

and is in some cases subject specific (as in GSR and HR). Anxiety, physical exertion, and

stress detection involve the use of decision-tree- or threshold-based models. Conversely, the

model for anxiety-level scoring involves a weighted combination of HR, BP, and GSR scores.

Similarly, physical exertion is scored by multiplying the activity and HR scores. Finally,

stress level is determined using a weighted combination of scores for anxiety and physical

exertion.
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Hypoxia warning system: The hypoxia detection workflow shown in Fig. 4.4 takes as

inputs raw data from diverse sensors (environmental and physiological). Stage-0 in Fig. 4.4

shows the suite of sensors used to determine onset of hypoxia in an individual. As onset

of hypoxia symptoms at high altitudes is due to the reduction in oxygen partial pressure it

is measured using environmental sensors like the oxygen partial pressure sensors (referred

to as O2 microsensor) while physiological sensors like pulse oximeters are used to measure

the oxygen saturation in the individual’s arteries. Data (like respiration rate, ECG, and

EEG) from other non-invasive physiological sensors are also used to identify onset of hypoxic

symptoms. ECG is used to detect any arrhythmia, whereas EEG is used to identify any

seizures in the brain and blink rate. Separate eye-tracking sensor, like a high-resolution

camera, may also be used to gather data about gaze direction or eye movements with very

high accuracy.

In Stage 1 of the workflow in Fig. 4.4, data from both respiration rate and O2 sensors

goes through a threshold-based detection, ECG data goes through peak detection, and

EEG data goes through a denoising stage. In Stage 2, the denoised EEG data is cleared of

artifacts, while the heart rate deduced from the peaks in ECG data is used for arrhythmia

detection. In the same stage, the human activity and eye blinks are detected using data

from accelerometers and the high-resolution camera. In Stage 3, the processed EEG data
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is scanned for symptoms of seizures and finally in Stage 4 all this information is fed to a

decision-tree model that determines the severity of hypoxia in the soldiers’ body and helps

issue a warning for appropriate medical action.

4.3 Methodology

When the requester places a service request to an arbitrator (initiated by an automated

application or the user of an application), it will specify i) the workflow that conveys the

data-processing chain using the generalized workflow model and ii) the acceptable level of

approximation in the result (or an equivalent confidence measure for the response). Let

the user-specified acceptable level of uncertainty in the result be γ. The arbitrator should

solve a complex combinatorial problem to determine the best combination of computational

models (for tasks), quality and quantity of data (task sizes), and the computing resources

to use such that the quality of the generated result is maximized. Quality of the result

is determined by two factors, accuracy and timeliness. While the choice of tasks and task

sizes have a bearing on the accuracy as well as the timeliness of the result, the choice of

computing resources has an effect only on the timeliness. We exploit this fact and propose

a two-phase solution to make the aforementioned combinatorial problem tractable.

In Phase I, the arbitrator first derives the maximum acceptable uncertainty at the output

of every task at every stage of the workflow (i.e., the γijs, where i = 1, . . . ,M − 1 and

j = 1, . . . , |Ki|) based on the user-specified γ and the knowledge of the workflow. Then the

arbitrator determines sampling duration (i.e., the task sizes) so that the uncertainty bound

on the output of every task at every stage is not violated. In Phase II, the allocation of tasks

at every stage of the workflow to SPs is determined with the following two objectives in

mind: minimization of total response time “and” minimization of maximum battery drain

among all SPs in the heterogeneous computing grid. Even though the task allocation is

determined in one shot, execution of the workflow is carried out in a stage-wise manner.

The stage-wise approach serves as a natural checkpointing mechanism, which helps avoid

propagation of uncertainty in the event of SP failures.
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Figure 4.5: The decrease in uncertainty γ (in terms of width of the interval within which the
score lies) with increase in sampling duration τ . Heart Rate (HR), Blood Pressure (BP),
Galvanic Skin Response (GSR), and Activity are each given a score [0,1] (0 -low, 1-high)
based on the sensor output. Variability in such output necessitates representation of the
score in terms of an interval. The higher the variability in sensor output, the larger the
uncertainty in the score.

4.3.1 Phase I: Propagation of Uncertainty

The end-user application conveys the acceptable level of uncertainty in the final result in

terms of the “maximum width γ of the interval” within which the actual result lies. An

interval (i.e., a range of possible values) is a compact way of representing the uncertainty

associated with a particular quantity. The quantities of interest can be direct sensor outputs

(e.g., temperature, skin conductance) or derived quantities from the raw sensor data (e.g.,

heart rate, blood pressure). When intervals are used to represent quantities, the mathe-

matical computations on those quantities also need to be performed on intervals instead of

fixed values. The branch of mathematics that deals with intervals instead of fixed values is

known as interval arithmetic [51].

Confidence Intervals (CIs): We leverage interval arithmetic to study the effect of

the “variability in sensor data” on the “variability in the final result”. Figure 4.5 shows the

decrease in uncertainty γ – in terms of width of the interval within which the HR, BP, GSR,

and Activity scores lie – with increase in sampling duration. As detailed in the previous

section, HR, BP, GSR, and Activity are each given a score (between 0 and 1) but in the

form of an interval (e.g., [0.45, 0.55]). The higher the variability in sensor output, the larger

the uncertainty in the score. It is important to note that the minimum and maximum
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Table 4.1: Interval-arithmetic rules for basic mathematical operations and monotonic func-
tions in one variable

Operation Interval of the result

[x1, x2]♢[y1, y2], [min{x1♢y1, x1♢y2, x2♢y1, x2♢y2},
where ♢ ∈ {+,−, ∗, /} max{x1♢y1, x1♢y2, x2♢y1, x2♢y2}]
[x1, x2]n [xn

1 , x
n
2 ], if x1 ≥ 0 and odd n ∈ N or even n ∈ N, or if x1 ≥ 1 and 0 ≤ n ≤ 1

[xn
2 , x

n
1 ], if even n ∈ N, x2 < 0

[0,max{xn
1 , x

n
2 }], if even n ∈ N, otherwise

logb[x1, x2] [logb x1, logb x2], ∀ x1, x2 > 0, b > 1

values of the raw sensor data, which were used for computing the score, correspond to the

boundaries of the 95% confidence interval of samples instead of the absolute maximum and

minimum values as in the case of traditional interval arithmetic. The actual width of the

95% CI is large when the sampling duration is small and viceversa. Usage of boundaries of

95% CIs instead of that of the entire range of values makes our method resilient to outliers,

which unnecessarily widen the intervals (especially in the case of small sample sizes).

The use of 95% as “prediction interval” (or “reference interval”) is a standard practice

in the interpretation of biochemical data [54]. However, as we are interested in the accuracy

of the estimate of interest (in our case, mean), we use 95% confidence interval around the

mean and not the reference range (which may be large). We assume that estimates of the

width of the 95% confidence intervals for different sample sizes (corresponding to different

τ ’s) are available. This is a realistic assumption as every sensor can be calibrated offline,

which needs to be done only once. These estimates can be maintained locally at the DPs

and communicated to the arbitrator when requested, or can be maintained at the arbitrator.

In our case, we assume that the arbitrator is in possession of the interval estimates. Also,

the assumption that biomedical sensor measurements and derived quantities are normally

distributed (or log-normal) is justified based on our observation of the distribution of ex-

ogenous biological markers like GSR (direct sensor data) and heart rate (derived from real

ECG data), as shown in Figs. 4.6(a) and 4.6(b), respectively. It has been observed that

most endogenous biological markers including blood glucose and ionized calcium also follow

normal or log-normal distributions [54].

Uncertainty propagation using interval arithmetic: Workflow tasks are repre-

sented mathematically using a combination of the basic operations listed in Table 4.1, where
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Figure 4.6: Empirical evidence validating the assumption about the Probability Distribution
Function (PDF) of (a) direct sensor measurements (GSR) and (b) a derived quantity (heart
rate derived from ECG data). Both sets of values are normally distributed around the
mean.

♢ represents the basic mathematical operations +,−, ∗, /. Once the confidence interval es-

timates at the different DPs are known (for a particular τ), the rules of interval arithmetic

are leveraged to propagate the uncertainty up the workflow to the final result. Figure 4.7
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Figure 4.7: (a) Operations listed in Table 4.1 are performed on several realizations of two
normally distributed random variables, x and y. The theoretical 95% CI obtained using
the rules (shown using red lines) are consistently more conservative than (and close to) the
measured 95% CI (depicted as green zone). The blue zone is the one-sigma interval, while
the gray circles are the raw values; (b) Illustration of natural interval extension to find
the output interval for Euclidean norm on two variables; (c) Illustration of improvement in
precision when using Taylor interval extension over natural interval extension for computing
logarithmic utility.
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shows empirical evidence validating the use of 95% confidence intervals for interval arith-

metic. Basic mathematical operations (addition, subtraction, multiplication, division, and

Euclidean distance from the origin) were performed on several realizations of two normally-

distributed random variables, x and y. The theoretical confidence intervals obtained using

the rules of interval arithmetic in Table 4.1 are consistently more conservative than (and

close to) the measured 95% confidence intervals of the results, as shown in Fig. 4.7(a). The

results do not differ in the case when the two intervals overlap.

Special conditions: Note that there are, however, specific conditions under which cer-

tain rules of interval arithmetic hold when using CIs. The division rule applies when the

coefficient of variation c.v = σ
µ , i.e., the ratio of standard deviation σ to mean µ, of the

denominator is less than 0.09 and that of the numerator is greater than 0.19, and when the

correlation between the two random variables is less than 0.5 [55]. The normal approxima-

tion of the result and, hence, the use of CI, is valid under these conditions. When these

conditions are not met, the Geary-Hinkley transformation [55] provides normal approxima-

tion for the result as long as the c.v of the denominator is less than 0.39 and that of the

numerator is greater than 0.005. Similarly, the c.v requirements of the random variable

is stringent for the exponent rule, a[x1,x2] = [ax1 , ax2 ], a > 1, thus necessitating a careful

application of interval arithmetic with CIs.

Extension to general functions: Even though Table 4.1 lists only the elementary

mathematical operations and monotonic functions, interval methods can be extended to

general functions in two possible ways, natural extension and Taylor extension. In natu-

ral extension, a function is represented using the elementary mathematical operations and

monotonic functions in one variable. Figure 4.7(b) depicts an example of using natural

interval extension to successfully compute the output interval of Euclidean distance, i.e.,√
x2 + y2, which is a function commonly used in distance- or threshold-based models for

anomaly detection (e.g., in stress and hypoxia detection in the case of biomedical appli-

cations). Natural extension works fine in most cases except when there are “dependency

issues”. Dependency issues arise when a variable occurs more than once in the expression,

e.g., as in f1(x) = x2−x and f2(x) = x log(x), and when the two occurrences are treated as

if they were independent variables. Quadratic, like f1(x), as well as logarithmic utility, like
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f2(x), functions are common in biomedical workflows as they are used to model the rate

of growth or death of a population (e.g., cancer cells, pathogens). For such functions, the

bounds provided by natural extension is relaxed and we have to transform the expression

to have the variable appear only once, e.g., f1(x) = x2 − x = (x − 1/2)2 − 1/4, and get a

tighter bound. This transformation is, however, not possible for many functions as in the

case of f2(x) = x log(x), for which, therefore, we need to use Taylor interval extension in

order to obtain a tighter bound.

Let [x] represent an interval [x1, x2] ∈ [R] and use [x] to represent a vector of intervals

([x]1, . . . , [x]n) ∈ [R]n. The Taylor interval extension of a m+1 times differentiable function

f , [f ] : [R]n → [R] over [x] is defined as,

[f ][x] := f(y) +

m∑
i=1

1

i!
f (i)(y) ([x]− y)i + [r]([x],y), (4.1)

for some y ∈ [x], where f (m)(y) is the mth-order differential of f at the point y and [r] is

the interval extension of the Taylor reminder. Typically, [y] is chosen to be the midpoint

and natural interval extension is leveraged to find the reminder. The special case of Taylor

extension of degree m = 0 is called mean-value form. Note that when there are no depen-

dency issues, both natural and Taylor extension yield very similar results. Figure 4.7(c)

illustrates how tighter CI bounds can be obtained using Taylor interval extension rather

than the natural interval extension for f2(x).

The two cases: We make the observation that in Phase I there are two possible cases,

C-fusion and R-fusion, based on the type of information fusion performed by the applica-

tion, and develop specific solutions for both cases. Information fusion from multiple sources

can be classified as either complementary, cooperative (both of which we call “C-fusion”) or

redundant (“R-fusion”), based on the relationship among the different sources [56]. While

C-fusion aims at completeness either through the creation of broader or new (derived) in-

formation, R-fusion aims only at increasing the reliability and accuracy. Also, in R-fusion,

data from the redundant source can either be used as side information to improve the over-

all information quality or as a substitute of the primary source (intermittently) in order to

increase the overall lifetime of the sensing infrastructure.
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Algorithm 1 Find Quantity (for Case C-fusion)

Input: Max. uncertainty γ and workflow W
Output: Sampling duration τ

for τ = τmin to τmax do
Estimate the width of the 95% CI
Propagate uncertainty up the workflow to estimate γ′

if γ′ ≤ γ then
return τ

else
Continue

end if
end for

The C-fusion Case covers the following scenarios: there is only one sensor for every data

type, or there are multiple sensors for each data type and the data from all the different

sources are fused together (via complementary or cooperative fusion) in the workflow. The

complementary or cooperative fusion operations are treated as computational tasks in the

application workflow. Figure 4.3 illustrates examples of complementary as well as cooper-

ative information fusion. Specifically, the use of ECG, GSR, and BP to detect anxiety is

an example of complementary fusion, whereas the use of anxiety and exertion information

to detect stress is an example of cooperative fusion. The assumption here is that every

sensor’s data is useful for the computation of the final result.

In the C-fusion Case, the objective in Phase I is to determine only the sampling duration

(and, hence, the quantity of data) at each sensor in order to minimize the uncertainty in

sensor data or in the derived quantity of interest and, therefore, restrict the variability in

the final result to a pre-specified γ. Sampling duration (with a priori knowledge of the

sensor sampling rate) determines the number of samples used to calculate CI. We perform a

linear search (as shown in Algorithm 1) for the most appropriate sampling duration (τ) by

leveraging interval arithmetic to study how the uncertainty propagates up the workflow as

described earlier. If this estimate in the result uncertainty is smaller than the pre-specified γ,

then the sizes of the tasks at all theM stages of the workflow (i.e., Ri = {rij}, j = 1, . . . , |Ki|,

for i = 0, . . . ,M−1) can be calculated using sampling duration τ , knowledge of the sampling

rate of the different sensors, and sensor-output data type.

The R-fusion Case covers the following scenario: there are multiple sensors for each
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Algorithm 2 Find Quality (for Case R-fusion)

Input: γ, D, and workflow W
Output: Best combination of DPs d∗ and τp∗

d∗ = NONE
for every d ∈ D do

τd = Find Quantity(γ, W)
if MaxBatteryDrain(d) ≤ MaxBatteryDrain(d∗) then

d∗ ← d
end if

end for
return d∗, τd∗

data type and data from one of the different sources is used (redundant fusion) in the

workflow. Either ECG or wrist-located pulse detector can be used to determine the heart

rate. Similarly, information about the physical activity can be obtained either using an

accelerometer or a gyroscope. These are examples of redundant fusion. The assumption

here is that information from one of the redundant sources is sufficient for the computation

of the final result. The data sources can be managed in such a way as to increase the overall

lifetime of the sensing system.

In the R-fusion Case, the objective in Phase I is to determine the most appropriate

sensor (i.e., the data provider and, hence, the quality of data to collect) for each data

type as well as the sampling duration at those sensors (quantity of data) so to restrict the

variability in the final result to a pre-specified γ. Similar to the C-fusion Case, we perform a

linear search (as shown in Algorithm 2) for the most appropriate sampling duration (τ) by

leveraging interval arithmetic to study how the uncertainty propagates up the workflow for

every combination (“without redundancy”) of data sources (represented by set D). Then

the combination d∗ ∈ D that minimizes the maximum battery drain (in terms of percentage)

among the data sources is chosen. This way the algorithm determines both the quantity

and quality of data. Redundant data sources usually differ in terms of their energy usage

(rate of battery drain) and precision. A naive policy may always prefer the more precise

sensor or the more energy-efficient sensor (the one with the least battery drain). However,

such policies lead to an unfair usage of resources and may ultimately adversely affect the

overall lifetime of the sensing system.
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Anomalous situations: The decisions regarding data quality and quantity made in

Phase I, while applicable in the steady state, may not be so under non-idealities. By non-

idealities, we refer to anomalous situations in which i) the sensor is corrupted and reports

highly fluctuating values, and ii) the phenomenon being sensed is in the transient state. In

both these situations, the sensor measurements may not follow a normal distribution (they

may in fact follow a bimodal or, in general, a multimodal distribution). Our solution handles

such situations as follows. At the end of Phase I, the arbitrator provides the DPs not only

the τ but also the target uncertainty level (i.e., the width of the CI of measurements). The

DPs collect data until the uncertainty requirement is satisfied. If this requirement is not

satisfied, they raise an alarm and notify the arbitrator. How then the arbitrator chooses

to handle such anomalous situations (either through more sampling or choosing a different

DP for that data type) is out of the scope of this dissertation.

4.3.2 Phase II: Stage-wise Multi-objective Optimization

Once the tasks and task sizes at all the stages of the workflow are determined in Phase I,

they are allocated to SPs for execution in Phase II. Let K be the set of workflow tasks that

have to be completed at a particular stage of the workflow. As we address the problem of

workflow task allocation to SPs one stage at a time, we do not use an index to represent

the current stage of the workflow. Service discovery at the arbitrators is achieved through

service advertisements from the SPs. In addition to basic information about location,

duration of availability (i.e., start tins and end touts times of the availability), and residual

battery capacity (eadvs [Wh]) at each SP s ∈ S, advertisements from DPs include the types

of sensors and first-order statistics about the measurements while the ones from RPs include

information about the amount of computing (γcpus [normalized CPU cycles]), memory (γmem
s

[Bytes]), and communication (γcoms [bps]) resources available for use.

Let the time taken to complete a unit task size of task k ∈ K at SP s be tcomp
sk [h] and let

the time taken to transfer a unit block of data (in our case 0KB) from one SP s1 to another

s2 be tcomm
s1s2 [h]. These parameters together with the task sizes give the total amount of

time required to execute the different tasks at the different SPs. Let the instantaneous

power drawn by every workflow task k when running on a specific SP s be wcomp
sk [W] and
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let the power drawn by the network interface at the SPs be wcom
s [W]. We assume that the

arbitrator is aware of these parameters as there is only a finite number of types of SPs and

the types can be known in advance.

Multi-objective Combinatorial Bottleneck Problem (M-CBP): Based on all

the aforementioned information the arbitrator determines the allocation matrix A = {ask}

(the optimization variable (4.2)) that conveys whether a task k has been allocated to a SP

s or not. In this optimization problem, there are two objectives (4.3): i) minimization of

the maximum battery drain at all the SPs (in terms of percentage) and ii) minimization

of maximum time taken by SPs to complete all the tasks that have been assigned to them.

If the problem were to have only the first objective, it would imply minimization of the

maximum battery drain. On the other hand, if the problem were to have only the second

objective, it would imply minimization of the total response time. However, the two-

objective problem strives to minimize response time while ensuring fairness in terms of

battery drain at the SPs. This fairness maintains the heterogeneity of the resource pool

for longer periods by maximizing the lifetime of every single SP. This is a combinatorial

optimization problem with multiple bottleneck objectives and in short is referred to as a

Multi-objective Combinatorial Bottleneck Problem (M-CBP) [57].

Find : A = {ask}, s ∈ S, k ∈ K; (4.2)

Min:

{
maxs∈S

∑
k∈K c1sk · ask,

maxs∈S
∑

k∈K c2sk · ask
(4.3)

where, c1sk =
rk
eadvs

· (wcomp
sk · tcomp

sk +

+ wcomm
s · t̃comm

sk ), (4.4)

c2sk = rk · (tcomp
sk + t̃comm

sk ); (4.5)

S.t.:
∑
s∈S

ask = 1, ∀k ∈ K. (4.6)

Here, C1 = {c1sk} and C2 = {c2sk} are the cost matrices corresponding to the two objective

functions and the sole constraint (4.6) ensures that a task is allocated to one and only one SP.
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The cost matric C1 captures the battery drain (for communication as well as computation)

incurred while executing a particular task at a particular SP. Similarly, cost matrix C2

captures the time spent (for communication as well as computation) when a particular task

is performed at a particular SP. Also,

t̃comsk =
∑
s′∈S

tcomss′ · qs′k, ∀s ∈ S, k ∈ K. (4.7)

Here, the product of the communication delay matrix and the Q matrix (which captures the

dependencies between tasks across successive stages) allows us to extract the information

about the communication delays when a certain task is assigned to a certain SP.

Fast M-CBP: This algorithm is a polynomial-time heuristic that we propose to solve the

M-CBP. This heuristic follows a threshold-based approach to determine the best possible

allocation that achieves Pareto optimality (where one objective cannot be improved further

without adversely affecting the other). Let E be the set of all possible combinations of the

different thresholds. In our case, every ε = {ϵ1, ϵ2} ∈ E is two dimensional as we have

only two cost matrices, one for the battery drain (C1) and one for the time taken (C2).

With the aid of the thresholds, the two cost matrices are collapsed into one cost matrix C∗

with binary weights (as shown in Algorithm 3). Then a simple minmax objective, shown in

Algorithm 4, is used to find a feasible allocation using C∗. Feasibility is not only determined

by whether every task has been successfully allocated to a SP or not. Fast M-CBP searches

for a feasible solution, an allocation A such that each task is allocated to one and only one

SP, and the maximum number of tasks at a particular SP does not exceed β.

The arbitrator derives β from the knowledge of the following statistics about the SPs

(maintained at the arbitrator) at a particular locality: the average arrival rate λ̃ of SPs, their

average sojourn duration T̃ (whose inverse is called churn rate), and the average number

of SPs Ñ . The relationship between these three numbers is given by the Little’s Theorem,

Ñ = λ̃ · T̃ . When T̃ is comparable to the average task execution time, then β is set to 1

in order to minimize the number of incomplete tasks (when SPs leave). However, when T̃

is larger than the average task execution time (e.g., a few multiples), a higher number of

tasks can be packed at fewer SPs with minimal risk of task incompletions. As the algorithm
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Algorithm 3 Fast M-CBP: a heuristic for M-CBP

Input: C1, C2, E , β
Output: An optimal solution A∗ on the Pareto front

for every ε ∈ E do
{Construct the bi-adjacency matrix C∗}
for every s ∈ S and k ∈ K do

if c1sk ≤ ϵ1 and c2sk ≤ ϵ2 then
c∗sk ← 1

else
c∗sk ← 0

end if
end for
[Feasibility,A] ← MINMAX ALLOCATE(β, G[C∗T ])
if Feasibility == False then

Continue
else

A∗ ← A
Break

end if
end for
return A∗

Algorithm 4 MINMAX ALLOCATE: fair task allocation

Input: β, G[C] = {K,S;E}, where C = {cks}, k ∈ K, s ∈ S
Output: Feasibility and A = {ask}

Find A s.t. the max. no. of tasks assigned to SP s is minimized
β∗ = maxs∈S

∑
k∈K ask

if β∗ ≥ β then
return False

else
return [True, A]

end if

is threshold based, all the feasible solutions it provides will be Pareto optimal. Therefore,

instead of finding all possible Pareto optimal solutions (the so-called Pareto front), we force

an exit once the first feasible solution is found. This along with a careful choice of the

granularity of the discrete thresholds can drastically improve runtime performance.

4.3.3 A Note on Cyclic Workflows

The example workflows discussed so far are all Directed Acyclic Graphs (DAGs). However,

there are many applications (or algorithms) that are repetitive or iterative in nature and,

hence, have cycles in their workflow representation. Note that our two-phase solution is
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Figure 4.8: Example of a cyclic workflow that performs stress detection iteratively in order
to improve confidence (for reliability) in the final published result.

also capable of handling real-time in-situ processing of cyclic workflows. As our solution

is stage wise, we break the cycle and transform the iterative or repetitive workflow into a

sequence of DAGs. The number of iterations in the algorithm determines how many times

the DAG is executed. In some cases, the number of iterations is known a priori while in

some other cases, after the first iteration, subsequent DAGs are executed only on demand.

The aforementioned DAG-sequencing technique applies even in the case of workflows that

have cycles only in a subgraph. In such cases, the workflow (graph) is first partitioned into

component workflows (subgraphs), and then the DAG sequencing is performed only in the

cyclic subgraph.

To understand this concept better, take the case of “reliable” stress detection and stress-

level assessment of personnel under extreme environments (like a scene of disaster or the

battlefield). The uncertainty associated with biomedical and kinematic data in such oper-

ating conditions will be high due to high mobility and intermittent connectivity. Therefore,

the overall application workflow for reliable stress detection will be a cyclic one in which
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Table 4.2: Average unit-task execution times and battery drain of computing devices in the
testbed

Task Dell
Insp-
iron

Dell
Net-
book

Samsung
Galaxy
Tab

Samsung
Galaxy
S3

Motorola
Atrix 2

HTC
Desire
HD

LG Op-
timus

Battery capacity (Wh/V) 55.5/11.1 50/11.1 28/4 5.7/3.8 6.6/3.8 5.3/3.8 5.7/3.7

Peak detection (s/mA) 1/23 2.5/42 3.6/36 3.1/40 6.5/45 6.8/48 10.1/40
Correlation (s/mA) 1.2/25 2.5/42 3.68/38 3.3/40 6.8/47 6.8/47 10.3/42

PSD (s/mA) 1.5/25 2.9/50 4.5/47 3.7/50 7.2/50 7.5/49 14.8/56
Granger causality (s/mA) 2.8/50 6.1/85 9.6/78 6.8/85 12.7/80 13.3/83 23.6/75

ICA (s/mA) 14.4/80 28.5/130 30.6/128 33.5/120 45.1/125 47.7/130 61.2/135

multiple rounds of stress detection are performed to increase the confidence in the result,

as shown in Fig. 4.8. This cyclic workflow is transformed into a sequence of DAGs. Here,

the number of DAGs in the sequence is not known a priori.

4.4 Evaluation

We have implemented a small-scale prototype of the proposed framework and performed

an empirical evaluation. We have also used simulations to show the scalability of the pro-

posed framework. In the following sections, firstly, we present details about our experiment

methodology. Then, we discuss specific experiment scenarios and the results that demon-

strate the benefits of data-uncertainty awareness (Phase I) and the performance of our

proposed heuristic for the multi-objective optimization problem (Phase I and Phase II).

Devices and application profiling: Our testbed consists of Android- and Linux-

based mobile devices with heterogeneous capabilities (summarized in Table 4.2). As the

objectives of the optimization problem are concerned with fairness in battery drain and

makespan, the amount of battery drain in the RPs as a result of running workload tasks as

well as the task execution times need to be profiled in advance. However, the usage of actual

Watt-hour (Wh) values will result in unfair usage of RPs with a higher battery capacity.

Hence, in order to deal with the heterogeneity of mobile devices with different battery

capacities (shown in Table 4.2), we use the percentage battery drain to make allocation

decisions.

In order to optimize allocation decisions, it is important to get a good estimate of the

instantaneous power drawn in the mobile device while running a workload task. This is
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Table 4.3: The five workloads used for the evaluation of our proposed uncertainty-aware
management framework.

Workflow No. of stages No. of tasks No. of task types

1 4 20 10
2 6 30 10
3 8 40 10
4 11 60 15
5 13 70 15

obtained as follows: we ran the different workload tasks of our biomedical applications on

the individual mobile devices to determine the instantaneous power drawn (i.e., to determine

the current drawn in mA as the voltage drop remains constant) and the total time taken

for the task completion. The voltage values did not show significant variability. From these

observations, we determined the average time taken to complete a task of “unit” size, i.e.,

time taken to process input data of size 10KB.

The workflows: We used different workflows to evaluate the performance of the two

phases of the proposed solution. The 4-stage biomedical workflow for stress detection (shown

in Fig. 4.3) is used to illustrate the benefits of data-uncertainty handling. However, evalu-

ation at scale necessitates the creation of arbitrary workflows that are similar to the ones

available in literature. Hence, we developed a workflow generator to generate arbitrary

workflows that are inspired by the applications discussed earlier. The workflows used in

our simulations vary in terms of the number of stages, number of tasks per stage, the types

and sizes of tasks at each stage, and the dependencies as shown in Table 4.3. Our synthetic

workflows are representative of a wide range of task-parallel applications that our solution

can support and are used to compare the performance of our heuristic for multi-objective

optimization with competing single-objective optimization approaches. The workflows are

all task-parallel with data-parallel sub-graphs built into some of them.

4.4.1 Uncertainty vs. Non-uncertainty Awareness

To understand the benefits of data-uncertainty awareness, i.e., Phase I of our proposed solu-

tion, we studied the propagation of uncertainty in sensed data to the results of intermediate

and final tasks in the workflow. The uncertainty in the sensed data is controlled by the
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sampling duration τ . As τ increases, the width of the 95% confidence interval of collected

samples decreases, and so does the uncertainty in the score for HR, BP, GSR, and Activity,

as shown in Fig. 4.5. The uncertainty in the output of Stage 1 of the workflow is propagated

up the data-processing chain. Stage 2 of the 4-stage biomedical workflow is composed of

simple computational models for anxiety-level and physical-exertion-level ratings. Anxiety

score is a weighted sum of HR, BP, and GSR scores; while the physical-exertion score is the

product of HR and Activity scores. At the final Stage 3, the stress score is a weighted sum

of anxiety and physical-exertion scores.

To verify the performance of our algorithm for the C-fusion Case, the rules of interval

arithmetic (shown in Table 4.1) were applied to propagate the uncertainty in the scores from

Stage 1 to the final result in Stage 3. Let the uncertainty in the final result for a particular

τ be γτ . The sampling duration τ∗ for which the uncertainty in the final result γτ∗ is not

higher than the pre-specified γ, i.e., γτ∗ ≤ γ, is the optimal sampling duration, which we find

using linear search. A longer sampling duration results in unnecessary energy expenditure

for processing additional data, while a shorter duration results in higher uncertainty in the

result, as shown in Fig. 4.9 where γ = 0.05 and τ∗ = 5 s. Note that a τ > 5 s does not

decrease the uncertainty greatly, while a τ < 5 s fails to meet the pre-specified γ = 0.05.

Uncertainty awareness helps determine the most appropriate task sizes for the workflow

tasks (based on τ∗), which not only has an effect on the accuracy but also on the timeliness
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Figure 4.10: Algorithm for determining data quality and quantity in the R-fusion case
ensures fairness in battery drain across all data providers. Our algorithm outperforms
naive policies that are sensitive to sensor precision and to battery drain.

of the final result. Note that γ is just a requester-specified constraint on the quality of the

result and has no effect on the performance of the proposed solutions.

In order to evaluate the performance our algorithm for the R-fusion Case, we extend the

previous experiment scenario to include multiple data providers for HR (ECG and wrist-

located pulse detector) and Activity (accelerometer and gyroscope). The sensors differ in

terms of the precision of their outputs and battery usage profile. Figure 4.10 compares

the performance of our algorithm for determining data quality and quantity against naive

sensor selection policies. The metric we use is the Jain’s fairness measure for the battery

drain across all data providers. In Fig. 4.10, it can be seen that our sensor selection pol-

icy in the R-fusion Case outperforms naive precision- and battery-sensitive policies by a

significant margin. The experiment was repeated several times under different initial con-

ditions (initial battery levels) for statistical relevance. The horizontal line in the box plot

(in Fig. 4.10) is the median, the bottom and top of the box represent the first and third

quartiles, respectively, and the whiskers represent the minimum and maximum values.
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4.4.2 Performance of Fast M-CBP Algorithm

Competing strategies: We assessed the performance of our heuristic for multi-objective

optimization by comparing it against two popularly-used single-objective approaches: the

first one, called MinMax(Battery), tries to achieve fairness in battery drain; whereas the

second one, called MinMax(Time), tries to minimize the overall makespan of the mobile-

application workflows by minimizing the time taken at every stage of the workflow. Note

that, as the information regarding the underlying resource pool is unavailable to the end-

user application, constraints cannot be provided to the single-objective approaches. Also,

even conservative guesses for constraints may result in infeasibility. Five different workflows

(shown in Table 4.3) differing in terms of number of stages, tasks, and heterogeneity of tasks

were used to analyze the performance of all the approaches. As a single run of the workflow

does not result in significant battery drain, the workflows were executed consecutively 200

times. Results presented are averages over 40 such runs (with different initial conditions in

terms of battery capacity of the SPs) for statistical significance. The metrics of interest are

makespan, fairness in battery drain, total battery drain, and the amount of data injected

into the network.

Observations: Figure 4.11 shows that our heuristic for multi-objective optimization out-

performs MinMax(Battery) by 15% in terms of makespan, but is outperformed by Min-

Max(Time). Conversely, as shown in Fig. 4.12, our heuristic outperforms MinMax(Time)

by 56% in terms of fairness, but is outperformed by MinMax(Battery). From these two

figures, it is clear that while MinMax(Time) and MinMax(Battery) perform very well in

terms of their corresponding objective metric (i.e., makespan and fairness in battery drain,

respectively), their performance in terms of the other metric is very poor. On the contrary,

our multi-objective approach finds a balance in terms of both metrics. Figure 4.13 shows

the total battery drain at all the SPs. MinMax(Time) seems to have incurred the least

total battery drain; however, as already seen in Fig. 4.12, this single-objective approach

drains the fastest and the most efficient SP’s batteries as it does not concern itself with

the longevity of the entire resource pool. Our multi-objective optimization heuristic incurs

a similar total battery drain as the energy-efficient MinMax(Battery). Finally, Fig. 4.14



69

Workflow 1 Workflow 2 Workflow 3 Workflow 4 Workflow 5
0

20

40

60

80

100

120

140

160

180

200

M
ak

es
pa

n 
[s

]

 

 

OURS
MinMax (Battery)
MinMax (Time)

Figure 4.11: Average makespan [s] of five different workflows achieved by the three com-
peting task-allocation mechanisms.

Workflow 1 Workflow 2 Workflow 3 Workflow 4 Workflow 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ja
in

’s
 F

ai
rn

es
s 

[0
−

1]

 

 

OURS
MinMax (Battery)
MinMax (Time)

Figure 4.12: Average Jain’s fairness (ranging in [0, 1]) in battery drain achieved by the three
competing task-allocation mechanisms.

shows the network load (in terms of kilo Bytes injected into the network) incurred by the

three approaches: our heuristic incurs only slightly more load than MinMax(Battery) while

significantly outperforming MinMax(Time). This is because in MinMax(Time) most of the

tasks are allocated to the fastest device, which results in significant network load.
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Figure 4.13: Total battery drain [mAh] achieved by the three competing task-allocation
mechanisms.
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Figure 4.14: Average communication cost or network load [KB] (injected into the network
for a single run of five different workflows) incurred by the three competing task-allocation
mechanisms.
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Chapter 5

Robust, Secure, and Privacy-preserving Mobile Grid

Computing

5.1 Overview

In this chapter, we describe Maestro, a novel framework for robust, secure, and privacy-

preserving mobile grid computing. In Maestro, any mobile application is represented as a

workflow. Without any loss in generality, we assume that the role of arbitrator is played

by one of the proximal fixed resource that is tethered to the Wi-Fi access point or the

base station in order to ensure that all SPs are connected to arbitrator when they are in

the network. Often, multiple service requests are received simultaneously by arbitrators

and, hence, tasks belonging to multiple workflows managed by the arbitrators have to be

allocated and executed on the SPs in the Cumulus. The aforementioned complex task-

allocation problem, however, also presents opportunities: there may be multiple duplicate

service requests at a arbitrator. Similarly, there may be multiple duplicate tasks that are

common across different workflows.

Maestro deduplicates similar tasks across workflows as it lends itself to minimization of

duplication in services rendered. Task deduplication leads to efficient real-time in-situ pro-

cessing of simplified workflows (with fewer tasks than before) as well as to better utilization

of computing resources. To address the non-trivial research challenge of identification of

task duplicates across workflows and the creation of simplified workflows (at the arbitra-

tors), we introduce Dedup, a sub-graph matching technique for task deduplication among

DAGs. After deduplication, the tasks of the simplified workflows have to be scheduled for

execution on the Cumulus resources in such a way that the user-specified deadline of the

corresponding workflow is met.

Aside from the simple yet effective reallocation of failed tasks, the scheduling mechanism
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in Maestro employs controlled replication of critical workflow tasks and controlled access

to sensitive user data (via multiple levels of authorization) to realize secure and privacy-

preserving computing in Cumulus, respectively. Controlled replication refers to the idea

of replicating “critical” workflow tasks and only when needed the most (based on SPs’

reliability). Task replication not only imparts robustness (against SP failures) but also

provides security (from malicious nodes masquerading as SPs). Therefore, Maestro’s task

scheduling is Byzantine fault tolerant [58], i.e., it has the ability to handle uncertainty

arising from device failures, denial of service, and intentional corruption of results. The

issue of privacy is addressed by categorizing workflow tasks according to the sensitivity of

the data processed and by allowing authorized service providers access only to appropriate

task categories.

5.2 Concurrent Workflows

Often concurrent service requests will be received by each arbitrator, i.e., multiple work-

flows have to be executed concurrently in the underlying pool at any point in time. The

aforementioned task allocation problem, albeit complex, presents opportunities. There may

be multiple similar service requests at a arbitrator as well as multiple tasks that are common

across different workflows. Deduplication of such common tasks leads to efficient real-time

insitu processing of simplified workflows (with fewer tasks than before) as well as to bet-

ter resource utilization. To understand the concept of concurrent workflows consider the

following example applications from two different domains.

Ubiquitous healthcare: Applications in this domain (also called data-driven sensor-

based healthcare) include stress detection, hypoxia (lack of oxygen) detection, alertness

and cognitive performance assessment. Figure 5.1(a) depicts the task-parallel workflows

for stress detection (Workflow a.1) and hypoxia detection (Workflow a.2), which use vital-

sign data acquired from biomedical (e.g., BP, ECG, EEG) as well as kinematic sensors

(e.g., accelerometer, gyroscope) attached to a person. Dummy tasks are not shown for

the sake of simplicity. The tasks in these two workflows belong to one of the following

classes: data analysis, data manipulation, decision making; and they aid in determining

the psychophysiological state of a person (knowledge) from raw sensor data. As mentioned
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Figure 5.1: Example application workflows from two different domains. The common tasks
across workflows in the same domain are highlighted. Workflows in (a) are purely task-
parallel while the ones in (b) are mixed.

earlier, applications belonging to the same domain may have the similar component tasks

that can be deduplicated. For example, feature extraction from accelerometer outputs as

well as ECG analysis (in Stage 1) are component tasks in hypoxia detection workflow (for
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context assessment, e.g., activity and arrythmia detection in Stage 2) as well as in stress-

detection workflow (for exertion detection in Stage 2) as shown in Fig. 5.1(a).

Distributed robotics: Distributed decision-making applications in this domain in-

clude adaptive sampling, intruder detection, target tracking, data-driven path/trajectory

planning. Figure 5.1(b) depicts the workflows for adaptive monitoring of aquatic ecosys-

tem (Workflow b.1) and coastal underwater intruder localization (Workflow b.2), which use

all or a subset of the following data acquired using environmental and inertial navigation

sensors as well as SONAR on autonomous underwater robots: temperature, salinity, pollu-

tants, nutrients, position, and depth. Workflow b.1 depicts how field estimation is used to

track the effect of oceanographic phenomena (e.g., temperature and salinity gradients, algae

growth, nutrient concentration) on aquatic life. Workflow b.2 depicts intruder localization

(using SONAR) which requires optimal positioning of the robots in order to avoid false

positives due to severe transmission losses in the acoustic signal in certain regions. Such

regions of high transmission loss can again be determined from temperature, salinity, and

depth field estimates. Here, field estimation is a common task (between the two workflows),

which can be deduplicated. Note that in this application the overall task-parallel workflow

is composed of smaller data-parallel workflows.

5.3 Maestro

In this section, we present Maestro, a robust, secure, and privacy-preserving mobile grid

computing framework for concurrent workflow management on Cumuli. Firstly, we present

Dedup (the sub-graph matching technique in Maestro) for task deduplication among DAGs.

Secondly, we discuss the Maestro’s task scheduling mechanism, which employs controlled

task replication (for robustness and security) before scheduling the tasks for execution on

appropriate Cumulus resources.

5.3.1 Task Deduplication

The arbitrators receive multiple workflow execution requests over a period of time from

the service requesters. The arbitrators group service requests before proceeding with task
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Algorithm 5 Dedup

Input: K and L are initially set to stage-0 tasks of the two workflows
Output: Simplified workflows

for every k ∈ K do
if visited(k) == true then

continue
end if
for every l ∈ L do

if visited(l) == true then
continue

end if
if checkSimilarity(l,k) == true then

Dedup(Ck,Cl)
else

Parent(l) = Parent(k)
addChild(Parent(k),l)

end if
end for

end for

Algorithm 6 checkSimilarity

Input: Tasks k and l
Output: true or false

if k.taskID == l.taskID AND k.output == l.output then
if checkSimilarity(Pk,P l) then

visited(k) = visited(l) = true

visited(Pk) = visited(P l) = true

return true

else
return false

end if
else

return false

end if

deduplication. The duration (time window) for which a arbitrator waits (δwait
b ) before

deduplication is a tunable parameter. For a given rate of service request arrivals, the larger

the window the greater the chances of finding task duplicates. However, the windows cannot

be too large as the workflow requests have to be serviced real time. This “pause-aggregate-

service” strategy eliminates the simplifying assumption of strictly simultaneous workflow

arrivals at the arbitrators.

Dedup – at the arbitrator – parses the workflow descriptions to identify task duplicates

and to create simplified workflows (with fewer tasks than before). Dedup looks for matching

subgraphs (connected group of tasks) between a pair of DAGs. Trivially, every single vertex

in a DAG (workflow) is a subgraph. Dedup starts with the comparison of stage 0 tasks in the
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two workflows as shown in Algorithm 5. Two tasks are considered to be “similar” when the

following attributes match: task identifier (i.e., type), number and types of inputs (i.e., set

of parent tasks, P ), and inputs’ sizes (quantity of inputs) as shown in Algorithm 6. When

tasks in two DAGs are similar, their corresponding sets of child tasks (Cs) are recursively

checked for similarity. This recursive step is aimed at growing the size (i.e., number of tasks)

of the matched subgraph. In the recursive procedure, when the tasks under comparison,

say task k of workflow 1 and l of workflow 2, cease to be similar, a link is created from k’s

parent to l. Also, l is added to the children set of Parent(k). The tasks belonging to the

duplicate subgraph in workflow 2 are discarded. Note that while checking for similarity,

tasks that have been visited and have tested positive for similarity are marked so that they

need not be checked again. The worst-case time complexity of Dedup is O(|V1| · |V2|), where

V1 and V2 are the sets of vertices in the two input DAGs.

In the resulting workflow, k’s immediate predecessor task will be “fork” point from

which other deduplicated workflow branches out. In Fig. 5.1(a), the vertices corresponding

to peak detection in ECG signal and to PSD analysis of accelerometer output become fork

points. Note that the time complexity of Dedup (or the total number of comparisons) is not

altered by altering the order of comparison of different DAGs. Similarly, Dedup results in

the same set of simplified workflows irrespective of the order of comparison of the different

DAGs. It is not necessary that deduplication has to be done strictly before task allocation.

Deduplication is also achieved on the fly when workflow tasks are already in execution.

Under such circumstances, execution of duplicates is piggybacked thus deduplicating at

run time. Also, results of certain repetitive workflow tasks are cached locally at SPs so to

deduplicate services.

5.3.2 Concurrent Workflows Scheduling

After deduplication, the simplified workflows arrive at the arbitrator. The tasks of these

workflows have to be allocated to SPs in the Cumulus. While submitting a service request,

the application can specify the absolute deadline (D) within which the workflow execution

has to be completed for it to be useful. There is also a notion of an acceptable probability

of failure (P fail) for each workflow. This probability can be a service level guarantee
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advertised by the arbitrator or negotiated a priori between arbitrators and service requesters.

Maestro’s task scheduling mechanism at the arbitrator is in charge of determining i) the set

of workflow tasks that are ready to be allocated, ii) the relative priority among the ready

tasks1, iii) the amount of replication and the appropriate SP(s) for each ready task.

In Maestro, tasks can be immediately allocated as and when they become ready or the

ready tasks can be accumulated (over a waiting period, δreadyb ) and then allocated for a

more efficient schedule in terms of makespan (total workflow execution time) and number

of replicas (i.e., battery drain). This waiting period is again a tunable parameter. The

larger the waiting period, the greater the chances of finding the most appropriate SPs

(lower makespan and fewer replicas). However, δreadyb cannot be too large due to real-time

constraints of the application.

Task prioritization: Determining the relative priority among ready tasks from the

same or different workflows requires incorporation of computation-time information and

deadline requirements as discussed in prior work on workflows management in computa-

tional grids [38]. Firstly, we determine the level of task, which is the length of the longest

path from that task to an exit task. The length of a path in a DAG is the sum of the aver-

age computation time of that task and the average computation times of all the successor

tasks along the path. The average communication times between successive tasks should

also be taken into account if the Communication to Computation costs Ratio (CCR) of the

workflow DAG is high. The level (∆[s]) of a task k is given by,

∆k = αk +max
c∈Ck
{βkc +∆c}, (5.1)

where αk is the average computation time of a task k on the SPs in the Cumulus, Ck is the

set of child tasks of k, and βkc is the average communication time for data transfer between

tasks k and c when executed on the SPs in the Cumulus.

Once the level of each ready task is known, their slack S (maximum allowable wait time

1A ready task is one that does not have any unresolved dependencies, i.e., all its parent tasks have
completed execution.
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before execution of that task) at any time t is determined as,

Sk(t) = Dk −∆k − t, (5.2)

where Dk is the absolute deadline for the workflow, which task k belongs to. The task with

the smallest slack S has the highest priority. After prioritization of the ready tasks according

to this criteria, the most appropriate SP for allocation and the amount of replication (when

necessary) are determined. Each service provider in the Cumulus has a task queue. For a

ready task k with the highest priority, the SP n that provides the earliest finish time (tk,finn )

is the most preferred. Finish times are considered due to heterogeneity in capabilities

of service providers. In a homogeneous environment, start times are sufficient to make

allocation decisions. The tfins are obtained as,

tk,finn = tk,startn + αk
n, (5.3)

where tk,start is the start time for task k on SP n. The tstart depends on the number and

type of existing tasks in the task queue. However, there is uncertainty associated with the

availability of the SPs in a Cumulus for the required duration and this has to be taken into

account in the scheduling mechanism.

Controlled replication: An effective way to overcome the uncertainty (due to failures)

is reallocation of failed tasks (also called “healing”). However, healing is not suited for

tasks with large computation times and tasks that are critical for multiple workflows after

deduplication. Though healing provides robustness it increases the makespan as it waits

for at least the task’s computation time before making a decision (reactive). Hence, we

replicate critical tasks at multiple service providers (proactively) to ensure the completion

of those tasks on time. Proactive task replication avoids unnecessary idle waiting times

incurred in reactive failure handling (i.e., healing). Tasks that have to be replicated are

allocated to the SP that provides the next earliest tk,fin. Note that, as replicas have the

same priority as the original, they are allocated together with the original before the other

tasks that have lower priority.

All tasks in a workflow should not be replicated as it will increase the total number of
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tasks to be executed in turn leading to massive queuing delays and large makespans. The

application developer can explicitly annotate certain workflow tasks as non-critical. All

other tasks are treated as blocking tasks, i.e., the progress of the workflow depends on the

completion of these tasks. The decision to replicate a task k initially allocated to SP n

is taken based on how the task-completion probability of n compares with the “required”

success probability for that task derived from the pre-specified P fail. The required success

probability psucc for each task in the set of incomplete tasks K of a workflow is obtained by

solving,

(psucc)|K| = 1− P fail. (5.4)

The task-completion probability pk,succn of a task k at SP n is defined as,

pk,succn = Pr{t+ Tn > tk,startn + αk
n}, (5.5)

where t is the current time and Tn is the “actual” availability duration of SP n. Without any

loss in generality, we assume that the distribution of service provider availability duration

is known while determining pk,succn . It is pretty straightforward to obtain and maintain this

statistic at the arbitrators. When pk,succn < psucc, a replica is allocated to the next best SP

as mentioned before. Replicas of task k are created and allocated to SPs until the following

condition is satisfied for the first time

1−
∏
n∈N

(1− pk,succn ) ≥ psucc, (5.6)

where N is the set of SPs to which the replicas are allocated. Note that, as the tasks of a

workflow are completed over time with probability one, the required success probability of

remaining incomplete tasks decreases. This allows the scheduler to use some less reliable

SPs thus resulting in load balancing.

For “fork” tasks that are common across multiple workflows, the more stringent con-

dition on the required probability of success is taken into account. To avoid uncontrolled

replication, we use a maximum replication limit. This limit is different for different types
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TASK 

CATEGORY

SENSITIVITY AUTHORIZED SERVICE PROVIDERS 

(DEVICES)

Private Highly sensitive Personal devices

Protected Moderately sensitive Trusted 3rd party devices

Public Least sensitive Untrusted 3rd party devices

Figure 5.2: The three categories of tasks and the authorized service providers that can
perform the different categories of tasks.

of tasks. For example, the fork tasks, which are crucial for the success of multiple work-

flows have a greater replication factor than the other tasks. This difference in the level of

protection is crucial to avoid blocking of Cumulus resource by tasks that are not so critical

as the ones that follow them.

Byzantine fault tolerance: Apart from imparting robustness, task replication also

enables identification of malicious mobile devices in the network. This can be achieved

through comparative analysis of outputs of task replicas from multiple SPs. Malicious de-

vices, masquerading as SPs, may tamper with the data and intentionally generate inaccurate

results to adversely affect the workflow execution. Maestro is designed to be Byzantine fault

tolerant. i.e., it is capable of handling arbitrary failures not only due to SP failures or loss

in SP connectivity but also due to inconsistent behavior by malicious devices masquerading

as SPs. Presently, we focus only on the cases where the malicious devices do not provide

any result at all (service denial).

5.3.3 Privacy-preserving Computing

Privacy is a major concern in distributed processing of “personal sensor data” (e.g., vital-

signs, location) on geographically proximal volunteered computing resources. We address

this issue by assigning different levels of protection to the different categories of tasks, i.e.,

we determine what computing resources the different tasks are assigned to. We elaborate

on our idea under the context of a ubiquitous health monitoring application. Data-analysis

tasks are basic statistical methods that run over a tremendous amount of time-series data.

The knowledge of the “data type” and context is inconsequential for the data-analysis tasks

and, hence, the data can be anonymized so to not provide any private information (e.g.,

participant’s identity and health status). Therefore, data-analysis tasks (public tasks) can



81

be performed on any “volunteered resource” in proximity without any concerns over the

level of trust of the computing resource.

Conversely, data-manipulation tasks (e.g., artifact removal in biomedical signals) need

to be aware of the data type and, hence, can be carried out only on “trusted resources”.

However, they do not need any contextual information or identity of the participant whom

the data belongs to. Trusted resources include service providers belonging to family mem-

bers and friends (on social networks and real life) and this category of tasks is referred to

as protected tasks. Differently from the other two, decision-making tasks require the par-

ticipant’s identity and contextual information to generate baseline information (e.g, health-

status of participants in a biomedical application). Therefore, these private tasks can only

be performed on the participant’s “personal mobile devices” (highest level of trust). The

aforementioned restrictions arising out of privacy concerns are taken into account in the

task scheduling mechanism of Maestro in the form of constraints.

5.4 Evaluation

We developed a simulator in JavaTM to empirically evaluate the performance gains provided

by different components of Maestro. Simulations also allow us to evaluate at scale. In the

following, firstly, we present details about our experiment methodology, specifically, the

workflows, workflow traces, the service providers, and the SP dynamics. Then, we discuss

specific simulation scenarios and the results that i) demonstrate the benefits of Dedup, ii)

highlight the price of privacy preserving mobile computing, and that iii) illustrate the merits

of replication-based failure handling.

5.4.1 Methodology

Workflows: The workflows we used in our simulations are inspired by the applications

discussed earlier. The workflows are all task-parallel with data-parallel sub-graphs built

into some of them. Even though currently available example application workflows (from

the biomedical and distributed robotics domains) can be used for preliminary evaluation

of Maestro, evaluation at scales necessitates the creation of arbitrary workflows that are
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similar to the ones available in literature. Hence, we developed a workflow (DAG) generator

to generate arbitrary workflows for large simulations. The workflows used in our simulations

vary in terms of the number of stages, number of tasks per stage, the types and sizes of

tasks at each stage, and the dependencies. Our synthetic workflows are representative of a

wide range of task-parallel applications that Maestro can support.

Workflow trace: At different points in time, the service requesters (which may also

be data providers) submit workflow requests to arbitrators while also specifying a deadline

and a probability of success. The utility of the result from the workflow is assumed to be

zero after the requester-specified deadline. Traces that capture workflow request arrivals

over time in a mobile computing environment are not available in literature. Workflow

arrival traces in cloud and grid computing environments cannot be adopted directly either.

This is because the workflows, their deadline requirements, and arrival statistics are not

representative of the applications or of the dynamics envisioned in Maestro or any other

work on mobile device clouds and opportunistic computing. We developed a workflow

trace generator, which can create multiple workflow arrival traces that vary in terms of the

number of workflows, inter-arrival time between workflows as well as the request-specific

deadline and probability of success.

Service providers: In our simulations we use a heterogeneous pool of SPs. The factors

that contribute to heterogeneity are processing speed or capability (in terms of number of

instructions per second), communication capability (in terms of bps), rate of battery drain

for computation (in terms of mAh per instruction) and communication (in terms of mAh

per second), and finally the duration of availability. We use the mean availability duration

(the duration for which the SP is in the Cumulus) and the mean away duration (the duration

for which the SP is not in Cumulus) as well as their respective distributions to control the

dynamics in the mobile computing environment. We choose these durations carefully to

maintain an average number of SPs in the Cumulus as the three variables are related by

Little’s theorem.
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5.4.2 Benefits of Task Deduplication

In order to demonstrate the benefits of task deduplication, we did two experiments to

ascertain the following two factors with and without Dedup: 1) the reduction in percentage

of total number of tasks to be executed in the Cumulus and 2) the percentage of successfully

completed workflows among all the workflow requests submitted.

Experiment 1: As δwait
b is a tunable parameter, we observed performance in terms of

reduction in number of tasks by varying it. We studied the behavior of Dedup when δwait
b

is adapted to the arrival rate of workflows and when it is not. We created three different

workflow traces each with a total of 100 requests. The mean inter-workflow-arrival durations

in the three workflow traces are µ = 10, 20, and 30s, respectively. The number of distinct

workflows in each trace was set to 40 and the number of SPs to 10.

Observations: Figures 5.3(a) and 5.3(b) show that the percentage of total number of

tasks to be executed in the Cumulus decreases by 25% when δwait
b is five times the inter-

arrival duration µ of the workflows. This decrease will be greater when the number of

distinct workflows in the traces is reduced below the current value of 40. Figure 5.3(a) was

obtained by varying δwait
b in increments of 20 agnostic to the workflow arrival rate. As a

result in comparison to the trace with µ = 20s, the percentage of tasks to be executed

is higher for the trace with µ = 30s while it is lower for the one with µ = 10s. This is

because for the same δwait
b , the number of workflows considered together for deduplication

decreases with increase in µ. Therefore, adaptation of δwait
b with respect to µ is key to

achieve improved performance as shown in Fig. 5.3(b).

Experiment 2: We observed the performance in terms of percentage of successful

workflow completions by varying the waiting period δwait
b . We created a workflow trace

with a total of 500 requests. The mean inter-workflow-arrival duration in the workflow

trace was set to µ = 10s and the number of distinct workflows in the trace was set to 10.

The deadline of each workflow request was chosen randomly between 40 and 80s and the

number of SPs to 10.

Observations: Figures 5.3(c) shows that the percentage of successful workflow comple-

tions in the Cumulus increases to as much as 83% (compared to the baseline no Dedup case
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Figure 5.3: Decrease in percentage of the total number of tasks to be executed (while using
Dedup) with increase in δwait

b (a) when δwait
b is not adapted to the arrival rate of workflows;

and (b) when δwait
b is adapted to the arrival rate of workflows (proportionally). (c) Behavior

of Dedup in terms of percentage of successfully completed workflows with increase in δwait
b .

at 53%) when δwait
b is twice the inter-arrival duration µ of the workflows. This increase will

be greater when the failed workflow tasks are discarded (which we did not do to study the

worst case). Figure 5.3(c) clearly highlights the situation when Dedup may not be beneficial

in Maestro. Even though an increase in δwait
b results in a decrease in the total number of

tasks to be executed as shown in Figs. 5.3(a) and 5.3(b), the decrease is only sub-linear.

The accumulation of tasks over time may result in an overload for the underlying SP pool

as is the case when δwait
b /µ > 2.0 in Fig. 5.3(c) where the gain drops until finally reaching

the baseline at δwait
b /µ = 3.5. Also, it is important to note that the task prioritization

in Maestro results in improved performance in comparison to a First-Come-First-Served
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Figure 5.4: Percentage of successful workflow completions under different SP dynamics in
the Cumulus. Scenarios A through E represent a progressive decrease in the stability of SPs.
λ̃−1 [s] is the average inter-arrival duration and T̃ [s] is the average availability duration of
the SPs.

(FCFS) scheduling policy. The difference in performance will widen further when the vari-

ance in deadlines is greater than what we used here.

5.4.3 Benefits of Controlled Replication

Maestro’s task scheduling mechanism employs proactive protection (selective controlled

replication of large tasks) in addition to reactive healing (reallocation of failed tasks) in order

to provide robustness. To study the improvement in performance provided by healing and

protection over the best-effort (baseline) case, we performed an experiment under different

service provider dynamics. We set the average number of active SPs in the Cumulus to

30. We varied the SP dynamics in the Cumulus from highly volatile to highly stable by

tuning the following parameters - average inter-arrival duration (λ̃−1 [s]) of SPs and average

availability duration (T̃ [s]) of SPs as shown in Fig. 5.4. The average number of SPs and

the aforementioned parameters are related by Little’s law. We created a workflow trace

with a total of 500 requests. The mean inter-workflow-arrival duration in the trace was set

to µ = 20s and the number of distinct workflows was set to 10. The trace has a mix of

small (66%) and large (33%) workflows (differing in terms of task sizes and deadlines). The

deadline of the small workflows was chosen randomly between 40 and 80s while the large

workflows’ deadline was picked randomly between 80 and 160s.
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Observations: Figure 5.4 shows the five scenarios A through E, where A corresponds

to a highly stable Cumulus and E corresponds to a highly volatile one. The performance

of Maestro with only healing and with both healing and protection is always better than

the baseline case. In scenarios B through D the use of protection in addition to healing

prevents more workflows from failing than the use of plain healing. This is because while

using healing in isolation, the time taken to recover from a failure of a task belonging

to a “large” workflow is more than twice that task’s execution time. However, selective

replication of such critical tasks (which may easily jeopardize the workflow when they fail)

as done in protection prevents a greater percentage of workflows from failing. However,

note that protection does not provide any additional gain over plain healing in Scenario A

when probability of SP failure during task execution is very low and in Scenario E when

probability is very high.

5.4.4 Price of Privacy-preserving Computing

Even though Maestro provides different levels of protection to different tasks through con-

trolled access by authorized service providers, there is a price to pay for privacy-preserving

computing in terms of performance. Authorizing service providers to execute only certain

types of tasks restricts the feasibility region of the solution to the problem the arbitrator is

trying to solve. In Maestro, the arbitrator aims at scheduling tasks in the Cumulus in such

a way that the percentage of successfully completed workflows is maximized. We performed

an experiment to quantify the difference in performance when different privacy policies are

employed. We varied the percentage of private, protected, and public tasks in the workflows

while keeping the percentage of personal, trusted and untrusted 3rd party devices in the

Cumulus fixed. For any service request the percentage of personal, trusted, and untrusted

devices are 1%, 33%, and 66%. We created a workflow trace with a total of 500 requests.

The mean inter-workflow-arrival duration in the workflow trace was set to µ = 10s and the

number of distinct workflows in the trace was set to 10. The deadline of each workflow

request was chosen randomly between 40 and 80s.

Observations: Figure 5.5 shows the 5 policies with decreasing degree of privacy (or

increasing number of public tasks in the workflows). We observed that as the degree of
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Figure 5.5: Percentage of successful workflow completions when different privacy policies
are employed. The tuple represents the % of private, public, and protected tasks in each
policy. Policies 1 through 5 represent a progressive decrease in the degree of privacy.

privacy is decreased, i.e., the percentage of public tasks increased, the performance in terms

of percentage of workflow completions increased. Policy 5 represents an unrestricted scenario

where all tasks are public while Policy 1 is extremely restricted. Policies 2 through 4 reflect

what may be adopted in real-world deployments.The performance of Policies 2 and 3 can

be improved to match that of Policy 4’s by either relaxing the deadline requirements or by

increasing the Cumulus size. A small relaxation in the deadline is a marginal cost to incur

if privacy is desired.
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Chapter 6

Conclusions and Future Research Directions

Tremendous advances in mobile computing coupled with the growing popularity of cloud

computing have rendered the powerful mobile devices heavily under-utilized on average. In

this dissertation, we presented our vision to collectively exploit the heterogeneous sensing,

computing, communication, and storage capabilities of these under-utilized mobile devices

in the field as well as that of computing and storage servers in remote datacenters in order

to create a mobile computing grid (also referred to as a “loosely-coupled” mobile device

cloud), called Cumulus. The Cumulus can be harnessed to enable novel data- and compute-

intensive mobile applications that rely on real-time in-situ processing of data generated in

the field.

We observed that the challenges facing real-time in-the-field data collection and pro-

cessing using mobile platforms are: the inherent uncertainty associated with the quality

and quantity of data from mobile sensors as well as with the availability and capabilities of

mobile computing resources in the field, security, and privacy. Our goal was to design and

develop a unified uncertainty-aware (robust), secure, and privacy-preserving framework for

data and computing resource management in the Cumulus in order to enable execution of

mobile application workflows in real time and in situ and, hence, to generate actionable

knowledge from raw data within realistic time bounds.

In order to achieve the aforementioned goal, we proposed an autonomic (self-organizing,

self-optimizing, and self-healing) middleware that aids in the organization of the sensing,

computing, and communication capabilities of static and mobile devices in order to form

Cumuli. As the relevance (level of accuracy and timeliness) of the output of workflows

rely heavily on the quality and quantity of raw data coming from the underlying sensing

infrastructure as well as the computing resources available to execute them in real time,
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we developed a unified data and computing resource management mechanism for data-

as well as task-parallel applications. Finally, we proposed Maestro, a robust, secure, and

privacy-preserving framework for concurrent mobile application management in Cumulus.

We evaluated our contributions through experiments on a prototype testbed as well as

through simulations on a purpose-built JavaTM-based simulator.

We have identified avenues for further research in the following areas:

Consensus-based applications: Even though the proposed solutions are capable of

handling data-parallel workflows in which the result is generated by aggregating results from

multiple computing resources, it is just a preliminary form of consensus-based application.

Applications like joint localization, team formation, and collision avoidance in the robotics

domain are examples of consensus-based workflows.

Byzantine-fault tolerance: Our research group at the Rutgers Cyber-Physical Sys-

tems (CPS) Lab is working towards addressing security issues that arise when malicious

nodes provide incorrect results and not just denial of service attacks as it is done now in

Maestro. This will make the framework “fully” Byzantine fault tolerant.

Heterogeneous mix of applications: As of the time of writing this dissertation our

research group is involved is exhaustive validation of Maestro using a heterogeneous mix

of mobile application workflows differing in terms of communication-to-computation-cost

ratios and degree of concurrency.

Dynamic workflows: Model uncertainty has a significant effect on the relevance of the

result and hence, fundamental research is required to construct or select the most appro-

priate workflow for real-time in-situ data processing in the Cumulus. On-the-fly generation

of workflows that are tailored to the available data quantity and quality as well as to the

available computing resources in the underlying heterogeneous multi-modal sensing and

computing infrastructure is another potential avenue for further research.
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