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ABSTRACT OF THE DISSERTATION

Evaluation of unsteady aerodynamic forces and

pressure in wings and turbines at low Reynolds

number by combining particle image velocimetry

and proper orthogonal decomposition

By ARTURO VILLEGAS VAQUERO

Dissertation Director:

F. Javier Diez

Aerodynamic unsteady forces in stationary and rotating wings are analyzed in this

dissertation by using a combination of time-resolved particle image velocimetry (TR-

PIV) and proper orthogonal decomposition (POD) techniques. Recent progress in

experimental measurements has demonstrated the use of TR-PIV to calculate forces

by applying the integral conservation of momentum equation in its different forms.

However, a more accurate and robust method is needed for unsteady forces calcu-

lations. With this in mind, a modified pressure Poisson method is developed and

applied in this work, showing its superior behavior compared to other methodologies

described in the past. The independence of the calculated forces shows the robustness
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and stability of the method.

Whereas force calculations have been recently considered, the role of flow structures

in force fluctuations has not been revealed yet and it is the main focus of this study.

To elucidate these relations, a hybrid PIV-POD analysis is applied to reconstruct

the velocity field from the most energetic modes of the flow. A model describing the

vortex-force relations is proposed in terms of lift and drag variations during the vor-

tex shedding process. A spectral analysis of the calculated forces suggests symmetric

periodic lift, drag and circulation variations at the shedding frequency. Moreover, lift,

drag and circulation signals are in phase, which supports lift-circulation proportion-

ality. However, non-symmetric drag fluctuations are found at double the shedding

frequency within a shedding cycle. For instance, when a positive or negative cir-

culation vortex detaches, different values in the maximum and minimum drag are

obtained.

The data and physical relations obtained in this work such as main frequencies, vortex-

force fluctuations and behavior of reduced-order models can aid in the development

of CFD applications at low Re. The methodology described can be applied to any

moving or stationary wing at different Reynolds numbers and angles of attack which

would provide additional data for numerical codes. Furthermore, accurate measure-

ments of unsteady forces allow determining narrower and more precise safety margins.

Moreover, these measurements could be of application in flow control since forces are

related to flow features simultaneously.
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Chapter 1

Introduction

1.1 Motivation and goals

Unsteady forces from wings and bluff bodies are of great interest in aerodynamics.

Fixed and rotating wings are found in many systems such as airplanes, wind and

water turbines, airplane propellers and rotorcrafts among others. The performance

of these systems can be characterized by the mean aerodynamic forces and pressure

fields created by the wings. Accurate knowledge of these parameters can be used dur-

ing design and optimization for creating more efficient systems. In some instances,

information about the mean forces and pressure might not be sufficient to define the

working conditions, especially in cases with time variations in lift and drag. In those

cases, instantaneous forces and pressures differ from the mean values and they need

to be resolved. Those time variations can occur due to vortex shedding, stall condi-

tions and flow separation among others. Measurement of instantaneous forces could

capture these processes and provide an accurate estimation of the wing or blade load

fluctuations. Particle image velocimetry (PIV) is suitable to perform this task after

post-processing the data acquired. Some authors have recently attempted to calculate

instantaneous forces around different objects by using this technique. However, all

different methodologies are more or less suitable depending on the application and a

more general and accurate method is needed. The first goal of this dissertation is to

provide a methodology to accurately calculate instantaneous and mean pressure and
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forces in fixed and rotating wings.

The knowledge of the amplitude and dominant frequencies of those force fluctuations

is important when designing and sizing unsteady systems and allows determining

more accurate safety margins and materials for the structure. However, knowing the

phenomenon that causes those fluctuations is more important in order to predict force

behaviors. In addition, flow control could be used more efficiently when the physical

relations between forces and flow features can be associated simultaneously. More

specifically, at low Reynolds numbers (Re), the laminar boundary layer separation is

common due to the flow’s inability to resist adverse pressure gradients (Fitzgerald &

Mueller, 1990), generating vortex shedding in the wake such as the Kármán vortex

street. The separated boundary layer is highly unstable and will initiate transition

quickly, generating vortex shedding. Some authors have experimentally studied the

unsteady wake of different airfoils in the presence of vortex shedding and shear layer

separation at high (Bourgoyne et al., 2005) and low (Yarusevych et al., 2006, 2009;

Boutilier & Yarusevych, 2012) Re for fixed airfoils and starting wings (Huang et al.,

2001). In addition, numerical simulations have been performed over cylinders (Dong

et al., 2006), circular disks (Shenoy & Kleinstreuer, 2008) or spheres (Rodriguez

et al., 2011) to describe the near wake flow structures. Power spectral density (PSD)

of the velocity components is often used to detect structures and frequencies in the

separated shear layer and wake of the airfoil (Pope, 2000). Moreover, these studies

extract and represent coherence structures by using different vortex identification

methods such as Q -method (Hunt et al., 1988), ∆ -method (Chong et al., 1990) or λ

-method (Jeong & Hussain, 1995). However, the three methods are identical for planar

measurements and just the first one is considered in this manuscript. While previous

work (Bourgoyne et al., 2005; Yarusevych et al., 2009; Boutilier & Yarusevych, 2012)

have focused in identifying flow structures and dominant frequencies in a selected

range of Re and angle of attacks (α), they do not account for any relation between
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vortices and force fluctuations. The study of that relationship is the second goal of

this dissertation.

Additionally, aerodynamics and wake structure of wind turbines have been widely

studied numerically and experimentally. However, mid- to high-Re number wind

turbines are the main object of those studies and few data is available at low-Re.

Low-Re can be found in water turbines as well as small wind turbine for urban areas.

These are products in a market that is currently expanding and more information is

needed. The third goal of this dissertation is to provide useful data such as vortex

shedding frequencies, force fluctuations and behavior of low-dimensional models at

low Re.

1.2 Review of aerodynamic theory and force calcualtions

1.2.1 Fundamental aerodynamics

Aerodynamic forces on bodies are due to the interaction between the body and the

fluid. Physically, the aerodynamic force on the body is only due to pressure (p) and

shear (τ) distribution on the surface of the body. Figure 1.1a shows the pressure and

shear at a point B on the surface of an airfoil. The pressure acts perpendicular to

the surface, while the shear acts tangent to it. The integration of pressure and shear

around the surface (s) of the body gives the resultant aerodynamic force. The total

normal (N ) and tangential (A) forces per unit length (see Fig. 1.1b) are given by

N = −

∫ TE

LE

(pu cos θ + τu sin θ) dsu +

∫ TE

LE

(pl cos θ − τl sin θ) dsl (1.1)

A =

∫ TE

LE

(−pu sin θ + τu cos θ) dsu +

∫ TE

LE

(pl sin θ + τl cos θ) dsl (1.2)
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where subscripts u and l mean upper and lower respectively and θ is the angle between

the chord of the body and a point at the surface measured clockwise. When the airfoil

pitches at certain angle of attack (α), the lift (L) and the drag (D) are then given by

(see Fig. 1.1b)

L = N cosα− A sinα (1.3)

D = N sinα + A cosα (1.4)

Even though pressure and shear on the surface are the only mechanism that causes

aerodynamic forces, the generation of those distributions are influenced by the flow

surrounding the body. The understanding of how forces are affected by instabilities

such as vortex shedding is of great interest and it is studied in this manuscript.

To calculate instantaneous forces and observe vortex shedding patterns simultane-

ously, a technique such as PIV can be used after the right treatment of the obtained

velocity data. Forces are calculated from velocity and its temporal and spatial gradi-

ents by using the conservation of momentum equation. Experimentally, instantaneous

measurements of the whole pressure and shear distributions at the surface of the air-

foil are not available most of the time due to the resolution needed to capture the

boundary layer. Moreover, the calculation of forces using this method (Eqs. 1.1 and

1.2) do not reveal the role of the flow surrounding the airfoil with the instantaneous

forces. However, from the Newton’s second law, the integral momentum equation can

be derived for a Newtonian fluid flow over a fluid control volume (Anderson, 2001)

∂

∂t

∫∫∫

V

ρ~udS +

∫∫

S

ρ~u (~u · ~n) dL = −

∫∫

S

(p · ~n) dL+

∫∫

S

2µσ~ndL (1.5)

where ρ is the fluid density, µ is the kinematic viscosity, ~u is the velocity vector, p
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is the pressure, σ is the stress tensor, V is the volume of fluid and S is the surface

of the control volume. In Sec. 2.6, this equation is applied to a control volume

surrounding the airfoil to obtain the instantaneous forces. In addition, the differen-

tial momentum equation can be obtained by applying the gradient and divergence

theorems (Anderson, 2001)

∇p = −ρ

(

∂~u

∂t
+ ~u · ∇~u

)

+ µ∇2~u (1.6)

This is the Navier-Stokes equation and relates variables at every point of the flow

field. It can be used to determine the pressure gradient only from velocity and

velocity gradient measurements.

1.2.2 Blade element momentum theory

The blade element momentum theory (BEMT) is widely used for estimating aero-

dynamic forces during the wind turbine design (Burton, 2011). It is the result of

coupling the 1D momentum theory (MT) and the blade element theory (BET). Sev-

eral corrections to the theory have been incorporated to address some 2D and 3D

effects such as Prandtl correction (Prandtl & Betz, 1927) for tip- and hub-losses as

well as the Glauert correction (Glauert, 1935) for differences observed between theory

and experiments beyond a certain axial induction factor number. There are also finer

corrections developed more recently which are modifications of the two corrections

mentioned above (Shen et al., 2005). BEMT is used in this dissertation to design

an aerodynamically optimum wind turbine for maximum power extraction. However,

the BEM theory does not provide information about the variations of instantaneous

forces or pressure fields when vortex shedding is present and previous information

about the lift and drag coefficients of the airfoil is needed to solve for these forces.



6

The BEMT is briefly presented in this dissertation and a complete derivation can be

found in Burton (2011). By equating the MT normal force per unit length to the BET

normal force and also equating the MT torque per unit length to the BET torque, a

system of two-equations and two unknowns is obtained

a

1− a
=

σr

4f

[

Cl cosφ+ Cd sinφ

sin2φ

]

(1.7)

at
1 + at

=
σr

4f

[

Cl sinφ− Cd cosφ

sinφ cosφ

]

(1.8)

where the two unknowns variables are the axial velocity induction factor (a) and the

tangential velocity induction factor (at). Also, σr is the local solidity of the blade, Cl

is the local lift coefficient, Cd is the local drag coefficient, φ is the inflow angle and

f is the Prandtl correction factor. In addition, Glauert correction is introduced for

axial induction factors higher than the critical value ac = 0.4. An iterative process

is applied to solve for a and at. For all cases, the least-squared method is used to

resolve the 2-equations system and the relative residual is less than 1e−10. Figure

1.2a shows the angles and velocities on a blade radial station. The total velocity W

at every radial section of the blade is given by

W =

√

U2
∞(1− a)2 + Ω2r2z(1 + at)

2 (1.9)

where U∞ is the upstream velocity, Ω is the rotor rotational speed and rz is the radial

location along the blade span. As shown by Fig. 1.2b, the local tangential (Ft) and

normal (Fn) forces per unit length can expressed as a function of the lift (L) and drag

forces (D)

Ft = L sin(φ)−D cos(φ) (1.10)
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Fn = L cos(φ) +D sin(φ) (1.11)

L = 1/2ρcW 2Cl (1.12)

D = 1/2ρcW 2Cd (1.13)

where ρ is the density of the fluid and c is the cord of the airfoil. Results from

Eqs. 1.10 and 1.11 are used for comparison with experimental measurements in their

non-dimensional form as the local tangential (Ct) and normal (Cn) force coefficients

Cn =
2Fn

ρc
(

U2
∞ + (Ωrz)

2
) (1.14)

Ct =
2Ft

ρc
(

U2
∞ + (Ωrz)

2
) (1.15)

The turbine used in the present study was design for optimal rotor blade twist and

cord distribution for maximum power using BEMT and it is discussed elsewhere

(Villegas et al., 2010). In addition, lift and drag coefficients were calculated using

XFOIL (Drela, 1989).

XFOIL (Drela, 1989) is a simulation module especially suitable for analysis of Low

Re number airfoil flows with separation bubbles (which is the case of study in this

dissertation). An inviscid linear-vorticty panel method is used to calculate the po-

tential flow. The effect of the viscous layers on the potential flow are modeled by a

2-equation lagged method represented by a superimposed distribution of sources in

the airfoil and the wake. Additionally, the laminar and turbulent boundary layers
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are addressed as well as the transition point with an e9 − type amplification formu-

lation. Both boundary layer and transitional equations are solved simultaneously by

a global Newton method. A full description of the method is discussed elsewhere

(Drela, 1989).

1.3 Review of numerical evaluation of forces

Numerically, full simulations are only available for very small number of simplified

cases due to the high computational cost of direct numerical simulation (DNS). Ap-

proximate numerical models such as Reynolds-Averaged Navier-Stokes (RANS) mod-

els are typically used to calculate the mean velocity and mean pressure field (Hansen

et al., 2006). For three-dimensional flow with moving elements (i.e. blades in wind

turbines), these computations become more expensive in terms of code, mesh, and

calculations. Sezer-Uzol & Long (2006) simulated a full scale 2-bladed wind turbine

using a 3D time accurate algorithm, in which they show the pressure distribution

on the surface of the blades. Bazilevs et al. (2011a,b) performed a 3D simulation of

a wind turbine at full spatial scale and validating it against published experimental

data from the National Renewable Energy Laboratory (NREL).

A current DNS study performed by Wang et al. (2013), investigated the differences

between instantaneous lift from a derived momentum equation formula and the quasi-

steady Kutta-Joukowski formula for a stationary and flapping rectangular flat plate,

neglecting pressure effects just for very large control volumes.

In addition, Wu et al. (2007) analyzed two numerical solutions of unsteady and vis-

cous circular-cylinder flows. The vorticity momentum approach is used in this study

in both advective and diffusive forms. Results confirm the suitability of keeping all

the derivative terms inside the integral to find relations between flow structures and
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forces for numerical simulations. However, as we will see in the result sections, this ap-

proach is not suitable for experiments due to error propagation and a barely satisfied

continuity equation. In addition, the phase of the forces is unclear when using this

methodology for different control volume sizes for these experiments, which makes

the relationship between forces and vortices ambiguous.

1.4 Review of experimental evaluation of forces

Experimentally, considerable work has been done in designing and testing wind tur-

bines (Hansen et al., 2006; Burton, 2011; Hand et al., 2001; Simms et al., 2001). In

terms of pressure measurements, Hand et al. (2001) and Simms et al. (2001) com-

pared results from tap sensors to the predicted numerical simulations. In addition,

Tangler (2002) performed an evaluation of the BEM theory against a lifting-surface

model and experiments. Forces are usually measured with a balance and the pres-

sure is measured with arrays of pressure taps embedded in the turbine surface in

the past. These are both intrusive instruments which are mounted on the turbine

and can affect the flow. Furthermore, force balances are generally limited to wind

tunnel applications, and pressure gauges are intrusive and often single point mea-

surements, which limits its application. For the wake of the airfoil, a widely used

technique for measuring the pressure is the hot wire anemometry. However, it is also

an intrusive single point measurement technique difficult to implement for rotating

wind turbines. Therefore, although there has been a significant amount of progress in

evaluating forces and the pressure field for turbines, their performance characteristics

are still not fully resolved due to the lack of non-intrusive 2D and 3D high spatial

and temporal resolution measurement techniques.

Recently, non-intrusive PIV technique (Westerweel, 1997; Adrian, 2005) has been

used to evaluate forces around objects. PIV is suitable to calculate flow velocity
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fields and corresponding spatial and temporal derivatives with high resolution. These

derivatives can be used in the differential and integral formulation of the momentum

and mass conservation equations to solve for the pressure field and forces. Unsteady

forces in fixed and moving airfoils and bluff bodies have been calculated by some

authors from time resolved particle image velocimetry (TR-PIV) velocity fields. Most

of the theoretical work was initiated by Wu (1981) and Lighthill (1986) with the

introduction of the vorticity moment concept for calculating forces without the need

of calculating the pressure term and applied experimentally by Lin & Rockwell (1996).

That work was further developed by Noca et al. (1999) to account for finite control

volumes and used in several PIV applications. One of his major findings was the

evaluation of forces without the need of volume integrals. However, the moment of

velocity and vorticity introduced in these methods suffers from moment arm errors,

giving inconsistent results for small force coefficients and large control volumes (Noca

et al., 1999). At the same time, Unal et al. (1997) used the integral momentum

approach to calculate the pressure term through spatial integration of the pressure

gradient. Nevertheless, this later approach also produces large source of errors, due

to error propagation in the integration path. Since an accurate calculation of the

pressure was needed, many authors started looking for other ways of obtaining the

pressure. Gurka et al. (1999) calculated the pressure by solving the pressure Poisson

equation (PPE) from PIV measurements. Another method of calculating the pressure

term was proposed by Baur & Kngeter (1999) through spatial integration of the

pressure in 4 directions and taking the averaged value to decrease the directional error.

Liu & Katz (2006) used an omnidirectional virtual boundary integration scheme of

the material acceleration to calculate the instantaneous pressure. Charonko et al.

(2010) discussed the challenges in obtaining pressure from time dependent flows and

showed the differences between the omnidirectional and PPE approaches in their

different ways for different flows. The effects of grid resolution, sampling frequency,
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velocity error and out-of-plane velocities were tested in this work for synthetic flows.

In addition, they found that the PPE method was more accurate for external flows

and the omnidirectional integration more suitable for internal flows. Additionally,

de Kat & van Oudheusden (2011) determined instantaneous pressure fields from PIV

measurements in turbulent convected flows and gave some guidelines for temporal

and spatial resolution to successfully determine the pressure. A synthetic flow and an

experiment over a stationary square cylinder were tested to validate these proposed

guidelines. In de Kat & Ganapathisubramani (2013), a new approach for pressure

estimation in convective turbulent flows is proposed by a combination of volumetric

or time-resolved cross-plane measurements with Taylor’s hypothesis. In this study,

the elimination of the time derivative when obtaining the pressure gradient reduces

the error in the calculated pressure.

Recent studies use the methods described above to calculate forces from PIV measure-

ments. Mean forces from PIV have been calculated for many cases such as cylinders

(Fujisawa et al., 2005; Oudheusden et al., 2007), airfoils (Ragni et al., 2009; Lee & Su,

2012), propellers (Ragni et al., 2011) or wind turbines (Murai et al., 2007; Villegas &

Diez, 2014b). However they do not account for fluctuations of the forces. Moreover,

Villegas & Diez (2014b) showed the importance of the local acceleration term in mov-

ing frames of reference when calculating mean forces. Instantaneous forces have been

also calculated by considering the acceleration term from TR-PIV measurements over

fishlike swimming bodies (Wu et al., 2005), square cylinders (Kurtulus et al., 2006),

asymmetric hovering flapping wings (Jardin et al., 2009), flat plates (Mohebbian &

Rival, 2012). In these studies, the pressure term is calculated from direct integration

of the pressure gradient. Furthermore, Mohebbian and Wu used a derived momen-

tum equation which only needs to be evaluated at the boundaries of the control

volume. However, they found large sources of error when the vortices passed across

the boundaries. A recent study by Villegas & Diez (2014a) shows the capabilities of



12

a modified PPE in calculating instantaneous unsteady forces in rotating wings with

vortex shedding.

1.5 Dissertation outline

The present work investigates the experimental evaluation of unsteady aerodynamic

forces from PIV measurements and POD analysis as well as the relations between

those forces and flow structures.

The introduction chapter (Ch. 1) reviews the different theoretical, numerical and

experimental methods used in the literature to calculate mean and instantaneous

forces in aerodynamics.

The methodology chapter (Ch. 2) describes the different theories, mathematical tools

and error analysis in calculating pressure and forces from PIV measurements. It also

explains the design of the water turbine and experimental conditions. Three different

experiments are conducted in this work, a high-rpm water turbine, a low-rpm water

turbine and a stationary wing. They will be referred as Case 1, Case 2 and Case 3

respectively.

Results are shown in chapters 3-6 for all three cases and for both raw and POD data.

Chapter 3 shows and analyzes velocity and vorticity fields in the presence of vortex

shedding. Chapter 4 shows and analyzes local and convective acceleration fields for

both stationary and moving frames of reference. Chapter 5 shows and analyzes the

pressure obtained by the modified pressure Poisson equation and it is compared to

both spatially integrated pressure and Bernoulli methods. Chapter 6 contains the

evaluation of unsteady forces. This chapter analyzes in detail the contribution of each

term to the total force contribution as well as the independence and robustness of the

method compared to other approaches in the literature. In addition, the relationship
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vortex-force is disclosed in this chapter too.

The last chapter (Ch. 7) states the main contributions of this work and gives some

future work guidelines.
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Figure 1.1: (a) Pressure and shear on an airfoil and (b) components of the aerody-
namic force
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Figure 1.2: (a) Angles and velocities on a blade radial station used in the BEM theory
and (b) components of the aerodynamic force
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Chapter 2

Methodology

2.1 Wind turbine design

As explained in Sec. 1.2.2, BEM theory is used to design the turbine model that will

be tested during the present work as well as to predict mean forces. The theory was

implemented in Maltlab and the code was validated by comparing the results to the

experimental data (Giguere & Selig, 1999) from one of the National Renewable Energy

Laboratory wind turbine designs (Hand et al., 2001). This validation is shown in Fig.

2.1, where the thrust force is shown for both theory and experiments versus change in

the upstream velocity. The theoretical thrust is obtained by two different methods.

The classic curve is the BEM theory without any corrections. The Prandtl-Glauert

curve accounts for tip and hub loss corrections as well as the Glauert correction

for a critical axial induction factor value ac = 0.4. There is an excelent agreement

between theory and experiments up to high values in the upstream velocity, where

stall conditions may be presented and the breakdown of the theory may occur. Other

corrections such as Viterna & Corrigan (1982) could improve the behavior of the

theory at higher free stream velocities.

After validation of the code, the new turbine was designed for maximum power ex-

traction (inverse design). The process involved several iterations and surface opti-

mization by a parametric study of the different variables involved. The NACA8512

airfoil was selected. The twist angle distribution along the blade span was optimized
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for U∞ = 0.1m/s and Ω = 1.8 s−1, giving a design tip speed ratio λ = 4. The design

lift coefficient based on the maximum lift to drag ratio at Re = 11000 is Cl = 0.66

at the angle of attack α = 5 ◦. The drag coefficient at the same angle of attack is

Cd = 0.12. Table 2.1 shows the optimized twist distribution.

2.2 Experimental analysis

Experiments in this paper are conducted in a recirculating water tunnel with a

0.9× 0.5 m2 test section. Two sets of honeycombs and flow straighteners are placed

upstream of the test section to ensure laminar flow conditions with turbulence levels

below 0.1%. The water is seeded with 8-12 µm neutrally-buoyant hollow glass spheres

with a 1 g/cm3 density. For these studies, a low Reynolds number water turbine is

designed with a NACA8512 airfoil-shaped blade as well as a fixed wing with the

same airfoil. The two-bladed turbine has a 188 mm radius (R) with a varying blade

chord length and twist angle for improved efficiency. The turbine is mounted on a

low-friction bearing facing the flow direction.

A PIV system is used to measure the velocity field around the blade. The system,

sketched in Fig. 2.2, consists of a Nd:YAG laser, a set of cylindrical and spherical

lenses and mirrors to deliver the laser sheet to the test section and a low or high

speed camera to capture the PIV image. PIV images are analyzed using Insight 3G

v.10 software by TSI Inc. The main parameters for processing the images include

using a 24 × 24 px2 interrogation window with 50% overlap. As part of the post-

processing of the calculated velocity field we applied a typical local median 5 × 5

vector replacement filter and a local mean 3 × 3 vector filling filter to replace any

bad vectors. The percentage of outliers and replaced vectors was less than 1.5% for

all instantaneous velocity fields. The PIV data acquisition is phase-locked with a

fixed azimuthal blade position so that PIV images are always taken at the same exact



18

location. This is achieved by an optical laser light switch being triggered by the blade

crossing its beam path.

To solve for the pressure field and forces created by the turbine, the velocity field

needs to be resolved simultaneously around the entire cross-section of the blade. This

presented a challenge when illuminating the field of view with the laser sheet since

the wind turbine blade partially blocks the light and a shadowed region appear in

the field of view. To minimize shadows in the complex areas of the flow, the laser

sheet was oriented to fully resolve the wake but produced a small shadow region near

the leading edge of the blade as sketched in Fig. 2.2. The velocity in that region is

calculated by linear interpolation from surrounding vectors. In addition, reflections

from the laser affected the results close to the airfoil. This was notably reduced by

painting the rotor blades with a mix of Rhodamine 6G, ethanol and urethane in

combination with placing a narrow band 532 nm filter in front of the camera.

Three different experiments are conducted in this work. Table 2.2 shows the main

differences between the three experiments. In the first experiment (Case 1 ), the

turbine is driven at 52 rpm and the flow Reynolds number based on the mean cord

(c) is Rec = 25000. Case 1 is performed by using a regular 2D-PIV system and,

therefore, no time-resolved velocity fields are obtained. However, a new methodology

to calculate the acceleration term in stationary frames of reference for steady airfoils is

developed in this study. This methodology is explained by the timing diagram shown

in Fig. 2.3. Briefly, the PIV system captures, after a known trigger time delay, two

images at t1 and t2. This generates the first velocity field ~v1. Next the PIV system

captures, after a slightly larger trigger time delay, another two images at t′1 and t′2.

This generates the second velocity field ~v′1. As a result of this variation in trigger

delay (∆t = 0.0036 s), the blade position appears displaced a few pixels between the

field of views for ~v1 and ~v′1 which are used to obtained the local acceleration. In the
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second experiment (Case 2 ), the turbine is driven at 20 rpm and the flow Reynolds

number based on the mean cord is Rec = 11000. Case 2 uses a time-resolved 2D-PIV

system and time-resolved velocity fields are obtained. In addition, the wake of this

turbine shows a developed periodic instability, forming the vortex shedding street.

The high temporal resolution of the TR-PIV resolves the vortex shedding. Since the

airfoil is moving through the field of view, the spectral analysis of the velocity signal is

limited in frequency range and resolution. Therefore, weak peaks in the PSD analysis

does not precisely reveal vortex structures. However, a phase-averaged POD analysis

of the flow identifies those structures as well as creates continuous functions in time

for the calculated forces. In the third experiment, a fixed wing is immersed in a flow

with Rec = 3900. Case 3 also uses the TR-2D-PIV system. In this case, the spectral

analysis is available since longer time series can be recorded and vortex structures are

obtained. A full POD analysis is applied to this case to identify structures and main

frequencies.

2.3 Frame of reference

The governing equations of the flow over a rotating wind turbine can be written either

in a reference frame that moves with the blade (moving frame) or in a reference frame

fixed with the ground (stationary frame). In a moving frame and in the absence

of unsteady effects, the quasi-steady hypothesis applies and the time derivative of

the velocity field can be neglected from the equations (Ragni et al., 2009). On the

other hand, in a laboratory frame such as in the present work, even in the absence

of unsteady effects, the unsteady acceleration term cannot be ignored. The reason

for the differences observed in the unsteady accelerations between the two reference

frames can be explained (Kundu et al., 2012) as discussed by relating the accelerations
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in inertial and non-inertial (′) frames of reference as

∂~u

∂t
+ ~u · ∇~u =

∂~u′

∂t
+ ~u′ · ∇~u′ + 2~Ω× ~u′ + ~Ω×

(

~Ω× ~r′
)

(2.1)

where ~x and ~u are the fluid particle position and velocity respectively, 2~Ω× ~u′ is the

Coriolis acceleration and ~Ω×
(

~Ω× ~r′
)

is centripetal acceleration. An observer in the

rotating frame would need to consider the four terms in the right hand side of the

equation, but the first one is negligible for steady flows as shown in Appendix A. On

the other hand, an observer in the fix frame only needs to consider the two terms

in the left hand side of the equation, the convective acceleration and the unsteady

acceleration. However, this last term requires the evaluation of the time derivative of

the velocity which is not zero as shown in Appendix A. This proof the importance of

the unsteady acceleration in the inertial reference frame (fix frame) when fluid motion

over a rotating wind turbine is considered. Additionally, the proposed method opens

the possibility to experimentally evaluate the instantaneous flow pressure field and

forces in wind turbines in unsteady flow cases such as stall conditions, flow separation,

and strong wake vortex shedding among others. This would not be possible without

calculating the unsteady acceleration even if measurements were performed in a non-

inertial reference frame (rotating frame).

2.4 Proper orthogonal decomposition

As stated by Charonko et al. (2010) and observed in the present manuscript, errors

in the measured velocity makes instantaneous pressure and force calculations a very

difficult task for any of the method described earlier. Therefore, unsteady forces

calculations will be affected by those errors, sometimes leading to a difficult inter-

pretation of the results. In their paper, the authors tested different techniques to
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filter the velocity fields before the calculation of the pressure. They found the small-

est errors when using the proper orthogonal decomposition method (POD), which is

the method used in the present work. POD (Lumley, 1967; Sirovich, 1987; Berkooz

et al., 1993) has been applied successfully in many TR-PIV applications to identify

flow patterns and extract low dimensional representations of the dynamics of the flow

such as swirling flows (Graftieaux et al., 2001), jets (Bi et al., 2003; Schmid et al.,

2012), cylinders under jet control (Feng et al., 2011) or engine flows (Chen et al.,

2012).

In fluid dynamics, the Proper Orthogonal Decomposition is generally used to extract

the most energetic modes of the flow in terms of kinetic energy. These modes represent

unsteady structures in the flow and they are physically related to their fluctuating

kinetic energy. Velocity fluctuations are used to calculate the fluctuating kinetic

energy. POD modes form a new orthogonal base that maximizes the projection of

the kinetic energy into a new coordinate system which is mathematically optimal in

terms of energy to represent the velocity. POD is often used to partially reconstruct

the flow field by just using the most energetic modes, filtering out the noise and small

perturbances contained in less energetic ones. The snapshot POD method (Sirovich,

1987) is commonly used for PIV data sets and briefly reproduced here. The correlation

matrix C contains the cross-correlation of all instantaneous velocity fluctuation fields

C = V TV (2.2)

where V is the matrix containing N instantaneous fluctuating velocity fields. Then,

the eigenvalue problem is solved by diagonalizing C

C · e = λ · e (2.3)
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where e and λ are the eigenvectors and eigenvalues of C respectively. All eigenvectors

are ordered by decreasing value of their respective eigenvalues to ensure the appro-

priate choice of the modes with the highest energy. Basis functions are obtained by

the transformation of the data with the nth mode

φn =
N
∑

j=1

V jenj , n = 1, ..., N (2.4)

Basis functions just depend on the position, being independent of time. If a partial

reconstruction of the flow is required, time dependent POD coefficients are calculated

by

ajn = φnV j, n = 1, ..., N, j = 1, ..., N (2.5)

Then, each fluctuating velocity field can be reconstructed by just using the first M

most energetic modes

V ∗
j
=

M
∑

n=1

ajnφ
n (2.6)

Typically, more than 90% of the cumulative energy and modes with no less than 1%

relative energy should be included when representing low order estimations of the flow

dynamics (Holmes et al., 1998). Once the velocity field is reconstructed, the airfoil

forces originated from both original and reconstructed fields are calculated as shown

in Section 2.6.

Additionally, a reconstruction in time is possible from non time-resolved PIV data by

using a POD analysis. This temporally resolves the flow when the first two modes are

dominant such as the case of vortex shedding (Oudheusden et al., 2005). By compar-

ing a Fourier expansion of the phase averaged velocity and the POD reconstruction
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by using the first two modes, velocity fluctuations can be modeled as

~u (~x, ϕ) = a1 (ϕ)φ1 (~x) + a2 (ϕ)φ2 (~x) (2.7)

where POD coefficients are now given by

a1 (ϕ) =
√

2λ1 sinϕ (2.8)

a2 (ϕ) =
√

2λ2 cosϕ (2.9)

where λ1 and λ2 are the first and second eigenvalues respectively, and ϕ is the phase

angle. Since the calculation of forces involves temporal derivatives, the corresponding

time can be calculated from the shedding frequency as

t =
ϕ

2πfshed
(2.10)

This methodology is just suitable when one shedding frequency is dominant. In addi-

tion, this low order model is continuous in time (phase), allowing time interpolation of

the data and increasing the time resolution. However, any information about higher

or smaller frequencies is lost in the process. This model reconstructs the velocity field

from POD for the case of the water turbine, since the temporal information is limited

even when TR-PIV is applied due to rotation of the blades. Once the velocity field

is approximated by this model, airfoil forces are calculated as explained in Sec. 2.6.

2.5 Pressure calculation

Calculation of pressure is needed before computing forces by using the integral mo-

mentum equation. Pressure fields are obtained by solving the pressure Poisson equa-

tion (PPE) given by the divergence of the Navier-Stokes equation (Eq. 1.6), where
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all the terms are known from TR-PIV measurements. The PPE can be written as

∇2p = −ρ

(

∇ (~u · ∇~u) +
∂

∂t
(∇ · ~u)

)

(2.11)

Considering that a 2D-like flow is observed along most of the blade and only near

the tip the flow is fully 3D, the out of plane component of the velocity (z -direction

in Fig. 2.2) is expected to be small. Nevertheless, the continuity equation is not

satisfied when missing the small contribution of that third velocity component. In

addition, the continuity equation is unlikely to be exactly satisfied experimentally

even for a 2D flow. For accuracy in the convergence, the PPE needs the continuity

equation to be satisfied for incompressible flows. As discussed by Abdallah (1987) and

Sotiropoulos & Abdallah (1991), this can be achieved by including the time derivative

of the continuity equation, given by the last term in Eq. 2.11.

To solve the instantaneous pressure field from Eq. 2.11, the equation is first discretized

onto a 2-dimensional rectangular grid using a 5 point stencil finite difference scheme.

Neumann boundary conditions are used for both external and immersed boundary

conditions. These boundary conditions are given by the pressure gradients at the

outer edges of the image domain and at the inner edge near the blade surface. They

are obtained from the Navier-Stokes equation

∇p = −ρ

(

∂~u

∂t
+ ~u · ∇~u

)

+ µ∇2~u (2.12)

The inner boundary near the blade needs to be properly identified before resolving

Eq. 2.11. This is done by masking the blade in the images before PIV processing so

that the area inside the mask is assigned zero value after PIV processing. Then, Eq.

2.11 can be resolved everywhere within the discretized 2D rectangular grid except

where the mask was defined by the zero value. The edges of the mask correspond
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to the geometry of the inner boundary condition. This process allows defining inner

boundary for complex geometry such as turbine blades.

Neumann boundary conditions are obtained by calculating the pressure gradient from

Eq. 2.12 since all velocity terms in the right hand side are derived from TR-PIV

measurements. First two terms in the right hand side representing the local and

convective acceleration provide the largest contribution to the pressure gradient. The

third term is the viscous diffusion and is negligible compared to the other two terms

(two orders of magnitude smaller).

Once boundary conditions are known, the instantaneous pressure field is solved from

the discretized Eq. 2.11. An iterative least-squared method is used to solve the

system of linear equations













a11 . . . a1n
...

. . .
...

am1 · · · amn

























p1
...

pn













=













b1
...

bn













(2.13)

where ~p is the pressure vector containing all elements (n) in the discretized domain.

Boundary conditions are included in the right hand side (~b). A is the matrix con-

taining the coefficients of the second order derivatives of the Laplace operator. The

least-squared method attempts to find ~p that minimizes norm(~b−A ·~p). The pressure

field calculated by this method is referred as plsqr in this manuscript.

To validate the numerical procedure in obtaining the pressure field from the PPE, a

comparison with an exact known solution is performed. The next PPE for a rectan-

gular domain is known to have an exact solution

∇2p = −8π2 · cos(2πx) · cos(2πy) 0 ≤ x ≤ 1 0 ≤ y ≤ 1 (2.14)
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where x and y are the position coordinates of the grid element. Neumann boundary

conditions are applied to the external boundaries (∇p = ~0). In addition the domain

is discretized by a 48× 48 elements to simulates experimental conditions. Numerical

solutions are compared to the exact solution given by

pexact = cos (2πx) · cos (2πy) (2.15)

Since the domain does not contain any inside boundaries, the solution can be calcu-

lated from the direct inversion method as well. The direct inversion method for a

rectangular domain calculates the pressure by diagonalizating the next problem

[Dx] [p] + [p] [Dy]T = [rhs] (2.16)

where Dx refers to the second order derivative operator in the x -direction and Dy

refers to the second order derivative operator in the y-direction. The pressure field

calculated by this method will be referred as pdirect.

To test the influence of error propagation, the pressure is also calculated after adding

noise to the right hand side of Eq. 2.14 (simulating noise in the velocity gradients).

Results from the two methods and the exact solution are shown in Fig. 2.4. Figures

2.4a and 2.4b show the pressure obtained from the least-squared method for the

original case and the case in which a random 5% noise is added to the right hand

side respectively. Figures 2.4c and 2.4d show the pressure obtained from the direct

inversion method for the original case and the case in which a random 5% noise

is added to the right hand side respectively. Figure 2.4e shows the exact solution

(Eq. 2.15). If no noise is added to the right hand side, the two methods provide a

solution that is almost identical to the theory. However, the addition of noise slightly

modifies the solution even though is unclear from these plots. To quantify this error,
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the relative error in the calculated pressure as well as the relative residual error in

solving the system of linear equations is shown in Table 2.3. In this table, the error

due noise addition to the right hand side is also consider for 2, 5, 10% noise. The

relative residual error is similar for the two methods, being slightly smaller for the lest-

squared method. Additionally, the relative residual increases rapidly for small amount

of noise, going from about 1e−13 to 1e−4, and remain almost constant above 5% noise

(1e−4). However, the relative error increases linearly with the addition of noise. The

error in the least squared method is greater than the error obtained from the direct

inversion method. Nevertheless, the relative error does not propagate more than

10% for any noise added within 10% as shown in Table 2.3. Additionally, the least-

squared method is faster compared to the direct inversion, since no matrix inversion

is needed (especially for large grids). In addition, increasing the number of elements

in the grid decreases the relative error. However, the time needed to solve it increases

rapidly. Moreover, the direct inversion method is not implementable when having

internal boundaries. To further validate the procedure, the author tried different

methods to solve for the PPE by using other iterative algorithms such as GMRES or

SOR methods, obtaining similar but less accurate results as well as increased time

performance. These methods were also tested for the experiments, obtaining the more

accurate and fast results by using the least-squared method.

In the results section, pressure fields obtained from the PPE are compared with two

other methods. These two methods have been used in the past to calculate pressure

fields (and forces) and will be briefly presented here, later discussed and compared to

the PPE method. The first method uses the Bernoulli equation to obtain the pressure

from the velocity field. For a barotropic, steady, irrotational and inviscid flow, the

Bernoulli equation becomes

pBer − pref =
1

2
ρ
(

|~uref |
2 − |~u|2

)

(2.17)
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where pref and ~uref are the reference pressure and velocity at the lower left corner of

the control volume, respectively (unless otherwise specified). In the second method,

the pressure gradient from the Navier-Stokes equations is spatially integrated to ob-

tain the pressure along the boundaries of the selected control volume within the image

domain. Just the pressure at the boundaries of the control volume is needed when

calculating forces by this method. To perform the integration, a forward difference

scheme is constructed by evaluating the gradients at the mid-points of the grid using

linear interpolation of the known gradients from the points before and after. The

scheme is given by

pi+1 = pi +∆q · (∇p)i+1/2 (2.18)

where ∆q is the spatial grid resolution along the boundary. The integration proceeds

by starting at one of the corners of the control volume.

2.6 Force calculation

To calculate the force per unit length produced by the blade, the integral momentum

equation (Eq. 1.5) is applied to the control volume per unit length in Fig. 2.5, where

L =
∑

i=1...7

Li is the outer contour of an arbitrary volume per unit length S, and ~n is

an outward normal vector to these control surfaces. Then, the integral momentum

equation is written as

~Fairfoil = −

∫∫

S

ρ
∂~u

∂t
dS −

∫

L

ρ~u (~u · ~n) dL+

∫

L

(−p · ~n) dL+

∫

L

2µσ~n dL (2.19)

The first integral term contains the local acceleration which is in general neglected for

calculating mean forces in quasi-steady flows but for the present work is significant

and cannot be ignored. The second integral in Eq. 2.19 is zero along L4 due to the
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non-slip condition and no flow penetration at the airfoil. In addition, the surface

force along L4 is equal in magnitude but opposite to the force produced by the airfoil.

Moreover, all the integrals along L3 and L5 cancel each other out since they have

opposite outward normal, and the values of the variables are the same along the two

lines. Thus, the force generated by the airfoil can be written in terms of the integral

momentum equation as

~FPPE = −

∫∫

S

ρ
∂~u

∂t
dS −

∫

L1,L2,L6,L7

ρ~u (~u · ~n) dL+

∫

L1,L2,L6,L7

(−pPPE~n) dL (2.20)

It is called FPPE since the pressure term is calculated from the PPE as explained in

Section 2.5. The last integral on the right hand side of Eq. 2.19 has been neglected

since the viscosity term is about two orders of magnitude smaller than the other

terms. A trapezoidal integration is performed for all the line integrals. An extension

of the trapezoidal rule for 2D is applied to calculate the surface integral.

The original form of the momentum equation as explained above is also compared

to 6 other forms of the same momentum equation. The second and third forms are

identical to the original momentum equation (Eq. 2.20), but deriving the pressure

term (see Section 2.5) from the spatially integrated pressure

~FIntp = −

∫∫

S

ρ
∂~u

∂t
dS −

∫

L

ρ~u (~u · ~n) dL+

∫

L

(−pIntp · ~n) dL (2.21)

and the Bernoulli equation

~FBer = −

∫∫

S

ρ
∂~u

∂t
dS −

∫

L

ρ~u (~u · ~n) dL+

∫

L

(−pBer · ~n) dL (2.22)

A forth method uses the impulse momentum equation derived by Noca et al. (1999)

that avoids the use of the pressure term by transforming the momentum equation

into the impulse equation (Wu, 1981; Lighthill, 1986) for finite domains. For a 2D
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flow, neglecting viscous terms, considering the object moving at constant velocity

inside a fixed control volume and non-slip condition at the body surface, the impulse

momentum equation becomes

~FNoca =− ρ
d

dt

∫∫

S

~x ∧ ~ωdS

+ ρ

∫

L

~n ·

[

1

2
|~u|2I − ~u~u− ~u (~x ∧ ~ω ) + ~ω (~x ∧ ~u )

]

dL

(2.23)

The fifth method was first derived by Noca et al. (1999) and then by Wu et al. (2005).

This equation is just valid if the flow is incompressible, this is, the continuity equation

has to be satisfied everywhere. The integrals in this “flux” momentum equation are

evaluated at the boundaries of the control volume alone. For an incompressible and

inviscid 2D flow in a fixed control volume around a non-accelerating body the “flux”

momentum equation becomes

~FBound =ρ

∫

L

~n ·

[

1

2
|~u|2I − ~u~u− ~u (~x ∧ ~ω) + ~ω (~x ∧ ~u)

]

dL

− ρ

∫

L

~n ·

[(

~x ·
∂~u

∂t

)

I − ~x
∂~u

∂t
+

∂~u

∂t
~x

]

dL

(2.24)

The sixth and seventh methods are derived in Wu et al. (2007) in terms of vorticity

diffusion (Eq. 2.25) and advection (Eq. 2.26) terms respectively

~FDiff = −µ

∫∫

S

~x ∧∇2~ωdS + FL (2.25)

~FAdv = −ρ

∫∫

S

(

~x ∧
∂~ω

∂t
+ ~ω ∧ ~u

)

dS − ρ

∫

L

~x ∧ [~n ∧ (~ω ∧ ~u)] dL+FL (2.26)

~FL = −µ

(∫

L

[~x ∧ [~n ∧ (∇∧ ~ω)]− (~ω ∧ ~n)] dL

)

(2.27)
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In the force section, the circulation is also calculated and given by

Γ = −

∫

L

~u · d~L = −

∫∫

S

ωdS (2.28)

where the minus sign is due to the positive clockwise value of the circulation and the

positive counterclockwise value of the vorticity by convention in aerodynamics.

In the forces evaluation section (Sec. 6) all the forces calculated by the different

methods are compared and discussed. Some of these methods are not suitable for

small force coefficients or experimental data, neither consistent with the size of the

control volume.

2.7 Error analysis

For all three experimental cases an error analysis of the variables involved in force

calculations is performed and summarized in Table 2.4. The three main systematic

errors when estimating the velocity field from TR-PIV analysis are due to cross-

correlation, peak-locking and spatial-temporal resolution. For a three-point Gaussian

peak estimator, the error is less than 0.1 pixels. For Case 1, the separation between

images is 4ms, therefore, the estimated error in the velocity is about 0.0015m/s

or 1.3% of the free stream velocity, being 9.25% and 2.5% for Case 2 and Case

3 respectively. The peak-locking error is estimated from the sub-integer velocity

histograms and the mean value is about 0.1 pixels, giving a relative error of about 1.3%

of the free stream velocity, being 9.25% and 2.5% for Case 2 and Case 3 respectively.

The uncertainty due to spatial (Eq. 2.29) and temporal (Eq. 2.30) resolution is
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estimated from Hart (2000). In the case of a sinusoidal signal, the gain is given by

|GFFT |s =

∣

∣

∣

∣

Vcalc

Vtrue

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

sin
(

πWS
λx

)

πWS
λx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

sinc

(

WS

λx

)∣

∣

∣

∣

(2.29)

|GFFT |t =

∣

∣

∣

∣

Vcalc

Vtrue

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

sin
(

π fshed
fsamp

)

π fshed
fsamp

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

sinc

(

fshed
fsamp

)∣

∣

∣

∣

(2.30)

where sinc refers to the normalized sinc function. For an interrogation window size

(WS ) of 1mm and a typical mean structure size (λx) of 5mm in the wake, the gain

is about 0.91, in other words, the maximum expected error in the wake is about 9%.

For Case 2, an interrogation window size of 1.9mm and a typical mean structure size

of 8mm give an expected error of 9%. For Case 3, an interrogation window size of

2.3mm and a typical mean structure size of 9mm give an expected error of 10%. The

uncertainty due to temporal resolution in Case 1 is not calculated since the non-

TR method does not resolve time-evolving flow features. For Case 2, the sampling

frequency of 500 Hz and a typical shedding frequency fshed in the wake of 15 Hz

give an error about 0.2%. The shedding frequency in this case is calculated from

the average of the shedding frequencies from all instantaneous vorticity fields. The

frequency is obtained by calculating the distance between the center of two vortices

and the mean traveling velocity of the center of vortex. Since the airfoil is moving

through the field of view, the spectral analysis of the velocity signal is not accurate as

explained in Section 2.2. For Case 3, the sampling frequency of 250 Hz and a typical

shedding frequency in the wake of 3.9 Hz give an error about 0.1%. The shedding

frequency is calculated from the spectral analysis in the wake as it is shown in Sec.

3.

In addition, the error in truncating the gradients by central differences can be obtained
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by the response function (de Kat & van Oudheusden, 2011)

TCDs = sinc

(

2h

λx

)

(2.31)

TCDt = sinc

(

2∆t

tshed

)

(2.32)

where h is the spatial grid resolution and ∆t is the temporal step. This results in an

uncertainty of 6.4%, 9.0% and 10.4% in the spatial gradients for Case 1, Case 2 and

Case 3 respectively, and 8.2% and 2.6% in the temporal gradients for Case 2 and

Case 3 respectively. In addition, the response function for the Poisson solver is given

by (de Kat & van Oudheusden, 2011)

TPS =
1 + cos

(

π 2h
λx

)

2 sinc
(

2h
λx

) (2.33)

This results in an uncertainty of 4.7% for Case 2 and 6% for Case 3.

The random uncertainty of the PIV will be shown in the next sections in terms of the

root mean square (RMS) of the velocity, RMS of the acceleration and RMS of the

pressure. For instance, the RMS of the axial velocity outside the wake is less than

2% (u′/Uref < 0.02) for both Case 2 and Case 3, while the RMS of pressure is up

8% ( (P − Pref )
′/Pref < 0.08 ) for Case 2 and 10% for Case 3. However, to obtain

the RMS of the error, the present measurements would need to be compared to an

exact numerical solution (such as the study by Charonko et al. (2010)) which is not

available for the present experiment. Nevertheless, it is possible to use the method

by de Kat & van Oudheusden (2011) to estimate the RMS of the pressure from the

RMS of the velocity from linear error analysis (Taylor, 1997; Bevington & Robinson,
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1969). From this analysis, the error in the derived quantity (pressure) δp is

δp = ρ δu

√

h2

2∆t2
+ |∇u|2h2 +

|u|2

2
(2.34)

where δu is the error in velocity and ∆t is the temporal step. In a non-dimensional

form

δp

pref
= 2

δu

U2
ref

√

h2

2∆t2
+ |∇u|2h2 +

|u|2

2
(2.35)

where Uref =
√

U2
∞ + (Ωrz)

2 and pref = 1
2
ρ
(

U2
∞ + (Ωrz)

2
)

. For Case 3, the rotational

speed is zero (Ω = 0). From this analysis, the estimated RMS of the pressure in the

wake of the airfoil is 22% and 11% for Case 2 and Case 3 respectively, for a 10%

RMS in velocity.

Another error can arise from 3D effects. The 3C effects are not evaluated in this

work since the system does not allow for 3D or 3C measurements. However, the

third component of the velocity is just important close to the tip of the blade where

radial velocities up to 0.2U∞ are expected. In addition, as stated by de Kat &

van Oudheusden (2011), even for 3D flows, the solution to the 2D Poisson equation

requires mostly in-plane measurements.

Measured velocity fields can also be affected due to tunnel blockage. From Barlow

et al. (1999), a maximum aspect ratio (AR) of 7.5% should be used to neglect errors

due to tunnel blockage, where AR is defined as the ratio of rotor to tunnel cross

sectional area. For this work, the ratio is 27.7%, which generates a significant wake

blockage. As an approximate correction, Barlow et al. (1999) suggest ∆u/u = AR/4,

which results in a correction factor of 1.07 for the velocity. Additional correction

models are developed for global coefficients in water turbines as discussed by Bahaj

et al. (2007). Even though the blockage affects the results and the accuracy of the
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comparison with BEM theory, it should not affect the capabilities of the proposed

method to obtain instantaneous pressure and forces in rotors.
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Table 2.1: Cord (c) and twist (θ) distribution along the radial direction of the blade

z(m) c(m) θ(◦)

0.053 0.057 23.46
0.061 0.056 21.46
0.069 0.054 19.58
0.077 0.053 17.82
0.085 0.051 16.16
0.093 0.049 14.63
0.101 0.048 13.21
0.109 0.046 11.90
0.118 0.044 10.71
0.126 0.043 9.63
0.134 0.041 8.67
0.142 0.039 7.82
0.150 0.038 7.08
0.158 0.036 6.46
0.166 0.035 5.96
0.174 0.033 5.57
0.182 0.031 5.29
0.190 0.030 5.13
0.198 0.028 5.09
0.200 0.028 5.09
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Figure 2.1: Thrust variations with the upstream velocity
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Table 2.2: Differences in the experimental setup for the 3 cases of study

Parameter Case 1 Case 2 Case 3

Device Water turbine Water turbine Fixed wing
U∞ (m/s) 0.12 0.10 0.10
Ω (rpm) 52 20 -
Rec 25000 11000 3900
PIV method 2D-PIV 2D-TR-PIV 2D-TR-PIV
Camera resolution (mpx ) 2 1 1
Laser power (mJ/pulse) 100 10 10
fsamp(Hz) 14.5 500 250
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Figure 2.2: Sketch of the PIV setup showing laser/camera system and turbine field
of view
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Figure 2.3: a) Timing diagram for the external triggers and laser pulses used for the
PIV system and b) sketch of the blade position at the times used to calculate the
local acceleration.
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Figure 2.4: Pressure (p) obtained from (a) least-squared method without noise, (b)
least-squared method with 5% noise, (c) direct inversion method without noise, (d)
direct inversion method with 5% noise and (e) exact solution
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Table 2.3: Residual and relative errors in calculating the pressure from the PPE.
Solution from the leas-squared and direct inversion methods are compared to the
exact known solution

‖A·p−b‖
‖b‖

‖p−pexact‖
‖pexact‖

Pdirect 8.7e−12 0.006
Pdirect, ε = 2% 3.1e−4 0.019
Pdirect, ε = 5% 7.6e−4 0.038
Pdirect, ε = 10% 1.5e−3 0.069
Plsqr 2.1e−13 0.003
Plsqr, ε = 2% 1.2e−4 0.023
Plsqr, ε = 5% 3.1e−4 0.052
Plsqr, ε = 10% 6.1e−4 0.096
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Figure 2.5: Sketch of a control volume per unit length around the NACA8512 used
to solve the integral momentum equation. The origin is at a which corresponds to
q/h = 0
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Table 2.4: Error analysis in calculating forces for the three different cases of study.
Errors are shown as percentages (%) of the reference values Uref or Pref

Error source Case 1 Case 2 Case 3

Peak estimator 1.3 9.2 2.5
Peak-locking 1.3 9.2 2.5
Spatial resolution 6.5 9.0 10.4
Temporal resolution - 0.2 0.1
Spatial gradient truncation 6.5 9.0 10.4
Temporal gradient truncation - 8.2 2.6
Poisson response - 4.7 6.0
RMS(u) outside the wake - 1.8 1.9
RMS(p) outside the wake - 8.1 9.9
RMS(p) estimated inside the wake - 21.9 11.3
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Chapter 3

Flow features

Before considering instantaneous loads and pressure fields, the time-resolved flow

features around the blade will be explained first since these will have a large impact

on the loads and pressure fluctuations. All results are presented in a stationary

reference frame (unless otherwise specified) in which the blade moves vertically up

through the field of view for Cases 1 and 2. In such an inertial frame, the results can

be evaluated directly from the PIV measurements without the need to subtract the

rotation velocity or include the extra inertial terms in the Navier-Stokes and integral

momentum equations.

3.1 Case 1 : High-rpm water turbine

A typical instantaneous and mean velocity fields measured around the blade is shown

in Fig. 3.1. Measurements are taken at the radial distance rz = 0.85R (85% of the

rotor radius). Results in Fig. 3.1 correspond to contour plots of the axial (U ) and

tangential (V ) velocity field components for instantaneous and ensemble averaged

measurements. The axial velocities in Fig. 3.1a and 3.1b show the velocity increasing

in the concave part of the airfoil close to the leading edge and the velocity decreasing

close to the trailing edge. The tangential velocities in Fig. 3.1c and 3.1d show the

highest value at the leading edge and the velocity increasing along the concave part

in the negative direction of the y-direction. Larger differences between instantaneous



46

and mean values are shown in the wake, since a small vortex shedding street is

formed. This variations causes fluctuation in the calculated forces as shown in Sec. 6

by analyzing the contribution of each term to the total force.

For this case of study, the moving frame of reference was also tested. As shown in

Appendix A, the two frames of reference led to a very similar solution of the pressure

field. In addition, the mean forces calculated by the two methods agree within 15%

and always within one standard deviation.

3.2 Case 2 : Low-rpm water turbine

3.2.1 Raw data

The time-resolved instantaneous flow field characteristics around the blade are shown

in figure 3.2. In this case, the vortex shedding street shows flow structures about

double the size of the ones found in Case 1. Results are non-dimensionalized using

a characteristic time, velocity, and length for a more general comparison. Since the

vortex shedding is the main feature observed in force fluctuations, the characteristic

time is given by the inverse of the vortex shedding frequency (tref = 1/fshed). The

characteristic velocity is given by the total free stream relative velocity as

Uref =

√

U2
∞ + (Ωrz)

2 (3.1)

The position in the x - and y-axis is non-dimensionalized by

h = Uref tref (3.2)
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Results are shown for six time steps where time has been non-dimensionalized (t∗ =

t/tref ) by the time between the average shedding of two vortices with the same circu-

lation direction (tref ). For a given time, each row in figure 3.2 contains the instanta-

neous axial (x -direction) and tangential (y-direction) velocity, the velocity magnitude

and the vorticity. The time evolution of the flow features around the blade shows

that these remain constant with time except in the wake where vortex shedding occurs

and in the upper side of the blade (extrados) where a recirculating region is formed.

For instance, the contour plots of the axial velocity field show regions in the wake

of high velocities in the positive (red) and negative (blue) directions that are being

convected with time. Similarly, the contour plots of the vorticity field show regions in

the wake of positive (red) and negative (blue) circulation being shed from the trailing

edge and from the end of the upper part of the blade respectively. The location of

the separation of the shear layer that causes the vortex shedding in the airfoil upper

region can be elucidated from the tangential velocity field where there is region of

positive velocity (red) that detaches from the trailing edge. The time series shows

nearly a full cycle of the vortex shedding where two vortices of opposite circulation

are being shed.

Also of interest is the recirculating region in the upper side of the blade. For instance,

the contour plot of the tangential velocity field shows a region in the upper side of the

airfoil where the velocity changes from a negative to a positive direction indicating

the beginning of the recirculating region. That region ends near the trailing edge

where the vortex shedding occurs. This region can also be extracted from vorticity

contour plots where a large clock-wise circulation (blue) is present. The time series

shows how this circulation area slightly grows and decreases in size. This is the result

of the evolution of the combine recirculation region and a vortex shedding region.

The time evolution of flow features in the airfoil’s wake indicates that the quasi-steady
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flow approximation cannot be used when calculating instantaneous forces. This can

be observed by the differences between the instantaneous measurements and ensemble

averages. For instance, figure 3.3a shows contour plots of the ensemble average axial

and tangential velocity, velocity magnitude and vorticity fields around the blade. For

conciseness ensemble averages are only shown for one of the five blade locations from

figure 3.2 since they are all nearly identical. As expected, the differences between

the mean and the instantaneous fields are mainly in the wake. This is also shown by

the contour plots of the standard deviation in figure 3.3b with the major fluctuations

occurring in the wake due to vortex shedding and inside the recirculation bubble.

Figure 3.3a shows that the detail information about the vortex shedding is lost in the

ensemble averages. For instance, the axial velocity shows a region of low velocity and a

region of high velocity where the vortex detaches from the upper part of the blade and

from the trailing edge of the blade respectively. But the details about alternating high

and low velocity regions observed in the instantaneous measurements downstream in

the wake are not visible. Similarly, the normal velocity does not present the type

of flow variations present in the wake in the instantaneous plots, rather it shows a

continuous region of high velocity (shown in red) indicating general flow retardation.

Perhaps, the only places where one can observe some details about the vortex shedding

is in the vorticy field region where the vortices of opposite circulation separate from

the airfoil. This is expected after evaluating in the instantaneous plots that the vortex

detachment from the airfoil takes a large part of the full shedding cycle.

A more quantitative description of the flow can be obtained by evaluating the in-

stantaneous flow velocity components around the external boundary as shown in

figure 3.4. The external boundary is given by the labeled a-b-c-d red box in figure

3.4. This is represented in the x -axis in figure 2.5 by the normalized line path q/h

where the boundary lines corresponding to a-b, b-c, c-d and d-a are 0 < q/h < 1.5,

1.5 < q/h < 4.2, 4.2 < q/h < 5.7, and 5.7 < q/h < 8.4 respectively. Three main
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regions are identified along the external boundary which are labeled as wake, low

pressure and high pressure. The wake region covers the vortex shedding and expands

the a-b and part of the b-c boundary. The low pressure region covers the upper part

of the blade and expands part of the b-c and c-d boundaries. The high pressure

region covers the lower part of the blade and expands parts of the c-d and d-a bound-

aries. Results are shown in figure 3.4 for three consecutive instantaneous velocities

(t∗ = 0.61, 0.67, 0.73). It shows that time variations are centered in the wake area

(0 < q/h < 1.5). When comparing instantaneous and ensemble averages in figure

3.4, the differences are again observed in the wake region. The ensemble average

shows that the high and low peaks observed in the instantaneous measurements due

to vortex shedding in the wake are filtered as the result of averaging the variations

of 100 instantaneous sets. No noticeable variations are observed in the low and high

pressure regions marked in figure 3.4 as shown by the near 0 standard deviation in

the region of 1.5 < q/h < 8.4 while there is up to ∼ 35% standard deviation in the

wake region.

3.2.2 POD analysis

Since the temporal information is limited in this case, the POD phase-averaged tech-

nique is applied to the raw data as explained in Sec. 2.4. In this formulation of the

problem, a rotating frame of reference is selected so the airfoil remains stationary in

the field of view. A comparison between the original raw data and the reconstructed

data from the first 2 most energetic modes is shown in Fig. 3.5. The velocity fields

(Figs. 3.5a and 3.5b) from POD are filtered; however, it preserves the main flow

features even at the wake of the airfoil. The vorticity field shows a good agreement

between raw and reconstructed data around the airfoil (including the recirculating

area), with higher differences revealed in the the wake, where more irregular vortex
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shapes are found. This is probably due to filtering secondary frequencies that may

be presented during the shedding process.

A reconstruction of one whole shedding cycle of the phase-averaged vorticity field

(Fig. 3.6) show the alternating pattern of the vortices in the wake. Moreover, the

vortices appear to decrease in intensity once they are convected downstream compared

to the raw case and more odd shapes are found. This may be due to the frequency

filtering. For this reason, the wake edge of the control volume should not be far from

the trailing edge of the airfoil when calculating instantaneous forces for this case.

3.3 Case 3 : Stationary airfoil

3.3.1 Raw data

Time-resolved instantaneous flow field characteristics around the stationary airfoil

are shown in figure 3.7. These results are non-dimensionalized using a characteristic

time, velocity, and length as described in Sec. 3.2.1.

Results are shown for three time steps where time has been non-dimensionalized by

the shedding time. For a given time, each row in figure 3.7 contains the instantaneous

axial (x -direction) and tangential (y-direction) velocity and the vorticity respectively.

The time evolution of the flow features around the airfoil again shows that these

remain constant with time except in the wake where the vortex shedding occurs and

in the upper side of the airfoil where the recirculating bubble is formed. In addition,

from the axial velocity, the transitional zone where the recirculating flow occurs can

be elucidated. Up to ∼ 26% standard deviation in velocity is calculated in the wake

region (smaller than Case 2 ).
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3.3.2 POD analysis

For this case, flow features are evaluated from the raw velocity fields as well as the

POD reconstructed velocity fields. In this case a full POD analysis is performed

with a total of N = 1000 snapshots taken. The reconstruction of the velocity field is

obtained by using the first 2, 4 and 10 most energetic modes (M = 2, 4, 10). Fig. 3.8a

and 3.8b show the relative energy, λn/
N
∑

n=1

λn, of each mode and the cumulative energy,

N=M
∑

n=1

λn/
N
∑

n=1

λn, respectively. Figure 3.8a shows that the first 2 modes are dominant.

Just the first 2 modes contribute more than 83% of the total energy content as shown

in Fig. 3.8b. The addition of modes 3 and 4 raises that value to about the 90% of

the total energy. By including the next 6 modes, the total energy content raises to

93%, which satisfies the restrictions stated by Holmes et al. (1998) about the number

of modes to be included (> 90% of the total energy). In addition, the energy content

was independent of the number N of instantaneous fluctuating velocity fields used for

the POD analysis for N > 100, in agreement with Oudheusden et al. (2005), ensuring

that the data is large enough to provide statistical convergence. The evolution of the

first 2 POD coefficients is shown in Fig. 3.8c as well as their power spectral density

(Fig. 3.8e and 3.8f). For a stationary random signal, the autocorrelation function of

the signal F (t) (Eq. 3.3) and its PSD (Eq. 3.4) are a Fourier transform pair (Pope,

2000)

X (τ) = 〈F (t)F (t+ τ)〉 (3.3)

PSD (ω) =

∫ ∞

−∞

X(τ)e−iωτdτ (3.4)

Both modes show the same dominant frequency with a phase difference of π/2. These

two modes are associated with the vortex shedding in the wake since the dominant
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frequency is the shedding frequency and, hence, high periodic changes in the flow

features are expected within one complete shedding cycle. In addition, the evolution

of the POD coefficients of modes 3 and 4 are shown in Fig. 3.8d as well as their

power spectral density (Fig 3.8g and 3.8h). Both modes have the same dominant

frequency and a phase difference of π/2. The dominant frequency for modes 3 and 4

is double the shedding frequency; hence, small periodic changes are expected within

half shedding cycle. Although not shown for brevity, modes 5, 6 and 8 show the

higher peak in their PSD at very low frequency. However, the peaks are not entirely

captured since the time series are short due to hardware limitations. In addition,

small high frequency peaks (15fshed and 19fshed) are found in modes 5, 7 and 8. These

modes can be associated to the Kelvin-Helmholtz instability in the separated shear

layer (Yarusevych et al., 2006); however, the separated shear layer in the upper side of

the airfoil is not fully resolved in this experiment to capture effectively the instability.

The remaining POD coefficients are much smaller in energy content and no dominant

frequencies were clearly identified except for the shedding frequency. Those modes

are said to be turbulent modes and noisy modes. Since the flow is mostly laminar,

these low energy modes can be due to small perturbances in the flow and errors in

the measurement method and can drain some energy at specific times.

The reconstruction of the velocity field from the most energetic modes (as explained

in Section 2.4) results in a cleaner representation of what is important in terms of

kinetic energy fluctuations. By removing high frequency noise and other less energetic

modes, errors that may propagate through the calculations are reduced. Figure 3.9

compares the original and reconstructed vorticity fields from the first 2, 4 and 10 most

energetic modes. The original field (Fig. 3.9a) shows the vortex shedding pattern in

the wake as well as the recirculating bubble in the suction side of the airfoil. The

POD vorticity fields (Fig. 3.9b, 3.9c and 3.9d) seem filtered from the calculations,

keeping the same flow features that the original flow field. Once the velocity fields
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are reconstructed, the force calculation analysis follows the same process showed in

Secs. 2.5 and 2.6. The next section shows the spectral analysis of the velocity signals

to identify main frequencies and structures in the wake of the airfoil, associated to

those observed in the most energetic modes.

3.3.3 Coherence structures

For the experimental conditions stated in Sec. 2.2, the wake of the airfoil reveals alter-

nating vortex patterns with opposite circulation at a shedding frequency of fshed = 3.9

Hz. The shedding frequency is obtained from the power spectral density analysis of

the velocity signal and by fitting the peak using a 3-point Gaussian peak estimator.

The spectral analysis is performed at different x/h and y/h locations as shown in Fig.

3.10a and Table 3.10b. Probes 1 and 2 are situated close to the leading edge in the

upper and lower side of the airfoil. Probe 3 is located at the mid-span on the lower

side of the airfoil. Probe 4 is located within the recirculating area in the upper side

of the airfoil. Probes 6, 7 and 8 are located at the wake of the airfoil. The PSD of

the axial velocity u (Fig. 3.11a) and vertical velocity v (Fig. 3.11b) disclose the main

shedding frequency as well as a secondary less dominant frequency which is double

the shedding frequency at the wake locations. This is in agreement with the dominant

frequencies observed in the POD coefficients from the first 4 modes. The secondary

frequency seems to have a larger peak in the axial direction (u-direction), which

means greater changes every half shedding cycle are expected in the axial direction

compared to the vertical direction. In the wake of the airfoil, a lower frequency is

also identified which does not show a clear peak (limited by the number of images

the camera can store), in agreement with the frequencies found in modes 5, 6 and 8.

In addition, Fig. 3.11a and 3.11b reveals that important changes are only occurring

in the wake of the airfoil and inside the recirculating bubble, since the peaks of the
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PSD in those locations is much greater (∼ 3 order of magnitudes) than the PSD

calculated at the other locations. Therefore, fluctuations in derived quantities such

as forces are expected to fluctuate almost exclusively due to changes in the wake of

the airfoil. Another way of showing that fluctuations just happen on the wake is by

showing the RMS of the velocity as in Fig. 3.12a and 3.12b. The higher RMS of the

velocity happens in the wake and the beginning of the recirculating area (∼ 26%).

However, they do not provide any information about dominant frequencies. A study

of how the vortex shedding is affecting the force fluctuation is analyzed in detail in

the Section 6.3.
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Figure 3.1: Velocity field around the rotating airfoil for Case 1 at the 85 % of the ra-
dius of the rotor for a) the instantaneous axial velocity, b) the ensemble averaged axial
velocity, c) the instantaneous tangential velocity and d) ensemble averaged tangential
velocity
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Figure 3.2: Contour plots of six instantaneous time-resolved axial, tangential and
total velocity fields and vorticity field at the 75 % radius location of the rotating
airfoil for Case 2. The x and y-directions are referred throughout as the axial and
tangential direction respectively
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Figure 3.3: (a) Ensemble average and (b) standard deviation contour plots of the
axial, tangential and total velocity fields and vorticity fields for Case 2



58

Figure 3.4: (a) Axial and (b) tangential velocity along the boundary of the control
volume for Case 2. Each plot includes the results for three consecutive instantaneous
measurements, the ensemble average and the standard deviation. A 0.4 offset of is
used to separate the three instantaneous cases
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Figure 3.5: Comparison between raw data and phase-averaged POD data for Case 2.
(a) Axial velocity field, (b) tangential velocity field and (c) vorticity field



60

Figure 3.6: Reconstruction of the vorticity field from POD at 4 different phase angles
(ϕ) for Case 2
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Figure 3.7: Contour plot of three instantaneous time-resolved axial and tangential
velocity fields and vorticity field for Case 3
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Figure 3.8: POD analysis of the flow for Case 3. (a) Relative energy, (b) cumulative
energy, (c) time evolution of the first and second most energetic modes, (d) time
evolution of the third and fourth most energetic modes, (e) PSD of the 1st mode, (f)
PSD of the 2nd mode, (g) PSD of the 3rd mode and (h) PSD of the 4th mode
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Figure 3.9: Instantaneous vorticity fields of the original field (raw data) and the
reconstructed field from POD by taking the first 10 modes, 4 modes and 2 modes
containing the highest relative energy for Case 3
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Figure 3.10: (a) Probe locations around the airfoil where the PSD analysis is done
for Case 3. (b) Table showing the probe x/h and y/h locations
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Figure 3.11: Power spectral density of (a) axial velocity, u, and (b) vertical velocity,
v, at different probe locations (see Fig. 3.10) for Case 3
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Figure 3.12: Root mean square of the (a) axial and (b) vertical velocity for Case 3
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Chapter 4

Local and convective accelerations

To solve for the pressure gradient from the Navier-Stokes equations, the local accel-

eration, convective acceleration and viscous term are needed. They can be calculated

from spatial and temporal finite differences of the TR-PIV velocity data. The pres-

sure gradient is then used to solve for the pressure. In addition, the acceleration term

is needed when calculating forces since it has an important contribution to the total

force fluctuation.

4.1 Case 1 : High-rpm water turbine

The contribution of each term to the pressure gradient can be evaluated by using

the temporal and spatial gradients of the computed velocity fields. For instance,

Fig. 4.1 shows contour plots with the x -component contribution from each term. In

a stationary reference frame the dominant terms are the local acceleration and the

convective acceleration. On the order hand, the diffusive term is about two orders

of magnitude smaller and it can be neglected. This is expected since the average

Rec based on the cord of the airfoil is about 25000. By applying the methodology

described in Sec 2.3 the local acceleration can be obtained from two non-consecutive

velocity fields. However, since regular 2D-PIV is used, the local acceleration at the

wake is not properly resolved. The quasi-instantaneous values (as explained in Section

2.3) will serve as a reference where the flow is steady (outside the wake) and only the
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mean values and standard deviations are discussed.

4.2 Case 2 : Low-rpm water turbine

4.2.1 Raw data

Both instantaneous local and convective terms for the x - and y-momentum equations

are shown in Fig. 4.2, with the accelerations non-dimensionalized by aref = Uref/tref .

For conciseness the viscous term is not shown as its magnitude is nearly two orders of

magnitude smaller than the others and can be considered negligible. This is expected

since the average Rec based on the cord of the blade is ∼ 11000.

A direct comparison of all the momentum equation terms in Fig. 4.2 show that their

range of magnitudes are comparable and therefore none of them should be neglected.

Traditionally, the unsteady term has been neglected for wind turbines with quasi-

steady flows (Ragni et al., 2011) through the choice of a rotating reference frame.

When a fixed frame is used, the unsteady term cannot be neglected even in regions

with quasi-steady flow such as the blade leading edge where strong acceleration and

decelerations are observed. There is also a strong deceleration (shown in blue in

Fig. 4.2) in the axial-direction in the upper side of the blade from the recirculation

zone where high speed fluid is entrained and slowed down. Similarly, there is also

acceleration in the tangential-direction near the wall as the recirculating zone moves

fluid upstream along the upper side of the blade (shown in red in Fig. 4.2). However,

the largest unsteady acceleration magnitudes are observed in the wake due to vortex

shedding. But to date, this contribution has been neglected in wind turbines.

The effect of the convective acceleration term is important in regions where there are

spatial velocity gradients along the streamline. This includes the leading edge and

wake as shown in Fig. 4.2 with the largest magnitudes observed in the wake and the
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recirculation area. This is the result of vortices of opposite circulation being shed that

generate large velocity changes and accelerations. This is shown in the contour plots

of the instantaneous local and convective acceleration field by the alternating patterns

of positive (red) and negative (blue) value regions in the wake. These patterns are

convected in time which is consistent with that of the shedding.

The time evolution of flow structures in the wake indicates that the quasi-steady flow

approximation cannot be used for force and pressure calculations even for rotating

frames of reference. This is further observed when comparing the instantaneous mea-

surements to ensemble averages. For instance, Fig. 4.3a shows contour plots of the

ensemble average local and convective acceleration field in the x - and y-momentum

equations. As expected, the only differences between the mean and the instantaneous

fields are in the wake shedding region. This is also shown by the contour plots of the

standard deviation in Fig. 4.3b with the major fluctuations occurring in the wake

due to vortex shedding and inside the recirculation bubble. Similar to the discussion

in reference to Fig. 3.2 and 3.3, the shedding details are partially lost in the ensemble

averages. For instance, the mean axial acceleration field shows a region of acceleration

but details about the alternating acceleration and deceleration previously observed

have been filtered during the averaging. In addition, the vortex detachment from the

blade takes a large part of the full shedding cycle. Thus, the mean local and con-

vective acceleration fields show a strong acceleration and deceleration, respectively,

attached to the trailing edge.

Further evidence of the time dependence of the flow in the wake can be obtained

by evaluating the instantaneous local acceleration around the external boundary as

shown in Fig. 4.4. The external boundary is given by the labeled a-b-c-d red box

in Fig. 4.4. This is represented in the x -axis in Fig. 2.5 by the normalized line

path q/h where the lines corresponding to a-b, b-c, c-d and d-a are 0 < q/h < 1.5,
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1.5 < q/h < 4.21.5 < q/h < 4.2, 4.2 < q/h < 5.7, and 5.7 < q/h < 8.4 respectively.

The three instantaneous local acceleration results in Fig. 4.4 (t∗ = 0.61, 0.67, 0.73)

show that the time variations are centered in the wake area (0 < q/h < 1.5) where

the large acceleration peak (q/h ∼ 1) fluctuates. When comparing instantaneous and

ensemble averages values, the differences are again observed around the acceleration

peak in the wake. The ensemble average shows a lower acceleration peak than the

instantaneous ones as the result of averaging the variations of 100 instantaneous sets.

No noticeable variations are observed outside this region of 0 < q/h < 1.5 as shown

by the near 0 standard deviation in the region of 1.5 < q/h < 8.4 while there is up to

∼ 50% standard deviation in the wake. Thus, these results show that a quasi-steady

flow approximation would not be appropriate in the wake region due to the vortices

crossing the labeled a-b line which results in acceleration peak fluctuations.

4.2.2 POD analysis

Local and convective accelerations are also shown for the POD case (Fig. 4.5). A

direct comparison to the raw data is not suitable since both methods use two different

frames of reference. The local acceleration remains almost zero everywhere around the

airfoil (including the recirculating area), except for the wake. Alternating patterns

of accelerating fluid are observed in the wake of the airfoil, again consistent with the

vortex shedding. In addition, the axial acceleration seems to be more intense than

the tangential acceleration. This is maybe due to the lost of information in filtering

secondary frequencies, since the tangential acceleration should contain small changes

every half shedding cycle as explained in Sec. 3.3 for the case of the fixed airfoil.

Convective accelerations are about the same order of magnitude as local accelerations

and present similar patterns at the shedding frequency. However, they show some

non-zero constant features around the airfoil as shown in Fig. 4.5. Nevertheless, the
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higher convective accelerations happen in the wake.

4.3 Case 3 : Stationary airfoil

4.3.1 Raw data

For the case of the stationary airfoil, the local acceleration shows similar trends as

the ones obtained for the phase-averaged POD accelerations in Case 2 (Sec. 4.2.2) as

shown in Fig. 4.6. Almost zero local acceleration values are found around the airfoil

(including the recirculating area), except in the wake of the airfoil for both axial and

vertical local accelerations. The accelerated flow features observed in the wake are

consistent with that of the vortex shedding. An analysis of how the local acceleration

term affect the calculated forces is done in Ch. 6.

4.3.2 POD analysis

A comparison between the axial and tangential local accelerations from raw and 4-

modes POD data is shown in Fig. 4.7. Both accelerations seems to be slightly filtered

from the POD analysis, preserving the same features observed in the raw case.
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Figure 4.1: Contour plots of the different terms used in the pressure gradient cal-
culation for Case 1 including a) instantaneous and b) mean local acceleration, c)
instantaneous and d) mean convective acceleration and e) instantaneous and f) mean
viscous diffusion
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Figure 4.2: Contour plots of three consecutive instantaneous time-resolved axial and
tangential local acceleration fields and axial and tangential convective acceleration
fields for Case 2



74

Figure 4.3: (a) Ensemble average and (b) standard deviation contour plots of the
axial and tangential local acceleration fields and axial and tangential convective ac-
celeration fields for Case 2
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Figure 4.4: (a) Axial and (b) tangential local acceleration along the boundary of
the control volume for Case 2. Each plot includes the results for three consecutive
instantaneous measurements, the ensemble average and the standard deviation. A
0.4 offset of is used to separate the three instantaneous cases
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Figure 4.5: Contour plots of the time-resolved axial and tangential local acceleration
fields and axial and tangential convective acceleration fields from the time-averaged
POD for Case 2
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Figure 4.6: Contour plots of three instantaneous time-resolved axial and tangential
local acceleration fields for Case 3
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Figure 4.7: Comparison between raw data and 4-modes POD data for Case 3. (a)
Local axial acceleration and (b) local tangential acceleration
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Chapter 5

Pressure evaluation

Having resolved the instantaneous local and convective acceleration, the axial and

tangential pressure gradients are simply the negative of the sum of those two accel-

erations in the axial and tangential direction respectively. For conciseness a time-

resolved evolution of the pressure gradients is not included as it is just the sum of

those two terms shown in Fig 4.2. Although not presented, it shows the same char-

acteristics already described in Figs. 4.2 and 4.3 with only changes in the wake as

the vortex shedding creates regions of alternating high and low pressure downstream

of the trailing edge. The calculated pressure gradients at the inner and outer bound-

aries are used as Neumann boundary conditions to solve for the pressure field from

the modified PPE (Eq. 2.11). The pressure term is needed to compute forces from

the integral momentum equation.

5.1 Case 1 : High-rpm water turbine

A typical quasi-instantaneous pressure field calculated using the PPE for the flow

around the blade airfoil is shown in Fig. 5.1a. All the terms in the equation are

obtained from the derivatives of the velocity fields obtained from the PIV measure-

ments. The pressure differences are non-dimensionalzed by the dynamic pressure at
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the radial station rz = 0.85R

p∞ =
1

2
ρ
(

U2
∞ + (Ωrz)

2
)

(5.1)

The contour plot shows that there is a region of high pressure where the velocity is

the smallest at the leading edge. It also shows a region of low pressure corresponding

to the flow accelerating in the upper part of the blade. The maximum residual error

when solving the Poisson equation was 0.002 which is slightly higher than the residual

error found during the validation of the method in Sec. 2.5; however, small compared

to the PIV errors. This maybe be due to the inclusion of inner boundaries within the

field of view. When comparing the quasi-instantaneous pressure field in Fig. 5.1a to

the average pressure field in Fig. 5.1b, the average pressure show the same effects

previously discussed but there is an overall reduction in pressure intensity due to the

variations in the instantaneous pressure field, especially in the wake.

The quasi-instantaneous and averaged pressure fields calculated from the PPE in Figs.

5.1a and 5.1b can be compared to the pressure fields calculated from the Bernoulli

equation in Figs. 5.1c and 5.1d. This later method has been used in the literature for

calculating the averaged pressure field from a rotating frame of reference, although

it is known to be accurate only far from the blade and outside the wake flow. A

comparison shows that the pressure field intensity is smaller near the blade for the

Bernoulli method. This is due to the method not taking into account the local

acceleration which is important near the blade for stationary frames of reference. This

shows that the local acceleration should not be neglected for these measurements, and

that the pressure field around a turbine blade calculated from the Bernoulli equation

will be underestimated. This finding can be extrapolated to the forces in the blade

which should also be underestimated when using the Bernoulli equation as discussed

in the next chapter (Ch. 6).



81

One of the main variables that contributes to the calculated force is the pressure

gradient which results from the differences in pressure across the blade surface. The

typical instantaneous pressure gradient field in the x -direction calculated using the

Navier-Stokes equation for the flow around the turbine is shown in Fig. 5.2a. The

contour plot shows a high positive pressure gradient in the upper part of the blade

responsible for the acceleration of the flow and a high positive and negative pres-

sure gradient at the leading edge responsible for the stagnation point and where the

velocity is the smallest. To validate the results obtained from the PPE, the instanta-

neous pressure gradient can also be obtained by taking the spatial derivative of the

pressure field obtained from the Poisson equation. A comparison between the calcu-

lated instantaneous pressure gradient from the Navier-Stokes equation in Fig. 5.2a

and the recovered pressure gradient from the Poisson equation in Fig. 5.2c shows a

good agreement, which helps validating the numerical calculations. The higher differ-

ences are found in the wake since the acceleration term is not properly resolved there.

In addition, Figs. 5.2b and 5.2d show the mean pressure gradient calculated from

the Navier-Stokes equation and Poisson equation respectively, showing the common

characteristics of its typical instantaneous pressure gradients. Although not shown

for brevity, similar results are obtained for the pressure gradient in the y-direction as

those in the x -direction for the two methods discussed.

The integration of the pressure is performed around the surface of a control volume

within the field of view with a size 52× 16mm that encloses the entire cross section

of the airfoil and extends beyond the boundary layer. As part of solving for the

forces, an accurate calculation of the quasi-instantaneous pressure around the exter-

nal control volume boundary is needed. Typical pressure values around the control

volume boundary are shown in Fig. 5.3a for the three methods discussed in Section

2.5, Poisson, Bernoulli and spatially-integrated pressure. Results from the proposed

Poisson method are much larger in magnitude to those from the Bernoulli method.
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As discussed previously, these differences are due to the acceleration term which is

properly resolved in the PPE but neglected in the Bernoulli equation. Due to the

importance of the acceleration term in a stationary reference frame when considering

a rotating blade, Bernoulli cannot be applied. In the other hand, in a rotating refer-

ence frame where the unsteady term contribution is not that significant Bernoulli has

been commonly used. However, the Bernoulli method is inefficient when unsteady

flow or vortical structures are presented in the wake even in the rotating frame and the

Poisson method needs to be applied. A comparison between the proposed PPE and

the spatially-integrated pressure method show significant differences as well. While

qualitatively the results are similar, in the case of the spatially integrated pressure

method, different integration paths result in different pressures obtained which for a

scalar integration it should be independent of the integration path. Furthermore, this

method is unable to recover the reference pressure value at the end of the boundary

integration as the result of the marching solution scheme applied to an instantaneous

PIV image where any small error is compounded. This justifies that the calculated

pressure at the end of the spatially integration in Fig. 5.3a is different from the one it

started with, even though it is a closed path and should return to the same point. In

addition, this effect becomes larger by increasing the size of the control volume. This

shows that the spatially integrated pressure method should not be used to calculate

the instantaneous pressure.

A different situation appears when calculating the average pressure around the ex-

ternal boundary. The mean boundary pressure using the Bernoulli method deviates

from the Poisson method due to the local acceleration term being neglected as was

the case in the instantaneous pressure calculation. However, the mean pressure gives

similar results when the spatial-integration is used. In that case, shown in Fig. 5.3b,

the spatially integrated pressure and the PPE methods are in good agreement. When

comparing the results between the instantaneous and mean integration methods, the
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later one seems to almost recover the reference pressure value at the end of the bound-

ary integration due to an averaging of the random error. Furthermore, the results

for the instantaneous and mean Poisson methods are very similar which indicates the

robustness of the method. A closer look at the error in the recovered pressure for the

spatial-integration method is shown in Fig. 5.4 as a function of the control volume

size. The figure shows that the error decreases with decreasing the size of the control

volume. This is expected since the total propagation error will decrease for smaller

number of integration steps.

5.2 Case 2 : Low-rpm water turbine

5.2.1 Raw data

A typical time-resolved evolution of the instantaneous pressure field around the blade

is shown in Fig. 5.5. The pressure is non-dimensionalized by the dynamic pressure

(Eq. 5.1). The maximum residual error when solving the PPE was 0.0018, which is

similar to the residual error found in Case 1. This is the first time the instantaneous

pressure field has been resolved for a rotating airfoil. There are two common features

in all time steps in Fig. 5.5. One is the region of high pressure close to the leading

edge of the airfoil and the other is the region of low pressure in the upper part

of the blade (where the flow is accelerating). What is perhaps more revealing is

that pressure is changing within the recirculating bubble from negative to almost

reference pressure. This can be explained by the change from low pressure values

near the leading edge (blue) to the reference pressure (green) near mid-cord which

would result in flow retardation and recirculation. Further downstream, still on the

upper side of the blade, a low pressure region is again found which accounts for

the region where vortices detach from the blade as part of shedding onset. Once in
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the wake, a low pressure is observed surrounded by near reference pressures (green).

This is a complex region shaped by both the long vortex detachment process from

the trailing edge and the upper blade and by the shedding of vortices of opposite

circulation that follows. A closer wake inspection reveals a local minimum pressure

close to the vortex cores. However, due to the high differences in pressure around the

blade, that local minimum appears unclear in the contour plot.

The mean pressure field in Fig. 5.6a shows features similar to the instantaneous

pressure fields in Fig. 5.5; however, the pressure is filtered during the averaging

process. Nevertheless, the contour plot of the pressure root mean square in Fig. 5.6b

reveals major variations of the pressure occurring in the wake and the recirculating

bubble. These variations reach values near the reference pressure.

Time variations in pressure can be quantitatively evaluated from instantaneous pres-

sure plots around the external boundary as shown in Fig. 5.7. The normalized x -axis

shows the line path along the lines corresponding to a-b, b-c, c-d and d-a in Fig. 2.5.

The figure shows in b-c the effect from the lower pressure in the upper side of the

blade. It also shows in c-d-e the effect from the higher pressure in the lower side of the

blade. As expected, only in the wake does the pressure vary significantly during the

three consecutive instants in time shown due to the vortices crossing the labeled a-b

line. This is described by a sharp and narrow low pressure for t∗ = 0.61 at q/h ∼ 1

that changes in time (t∗ = 0.67 and 0.73). This figure also shows the calculated mean

pressure which is in good agreement with the instantaneous measurements except,

again, in the wake where the instantaneous pressure fluctuates due to the passing

vortices. In addition, the standard deviation plot in Fig. 5.7 shows that the main

pressure fluctuations (∼ 28%) occur in the wake region similar to previous observa-

tions when evaluating the acceleration and velocities. This good agreement between

instantaneous and mean pressures also indicates the robustness of the PPE method
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used.

5.2.2 POD analysis

A comparison between both raw and reconstructed pressure from the first 2 most

energetic modes is shown in Fig. 5.8. The pressure fields from the phase-averaged

POD analysis are filtered, especially in the wake. However, it preserves the main flow

features. This is again probably due to the filtering of secondary frequencies that may

be presented during the shedding process. The pressure term in the calculated forces

contains a high peak frequency at double the shedding frequency (observed in Case

2 ); therefore, by just considering the first 2 modes, results of the calculated pressure

at the wake are expected to deviate from the raw data.

5.3 Case 3 : Stationary airfoil

5.3.1 Raw data

For the case of the stationary airfoil, the pressure shows similar features that the ones

obtained for Case 2 as shown in Fig. 5.9. For the three instantaneous measurements,

a high pressure zone at the leading edge as well as the low pressure zone at the

upper side of the airfoil are observed. In addition, convected low pressure features

are identified at the wake which are coincident to that of the vortex cores.

5.3.2 POD analysis

A comparison between pressure fields from raw and 4-modes POD data is shown in

Fig. 5.10. The pressure field seems to be slightly filtered from the POD analysis,

preserving the same features observed in the raw case. In comparison to Case 2,
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differences in pressure at wake are not deviated when compared to the raw data,

supporting the need of including secondary frequencies for more accurate calculations.
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Figure 5.1: Contour plots of the pressure field around the airfoil for Case 1 for a) in-
stantaneous and b) mean pressure fields obtained from the PPE, and c) instantaneous
and d) mean pressure fields obtained from the Bernoulli equation
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Figure 5.2: Contour plots for Case 1 of a) instantaneous and b) average pressure
gradients in the x -direction calculated from the Navier-Stokes equation and c) in-
stantaneous and b) average pressure gradients in the x -direction calculated from the
PPE
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Figure 5.3: a) Instantaneous and b) mean pressure along the external boundaries of
the smallest control volume (52x26mm2) for Case 1. The origin is at q = 0 for all
three methods (see Fig. 2.5 to find the corresponding points for a, b, c and d in the
control volume)
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Figure 5.4: Measured error in the spatially integrated pressure method as a function
of the size of the control volume for Case 1, where p0start and p0end are the calculated
pressures at q = 0 at the beginning and at the end of the integration respectively
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Figure 5.5: Contour plots of three instantaneous time-resolved pressure fields for Case
2
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Figure 5.6: (a) Ensemble average and (b) standard deviation contour plots of the
pressure field for Case 2



93

Figure 5.7: Calculated pressure along the boundary of the control volume for Case
2. Each plot includes the results for three consecutive instantaneous measurements,
the ensemble average and the standard deviation. A 0.4 offset of is used to separate
the three instantaneous cases



94

Figure 5.8: Comparison between raw and 2-modes POD pressure fields for Case 2
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Figure 5.9: Contour plots of three instantaneous time-resolved pressure fields for Case
3
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Figure 5.10: Comparison between raw and 4-modes POD the pressure fields for Case
3
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Chapter 6

Force evaluation

In this chapter, aerodynamic forces created by moving and stationary airfoils are

calculated and discussed for the three cases of study. The contribution of each term in

the integral momentum equation is also evaluated. In addition, the robustness of the

modified PPE method is demonstrated by showing the independence of the calculated

forces with both control volumes size and origin of the coordinates system. Moreover,

the PPE method is compared to other methodologies used in the past. Calculated

forces are combined with flow structures observations to disclose relations vortex-

force. This allows us to create a model of that relationship by identifying minimum

and maximum forces with the shape of the wake simultaneously as shown in the next

figure. The proposed model is briefly explained here and will be disclosed and further

discussed in this chapter. The model shows how the vortex formation, growth and

release affect the force fluctuations. The ∆ symbol refers to the incremental value

about the mean force. The arrows close to those incremental values of the force in

this figure indicate the direction of the force fluctuations about the mean value. Plus

and minus signs inside the vortex indicate the sign of the vorticity. Maximum drag is

found when the trailing vortex reaches it maximum size. Maximum lift follows after

the trailing edge vortex is detached and the suction side vortex is initially formed

within the recirculating area. Then, minimum local drag is found when the suction

side vortex grows about the half of its maximum size. Subsequently, maximum local

drag occurs when the suction side vortex reaches its maximum size. Afterwards, an
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Model showing the relation between force fluctuations and the shape of the wake
for one shedding cycle for (a) absolute maximum drag, (b) maximum lift, (c) local
minimum drag, (d) local maximum drag, (e) minimum lift and (f) absolute minimum
drag

initial trailing edge vortex formation and a release of the suction side vortex cause

minimum lift values. Finally, minimum drag is found when the trailing edge vortex

grows about the half of its maximum size.

6.1 Case 1 : High-rpm water turbine

The quasi-instantaneous forces created by the rotor blade per unit length are resolved

by the integral momentum method described in Sec. 2.6. Once the pressure on the
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boundaries is known, an analysis of the contribution of each integral in Eq. 2.19 to

the calculation of the tangential and normal forces is performed. The contribution

to the normal force was 36, 2, 62 and ∼ 0% for the unsteady term, the convective

term, the pressure term and the viscous term respectively. The contribution to the

tangential force was 21, 69, 10 and ∼ 0% for the unsteady term, the convective

term, the pressure term and the viscous term respectively. This dimensional analysis

shows the importance of the unsteady, convective and pressure terms in a stationary

reference frame, while the viscous term is negligible.

Forces generated by the blade can now be evaluated using Eq. 2.19. These are

tabulated in Table 6.1 for the three methods discussed above (PPE, Bernoulli and

integrated-pressure) as well as for the BEM theory. The table shows mean and the

standard deviation for the tangential and normal force coefficients exerted by the

blade for the smallest control volume (since the integrated pressure method error

is smaller at smaller control volumes for better comparison). Although there is no

exact theoretical solution known, the BEM theory, which is a modified 2D model,

has been widely accepted as a good estimation in wind turbines design. For the

present study this model was revised to include Prandtl (Prandtl & Betz, 1927) and

Glauert (Glauert, 1935) corrections. Using the calculated forces from this theory as

a reference, the results obtained by the three methods will be discussed.

First, the calculated mean normal forces are considered. Both results from the Pois-

son and spatially integrated pressure methods are 14% and 15% lower than the one

predicted by the BEM theory. These lower values are typical when compared to the

ideal 2D conditions from the theory and the propagation error from PIV. On the

other hand, the Bernoulli method largely under predicts the normal force since the

acceleration term is neglected and it is not recommended for these measurements.

Considering that the blade is rotating free at a constant speed, the total tangential
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force when integrating over the full length of the blade should be zero. This means

that while the inner part of the turbine produces a positive tangential force per

unit length, the outer part produces a negative force per unit length. Measurements

are taken at 85%R where a likely negative or close to zero force is expected. The

calculated mean tangential force from the PPE method is in good agreement with the

small negative force predicted by the BEM theory. In addition, a good agreement is

obtained from the mean force from the integrated pressure method. However, more

deviated results are obtained from the Bernouilli equation.

There is a large standard deviation (RMS) in the calculated instantaneous forces when

using the integrated pressure method due to the error associated with accurately

resolve the pressure at the boundaries. On the other hand, the Bernoulli method

had the smallest standard deviation of the three methods but it does not resolve the

actual temporal variations of the velocity resulting in the pressure and the forces being

under resolved. Therefore, neither method is recommended for any instantaneous

force calculations. For the Poisson method, the ±0.10 and ±0.04 standard deviations

in the calculated instantaneous forces is likely due to the small vortex shedding.

Otherwise, these results are within half standard deviation from the BEM theory and

it is proposed for measurement of mean forces.

When using the integral momentum theorem, the calculated forces should be inde-

pendent of the control volume size used for the measurements as long as the control

volume encloses the entire cross section of the airfoil and extends beyond the boundary

layer. To test for any effect that the control volume size might have on the calculated

forces, the measurements are repeated for eight different size volumes that ranged

from 63×45 mm for the largest to 52×16 mm for the smallest. Results are shown in

Fig. 6.1 for the mean tangential and normal forces as well as their standard deviations
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as a function of the volume size. Both forces calculated from the Bernoulli and the in-

tegrated pressure methods are dependent on the volume size for the range of volumes

considered which makes the methods inaccurate. These two methods show a larger

standard deviation for bigger control volumes. In addition, the integrated pressure

method only approaches the tangential and normal forces obtained from the Poisson

method for the smallest control volumes close to the airfoil. This is supported by the

results shown in Fig.5.4, where the reference pressure is almost recovered for small

volumes. Only the modified PPE method satisfies the condition that the calculated

tangential and normal forces and their standard deviation should be independent of

the control volume size as observed in Fig. 6.1. For this method, the variation in the

calculated forces is small with a standard deviation of 0.03 and 0.02 for the tangen-

tial and normal forces respectively. This shows the method’s stability for calculating

blade forces. When combined with the earlier observations about the quality of the

pressure and pressure gradient fields as well as the error analysis, it shows that the

PPE method is a robust method for force measurements.

6.2 Case 2 : Low-rpm water turbine

6.2.1 Raw data

The instantaneous load per unit length on the blade is obtained from the integral

momentum PPE method described in Sec. 2.6. The integration is performed on the

control area labeled a-b-c-d in Fig. 2.5. Three typical time series of the normalized

instantaneous normal and tangential forces, Cn and Ct, are shown in Fig. 6.2.

Time-resolved series expands above half a shedding cycle (limited by the size of the

field of view). It shows during that time the normal force varying up to ∼ 40% while

the tangential force remains relatively constant (∼ 10%). A closer inspection of the
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integral momentum equation terms shows how they contribute to the total forces.

These terms are the acceleration, pressure and convective term, and they are also

plotted in Fig. 6.2. For the normal force, the convection term, Cnc, has a negligible

contribution, while the acceleration term, Cna, is important and has a near constant

value. Nevertheless, the largest contribution to Cn is from the pressure term, Cnp,

with Cn closely following the same trend as Cnp. For the tangential force, Ct, the

main contribution is from the convective term, Ctc. Both contributions Cta and Ctp are

small but they show opposing trends and when one increases the other decreases and

vice versa. This opposing behavior, circled in Fig. 6.2 for clarity, was characteristic of

most time series in the present study and has also been observed in the literature for

vortex shedding on a square cylinder (Kurtulus et al., 2006). A closer inspection at

the instantaneous vorticity fields reveal that this opposing behavior between Cta and

Ctp can be associated with the time period when vortices are released (detached) from

the trailing edge of the airfoil. These observations are typical for all the time series

evaluated and should be considered a common signature during vortex shedding. The

importance of the unsteady, convective and pressure terms can also be shown from

averages values. For instance, the main contributions to the normal force were 39

and 60 % for unsteady and pressure terms respectively. In the case of the tangential

forces, the main contributions were 20, 63 and 17 % for unsteady, convective and

pressure terms respectively.

When using the integral momentum PPE equation, the calculated forces should be

independent of the control area size used for areas enclosing the blade cross-section

and extending beyond the boundary layer. To test the independence of the method

from the control area selected, the forces are calculated for nine areas ranging in size

from 82× 60mm2 to 55× 23mm2. The instantaneous values of the force coefficients

are shown in Fig. 6.3a. They reveal independency of the control volume size with

a maximum measured variation between control volumes for all the sets of 0.07 and
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0.05 for the normal and tangential force coefficients respectively. The mean and

standard deviation of the force coefficients are shown in Fig. 6.3b. The standard

deviation between all calculated mean forces for the different control volumes is 0.04

and 0.02 for the tangential and normal force coefficients respectively, which are small

compared to the mean value of the forces, ensuring the area independence of this

method. A closer inspection at the integral momentum equation terms shows how

they contribute to the forces for the different areas selected. Although the force is

independent of the control volume, the different terms in the equation are not. As

a matter of fact when solving the integral momentum equation for larger areas, the

acceleration term becomes more important and the pressure term contribution to the

total force is smaller while the convective term remains small. Physically this can be

explained by the fact that the pressure and convective term are line integrals that

only need to be solved around the boundary while the acceleration term is a surface

integral that needs to be solved in the entire area. As such, if the area enclosing the

blade is large enough, the effect of pressure and convective terms will only be weakly

felt at the boundaries. On the other hand, the acceleration term, which is written as

a surface integral over the entire domain, can only increase as the domain increases.

Additionally, forces are calculated by using three other derived momentum equations

as described in Sec. 2.6. These three methods are the Noca method or impulse mo-

mentum equation, the Wu(adv.) method or vorticity advection momentum equation

and the Bound method or “flux” momentum equation and they are compared to the

PPE method. Figure 6.4 shows the normal and tangential force coefficients for the

four methods and for two different locations of the origin of the coordinates system.

The changes in the origin of the coordinates systems is tested since Noca et al. (1999)

reported anomalous changes in the forces due to this feature. The deviations were

reported to be caused by the arm-moment introduced in calculating the moment of

vorticity or velocity. Fluctuations in the normal force seems to be highly affected by
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placing the origin at the wake for the Noca and Wu(adv.) cases compared to the

origin at the center of the wake. On the other hand, higher fluctuation occur in the

Bound method for the tangential force when the origin is located at the center of the

airfoil compared to locating the origin at the wake edge. However, the PPE method

is independent of the origin of the coordinates system. In addition, the smallest fluc-

tuations are also found by using the PPE method for both tangential and normal

forces.

To further validate the results, the tangential and normal forces measured are com-

pared in Table 6.2 along with the theoretical model (BEMT). The model uses the

BEM theory with the airfoil aerodynamic data collected from XFOIL. Similar models

are widely used as a first estimation during the wind turbine design. From this table,

theory and PPE results show a good agreement for the normal force (< 0.5 RMS)

and more deviated results for the tangential force (< 1.6 RMS). It is reasonable to

expect these variations in the forces considering that the BEM theory is a modified

1D model with some 2D and 3D corrections that cannot fully resolve the 2D flow and

the complex features observed such as the shedding in the wake and the recirculating

region. In short, the BEM theory has its limitations and it should not be taken as

the actual force. The other three methods show high deviated mean results as well as

high RMS values in addition to the origin of the coordinates system location depen-

dence, which indicates that these three methods should not be used for these kind of

measurements.

Although not showed for brevity, changes in the size of the control volume also affected

the force fluctuations obtained by the other three methods, while the PPE method

remained independent. In the next section, an impact of the size of the control volume

size is analyzed.

In addition, forces from Wu(dif.) or vorticity diffusion momentum equation (Eq.
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2.25) were calculated. Results showed an almost zero value for both tangential and

normal forces. This can be explained by looking at Wu et al. (2007), since high

vorticity difussion values happens within a small area close to the surface of the

cylinder. Therefore, in this kind of experiments is difficult to capture any diffusion of

the vorticity since the resolution needed to capture those features is high close to the

surface of the object. However, it may be suitable for numerical simulations, where

the area close to the object can be fully resolved.

Although not shown for brevity, similar results to the ones obtained for Case 1 are

found when applying the Bernoulli or the integrated pressure methods.

6.2.2 POD analysis

From the last section, the calculated force fluctuations values were unrealistic due to

error propagation (up to 33% RMS using the PPE method). This was also observed

by Charonko et al. (2010), who used a POD reconstructed velocity field to analyze the

pressure. The error is noticeable reduced by using this method and it is applied in the

present manuscript. Forces are calculated from the phase-averaged POD velocity field.

Figure 6.5 shows the normal force coefficient for 1.5 shedding cycles and four different

control volume sizes by just changing the location of the wake edge (y/h|wake). Since

the only frequency addressed by this method is the shedding frequency, all force

functions will be periodic at this frequency and just one whole cycle is needed to

characterize force fluctuations. This figure shows the similarity of the other three

methods when calculating the normal force. However, even though the fluctuations

are smaller than the ones found for the raw case, they still differ from the PPE

method. In addition mean value, amplitude and phase are dependent of the size of

the control volume for the three methods. On the other hand, mean value, amplitude

and phase of the force calculated from the PPE method remains almost independent
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of the control volume size and the RMS are noticeably reduced compared to the raw

data case.

Larger differences between the other three methods are found when calculating the

tangential force as shown in Fig. 6.6. In this case, the Noca method is more approxi-

mated to the solution obtained from the PPE. The other two methods produces more

unrealistic results since negative values are obtained. The tangential force obtained

by the PPE method seems to be almost constant when the wake edge is chosen to

be very close to the airfoil trailing edge. This might be due to the higher resolution

needed to resolve vortex formation. However, the calculated mean tangential force

also seems independent of the control volume selected and slightly higher fluctuations

are observed for wake edge locations far from the airfoil trailing edge.

Tangential and normal forces calculated from the POD method are compared in

Table 6.3 along with the theoretical model (BEMT). In this case, theory and PPE

results are in good agreement for both normal and tangential forces. The agreement

is improved when compared to the agreement between raw data and theory. Mean

forces slightly fluctuate around the theoretical values for different control volumes

selected, supporting the force independent with the size of the control volume. The

semi-amplitude of the periodic signal is also highly decreased compared to the raw

data, producing more realistic results. Even though the other 3 methods decreases

their RMS compared to the ones obtained from the raw data, unrealistic results are

still produced. This is indicated by the high semi-amplitude of the force signals as

well as their dependence with the control volume size.
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6.3 Case 3 : Stationary airfoil

6.3.1 Raw data

A similar analysis to the calculated forces for Case 2 is also applied to the station-

ary airfoil (Case 3 ). Forces are calculated by just using the PPE and the Noca

methods, since the other two methods (Wu(adv.) and Bound methods) have similar

responses than the Noca method. Figure 6.7 shows the normal force coefficient for

the two methods and four different locations of the wake edge of the control volume

(x/h|wake) and for three complete shedding cycles. As observed in Case 1, the smallest

fluctuations are found for the PPE method as well as independence of the control vol-

ume selected. Higher fluctuations are found in the Noca method, especially for larger

control volumes. In addition, fluctuations in the normal force are found by changing

the origin of the coordinates system for the Noca case, while the PPE method remains

independent.

The tangential force is shown in Fig 6.8 for the two methods and four different lo-

cations of the wake edge of the control volume. Smaller deviations are found for

both methods compare to the normal force. In addition, both methods are in better

agreement for this calculated force. Again, independence is found for the mean value

of the tangential force with the size of the control volume by using the PPE method.

To further validate the results, tangential and normal forces are compared in Table

6.4 along with the numerical model (XFOIL). From this table, theory and PPE results

show a good agreement for the normal force (< 1.5 RMS) and the tangential force

(< 1.8 RMS). The RMS in this case is smaller than the one found in Case 2 for the

raw data. The other three methods show larger deviated mean results as well as large

RMS values and origin location and control volume size dependence, which again

indicates that these three methods should not be used for this kind of measurements.
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6.3.2 POD analysis

From the last section, the calculated force fluctuations values were unrealistic due

to error propagation. Figure 6.9 shows the normal force coefficient for 1.5 shedding

cycles and four different control volume sizes by just changing the location of the wake

edge. Again, just the PPE and Noca’s method are considered since the other two

methods give similar results to the ones calculated by Noca. Even though the RMS

decreases for the Noca’s method, mean value, amplitude and phase are still dependent

of the size of the control volume. On the other hand, the mean value, amplitude and

phase of the force calculated from the PPE method remains almost independent of

the control volume size and the RMS are noticeably reduced compared to the raw

data case.

The calculated POD tangential forces are shown in 6.10 for the same two methods

explained above and four different positions of the wake edge. The Noca method in

this case is more approximated to the solution obtained from the PPE. The force

from the PPE method seem to be almost constant when the wake edge is chosen to

be close to the airfoil trailing edge. Similarly to Case 2, this might be due to the

higher resolution needed to resolve vortices formation. However, the calculated mean

tangential force seems independent of the control volume selected and slightly higher

fluctuations are observed for wake edge locations far from the airfoil trailing edge.

Tangential and normal forces calculated from the POD method are compared in Table

6.5 along with the numerical model (XFOIL). In this case, theory and PPE results are

in good agreement for both normal and tangential forces. The agreement is similar

to the comparison between raw data and theory. The RMS of the forces decreases

compared to the raw data. However, the other three methods slightly decrease their

RMS compared to the ones obtained from the raw data and unrealistic results are

still produced.
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6.3.3 Realtionship between vortical structures and forces

Several observations of the vortex shedding process and simultaneous calculations of

the forces are needed to explain the physical process that relates the role of vortices

on the force fluctuations. The evolution of lift, drag and circulation coefficients with

time for three shedding cycles is shown in Fig. 6.11a, 6.11b and 6.11c respectively.

Forces are calculated from the original velocity field (first row) and the modified

velocity field from POD by using 10 modes (second row), 4 modes (third row) and

2 modes (fourth row). Lift, drag and circulation coefficients are fluctuating in a

periodic way, consistent with that of the vortex shedding. The three POD cases show

these variations clearly, since raw data contains errors that propagate as explained

in Sec. 2.7 and the POD filters the velocity fields by just taking the main modes of

the flow. Lift and circulation coefficients show a sinusoidal behavior at the shedding

frequency. However, drag coefficient seems to fluctuate not just at the shedding

frequency but also at double the shedding frequency with non-symmetric variations

(except for the 2 modes case which only includes the contribution from the modes

with the shedding frequency). For symmetric bodies in symmetric flows, variations

of drag should occur symmetrically at double the shedding frequency rate. Lift,

drag and circulation mean values remain almost constant while amplitude and noise

decrease by decreasing the number of modes. In addition, the instantaneous values

for lift and drag not only were independent of the size of the control volume selected,

but also they were in phase. However, even though the amplitude and frequency

for the calculated circulation are almost identical for different control volumes, the

phase is essentially dependent on the x/h position of the right edge of the control

volume x/h|wake (wake edge). In other words, the phase that simultaneously relates

circulation with forces need to be found. One way of finding the right choice of the

control volume’s wake edge position x/h|wake for circulation calculations is by looking



110

at the zero phase differences between lift and circulation, since the lift is independent

of the control volume selected and proportional to the circulation (Kutta-Joukowski

theorem). However, since the circulation is periodic, there are multiple choices of the

wake edge positions separated by 2πx/h (for distances where the edge of the control

volume is close enough to the airfoil that vortex decay is negligible). The closest

x/h|wake for what the circulation is in phase with the lift coefficient is close enough

to the airfoil to differentiate between attached and detached vortices. This selection

is also capturing the earliest deflection of the streamlines occurring close the trailing

edge of the airfoil. Moreover, any x/h|wake selection that includes the exact same

variations of streamlines will be in phase with the lift and also will give the same

circulation values, this is, every 2πx/h. This can be explained by looking at the total

vorticity included in calculating the circulation (Eq. 2.28), since every shedding cycle

two vortices of opposite circulation values are shed into the wake.

To identify the main frequencies of the force signals, a power spectral density analysis

is performed. The dominant frequency for the lift signal is the shedding frequency as

shown in Fig. 6.12a for the four different cases, indicating high-amplitude periodic

fluctuations every shedding cycle. Additionally, a secondary small peak at double the

shedding frequency indicates very small amplitude and periodic changes of the lift

every half shedding cycle. The power spectra for the 10 modes case is almost identical

than the original case in terms of energy content and energy features in agreement

with Holmes et al. (1998). For these two cases, a low frequency forming peak is shown,

indicating that very slow fluctuation of the lift will occur as well, in agreement with

the frequencies observed in modes 5, 6 and 8. There is also two peaks reveled at

high frequencies (15fshed and 19fshed) with smaller energy clearly seen for the 10 POD

modes case. Those two peaks are probably coming from the instability created within

the separated shear layer (modes 5, 7 and 8), attributed to Kelvin-Helmoltz instability

and observed in airfoils wake development (Yarusevych et al., 2006). However, the
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temporal and spatial resolutions for this experiment do not resolve properly those

vortices created within the shear layer. Nevertheless, the POD method does a great

work capturing those features. For the drag signal, the PSD reveals three main peaks

as shown in Fig. 6.12b. There is a low frequency peak compared to the shedding

frequency, which is probably amplified from the low frequencies found in the velocity

in the x -direction and reveals very slow variation of the drag force in time at that

frequency (modes 5, 6 and 8). In addition, two main frequencies with about the

same energy content are found for the drag signal consistent with those found for the

velocity in the x -direction. One peak is found at the shedding frequency and hence,

periodic variations are expected every shedding cycle at the shedding frequency. The

other peak occurs at double the shedding frequency and therefore, periodic changes

are also expected every half shedding cycle. For symmetric bodies in symmetric flows,

this last frequency should be dominant. Again, the power spectra of the original and

the 10 modes cases are almost identical for the drag coefficient. Moreover, two small

high-frequency peaks are found as the ones found in the PSD of the lift coefficient.

The peak in the PSD of the circulation (Fig. 6.12c) corresponds to the shedding

frequency. For an airfoil in steady motion the circulation should be constant (Kelvin

theorem). However, due to vortex shedding, the circulation around the airfoil for a

fixed control volume is periodically changing at the shedding frequency rate.

In order to identify the value of the forces with the shape of the wake, the vortical

structures are found by using the Q-identification method (Hunt et al., 1988), since

vorticity fields obscure vortex formation and evolution (unclear due to the negative

vortex formation within the recirculating area). Instantaneous values of the Q-field

and streamlines around the airfoil are shown in Fig. 6.13 for six times instances

within one shedding cycle. The number on the upper right corner of the Q-field plots

corresponds to the time indicated with the same number in the force figures (Fig.

6.11). Six different times are selected corresponding to maximums and minimums
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drag and lift values. Starting at the time (t = 0) where lift and drag correspond

to the mean values and advancing in time, an absolute maximum drag is found first

(Fig. 6.11a). The wake at this time (t = 0.18) shows a maximum vortex growth at

the trailing edge (positive vortex) which just started its detaching movement from

the airfoil as suggested by the streamlines. A maximum lift (Fig. 6.11b) follows just

a few moments after reaching maximum drag. The wake at this time (t = 0.33) shows

the initial formation of a vortex on the upper side of the airfoil within the shear layer

(negative vortex) as well as the downstream motion of the trailing edge vortex. In

addition, the downwards deflection of the streamlines around the airfoil is a maximum

suggesting maximum circulation and demonstrating the proportionality between lift

and circulation. At time t = 0.53, a minimum local drag is found as shown in Fig.

6.11c. The wake at this time shows the growing process of the negative vortex as

well as a change in the streamlines from downward to slightly upward close to the

airfoil. A maximum local drag follows at time t = 0.70 (Fig. 6.11d). At this time the

wake shows a maximum growth negative vortex in its initial detaching movement.

Minimum lift is reached at t = 0.81 as shown in Fig. 6.11e. The wake at this time

shows the initial formation of a positive vortex at the trailing edge as well as the

downstream motion of the detached negative vortex. The streamlines at this time are

highly deflected upward, indicating minimum circulation. Finally, absolute minimum

drag is reached at t = 0.91 as shown in Fig. 6.11f. At this time the wake shows the

growth of the positive vortex and a relaxation of the streamlines moving downwards.

Figure 6.11 also reveals that drag fluctuations are driven by skin friction (shear stress)

rather than pressure since the streamlines are tangential to the airfoil for maximum

drag and more perpendicular for minimum drag. However, variations in lift fluctua-

tions are driven by pressure rather than shear stress since maximum lift is obtained

when the streamlines are tangential to the airfoil. This is supported by the maximum

lift at the time of initial formation of the upper side vortex (minimum pressure at the
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core) and minimum lift after initial formation of the trailing edge vortex. In addition,

drag is greater affected by the vortex at the trailing edge than the vortex at the shear

layer, since local minimum and maximum values are found when the upper vortex is

being shed and absolute minimum and maximum values are found when the trailing

edge vortex is being shed.

By observing Figs. 6.11 and 6.13, the role of vortices in the force fluctuations can be

sketched as shown in Fig. 6.14. The main purpose of the sketch is to identify the

value of the forces with the shape of the wake simultaneously. Figures 6.14a-6.14f

show the location of the vortices in the wake and their approximate shape and size

within one shedding cycle. The number on the upper right corner corresponds to

the time indicated with the same number in the force figures (Fig. 6.14). The model

shows how the vortex formation, growth and release affect the force fluctuations. The

∆ symbol refers to the incremental value about the mean force. The arrows close to

those incremental values of the force in this figure indicate the direction of the force

fluctuations about the mean value. Plus and minus signs inside the vortex indicate

the sign of the vorticity. Maximum drag (Fig. 6.14a) is found when the trailing

vortex reaches it maximum size. Maximum lift (Fig. 6.14b) follows after the trailing

edge vortex is detached and the suction side vortex is initially formed within the

recirculating area. Then, minimum local drag (Fig. 6.14c) is found when the suction

side vortex grows about the half of its maximum size. Subsequently, maximum local

drag (Fig. 6.14d) occurs when the suction side vortex reaches its maximum size.

Afterwards, an initial trailing edge vortex formation and a release of the suction side

vortex cause minimum lift values (Fig. 6.14e). Finally, minimum drag (Fig. 6.14f) is

found when the trailing edge vortex grows about the half of its maximum size.
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Table 6.1: Mean and standard deviation of tangential and normal force coefficients
for Case 1. Experimental and theoretical results are shown for the smallest control
volume (52× 26mm2) considered. Normal and tangential forces refer to the force in
the x -direction and in the y-direction respectively

BEMT Poisson Bernoulli Integrated p
Mean RMS Mean RMS Mean RMS

Ct -0.005 -0.001 0.045 0.041 0.026 0.007 0.093
Cn 0.298 0.256 0.106 0.021 0.040 0.252 0.219
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Figure 6.1: Impact of the selected control volume on a) the mean and b) the standard
deviation of the tangential force coefficient and on c) the mean and d) the standard
deviation of the normal force coefficient for the three methods considered for Case 1
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Figure 6.2: Calculated instantaneous forces on the blade shown as a function of
time for Case 2. These results are for three typical runs and include the normalized
instantaneous normal and tangential forces, Cn and Ct. The contribution to the forces
from the acceleration, pressure and convective terms are also shown
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Figure 6.3: Effect of the size of the control volume in the calculation of the instan-
taneous normal and tangential force coefficients for (a) instantaneous and (b) mean
values for Case 2. The contribution of each term used in calculating the coefficients
is also shown
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Figure 6.4: Calculated instantaneous forces as a function of time from four different
methods as explained in Sec. 2.6 for Case 2. The forces are calculated by placing the
origin of the coordinates system at both the center of the wake edge and the center of
the airfoil. PPE stands for pressure Poisson equation, Noca for impulse momentum
equation, Wu(adv.) for the vorticity advection momentum equation and Bound for
the “flux” momentum equation



119

Table 6.2: Mean and standard deviation of tangential and normal force coefficients
from the raw data for Case 2. Experimental and theoretical (BEMT ) results are
shown for the smallest control volume (52 × 26mm2) considered. The effect of the
position of the origin of the coordinate system is analyzed for both center of the airfoil
and center of the wake edge of the control volume. Forces are calculated from the
four different methods described in Sec. 2.6

Origin at the center of the airfoil
Ct BEMT PPE Noca Bound Wu (adv.)

Mean 0.10 0.26 0.29 -0.04 0.05
RMS - 0.09 0.30 0.44 0.28
Cn

Mean 0.65 0.77 1.38 1.18 1.18
RMS - 0.33 0.49 0.59 0.47

Origin at the center of the wake edge
Ct BEMT PPE Noca Bound Wu (adv.)

Mean 0.10 0.26 0.29 0.34 0.05
RMS - 0.09 0.30 0.18 0.28
Cn

Mean 0.65 0.77 2.06 0.88 1.85
RMS - 0.33 1.80 0.11 1.81
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Figure 6.5: Calculated instantaneous normal force coefficient (Cn) as a function of
time from POD phase-averaged measurements by using the four methods described
in Sec. 2.6 for Case 2 (The legend is explained in Fig. 6.4). The effect of the size
of the control volume is also shown by looking at four different locations of the wake
control volume edge y/h|wake
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Figure 6.6: Calculated instantaneous tangential force coefficient (Ct) as a function of
time from POD phase-averaged measurements by using the four methods described
in Sec. 2.6 for Case 2 (The legend is explained in Fig. 6.4). The effect of the size
of the control volume is also shown by looking at four different locations of the wake
control volume edge y/h|wake
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Table 6.3: Mean and semi-amplitude of the tangential and normal force coefficients
from POD phase-averaged data for Case 2. Experimental and theoretical (BEMT )
results are shown for the origin of the coordinate system at the center of the airfoil.
The effect of the position of the wake control volume edge y/h|wake is also shown.
Forces are calculated from the four different methods described in Sec. 2.6

y/h|wake = 0.82
Ct BEMT PPE Noca Bound Wu (adv.)

Mean 0.10 0.18 0.28 0.27 0.01
A/2 - 0.02 0.05 0.12 0.04
Cn

Mean 0.65 0.75 1.16 1.16 1.12
A/2 - 0.15 0.50 0.49 0.50

y/h|wake = 0.60
Ct BEMT PPE Noca Bound Wu (adv.)

Mean 0.10 0.16 0.29 0.29 0.03
A/2 - 0.02 0.02 0.16 0.02
Cn

Mean 0.65 0.69 1.30 1.29 1.26
A/2 - 0.12 0.34 0.45 0.33

y/h|wake = 0.38
Ct BEMT PPE Noca Bound Wu (adv.)

Mean 0.10 0.11 0.12 0.12 -0.10
A/2 - 0.03 0.05 0.12 0.06
Cn

Mean 0.65 0.67 0.59 0.57 0.54
A/2 - 0.12 0.34 0.37 0.35

y/h|wake = 0.16
Ct BEMT PPE Noca Bound Wu (adv.)

Mean 0.10 0.09 0.12 0.11 -0.08
A/2 - 0.06 0.19 0.20 0.18
Cn

Mean 0.65 0.72 0.51 0.51 0.45
A/2 - 0.11 0.88 0.87 0.89



123

Figure 6.7: Calculated instantaneous lift coefficient (Cl) as a function of time from
raw measurements by using the PPE and Noca methods described in Sec. 2.6 for
Case 3. The effect of the size of the control volume is also shown by looking at four
different locations of the wake control volume edge x/h|wake
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Figure 6.8: Calculated instantaneous drag coefficient (Cd) as a function of time from
raw measurements by using the PPE and Noca methods described in Sec. 2.6 for
Case 3. The effect of the size of the control volume is also shown by looking at four
different locations of the wake control volume edge x/h|wake
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Table 6.4: Mean and RMS of the lift and drag force coefficients from raw data for
Case 3. Experimental and theoretical (XFOIL) results are shown for the origin of
the coordinates system at the center of the airfoil. The effect of the position of the
wake control volume edge x/h|wake is also shown. Forces are calculated from the four
different methods described in Sec. 2.6

x/h|wake = 1.98
Cl XFOIL PPE Noca Bound Wu (adv.)

Mean 0.43 0.30 0.15 0.15 0.22
RMS - 0.07 0.14 0.12 0.14
Cd

Mean 0.11 0.20 0.34 0.34 0.27
RMS - 0.04 0.10 0.13 0.10

x/h|wake = 2.29
Cl XFOIL PPE Noca Bound Wu (adv.)

Mean 0.43 0.30 0.28 0.28 0.35
RMS - 0.06 0.27 0.19 0.28
Cd

Mean 0.11 0.17 0.19 0.19 0.17
RMS - 0.04 0.11 0.15 0.10

x/h|wake = 2.60
Cl XFOIL PPE Noca Bound Wu (adv.)

Mean 0.43 0.29 0.29 0.29 0.35
RMS - 0.08 0.38 0.27 0.39
Cd

Mean 0.11 0.14 0.13 0.12 0.14
RMS - 0.05 0.11 0.18 0.11

x/h|wake = 2.91
Cl XFOIL PPE Noca Bound Wu (adv.)

Mean 0.43 0.28 0.21 0.21 0.28
RMS - 0.06 0.48 0.42 0.49
Cd

Mean 0.11 0.13 0.12 0.12 0.14
RMS - 0.06 0.12 0.25 0.12
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Figure 6.9: Calculated instantaneous lift coefficient (Cl) as a function of time from
the 4-modes POD measurements by using the PPE and Noca methods described in
Sec. 2.6 for Case 3. The effect of the size of the control volume is also shown by
looking at four different locations of the wake control volume edge x/h|wake
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Figure 6.10: Calculated instantaneous drag coefficient (Cd) as a function of time from
the 4-modes POD measurements by using the PPE and Noca methods described in
Sec. 2.6 for Case 3. The effect of the size of the control volume is also shown by
looking at four different locations of the wake control volume edge x/h|wake
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Table 6.5: Mean and RMS of the lift and drag force coefficients from 4-modes POd
data for Case 3. Experimental and theoretical (XFOIL) results are shown for the
origin of the coordinates system at the center of the airfoil. The effect of the position
of the wake control volume edge x/h|wake is also shown. Forces are calculated from
the four different methods described in Sec. 2.6

x/h|wake = 1.98
Cl XFOIL PPE Noca Bound Wu (adv.)

Mean 0.43 0.29 0.15 0.15 0.22
RMS - 0.03 0.07 0.05 0.08
Cd

Mean 0.11 0.20 0.33 0.33 0.27
RMS - 0.01 0.01 0.02 0.01

x/h|wake = 2.29
Cl XFOIL PPE Noca Bound Wu (adv.)

Mean 0.43 0.29 0.28 0.28 0.35
RMS - 0.02 0.25 0.14 0.25
Cd

Mean 0.11 0.17 0.19 0.19 0.16
RMS - 0.02 0.03 0.07 0.03

x/h|wake = 2.60
Cl XFOIL PPE Noca Bound Wu (adv.)

Mean 0.43 0.28 0.28 0.28 0.35
RMS - 0.06 0.35 0.24 0.36
Cd

Mean 0.11 0.14 0.13 0.13 0.14
RMS - 0.03 0.04 0.11 0.03

x/h|wake = 2.91
Cl XFOIL PPE Noca Bound Wu (adv.)

Mean 0.43 0.28 0.20 0.20 0.27
RMS - 0.02 0.42 0.36 0.42
Cd

Mean 0.11 0.13 0.12 0.12 0.14
RMS - 0.02 0.06 0.21 0.04
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Figure 6.13: Evolution of the Q-field and streamlines within one shedding cycle for
(a) absolute maximum drag, (b) maximum lift, (c) local minimum drag, (d) local
maximum drag, (e) minimum lift and (f) absolute minimum drag for Case 3
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Figure 6.14: Sketch showing the relation between force fluctuations and shape of the
wake for one shedding cycle for (a) absolute maximum drag, (b) maximum lift, (c)
local minimum drag, (d) local maximum drag, (e) minimum lift and (f) absolute
minimum drag for Case 3
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Chapter 7

Concluding remarks

Aerodynamic unsteady forces in stationary and rotating wings are analyzed in this

dissertation by using a combination of TR-PIV and POD techniques. A modified

pressure Poisson equation is used to solve for the pressure field. This is needed to

resolve the integral conservation of momentum equation. The role of flow structures

in force fluctuations is also studied in this manuscript. A POD analysis of the flow is

performed to elucidate relations between flow structures and forces in the wing. The

main contributions to calculating forces from PIV are summarized next.

Method

1. Development of a new method to calculate the acceleration term in quasi-steady

flows for stationary frames of reference from regular (non-time-resolved) PIV. The

acceleration is shown to be important in force calculations for stationary frames of

reference and cannot be neglected. The method is validated by comparing the pressure

obtained in both moving and fixed frames. It is also shown that the acceleration term

should not be neglected in unsteady flows when working in neither rotating or moving

frames of reference, since it contributes to the total force fluctuations. Therefore, the

quasi-steady assumption should not be applied to unsteady flows, even for rotating

frames of reference.

2. A modified PPE that includes the continuity equation is developed to solve for the
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pressure. If the continuity equation was not satisfied, the PPE would give unrealistic

results due to higher error after convergence of the system of equations. This error

would result in a larger uncertainty and a non-independence of the calculated forces.

In addition, it is shown that the two other techniques used in the past for calculating

the pressure field, the Bernoulli equation and the spatially integrated pressure, are not

recommended for use with unsteady flows as suggested by the results. The Bernoulli

equation fails to include the rotational part of the flow as well as the unsteady term

(underestimating the pressure). The integrated pressure method reveals cumulative

propagated directional error and is unable to recover the original pressure along the

closed path. However, the results suggest that mean pressure values can be obtained

using this last technique for a high number of sampled velocity fields.

3. A robust methodology is developed to calculate forces in either stationary or

moving wings. The independence of the method with the control volume and origin of

the coordinates system selected, demonstrate its robustness when compared to other

methodologies described in the past. Frequency, phase, amplitude and mean values of

the forces are independent of those parameters. In addition, extensive validation and

error analysis show the stability of the method as well as the level of uncertainty for

the different cases of study. This also provides a better understanding of the temporal

and spatial resolution required to achieve higher accuracy.

Integration PIV-POD analysis

1. A method that combines PIV and POD techniques is used to model time-resolved

forces from non-TR-PIV measurements. When temporal resolution is limited, the

phase-averaged POD method can be used to create an approximated force function

which is continuous in time when just the first two modes of the flow are dominant

such as the case of vortex shedding. This hybrid method allows calculating the

acceleration term needed in the integral momentum equation for instantaneous force
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computations. It resolves the time derivative from to the relation between shedding

frequency, time and phase.

2. The integration of POD and PIV is used to accurately calculate force fluctuations.

This reveals clearer force behaviors since the calculated raw forces are difficult to

interpret. A PSD analysis comparing raw and POD forces shows an almost identical

energy content, suggesting that the POD approximation can be used to disclose main

flow features and derived parameters.

Force-vortex relations

1. Force fluctuations are due to variations in the wake and the recirculating bubble

only. This is shown by the RMS and spectral analysis. Both reveal constant properties

of the flow features around the airfoil, except for the wake and the recirculation area

where fluctuations are > 30% (> 3 orders of magnitude in PSD).

2. Evaluation of vorticity and Q fields reveal that vortex grow and formation take

the larger part of the full shedding cycle.

3. A spectral analysis of the calculated forces suggests symmetric periodic lift, drag

and circulation variations at the shedding frequency. Moreover, lift, drag and circu-

lation signals are in phase, which supports lift-circulation proportionality. However,

non-symmetric drag fluctuations are found at double the shedding frequency within a

shedding cycle. For instance, when a positive or negative circulation vortex detaches,

different values in the maximum and minimum drag are obtained. In addition, slow

drag and lift variations at a very low frequency are also disclosed from the spectral

analysis. Moreover, two small energy peaks at high frequencies are found most prob-

ably due to the Kelvin-Helmoltz instability generated in the separated shear layer.

4. Deflection of streamlines suggest drag fluctuations due to skin friction and lift

fluctuations due to pressure. Max and min lift for initial formation of upper and
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lower vortex respectively. Absolute min and max drag with trailing edge vortex

formation. Relative min and max drag with upper vortex formation.

5. Role of vortices in force variations is also revealed and a model relating force

fluctuations with vortex shedding is obtained. Maximum drag is found when the

trailing edge vortex reaches its maximum size. Maximum lift follows after the trailing

edge vortex is detached and the suction side vortex is initially formed. Minimum local

drag is obtained when the size of the suction side vortex is about half of its maximum

size. Maximum local drag is found when the suction side vortex reaches its maximum

size. Maximum lift occurs after the suction side vortex is detached and the formation

of the trialing edge vortex is initiated. Finally, minimum drag is obtained when the

size of the trailing edge vortex is about half of its maximum size. These relations can

be useful in CFD modeling and flow control.



137

Bibliography

Abdallah, S. 1987 Numerical solutions for the pressure poisson equation with neu-

mann boundary conditions using a non-staggered grid, i. Journal of computational

physics 70 (1), 182–192.

Adrian, R. J. 2005 Twenty years of particle image velocimetry. Experiments in

Fluids 39 (2), 159–169.

Anderson, J. D. 2001 Fundamentals of aerodynamics , , vol. 2. McGraw-Hill New

York.

Bahaj, A.S., Molland, A.F., Chaplin, J.R. & Batten, W.M.J. 2007 Power

and thrust measurements of marine current turbines under various hydrodynamic

flow conditions in a cavitation tunnel and a towing tank. Renewable Energy 32 (3),

407–426.

Barlow, J. B., Rae, W. H. & Pope, A. 1999 Low-speed wind tunnel testing .

Baur, T. & Kngeter, J. 1999 PIV with high temporal resolution for the de-

termination of local pressure reductions from coherent turbulence phenomena. In

3rd International Workshop on Particle Image Velocimetry,(Santa Barbara, CA,

USA),(1999-9).

Bazilevs, Y., Hsu, M. C., Akkerman, I., Wright, S., Takizawa, K.,

Henicke, B., Spielman, T. & Tezduyar, T. E. 2011a 3D simulation of wind

turbine rotors at full scale. part i: geometry modeling and aerodynamics. Interna-

tional Journal for Numerical Methods in Fluids 65 (1-3), 207–235.



138

Bazilevs, Y., Hsu, M. C., Kiendl, J., Wchner, R. & Bletzinger, K. U.

2011b 3D simulation of wind turbine rotors at full scale. part II: fluidstructure

interaction modeling with composite blades. International Journal for Numerical

Methods in Fluids 65 (1-3), 236–253.

Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decom-

position in the analysis of turbulent flows. Annual review of fluid mechanics 25 (1),

539–575.

Bevington, P. R. & Robinson, D. K. 1969 Data reduction and error analysis

for the physical sciences , , vol. 336. McGraw-Hill New York.

Bi, W., Sugii, Y., Okamoto, K. & Madarame, H. 2003 Time-resolved proper

orthogonal decomposition of the near-field flow of a round jet measured by dynamic

particle image velocimetry. Measurement Science and Technology 14 (8), L1.

Bourgoyne, D. A., Ceccio, S. L. & Dowling, D. R. 2005 Vortex shedding from

a hydrofoil at high reynolds number. Journal of Fluid Mechanics 531, 293–324.

Boutilier, M. S. H. & Yarusevych, S. 2012 Separated shear layer transition

over an airfoil at a low reynolds number. Physics of Fluids 24 (8), 084105.

Burton, T. 2011 Wind energy handbook . Chichester; New York: Wiley.

Charonko, J. J., King, C. V., Smith, B. L. & Vlachos, P. P. 2010 Assess-

ment of pressure field calculations from particle image velocimetry measurements.

Measurement Science and Technology 21, 105401.

Chen, H., Reuss, D. L. & Sick, V. 2012 On the use and interpretation of proper

orthogonal decomposition of in-cylinder engine flows. Measurement Science and

Technology 23 (8), 085302.



139

Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification

of three-dimensional flow fields. Physics of Fluids 2, 408–420.

Dong, S., Karniadakis, G. E., Ekmekci, A. & Rockwell, D. 2006 A com-

bined direct numerical simulationparticle image velocimetry study of the turbulent

near wake. Journal of Fluid Mechanics 569, 185.

Drela, M. 1989 XFOIL: an analysis and design system for low reynolds number

airfoils. In Low Reynolds number aerodynamics , pp. 1–12. Springer.

Feng, L., Wang, J. & Pan, C. 2011 Proper orthogonal decomposition analysis of

vortex dynamics of a circular cylinder under synthetic jet control. Physics of Fluids

23 (1), 014106.

Fitzgerald, E. J. & Mueller, T. J. 1990 Measurements in a separation bubble

on an airfoil using laser velocimetry. AIAA journal 28 (4), 584–592.

Fujisawa, N., Tanahashi, S. & Srinivas, K. 2005 Evaluation of pressure field

and fluid forces on a circular cylinder with and without rotational oscillation using

velocity data from PIV measurement. Measurement Science and Technology 16,

989.

Giguere, P. & Selig, M. S. 1999 Design of a tapered and twisted blade for the

NREL combined experiment rotor. NREL/SR pp. 500–26173.

Glauert, H. 1935 Airplane propellers. Aerodynamic theory 4, 169360.

Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and

vortex identification algorithms for the study of unsteady turbulent swirling flows.

Measurement Science and Technology 12 (9), 1422.



140

Gurka, R., Liberzon, A., Hefetz, D., Rubinstein, D. & Shavit, U. 1999

Computation of pressure distribution using PIV velocity data. In Workshop on

Particle Image Velocimetry .

Hand, M. M., Simms, D. A., Fingersh, L. J., Jager, D. W., Cotrell, J. R.,

Schreck, S. & Larwood, S. M. 2001 Unsteady aerodynamics experiment phase

vi: Wind tunnel test configurations and available data campaigns. Tech. Rep..

NREL/TP-500-29955, National Renewable Energy Lab., Golden, CO.(US).

Hansen, M.O.L., Srensen, J.N., Voutsinas, S., Srensen, N. & Madsen,

H.Aa. 2006 State of the art in wind turbine aerodynamics and aeroelasticity.

Progress in Aerospace Sciences 42 (4), 285–330.

Hart, D. P 2000 PIV error correction. Experiments in fluids 29 (1), 13–22.

Holmes, P., Lumley, J. L. & Berkooz, G. 1998 Turbulence, coherent structures,

dynamical systems and symmetry . Cambridge university press.

Huang, R. F., Wu, J. Y., Jeng, J. H. & Chen, R. C. 2001 Surface flow and

vortex shedding of an impulsively started wing. Journal of Fluid Mechanics 441,

265–292.

Hunt, J. C., Wray, A. A. & Moin, P. 1988 Eddies, streams, and conver-

gence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation

Databases, 2 , , vol. 1, pp. 193–208.

Jardin, T., David, L. & Farcy, A. 2009 Characterization of vortical structures

and loads based on time-resolved PIV for asymmetric hovering flapping flight. Ex-

periments in Fluids 46 (5), 847–857.

Jeong, J. & Hussain, F. 1995 On the identification of a vortex. Journal of Fluid

Mechanics 285 (69), 69–94.



141

de Kat, R & Ganapathisubramani, B 2013 Pressure from particle image ve-

locimetry for convective flows: a taylors hypothesis approach.Measurement Science

and Technology 24 (2), 024002.

de Kat, R. & van Oudheusden, B. W. 2011 Instantaneous planar pressure

determination from PIV in turbulent flow. Experiments in Fluids 52 (5), 1089–

1106.

Kundu, P. K., Cohen, I. M . & Dowling, D. R. 2012 Fluid mechanics .

Waltham, MA: Academic Press.

Kurtulus, D. F., Scarano, F. & David, L. 2006 Unsteady aerodynamic forces

estimation on a square cylinder by TR-PIV. Experiments in Fluids 42 (2), 185–196.

Lee, T. & Su, Y. Y. 2012 Low reynolds number airfoil aerodynamic loads de-

termination via line integral of velocity obtained with particle image velocimetry.

Experiments in Fluids 53 (5), 1177–1190.

Lighthill, J. 1986 An informal introduction to theoretical fluid mechanics .

Lin, J.-C. & Rockwell, D. 1996 Force identification by vorticity fields: techniques

based on flow imaging. Journal of Fluids and Structures 10 (6), 663–668.

Liu, X. & Katz, J. 2006 Instantaneous pressure and material acceleration measure-

ments using a four-exposure PIV system. Experiments in Fluids 41 (2), 227–240.

Lumley, J. L. 1967 The structure of inhomogeneous turbulent flows. Atmospheric

turbulence and radio wave propagation pp. 166–178.

Mohebbian, A. & Rival, D. E. 2012 Assessment of the derivative-moment trans-

formation method for unsteady-load estimation. Experiments in Fluids 53 (2), 319–

330.



142

Murai, Y., Nakada, T., Suzuki, T. & Yamamoto, F. 2007 Particle track-

ing velocimetry applied to estimate the pressure field around a savonius turbine.

Measurement Science and Technology 18, 2491–2503.

Noca, F., Shiels, D. & Jeon, D. 1999 A comparison of methods for evaluating

time-dependent fluid dynamic forces on bodies, using only velocity fields and their

derivatives. Journal of Fluids and Structures 13 (5), 551–578.

Oudheusden, B. W., Scarano, F., Roosenboom, E. W. M., Casimiri, E.

W. F. & Souverein, L. J. 2007 Evaluation of integral forces and pressure fields

from planar velocimetry data for incompressible and compressible flows. Experi-

ments in Fluids 43 (2-3), 153–162.

Oudheusden, B. W. van, Scarano, F., Hinsberg, N. P. van & Watt, D. W.

2005 Phase-resolved characterization of vortex shedding in the near wake of a

square-section cylinder at incidence. Experiments in Fluids 39 (1), 86–98.

Pope, S. B 2000 Turbulent flows . Cambridge university press.

Prandtl, L. & Betz, A. 1927 Vier abhandlungen zur hydrodynamik und aerody-

namik . Selbstverlag des Kaiser Wilhelm-Instituts fr Strmungsforschung.

Ragni, D., Ashok, A., van Oudheusden, B. W. & Scarano, F. 2009 Sur-

face pressure and aerodynamic loads determination of a transonic airfoil based on

particle image velocimetry. Measurement Science and Technology 20, 074005.

Ragni, D., Oudheusden, B. W. & Scarano, F. 2011 3D pressure imaging of an

aircraft propeller blade-tip flow by phase-locked stereoscopic PIV. Experiments in

Fluids 52 (2), 463–477.



143

Rodriguez, I., Borell, R., Lehmkuhl, O., Perez Segarra, C. D. & Oliva,

A. 2011 Direct numerical simulation of the flow over a sphere at re = 3700. Journal

of Fluid Mechanics 679, 263–287.

Schmid, P. J., Violato, D. & Scarano, F. 2012 Decomposition of time-resolved

tomographic PIV. Experiments in Fluids 52 (6), 1567–1579.

Sezer-Uzol, N. & Long, L. N. 2006 3-d time-accurate CFD simulations of wind

turbine rotor flow fields. AIAA paper 394.

Shen, W. Z., Mikkelsen, R., Srensen, J. N. & Bak, Christian 2005 Tip loss

corrections for wind turbine computations. Wind Energy 8 (4), 457–475.

Shenoy, A. R. & Kleinstreuer, C. 2008 Flow over a thin circular disk at low to

moderate reynolds numbers. Journal of Fluid Mechanics 605.

Simms, D. A., Schreck, S., Hand, M. M. & Fingersh, L. J. 2001 NREL un-

steady aerodynamics experiment in the NASA-Ames wind tunnel: A comparison of

predictions to measurements. Tech. Rep.. National Renewable Energy Laboratory,

Golden, CO.

Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. i-coherent

structures. II-Symmetries and transformations. III-Dynamics and scaling. Quar-

terly of applied mathematics 45, 561–571.

Sotiropoulos, F. & Abdallah, S. 1991 The discrete continuity equation in prim-

itive variable solution of incompresible flow. Jouurnal of Computational Physics 95,

212–227.

Tangler, J. L 2002 Nebulous art of using wind-tunnel airfoil data for predicting

rotor performance: Preprint. In Presented at the 21st ASME Wind Energy Confer-

ence, Reno, NV (US), 01/14/200201/17/2002 .



144

Taylor, J. R. 1997 An introduction to error analysis: the study of uncertainties in

physical measurements . University science books.

Unal, M. F., Lin, J.-C. & Rockwell, D. 1997 Force prediction by PIV imaging:

a momentum-based approach. Journal of Fluids and Structures 11 (8), 965–971.

Villegas, A., Cheng, Y., del Campo, V. & Diez, F. J. 2010 Characteriza-

tion of low reynolds number wind turbine aerodynamics by BEM theory and PIV

measurements. In ASME 2010 3rd Joint US-European Fluids Engineering Summer

Meeting .

Villegas, A & Diez, F. J. 2014a Evaluation of unsteady pressure fields and forces

in rotating airfoils from time-resolved PIV. Experiments in Fluids 55 (4), 1–17.

Villegas, A. & Diez, F. J. 2014b On the quasi-instantaneous aerodynamic load

and pressure field measurements on turbines by non-intrusive PIV. Renewable En-

ergy 63, 181–193.

Viterna, L. A. & Corrigan, R. D. 1982 Fixed pitch rotor performance of large

horizontal axis wind turbines. Large Horizontal-Axis Wind Turbines 1, 69–85.

Wang, S., Zhang, X., He, G. & Liu, T. 2013 A lift formula applied to low-

reynolds-number unsteady flows. Physics of Fluids 25 (9), 093605.

Westerweel, J. 1997 Fundamentals of digital particle image velocimetry. Measure-

ment Science and Technology 8, 1379.

Wu, J. C. 1981 Theory for aerodynamic force and moment in viscous flows. AIAA

Journal 19 (4), 432–441.

Wu, J.-Z., Lu, X.-Y. & Zhuang, L.-X. 2007 Integral force acting on a body due

to local flow structures. Journal of Fluid Mechanics 576, 265.



145

Wu, J. Z., Pan, Z. L. & Lu, X. Y. 2005 Unsteady fluid-dynamic force solely in

terms of control-surface integral. Physics of Fluids 17 (9), 098102.

Yarusevych, S., Sullivan, P. E. & Kawall, J. G. 2006 Coherent structures

in an airfoil boundary layer and wake at low reynolds numbers. Physics of Fluids

18 (4), 044101.

Yarusevych, S., Sullivan, P. E. & Kawall, J. G. 2009 On vortex shedding

from an airfoil in low-reynolds-number flows. Journal of Fluid Mechanics 632, 245.



146

Appendix A

Frames of reference

The reason for the differences observed in the unsteady accelerations between the

two reference frames can be explained more intuitively from the velocity field images

in Fig. A.1. For comparison purposes a point A is shown in both reference frames.

In Fig. A.1a the point is fixed with respect to the inertial frame and in A.1b is fix

with respect to the rotating frame. Clearly, in Fig. A.1a Point A changes velocities

between times t1 and t2 as the rotor moves up in the field of view. In the other

hand, in Fig. A.1b the velocity of point A remains constant between t1 and t2 as it

moves with the reference frame fix in the blade. This shows the importance of the

unsteady term in the inertial frame. Mathematically, this difference is shown by Eq.

2.1 which relates the acceleration in inertial and non-inertial frames. Considering

that the velocity between both frames can be related by ~u = ~u′+ ~Ω×~r′, the terms in

Eq. 2.1 can now be grouped and simplified at the time both coordinate systems are

coincident. The result can be written in Cartesian coordinates as

∂u
∂t

= −Ω
(

rz
′ ∂u′

∂y′
− ry

′ ∂u′

∂z′

)

∂v
∂t

= −Ω
(

rz
′ ∂v′

∂y′
− ry

′ ∂v′

∂z′

)

∂w
∂t

= −Ω
(

rz
′ ∂w′

∂y′
− ry

′ ∂w′

∂z′

)

(A.1)

where ~r′ =< rx
′, ry

′, rz
′ > is the position vector. Both sides of this expression can

be experimentally evaluated and compared as shown in Fig. A.2. The acceleration

term is calculated using the terms from the right hand side of Eq. A.1 ∂ū/∂t|Derived
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in Fig. A.2a, and also calculated directly from PIV measurements ∂ū/∂t|PIV in Fig.

A.2b. Both Figs. A.2a and A.2b are in good agreement. It can also be shown that

the pressure is an invariant of the coordinate system used. For instance, Fig. A.3

shows the mean pressure field around the airfoil calculated in a fixed reference frame

and in a moving reference frame. The good agreement between both contour plots

verifies this invariant identity.
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Figure A.1: Contour plot of the instantaneous axial velocity field around the rotating
airfoil showing the rotor and a point A a) in a laboratory reference frame and b) in a
moving frame. In a) the point changes velocities between times t1 and t2 as the rotor
moves up in the field of view. In b) the velocity of point A remains constant between
t1 and t2 as it moves with the reference frame fix in the blade.
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Figure A.2: Mean acceleration a) derived from Eq. A.1 and b) measured from PIV
results
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Figure A.3: Contour plot of the mean pressure field around the airfoil calculated a)
in a fixed reference frame and b) in a moving reference frame


