
DESIGN AND IMPLEMENTATION OF AN

ENERGY AWARE PROGRAMMING FRAMEWORK

FOR AUTONOMOUS UNDERWATER VEHICLES

BY HANS CHRISTIAN WOITHE

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Ulrich Kremer

and approved by

New Brunswick, New Jersey

May, 2014



c© 2014

Hans Christian Woithe

ALL RIGHTS RESERVED



ABSTRACT OF THE DISSERTATION

Design and Implementation of an

Energy Aware Programming Framework for

Autonomous Underwater Vehicles

by Hans Christian Woithe

Dissertation Director: Ulrich Kremer

Autonomous underwater vehicles (AUVs) have become an indispensable tool for study-

ing the oceans. They allow for the prolonged presence of scientific instruments in the

ocean, enabling the collection of samples for several weeks or months at a time for a

fraction of the cost of research vessels. These vehicles share common characteristics and

constraints with other cyber-physical systems that include concerns for vehicle safety,

a limited energy supply, the optimization and trade-off of resources, sporadic commu-

nication, and operation in extremely constrained environments. One such AUV is the

Slocum Electric Glider. Although AUVs like the Slocum Glider have revolutionized the

field of oceanography, many are difficult to program and thus limit their overall utility.

A new energy aware, domain specific programming framework for AUVs, called

ALGAE (AUV Language for Greater Adaptability and Energy optimization), has been

developed on the Slocum Glider. This framework enables scientists to easily create

missions that use domain specific features to make trade-offs, such as sacrificing the
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quality at which the environment is sampled for a gain in vehicle endurance. Novel

methods used in the framework make the vehicle a more effective scientific instrument.

The system was specifically designed to support a mission critical platform that oper-

ates in an extremely constrained environment. In the new infrastructure, missions can

be tested in simulation, but more importantly, can be compiled directly for use on the

target platform. To evaluate the framework, simulations and field trials off the coast of

New Jersey were performed to showcase the practicality of the system. Furthermore,

because the framework was designed around a common set of constraints and char-

acteristics, the mechanisms and approaches developed are widely applicable to many

autonomous systems.
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Preface

Portions of this dissertation are based on work previously published or submitted for

publication by the author [Woithe and Kremer, 2009; Woithe et al., 2010; Woithe and

Kremer, 2010, 2011b,a; Woithe et al., 2011; Eichhorn et al., 2012; Woithe et al., 2012,

2013].

iv



Acknowledgements

I would like to thank the committee and my advisor Ulrich Kremer. Although this

work on gliders has been very laborious, it has also been very rewarding. I am grateful

that throughout these years I have had the support and guidance of my advisor. I am

certain that I have yet to fully grasp and appreciate all the ways that you have affected

my life. It will likely take years of reflection to fully understand.

I would also like to thank my EEL lab mates Denitsa Tilkidjieva, Jerry Hom, John

McCabe, and Pradip Hari for their help and support throughout my research and grad-

uate school experience. I want to also thank my friends and collaborators at the de-

partment of Marine and Coastal Sciences and WinLAB of Rutgers University. Without

their help and support much of this work would not be possible. I am also very grateful

to my many friends for their love, support and great times. I hope the relationships we

have built will last the rest of our lives.

Finally, I would like to thank all of my family, especially my wife Francesca. We

have already spent much of our life happily together. Our first years in graduate school

also marked our first years as a young couple on our own. Together, we have endured

the frustrations of research and the joys of our accomplishments. We have both changed

and grown so much over these years, but we will leave as we entered, side-by-side. Word

cannot express how proud I am of you and how blessed I am to have you as my partner

in life. Thank you.

v



Dedication

To my parents and my wife Francesca.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Performance, Quality, and Energy Trade-Off Systems . . . . . . . . . . . 7

2.1.1. Turducken and Triage . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2. PowerDial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3. Loop Perforations . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4. EnerJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. AUV Programming Languages And Environments . . . . . . . . . . . . 12

2.2.1. MOOS-IvP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2. AUVW and AVCL . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3. Common Control Language . . . . . . . . . . . . . . . . . . . . . 15

vii



2.2.4. Compact Control Language . . . . . . . . . . . . . . . . . . . . . 16

2.2.5. Dynamic Compact Control Language . . . . . . . . . . . . . . . 17

2.2.6. AUVish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Slocum Glider Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1. Layered Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1. Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3. Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.4. Command Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2. Glider Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3. Programming Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. New Programming Framework . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2. AVBot Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3. Hook behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1. Thermocline Tracking Experiment . . . . . . . . . . . . . . . . . 36

4.4. Embedded Scripting Engine . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1. GLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.2. GBASIC Language . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.3. Thermocline Tracking Experiment . . . . . . . . . . . . . . . . . 46

4.5. Service Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6. Domain Specific Programming Language And Compiler . . . . . . . . . 52

5. Power Measurement Infrastructure . . . . . . . . . . . . . . . . . . . . . 65

viii



6. Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1. Speed Modeled Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.1. Shoebox Simulator Validation . . . . . . . . . . . . . . . . . . . . 79

6.1.2. Deployment Validation . . . . . . . . . . . . . . . . . . . . . . . . 81

Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Seafloor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Seafloor And CODAR Models . . . . . . . . . . . . . . . . . . . . 83

6.2. Software Port Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3. Graphical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1. Underwater Communication . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2. Multi-Vehicle Coordination . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3. Improving Dead Reckoning Using a Doppler Velocity Log . . . . . . . . 99

7.3.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4. Current Correction System . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5. Assessing Automated and Human Path Planning . . . . . . . . . . . . . 112

7.5.1. Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Simulator Modifications . . . . . . . . . . . . . . . . . . . . . . . 115

Piloting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 120

ix



7.6. Enabling Computation Intensive Applications . . . . . . . . . . . . . . . 125

7.6.1. Single-Chip Cloud Computer . . . . . . . . . . . . . . . . . . . . 126

7.6.2. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

ROMS benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.6.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.7. Adaptive Feature Based Energy Management of Sensors . . . . . . . . . 136

7.7.1. Glider Deployment – Manual Sensor Management . . . . . . . . 139

7.7.2. Thermocline Detection and Tracking . . . . . . . . . . . . . . . . 140

7.7.3. Trigger Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.7.4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.7.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 156

x



List of Tables

4.1. SBCs that have been installed in the Slocum Glider. . . . . . . . . . . . 32

5.1. Measurement board power consumption . . . . . . . . . . . . . . . . . . 67

5.2. CF1 processor power consumption . . . . . . . . . . . . . . . . . . . . . 67

5.3. Energy estimates of glider deployments . . . . . . . . . . . . . . . . . . . 74

6.1. Results of the speed distribution simulator compared to a deployment . 82

7.1. Results of human piloted flights and the automatic path planner . . . . 122

7.2. Simulated sensor triggering results of partial mission . . . . . . . . . . . 148

7.3. Simulated sensor triggering results of whole mission . . . . . . . . . . . 148

7.4. Results of a deployed thermocline sensor triggering mission . . . . . . . 154

xi



List of Figures

1.1. Two Slocum Gliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1. Traditional decomposition of a robot’s control system . . . . . . . . . . 19

3.2. Brooks’ design of task achieving behaviors . . . . . . . . . . . . . . . . . 20

3.3. Skeleton of a sample mission file for the Slocum Glider . . . . . . . . . . 21

3.4. Command data structure . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5. Behavior data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6. Command stack structure . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7. The sensors in and sample behaviors . . . . . . . . . . . . . . . . . . . . 26

4.1. Overview of new programming infrastructure . . . . . . . . . . . . . . . 31

4.2. New compute hardware prototype . . . . . . . . . . . . . . . . . . . . . 33

4.3. On bench thermocline tracking simulation . . . . . . . . . . . . . . . . . 37

4.4. Slocum Glider performing thermocline tracking . . . . . . . . . . . . . . 38

4.5. Mission executing a GLOC script . . . . . . . . . . . . . . . . . . . . . . 41

4.6. GBASIC program to perform a single yo . . . . . . . . . . . . . . . . . . 45

4.7. Simulated Slocum Glider performing thermocline tracking . . . . . . . . 47

4.8. Service model to trigger a sensor within a thermocline . . . . . . . . . . 49

4.9. Primitive services used to build more complex services . . . . . . . . . . 51

4.10. A simple single state program written in ALGAE . . . . . . . . . . . . . 53

4.11. A program written in ALGAE with multiple states . . . . . . . . . . . . 55

4.12. An ALGAE that activates sensors only within a thermocline . . . . . . 57

xii



4.13. Translation of an ALGAE sensor specification to a service . . . . . . . . 58

4.14. Two mission files generated by the ALGAE compiler . . . . . . . . . . . 60

5.1. Measurement board infrastructure . . . . . . . . . . . . . . . . . . . . . 66

5.2. Accuracy assessment of the measurement board . . . . . . . . . . . . . . 69

5.3. Current draw of the fin and pitch servos . . . . . . . . . . . . . . . . . . 70

5.4. Glider flight profile and current draw of the buoyancy engine . . . . . . 70

5.5. February 2010 deployment with power measurement infrastructure . . . 71

5.6. August 2010 deployment with power measurement infrastructure . . . . 72

6.1. Glider speed distribution over four years of flight . . . . . . . . . . . . . 78

6.2. Validation of the new simulator against the Shoebox simulator . . . . . 80

6.3. Comparison of a simulated and actual deployment . . . . . . . . . . . . 81

6.4. Environment generation in SimGUI . . . . . . . . . . . . . . . . . . . . . 88

6.5. Glider replay of a thermocline tracking mission in SimGUI . . . . . . . . 90

7.1. A Slocum Glider equipped with an acoustic modem . . . . . . . . . . . 94

7.2. Flights segments that received acoustic surfacing commands . . . . . . . 95

7.3. A fleet of gliders coordinating to form a formation . . . . . . . . . . . . 97

7.4. Coordination strategy with surface communication . . . . . . . . . . . . 98

7.5. Coordination strategy with surface and underwater communication . . . 99

7.6. The flight path of a DVL equipped glider deployment. . . . . . . . . . . 102

7.7. Comparison of logged DR flights against DVLDR flights . . . . . . . . . 106

7.8. Flight paths of a simple mission heading north-west . . . . . . . . . . . 109

7.9. AUV velocity relationships . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.10. A GUI used to navigate a simulated glider to a waypoint . . . . . . . . 117

7.11. Flight tracks of simulated missions by human pilots . . . . . . . . . . . . 121

7.12. Deployment track piloted by an automated path planning system . . . . 124

xiii



7.13. Intel’s Single-Chip Cloud Computer . . . . . . . . . . . . . . . . . . . . 126

7.14. ROMS evaluation results for various SCC settings . . . . . . . . . . . . 130

7.15. Path planning evaluation results for various SCC settings . . . . . . . . 132

7.16. Battery voltage level of a deployment in 2009 . . . . . . . . . . . . . . . 139

7.17. Thermocline tracking techniques . . . . . . . . . . . . . . . . . . . . . . 140

7.18. Thermocline tracking trigger chains . . . . . . . . . . . . . . . . . . . . . 143

7.19. Glider equipped with fluorescence and backscatter sensors . . . . . . . . 146

7.20. Thermocline tracking and sensor trigger deployment . . . . . . . . . . . 153

xiv



1

Chapter 1

Introduction

In recent years, autonomous underwater vehicles (AUVs) have become an indispensable

tool for marine scientists to learn more about the world’s oceans. Traditionally, the

acquisition of oceanographic data involved lowering sensors from surface vessels. AUVs

have replaced this laborious process and are capable of gathering orders of magnitude

more data for a fraction of the overall cost [Creed et al., 2004; Schofield et al., 2007]. Not

only are they more cost efficient, but they enable data to be collected in environments

that were historically inaccessible or too dangerous [Kunz et al., 2008a].

One such underwater vehicle is the Slocum Electric Glider, illustrated in Figure 1.1,

which is used as the implementation platform in this work. The vehicle is developed

by Teledyne Webb Research (TWR). Unlike propeller driven vehicles [Hydroid, LLC.;

Kunz et al., 2008b; Schulz et al., 2005, 1997], it belongs to a class of AUVs which achieve

forward propulsion by changing its buoyancy [Teledyne Webb Research; Sherman et al.,

Figure 1.1: Two Slocum Gliders performing a sequence of dives and climbs.
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2001; Eriksen et al., 2001; Davis et al., 2002]. The Slocum accomplishes this by moving

a piston to take in and expel water. The pitch created by the change in buoyancy

can be refined by adjusting the glider’s center of gravity through the movement of an

internal battery pack. The vehicle’s wings and control services along with the change in

buoyancy and center of gravity result in a sawtooth forward trajectory of approximately

35 cm/s [Graver et al., 2003]. Because the Slocum only operates its buoyancy engine

at inflections points, it can achieve efficient flight lasting weeks to months compared to

days or weeks for its propeller driven counterparts. Although efficient, glider operation

relies solely on battery power like other autonomous systems, so managing this limited

resource is of utmost importance.

The software control systems used to program many cyber-physical systems (CPSs),

including the Slocum Glider AUV, are based on the layered control system [Brooks,

1986; Bellingham and Leonard, 1994; Gat et al., 1998]. Users, like marine scientists,

specify the actions they wish the vehicle to perform through a set of behaviors written

in mission files. Users and their AUVs are therefore limited to functionality provided

by the set of behaviors the manufacturer supplies. Writing new behaviors for the AUVs

from scratch is a difficult task, especially for non-expert programmers. It is often not

clear how existing behaviors, let alone new behaviors, interact with each other within

the layered control system. This leads to a programming approach where users gen-

erally limit themselves to the modification of existing mission parameters or changing

priorities among existing behaviors. Even then, the resulting new mission requires the

user to go through a lengthy and inherently unreliable trial-and-error validation process.

Like many AUVs, the Slocum Glider in its current state is also extremely static in

that it cannot react dynamically to the environment it is observing. It can only be

reprogrammed during its periodic surfacings via satellite or radio communication. This

constraint of both limited and periodic communication is not unique to underwater
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systems, as land, air, and space vehicles also operate in hostile environments where

communication can be hampered. For example, autonomous aerial drones can have

limited and intermittent communication with a control station. This is possibly caused

by intentional radio silence in enemy territory or by “dead-zones” caused by geological

features.

In these various domains (e.g., land, air, sea, and space), phenomena may be short

lived and so the opportunity to observe them may have been lost by the time a remote

operator is able to instruct the autonomous system to resurvey the area of interest.

Finally, the number and complexity of sensors that can be installed and supported to

study the environment is limited, in the case of the Slocum, by its two 16 MHz embedded

processors. Thus a system is required that allows for the flexibility to dynamically react

to the environment while supporting a variety of complex sensors and algorithms.

In order to reach an AUV’s full potential, it is also necessary to allow scientists

to express their mission objectives at a level of abstraction that makes sense to them.

Thus, I have investigated and developed a new energy aware, domain specific program-

ming framework for autonomous underwater vehicles using the Slocum Glider as the

initial target platform. This framework allows for the specification of new and dynamic

missions. It also includes domain specific features to encourage trade-offs. Because en-

ergy is a vital and limited resource, trade-offs concerning energy, such as sacrificing the

quality of sensor readings to extend vehicle endurance, have been developed and can

easily be expressed. Furthermore, the framework is practical and must safely support

a mission critical system that operates in an extremely constrained environment with

sporadic communication. Thus, the infrastructure must provide mechanisms to quickly

evaluate and debug newly created missions before they are compiled and deployed for

the actual vehicle.
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Although the implementation is focused on a particular vehicle, many of the con-

cepts and approaches are valid for other CPSs and AUVs. In collaboration with the

Monterey Bay Aquarium Research Institute (MBARI), I have also integrated portions of

the framework to work with their propeller driven vehicle Tethys. Other autonomous

systems also share the same constraints and must be equipped to deal with vehicle

safety, optimizations and trade-offs of resources because of a limited energy supply,

intermittent communication, extendibility, practicality, and usability so that the tech-

nology can be adopted. The infrastructure will continue to be developed to become a

heterogeneous CPS programming environment in the future. Even with this focus, this

work is a significant contribution to the field as the Slocum Glider community consist-

ing of hundreds of glider customers at research institutions around the world and the

United States Navy.

1.1 Contributions

In this dissertation, I present the design and implementation of an energy aware pro-

gramming infrastructure for autonomous underwater vehicles, with a focus on the

Slocum Electric Glider. The main contributions of this dissertation include:

• The implementation of a power measurement infrastructure for the Slocum Glider

to measure the power consumption of individual components of the vehicle. This

infrastructure has been field tested and deployed in several missions off the coast

of New Jersey.

• The creation of energy models for the vehicle using information from components

specifications from manufacturers, benchtop measurements using oscilloscopes,

and field measurements using the power measurement infrastructure mentioned

above. The energy models can estimate the energy used by both previously flown

as well as simulated deployments.
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• The development of an energy aware simulation framework. The framework con-

sists of two simulators, a model-based simulator and a software port simulator.

The modeled simulator is built on several years of glider flight data, while the

software port simulator is an adaptation of the glider’s flight control software

to run on commodity hardware. Furthermore, both simulators are capable of

running faster-than-real-time and can present a virtual environment. This infras-

tructure has been instrumental in fixing vehicle software bugs and algorithms in

the Slocum Glider.

• The integration of an advanced computing platform for the Slocum Glider that

elevates the vehicle’s capabilities to support advanced sensors and algorithms.

The platform enables the creation of software services that can interoperate with

the existing infrastructure in an energy efficient manner.

• The design and implementation of a domain specific language and compiler suite.

This language is one of two tiers of programming supported by the framework.

This tier provides a high level of abstraction targeted at non-expert programmers

that exposes domain specific features to enable mission trade-offs. Scientists are

the individuals who will consume the collected data so they should know best on

what trade-offs they will need to make in order for sea trials to remain useful. The

compiler uses the high level specification to produce missions capable of being run

in the simulation infrastructure and on the actual vehicles. Thus, the system was

designed to meet practical and real world constraints.

• The creation of a new service model infrastructure that enables the second tier of

programming abstractions and allows flight engineers and programmers to more

easily extend the functionality of the system. Users can develop new services in

a variety of programming languages and can use existing primitive and advanced
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services as building blocks. Moreover, mechanisms have been created to easily ex-

pose these services as language constructs using the compiler infrastructure. New

services will expand the expressiveness of the domain specific language and will

allow non-expert programmers to easily take advantage of the new functionality.

• The exploration of several domain specific applications and challenges that pro-

vided key insights and knowledge that influenced the design of the programming

framework. Performing the triggering of advanced sensors to reduce the energy

consumption of the vehicle while still capturing essential scientific data is such an

example and has been field tested. This mechanism has also been integrated into

the programming framework and allows users to energy manage sensors.

1.2 Organization

The rest of this dissertation is organized as follows: Chapter 2 discusses related lit-

erature in the field of programming frameworks and tools for autonomous underwater

vehicles, and energy and performance trade-off systems. Chapter 3 details the infras-

tructure of the Slocum Glider and its programming issues. In Chapter 4, the addi-

tional hardware and software infrastructure integrated into the vehicle to enrich the

capabilities of the glider are described and showcased. Chapter 5 presents the power

measurement infrastructure that enabled the creation of energy models used by the

energy aware simulators described in Chapter 6. Several applications and challenges

during the development of the programming framework are presented in Chapter 7.

The conclusion and future work are discussed in Chapter 8.
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Chapter 2

Related Work

In this chapter, some of the related literature that has inspired aspects of the new

programming framework described in this work are presented. In Section 2.1, literature

that showcases systems that enable or apply trade-offs, for example, in performance,

quality and energy are discussed. Users of the programming framework should use the

infrastructure to adjust their missions by making domain specific trade-offs in a similar

manner. Finally, in Section 2.2, related programming languages and environments

used in the underwater domain are covered and their relation to the presented work is

discussed.

2.1 Performance, Quality, and Energy Trade-Off Systems

2.1.1 Turducken and Triage

Mobile devices, such as AUVs, laptops and cellular phones, have limited lifetimes. The

power requirements of such devices can vary greatly. The power requirements of PDA’s,

for example, is an order-of-magnitude smaller than a laptop’s, and the requirements of

sensors is an order-of-magnitude smaller than a PDAs [Sorber et al., 2005]. These re-

ductions in power come at the price of a decrease in computational capabilities and

functionality. The Turducken mobile device architecture addresses this issue and pro-

vides full device functionality while maintaining availability and extending the device’s

lifetime.
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In Turducken, several optimized platforms are combined to create a single inte-

grated system that can reduce the energy cost to maintain high levels of consistency. A

Turducken system is designed in a strictly hierarchical manner where each subsystem

is more powerful than the subsystem below. Each subsystem in this layout is capable

of performing a task itself, perform service discovery, suspend if it is not needed to

perform tasks, and bring its superior subsystem out of suspend mode if it is needed.

For example, in the web cache application of [Sorber et al., 2005], a sensor is used to de-

termine if a WiFi connection is available. If it is, the sensor can wake up a StrongARM

based PDA which will fetch expired cached items. Later, when web requests are made

from a laptop, the requests are routed and satisfied by the PDA. Thus, lower powered

and more specialized platforms can be used in place of more power hungry platforms

to perform simple tasks.

The follow on, and similar, work to Turducken is the Triage system [Banerjee et al.,

2007]. In Triage a high-power and resource-rich platform in combination with a low-

power and resource-constrained platform provide quality of service and energy efficiency.

The architecture is broken down into two tiers, where tier-0 employs a low-power plat-

form and tier-1 a high-power platform. In tier-0, requests can be serviced by using local

cache information, by local execution, or by passing the request to tier-1 for execution.

A profiler in Triage measures the energy requirements of tasks and a scheduler deter-

mines when and where the requests should be executed to meet service guarantees.

The scheduler may decided, for example, to queue several requests and to keep tier-1

powered off until enough work is collected to justify the tier’s power requirements.

A stock Slocum Glider contains two 16 Mhz computing platforms, one for flight

control and the other for the collection of scientific data. As part of the new frame-

work, the capabilities of the AUV have been extended with the integration of a Linux

single board computer. The software on the glider’s computing platforms have also
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been retrofitted with a scripting framework that allows for the execution of programs

without the need to flash new firmware. Together, these systems can create hierarchi-

cal power management techniques similar to those described in Turducken and Triage.

For example, the low-power flight controller can be used to collect and filter data until

enough information has been collected to justify the use of the more powerful computer

while still maintaining quality of service guarantees.

2.1.2 PowerDial

Many applications can make trade-offs in the accuracy of results produced and the time

it takes to compute the results. PowerDial is a system that can dynamically adjust

application behavior upon changes of system load and power fluctuations [Hoffmann

et al., 2011]. It creates a set of dynamic knobs that change the configuration of a

running program. These knobs are application specific configuration variables that

are identified by tracing program input parameters. For example, in the x264 H.264

encoder, a parameter can be specified that indicates the number of reference frames

that should be used during motion estimation. The control variable in the program

that is initialized by this parameter is identified and is considered a dynamic knob

that the system can modify at runtime. These dynamic knobs are used to explore an

accuracy versus performance trade-off space. Periodic heartbeats allow the system to

identify when and how an application’s dynamic knobs should be adjusted to maintain

a given quality of service.

Similarly, pilots using the new programming infrastructure of this work can make

adjustments to their programs and explore trade-off spaces with the provided energy

aware simulation infrastructure. Such trade-offs may involve sacrificing the accuracy or

spatiotemporal resolution of sensor data for the benefit of increased vehicle endurance.
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Services can also, like the heartbeats of PowerDial, monitor the quality of sensor read-

ings and dynamically change the sensor management scheme to satisfy the quality of

the results expected by the mission programmer.

2.1.3 Loop Perforations

Loop perforation, [Sidiroglou-Douskos et al., 2011], is a technique that involves trans-

forming a program’s loops to only execute a subset of its iterations while still producing

acceptable output. This is possible because many applications have some flexibility in

the number of iterations that are required to produce output. A change in the num-

ber of iterations of a program can, however, also lead to a possible degradation in

accuracy of the program’s output. Because loop perforation can reduce the amount of

computation, it also can lead to a reduction in energy requirements.

Sidiroglou-Douskos et al. [2011] have implemented a loop perforation system using

the LLVM compiler framework. It identifies candidate loops in an application, perfo-

rates them, and executes the perforated program with training input. Perforated loops

that do improve performance, cause application errors such as a crash, or produce out-

put that fall out of a specified accuracy bound, are filtered out and not used. The

remaining loops are exhaustively explored and their resulting speedup and accuracy

are used to build a trade-off space. A developer can examine the perforations and gain

insights into where they may find it acceptable to trade accuracy for performance or

energy.

Conceptually, a similar mechanism can be used to manage sensors in the presented

new programming framework. Depending on the flexibility of the application, a data

set that contains sensors readings of an entire flight may not be required by an oceanog-

rapher. A glider flying in shallow waters may perform many inflections and create more

snapshots of the water column in a short amount of time than is truly necessary. To
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reduce the number of inflections, the flight angle of the vehicle could be adjusted. This,

however, may cause improper or slow flight. Instead, the flight profile can remain the

same, but the sensors are dynamically perforated to save energy. Thus, for some dives

and climbs, analogous to loops, sensors are turned off. Depending on the quality of the

results that are to be maintained, these yo-perforations may be changed dynamically,

if for example, the environment in the area of operation is changing rapidly.

2.1.4 EnerJ

Another mechanism that can be used by programmers to choose energy and accuracy

trade-offs in applications is through the use of approximate data types. The EnerJ

programming language, [Sampson et al., 2011], is an extension to Java that enables

approximate computing by the means of type qualifiers that distinguish between ap-

proximate and precise data types. Data that is annotated to be approximate data can

be stored approximately or can be computed on with approximate instructions. This

strategy requires the use of approximate aware hardware such as dynamic RAM that

reduces its refresh rate on lines containing approximate data. Precise data, on the other

hand, is computed on in the traditional sense. Explicit endorsements by the program-

mer from approximate to precise data certifies that approximate data in the program

is handled intelligently and will not cause undesirable results.

The notion of approximate data types is evident in the domain specific language

of the new programming framework presented. In EnerJ, data types are either ap-

proximate or precise. In the domain specific language, when a sensor is instructed to

be enabled and to log all readings it may be considered precise. However, sensors in

the language have additional qualifiers, rather than simply “approximate”, that more

precisely describe how a flight engineer wishes to sacrifice sensor quality. Thus, the

sensor specification of the language may be thought of in a similar manner as EnerJ’s
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data type annotations.

2.2 AUV Programming Languages And Environments

2.2.1 MOOS-IvP

MOOS-IvP is a set of open source tools that provide autonomy for unmanned ma-

rine vehicles [Benjamin et al., 2010]. It is composed of two distinct components, the

Mission Oriented Operating Suite (MOOS) and the IvP Helm. MOOS provides a

publish-subscribe architecture and protocol where processes communicate through a

single database in a star topology. The IvP Helm, short for interval programming,

is one such process in MOOS and uses a behavior based architecture to implement

autonomy.

Behaviors in MOOS-IvP are self contained expert systems that are dedicated to

some aspect of an AUVs autonomy. One such behavior may be to guide the vehicle to

a set of waypoints at a given speed. A mode specification determines which behaviors

are active in each Helm control cycle. If multiple behaviors are active, the IvP solver

is used to reconcile the behaviors using the objective functions generated by each of

the active behaviors. These objective functions are piecewise linearly defined and are

used by the behavior to influence the decisions made by the helm over some decision

space. The decision space can be arbitrary but is typically composed of settings for

speed, heading and depth.

Similar to MOOS, the new runtime system integrated into the glider and described

later, also provides a publish-subscribe interface to services. These services use the

runtime system to read and write to the glider’s sensor memory which is analogous to

the MOOS database (MOOSDB). Unlike MOOSDB, the sensor memory of the glider

only supports numerical values and not strings. The string values for variables in the

MOOSDB can be complex and could be encoded to contain several pieces of data. New
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behaviors that make use of such variables must know how to decode these types of

strings. Furthermore, the MOOS interface process that interacts with the vehicle must

also translate MOOS variables into vehicle specific commands. For the Slocum Glider,

this could be the command data structure generated by layered control as described in

Chapter 3.

The MOOS-IvP system is one of the most widely adopted general programming

infrastructures used by the AUV community. It has been used in several hundred hours

of sea trial experiments on a variety of vehicles like the REMUS and Iver2. However,

architecturally, MOOS-IvP requires that the vehicle control system and the autonomy

system be on two distinct platforms. It would require a significant engineering effort

to morph the existing infrastructure of the Slocum Glider into a conforming backseat

driver paradigm. Furthermore, the system would not be backwards compatible, which

is an import focal point of the new programming framework described.

To remain backwards compatible and to not discard the safety mechanism put into

the current glider control system, existing components were used much as possible to

create the new programming infrastructure instead of replacing it with a MOOS-IvP

system. The domain specific language is also meant to be a high level specification

and one not targeted for engineers or advanced programmers. The MOOS-IvP mission

specification can become quite complex when considering the interactions of behaviors,

mission modes, the generation of objective functions, the weights of the objective func-

tions, and how the solver will resolve these functions to produce a vehicle command.

The domain specific language and compiler could target MOOS-IvP in the future as

long as the compiler generates a set of behaviors that will ensure the solver will produce

the desired vehicle actions in accordance with the mission.
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2.2.2 AUVW and AVCL

The Autonomous Unmanned Vehicle Workbench (AUVW) aims to bridge the gap be-

tween heterogeneous vehicles by providing a tool capable of mission planning, rehearsal

and replay for arbitrary air, ground, surface and underwater vehicles [Davis and Brutz-

man, 2005; Davis, 2005]. A key component of AUVW is the Extensible Markup Lan-

guage (XML) based Autonomous Vehicle Control Language (AVCL) that provides a

common data model. The common data format along with a set of utilities that per-

form automatic data conversion to and from a vehicle specific format serves as the

bridging element between the dissimilar vehicles. Besides AUVW, other mission plan-

ning tools have also chosen to use a XML based mission format [Dias et al., 2005, 2006;

Godin et al., 2010].

Missions written in AVCL are translated to a vehicle specific format with the use

of the Extensible Stylesheet Language for Transformations (XSLT). To parse vehicle

missions into AVCL, a context-free grammar (CFG) definition must be created for each

vehicle. Typically, a graphic interface in AUVW is used to create and edit AVCL

missions as well as perform any required mission translations.

The benefit of having such a common data model is that one tool can more easily

manage multiple vehicles. However, in AVCL, many tags exist that are only applicable

for certain types of vehicles. For example, a MoveRotate command is used to rotate

a vehicle in place using a body thruster. This maneuver is not currently possible on

the Slocum Glider. Even general tasks can contain meta commands only used for

certain vehicles, such as setting the navigation mode for the REMUS AUV [Davis and

Brutzman, 2005]. Thus, missions that want to make use of a particular vehicle feature or

capability may require both general and vehicle commands. The more meta commands

that the framework is aware of, the more polluted and less general the common data

model will become. Finally, although the programming framework described in this
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work does not make use of AVCL, some of the AVCL behaviors are already supported

or could be exposed by the domain specific language.

2.2.3 Common Control Language

The motivations behind the Common Control Language (CCL) is to investigate a stan-

dard for communicating between AUVs and surface vehicles as well as human operators

[Duarte and Werger, 2000; Eberbach et al., 2003; Mupparapu et al., 2004; Duarte et al.,

2004, 2005; Komerska and Chappell, 2007a,b]. To support groups of heterogeneous ve-

hicles, a set of generic or basic behaviors are defined common all AUV. These generic

behaviors are categorized into nine broad classes. The focal point thus far has been

on the categories of maneuvering, navigating, communicating, configuration, execution

and monitoring. The behaviors are used as basic building blocks for AUV interaction

and for mission files.

Each vehicle that wishes to support CCL requires a CCL interpreter to be incorpo-

rated. The CCL interpreter includes an embedded planner and requires a mechanism to

interface between CCL and the vehicle’s existing control software. In the Distributed

Control Environment (DICE) for the Solar-powered AUV (SAUV), this was accom-

plished with a bridge behavior that interacted with the legacy SAUV controller [Duarte

et al., 2005]. The embedded planner in CCL adaptively searches for the best sequence

of basic vehicle behaviors for the directives it is set to accomplish.

The Common Control Language is part of several graphical user interfaces (GUIs)

being developed [Duarte and Werger, 2000; Mupparapu et al., 2004; Duarte et al., 2005]

for vehicle missions control. The data types and structures are precisely defined in the

specification [Komerska and Chappell, 2007a,b]. The serialization and deserialization

of a subset of CCL messages is also given to enable users to build and parse messages.

Several human readable representations are also provided throughout the literature, for
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example, one that is inspired by the Lisp and C programming languages.

By limiting the expressiveness and types of behaviors that the vehicle can make use

of, it is unclear what optimization opportunities are lost. For example, the protocol

may need to be extended to enable an operator to specify that a sensor should only be

logged based on a certain environmental feature. Thus far, CCL has generally been used

to operate a fleet of AUVs to accomplish a set of tasks while the presented framework

currently focuses on enabling programmers to use domain specific features to make

trade-offs for single vehicle instead of a group vehicles.

2.2.4 Compact Control Language

The Compact Control Language (C2L) is developed by the Woods Hole Oceanographic

Institute (WHOI) and is designed to allow AUVs to communicate with each other or

a central node using low-bandwidth acoustic links [Stokey et al., 2005; Stokey, 2005].

The C2L protocol is designed around the capabilities of the WHOI Micro-Modem and

WHOI Utility Acoustic Modem and thus messages are extremely compact and encoded

into 32 byte packets. Because of its original design for use with the REMUS AUV

[Hydroid, LLC.], the protocol also contains some vehicle specific messages. However,

C2L is intended to be sufficiently generic to be used with other AUVs.

Currently, the protocol specifies 21 supported message types. These message includ-

ing vehicle command messages and more generic sensor messages, such as, bathymetry

and conductivity, temperature and depth (CTD) data. Sensor data in messages are

compressed so that multiple data points may be sent in one packet. For example in

a bathymetry message, the altitude and depth resolutions are changed to 10 cm for

depths less than 100 m, 20 cm for depths between 100–200 m and 50 cm for depths up

to 1000 m and 1 m resolution for depths greater than 1000 m [Stokey et al., 2005]. Fur-

thermore, latitude and longitude values are encoded into three byte values to provide
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a resolution of several meters. This compression allows three data points to be sent in

one bathymetry message.

Clearly, this language is not meant for direct communication between a human

operator and an AUV. Rather, as is the case with the REMUS, a graphical user interface

displays sensor and vehicle updates as they are received and decoded and generates

new messages in the binary format on the user’s behalf. The language also contains

vehicle specific functionality that may not applicable to all vehicles. In order for new

features for vehicles to extend C2L, a developer must coordinate with C2L creators to

ensure future compliance. The programming framework presented, on the other hand,

contains a domain specific language for human operators and is extensible with the

implementation of new services.

2.2.5 Dynamic Compact Control Language

The Dynamic Compact Control Language (DCCL), [Schneider and Schmidt, 2010],

builds on the ideas developed in C2L. In C2L, message were precisely defined. For

instance, a bathymetry message contains three data points with a specific resolution

for each of the variable types. In DCCL, the message structure is defined by a structure

language based on XML. A library validates the definition and efficiently encodes the

message for transmission over an acoustic channel. Thus, DCCL provides a mechanism

to adapt the messaging protocol and is not strictly defined like C2L. Much like its

predecessor it is a binary protocol targeted for acoustic communication.

2.2.6 AUVish

AUVish, like C2L and DCCL, is a language target for acoustic communication among

several vehicles [Rajala et al., 2006]. Specifically, AUVish is designed to enable the

cooperation of a group of AUVs to maintain complete coverage in underwater mine
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countermeasures (MCM). In the MCM presented in [Rajala et al., 2006], a formation

searches for mines in a lawnmower search pattern with a leader AUV and several swim-

mer and follower AUVs. The AUVs in the formation communicate regularly using the

AUVish protocol. If the leader has determined that a swimmer in the formation has

been lost, for example by detonating a mine, the leader elects a nearby follower to take

the swimmers place.

AUVish was developed for the purpose of simulating cooperative behaviors and did

not consider real-world constraints. AUVish-BBM is a dialect of AUVish made to work

within the functional capabilities of the WHOI modem [Beidler et al., 2007] and takes

advantage of smaller 13 bit chirp packets as well as 32 byte packets. Both languages

are, however, ad hoc and restricted to the target application.
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Chapter 3

Slocum Glider Infrastructure

The Slocum Glider has its roots in Massachusetts Institute of Technology’s (MIT) Sea

Grant Odessy AUV. Specifically, the layered control system described by Brooks [1986],

has made its way from MIT’s Artificial Intelligence (AI) Lab into many AUVs including

the Slocum Glider [Zheng, 1992; Bellingham and Leonard, 1994; Godin et al., 2010].

The layered control system determines, for example, how an AUV should propagate to a

target location and how specific sensors should be utilized to meet a mission’s objectives.

This chapter will provide a brief overview of the Slocum Glider’s implementation of the

layered control systems and how it is used to control the AUV. The glider’s existing

computing infrastructure and its limitations are also described. Finally, the chapter

concludes with a discussion of the usability of the existing programming system and

motivates the need for a new programming framework.

3.1 Layered Control

The subsumption control architecture proposed by Brooks [1986] differs from what

was the traditional control system of robots at the time and is shown in Figure 3.1.

Figure 3.1: The traditional decomposition of a robot’s control system [Brooks, 1986].
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Figure 3.2: Brooks’ design of task achieving behaviors [Brooks, 1986].

These control systems were decomposed into functional units while the layered control

system introduced task-achieving behaviors, depicted in Figure 3.2, that could be built

to perform complex tasks by increasing each layers level of competence.

The lowest level of this architecture should be rather simple. After it has been

developed and debugged, it should not be changed. The next level of control would be

built on top of the previous layer and is permitted to inject data into the lower level

layer to suppress its normal output. The lowest layer in this system is unaware of the

layer above it which may, if necessary, interfere with its output. Multiple of these layers

may exist to achieve the overall task required by the robot.

Figure 3.2 illustrates this concept where a land based robot may be first programmed

to avoid contact with objects at the lowest layer. Next, an additional layer of compe-

tence is added which allows the robot to wander. Another layer may provide the

functionality to explore by trying to find places to go to. Other layers may then, build

maps and routes, notice changes in the environment, reason and perform tasks on ob-

jects, format and execute plans, and finally reason about the behavior of objects and

modify actions accordingly.
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behavior: abend

b_arg: overdepth(m) 20

b_arg: overtime(sec) 600.0

b_arg: samedepth_for(sec) 600.0

b_arg: samedepth_for_sample_time(sec) 600.0

behavior: surface

...

behavior: set_heading

...

behavior: yo

...

behavior: prepare_to_dive

...

Figure 3.3: Skeleton of a sample mission file for the Slocum Glider.

The control systems of many AUVs have been built using the layered control con-

cept. The Slocum Glider in particular uses this behavior driven architecture to deter-

mine what the task the vehicle should perform for each four second control cycle. These

behaviors are specified as part of mission files by the user and are transmitted to the

vehicle via satellite or radio.

3.1.1 Missions

Users program the Slocum Glider by creating mission files that will instantiate the

control system. Figure 3.3 contains an overview of a sample mission. Behaviors pro-

vide the user the ability to control certain aspects of the vehicle. Each behavior has

associated with it a set of arguments that allow the user to customize how the behavior

operates. A yo behavior, for example, provides the functionality of diving and climbing

a saw-toothed flight profile. The way in which the glider will dive or climb will depend

on the arguments provided by the user through the behavior arguments. A pitch of

25–26◦ may be a desired behavior argument for the yo behavior [Graver et al., 2003].

Multiple behaviors of the same kind may also exist. A user should create mission

programs in such a way that only a subset of behaviors are active at any given time in
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Behavior

...

Attribute1

AttributeN

Command

Figure 3.4: Command data structure.

Sub−Behaviors

State

Name

Argument List

Sub−State

Function Pointer

Behavior

Figure 3.5: Behavior data structure.

order to receive the desired effect. If two yo behaviors exist in a mission, each specifying

different diving and climbing angles as well as operating depth ranges, then only one

yo behavior’s goals should be sought after. The goals that are ultimately selected

are determined by the subsumptions the behaviors apply to the final command in the

layered control system.

3.1.2 Commands

The decision as to how the glider may react to the environment to achieve its goal is

made every four seconds through the layered control system. The result of the system is

to produce a final command that the glider should perform for the specific four second

cycle. Figure 3.4 contains an abstraction of a command data structure. It consists of a

behavior, as well as a set of attributes that the vehicle’s drivers will use to manipulate

its motors. For example, a pitch attribute may be set to modify the buoyancy pump’s

position. Although many instances of the command structure exist within the control

system, only one final command will be produced to commandeer the vehicle.

3.1.3 Behaviors

Behaviors play a crucial role as part of the control system. They exists as part of

command structure or as part of another behavior structure. As shown in Figure 3.5,

each behavior instance will contain a name, state, sub-state, argument list, function
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Figure 3.6: Command stack structure.

pointer, and a list of possible sub-behaviors. The state fields provide the necessary

mechanisms for an instance of a behavior to continue proper execution across multiple

cycles. Depending on the state of the behavior, the function pointer in the behavior

is executed. The objective of the function, that the behavior calls, is specific to each

kind of behavior. For example, a sample behavior function may turn on or off a sensor

or change a sensor’s sample rate. The specific sensor that the sample function should

manipulate is specified by the user through the behavior’s argument list. A function

may also create other sub-behaviors and call their functions. Although a function

can have multiple tasks to perform, the key role of most functions is to modify the

attributes of the command that the behavior belongs to. A climb to behavior would,

for example, manipulate a command’s attributes in such a way that would cause the

buoyancy pump’s device driver to expel water, thus changing the glider’s buoyancy.
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3.1.4 Command Stack

The existing programming architecture parses the user provided mission file, and creates

an instantiation of a command stack structure as illustrated in Figure 3.6. The ordering

of the behaviors listed in the mission will directly correspond to the ordering of the

behaviors in the command stack. The behavior at the beginning of the file will be

placed at the top, or head, of the command stack; the last behavior will be positioned

at the bottom, or tail, of the stack.

At each cycle, the layered control system will use the command stack to produce

the final command the glider will execute. To create this command, the stack’s tail

command attributes are first set to default values. If the tail command’s behavior is

active, then the behavior’s function is executed and the attributes of that command

may change. Next, the attributes of the tail command overwrite the attributes of the

command in the next level in the stack. Again, if active, the attributes may be changed

by this level’s behavior. This procedure will be repeated until the head command

completes its modifications on its attributes. The command at the head of the stack

will then become the output command which will be used by the glider’s drivers.

This control system allows the vehicle to negotiate the actions that would meet

a mission’s overall goals. Behaviors at higher layers may subsume or overwrite the

attributes set by layers below. Behaviors of utmost importance, such as the abend

(abnormal end) behavior should be placed at the beginning of the mission file to keep

the vehicle safe. This will enable the more important behaviors to be the last to

contribute to the resulting final command.

3.2 Glider Hardware

Teledyne Webb Research’s development of the Slocum Glider began over a decade ago

and some of the hardware components have begun to show their age. The computing
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infrastructure, although reliable, are some of the oldest components on the vehicle

today. The processing power on the Slocum Glider consists of two 16 MHz Motorolla

68338 Persistor processors, with 1 MB of flash and 512 KB RAM [Persistor Instruments

Inc.]. The flight controller is located in the rear of the vehicle and is responsible for

piloting the AUV. It executes the mission files and layered control system as described

in the previous sections. The science computer, typically located in a center payload

bay, acquires the scientific data from connected sensors using proglet drivers.

The two computing platforms in a stock Slocum Glider communicate via a RS-232

serial connection known as the clothesline. A driver on the flight controller and a proglet

on the science computer speak the superscience protocol to communicate sensor data.

Glider control software before the 7.0 release performed data logging only on the flight

controller. All sensor data that needed to be logged had to traverse this clothesline.

Since the 7.0 release, science data logging is possible and has significantly reduced the

complexity and trade-offs users had to make to successfully log sensor data.

The existing control software is the largest to ever run on that particular processor

type. However, it is struggling to meet the requirements needed by the glider’s cus-

tomers. For example, before science data logging, if too many sensors were requested

to be logged by the flight controller, the clothesline could become a bottleneck and

cause control cycle abnormalities. Science data logging has relieved some of the pres-

sure, however, the number of sensors that can be sent to the flight controller are still

limited. Other tasks and control sequences can also cause the vehicle to overrun the

control cycle. Such limitations hinder the vehicle from performing dynamic tasks and

optimizations that rely on sensor data, processing, and modeling. With projects such

as acoustic data processing and acoustic communication among groups of gliders in the

works, the requirement of a more modern and powerful computing system has arisen.
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behavior: sensors_in

b_arg: c_att_time(sec) -1

b_arg: c_pressure_time(sec) -1

b_arg: c_alt_time(sec) -1

b_arg: u_battery_time(sec) -1

b_arg: u_vacuum_time(sec) -1

b_arg: c_profile_on(sec) -1

...

behavior: sample

b_arg: args_from_file(enum) -1

b_arg: sensor_type(enum) 0

b_arg: state_to_sample(enum) 1

b_arg: sample_time_after_state_change(s) 15

b_arg: intersample_time(s) 2

Figure 3.7: The sensors in and sample behaviors.

3.3 Programming Issues

The user’s interface to the glider is in the form of mission files. Missions are thus

an extremely important aspect of the whole system. Without an intuitive mechanism

to specify a scientist’s goal, the effectiveness of any tool is dramatically reduced. It

should then be made easy to specify how a glider should use its sensors as well as

how to propagate from one target location to the next. However, the existing glider

programming infrastructure can make tasks, such as sensing, cumbersome and difficult

to read and write.

The mechanism to specify which sensors should be active in a mission, and how

samples should be taken are accomplished using the sensors in and sample behaviors

as shown in Figure 3.7. When using the sensors in behavior, a user denotes each sensor

they wish to customize by providing to the behavior a sensor specific argument as well

as an integer with the desired sample rate. A value of negative one is used to disable a

sensor, a zero to sample as quickly as possible, and an integer n to specify a sampling

every n seconds.

A more customizable, and sometimes preferred behavior, sample allows a user to

not only specify at what rate to sample (intersample time argument), but also when to
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sample a sensor. Similar to Unix file permissions, an integer based on a bit-vector will

allow for readings when the glider is at the surface (bit-vector value of 8), climbing (4),

hovering (2) or diving (1). Thus, a state to sample value of 14 would sample a given

sensor when at the surface, climbing and hovering, but not while diving.

A sample behavior must exist in the layered control system, and thus the mission

file for each sensor. Unlike the sensors in behavior where select sensors have their own

arguments, the sample behavior requires the user to indicate which sensor the behavior

should control by providing an integer value to the sensor type argument. The vehicle’s

documentation denotes which integer values correspond to which sensors. Interestingly

enough, these values also happen to be directly used as indexes into an array. Not only

is specifying an index to an array not very intuitive for end users, but it has also led

to incompatibility and usability issues. Software updates have changed the array but

the documentation has remained unchanged. For example, to indicate the sampling

properties of the AUVB fluorometer sensor, the value of 27 should be used. However,

because of changes to the array in the glider software, the correct value is 28. This

inconsistency can be observed across multiple sensors. Missions which had previously

been written and deployed may not function properly across software updates. Users

were never informed of the possibility that changes may need to be made to their

missions, or that multiple versions of the same mission may need to exist for each

revision of the software stack.

The writing and modification of missions can be a non-trivial task. To properly

program the AUV, one must appreciate the layered control system and how behaviors

change their command’s attributes and how the combination of attribute changes at

each layer produces the desired control of the system. Most behaviors are activated

and deactivated by providing the behavior with a start when and stop when arguments.

An integer value is again used to symbolically represent different states or events that



28

should trigger the behavior. Many of such triggers are based on a command’s attributes.

One such start when trigger value is 4, or when a command’s up and down attributes

are idle. Therefore, when adding a behavior which uses this value as a trigger, one

must consider at what state and sub-states other behaviors are in and how each have

contributed to the current behavior’s command attributes. This requires an intimate

knowledge by the user of how each behavior has been implemented and how it will

function at any time in the mission. Once a user has determined how to properly

activate a given behavior, the user must next consider how behaviors in higher layers

will modify or subsume the attributes set by the current behavior. So, when adding

a behavior into a mission it is necessary to account for both behavior activation and

command attribute subsumption.

Missions files are the user’s tool to program the system and have proven to be

difficult to program. Multiple mechanisms, with different interfaces exist to change

the sample rates and activation of sensors. Adding behaviors to create new or modify

existing missions involves knowledge beyond the interests of its users. The lack of

documentation describing behaviors and their arguments also often leads to inspections

of the vehicle’s source code. As a result, it has become common that only the missions

provided by the manufacturer are used. Moreover, only a subset of the a mission’s

arguments and waypoints are typically changed. This severely limits the scope of the

glider’s use.

Finally, the present system is extremely static in that it cannot react dynamically

to the environment. Once a mission begins execution, it can only be reprogrammed

during its periodic surfacings, otherwise it will continue as instructed by the mission.

Usual missions denote that the AUV should surface every 3–6 h to send a subset of

sensor readings through the glider’s communication infrastructure. At this time, a

scientist may interpret the data and instruct the glider to resume, or execute a new
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mission. No instrumentation currently exists which provides the functionality to react

to the environment the vehicle is experiencing. If an interesting phenomena occurs

while underwater, the glider will ignore it and continue as commanded. Only at the

next resurfacing can a scientist react and send the vehicle back to collect more data

points. Some phenomena are short-lived and so the opportunity to observe it may have

already been lost. It has become evident that to bring about the glider’s full potential,

it is necessary to create a medium where scientists can express their requirements to

the glider in a way that is specific to their domain.
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Chapter 4

New Programming Framework

Autonomous underwater vehicles are powerful tools but can be difficult to program es-

pecially by non-experts. The goals of this dissertation is to create a new programming

framework that enables AUV missions to be specified in a domain specific manner and

use domain specific features to optimize a vehicle’s deployment. The infrastructure

should allow a user, such as an oceanographer, to easily express and make use of such

features and be provided feedback to determine if the trade-offs are a worthwhile sac-

rifice. Furthermore, the safety of the vehicle is of utmost importance, and framework

must be designed as such. The Slocum Glider is the target platform for the framework

and is a widely deployed AUV with a large user community. However, much of the work,

such as the language abstractions, compiler, and service infrastructure, is applicable to

other vehicles both in the domain and outside the underwater domain.

This chapter describes several components of the programming framework. Al-

though of equal importance, the simulation, power measurement, and energy model

infrastructure are described separately. The highest level of abstraction if provided by

the ALGAE domain specific language. The language’s target audience are scientists

that do not necessarily know or require detailed knowledge of the specific AUV. Ser-

vices, like feature detection, are created in the framework and exposed via ALGAE.

These services can be created in several languages and in the GLOC scripting engine

created for the Slocum. Services can also vary in complexity and be implemented and

executed on the AVBot single board computer integrated into the AUV to extend its
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Figure 4.1: Overview of new programming infrastructure.

functionality. This is also the second level of abstraction provided by the programming

framework and is targeted at users with more programming experience and domain

knowledge. This separation of complexity to extend the vehicle is intentional and was

driven by the need to ensure that the vehicle remains safe, robust, and practical.

4.1 Overview

An overview of the new programming framework is shown in Figure 4.1 and will be

described in greater detail in the following sections. To create more dynamic function-

ality in the vehicle, we have added two behaviors into the layered control stack of the

glider’s control system. The first of these behaviors is the hook behavior that allows

for the dynamic creation of existing glider behaviors. The second, the GLOC behavior,

contains within it a small virtual machine that can be used to execute small programs.

In combination these two behaviors allow for dynamic, although simple, control of stock
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TS-5500 TS-7800 TS-7260
CPU: x86 at ARM9 at ARM9

133MHz 300MHz or 500MHz 200MHz
Memory: 64MB 128MB 64MB
Storage: 1 CF 1 FullSD, 1 FullSD

1 MicroSD, 2 SATA
USB: 2 2 2

Serial Ports: 3 Up to 10 3
Analog to 8x12-bit 5x10-bit 2x12bit
Digital : channels channels channels

Active Power: 2.7W 3.42W (300MHz), 2W
4.14W (500MHz)

OS: Linux 2.4 Linux 2.6 Linux 2.4

Table 4.1: SBCs that have been installed in the Slocum Glider.

gliders.

To enable more advanced sensors and control, a Linux single board computer (SBC)

has been integrated into the glider. The SBC communications with the main flight

controller through a new glider device driver. This device driver allows the SBC to read

and write into a portion of glider’s main memory called the Sensor Array. Programs on

the SBC, called services, can subscribe and publish values to the sensor array. Services

running on the SBC are generally more complex than services running in the GLOC

behavior in the glider.

Finally, programs written in the domain specific language are transformed from high

level constructs to a set of glider mission files, behaviors, Dockserver mission control

scripts, and services. These components can together execute the high level programs

specified by a user on the Slocum Glider target platform.

4.2 AVBot Hardware

To support the new software infrastructure as well as a set of more complex sensors and

services, we have tested and integrated several single board computers with our target

platform. A SBC integrated as part of the infrastructure for the glider is called an
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(a) Vacuum sealed glider with science bay located
under the access point.

(b) TS-7800 installed in the
bottom half of the science
bay of the glider.

Figure 4.2: Current hardware prototype.

Autonomous Vehicle Robot (AVBot). Table 4.1 contains the hardware specifications of

the SBCs from Technologic Systems. The power measurements were taken under load

on a Tektronix TDS 3014 oscilloscope. These SBCs were specifically chosen because

they provide a wide variety of inputs for sensors and run a commodity operating system

that provides for rich driver support as well as an easy development environment.

Depending on the sensor, power, logging, as well as processing requirements, it may be

advantageous to choose one board over another. For example, floating point operations

are likely faster on the x86 than on the ARM9, while the ARM9 board has more RAM

as well as serial interfaces. Other SBCs will likely be considered in the future which

may be more appropriate for use with certain sets of sensors.

Of the SBCs, TS-7260 has been chosen as the default SBC for the prototype system

as it strikes a nice balance of being relatively low power while still providing the neces-

sary computational capabilities required by many applications in the domain. Power is

provided to AVBot by the glider’s battery or by an external power source. The TS-7260

has been fitted with a battery backup system to ensure that the AVBot software and

operating system be can safely shutdown. While deployed, the battery backup will be

recharged from the glider’s batteries.
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A Slocum Glider with the AVBot hardware installed can be seen in Figure 4.2.

The science bay is located in the middle of the glider. It is the section of the glider

which contains the science computer and all of its attached sensors. In Figure 4.2(a),

it is located above the access point which is used to communicate with AVBot during

benchtop testing. The TS-7800 is shown in Figure 4.2(b) completely installed in the

science bay and connected to the remainder of the system.

Communication with the glider is accomplished through either an RS-485 connection

to the glider’s flight computer or through an RS-232 serial connection to the glider’s

science computer. When connected to the flight controller, flight data from the glider is

more quickly accessible to the AVBot, while when connected to the science computer,

science data is more quickly available.

In the initial design the SBC communicated with the vehicle through the science

Persistor. A proglet, a program on the science computer which acquires data from

sensors, was written to allow AVBot to act as an ordinary sensor to the existing system.

The proglet acted as a proxy to allow AVBot to write into the glider’s sensor memory by

speaking the superscience protocol with the glider over a slow serial connection known

as the clothesline. However, after several missions at sea, the communication latency

experienced was too high when the AVBot was tasked to maneuver the vehicle’s flight

through this mechanism. Therefore, the RS-485 link connected directly to the glider’s

flight controller is preferred.

In the current incarnation of the AVBot prototype, a device driver was written

for the vehicle that speaks the gliderbus protocol over the RS-485 serial connection.

The AVBot device driver is shown in Figure 4.1 as part of the glider’s flight controller

software. The gliderbus protocol is used by other devices like the AUV’s fin controller

and coulomb counter. In this case, the protocol is used to perform a set of memory

read and write transactions to the sensor variables. Not only does this approach provide
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direct access to the vehicle, but it is also much more reliable than the science proglet

approach.

With significantly more computing power in place, the glider is able to support a

wider variety of sensors and applications. Sensor data can be sampled at higher rates

and stored locally on the SBC. Processing, decision making, and acting on sensor data

may now be possible but comes at cost of additional energy. The increase in energy

required will likely lead to lower deployment times, which may be justified if a glider is

able to accomplish enough data acquisition in one pass of an area, rather than requiring

multiple passes to aggregate a similar set of data points. Other optimizations such as

changing the glider’s flight path, sensor triggering, or hierarchical power management

may also be considered to subsidize the energy cost.

4.3 Hook behavior

With the creation of a reliable mechanism in the AUV’s software to allow the reading

and injection of data into the sensor array, the glider must also be instrumented to

make use of such data to perform actions. For example, the glider could be tasked to

detect and then track a physical feature in the ocean. To remain as non-intrusive as

possible, the creation of a new behavior was chosen as the mechanism to provide the

programming framework new dynamic capabilities. By using a behavior the overall

changes that need to be made to the control system are isolated. This new behavior,

named the hook behavior, is shown in Figure 4.1 as part of the layered control stack.

The approach of using a behavior has the benefit of being backward compatible. If

a user wishes to use the new system, the behavior is specified in the mission file. If the

behavior is not included in the mission, the behavior will never be part of the layered

control system and the glider will function as an unmodified vehicle. Furthermore,

higher priority behaviors can still overwrite any changes made to the command stack
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by the hook behavior. For example, a higher priority abend behavior may overwrite

invalid or unsafe commands written by the hook behavior.

At each four second control system cycle, when the hook behavior runs, it interprets

a set of sensor array values set by the AVBot system to see if any actions need to take

place. In Figure 4.1, for instance, if the dive to flag is set, the behavior dynamically

creates a dive to sub-behavior in the layered control system. The arguments for the

sub-behavior are set by reading the corresponding argument list values specified by

preselected set of sensor values in the sensor array. The sub-behaviors are executed

and, optionally, destroyed. Depending on the flags set by the AVBot, multiple sub-

behaviors may be created and executed in each cycle. Because the behavior uses existing

behaviors, the extensive safety features in the current system do not go at a loss. It

also becomes possible to react and change the glider’s flight to react to phenomena in

the environment.

4.3.1 Thermocline Tracking Experiment

Not being able to react to its surroundings can lead the glider to inefficiently study

some ocean phenomena. To showcase the dynamic capabilities that have been added to

the Slocum, the infrastructure has been used to track a thermocline. A thermocline is

a layer of water where temperatures change drastically, typically within several meters.

To detect and track such a thermocline, a simple algorithm has been developed

that observes when a threshold has been met in recent depth and temperature data

points. Using fictitious data loosely based on real thermoclines observed by previous

glider missions off the coast of New Jersey, and the stated algorithm, a benched glider

in simulation mode was able to successfully track a thermocline. Figure 4.3 shows a

glider’s depth profile of such an experiment, where the thermocline is represented by

the gradient. The warm surface water is assumed to be 24◦ C and the cool deep water
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Figure 4.3: On bench thermocline tracking simulation.

7◦ C. The simulated thermocline has one internal wave.

With the intent of remaining backward compatible, the glider was instructed to

perform three dive and climb sequences with the traditional layered control system.

The infrastructure was used to pilot the tracking of the thermocline from 260 s to

1460 s into the mission; after this it would return to finish its layered control mission.

The profile depicted in Figure 4.3 confirms that, although simple, the tracking algorithm

performs well.

As part of the experimental evaluation of the system, two deployments were per-

formed in the Atlantic Ocean approximately 30 km off the coast of southern New Jersey.

During these deployments, the glider was tethered to a buoy as a safety precaution.

Although the tether may slightly impact the flight behavior of the AUV, it provides

the advantage of a speedy recovery in the case of unplanned events.

The overall objectives of the first deployment were to assess if the architecture was

sound and to determine if the simulations are reflective of true environmental conditions.

During the first run of the day, the glider was programmed in the framework to change

its target depth from 15 m to 25 m based on a specific sensor reading. It was successful

in doing so.

The second run was the first attempt of tracking a thermocline. The AUV flew to
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its desired depth but failed to detect the thermocline because the algorithm was not

properly provisioned to deal with sensor readings that were not monotonically increas-

ing (while climbing) or monotonically decreasing (during diving). Thus, temperature

fluctuations caused the data window to be reset and caused the threshold to never be

reached. Provided that the simulations did not reveal the error in the algorithm, it was

still considered a prosperous deployment.

The focal point of the second deployment was to use the knowledge obtained from

the first mission to track a thermocline. Minor changes were made to the tracking algo-

rithm based on the data collected from the previous deployment. Figure 4.4(a) exhibits

the day’s water column temperatures as observed using a Sea-Bird CTD profiling sen-

sor. The thermocline is present at approximately 10–18 m where dramatic temperature

change can be observed. A mission nearly identical to the one in the first deployment

was carried out. The vehicle’s vertical profile in Figure 4.4(b) indicates that the al-

gorithm successfully detected the thermocline and changed the glider’s target depth

range. A dramatic temperature change was not observed in the climb starting at ap-

proximately 700 s into the mission. The loss of the thermocline was not due to a defect

in the algorithm, but due to the CTD sensor itself. It is possible that an old water
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column was not flushed out from the CTD sensor. The dive immediately following the

climb did however detect the thermocline again.

It is interesting to note that the vehicle leveled out at 15 m towards the end of the

mission. Although the infrastructure was still in control for a small portion of this time,

it piloted the vehicle to climb. For most of the hovering period however the glider’s

layered control system was in control and instructed a climb. This type of behavior

has been observed in other deployments for brief periods of time. Another possibility

is that the tether somehow restricted the glider’s movement. Regardless, it has been

shown that the framework has enabled the Slocum to react dynamically to changes in

its environment which was not feasible in the existing software system. Coming up with

a reliable implementation of an efficient thermocline tracking algorithm was however

not the focus of these experiments, only to showcase its feasibility. Other thermocline

tracking algorithms [Petillo et al., 2010; Cruz and Matos, 2010a; Zhang et al., 2012]

have since been developed and are described in Section 7.7.2.

4.4 Embedded Scripting Engine

The objective thus far has been to provide the necessary groundwork to make the

Slocum Glider a more effective tool for researchers, and to enable complex algorithms

that cannot be performed on the current computing infrastructure. However, the ad-

dition of the AVBot SBC comes at the cost of an increase in power requirements. For

example, if the SBC is used to power manage sensors, the employed management al-

gorithm must ensure that the net energy cost justifies its use. For data processing,

it may be advantageous for the SBC to be powered only when enough data becomes

available to perform the calculations. Finally, if the SBC is used to control the glider’s

flight, there may still be autopiloting opportunities where it can be powered off to let
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the legacy system control the vehicle. Thus, a system is needed that allows for the flex-

ibility of the existing prototype system but at a lower energy cost so that the vehicle

can continue to sustain long term deployments.

To fulfill this requirement a lightweight scripting engine, named GLOC, has been de-

veloped for the Slocum Glider. It is designed to operate on the glider’s native processor,

as well as on AVBot, so that researchers with standard vehicles can also develop new

algorithms for the glider. These algorithms can be used as services in the programming

framework and are capable of using a hierarchical management technique for energy

efficiency [Sorber et al., 2005; Banerjee et al., 2007]. The GLOC engine running on the

flight controller is implemented as a behavior for the vehicle’s layered control system.

This is to ensure that other higher priority behaviors can override the actions requested

by a script.

Because the language of the scripting engine is rather low level, a BASIC-like high

level programming language and compiler called GBASIC have been developed. This

sample language illustrates the flexibility of the engine and is a reference point for

other future languages that may be developed to program the vehicle. Using this

infrastructure, dynamic feature tracking of a thermocline has been performed, which is

not possible with a stock glider.

4.4.1 GLOC

The current programming environment for the Slocum Glider is limited since users are

confined to the behaviors produced by TWR. Creating new mission files can also be

cumbersome, because of the complex interactions between behaviors. The programming

framework developed hopes to improve the programmability of the glider as well as add

additional functionality that will make the vehicle an overall more effective tool. The

aim of the scripting engine is to increase the scope of applications that can be performed
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1 nregs 8
2 nlbls 7
3 ninstr 27
4 label 0
5 loads 444 , r0
6 loadd 15 . 0 , r1
7 cmpgt r0 , r1 , r2
8 cbr r2 , 3 , 4
9 label 3

10 loadi 128 , r3
11 stores r3 ,1387
12 jumpi 1
13 label 4
14 yield

15 jumpi 0

16 label 1
17 loads 444 , r4
18 loadd 5 . 0 , r5
19 cmplt r4 , r5 , r6
20 cbr r6 , 5 , 6
21 label 5
22 loadi 0 , r7
23 stores r7 ,1387
24 jumpi 2
25 label 6
26 yield

27 jumpi 1
28 label 2
29 yield

30 jumpi 2
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Figure 4.5: A sample three yo mission executing a GLOC script. The glider mission
(not shown) is instructed to dive and climb three times between 2–25 m. The script
behavior instead attempts to first fly a single yo between 5–15 m before relinquishing
control and letting the other yo behavior complete its mission. Both behaviors are
active at the same time, with the GLOC scripting engine at a higher priority in the
layered control stack. The resulting simulated flight path is shown to the right.

on the vehicle, as part of the new framework or even a stock vehicle.

When used as part of the framework, GLOC is used to implement services, both

simple and complex. However, more generally, it can be a standalone mechanism to

easily develop new algorithms for the vehicle. This is particularly useful during the

simulation and testing phases of newly designed algorithms where the engine can act

as a test bed before the algorithm is independently created, for example, as its own

behavior.

The scripting engine, like the hook behavior, is implemented as a behavior and

resides in the layered control system. It is therefore able to take advantage of some of the

safety features present in the layered control system. The engine, GLOC1 , resembles a

reduced instruction set computing (RISC) architecture [Hennessy and Patterson, 2007]

assembly language and is inspired by ILOC2 [Cooper and Torczon, 2008] developed at

1 GLOC: Glider intermediate Language for Optimizing Compilers

2 ILOC: Intermediate language for optimizing compilers
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Rice University. Currently, GLOC has over thirty instructions, including instructions

to load and store data to and from the glider’s sensor list and the engine’s registers,

perform mathematical and logical operations, produce output, as well as perform jumps

and conditional branches to labels.

Although an assembly level language is typically considered to be more difficult to

program than a higher level language, it has several advantages. Parsers for complex

languages often require a more complex set of tools and libraries to implement them.

Some parsing techniques are also memory intensive and would use too much of this

scarce resource on the vehicle’s 1 MB Persistor processor. In addition, the size of the

codebase may be a concern since larger codebases are typically harder to maintain and

take longer to debug.

Due to the aforementioned reasons, the design decision was to make the scripting

language very simple. The code base of the core of the engine itself is compact, mea-

suring under 600 lines of code. Although this does not necessarily ensure reliability,

the engine has thus far been easy to maintain. Another advantage is that it is simple

to parse and interpret, and has a small memory and processing footprint. The exact

memory and processing requirements are dependent on the script being executed, but

all of the experiments so far have only required a few kilobytes of memory and have

added at most 30 ms to the glider’s four second control cycle.

A sample of a GLOC script is listed in Figure 4.5 along with the simulated flight

profile of the vehicle’s mission. The example illustrates the interactions between a

mission’s behaviors and the behaviors induced by a GLOC script. The glider mission

specifies a sequence of three yos, where a yo consists of a dive and climb operation.

Instead, the GLOC script first instructs the glider to perform a single yo between 5–

15 m. In the layered control architecture, the script behavior is at a higher level than

the yo behavior and thus supersedes the yo. As shown by the flight profile, the script
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successfully accomplishes its task and then lets the glider proceed with the rest of the

mission.

When a glider mission is executed with the GLOC behavior, the engine first loads

and allocates the memory required by the specified script. The beginning of the script

file, lines 1–3 of Figure 4.5, specifies the number of registers, labels and instructions

that the script will use. This allows for the behavior to statically allocate all required

private memory at one time, and makes deallocation of the memory easy at the end

of a mission. This mechanism follows the general design pattern used for behaviors

throughout the glider software.

Labels in GLOC are numbered and serve as targets for jump and conditional branch

instructions. These instructions allow for control flow to occur in the scripting engine

and are the building blocks for conditional statements such as an if and loops such as

a while. The jump targets may be specified directly by a number or indirectly through

a value contained inside a register. Conditional branch instructions jump to the first

label when the condition holds true and jump to the second label if false.

A register contains data values such as floating point numbers or integers. Mathe-

matical and logical instructions require their input values to be in registers and write

their output to target registers. Registers can be populated with values using a number

of load instructions. The loadd and loadi instructions of Figure 4.5 assign a floating

point and integer values to their given target registers, respectfully. A loads instruction

however loads a register with data from the glider’s sensor array. The sensor array, is

part of the pre-existing glider behavior programming architecture. The load instruction

in line five assigns the value of the vehicle’s current depth to register zero. This is be-

cause the 444th sensor variable in the glider’s sensor array is designated for the depth

information. Writing data to the sensor array is possible via the stores instruction.

The scripting engine is able to gain flight control of the vehicle by using the Hook
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behavior. The engine, through the Hook behavior, can dynamically create and execute

sub-behaviors by setting the appropriate flags and parameters in the glider’s sensor

array. Lines 10 and 11 correspond to such an interaction between the components.

Sensor 1387 is a variable that is checked periodically by the hook behavior to see which

sub-behaviors are to be created. A value of 128 activates a climb to behavior whose

parameters in this particular case have been predefined in the glider’s mission file.

Other behaviors can be simultaneously activated by setting appropriate flags through

the Hook behavior’s sensor interface.

The GLOC engine is lightweight and can quickly execute scripts as part of the lay-

ered control system. However, the exact overhead is reliant on the code being executed.

It is currently the responsibility of the programmer to ensure that only a limited amount

of code is executed as behaviors are not preempted by the glider software. In GLOC,

the yield instruction informs the engine that the program wishes to relinquish execu-

tion for the current control cycle. It is in this manner that cooperative multitasking is

achieved. The user must be aware that taking a large quantum of execution could lead

to undesired control cycle overruns.

The scripting environment is flexible and robust, and will increase the scope of ap-

plications that can be performed on the glider. The engine is also not restricted to

performing tasks independently, but can collaborate on computation and data process-

ing tasks with AVBot. GLOC can also reduce the energy consumption of the vehicle

by alleviating the need to have the Linux SBC be powered at all times. Powering off

AVBot may be desirable in many scenarios, for example, to be part of a hierarchical

power management architecture [Sorber et al., 2005]. If an application on AVBot does

not require a large processing workload for a portion of its execution, the task could

instead be executed remotely by the scripting engine on the glider. In this scenario,

the SBC can enter a low power mode or power off entirely until it is needed again.
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1 label : s t a t e 1
2 i f m depth > 15 .0 then

3 SCI RUHP BEHS = 128
4 goto s t a t e 2
5 endif

6 yield

7 goto s t a t e 1
8 label : s t a t e 2
9 i f m depth < 5 .0 then

10 SCI RUHP BEHS = 0
11 goto s t a t e 3
12 endif

13 yield

14 goto s t a t e 2
15 label : s t a t e 3
16 yield

17 goto s t a t e 3

Figure 4.6: A sample GBASIC program to perform a single yo between 5–15 m. This
program is the source of the compiler generated GLOC script shown in Figure 4.5

A transfer into low power mode may also be profitable when data processing is not

worthwhile until a large data set has been acquired by onboard sensors.

In combination with AVBot, tasks can be performed concurrently with the script-

ing engine. The programming infrastructure can take full advantage of the scripting

engine in the vehicle and could perform automatic code generation of lightweight tasks.

Furthermore, scripts can also be dynamically generated, transferred, and executed.

4.4.2 GBASIC Language

To showcase the capabilities of the scripting engine and to improve the programma-

bility of the scripting system a subset of a BASIC-like programming language, called

GBASIC has been created. Although not a complex and feature rich language, the

implementation of GBASIC can serve as a reference point for other language designs

and compilers that target GLOC.

The compiler for GBASIC was implemented using Python and the Python Lex-

Yacc (PLY) toolset. This toolset is comparable to standard Lex and Yacc tools used in
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compiler construction [Aho et al., 2007]. The code base for the compiler is small with

approximately 700 lines of source code. As the language develops and more BASIC

inspired statements are added, the code size will slightly increase.

Currently, the compiler does not perform any optimizations on the GLOC code

to reduce either its code size or memory consumption. However, type checking and

casting is implemented since it is the responsibility of the compiler, or the programmer,

to ensure that the GLOC code running on the actual vehicle is safe.

The GBASIC language has support for variables and one dimensional arrays of inte-

ger or floating point values. Like GLOC, GBASIC can express mathematical, relational

and logical operations. The language contains the label, goto and if statements, use-

ful to control the flow of execution. Although not yet implemented, the creation of

while/wend, do/loop, and for/next loops should be trivial as they can be constructed

from the already built constructs.

An example of a GBASIC program is listed in Figure 4.6. The GLOC code presented

in Figure 4.5 is in fact the output code generated by the GBASIC compiler of the

program in Figure 4.6. The higher level language is more readable and thus makes

it easier to debug. Labels, for example, are not just numbers as in GLOC, but can

have descriptive names. Built-in vehicle variables such as m depth can also be called

directly by their name, as specified in the glider’s Masterdata documentation. Although

GBASIC may not be the most appropriate language to develop programs for the Slocum

Glider, it illustrates that higher level languages can be constructed for the scripting

engine.

4.4.3 Thermocline Tracking Experiment

The GLOC engine adds functionality to the vehicle that is not available on a standard

glider. To showcase its usefulness, the thermocline tracking algorithm of [Petillo et al.,



47

 0

 5

 10

 15

 20

 25

 30
 0  2  4  6  8  10  12  14  16

D
e

p
th

 (
M

e
te

rs
)

Mission Time (Minutes)

Simulated GBASIC Thermocline Tracking Mission

Figure 4.7: Flight profile of a simulated glider tracking the thermocline in Figure 4.4(a).

2010] has been implemented in GBASIC. The compiled GLOC code was executed by

the scripting engine in a simulated thermocline tracking mission.

Petillo et al. [2010] developed a thermocline tracking algorithm for use within the

MOOS-IvP autonomy system [Benjamin et al., 2010]. The algorithm collects temper-

ature and depth data from a CTD sensor and places the readings into depth bins. In

GBASIC implementation, one meter depth bins are used. When a dive or climb leg

has been completed by the vehicle, the depth bins are averaged. The vertical deriva-

tives, the change of temperature over the change of depth, are then calculated for each

bin. The average of the vertical derivatives is used to determine the upper and lower

bounds of the thermocline. Any depth bin whose vertical derivative is greater than the

average derivative is considered to be part of the thermocline. The algorithm requires

an initial dive profile and periodic resets of the depth bin data to ensure variations of

the thermocline are successfully detected. For the evaluation, however, resets are not

performed as the thermocline data is simulated.

The vertical temperature profile used as the basis for the data in the simulation

is shown in Figure 4.4(a). The water column was measured using a Sea-Bird CTD

sensor, and the thermocline shown was tracked using a Slocum Glider equipped with a

previous revision of the prototype system. The GBASIC code to perform the simulated

tracking mission was under 130 lines of code. This included data and GBASIC code
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used to fabricate the simulated temperature profile of Figure 4.4(a). The non-optimized

compiled code executed by the scripting engine was just over 300 lines of GLOC. The

resulting flight profile which successfully performed tracking of the thermocline is shown

in Figure 4.7. Algorithms, like the discussed thermocline tracking algorithm, can be

easily implemented using the new scripting engine and opens the door to a world of

new applications for the glider that were not possible before. These algorithms can be

implemented as services in the new programming framework and exposed via language

constructs.

4.5 Service Model

An essential component in the new programming architecture is the new service pro-

gramming model. This service layer provides an additional development level for more

advanced engineers and programmers that would like to extend the vehicle’s function-

ality and therefore expand the expressiveness of ALGAE by exposing services as new

language constructs. In this model, actions or behaviors are implemented as services to

the system. Services may be simple, for example, by providing state information, such

as if the AUV is commanded to dive or climb. Services may also grow to become com-

plex by performing data analysis of sensor data that are then fed to computationally

intensive models.

The existing infrastructure on many AUVs already contains the elements of such

a model. In the Slocum, for example, the number of yos the vehicle has performed is

exposed as part of the sensor array. This is a simple example of a counting service.

Many such pseudo services are already provided and can be used by new services created

using the infrastructure’s GLOC or AVBOT.

The driver on the AVBot, shown in Figure 4.1 speaks the gliderbus protocol to read

and write into the glider’s sensor memory. The runtime system exposes the glider’s
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Figure 4.8: Simplified service model to trigger a sensor only within a thermocline.

sensor array for use by services on the AVBot using shared memory, network sockets,

or a library. Typically at some level, a sensor is subscribed to by a service so that it

may receive updates on that sensor from the glider. A service may also publish updates

to the sensor, for example after performing some type of computation. This is similar

to the publish and subscribe system used by processes in MOOS-IvP [Benjamin et al.,

2010]. It is the responsibility of the runtime system and AVBot driver to interact with

the vehicle to request and update any sensor data.

New services can implemented in a variety of programming languages on the AVBot

itself. Since the vehicle’s sensor memory is also exposed by a network socket, algorithms

may be implemented on a remote network node. This is convenient for rapid prototyping

and data injection for testing and the creation of fictitious environments for the AUV.

Depending on the complexity, in terms of memory and computation, that is required

by a service it may be advantageous for it to be implemented in the GLOC scripting

engine. Services implemented using GLOC can be executed on the flight controller,

science computer, or on AVBot. Depending on where these services are executed they

gain the advantage of data locality. Flight controller services have direct access with no

latency to flight information, while GLOC services on the science Persistor have more

direct access to the data produced by physical sensors. Finally, these services may also

migrate their execution between the computing platforms on the vehicle.

A simplified overview of a service model to energy manage a sensor by triggering it on



50

only within a thermocline is shown in Figure 4.8. Such a sensor triggering mechanism

implemented as services is discussed in more detail in Section 7.7. Existing glider

behaviors, like the yo behavior, are pseudo services that, for example, cause state

changes within the vehicles control software. The yo behavior produces as output the

commanded and measured diving state. This state is observed later in the control cycle

and is used to produce a count of the number of dives and climbs in the mission segment

thus far.

New services that are created can interoperate with existing services provided by

the vehicle and services within the new programming framework. A temperature profile

service captures information from the CTD sensor as the vehicle flies through the water

column. The thermocline feature detection service has multiple service dependencies

needed to perform its duties. Not only does it require the temperature profile service to

find the thermocline itself but it also needs to know the number of half-yos performed

in the segment because the sensor is forced on for the first half yo of every mission

segment.

The thermocline detection service produces binary output indicating whether the

vehicle is currently within the thermocline. An instance of a primitive binary service

is used to turn on a specific sensor when the detection service’s output is true and off

if it false. Furthermore, instances of logical and relational primitive services can be

used to build more complex services when combined with traditional services. In this

programming approach, existing services can be used as building blocks to create new

services.

Figure 4.9 shows a service chain where several instances of primitive and more

complex services are used to create a new service. The service created in Figure 4.9

triggers a sensor when the AUV is flying at night, or if during the day, only when

the vehicle is deeper than 25 m. A Day Time service has service dependencies on the
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Figure 4.9: Primitive services used to build more complex services.

current dead reckoning position and the current time. The output produced by the

service is negated by another service before being used by the OR service. If another

sensor should be triggered in the same manner, another binary trigger service would

need to be created to use the output produced by the OR service.

Redundant services also exist in the service framework. Such services may provide

an alternate mechanism to produce the same or similar output or functionality [Noble

et al., 1997; Sorber et al., 2007; Lachenmann et al., 2007; Baek and Chilimbi, 2010].

In the Green framework [Baek and Chilimbi, 2010], for example, several alternative

functions can provide a task with varying levels of quality of service. The redundant

task used at any given time could be dynamically switched at runtime to meet a user’s

expected quality of results given the current constraints. The user may in fact never

be aware of the switching of services since they could occur automatically as long as

the quality of service is maintained. Typically, redundant services provide some trade-

off involving computation, memory, or energy requirements. For instance, to provide a

notion of the water depth, an altimeter can be used to physically measure the distance to

the sea floor and combine it with the glider’s current depth. Alternatively, an algorithm

could interpolate the water depth using a bathymetric dataset. Likewise, in Figure 4.8,

several alternative implementations for thermocline tracking exist of which some are
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not likely candidates for GLOC on the glider.

4.6 Domain Specific Programming Language And Compiler

The current programming model on a variety of AUVs including the Slocum Glider

is limited and can be difficult to program especially for non-programmers like many

oceanographers. To take advantage of the rich infrastructure that we have built, a high

level programming language, called ALGAE (AUV Language for Greater Adaptability

and Energy optimization), and an accompanying compiler have been developed that

allows users to easily specify new and dynamic missions for the Slocum AUV. A key

component of the language is to use domain specific features to allow oceanographers to

naturally make trade-offs, for instance, in terms of sacrificing the quality of the sensing

results for a gain in energy conservation to allow for extended deployments. Unlike

the service tier of programming, this tier intentionally sacrifices flexibility for safety

and usability. The design of the language, however, was guided by the requirements

specified by AUV operators at Rutgers University. Although the Slocum is the target

platform, many of the language features are applicable to other autonomous systems in

other domains.

The most basic view of a mission involves that of states and state transitions. Typi-

cally a glider is tasked to perform an action for some time and should only transition to

perform another action based on events. The user specifies a sequence of concise states

that they wish the glider to be in during a deployment. The transitions between states

in the language can only occur at the surface, which is how gliders are operated today.

This not only allows users to verify or interrupt a state transition but also enables state

transitions to occur based on shore-side information.

Figure 4.10 contains a sample program written in ALGAE containing only a sin-

gle state. Each state contains a route that describes how the AUV should navigate
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1 mission : s imp l e mi s s i on
2 state : s t a t e 0
3 begin

4 route :
5 gotowaypoint (3927 . 0 , −7415.0)
6 prof i le : yo (5 , 0 . 454 , 75 , −0.454)
7 surface : i n t e r v a l : 10800
8 sensors :
9 ctd : i n t e r v a l 4 div ing ,

10 f i r e : i n t e r v a l 0 always
11 events :
12 case i n t e r v a l exit ,
13 case waypoint exit

14 end

Figure 4.10: A single state program, written in the ALGAE language, that when com-
piled and executed in the programming infrastructure produces the flight profile on the
right. The red data points indicate the CTD is commanded to be turned on, while the
blue data points indicate the FIRe sensor to be turned on.

horizontally. This could be as simple as having no heading or flying to a waypoint, to

more advanced maneuvers such as sweeping an area specified by a convex hull, chemical

plume tracing [Farrell et al., 2005], or flight coordination with another AUV.

The profile details how to fly vertically through the water. Examples include a

simple yo action or more elaborate movements such as flying within a thermocline

[Wang et al., 2009; Woithe and Kremer, 2009; Petillo et al., 2010; Zhang et al., 2012;

Cruz and Matos, 2010a]. In Figure 4.10 the vehicle is tasked to fly between 5–75 m at

approximately 0.454 rad or 26◦.

The surface section allows the user to specify common surface actions that the state

should support. The vehicle could surface periodically, when there has been no recent

communication with shore, or when nothing is being commanded to move vertically or

horizontally. In the example program, the vehicle is requested to surface every 10800 s

or every three hours.

A critical component in the state definition is the sensor specification. In this

section, the user lists the sensors that should be logged while the state is active. In the
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sample program of Figure 4.10, the CTD sensor, the red data points, should be logged

in four second intervals while diving and the FIRe sensor, the blue data points, should

be logged as fast as possible only while climbing. As will be illustrated further, services

can effectively energy manage such sensors.

As mentioned in Section 2.1, the sensor specification has a similar notion as the

type annotations of EnerJ [Sampson et al., 2011]. When a sensor is instructed to

be enabled and to log all readings it may be considered precise, like the FIRe sensor

in Figure 4.10. However, sensors in the language have additional qualifiers, rather

than simply “approximate”, that more precisely describe how a flight engineer wishes

to sacrifice sensor quality. The CTD sensor’s specification in Figure 4.10 is a simple

qualifier indicating that it is only necessary to enable and log the sensor while diving

at four second intervals. More complex annotations may specify that sensors should

stay within some recall and precision or be enabled within an environmental feature

as shown in Section 7.7. Some qualifiers implemented as services may be dependent

on others, for example, thermocline feature detection is dependent on the collection of

temperature and depth sensor data. Thus, some mechanism to “type-check” sensors

within the state is an interesting concept left for future research.

Transitions between glider states occur based on events. Depending on the route,

profile, or surface specified, a set of events can be raised. Similarly, the exceptions

that can be raised by programs in other languages depend on the code at hand. The

events of Figure 4.10 both perform exit transitions if the gotowaypoint has reached the

waypoint or if the surface interval has been activated.

A mission with multiple states and its simulated flight profile is shown in Figure 4.11.

The configuration section in the program is used to inform the compiler of mission

options. For example, the compiler can generate a simulation environment for running

the test missions, which enables a user to experiment with various trade-offs in the
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1 mission : mu l t i p l e s t a t e s
2 config :
3 s i n i l o n : −7412.8721
4 s i n i l a t : 3927.25266
5
6 state : s t a t e 0
7 begin

8 route : heading ( 0 . 0 )
9 prof i le :

10 yocnt (5 , 0 . 454 , 50 , −0.454 , 3)
11 surface : i n t e r v a l : 10800
12 sensors :
13 ctd : i n t e r v a l 4 div ing ,
14 f i r e : i n t e r v a l 0 always
15 events :
16 case i n t e r v a l s tate0 ,
17 case nopitch s t a t e 1
18 end

19
20 state : s t a t e 1
21 begin

22 route : heading ( 0 . 0 )
23 prof i le :
24 yocnt (5 , 0 . 454 , 40 , −0.454 , 3)
25 surface : i n t e r v a l : 10800
26 sensors :
27 ctd : i n t e r v a l 4 c l imbing ,
28 f i r e : i n t e r v a l 0 always
29 events :
30 case nopitch state2 ,
31 case i n t e r v a l s t a t e 1
32 end

33
34 state : s t a t e 2
35 begin

36 route : heading ( 0 . 0 )
37 prof i le :
38 yocnt (5 , 0 . 454 , 30 , −0.454 , 3)
39 surface : i n t e r v a l : 10800
40 sensors :
41 ctd : i n t e r v a l 4 d iv ing & cl imbing ,
42 f i r e : i n t e r v a l 0 always
43 events :
44 case i n t e r v a l exit ,
45 case nopitch exit

46 end

Figure 4.11: A program compiled and executed with multiple states. The red data
points indicate CTD activity while the blue indicate FIRe sensor activity.
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programs. This section may also provide vehicle options such as the sensors that are

onboard. In the program of Figure 4.11, the configuration simply specifies the location

that the AUV should have at the beginning of a simulated mission.

To task the vehicle to navigate horizontally in a cardinal direction a heading must

be provided in the profile section of the state. The heading is provided in radian degrees

with north defined as zero degrees. This is to stay consistent with the behavior based

programming model.

A glider may be limited to a certain number of vertical profiles with a yocnt defi-

nition. Like yo, the target diving and climbing depths to be reached must be provided

along with the profile’s desired flight angles. The final parameter of yocnt limits the

number yos that will be flown. Unlike yo, the yocnt profile will eventually complete

and cause the vehicle to surface. Upon surfacing, a nopitch event occurs because of

the completion of the yos and a state transition must occur. Although the route and

profile statements thus far have been fairly simple, advanced AVBot services may be

used that can also generate events used for transitions.

The program in Figure 4.11 contains three states with slight variations in each state.

The route in all states directs the vehicle to navigate north. The profile of the states

are all limited to three yos, however, the target depths are different. Each of the states

also have a different sensor configuration where CTD activity is shown in Figure 4.11

in red and FIRe sensor activity in blue. Because the three yos in each of the states

occur within the three hour time interval, all state transitions occur because of nopitch

events. In the final third state, both the CTD and FIRe sensors are active throughout

the flight and the mission is instructed to end on either of the two given events.

A simple single state ALGAE program in Figure 4.12 showcases how sensors can

be energy managed by services written in the programming infrastructure. A trivial

change in the sensor configuration allows a users, such as an oceanographer, to specify
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1 mission : t h e rmoc l i n e mi s s i on
2 config :
3 s i n i l o n : −7412.8721
4 s i n i l a t : 3927.25266
5 s c i b b 2 f l s V 4 i s i n s t a l l e d : 1
6
7 state : s t a t e 0
8 begin

9 route : heading ( 0 . 0 )
10 prof i le :
11 yocnt (5 , 0 . 454 , 50 , −0.454 , 6)
12 surface : i n t e r v a l : 3600
13 sensors :
14 ctd : i n t e r v a l 4 always ,
15 bb2 f l sv4 : i n t e r v a l 0 thermoc l ine
16 events :
17 case i n t e r v a l exit ,
18 case nopitch exit

19 end

Figure 4.12: A program written in the ALGAE language that uses an AVBot service
to only activate a sensor within a thermocline.

an energy conservation mechanism for a sensor. In the sample program, a sensor is

activated only while the vehicle is within the thermocline of Figure 4.4(a). The services

that accomplish this task are show in Figure 4.8. Domain specific features, such as a

thermocline, allow service writers to create a rich trade-off space that are expressed in

the language to enable users to explore and extend their missions and to collect useful

scientific data.

It is the responsibility of the ALGAE compiler to translate such a high level spec-

ification into an executable deployment. A service writer must extend the compiler,

through plugins, and decide how to expose the services they have written with lan-

guage constructs to end users. The service writer must ensure that the compiler uses,

as much as possible, existing glider behaviors and services. Flight engineers already

familiar with the vehicle can then inspect the generated missions before deploying the

vehicle. This transparency is meant to build confidence and trust in the framework as

the engineers are quite hesitant when too many new features are added to vehicle at
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Figure 4.13: Translation of an ALGAE sensor specification to a service.

one time. Finally, because a service writer extends the language, they can decide what

optimization and trade-offs their service can make based on any context gained from

an analysis of the ALGAE program.

Figure 4.13 depicts, in part, how the ALGAE compiler will generate services for the

state specification. These services can target the existing system or the new framework.

In the case of the CTD sensor specification, the compiler will lookup the “always”

token and use the sensor translation table to determine that Sensor Behaviors compiler

plugin should be called. These compiler plugins are python modules that are imported

and then called during the compilation to help verify, optimize, and generate code to

enable or activate the services of the framework. These plugins, when executed, are

provided with the state specification that will give the plugins the context to perform

optimizations. For instance, in Figure 4.10, the compiler plugin should ensure that two

separate sample behaviors are generated in the glider mission file. However, if both

the CTD and FIRe sensors were tasked to always log, then the compiler could perform
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the optimization of creating a single sensors in behavior that would cover the logging

of both sensors. This is because a sample behavior only enables the logging of a single

sensor but is able to turn the sensor on and off when diving, climbing, hovering, at the

surface, or always. The sensors in behavior, on the to hand, allows for multiple sensors

to be listed but has the constraint that causes the sensors to always be logged.

The “thermocline” sensor token of Figure 4.13, for the bb2flsv4 sensor, would also

need to be looked up in the translation table. The thermocline service compiler plugin

would then also be called by the compiler with the state’s context. This plugin could

take into account the dependent CTD sensor and verify that data resolution is sufficient

for the thermocline tracking service to perform its duties. If the resolution is not

sufficient, then the compiler will inform the user of the disparity with an error message.

Because some services are redundant and can provide similar services with varying levels

of quality of results, the compiler may choose a specific implementation of a service that

uses less energy but still meets the user’s quality requirements. Alternatively, depending

on the complexity of the service, a management service may enable the switching of

redundant services at runtime.

As mentioned, for each of the states in the program the compiler will generate a

mission file to be flown by the AUV. If existing route, profile, and sample behaviors

exist that match the semantics of the state, then they should be generated as part of

the mission’s layered control stack. Again, this is to ensure that as much of the existing

components, like behaviors, that have been well tested and are trusted are used by the

new framework. Thus, if sensor logging definitions are trivial, multiple corresponding

sample and sensors in behaviors will be created in the necessary order. For example,

Figure 4.14 contains two mission files that the ALGAE compiler would generate for two

similar states. The mission listed to the right corresponds to the state of Figure 4.12.

The mission listed to the left corresponds to a similar state but would instead require
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1 senso r : s c i g e n e r i c s ( nodim ) 0
2
3
4 behavior : abend
5 . . .
6 behavior : s u r f a c e
7 . . .
8 behavior : s u r f a c e
9 . . .

10 behavior : s u r f a c e
11 . . .
12 behavior : s u r f a c e
13 . . .
14 behavior : s e t head ing
15 . . .
16 behavior : yo
17 . . .
18 behavior : sample
19 b arg : s en so r type (enum) 1
20 b arg :
21 s t a t e t o s amp l e (enum) 15
22 b arg : i n t e r samp le t ime ( s ) 4
23 behavior : sample
24 b arg : s en so r type (enum) 37
25 b arg :
26 s t a t e t o s amp l e (enum) 15
27 b arg : i n t e r samp le t ime ( s ) 0
28 behavior : p r epa r e t o d i v e
29 . . .

1 s enso r : s c i g e n e r i c s ( nodim ) 0
2 senso r : s c i g e n e r i c e ( nodim ) 1
3 senso r : c avbot power ( bool ) 0
4 behavior : abend
5 . . .
6 behavior : s u r f a c e
7 . . .
8 behavior : s u r f a c e
9 . . .
10 behavior : s u r f a c e
11 . . .
12 behavior : s u r f a c e
13 . . .
14 behavior : s e t head ing
15 . . .
16 behavior : yo
17 . . .
18 behavior : sample
19 b arg : s en so r type (enum) 1
20 b arg :
21 s t a t e t o s amp l e (enum) 15
22 b arg : i n t e r samp le t ime ( s ) 4
23 behavior : g l o c
24 b arg : f i l enum (nodim ) 0
25
26
27
28 behavior : p r epa r e t o d i v e
29 . . .

Figure 4.14: Two mission files generated by the compiler for two similar states in
ALGAE. The left mission file uses only existing behaviors while the mission on the
right uses the new infrastructure to manage sensors.

that the bb2flsv4 sensor is always logged just like the CTD. The difference between the

two missions is that a sample behavior has been replaced by a GLOC behavior that

could perform the thermocline trigger service of Figure 4.8. The AVBot, in this case,

has been disabled at the beginning of the mission but could also perform the triggering

service. The GLOC script could transfer the control of the sensor triggering service at

runtime by powering on the AVBot by setting the c avbot power sensor value to one.

This would be an example of a hierarchical power management technique used in the

framework. Other vehicle configuration files such as the vehicle sensor configuration,
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simulation settings, and high density logging sensors can also be generated by the

ALGAE compiler.

As part of the glider mission file generation the compiler ensures that a sensor

variable is set to indicate the vehicle’s current state. In Figure 4.14, the sci generic s

variable is set to zero for a single state mission. This state variable is initialized when the

AUV loads the mission file for execution. Upon surfacing, this state sensor is printed

as part of the surface dialog message that summarizes the glider’s status. A shore

side piloting tool, also part of the infrastructure, interacts with the Dockserver mission

control software to communicate with the glider. Because services in the framework

may be provided outside of the glider, the existing Dockserver XML scripting engine is

not used.

The GPILOT piloting tool communicates with Dockserver to execute the ALGAE

program based on the configuration and script files generated by the compiler. When

the tool recognizes that a surfacing has occurred, it will read the state variable in the

surface dialog and determine which state in the program the vehicle is currently in.

GPILOT will then need to determine the event that caused the surfacing, such as a

communications timeout, and look up which state to transition to next. The event can

be established by the mission dialog sent to Dockserver by glider behaviors, or by flags

raised in sensor variables by services. To determine the next state, a state transition

table also generated by the ALGAE compiler is used by GPILOT tool to task the

vehicle to execute its next mission.

Early versions of the language allowed for state transitions to not only occur at

the surface, but also within dive segments. This approach, however, had some issues.

Programs written in the language were too reliant on the new programming framework

to execute the mission rather than the existing system. The only way to successfully

perform the deployment was to have a single template mission that used the Hook
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and GLOC behaviors to generate all of the state’s behaviors. Even simple states that

could be represented with the current glider programming constructs would need to

use the Hook and GLOC behaviors. So this approach directly violated one of the key

requirements of being as transparent as possible so that flight engineers could inspect

generated missions.

Another issue with this approach was that it could cause some confusion. If a

state transition occurred while underwater, a user may or may not expect the surfacing

timeout to be reset. If it is reset, then a program that often transitions from state to

state may never get an opportunity to surface. If it does not reset and the new state

has a lower surfacing timeout, the state may then immediately surface and possibly

even transition to another state. This behavior may be unexpected by a user.

Shore-side services are an important element in the current design of ALGAE. Many

services are envisioned that require processing and data input from sources outside

the glider. For example, a path planning system could use ocean current information

from weather prediction models. In the earlier language revisions that allowed for

state transitions while underwater, a route specification that made use of such a path

planning system would not be feasible. For instance, suppose a program is currently

in a state that instructs the glider to head north, and while underwater, a transition

occurs to another state with a path planning route, the system in this case has no

capability to contact the shore-side service. The only alternative would be for the state

to force a surfacing and contact the planning system for a waypoint list. Again, this

behavior may be unexpected by a user who does not expect the vehicle to surface until

a surface timeout. For the aforementioned reasons, the constraint of state transitions

only occurring at the surface was chosen as the better design alternative. This approach

is also similar to the way deployments are already executed by flight engineers, where

missions are only changed or sequenced when communicating with the control center.
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Thus, the framework provides a familiar interface to the end user.

The general programming abstractions of ALGAE are not limited to gliders or even

AUVs, but are applicable to other autonomous cyber-physical systems. One can imag-

ine non-expert programmers controlling an autonomous air robot, such as a drone, at

a high level abstraction in a state and state transition based model. A drone, like an

AUV, carries on board a limited supply of energy in fuel or batteries, so careful man-

agement of this resource is critical to a successful mission. They also have limited and

only periodic communication with a control station. This may be caused by intentional

radio silence in enemy territory or by “dead-zones” caused by geological features.

A drone, in ALGAE, may be tasked to perform a certain action for some time and

only switch to performing another action when certain events have occurred. In each

state, a drone will have to navigate a certain route, for example, using a waypoint

list generated by a path planning system that makes use of favorable winds. Like in

the underwater domain, a remote control center will be more effective in aggregating

data and running models to create an optimal waypoint list than the drone would by

itself. How the vehicle accomplishes the flight to the target waypoints is analogous

to the profile specification and could determine the altitude profile the vehicle should

fly. What is currently the surface specification would need to be renamed, however,

it would still function as a way to express when or how the autonomous vehicle must

make contact with a command center in the future. A drone, for example, may need

to periodically fly into friendly territory or above a safe altitude before communicating.

Thus, since other systems may also transition on events, including events based on

a command center’s service, the general programming approach is viable for other

autonomous CPSs.

The new programming infrastructure created enables complex missions to be ex-

pressed at a high level of abstraction and uses domain specific features to encourage
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trade-offs. Programs in the ALGAE language are compiled to produce vehicle missions

files that make use of services on the glider as well as on AVBot. The GPILOT tool

together with the Dockserver and vehicle execute the generated missions. An energy

model service, Chapter 5, can be used in conjunction with the simulators, Chapter 6,

to experiment with such trade-offs before the Slocum AUV is ever deployed.
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Chapter 5

Power Measurement Infrastructure

The mission endurance of today’s AUVs depends highly on the capacity and usage of

the vehicle’s batteries. Typically, missions for the Slocum Electric Glider last about 30

days [Teledyne Webb Research]. Longer missions, such as the 221 day mission to cross

the Atlantic by RU27 from Rutgers University are possible through an increase in the

number of batteries and through the careful planning of the usage of the vehicle’s de-

vices. Such planning is also crucial for shorter missions when gliders are equipped with

advanced sensors such as an Acoustic Doppler Current Profiler or acoustic underwater

communication.

With the recent integration of the coulomb meter into the glider, measuring the dis-

charge of the battery has become more accurate. Knowing the rate at which energy is

used and how much remains is vital to mission planning. However, the glider’s coulomb

meter only measures whole vehicle current. To perform more precise mission planning,

being conscious of the energy consumption of individual components is necessary. As

part of this work, a measurement infrastructure that captures the currents drawn from

distinct components of the Slocum Glider has been developed. The infrastructure has

been deployed in several missions off of the coast of New Jersey, and the data collected

have been integrated into the Slocum Glider simulators. The measurement board and

simulation framework can be used to assist in the planning and decision making of mis-

sions and shows possible trade-offs, for instance, between mission duration, speed, and

energy consumption. These trade-offs and restrictions of energy are also incorporated
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Figure 5.1: Measurement board mounted on a weight bar used for ballasting the Slocum
Glider.

as part of the new programming specification of the vehicle via energy aware services.

The infrastructure consists of a measurement board and a data logger. The design

philosophy in creating the infrastructure was to not compromise the safety of the vehicle,

even if quality of the resulting measurements are affected. The glider components

measured are: the main, external, and emergency power, the buoyancy pump and

brake, and the pitch and fin servos.

The measurement board, shown in Figure 5.1, was intended to be housed above

the glider’s mainboard in the aft section of the vehicle. However, due to the different

space constraints between different generations of gliders, the board was moved to the

science payload bay. This allows the board to be quickly uninstalled and re-equipped

onto another glider.

The board makes use of eight Hall Effect sensors which do not interfere with the

vehicle’s current flow. This ensures that in the event of sensor failure, the glider will

continue to operate normally. Three 20 A sensors are used for the main, external, and

emergency power, while two 5 A sensors are used for the buoyancy pump. Three 3 A

sensors are used for the buoyancy pump brake, pitch servo and fin servo. The sensors

were over-provisioned for safety, but still allow the capture of large spikes in the current.
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Description Channels Power (Watts)

Deployed (02/2010) 8 0.76

Intermediate 6 0.58

Deployed (08/2010) 4 0.42

Table 5.1: Measurement board power consumption

Software Clock Rate (kHz) Power (Watts)

Stock 3680 0.19

Deployed (02/2010) 14720 0.71

Intermediate 3680 0.35

Intermediate 7360 0.49

Deployed (08/2010) 7360 0.47

Table 5.2: CF1 processor power consumption

As described, the original revision of the measurement board contained eight chan-

nels. However, throughout sea trials several of the Hall Effect sensors have been re-

moved. For example, following the first long-term deployment equipped with the infras-

tructure, it was found that there was little use in measuring the external and emergency

current. The external power supply is only active on the benchtop, so it is unnecessary

for a board which will be deployed at sea. In the event of a emergency, the safe recov-

ery of the vehicle is of higher priority than collecting good data. The presence of the

emergency sensor could also not be justified for the additional power it consumes.

The microprocessor used in the design of the measurement board was the PIC16F767.

The processor typically operates at less than 2 mA at 8 MHz. It contains eleven 10-

bit analog-to-digital (A/D) channels of which eight are in use to measure the currents

drawn by the glider using the Hall Effect sensors. The microprocessor has been pro-

grammed to use interrupts to generate constant samples at 32 ms intervals. These

samples are transmitted to the glider’s science bay processor for logging.

The board communicates its samples via a 9,600 baud serial connection to the

science bay processor. The stock 6.38 software version of the glider’s science computer

software has been retrofitted to record the samples produced and transmitted by the
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measurement board. The science processor is typically clocked to run at 3.68 MHz

using the stock software, but is usually run at higher clock speeds when collecting data

as part of the power measurement framework.

The power consumption of the measurement board and the science processor are

shown in Table 5.1 and Table 5.2. As described, throughout the revisions of the board,

some sensors were removed to reduce its power consumptions or were not needed as

part of the mission requirements. An additional benefit is the fact that the board and

the science processor now measure, transmit, and log less samples allowing for more

data to be collected.

The CF1 science processor as programmed during the initial deployments and ex-

periments, was clocked at 14.72 MHz. This consumed approximately 520 mW more

power than the stock software release. Throughout the development optimizations in

the logging process to reduce the overall energy consumption were developed. These

improvements allowed the clock speed to be lowered down to 3.68 MHz provided that

the mission specifications allow for the trade-off of four second, instead of two second,

sampling from the CTD sensor. The CTD is a standard sensor on a Slocum Glider

and as a precaution, deployments were still run at 7.36 MHz to ensure that neither the

CTD data or power measurements needed to be compromised. With local science data

logging now possible with newer glider software, this may no longer be necessary.

The measurement infrastructure has been extensively tested to ensure that recorded

current samples are representative of the actual events. Figure 5.2 shows the results of

a test where a current of 1 A was applied to one of the sensors for approximately six

seconds. The event was measured and logged by a Tektronix MS04034 oscilloscope as

well as a PC connected to the measurement board. The results of these experiments

indicate that the samples collected are within the expected error of the sampling rate,

A/D conversion and the sensors themselves.
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Figure 5.2: Assessment of the measurement board’s accuracy using a Tektronix
MSO4034 oscilloscope.

Without compression, data can be recorded for mission lasting up to 30 days. How-

ever, multi-week missions using the first revisions of the board with alkaline batteries

were not feasible due to the significant energy overhead that was introduced. They may

have been possible if lithium batteries were used instead. In future work, the power

dissipation of the system will need to be significantly reduced if full length deployments

with all channels are to be recorded. Meanwhile, the number of sensors were reduced

to only those components of most interest to allow for extended deployments.

To ensure the vehicle components still performed up to par with the presence of the

measurement board, the vehicle’s motors were subjected to wiggle tests. This entails the

moving of its motors through their full range of motion. Sample results of such a wiggle

of the fin and pitch servos are depicted in Figure 5.3(a) and Figure 5.3(b), respectively.

The Hall Effect sensors used for these devices are bipolar so the reported currents show

the current flow in both directions as the servos move the opposite direction. The

fin is used to steer the vehicle, and the pitch motor is used to fine tune the vehicle’s

commanded pitch by moving an internal battery pack. The power draw of these two

motors is generally very low, and during a mission motor activities typically occur in

brief bursts. Through wiggle, overnight, and weekend tests the system was deemed

stable and reliable for sea trials. The measurement infrastructure has been installed
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Figure 5.3: Current draw of the fin (a) and pitch (b) servos during a wiggle test.
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Figure 5.4: (a) The flight profile shown together with the current draw of the buoyancy
engine during a deployment in September 2009. The activity of the buoyancy engine
aligns with inflection points where it can be observed that the power consumption at
depth is significantly higher than near the surface. (b) Current draw of the buoyancy
engine during an inflection at approximately 12 m.

and deployed on three separate Slocum Gliders. The trials took place off the coast of

New Jersey in September 2009, and in February and August 2010.

The first sea trial involved two short mission segments of approximately thirty min-

utes in length each. The glider was instructed to perform yos (sequences of dives and

climbs) between 1–20 m. The glider’s depth profile along with the current draw of the

buoyancy pump of one mission of the segments are illustrated in Figure 5.4(a). The

glider never reached a depth of 20 m because the ocean floor was not sufficiently deep

enough at the deployment location. The experiences gained in the trials were used to
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(a) Flight path of the mission.
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Figure 5.5: February 2010 deployment with power measurement infrastructure.

prepare the infrastructure for longer term missions.

The second deployment was a 6.5 day mission in early February of 2010. A map

of the glider’s path is shown in Figure 5.5(a). The mission’s goal was to fly to the

continental shelf to gather buoyancy engine readings at depths of up to 100 m. The

mission was however cut short due the combination of inclement weather and the high

power consumption of the measurement infrastructure. After heading east toward the

shelf for two days, the vehicle was commanded to head north because a Nor’easter storm

was expected to push the vehicle south. After being forced south for two days, it was

again commanded to head east towards the shelf to gather readings at deeper depths

for a short time. Unfortunately, another Nor’easter was imminent so the mission was

aborted and the glider spent the remaining time flying back to shore to be retrieved.

The buoyancy engine of the Slocum Electric Glider consists of a buoyancy pump

and a brake mechanism. The pump moves a piston to change the vehicle’s buoyancy

by altering its displacement in water. The brake locks the pump’s position in place

which would otherwise be forced to retract due to water pressure. The current draw

of the buoyancy engine is shown in Figure 5.4(b). When commanded to inflect from a

dive to a climb, or from a climb to a dive, the brake first unlocks the pump. The pump
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(a) Flight path of the mission.
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(b) Energy use of the buoyancy pump at depth.

Figure 5.6: August 2010 deployment with power measurement infrastructure.

follows by moving the piston to the commanded position. When the desired position is

reached, the brake again locks the pump’s position in place.

The energy used by the buoyancy pump increases with depth because the pump

must work harder to battle the additional water pressure. This was confirmed by the

first sea trials, Figure 5.4(a), where inflections from a dive to a climb state used more

energy when the inflections occurred at three, six and twelve meters. Figure 5.5(b)

depicts the measured energy used by the pump during the deployment in February

of 2010. The energy used for similar depths in the two seal trials were comparable

considering that different gliders were used. In both missions, however, the energy

necessary for the pump to perform inflections from a climb to a dive at shallow depths

is at times less expensive than the cost associated with the brake.

Although the February 2010 deployment provided a good insight into the pump’s

energy use, much of a glider’s time is spent at depths greater than 35 m. As a glider

approaches the deeper waters towards the continental shelf off of the coast of New

Jersey, it can experience very strong currents and may need to be carefully maneuvered

to get the vehicle back to shore. During this critical period the more detailed the energy

models of the pump and other components are, the better the prediction of the glider’s
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battery state will be.

In August 2010, another glider equipped with the measurement board was deployed.

Whole vehicle and the buoyancy engine currents were logged during the flight. The

mission objectives were to fulfill the buoyancy engine energy cost model up to 100 m, the

standard buoyancy pump rating for many of the coastal gliders at Rutgers. Figure 5.6(a)

shows the vehicle’s flight path for this mission lasting four weeks. The observed energy

readings from the measurement board for the use of the pump at depths is depicted in

Figure 5.6(b). Previous sea trials suggest the increase in energy with depth should be

linear. The data gathered from the August 2010 deployment however is not quite linear.

This suggests that the efficiency of the motor decreases towards its motor’s maximum

rating. Having this kind of detailed knowledge of the cost of components is important

when trying to optimize vehicle flights.

The energy measurements gathered from deployments, benchtop experiments and

component specifications have been compiled into energy models for the Slocum Glider.

The service that implements the models estimates the glider’s energy usage by reading

the state of the vehicle’s devices through the sensor array. This allows the service to

live on any of the computing platforms available on the glider. However, if the service

is implemented as a device driver for the glider it could run multiple times a cycle and

thus be more precise for many devices. Furthermore, the energy of previously flown

missions can also be estimated by injecting the service with the logged sensor data at

each control cycle.

Table 5.3 contains energy estimates of previous glider deployments measured with

coulomb counters and estimated using the energy models. The measured energy column

is calculated using the coulomb counter’s integrated Ampere-hour readings and the

battery voltage logged by the vehicles at every four second cycle. The modeled energy

column is calculated by injecting into the energy model the values of all sensors of a
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Glider Pump Sensors Measured Modeled

Rating (m) Energy (mJ) Energy (mJ)

RU28 30 CTD, Optode 6.1 5.7 (93%)

RU28 30 CTD, Optode 4.7 4.3 (91%)

RU28 30 CTD ,Optode, FLBBCD 6.0 5.3 (88%)

RU16 100 CTD, Optode, BBFL2SLO 6.2 5.7 (92%)

RU16 100 CTD, Optode, BBFL2SLO 6.0 5.3 (88%)

RU16 100 CTD, Optode, BBFL2SLO 5.6 5.3 (95%)

Table 5.3: Energy estimates of glider deployments.

glider’s log file at each cycle. Assuming that the coulomb counter has been correctly

calibrated, the energy models slightly miss estimates the energy used by the two gliders

of Table 5.3. RU28 is equipped with a 30 m and not a 100 m pump that the energy

model is based on so some errors are expected. The power requirements of the FLBBCD

and BBFL2SLO fluorometer and backscatter sensors were also estimated and based off

of the measurements of similar sensors. Clearly, more measurements and field trials

with different gliders and sensor packages are necessary to refine the energy models.

Nevertheless, the current models can come quite close to energy measurements of real

deployments and is a viable tool for mission planning.

Finally, the energy service can also output the energy used up to a given point

into a mission for each of the devices it is monitoring. This enables the creation of

energy aware services that could, for example, sacrifice functionality or data resolution

for a gain in energy, such as in Levels or Green [Lachenmann et al., 2007; Baek and

Chilimbi, 2010]. Along with the simulation infrastructure and an environmental model,

the energy models can estimate the endurance of missions and provides a setting to

explore any adjustments made by a mission programmer using the framework.
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Chapter 6

Simulation

The longevity of missions performed by AUVs rely heavily on the limited energy re-

sources the vehicle carries on board in its batteries. This resource limit can affect the

quality of missions. Missions which require the vehicle to maintain a constant presence

at a location or require traveling to an area of interest are constrained in the amount

of information they can collect. Because of this energy reliance, a power measurement

infrastructure was built and used to create a vehicle energy model. To assist in the

planning and development of future missions, two Slocum Glider simulators have been

developed as part of the programming framework that make use of the energy model;

the first simulator is driven by a speed distribution model, while the second is a software

port of the glider’s control software.

The speed model based simulator incorporates energy, speed, seafloor and sea surface

current models and is used to predict the flight path, longevity, and energy usage of

a mission. The simulation environment has been validated against Teledyne Webb

Research’s Shoebox simulator and compared to a deployment off the coast of New

Jersey. This simulation environment, although more coarse in many aspects than the

software port simulator, still provides a good testbed for mission development.

The second simulator created for the programming framework is a partial software

port of the Slocum Glider’s control software. The simulator has been retrofitted to not

only simulate in real-time like the Pocket, Shoebox, or a benchtop glider simulators,

but also to simulate faster-than-real-time. This enables for rapid prototyping of new
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Slocum Glider services and more importantly, it can quickly provide detailed feedback

when exploring possible trade-offs in ALGAE. This simulator environment is essential

in compatibility testing before deployment to ensure that safe and correct missions are

generated by the systems for the vehicle.

The focus of the two simulators developed for the framework differ from other model

based glider simulators [Bhatta and Leonard, 2002; Graver et al., 2003; Stante et al.,

2007; Arima et al., 2009; Mahmoudian et al., 2010]. Unlike other simulators, both of the

simulation environments incorporate the energy model to estimate vehicle endurance

and sensor usage. The speed model simulator is simple in design can be used for

quick approximations, while the software port simulator is more complex and includes

Slocum Glider specific idiosyncrasies. However, components of the related work could

be incorporated as alternative mechanisms in portions of the simulators, for example,

to estimate the vehicle’s motion.

The two energy aware simulators of the programming teamwork are described with

greater detail in this chapter. Without such simulation environments the trade-offs

specified in the domain specific language would be difficult to quantize and deployments

more difficult to realize.

6.1 Speed Modeled Simulator

The speed modeled simulator takes a higher level and more coarse approach to per-

forming a virtual deployment than the software port simulator. It is relative simplistic

and incorporates a speed model derived from previously flown glider missions to fly the

AUV. Because there is also a great concern for the vehicle’s remaining energy through-

out a deployment, the simulator is also equipped with the energy models.

The energy models were formulated from the samples recorded by the power mea-

surement infrastructure along with the voltages reported by the glider. The simulator
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uses models for the buoyancy pump, brake and steady state load, where no motor and

most devices are not in use. The average observed cost associated with the brake is

applied at every inflection point. The expense of inflections near the surface where

the vehicle state changes from a climb to a diving state is modeled as a constant cost.

Inflection performed at depth from a diving to a climbing state previously used a linear

cost function. This function was initially fitted to the data points from the deployment

in February 2010 and is shown in Figure 5.5(b). The model has since been updated to

model the data acquired from a more recent deployment from August 2010, shown in

Figure 5.6(b).

The energy used in simulated missions is dependent on the vehicle’s pitch angle and

speed. The pitch of the flight impacts the number of inflection points, and thus the

use of the buoyancy engine. The speed also determines the amount of time required to

complete the mission.

The simulation environment makes use of two types of speed models. The first is a

model similar to that of the Slocum Glider’s Shoebox simulator. The Shoebox, named

after its physical similarities to a shoe box, contains the essential glider electronics to

perform simulations in real-time. The software running in the Shoebox is the same

software used during deployments but makes use of simulated device drivers. The

speeds and missions generated by this model when used in the simulator should be

similar to that of the commercial Shoebox. However, unlike the Shoebox, the modeled

simulator is able to simulate missions significantly faster than real-time.

The second speed model integrated into the simulator is based on speed distribu-

tions which were empirically derived from over four years of glider flight data. The

flights took place off the New Jersey coast between the years of 2003 and 2009. The

resulting distributions are shown in Figure 6.1 and were constructed by measuring the

distance covered in each dive segment and the time necessary to travel the segment.
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Figure 6.1: Speed distribution derived from over four years of glider flights.

A dive segment starts when a glider submerges and ends when it resurfaces. The 25◦

distribution was comprised of 2,539 segments, covering 6,263 km over 293 days, while

the 26◦ distribution span 16,411 segments, 32,527 km and 3.48 years. Sufficient data

to build speed distributions were available only for 25◦ and 26◦, which are the most

common angles used to fly the Slocum Glider. These speeds are sampled by the simu-

lation environment to produce realistic over-the-ground speeds. Although very similar,

the 26◦ distribution is slightly faster than the 25◦ distribution. Along with the dive

and climb pitch angles specified by the mission, the depth rate is calculated and used

to position the glider in space. The depth rate and the seafloor determines the number

of inflections that occur during flight.

The simulation environment also supports the use of a seafloor terrain. The seafloor

model used may be artificial, come from prior deployments as measured by a glider,

or can be interpolated from NOAA’s National Geophysical Data Center’s (NGDC)

bathymetric data set [National Oceanic and Atmospheric Administration]. The current

data set (from the NGDC) used by the simulation environment is of the coast of New

Jersey at a resolution of one arcminute. The addition of a seafloor model improves the

quality of the vehicle’s predicted energy usage especially in shallow waters. Simulated
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open ocean deployments, or deployments where it is known that the glider will never

reach the seafloor will not benefit from a seafloor model, and could therefore be removed

for such missions.

Time dependent sea currents can significantly impact the flight of a glider, and are

therefore modeled within the simulation framework. The currents may be artificially

and dynamically generated, or can be interpolated much like the seafloor. The use

of Coastal Ocean Dynamic applications Radar (CODAR) [Evans and Georges, 1979;

CODAR Corporate Headquarters] data from Rutgers University has been integrated

into the framework. This data describes the sea surface currents off the New Jersey

area at a spatial resolution of six kilometers and a temporal resolution of one hour.

The addition of sea currents adds another degree of realism which should improve the

prediction quality.

The simulation framework can be used to analyze past glider flights, support ac-

tive deployments, or help to plan future missions. CODAR information is valuable

when simulating past flights and can be used in the decision making of active missions.

For example, if recent sea surface current data is available, it can be used to predict

the location of where the glider may resurface next. With the utilization of weather

trend or prediction models, such as the Regional Oceanic Modeling System (ROMS)

[Shchepetkin and McWilliams, 2005] and the Hybrid Coordinate Ocean Model (HY-

COM) [Bleck et al., 2002], the simulator could also forecast the general outlook of

missions.

6.1.1 Shoebox Simulator Validation

To validate the modeled simulation infrastructure, the predictions it produces are com-

pared to that to that of TWR’s Shoebox simulator. The mission executed on both the

Shoebox and the simulation framework entailed three yos between 2–25 m.
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Figure 6.2: Validation of the simulation environment with respect to the Shoebox
simulator.

The depth profile of the simulations are shown in Figure 6.2. The Shoebox profile

describes the flight as performed by the Shoebox simulator. SimShoebox and SimDist

are the flight profiles generated by the new simulation environment. SimShoebox gen-

erates speeds similar to that of the Shoebox, while SimDist samples speeds from the

distribution in Figure 6.1.

The time necessary to complete the missions for Shoebox and SimShoebox are very

similar. Like the Shoebox, the vehicle simulated using the new simulator also slightly

overshoots the commanded depth limits. On average, the SimShoebox is slightly slower,

taking several seconds longer to complete the mission. The results produced are however

a reasonable representation of what may be generated by the manufacturer’s simulator.

The advantage of the new simulation framework lies in the runtime necessary to produce

the simulated mission. The Shoebox took approximately 15 min to simulate the sample

mission, while SimShoebox required only 0.35 s on a 2.2 GHz dual core processor.

The flight simulation which applies the speed distribution model, SimDist, requires

an additional 380 s longer in mission time than both the Shoebox and SimShoebox.

The simulation itself took only 0.5 s. This suggests that the vehicles speed is on
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Figure 6.3: (a) The flight path of the mission being simulated. (b) The flight path
of the baseline and seafloor simulations. (c) The simulated mission using both seafloor
and CODAR data.

average slower using this model than that of the Shoebox. The speed model based on

speed distributions is believed to be more accurate than the Shoebox model since it is

derived from over fours years worth of vehicle flight time. The speed distribution model

should then not be compared to that of the Shoebox simulator but against an actual

deployment.

6.1.2 Deployment Validation

To continue to validate the simulator and its speed distribution model, a deployment

from September 2009 is compared to similar flights in the new simulation environment.

The goal of the original mission was to fly to the continental shelf from the coast of

New Jersey and back with a 26◦ flight pitch angle. The flight path of the mission is

illustrated in Figure 6.3(a). Due to strong currents for portions of the mission, the

glider was pushed south preventing it from making steady forward progress towards

the target waypoint. An operator interfered with the flight and changed the target

waypoint due west back to shore before the vehicle reached the commanded waypoint

near the continental shelf. Waypoints were changed further throughout the mission,

causing the vehicle to reach none of the target waypoints except the last which was
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Mission Seafloor Currents Time (days) Energy (kJ) Runtime (min)

Actual N/A N/A 14.84 N/A N/A

Baseline No No 11.5 785 1.4

Seafloor Yes No 11.5 984 5.7

CODAR Yes Yes 14.89 1,235 20

Table 6.1: Speed Distribution Simulation Results.

used to collect the vehicle. The total length of the deployment was 14.84 days. To

validate the simulation framework a similar deployment length should be achieved.

The energy costs in this section used the energy models of Figure 5.5(b).

Baseline

The baseline simulation assumes that no seafloor or currents exist in the environment.

Consequently, the runtime needed to simulate the mission is small and also not be very

accurate. The missions flown in the remainder of this section is inspired by Figure 6.3(a)

except that the vehicle will be commanded to keep flying until it has reached all its

waypoints. It is difficult to reenact the intentions or reasoning behind the operator’s

actions so they are ignored.

The SimShoebox simulation of the mission predicts a mission length of 7.9 days, with

the energy usage of 707 kJ and a flight path as depicted in Figure 6.3(b). A runtime

of 20 s was needed to simulate the mission. SimShoebox, which has been shown in the

previous section to be fairly representative of the Shoebox simulator, would suggest

a real-time simulation of 7.9 days. If the speed distribution is used instead in the

simulation (SimDist), the mission length increases to 11.5 days, 785 kJ and a runtime

of 86 s. SimShoebox in this scenario has erroneously estimated the mission length by

6.94 days while SimDist by 3.34 days. Unlike the previous validation experiment, the

speed distribution produces a better estimate when compared to a real deployment.
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Seafloor Model

To add a layer of realism, the simulation environment can use a seafloor as previously

described. Instead of flying to the full commanded depth, the vehicle must inflect

several meters above the seafloor to avoid impact. This will increase the total number of

inflections points in the mission which directly translates into more energy use because

the buoyancy engine is activated at each inflection. The mission length and flight

path for both SimShoebox and SimDist remain nearly identical to the baseline but the

energy usage increase to 892 kJ and 984 kJ, respectively. The modeling of the seafloor

is paramount so that missions may be more accurately predicted and planned for.

Seafloor And CODAR Models

The final model supported by to modeled simulator is that of sea currents. The CODAR

sea surface currents of the days surrounding the deployment of Figure 6.3(a) were

integrated and applied to the simulated mission. The flight map of SimDist is shown

in Figure 6.3(c). The SimDist mission flew for 14.89 days using 1,235 kJ of energy and

required 12 min to simulate. SimShoebox’s mission flew for only 8.88 days, used 986 kJ,

and had a runtime of 5 min.

The presented simulation results indicate that the speed distribution model was

more representative of the deployment in Figure 6.3(a) than that of the speed model

which is similar to the Shoebox. A summary of the simulations for SimDist is listed

in Table 6.1. The final SimDist mission using both the CODAR and seafloor resulted

in a mission time slightly longer than that of the real deployment. This is however

expected since the simulated mission flew a slightly different mission where the vehicle

actually reached the waypoints and was not interrupted by an operator. Modeling

the supervision as part of the mission is a difficult task because the intentions of the

operator at the time are not known. Errors associated with the spatial and temporal
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resolution of the seafloor and CODAR data also add to the difficulty of recreating the

original mission.

6.2 Software Port Simulator

The Slocum Glider uses a layered-control programming architecture that determines

mission sensing and control actions in cycles. Typically, the duration of a cycle is

four seconds. During these four seconds, a rather complex interaction among different

drivers for sensors, motors and software components is performed. These complex

software and hardware interactions make it difficult to design a high level behavior

model of all activities. Instead of modeling the software and its behavior on the vehicle,

a significant portion of the glider’s software system has been ported to actually perform

these complex tasks purely in software. The software ported simulator is capable of

running faster-than-real-time and includes vehicular, environmental, and energy models

to determine the glider’s behavior during mission execution and is capable of running

on commodity hardware.

A typical Slocum simulator is either a physical glider on a bench top running in

simulation mode, a Shoebox simulator, or a Pocket simulator. A Shoebox simulator

contains much of the electronics of a glider contained in shoebox sized container, while

the Pocket simulator contains the bare minimum amount of electronics to run the

glider’s software. These simulators run in real-time, so testing long term missions

can be cumbersome, if not infeasible. Although the new speed model based simulator

described is also capable of running faster-than-real-time, the simulations are coarser

and do not include detailed platform information, for example, device driver behavior.

The port of the Slocum Glider software was motivated by the fact that much of the

work while creating the new programming framework involved developing and integrat-

ing new functionalities, such as new services, into the vanilla software system. Having
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modern tools, such as debuggers, available eases development and testing. Synthetic,

as well as real data, from previous deployments can also be inject to test the vehicle’s

software. Thus, much of the interoperability can be accomplished on a modern desktop

before ever testing it on an actual vehicle. Most importantly, however, was that a stable

infrastructure to enable users to test and debug missions created using the program-

ming framework was need. Authors writing ALGAE programs that are compiled for

the Slocum Glider can be tested using this simulation environment and can be quickly

provided with feedback.

Because the glider software is no longer tied to the glider’s hardware and develop-

ment stack, it can be easily extended to include additional features. In particular, one

useful extension that has been added is the ability to run the simulator in a faster-

than-real-time mode. Depending on the specifications of the host computer running

the simulator, up to 30 mission hours in one minute have been simulated, a three or-

der of magnitude (1800x) speed-up over a Pocket or Shoebox simulator. This enables

long-term missions to be easily and quickly tested.

Furthermore, a hybrid mode that simulates faster-than-real-time while underwater,

and real-time while at the surface has been implemented. In this mode of operation,

a glider pilot can conveniently interact with the simulated glider while at the surface,

for example to change mission parameters, while quickly simulating the underwater

flight segment where no satellite communication is possible. This mode of operation is

also used by the GPILOT tool when interacting with the simulator to perform state

transitions.

An important aspect to any deployment is to monitor and estimate a vehicle’s energy

consumption. Like the glider, the simulator generates log files which can be used by

the energy model after the simulated mission is completed. Additionally, the models

have also integrated as a service into the simulator that will execute the energy models
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during flight and present them as glider sensors to facilitate live energy evaluations.

This enables energy aware services to be produced that can then be exposed to the

higher level language.

Many advanced services that can be implemented will likely need to be executed on

the AVBot single board computer. To enable these services to be used in the simulator

an AVBot compatibility driver was created . When compiling the glider source, if the

target platform is not the Persistor processor, then the compatibility driver will be

compiled into the glider executable in place of the typical driver that interacts with

the physical SBC hardware. Instead of using an RS-485 serial connection, as shown

in Figure 4.1, the alternate driver uses a TCP/IP connection to speak the gliderbus

protocol to the glider’s runtime system. The runtime and its services can be execute

on the AVBot SBC or another computing platform.

Like the model based simulator, the software port simulator also supports data

inject either directly or via services. Ocean current, temperature and salinity data in

NetCDF [Rew and Davis, 1990] format from the HYCOM prediction model can be

loaded directly into the simulation. A bathymetry map can also be loaded and will

use the vehicle’s location to set the AUV’s perception of the water depth. Services,

however, can also inject data to create an virtual environment by producing output

to sensor variables in the flight controller. Retrofiring the simulator does, nonetheless,

offer additional flexibility on when and how often the artificial environment is updated

in the control cycle.

To port the vehicles control software to work outside the Persistor processor many

changes were made to the code base. The system software contains hardware spe-

cific code throughout the code base along with many hardware drivers. Compatibility

or simulated drivers and functions were created as drop-in replacements to keep the

system’s source code as close to the original as possible. For example, the interface
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to register and create periodic interrupts for the hardware and operating system is

implemented with user level signals.

Having the capability to simulated a glider’s flight using the same control software

running on the actual vehicle is vital. It can provide detailed feedback to users when

even the slightest changes are made to missions. It also increases the confidence of

AUV engineers that the code generated for the vehicle can be trusted because it has

gone through the rigors of the simulation process. Furthermore, it would also be useful

as a general tool for planning future deployments and debugging ongoing mission.

6.3 Graphical Interface

Missions performed in the simulator can generate output about the vehicle as well as

the environment. Typical focal points are on the glider’s vertical profile (depth, pitch,

roll) and geographic position. Much of these data can be graphed using tools such as

matplotlib, Matlab, and the Generic Mapping Tools. We have nonetheless found the

need to be able to visualize the Slocum Glider in three dimensional (3D) space for both

simulated and real sea trials.

Google Earth is a powerful 3D tool that allows for the display of data on a world

model [Google Inc.]. It is used extensively in the deployment process, from the initial

planning stages to tracking the vehicle’s flight. Weather forecast images are often

overlaid to aid in the selection of new waypoints. The simulators presented have also

been retrofitted to create KML files for Google Earth. Despite its usefulness, it also has

its shortcomings. First, current licensing scheme limit how the content produced using

the software can be distributed. Secondly, we would like to be able to easily customize

the 3D environment to allow for live interaction as well integration with simulation

environments.

To fulfill this gap, an interactive graphical environment for the Slocum Glider was
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Figure 6.4: A heightmap (a), generated from NGDC’s ETOPO1 model, is used to
create a texture (b) for the 3D object (c) of the terrain in SimGUI.

created that is able to mesh with the existing framework. In the simulation front, it

can be utilized in the development and debugging of algorithms, for example in glider

swarming and coordination. With regard to actual deployments, it can be applied to the

whole deployment process from waypoint selection, like Google Earth, to a 3D inspec-

tion of a vehicle’s flight, such as that RU27’s when it suffered from biofouling [Rutgers

University]. This graphical user interface will be referred to as SimGUI although it is

completely independent from the simulator.

The SimGUI makes use of Panda3D, an open sourced, BSD licensed, cross-platform

3D game engine with origins from Disney. It is a mature and stable engine used in

commercial products. The core of the engine is written in C++, for efficiency, and its

primary programming interface is exposed through Python. This eases integration with

the simulators as many of their components are also exposed via the Python language.

The terrain information in SimGUI, as in the simulator, is based on a dataset by

NGDC. A heightmap, an image representing the height of the terrain, must first be

generated. This is accomplished by interpolating the height of a physical location and

mapping it to a corresponding pixel in the image. A heightmap generated using this

process of the coast of New Jersey is shown in Figure 6.4(a). The presented heightmap

has been limited to maximum altitude of 25 m and maximum depth of 125 m. These
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limits were chosen to give enough detail about the immediate landscape for orientation,

and to provide enough depth for the simulations of a 100 m glider. Different parameters

can be provided to the heightmap generation script, but details about the terrain may

need to be sacrificed because most heightmaps are bound to eight bits of resolution.

Once the heightmap of the area of interest has been generated, a texture must be

generated for the terrain. A set of images, such as sand, rocks and grass are repeated,

or tiled until they have the dimensions of the desired image texture. Each of the

tiled images are then blended together in a process called texture splatting. In this

process, a pixel’s transparency, or alpha, is calculated for each image depending on its

altitude. For example, a pixel representing a deep ocean depth should have little or no

contribution of the grass texture applied to it. Figure 6.4(b) shows the result of the

texture splatting process performed using the NGDC dataset.

The heightmap is also used to generate a 3D object of the terrain. This is achieved

in Panda3D using the GeoMipTerrain class. The terrain texture can then be applied to

the 3D object. The resulting product, with lighting, is shown in Figure 6.4(c). Water,

as well as a sky box surrounding the environment have been created and can be seen

by the reflection of clouds in the lower right corner of Figure 6.4(c).

Depending on the graphical capabilities of the hosting machine, the level of detail

(LOD) in SimGUI can be adjusted. The LOD of the terrain could be set to use a

high number of polygons to shape the nearby scenery, while progressively decreasing

the polygon count into the horizon as the distance from the engine’s camera increases.

Smaller textures for the terrain and the reduction of non-essential models can also aid

in the programs performance but comes at the cost of the user’s overall experience. If

desired, SimGUI can optionally be loaded without a terrain object. This is certainly

useful in non-coastal areas while simulating a shallow water glider because it is unlikely

that the vehicle will ever reach the ocean floor.
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Figure 6.5: Glider replay of a thermocline tracking mission in SimGUI.

As previously stated, SimGUI is independent of the simulation infrastructure and

intentionally so. This allows the simulation and the graphical environment to be devel-

oped separately and leaves open the possibilities for simulators from other vehicles to

be integrated into SimGUI. Three dimensional objects must simply be imported and

their respective simulators must provide the necessary information to SimGUI to place

the vehicle in the scene.

The simulator and SimGUI typically run as separate operating system processes,

but can be run as one. Running as one process gives the benefit of simplicity in that

the memory is shared between the two components of the infrastructure. However, this

can also lead to performance and engine frame rate issues because the process will be

busy computing the simulation instead of refreshing the scene. This can be particularly

be the case if multiple vehicles are in the environment concurrently.

When running as separate processes, the components can exchange information

through pipes, shared memory or other forms of interprocess communication. Using

UDP/TCP it is also possible for the simulation node to be on a completely different

node than that of SimGUI. A cluster of computers can also run vehicle simulations

while communicating to a central coordinating node. The coordinator ensures that

other nodes have synchronized the global environment and updates the display state of
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SimGUI to provide feedback of the distributed simulation.

The SimGUI and the simulation framework together are useful in other applications

such as in the replay and analysis of missions and in the development and testing

of algorithms. In particular it has been used to create a multi-vehicle coordination

algorithm, to visualize the thermocline tracking mission as in Fig 6.5, and even as an

education tool using a Wii Remote Controller.
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Chapter 7

Applications

While developing the new programming framework a number of domain applications

and challenges were explored to gain familiarity with the field. The results and lessons

learned during the investigations have been integrated into the framework and have

enabled it to mature and become a practical system.

In this section, I will describe the following applications where the programming

framework was applied:

1. The feasibility of acoustic communications is explored on the Slocum Glider by

having an AVBot service perform a simple action based on an acoustic signal.

2. Multi-vehicle collaborative sensing is investigated that would make use of an

acoustic network. This work could lead to language features that allow a user

to indicate which vehicle a glider should follow as part of a swarm.

3. An analysis of dead reckoning (DR) navigation and how a Doppler Velocity Log

(DVL) can be used to improve an AUVs localization is examined. This comes at

the expense of an increase in power. However, having a more precise notion of the

vehicle’s position may be worthwhile its cost while navigating in adverse weather

conditions or when spatially tagging sensor readings is important.

4. The software ported simulator is used to investigate an issue with the heading

algorithm implemented in the Slocum Glider. This heading algorithm is used
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as part of the dead reckoning algorithm and can affect vehicle navigation. An

alternative algorithm is implemented and compare to the existing algorithm.

5. Vehicle navigation by human pilots and by an automatic path planning system is

explored. The comparison is a critical step to develop and gain confidence in an

automatic path planning solution. Services in the framework could implemented

various planning solutions with a variety of different goals and prioritize.

6. Services can be simple and run on the glider’s processors, or can be rather complex

and execute on more powerful devices like AVBot. An analyze on how a multi-core

computing platform, that is flexible in its performance and energy requirements,

could be used in future AUV sea trials is presented.

7. AUVs are deployed to perform sensing and have limited endurance. Thus, energy

should not be wasted on collecting and sensing irrelevant data. An investigation

of services that can be implemented as trigger chains to fire higher power sensors

based on observations by lower power sensors is given.

Most of the technologies presented have not only been implemented in simulation

but also at sea. By making these concepts available in the programming framework,

for example by keywords in the domain specific language, these advanced features can

become accessible to a larger audience. Users of the language can explore how their

missions are affected by simple changes in the mission specification using the simulation

infrastructures. Once satisfied, they can be translated to become real world missions.

7.1 Underwater Communication

As AUV platforms continue to mature, the demand for multi-node collaborative sensing

will increase. A vital component needed to perform collaborative sensing is the ability

for nodes in the sensor network to effectively communicate. To showcase the feasibility
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(a) (b)

Figure 7.1: A Slocum Glider equipped with an acoustic modem (a) was tasked to
surface upon a signal sent by a tow-fish (b) lowered from a surface vessel.

of multi-glider sensing the new infrastructure was used to induce a glider surfacing

action caused by an acoustic signal sent from a surface vessel.

A Slocum Glider equipped with a Woods Hole Institute (WHOI) Micro-modem

[Woods Hole Oceanographic Institution; Freitag et al., 2005] is depicted in Figure 7.1(a).

The transducer of the modem is the blue cylinder in the center payload bay of the

vehicle. A driver for the modem was written for AVBot and a service was implemented

to send a signal to the glider’s flight controller when a command is received by the

modem. When this signal is received by the flight controller it activates a surfacing

behavior that causes the vehicle to override other active behaviors and immediately

surface. A tow-fish modem, shown in Figure 7.1(b), or another vehicle could be used

to send such a command.

Using the glider and tow-fish in Figure 7.1, an acoustic communication sea trial

was performed off the coast of New Jersey in October 2011. The glider was tasked

to continuously sample the water column until it received a signal to surface. Two

segments of the trial are shown in Figure 7.2. In both of the segments, the vehicle

flew the same mission. Unfortunately, both signals were received by the vehicle while

it was climbing, therefore it appears as though the glider would have surfaced anyway

in the segments. However, based on Figure 7.2(b), the first segment would have indeed
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Figure 7.2: Two flights segments where the Slocum Glider was commanded to surface
if it received an acoustic signal.

dove again if it did not receive the surfacing command. Log files on both the glider

and AVBot confirm that the command was received and did indeed cause the surface

behavior to activate and override the lower level behaviors in the layered control stack.

Although only two segments were presented, the sea trial does show that mutli-

glider sensing is feasible using the infrastructure. Although a tow-fish modem instead

of another glider was used, a communication link between two nodes was established

and used to induce a glider action. Clearly, additional deployments are required to

increase the robustness of the system. This is especially the case if another AUV were

to be incorporated.

Instead of the AVBot service causing the vehicle to surface, one can imagine a service

providing the flight controller with a heading to follow another vehicle to execute a

swarming algorithm. This could also be incorporate into the domain specific language

by specifying a followglider route action as part of the state specification. The hook

behavior could then use the heading value to create and execute a set heading sub-

behavior.
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7.2 Multi-Vehicle Coordination

Formation flight is a form of swarming where AUVs maintain particular positions rel-

ative to each other. It allows the observation of ocean conditions and phenomena at a

high spatiotemporal resolution. In addition, formation flight enables AUVs with differ-

ent sensor payloads to conceptually act as a single science instrument allowing enhanced

sensing capabilities to be implemented by groups of lower cost, small AUVs instead of

higher cost, large AUVs. This section investigates how such swarming algorithms may

be implemented as it may become more common place in the future to see such multi-

vehicle deployments. The study will also provide some insight and appreciation of the

programming issues that may arise when programming such a swarm. The evaluation

could contribute to design decisions for future revision of the domain specific language.

The prevailing approach to formation flight coordinates AUVs by using periodic sur-

facings to acquire and communicate new GPS positions to the command center, which

calculates a new set of waypoints to recoordinate the vehicles [Paley and Leonard,

2008; Fiorelli et al., 2004]. Instead, a simple but effective coordination strategy for

formation flight is proposed and evaluated which monitors the formation quality using

low-bandwidth underwater communication. If an AUV drifts out of formation, us-

ing acoustic modem ranging techniques [Singh et al., 2006], all vehicles are instructed

through underwater communication to resurface in order to reestablish the formation.

Although this strategy may increase the frequency of surfacing, it has the advantage of:

reducing the times needed at the surface to reestablish the formation since AUVs are

not allowed to drift significantly out of formation, and acquiring more scientific data

at the desired spatiotemporal resolution since larger portions of a mission are flown in

formation.

The effectiveness of the proposed new strategy was evaluated by simulating multi-

day missions involving three Slocum Gliders flying in a leader/follower formation using
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(a) (b)

Figure 7.3: A top (a) and side (b) profile of a fleet of three Slocum Gliders coordinating
to form a triangle formation using the simulation infrastructure and display through
SimGUI.

the model based glider simulation infrastructure as shown in Figure 7.3 using SimGUI.

The simulator uses the energy models obtained from the operation and communication

of previous glider deployments off the coast of New Jersey as described in Chapter 5.

The simulated mission is based on a deployment from June 2009 and includes satellite

and radar information to model surface and underwater currents.

The simulations rely on two important parameters, namely the surface interval time

and the formation distance. The surface interval describes at what interval of time, in

hours, the gliders should resurface; the formation distance parameter specifies the size

of the diameter the following gliders have to be in from the leader to be considered

within the formation. If any of the gliders fall out of the circle, the formation is broken

and is not counted as being part of useful scientific data.

Figure 7.6 and Figure 7.5 show the results of the simulations. In Figure 7.6 gliders

could only communicate at the surface, while in Figure 7.5 gliders could communicate

both at the surface and while underwater. Each data point is the average of 100

simulations performed on a 80 processor computing cluster.

The results of the simulations suggest that it is more difficult to maintain vehicle



98

 40

 50

 60

 70

 80

 90

100

 1  2  3  4  5  6

P
e

rc
e

n
ta

g
e

Surface Interval (Hours)

Staying In Formation
 Using Suface Only Communication

0.5km
1km
2km
3km
4km
5km

(a)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

 1  2  3  4  5  6

E
n

e
rg

y
 (

M
e

g
a

jo
u

le
s
)

Surface Interval (Hours)

Total Energy Staying In Formation
 Using Suface Only Communication

0.5km
1km
2km
3km
4km
5km

(b)

Figure 7.4: Coordination strategy with surface communication only. (a) Quality of
formation as percentage of mission time where formation was maintained; (b) Overall
energy usage across all gliders in the swarm.

formation if the gliders are to sample more closely to one another. Increasing the time

in between surfacing also has a negative impact on the coordinated sampling especially

for short distances because the group may not realize they are out of formation and

continue their flight path as if they were. By increasing the distance considered to be

within the formation, the likelihood of the vehicles maintaining formation increases.

However, by increasing the surfacing intervals, the vehicles are more likely to drift out

of place and take more time to rendezvous when they do fall out of formation.

The surface interval also affects the total energy because it increases the number of

times the vehicles surfaces which can be a relatively expensive operation. By decreasing

the distance considered to be within formation the likelihood for vehicles to be out

of formation increases. When a glider is determined to be out of formation, it causes

other gliders in the simulations to remain at the surface while they wait to recoordinate.

However, a shorter formation distance also means that the stray gliders will catch up

more quickly (currents permitting).

Overall, the new strategy is able to keep a glider formation longer, but at the

cost of an additional energy overhead. For small formation granularities, the trade-off

is clearly in favor of the new strategy, in the best case increasing the flight time in
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Figure 7.5: Coordination strategy with surface and underwater communication (a)
Quality of formation as percentage of mission time where formation was maintained;
(b) Overall energy usage across all gliders in the swarm.

formation by 49% while only requiring 13% more energy. This corresponds to 25%

decrease in energy cost per scientific data sample in the formation compared to surface

only communication. For larger formations this is no longer the case since maintaining

the formation and the corresponding energy budget are comparable across the two

strategies.

7.3 Improving Dead Reckoning Using a Doppler Velocity Log

An AUV’s ability to predict its location is important for a number of crucial tasks

[Whitcomb et al., 1999]. Path planning algorithms, for example, need to be able to

track the vehicle’s location so that it can surface as close to the target waypoint as

possible. Additionally, some sensors may need to be tagged with high spatial accuracy.

Most AUVs currently use a dead reckoning (DR) algorithm to predict their location.

In the case of the Slocum Glider, it is computed from measurements of pitch, heading,

and depth change. Though easy to implement, this form of dead reckoning can produce

inaccurate estimates, especially for long dive segments. The lack of water current

measurements, imprecise sensor readings, and other effects can influence an AUV’s
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flight path and inaccurately cause the glider to drift away from its true location during

missions [Leonard et al., 1998].

More accurate DR localization strategies for the glider could take into account

Acoustic Doppler Current Profiler or Doppler Velocity Log sensor data [Teledyne RD

Instruments]. A DVL, for example, is able track the bottom of the ocean floor, allowing

it to calculate the relative motion of the vehicle to the floor[Whitcomb et al., 1999;

Fong and Jones, 2006]. The sensor’s reported speeds could then be replaced by the

traditionally calculated speeds during the DR process. This section will explore such a

strategy for the Slocum Glider and demonstrate how it can dramatically improve the

vehicle’s localization estimates. This approach evaluated by comparing a glider’s flight

segments from a 12 day deployment off the coast of New Jersey both with and without

DVL assisted dead reckoning (DVLDR).

7.3.1 Background

Drivers written for scientific sensors for the glider’s science bay computer are known

as proglets. Proglets, like the DVL, can require knowledge of other sensor values to

perform their measurements. This information may be ascertained from other sensors

connected to the science processor or from the flight controller. A serial connection (RS-

232) between the two processors provides the necessary hardware infrastructure for data

transmission. A software protocol known as the superscience protocol controls how the

processors interact with one another to perform the actual sensor data exchange. For

example, the computers can request from one another a sensor value to be sent only

once, when changed, or when touched (timestamp update on the sensor value).

The DVL proglet on the science process requires five such sensors from the flight

controller to be sent upon every change: current water depth, vehicle depth, pitch, roll,

and heading. The most current view that the science computer has of these values is
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sent to the instrument upon each measurement request to update the DVL’s view of

the environment. Since the sensor requires these data to perform accurate readings,

it is critical that they be as up-to-date as possible. Delays in the transmission of the

sensor data could effect the bottom tracking reported by the sensor which propagates

to the DVLDR strategy.

The traditional dead reckoning algorithm on the Slocum Glider is quite simple and

calculates the vehicle’s estimated position at every four second control cycle. The

algorithm requires input from two onboard sensors, namely the pressure and attitude

sensors. The pressure sensor allows the vehicle to determine its depth (d) in the water,

while the attitude sensor measures the vehicle’s pitch (θ), roll and heading (h). The

following describes the basis of the algorithm as it calculates its new location in the

local mission coordinates (LMC) system:

ws =
−∆d

tan θ
(7.1)

vx = (ws ∗ sinh) ∗ wvx

vy = (ws ∗ cosh) ∗ wvy
(7.2)

∆x = vx ∗∆t

∆y = vy ∗∆t

(7.3)

lmcx = lmcx+∆x

lmcy = lmcy +∆y

(7.4)

dist =
√

∆x2 +∆y2 (7.5)

The LMC system is the internal navigation system used by the Slocum Glider.

It describes the distance in meters the vehicle has moved north and east since the

start of the current mission. Equation (7.1) determines the vehicle’s speed through the

water using the current pitch θ and the change in depth ∆d since the last control cycle.
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Next, in Equation (7.2), the glider’s velocities are determined using the current heading

(h) and an optional water velocity component for current correction. Vx denotes the

eastward velocity while vy denotes the northward velocity. These components are

converted to meters in Equation (7.3) by multiplying them with the time since the last

control cycle. The new DR position is then determined in Equation (7.4) by updating

the last calculated location with newly made LMC progress during the current cycle.

The final horizontal distance covered is determined in Equation (7.5).

For short dive segments the described technique works quite well. However, for

longer dive segments, or segments where the currents are strong, errors in the estima-

tion can accumulate over time. For many applications, a highly accurate DR position

may not be required and the existing approach is still valid. Some scenarios like path

planning and navigation through shipping lanes require more accurate DR predictions.

The data produced by a DVL performing bottom tracking could be integrated into the

existing DR algorithm to assist the vehicle in underwater navigation.

39°N

39.5°N

40°N

75°W 74.5°W 74°W 73.5°W 73°W

RU21 Deployment 07/22/2010-08/03/2010

(a) (b)

Figure 7.6: The flight path of a glider deployment (RU21) from July 22, 2010 to August
3, 2010, off the coast of New Jersey (a). The vehicle was equipped with a DVL hat
performed bottom tracking throughout the mission. The glider being recovered from
the deployment (b). The DVL is part of the aft sensor payload bay in the center of the
vehicle. The wings of the glider were removed during recovery to allow the glider to be
pulled onto the boat without damaging the sensors.
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7.3.2 Evaluation

A glider’s DR error can be influenced by a variety of effects; a DVL, however, may

provide the necessary sensory input to greatly reduce this error. To gain a quantitative

perspective as to how much a DVL may assist in the DR of a glider, DVLDR is evaluated

with a previously flown deployment equipped with a DVL. The original flight was

flown without DVLDR, however this section will detail how much closer a DVLDR

implementation could come to the actual surface location of the vehicle for each dive

segment.

Deployment

The deployment used as the basis for the evaluation of the DVLDR took place off the

coast of New Jersey from late July 2010 to early August 2010, lasting 12 days. The

overall objective of the mission was to test a new glider equipped with a DVL as well as

other new sensors. The flight path taken by the vehicle over the short mission is shown

in Figure 7.6(a), and a picture of the recovery of the vehicle is shown in Figure 7.6(b).

The dual science payload bays in the middle of the hull contain the glider’s scientific

sensors; the DVL was carried in the aft science bay for the deployment.

Since the exact performance of the newly tested sensors under field conditions were

not yet known, the vehicle was commanded to remain relatively close to shore to ensure

a quick recovery if required. The water depth during all dive segments were within

35 m, which was well within the maximal (theoretical) 60 m bottom tracking range of

the DVL. Dive segments during the deployment were also kept quite short at an average

of two hours with about 20 min for data transmission to shore while at the surface.

On average, when a glider surfaced and gained a GPS fix, it was approximately 0.5 km

off its estimated DR surface location. The minimum and maximum distances from the

DR position were 23 m and 1.4 km respectively. Thus, although not detrimental, the
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dive segments were rather short so room for improvement to reduce the error of the DR

position exists.

As previously described, the proglets on the science computer communicate with

sensors. Their data can then be logged locally on the science computer, or sent to the

glider flight controller to be recorded. Traditionally, before the 7.0 series release of the

Slocum Glider software, only logging on the flight Persistor was possible. Although the

vehicle for the said mission was running a release in the 7.0 series of the codebase, no

science data logging occurred. This was intentional, as the feature was still maturing

and the functionality of other components, like the DVL, were the focus of this mission.

The decision to not perform data logging on the science computer also had its

faults as it not only impacted the DVL data being logged but also the measurements

themselves. The serial connection between the science and glider Persistors is slow,

running at 9,600 baud rate on releases before the 7.0 series and 4,800 baud rate since

the 7.0 series release. Science data logging reduces the traffic on the serial connection

and is likely the reason why the baud rate was lowered. However, sensors like the DVL

send a large amount of data which increases the load on the communications system.

Five sensors are needed by the DVL to perform its measurements. Not only are

the five input values regularly sent across the serial link, the results produced by the

DVL are also sent back. Currently, during bottom tracking, the DVL can produce up

to 46 output sensor values. Although not all values must be sent, since they may not

have been updated, there is still contention on the serial connection since it is shared

by other proglets including the CTD sensor.

From a science Persistor point of view, the snapshot of the vehicle’s physical orien-

tation it receives from the glider may be inconsistent. For example, when updating the

DVL’s viewpoint of the environment to prepare the sensor for a measurement, a new

pitch value may have been received by the proglet. However, an older depth value from
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a previous glider cycle will be used if it has not been updated in time. In this scenario,

the DVL may perform a measurement while diving that lags behind by several meters

in depth which could affect the results. The opposite also holds true. The readings

logged by the flight controller may be a conglomerate of both new and stale values that

are several cycles old. Thus, although the data used in the evaluation is not always the

most up-to-date, it can still prove useful in improving DR. Future deployments that

enable science data logging should show even more promise since there should be less

contention on the serial link.

Methodology

To evaluate how a DVL can assist in dead reckoning, a metric to compare the two DR

methods must be established. Ideally, an underwater localization algorithm should be

without error and be capable of calculating the true position of the vehicle at any time.

However, the glider’s DR algorithm, for example, has sensory input and computation

limitations which can cause errors to accumulate over time. This becomes apparent

when the vehicle surfaces after a dive segment, as the DR location usually differs from

newly acquired GPS position. The distance between the DR and the GPS locations is

used as the metric for the evaluation. The closer that the DR comes to the GPS fixed

surface location, the better the algorithm was able to estimate the vehicle’s position.

During the deployment, the glider only performed the standard DR algorithm so

DVLDR must be simulated. To ensure that the results produced by a simulated

DVLDR can be trusted, and the retrofitted glider software would produce similar re-

sults, DVLDR should be based on a similar algorithm to the one in the glider. The

glider’s DR algorithm has been ported to run independently from the vehicle and has

been adapted to make use of data recorded during previous deployments. When running

the ported DR algorithm with the dive segments of the sample mission, the difference
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Figure 7.7: Comparison of flight paths of logged dead reckoning flights against DVL
assisted dead reckoning (DVLDR) flights. In general, DVLDR significantly improves
estimated vehicle position as in (b) and (c), while at times the traditional DR estimates
are more accurate (a).

between the ported and vehicle’s logged DR position were negligible, usually within one

meter. This is due to the difference in the glider’s state information used for the DR

calculation. While the true vehicle’s state is evolving during a control cycle, the ported

algorithm instead uses a state snapshot that is recorded for each cycle.

To simulate DVLDR, the ported algorithm is altered to take into account the DVL.

When valid data is produced from the sensor, the northward and eastward velocities

are used in place of the calculated velocities of Equation (7.3) in Section 7.3.1. When

the sensor is not able to perform bottom tracking, or its data is determined stale, the

DVLDR will fall back to the traditional DR strategy. The sensor may not be able

to perform bottom tracking, for example, if the water depth is too deep or the DVL

cannot reliably detect the ocean floor. Using a combination of both strategies produces

significantly better results compared to the standard approach.

Results and Discussion

By replaying the mission with recorded data from the deployment, and using the ve-

locities gathered from the DVL, DVLDR is able to significantly reduce the DR error

compared to the traditional approach in most cases. Three sample segments from over

130 segments of the deployment are shown in Figure 7.7. The figure compares algorithm
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performance from the worst case scenario to the best.

Figure 7.7(a) presents the worst case of the ten segments where DVLDR did not

outperform the standard DR algorithm. The logged DR position placed the vehicle

212 m from the GPS fixed position, while DVLDR estimated 246 m, an additional

error of 34 m. The standard deviation of the ten segments was less than 13 m, which in

the overall scheme of the deployment including the successful segments is not significant.

The flights paths of Figure 7.7(b) and Figure 7.7(c) showcase an average and one

of the best segments that was improved. The errors, such as in Figure 7.7(b), are

likely caused by the vehicle losing bottom tracking and the algorithm falling back to

the traditional DR method, or possibly by errors in the measurements themselves. As

stated this may have been caused by the delay in sensory input either to the DVL or

from the DVL to the flight controller.

For all segments of the mission, DVLDR reduced the average surface location DR

error from over half a kilometer to under a quarter of a kilometer. The minimum and

maximum error were 6.5 m and 1 km respectively, compared to the 23 m and 1.4 km

by the traditional approach. Overall, usage of a DVL during DR has a great impact

on reducing the error of the glider’s localization strategy. Using this new algorithm

during deployments could improve overall vehicle navigation. Having a better sense

of the vehicle’s location translates into being able to calculate more accurate heading

corrections towards the target waypoints. Sensors that require more accurate tagging

would also be benefited from this method. If missions or applications can cope with the

additional energy required by the DVL sensor, then the use of DVLDR is worthwhile.

In terms of the glider, the DVL is a relatively energy expensive sensor. Algorithms

or services in the programming framework should schedule and manage its usage to get

the most utility out of the sensor. For example, a service may determine that after a

dive segment without the DVL powered that a significant drift is detected. The DVL
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should then be used for some time during the next profile. The opposite could also

be true; if the currents do not appear to affect the vehicle as much, an algorithm may

choose not to use the DVL. Shore based services that use weather prediction models

could also play a part in the decision making and could relay new instructions to the

glider while it is at the surface. The power measurement infrastructure or energy service

can quantify the energy usage and provide feedback to other services so that they may

make any necessary adjustments.

7.4 Current Correction System

During typical glider operations, the AUV is typically tasked to fly to a list of waypoints.

Pilots may choose to navigate with the feature of current correction (CC) enabled or

disabled. When enabled, the vehicle’s software will use its estimates of the water current

components in its dead reckoning (DR) and heading calculations. When disabled, the

water current is not considered in either the DR or heading calculation.

Based on the feedback from several experienced glider pilots, many missions are

flown, in part, without the use of CC. These pilots expressed that, at times, they had

difficulty navigating the vehicle while the CC feature was enabled and therefore fly

without it in some situations. It would, however, be useful to navigate with CC to

ensure that the vehicle follows the track if, for example, the vehicle makes use of a path

planning system.

This section investigates the CC algorithm implemented in the Slocum using the

software port simulator flying in the faster-than-real-time mode. Two nearly identical

mission files were created to fly the vehicle from a starting location to a north-east

target waypoint approximately 35 km away. The mission files only differ in that one

has CC enabled while the other does not. A favorable current in the direction towards

the target waypoint was set in the simulator with a speed of 50 cm/s, which is larger
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(c) Current correction enabled
with the new heading correction
algorithm.

Figure 7.8: The path taken by three flights flying a sample mission tasked to fly to a
waypoint 35 km north-west with a current of 50 cm/s.

than the average speed of the glider. Three missions were flown: with CC disabled;

with CC enabled; and with CC enabled but with the alternative heading algorithm

described later.

The flight tracks of the simulated Slocum Glider’s missions are shown in Figure 7.8.

These tracks are of the actual paths of the vehicles and not their DR paths. In Fig-

ure 7.8(a), with current correction disabled, the glider vastly overshoots the target

waypoint. When disabling CC, the glider assumes in its DR calculations that the water

current components are both zero. Therefore, in strong currents, the DR position of

the glider can grow to be significantly different than that of the AUV’s actual position.

In the sample mission, the vehicle will continue to fly and only surface to complete

the mission when it believes it has arrived at the waypoint. Thus, if the AUV’s DR

positioning is highly inaccurate it cannot effectively navigate itself to the target.

Figure 7.8(b) shows the flight path with the standard CC system enabled. The

heading algorithm is executed periodically to adjust the glider’s flight path towards the

target waypoint. The algorithm first calculates the expected flight time to reach the

waypoint using the AUV’s average speed with no consideration of the sea current. Then,

using this flight time, the algorithm offsets the target waypoint by the displacement

caused by the current during that time. The heading to the new offset waypoint is
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Figure 7.9: Velocity relationships.

calculated and used to fly the glider. As seen in Figure 7.8(b), the glider falls short

of reaching its intended target. Because the current speed is greater than the vehicle’s

average speed, the heading algorithm actually caused the AUV to fly directly straight

into the current, i.e., in the opposite direction away from the target. This simple

scenario highlights the problem with standard CC system.

We implement an alternative heading algorithm to adjust the glider’s course in the

simulator. The path taken by the vehicle with the modified CC system is shown in

Figure 7.8(c). The vehicle maintained a direct heading towards the target and arrived

at the waypoint in the shortest time of the three flight scenarios.

As was demonstrated, the existing heading algorithm incorrectly guides the AUV

to fly directly against a favorable current. The modified algorithm implemented in the

simulator is also used for the automated path planning flights in Section 7.6.3. Though

the path planning system described offers the ability to generate waypoints offset by

the water current conditions, a more general solution was explored for future inclusion

into the glider’s software. The algorithm described was developed in collaboration with

Dr. Eichhorn and is heavily based on his previous work in path planning [Eichhorn

et al., 2010; Eichhorn, 2009].

The glider heading ϕ to follow a defined path can be calculated to include the
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ocean current vector vcurrent and the path/course vector vpath. This path vector can

be described by a magnitude and a direction. The direction is defined by a unit vector

v0

path of a point subtraction of the target waypoint and the current vehicle position.

The magnitude of the path vector is the speed which the glider travels on the path in

relation to a fixed world coordinate system. This speed vpath ef depends on the vehicle

speed through the water vveh bf (cruising speed), the magnitude, and the direction of

the ocean current vector, as well as the direction of the path v0

path. This speed can be

determined by the intersection point between a line and a circle (2D) and/or sphere

(3D) [Schneider and Eberly, 2003], based on Figure 7.9(a), according to the following

relation (7.6):

line: x (vpath ef ) = vpath efv
0

path

circle/spheres: v2veh bf = ‖x− vcurrent‖2
(7.6)

disc = (v0

path

T · vcurrent)
2

+ v2veh bf − vcurrent
T · vcurrent

(7.7)

If the discriminant disc in Equation (7.7) is positive, the glider heading ϕ can be

calculated using the following equations (7.8):

if disc > 0

vpath ef = v0

path

T · vcurrent +
√
disc

vveh bf = vpath efv
0

path − vcurrent

vveh bf =









xv veh bf

yv veh bf









ϕ = atan2(yv veh bf , xv veh bf )

(7.8)
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If the speed vpath ef is negative, the vehicle is still on the path, however, it is moving

backwards. This scenario is shown in Figure 7.9(b).

If the discriminant disc in Equation (7.7) becomes negative, vpath ef does not have a

real solution. This means that the vehicle cannot be held in that path and so the path

is not feasible. This scenario is depicted in Figure 7.9(c). In this case, the calculated

heading results in a “closest point on the line” calculation. The resulting glider heading

is perpendicular to the path so that the drift to the desired path is minimal. This can

be calculated using the following equations (7.9):

if disc ≤ 0

vplumb =
(

v0

path

T · vcurrent

)

· v0

path − vcurrent

vplumb =









xv plumb

yv plumb









ϕ = atan2(yv plumb, xv plumb)

(7.9)

Using the software port simulator from the programming framework an existing issue

with the Slocum Glider’s heading algorithm was easily verified through data injection

and testing. An alternate heading algorithm was implemented and tested with initial

simulation results indicating that it is a worthwhile candidate to replace the existing

algorithm. However, several field trials and feedback from flight engineers would be

required before it is integrated into the general glider codebase.

7.5 Assessing Automated and Human Path Planning

Most AUVs are operated by pilots who are able to interpret environmental information

to make effective mission decisions. However, managing a group of glider can become

rather complex even if a single AUV is under duress. To enable oceanographers and

pilots to more easily manage a fleet of gliders, new mechanisms are needed to ease the
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burden of AUV operation. An automated path planning system is one such tool that

could free operators from the tedious task of waypoint selection, and would allow them

to focus on scientific and mission critical aspects of managing groups of AUVs.

AUV path planning involves selecting a set of waypoints to guide an AUV from a

starting location to a destination location while considering obstacles such as shipping

lanes, ocean currents, or limited battery resources. Offloading operational tasks to

an automatic tool is only feasible if the decisions made by the tool are considered

reasonable and can be trusted. To assess the flight paths and energy consumptions of

an AUV guided by an automated path planning system and by human pilots, a testbed

environment has been developed. The testbed is based on the software port glider

flight simulator. Four pilots with varying backgrounds and glider flight experiences

were asked to fly a Slocum Glider through a simulated Gulf Stream modeled current

field. The same challenge was posted to an automatic path planning system currently

in development.

In the scope of the overall programming infrastructure, the automated path planning

system developed for this assessment is intended to provide a set of guided route service.

The service in this case would be dependent on shore-side processing to calculate the

intermediate waypoints to be flown. Various path planning services may have different

priorities and thus produce different routes, for example, to navigate a convex hull of

an area of interest. However, the technologies involved to perform such services must

first be stabilized and trusted before they can be used in real sea trials.

7.5.1 Path Planning

Path planning is an important requirement for an autonomous mobile system, and is

necessary to effectively navigate a vehicle during a mission. All current and future

information about the area of operation and the vehicle’s status are used to formulate
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a path. In the case of AUVs, information about the area of operation can be gathered

from ocean models and from measurements derived by the AUV itself. Other impor-

tant vehicle properties, such as its speed and energy consumption, are also important

components to consider to effectively plan a course [Rao and Williams, 2009].

The goal of the path planning algorithm used in this assessment is to find a time-

optimal path from a start position to a goal position by evading all static and dynamic

obstacles in the area of operation, while considering the dynamic behavior of the ve-

hicle and the time-varying ocean current. This path planning algorithm, named the

Time Variant Environment (TVE) algorithm [Eichhorn et al., 2010; Eichhorn, 2009], is

based on a modified Dijkstra algorithm [Dijkstra, 1959]. A time-variant cost function

is included in this algorithm, which will be calculated during the search to determine

the travel times (cost values) for the examined edges. This modification allows a time-

optimal path to be determined in a time-varying environment. In [Orda and Rom,

1990], this principle was used to find the optimal link combination to send a message

via a computer communication network with the shortest transport delay.

The path algorithm uses a geometric graph for the description of the area of oper-

ation with all its characteristics. The defined points (vertices) within the operational

area are those passable by the vehicle. The passable connections between these points

are recorded as edges in the graph. Every edge has a rating (cost, weight) which is

the time required for traversing the connection. In the case of an ocean current, the

mesh structure of the geometric graph will be a determining factor associated with its

special change in gradient. In other words, the defined mesh structure should describe

the trend of the ocean current flow in the operation area as specifically as possible. A

uniform rectangular grid structure is the easiest way to define such a mesh.



115

7.5.2 Evaluation

The aim of the presented evaluation results are not to criticize a particular path planning

strategy, whether it is human piloted or piloted by a path planning algorithm. Rather,

the aim is to provide the capability and technology to evaluate these strategies. In the

case of human piloted flights, a graphical interface is provided to pilots that interacts

with the software port simulator. For the automated flight, a tool interacts with both

the simulator and the path planning program. In both cases, the simulator was modified

for the evaluations as described in the following sections.

Simulator Modifications

For the evaluation, the new heading algorithm discussed in Section 7.4 was integrated

into the simulator. Current correction was not used for the human piloted missions as

some of the more experienced pilots preferred to fly without it for the current model

used in the evaluation. The algorithm was, however, enabled for the automated flight.

Although the path planning tool has been augmented to provided waypoints with the

correct current offsets, a more generalized solution was used for the vehicle.

One advantage of running a full software-stack simulator is that specific hardware

and software parameters can be easily adjusted to better reflect the flight characteristics

of a particular glider. For example, the vehicle’s simulation driver determines the speed

of the glider through the water using the AUV’s pitch and change in depth. The pitch

and depth rate are in turn functions of the vehicle’s pitch battery and buoyancy pump

positions. In a stock simulator, the models that map motor positions to the pitch and

depth rate are based on a flight from Buzzards Bay in 2002. Because the simulator is

often used to study past and live deployments, the pitch and depth rate models have

been modified and are modeled after a two week flight of Rutger’s RU06 glider off the

coast of New Jersey.
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The Slocum Glider model from Buzzards Bay (BB), while valid, is not a generalized

model. Each particular glider can fly very differently depending on, for example, how

it was ballasted. According to the log files, the RU06 appears to be too positively

buoyant; the vehicle spent over 70% of its time in the diving state rather than an even

time in the diving and the climbing states.

Using linear regression in the Weka data mining software, [Hall et al., 2009], two

models were created for the vehicle. First, a battery and buoyancy pump position to

pitch model, and second, a pitch and buoyancy pump position to depth rate model.

The predicted pitch and depth rate of the models were compared to the vehicle’s log

files. The average predicted error for the new pitch model when compared against the

vehicle’s log files was 3.5◦ compared to 10.2◦ of the BB model. Most of the errors in

the new model occur during inflections, while in the BB model, the errors lie in the

misprediction of the climb angle. The error of the depth rate models was 6 cm/s for the

new model compared to 18 cm/s for the BB model. The high error in the BB model was

likely due to RU06 being too positively buoyant, and the diving depth rate being much

lower than that of the glider in Buzzards Bay. Nonetheless, this does not invalidate

the BB flight model as a model to be used for the simulator, but it does showcase the

importance of tuning such models to more closely reflect the nuances between particular

gliders. These RU06 models are used throughout the evaluation although the BB model

could have been used instead.

The stock software allows a fictitious sea current to be specified. However, this

current is static until it is explicitly updated by the user. In Section 7.4, this static

current specification was used to study the stock glider’s heading algorithm. To increase

the realism of the experiments, the simulator was modified to dynamically change the

currents in an effort to reflect a 3D Gulf Stream current model [Cencini et al., 1999;

Alvarez et al., 2004; Eichhorn et al., 2010]. Other model data could have been injected,
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(a) (b)

Figure 7.10: (a) The graphical user interface used by a human pilot to help navigate
a simulated glider from the green starting waypoint to the red destination waypoint.
Intermediate waypoints selected by the pilot are drawn using cyan indicators and lines.
The automated tool, (b), uses path planning software to determine intermediate way-
points.

but this model was already integrated as one of the testing environments in the path

planning tool.

Piloting Tools

To ease the evaluation on the human test subjects, the simulator in hybrid mode was

used. In this mode, simulations of the glider’s flight are faster-than-real-time while

underwater and real-time at the surface. Typically, pilots interact with the glider using

the manufacturer provided Dockserver mission control system. However, a good user

experience has yet to be obtained with the Dockserver while the simulator is running

in any faster-than-real-time mode. Alternatively, interaction with a simulated glider’s

terminal is accomplished with the Pexpect [Spurrier, 2012] Python module, commonly

used to control and automate programs. Because Pexpect launches the simulator as a

subprocess, it is still necessary to slow the simulator down while at the surface. If it is

not slowed, the monitoring program will not be able to communicate with the AUV in
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time before the vehicle continues onto the next mission segment. The tool is in essence

a modified GPILOT tool specifically adapted for this evaluation.

In lieu of the pilots taking over control of the glider at the surface, a graphical

user interface has been created to send and receive vehicle events and messages to and

from the terminal monitoring program. This GUI tool is shown in Figure 7.10(a).

As described, the automated path planning tool also uses the Gulf Stream model in

its calculations. Thus, the human pilot is provided with a graphical depiction of the

surface currents that will occur within the next 20 days. It is common for pilots to

overlay ocean current model data in applications such as Google Earth to assist them

in their waypoint generation. Although the presented prediction model is extended

to 20 days, thereby creating an atypical advantage compared to a real deployment, it

is justifiable considering that the path planning tool knows about the model and the

pilots were unfamiliar with the area of operation.

In the interface, pilots can use the slider beneath the current plot to see the surface

currents at any particular time. Note that the Gulf Stream model is a 3D model and it

applies currents to the simulated glider at all depths. Hovering the mouse over the plot

updates the GUI with the water current information at that location and at the time

specified by the slider. The vehicle’s mission time and distance to the next waypoint

is also shown which provides additional feedback to the user about the deployment. If

the pilot wishes to plot the surface currents that are being applied to the glider, the

reset button can re-adjust the current field slider to the glider’s current mission time.

New waypoints can be added and deleted using the tools on the right-hand side of

the interface and by selecting current field plot. In Figure 7.10(a), the start location is

indicated by the green indicator, the destination by a red indicator, and intermediate

waypoints, specified by the user, as cyan indicators and lines. Any modifications to the

waypoints list requires the user to explicitly click the “Re-read MA” button to have the
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program generate a new mission argument list, send it to the AUV, and have it re-read

and update the mission’s behaviors.

The mission arguments for the waypoint list sent to the glider are in the glider’s

local mission coordinates (LMC) system. This is unconventional, and the simulator was

extended to support this feature. Typically, only waypoints specified via latitude and

longitude are supported in the goto list behavior’s mission argument file. This was done

purely for convenience so that the Gulf Stream model and the path planning system

can both use the same coordinate system.

Users of the tool can only send new waypoint lists when the simulated glider is

at the surface. To instruct the glider to continue onto the next dive segment, each

lasting four hours, the pilot can click the “Dive” button. If no changes are expected for

several dive segments, the “Auto Dive” checkbox will have the GUI tool instruct the

glider to continue its mission on behalf of the pilot. If a modification to the mission is

required, unchecking this box will allow the pilot to manually re-task the AUV at the

next surfacing.

The interface of the automated path planning tool is shown in Figure 7.10(b). The

interface presented is very similar to that of the human piloting tool. Although having

a GUI is not required, it aids in debugging and development to ensure that the expected

waypoints are generated and flown. There is also a “headless” version of the automated

path planning system that does not use a GUI. The headless version is helpful in

parameter space exploration and has been deployed on a compute cluster where multiple

path planning algorithms can execute at the same time.

The automated flight program also uses the monitor program in place of Dockserver

to control the glider’s terminal. During the simulated mission, when the AUV comes

to the surface, the vehicle’s current waypoint and mission time are used as input when

executing the path planning program. The produced plan is reduced to only a few
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waypoints as the glider’s software system is restricted to only a small list of points.

Waypoints that are close to one another are also reduced. Despite not executing the

exact track generated by the path planning system, this mechanism works within the

constraints of the glider. Most of the extensions made to the vehicle’s software have

so far been made for the evaluation only. Because the aim is to use the same path

planning infrastructure to guide a real fleet of gliders, further changes have been kept

to a minimum. While the path planning system has the opportunity to re-task the

vehicle every time it surfaces, in a real deployment, communicating with the AUV may

not always be possible and so the revised plan always ensures that the final destination

waypoint is also always included.

Results and Discussion

For the human piloted missions, four subjects were asked to traverse a meander in the

Gulf Stream model with the aid of the graphical tool shown in Figure 7.10(a). The four

pilots had many years of glider flight experience between them, ranging from over ten

years to just a few hours. All subjects have been working in oceanography for years as

physical or biological oceanographers, or oceanographic technicians.

Before starting the experiment, each subject was given a brief tutorial on the usage

of the tool and was allowed to briefly experiment with it. The subjects were encouraged

to use the current field slider to gain some insight of the currents in the area of operation.

The pilots were also instructed to fly from the starting location to the end point in the

minimum amount of time, while prioritizing the safety of the vehicle as if it were a real

deployment.

The simulated mission was based off of a previously deployed flight. The glider was

instructed to fly at a diving and climbing angle of 26◦ between 5–95 m. The water depth

was set to 200 m so that the vehicle would not have to inflect early to avoid hitting
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(a) Pilot A

−200 −150 −100 −50 0 50 100 150 200
X Local Mission Coordinate (km)

−200

−150

−100

−50

0

50

100

150

200

Y
 L

o
ca

l 
M

is
si

o
n
 C

o
o
rd

in
a
te

 (
km

)

Deployment track

Glider Track
Waypoint List
Start Location
Goal Location

(b) Pilot B
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(d) Pilot D

Figure 7.11: The flight tracks of the simulated mission by human pilots.

the ocean bottom. Finally, the simulated glider is equipped with two backscatter and

fluorometer sensors.

Table 7.1 shows the summary of the evaluation. Several subjects performed the

experiments more than once. In these cases, the deployment that had the shortest

flight time is presented. Subject D performed the experiment once, subjects A and

C twice, and subject B three times. Admittedly some subjects expressed they were

slightly more aggressive, but within reason, on repeat attempts. This is likely due to

their increase in comfort in using the tool and knowing that the AUV is indeed not

real.

The human generated flight paths ranged in duration from 3.07 days to 3.34 days,
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Pilot Time (d) Energy (kJ)

A 3.07 595.26
B 3.34 649.17
C 3.27 636.26
D 3.15 612.32

Auto 2.92 571.47

Table 7.1: Results of human piloted flights and the automatic path planner (Auto).

with overall energy consumption between 595 kJ and 649 kJ. The selected end waypoints

were chosen specifically with the knowledge that if no action is taken by the pilot and

no intermediate waypoints are provided, the glider would still make it to its destination

in a sub-optimal amount of time and energy. The results of this “hands-off” approach

was a flight time of 3.38 days with an energy expenditure of 657 kJ. Two of the pilots,

B and C, discovered this approach on their first attempts.

For two out of the three subjects who performed multiple evaluations, the pilots were

successful in decreasing their flight time on each successive attempt and thereby also

reducing the energy dissipated. Subject B, after discovering the “hands-off” approach

on their first attempt, did not improve their mission time on their second try. However,

the subject quickly turned things around on the third attempt and bested their previous

two flights.

The flight tracks of the missions of Table 7.1 are shown in Figure 7.15. As previously

mentioned, the green indicator represents the start location of the mission and the red

indicator the destination location. The blue lines show the path taken by the vehicle.

The magenta line segments represent the assigned waypoints from the current glider

location to the next waypoints. Thus, the start of a line segments is the current glider

location on the track when the waypoint was assigned, and the end of a line indicates

the first of the assigned waypoints. To reduce the number of lines in the figure, only

the first assigned waypoint at each re-tasking is shown.

For the human piloted flights, the current correction algorithm was disabled as
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suggested by the more experienced pilots. None of the test subjects seemed to have any

qualms regarding this constraint and it was observed that compensating for the current

seemed natural to pilots. With repeated experiments, it was observed that the subjects

were also quickly refining this skill. In one particular case, a pilot quickly adapted and

seemed to begin to emulate the navigation characteristics of one the more experienced

subjects. This was especially interesting since the evaluations took place independently

so that no one subject could learn from another.

In the flight paths show, in Figure 7.15, three of the four pilots tried to use the

meander to their advantage as a more favorable current towards the target waypoint.

Subject C, who used the “hands-off” approach on their first attempt (not shown),

noticed that the vehicle slightly missed the target waypoint and had to backtrack. On

their second attempt, Figure 7.11(c), they piloted mostly “hands-off” for much of the

flight but tried to prevent the back tracking from east to west by changing course and

flying south earlier.

Pilots A and D had similar flight paths and the two best mission times. Both

decided to use the meander but were cautious not to get into currents too strong that

would be difficult to escape from. It appears that Pilot A, Figure 7.11(a), was able to

hug the meander longer than Pilot B in the mission of Figure 7.11(d) and so was able

to clench a better time.

Subject B in the attempt shown in Figure 7.11(b) improved on the two previous

flights. The subject was initially more aggressive than the other pilots by flying the

deepest into the meander. However as they approached the destination it had become

clear that if they were not careful they would be swept up. The pilot cautiously executed

an escape maneuver, wanting not to put the mission at risk. The AUV was safely able

to reach its destination in a respectable time.

The result of a completely automated path planning mission has a flight time of
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Figure 7.12: The deployment track of an automated path planning system piloting the
simulated mission.

2.92 days with an energy consumption of 571 kJ as shown in Table 7.1. The track

flown by the vehicle is show in Figure. 7.12. Because the path planning system had an

opportunity to refine its path planning at every surfacing, we observe many waypoint

list adjustments. Like the human subjects, the AUV was tasked to fly slightly into the

meander for the additional speed. The path planning was also successful at navigating

the glider out of the strong currents and to its destination.

Despite accomplishing a respectable flight time, further revisions on both the glider

and the automated flight system could produce even better times. The result shown

required some exploration of the parameter space in the path planning tool and the

automated testing program. With further adjustments it may be possible to reduce

or eliminate this exploration. For example, the automated testing tool could use the

glider’s observed average speed and provide it to the path planning system at each

surfacing. The speed model in the path planning system itself could also be improved,

for instance, by creating a customized speed model as described in Section 7.5.2. Finally,

the path planning tool could provide the glider with sea current information that it will

experience within the coming flight segment instead of using sea current information

from the prior segment.
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Although significant progress has been made in bringing an automated path plan-

ning system closer to being interpolatable with the Slocum Glider, an extensive amount

of further testing must be performed. Other path planners should also be integrated

and tested to provided several alternative options. A set of smart and intelligent route

services exposed as part of the domain specific language would have a significant im-

pact on the power of the programming framework. This assessment has taken strides

towards this goal and compared how such a sample services measures against several

human pilots.

7.6 Enabling Computation Intensive Applications

Real time examination of mission data can substantially enhance the overall effective-

ness of AUVs in oceanography. However, many AUVs only allow a detailed analysis

of data after completion of a mission. The ability to perform on-board analysis of

real time data can become computationally intensive, requiring an energy efficient pro-

gramming infrastructure that can be adapted to battery operated, energy constrained

vehicles. A Linux SBC has already been integrated into the Slocum Glider as part

of the framework. However, other more powerful multi-core computing platforms, like

Intel’s SCC (Single-Chip Cloud computer), that are capable of dynamically changing

power and energy requirements may also become candidate computing platforms for

cyber-physical systems (CPSs) like AUVs.

In this section, ocean modeling and path planning applications for the Slocum Glider

are used to illustrate how the energy aware features of the SCC could be used to react to

changing energy vs. performance trade-off requirements. Changes to these requirements

can be triggered by the computational needs of other applications which are considered

more mission critical resulting from the observation of an internal or external event.

Clearly, avoiding obstacles has high priority when navigating through a busy shipping
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Figure 7.13: Intel’s Single-Chip Cloud Computer.

lane. Encountering a physical phenomenon like an algal bloom could also trigger the

use of additional sensors and data processing applications. In addition, later phases

of a long duration mission may have to deal with reduced battery power and energy

budgets, putting more severe constraints on the applications that can be effectively

executed.

7.6.1 Single-Chip Cloud Computer

The Intel SCC has been designed to implement a cloud data center in silicon on a single

chip [Howard et al., 2011]. The research chip has 48 cores grouped in pairs of two cores

(tiles), a 24 router-mesh on-chip network with 256 GB/s bisection bandwidth between

tiles, and four integrated DDR3 memory controllers [Gries et al., 2011; Howard et al.,

2011]. Each core runs its own OS, thereby acting as an individual compute node. There

is hardware support for message passing, but no hardware cache coherency policy is

implemented.

The SCC system allows the power and energy management of individual cores and

groups of cores, the on-chip network, and memory. Cores can be turned on and off.

Frequency and voltage settings are software controlled and can be changed on the fly.

This dynamic, fine grain power and energy management feature is the main charac-

teristic of the SCC that should be exploited. The SCC is able to provide a significant
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range of energy vs. performance trade-offs, giving AUVs the ability to perform mission

critical, computation intensive tasks at the lowest possible energy cost. The SCC con-

sumes between 25 and 125 watts when all cores are active [Mattson et al., 2010]. The

speed of the on-chip network and off-chip memory can be adjusted, giving additional

opportunities for performance vs. energy trade-offs. The SCC, shown in Figure 7.13,

is an experimental platform and not commercially available. As part of an ongoing

collaboration with Intel, the SCC is evaluated for deployment within Slocum Gliders.

7.6.2 Applications

Additional computational capabilities can save energy by more effectively managing

the use of energy expensive sensors. The SCC is particularly well suited for this task

because multiple energy saving algorithm/programs can run simultaneously on the chip,

each with their own power and energy characteristics and trade-offs. This section will

provide an overview of such applications.

Dead Reckoning - Localization is a critical challenge for underwater operations. Typ-

ically, collected sensor data is tagged with spatial and temporal coordinates. AUVs

can use GPS localization while at the surface, and dead reckoning (DR) while diving.

Unfortunately, DR can result in significant localization errors in the presence of un-

derwater currents. A Doppler Velocity Log can be used to remedy this situation by

performing bottom tracking, which allows the vehicle to measure its relative speed,

thereby improving DR. However, operating the DVL sensor itself, and processing the

acquired data can be energy and computation intensive. Without reliable localization

many scientific missions are not feasible, including under-ice deployments where ac-

quiring a GPS position at the surface is not possible. Section 7.3 further describes how

significantly a DVL can improve a glider’s dead reckoning.

Sensor Triggering - The stock Slocum Glider does not currently support fine-grained
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or cross-sensor adaptive sampling. Sensors are typically turned on all the time, or

active only on dives or climbs. The effectiveness of some sensors can be improved

by making them part of a trigger chain, where low cost sensors activate more costly,

but more precise sensors. Adaptive sampling may require significant physical modeling

efforts and data processing capabilities. Such use of sensor triggering is described in

Section 7.7.

ROMS - The Regional Ocean Modeling System (ROMS), [Shchepetkin and McWilliams,

2005], comprises a traditional ocean forecast model complemented by advanced varia-

tional data tools that allow the assimilation of 4-dimensional data, and more impor-

tantly, the sensitivity of the forecast to the present and future ocean state and the

observational sampling pattern. For example, ROMS can be used to help optimize the

path a glider takes between waypoints, or to indicate the regions where new observations

would lead to the greatest improvement in forecast precision.

Charting the 3-dimensional and time varying pattern of these anomalies in ocean

temperature and salinity represents an attractive testbed for integrating ocean observa-

tion and simulation through adaptive sampling and smart control on a single platform.

Optimizing the integrated system will necessitate trading off the sampling frequency,

the sensors that are active, the distance traversed by the AUV, the ocean model compu-

tational effort, and communication, all of which make demands on the available battery

power and energy.

Path Planning - The task of the path planning algorithm, used in the evaluation, is to

find a time-optimal path from a defined start position to a goal position while evading

all static as well as dynamic obstacles in the area of operation, with consideration of

the dynamic vehicle behavior and the time-varying ocean currents. The path planner

is described in further detail in Section 7.5.1. Proper path planning can be crucial if
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an AUV must arrive at a target location to observe a short lived phenomenon. It can

also save time and energy since it allows the vehicle to navigate through strong ocean

current fields. Thus, the energy investment made in computing a path plan may pay for

itself if alternative longer paths were taken or the vehicle had to back track its position.

7.6.3 Evaluation

As discussed, the SCC is particularly well suited for parallel applications. For this

reason, the ROMS and path planning programs are targeted for investigation to marry

a CPS like a glider with a parallel capable infrastructure, like the SCC, that can provide

the necessary knobs to trade-off power and energy restrictions with application runtime

deadlines.

For the evaluations, custom settings for the SCC are generated. These settings

initialize the SCC with different core, network and memory configurations. Because

multiple programs are envisioned to be communicating at the same time on the SCC,

non-standard mesh network speeds were also studied in the hope that they could provide

additional insights on the trade-off space of the SCC.

Both ROMS and the path planning application make use of RCKMPI [Ureña et al.,

2011] for message passing which should provide comparable performance to RCCE

[Mattson et al., 2010; Ureña et al., 2011]. The MPD process manager, recommended

for use with the SCC, is used throughout the experiments. All cores boot a Linux 3.1.4

kernel image. Finally, power measurements were gathered from the SCC infrastructure.

ROMS benchmark

The feasibility of running ROMS on the SCC is evaluated using a sample benchmark

provided with ROMS. The benchmark consists of 512x64x30 grid points and 200 time
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Figure 7.14: ROMS evaluation results for various SCC settings. The execution times
for ROMS using 24 (a) cores and 48 (b) cores. The average power, (c) and (d), of the
SCC during the execution of program. The energy required to run ROMS for 24 (e)
and 48 (f) cores.
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step iterations. The main computation is a two-dimensional stencil with nearest-

neighbor communication. The grid is divided into tiles, where the total number of

tiles must match the number of cores that are part of the computation. The grid’s tile

dimensions were chosen to maximize the size of grid points calculated per core and to

reduce the size of the halo/ghost regions. Larger halo regions require more commu-

nication and computation. The tile dimensions used were empirically validated to be

optimal for the grid size and the number of cores.

The evaluation of the ROMS benchmark program is shown in Figure 7.14. A diverse

set of configurations of CPU, mesh, and memory were tested with both 24 and 48 cores.

In most cases, the runtime for 48 cores, Figure 7.14(b), is lower than the 24 cores (Fig-

ure 7.14(a)) with the same setting. The fastest configuration with 24 nodes performed

nearly identically to the second slowest configuration of 48 nodes, and outperformed

the slowest. In scenarios where soft runtime deadlines are acceptable, numerous op-

tions and trade-off points are available for ROMS. A global application scheduler can

consider these alternatives during the arbitration of the next SCC setting.

The average power consumption during the execution of ROMS is shown in Fig-

ure 7.14(c) and Figure 7.14(d) for 24 and 48 nodes, respectively. Throughout the

experiments, lower mesh speeds reduced power by several watts. The most pronounced

effect on power were high tile frequencies. Battery operated CPSs, like the Slocum

Glider, may need to observe power caps during operation, since actuators and other

systems can increase the power load on the device. Therefore, it may not always be an

option to run the fastest configuration with the highest node count.

Similar to the runtime, it is generally more energy efficient to use 48 cores instead of

24 cores to run the benchmark. The highest setting for the 24 nodes in Figure 7.14(e)

is, however, similar to the lowest configuration of the 48 cores seen in Figure 7.14(f).

When comparing their respective runtimes, the 48 node setting does outperform the 24.
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Figure 7.15: Evaluation results for the path planning program for various SCC set-
tings. The runtime of (a) is the time required for the entire program to execute. The
search time, (b) is the time required to perform the search for the optimal dive profile.
Speedups for each of P-TVE is relative to the S-TVE with the same SCC setting. The
energy required for the entire program execution (d) is based on (a).

Across the figures, the crossover points are very similar and are prospective trade-offs

opportunities. Because of the dynamic nature of AUVs, mission priorities can change

often, emphasizing the importance of a suitable arrangement for runtime, power and

energy.

Path Planning

The serial (S-TVE) and parallel (P-TVE) versions of the TVE path planning algorithm

have been ported to the SCC. The input parameters to both programs were identical

throughout the benchmark tests. Since parameter choice can have an impact on the
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amount of parallelism the program is capable of during execution, a set of parameters

consistent with previous work [Eichhorn et al., 2012] were chosen.

The opportunity for parallelism that was exploited and implemented in P-TVE was

to find the optimal dive profile depths for the vehicle. Because the AUV can experience

different currents at various depths, it may be advantageous for the vehicle to glide

within a certain depth range for portions of the flight. For each edge in the graph, this

dive profile calculation is evaluated for 20 distinct depths ranges.

Results of the path planning programs for the SCC configurations are shown in

Figure 7.15. S-TVE results are only available for one core since there is no parallelism

involved. P-TVE has a master/slave architecture where the master delegates work to

slaves that perform the dive profile task, so at least two cores are required. The MPI-

NOOP results measure the overhead of the MPI infrastructure. It is a modified version

of P-TVE which initializes MPI and immediately exits.

The program runtime, Figure 7.15(a), and dive profile search time, Figure 7.15(b),

decreased as the number of cores increased for P-TVE. There is an initial communi-

cation overhead for two cores, when compared to S-TVE, as the master must delegate

work to the slave. The step-wise behavior is explained by the number of iterations

of work delegation that is performed by the master. For example, with 11 cores, 10

slaves perform work for two work iterations. In the case of 12 cores (11 slaves), the

second work delegation will leave one slave idle. Because of the input parameter of

20 distinct depth range calculations, the optimal number of nodes should be 21. This

accounts for one master with 20 slaves doing one iteration of work. Additional nodes

only provide overhead in P-TVE as indicated by the speedup of the dive profile search

in Figure 7.15(c). The speedup for each setting is normalized to the S-TVE search

time of the same setting. If the number of profile searches is increased, additional cores

could be used with a concomitant increase in benefit. Additional details are available
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in [Eichhorn et al., 2012].

To reduce the power and energy of the program, idle slaves are instructed by the

master to enter into sleep mode. In sleep mode, a slave performs an asynchronous

receive call instead of a blocking receive call. This allows the slave to sleep in between

update checks of the asynchronous call. Although this introduces latency for the first

receive, it greatly reduces the overall energy used by the slave. This latency is evident

in Figure 7.15(c), especially when there are a high number of idle slaves. For example,

after 21 nodes, even the idle slaves that will never perform any work experience the

latency because they wait for the termination message to be sent by the master.

The evaluation indicates that the path planning program is more reliant on compu-

tation than communication as the slowest core speed setting has the longest program

and profile search runtimes. Lowering the mesh speed does decrease the speedup of

the parallelization because it delays communication between the master and its slaves.

However, the effect it has on runtime is not as significant as observed when changing

the CPU frequency.

The energy required for the planning programs are depicted in Figure 7.15(d); it

shows opportunities for trade-offs that could be used when choosing an SCC configura-

tion that will run several programs simultaneously on the chip. Although the runtime

of the P-TVE is generally longer for the low mesh speed configuration, the power saved

by reducing the mesh frequency translates to a comparable energy profile of the highest

speed SCC setting. After 21 cores, even the slowest tile setting could be considered, as

the energy difference is not substantial. Similar to the runtime results, energy is wasted

on idle slave cores. This issue should be addressed as part of future work.
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7.6.4 Discussion

The applications described, along with others, could be required to run simultaneously

on the SCC. Depending on the current needs of the system the priority of tasks may

change periodically, or change based on observations of phenomena in the environment.

Power caps can also restrict the selection of high power SCC settings. A Slocum

Glider typically uses alkaline battery packs, so the supply voltage drops as energy is

consumed. A glider’s fresh alkaline battery pack is rated as 1800 W h, while the SCC’s

power demands can range from 40 W to 80 W for the applications. As a comparison,

the buoyancy engine of the glider operates at 60 W or more during inflections at 200 m

depths. The vehicle must maintain a minimum voltage level at all times to operate

safely. The use of actuators, like the buoyancy engine, and sensors, such as a DVL,

will increase the power needed by the AUV. It may not be possible to run the SCC

concurrently with some sensors, while other sensors can be active at the same time as

the SCC provided that the chip does not exceed its allotted power.

Having knowledge of the trade-off points for an application is critical when choosing

a configuration setting. For example, at some point in a deployment, a vehicle’s path

may need to be resolved rather quickly. Ideally, the highest tile, mesh and memory

speed (Tile800 Mesh1600 DDR1066) should be chosen and P-TVE is run on 21 nodes.

However, there could be a loose deadline to perform modeling and thus ROMS must

also be considered. If the highest setting exceeds the allotted power, a small sacrifice

could be made by lowering the mesh frequency. The impact on the runtime and energy

of path planning is minimal. While the impact is greater for ROMS, it may still fall

within the soft deadline restrictions.

The ROMS trade-off scenario described could also be made in the case of a power

cap. If there is no need for path planning, and the requirements are such that ROMS

should have nearly the same runtime and energy profiles as the best setting for 24
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nodes, then the program could be run on all 48 cores at half the tile frequency. This

allows the program to not only be more runtime and energy efficient but also greatly

reduces the required power. The lowering of the frequency, in this case, is what may

be needed to bring the power profile below the cap.

Although the focus thus far has been on power cap scenarios, other trade-off points

which concentrate on energy and runtime can be made. This is especially true if

more applications, like sensor triggering, are involved in the deliberation. Other cyber-

physical systems will have their own hardware and software restrictions and priorities.

The SCC can provide CPSs a trade-off space in which it can make decisions that involve

runtime, power, and energy.

7.7 Adaptive Feature Based Energy Management of Sensors

Increasingly complex sets of sensor payloads that are integrated into today’s AUVs

place significant demands on a vehicle’s energy resources. Effective management of the

limited battery energy has become a critical challenge since not all sensors can be active

at all times during a mission. As a result, sensors are typically managed manually by

remotely switching them on or off, and fixing a data sampling policy a priori for each

dive segment while the AUV is at the ocean’s surface and able to communicate via a

satellite link with researchers. The availability of energy efficient computing platforms

with significant computing capabilities, like AVBot, enable in-situ data processing and

decision making, and allow sensors to be activated in flight when the likelihood of

collecting scientifically relevant data is above particular thresholds.

In many ocean science applications, energy expensive sensors may be triggered based

on observed or predicted features in the surrounding environment. Such features may

include a particular depth or lighting condition, the presence or absence of a chemical,

or the presence or absence of life forms. Onboard computing systems allow an AUV
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to change its flight pattern and sensor readings depending on such features, making

feature based or adaptive ocean sampling a reality [Schofield et al., 2007].

An example of adaptive sampling that has gained attention in literature is thermo-

cline tracking [Wang et al., 2009; Woithe and Kremer, 2009; Petillo et al., 2010; Zhang

et al., 2012; Cruz and Matos, 2010a]. A thermocline is a layer in the water column

where temperatures change drastically with depth, separating the warmer mixed layer

from the deep water layer. Figure 4.4(a) of Section 4.4 shows the temperatures of a

water column measured using a Sea-Bird CTD profiling sensor lowered from a research

vessel off the coast of New Jersey. The thermocline becomes apparent by the sudden

change in temperature of the water column starting at a depth of seven meters and

ending near twenty meters.

The study of thermoclines has both military and scientific interests. They can

influence the propagation of sound, i.e. sonar, which is important in submarine warfare

[Haeger, 1995]. Additionally, phytoplankton, which are responsible for much of the

oxygen in the atmosphere and are an important link in the ocean’s food chains, can

reside near or within a thermocline [Gessner, 1948].

Current thermocline tracking algorithms influence the AUV’s vertical flight profile

in the water column to remain within the boundaries of the thermocline. This enables

larger and more fine-grained spatiotemporal data sets to be collected by the vehicle in

the target area. However, this approach may be accompanied by a significant increase

in energy consumption, especially for buoyancy driven AUVs like the Slocum Glider.

They provide an interesting challenge because the buoyancy engine is such an expensive

resource and is used sparingly. Propeller driven AUVs constantly run their engines,

so the energy impact of performing tracking is not as great. Gliders would also not

make significant forward progress if the thermocline is very thin and would require a

minimum vertical span to be traversed between inflections to make proper flight feasible.
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Additionally, the CTD sensors on most Slocum Gliders are not pumped but instead use

the vehicle’s momentum to achieve water flow through the sensor. If proper flight

and flow are not achieved, inaccurate readings will be recorded [Alvarez and Stoner,

November, 2012]. As a result, a glider would not be able to engage in prolonged tracking

missions using this mechanism as it is simply too costly and/or too inaccurate.

In this Section describes how feature detection algorithms, like thermocline tracking,

can be used to energy manage and trigger other correlated sensors to conserve energy.

The following main contributions are presented:

1. Emphasize the importance of sensor energy management with a brief description

of a real-world deployment in 2009 that had to sacrifice sensor readings.

2. An overview of previous work in thermocline detection and tracking algorithms

and their use in AUVs.

3. An evaluation of how thermocline detection algorithms together with more low

cost sensors may be used to manage power-hungry sensors through hardware and

software trigger chains. Data from the previous Slocum Glider deployment and

sensor energy models built from oscilloscope measurements are used to assess

sensor management strategies.

4. The implementation and sea trials of a trigger chain based on a thermocline

tracking algorithm with two biological sensors within the Slocum Glider off the

coast of New Jersey.

Thermocline tracking was chosen as a generic example to showcase this energy saving

strategy because it is applicable to many AUVs since most can be equipped with a CT or

CTD sensor [Petillo et al., 2010]. Zhang et al. [2009] also performed sensor triggering

by activating gulpers to capture water samples in a thin phytoplankton layer using

an algorithm to determine fluorescence peaks. This triggering was motivated by the
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Figure 7.16: (a) A glider deployment off the coast of New Jersey in 2009 and (b) its
measured battery voltage. The increase in voltage on day nine corresponds to the
shutdown of the ECO-Puck sensors.

sole incentive of gaining the most beneficial data samples out of the limited number of

gulpers onboard. Although it is also proposed that algorithms like thermocline tracking

should trigger sensors at opportune times, the motivation is instead energy efficiency.

7.7.1 Glider Deployment – Manual Sensor Management

Gliders often operate in unpredictable environments due to shifting underwater currents

and weather conditions. Adverse conditions, resulting in unplanned changes to the

vehicle’s route, may effect the overall energy consumption of a mission. Getting a

glider back home safely, i.e., back to shore or to a recovery vessel, is mission critical.

Therefore, energy budgets contain mission-specific energy reserves and as a result, only

a limited percentage of the overall energy budget is available for the sensor payload.

Managing energy is therefore critical for the overall scientific effectiveness of a mission.

Figure 7.16(a) shows a glider deployment off the coast of New Jersey in 2009. A

Slocum Glider was equipped with WET Labs’ Environmental Characterization Op-

tics (ECO) puck sensors, the BBFL2S and BB3SLO, which measure fluorescence and

backscatter. The glider was tasked to fly to the continental shelf and back to shore.
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(a) Flight profile tracking. (b) Sensor triggered tracking.

Figure 7.17: Thermocline tracking in which the AUV (a) changes its flight profile to fly
and sample within the thermocline or (b) where the AUV activates and samples from
its sensors only within the thermocline. Sensor activity is indicated by the darkened
profile lines.

During the deployment, a storm caused the vehicle to drift south while it continued to

progress towards the shelf. Eventually, with the glider not making enough progress to-

wards the commanded waypoint, it was retasked to fly back to shore. On the ninth day

of the deployment it was determined that the glider’s overall battery voltage, shown in

Figure 7.16(b) and an indicator of the battery’s life, was becoming low considering the

remaining journey home. Thus, non-critical sensors, including the ECO-Pucks, were

turned off manually to conserve energy for the flight (as observed by the increase in

voltage in Figure 7.16(b)). Potentially significant data collection had to be stopped in

order to allow the safe return of the vehicle. In Section 7.7.4, this deployment will be

used to investigate the benefits of feature based, adaptive sampling for sensor energy

savings, and what potential impact it could have had for the scientific value of the

overall mission.

7.7.2 Thermocline Detection and Tracking

Thermocline tracking algorithms are a prime example of the adaptive sampling possible

with AUVs. Recent work in [Wang et al., 2009; Woithe and Kremer, 2009; Petillo et al.,



141

2010; Zhang et al., 2012; Cruz and Matos, 2010a] perform this tracking by influencing

the vehicle’s flight profile as illustrated in Figure 7.17(a). This yields an increase in

the scientific data gathered by the AUV in this region. These are unlike the proposed

approach, shown in Figure 7.17(b), where sensors are energy managed and used only

at opportune times in the profile. These same algorithms, with alteration, may also be

used to trigger sensors.

A common feature of these algorithms is that they place newly collected depth

and temperature data into depth bins. The size of these depth bins may be static

or dynamic depending on the algorithm. Readings in each depth bin are averaged to

produce a filtered result for the bin. The bin data are then used in the following ways

to perform thermocline tracking:

• Alg1 : In Section 4.3.1, the depth bins are traversed to find consecutive bins

that meet both depth and temperature thresholds that are specified a priori, for

example, a change of 5◦C over three meters. These thresholds can be changed

when the vehicle establishes communication, where new values may be calculated

automatically or set by a flight engineer. Although simple, this algorithm has

been deployed to track a thermocline on a Slocum Glider with success. This

approach is similar to [Wang et al., 2009] where thresholds for the change in the

speed of sound with regard to depth is instead specified a priori, for example by

a forecasting model.

• Alg2 : In [Petillo et al., 2010], a tracking algorithm for use within the MOOS-IvP

autonomy system was developed [Benjamin et al., 2010]. Once the depth bins are

averaged, the vertical derivatives (the change of temperature over the change of

depth) are calculated for each bin. The average of the vertical derivatives is then

used to determine the upper and lower bounds of the thermocline. Any depth bin

whose vertical derivative is greater than the average derivative is considered to
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be part of the thermocline. The algorithm requires an initial profile and periodic

resets of the depth bin data to ensure variations of the thermocline are detected.

Field experiments using an IVER AUV have successfully tracked a thermocline

over a 1.5 h period using this algorithm.

• Alg3 : Zhang et al. [2010, 2012], performed tracking by using peak-gradient de-

tection. For each ascent and descent leg, the maximum derivative of temperature

over the depth bins is used to establish the next target depth for the vehicle to

fly. An extension depth is added or subtracted to the target depth so that the

algorithm does not get contained in a local maxima and in case the depth of

the thermocline changes. This technique was developed on data collected from a

Dorado AUV and has since been deployed on the Tethys AUV.

• Alg4 : In [Cruz and Matos, 2010b,a], a state machine was used to detect and track

a thermocline when vertical temperature gradients exceed a set of thresholds. The

thresholds may be specified, but are not required since the algorithm will update

the thresholds based on hints from the previous dive profile. As the vehicle

traverses the water column, the algorithm uses these thresholds to determine the

top and bottom edges of the thermocline. The algorithm also records the state

transitions that occur to provide feedback of its performance, i.e. how often it

detects the top, bottom, or the entire thermocline. This technique has been

demonstrated on the MARES AUV to track thermoclines with gradients as low

as 0.3◦C/m.

Each of the thermocline detection and tracking algorithms have their own charac-

teristics, and it is the responsibility of the oceanographer or marine scientist to select

the algorithm that matches best the particular scientific application desired. Each al-

gorithm has its advantages and disadvantages. For example, Alg1 is very simplistic and
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Figure 7.18: Sample trigger chains for thermocline tracking. Any path from the root
( CTD ) to a leave node demonstrates a possible trigger chain.

only tracks features specified by its temperature and depth parameters. This differs

from other algorithms where the parameters may be detected automatically. However,

some mission objectives may not require or want this automatic detection and want only

those very specific features defined by the parameters for Alg1 to be recorded. Regard-

less, the focus of this work is not on the performance, but rather the potential energy

savings of the algorithms if they are used to energy manage more advanced sensors.

The following sections will describe implementations based on the described thermo-

cline tracking algorithms and show how they may be advantageous when implemented

on an AUV such as the Slocum Glider to conserve energy.

7.7.3 Trigger Chains

Instead of the vehicle changing its flight profile, the glider should rather makes use

of the aforementioned algorithms to activate and deactivate sensors. The standard

CTD sensor equipped on the vehicle could be used to trigger more advanced correlated

sensors. In the case of the thermocline, for example, fluorescence and backscatter

sensors may be triggered to determine if phytoplankton are present in the tracked area.

Figure 7.18 shows an example trigger chains for the sample application. Each path

from the root node ( CTD ) to a leave node represents a possible trigger chain. A trigger
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chain contains hardware (sensors) and software components (services). For instance,

one possible trigger chain is ( CTD → Alg1 → ECO-Puck ) where the thermocline detection

algorithm Alg1 uses the CTD readings to trigger the ECO-Pucks. One maximal trigger

chain as shown in the figure is ( CTD → Alg1 → ECO-Puck → FIRe Trigger → FIRe ). Here, the

ECO-Puck is used as an input to a FIRe trigger program which controls the operation

of the FIRe sensor that assess the health of phytoplankton populations.

As discussed, the thermocline detection algorithms have different classification char-

acteristics. Depending on the application, a scientist may want to log as much of the

thermocline as possible with the ECO-Pucks. At the same time, it may be sufficient to

only get a subset of the readings with a FIRe sensor while the pucks are active. Thus,

the FIRe sensor trigger is dependent on the ECO-Puck trigger. This requirement may

determine the selection of the feature recognition since some of the algorithms may

classify more of the water column as part of the thermocline than others. Not only will

this affect the activity of the ECO-Pucks but possibly other child triggers.

The software and sensor trigger chains shown are by no means complete and may

involve other sensors as well. For instance, the FIRE sensor may be triggered only if the

ECO-Pucks recognize a sufficient concentration of chlorophyll to indicate the presence

of phytoplankton. On the other hand, a light sensor may also enable or calibrate the

FIRe sensor. It is important to note that different feature recognition algorithms or

triggers may execute concurrently to support complex sensing tasks. This is similar to

ensemble modeling used in domains such as weather prediction or biomedical research.

The notion of trigger chains is different from energy optimization approaches such

as hierarchical power management. Hierarchical power management uses redundancies

in system components to select the most energy efficient components to produce the

overall result [Sorber et al., 2005]. In the trigger chains, each stage in the chain decides

whether to activate the next stage or not, with the last stage activating the target
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sensor which is represented by the leave node in the chain. Only this target sensor

acquires the desired sensor data, not any of the intermediate triggering nodes.

7.7.4 Evaluation

Thus far, feature detection and tracking algorithms, and how their current implementa-

tions may not be well suited for vehicles like the Slocum Glider have been described. To

evaluate how effective the proposed sensor management technique may be, the energy

used in a previous glider deployment both with and without the proposed sensor trig-

gering mechanism is estimated and compared through simulations. In this section will

also showcase the potential benefits gained with this approach. Finally, a flight segment

from one of two real deployments where sensor triggering was used is described.

Simulations

All simulations are based on the deployment in Figure 7.16. The log files generated

by the vehicle were used to replay and simulate the triggering of sensors throughout

the mission. The energy model for the sensors are based on a BB2FLSV5 WET Labs

ECO-Puck sensor, comparable to those used in the real deployment. The BB2FLSV4

and BB2FLSV5 backscatter and fluorescence sensors installed in a Slocum Gliders are

shown in Figure 7.19 and use approximately 0.61 W each as measured by a Tektronics

TDS 3014 oscilloscope.

As discussed, extensive use of sensors can negatively impact vehicle endurance. In

order to compare optimizations, a baseline energy estimation must first be established.

Based on the logged data files, the estimated baseline energy usage of the ECO-Puck

sensors is 890 kJ for the nine days of activity in the mission. To gain additional

perspective, using energy models derived from the power measurement infrastructure,

the buoyancy engine required an estimated 488 kJ throughout the entire mission. Thus,
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Figure 7.19: BB2FLSV4 and BB2FLSV5 sensors installed in a Slocum Glider.

the puck sensor package for only a portion of the sea trial consumed nearly twice the

energy required to drive the vehicle for the entire deployment.

Recall that the algorithms described in Section 7.7.2 are traditionally used track

thermoclines by altering the AUV’s flight profile. Instead, they have been implemented

and adapted to trigger sensors only in areas of interest with the aim of conserving en-

ergy without a significant sacrifice of data quality. The algorithms observe temperature

readings with the glider’s CTD sensor and based on its evaluation, trigger the fluorom-

eter and backscatter sensors. Thus, the leftmost trigger chain of Figure 7.18, namely

( CTD → Alg1 → ECO-Puck ) is showcased. A rightmost trigger chain such as ( CTD → Alg1

→ FIRe ) could use these same algorithms but for a more power-hungry sensor, namely

the FIRe sensor (which consumes about 5W) instead of the 0.61 W consumed by the

ECO-Pucks. The resulting energy savings for the latter trigger chains would be much

more dramatic.

In the implementations, all algorithms use a one meter depth bin size. They collect

and calculate the average temperature for the depth bins and use it in the later stages

of the algorithm. Additionally, Alg1 discards any data older than ten minutes and

Alg2 discards data hourly as suggested by the authors. Except for Alg1, the ECO-Puck

sensors are required to be turned on for the first dive after each surfacing to ensure no
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valuable data is lost. Alg1 is an exception because it does not require an initial dive to

bootstrap the algorithm.

In Alg1, the averaged temperatures of the bins are used to determine if a threshold

parameter of 3◦C or more has occurred within four meters. Any portions of the water

column that have met the criteria are flagged as thermoclines. These parameters are

not changed throughout the simulations, although an engineer or a mission planning

system could in a real deployment. Because data is discarded at approximately one

hour intervals for Alg2, the algorithm will force the sensors on for the immediate next

dive profile. This is to ensure no relevant data is lost. The periodic resets allow the

algorithm to adjust more quickly to variations of the observed thermocline over time.

Both Alg3 and Alg4 in their current implementation do not discard any temperature

and depth bin data within a flight segment. The data is however discarded when the

vehicle is at the surface. An extension depth of three meters was chosen for Alg3,

which is larger than the value of two meters suggested by the respective authors. This

captures a wider area around the peak gradient since thermoclines near the coast of

New Jersey can be quite large during the summer months, as show in Figure 4.4(a).

The initial values of the thermocline, top, and bottom thresholds of Alg4 are set

to values thought appropriate for the mission being simulated. The thresholds quickly

converge automatically, as per algorithm specification, after the first dive in the seg-

ment. The three thresholds are adjusted at each inflection point by the parameters

in [Cruz and Matos, 2010a]. Upon surfacing, these thresholds are again reset to their

initial values.

An additional algorithm is also introduced, which will be referred to as Alg5, that

makes uses of both Alg2 and Alg3. As will be clarified further, Alg2 has a tendency to

be more liberal with its usage of the pucks, while Alg3 is more conservative. However,

depending on how the water column is observed by Alg3, the true maximum gradient
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Algorithm Energy (kJ) Recall Precision

Baseline 890 0.99 0.14

Alg1 163 (18%) 0.55 0.38

Alg2 587 (66%) 0.89 0.19

Alg3 167 (19%) 0.62 0.42

Alg4 247 (28%) 0.69 0.33

Alg5 327 (37%) 0.77 0.30

Table 7.2: Algorithm Results (First 9 Days)

Algorithm Energy (kJ) Recall Precision

Baseline 890 0.60 0.09

Alg1 285 (32%) 0.52 0.37

Alg2 879 (99%) 0.87 0.24

Alg3 281 (32%) 0.68 0.48

Alg4 435 (49%) 0.71 0.36

Alg5 489 (55%) 0.79 0.38

Table 7.3: Algorithm Results (Whole Mission)

of the column may not be detected until very late into the flight segment. Instead, the

algorithm may trigger the sensors in what is considered the local maxima. After several

dive and climb legs, the temperatures inside bins should stabilize and the algorithm

should only trigger the sensors near the true maximum gradient.

Alg5 considers the two dependent algorithms as software sensors. By default it

triggers the ECO-Puck sensors when Alg2 suggests, but continues to monitor the output

of Alg3. When Alg3 ’s peak gradient is stable for three consecutive dive/climb profiles,

triggering is switched to fire the pucks based on its suggestions instead of Alg2. If the

peak gradient becomes unstable, triggering is immediately switched back again to Alg2.

This is shown in Figure 7.18 and demonstrates that trigger chains can apply to software

as well as hardware.

The results of the simulations and the baseline energy usage of the sensors for the

mission are summarized in Table 7.2 and Table 7.3. Table 7.2 provides a snapshot up
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to the point in the actual deployment where the sensors were turned off and no longer

used for the remainder of the actual mission. Table 7.3 extends the usage of the sensors

for the remainder of the sea trial.

Recall and precision are two metrics commonly used to assess the effectiveness of

information collection and retrieval systems [Manning and Schütze, 1999]. Informally,

the recall metric describes how much relevant sensing information is missed (false neg-

ative) when using a trigger chain as compared to the scenario where sensors are always

on. The precision metric captures the case where irrelevant sensing information has

been collected (false positives). For each of the presented algorithms, there is a balance

between collecting mission relevant data (recall) and mission irrelevant data (precision).

These metrics are applied here to classify the thermocline detection and tracking algo-

rithms. For example, an algorithm that never triggers a sensor has a 0% recall, but a

precision of 100%. In contrast, an algorithm that always triggers a sensor has a 100%

recall, but a very low precision (due to acquiring large amounts of irrelevant data).

Precision and recall of the five algorithms are presented in Table 7.2 and Table 7.3.

To define the two terms, a standard that is considered relevant data within the sim-

ulations must first be defined. Data is defined as relevant if it is recorded by the

ECO-Pucks within three meters of the maximum gradient of the water column. The

data used to calculate this gradient is based on averaged temperatures for the depth

bins for the whole flight segment. This definition is very similar to how Alg3 detects

its thermocline and thus it is expect to be favored. What should be considered the

standard may be application dependent, but this definition was chosen since Alg4 also

makes use of the maximum gradient internally. An algorithm’s recall is thus defined

as the proportion of the number of logged readings within the relevant area to the

number of possible readings within the area, if performed, for example, by an oracle.

The recall of the baseline for the first portion of the mission is high because the glider
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was instructed to have the sensors on for nearly the entire time. However, the recall

drops dramatically when the whole mission is considered because no measurements were

recorded for the second portion of the deployment.

The precision of an algorithm is defined as the proportion of relevant readings

recorded to the total number of readings recorded. The baseline’s precision is very

low throughout the deployment because the sensors were active for large portions of

the water column outside the area of interest. It is nearly impossible to achieve perfect

precision since most algorithms require the sensors to be powered for the first dive of a

flight segment.

Of all the implementations, Alg2 achieved the least amount of energy savings (34%),

because the algorithm tends to over estimate what is considered to be part of the

thermocline. This is because the average of the temperature and depth derivatives of

the bins is used to qualify if a given depth bin is part of the thermocline. Then, the

depth range that the algorithm considers to be part of the thermocline is between the

most shallow and deepest depth bin. Depending on the temperature profile observed by

the vehicle, this average can become skewed to include large parts of the water column

that are not of interest. For this reason, this algorithm was previously referred to as

being liberal with its usage of the sensors. This causes Alg2 to have the best recall of

all the algorithms, but like the baseline, the precision is relatively poor.

Algorithm Alg3 achieved the second most energy savings (81%) and provides a

nice balance of recall and precision, and is therefore preferred over Alg1 (82%). Since

the recall and precision are based off of a standard which closely resembles how this

algorithm performs its thermocline tracking and triggering, both the recall and precision

are high. In fact, it has the highest precision of all the algorithms in both tables. As

previously mentioned, Alg3 will likely never have perfect precision because it is forced

to keep the sensors on for the first dive of each segment. Likewise, it is practically
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unfeasible for its recall to be perfect, because it is tracking and triggering sensors

as the water column is being observed and does not have a complete picture of the

environment.

The hybrid algorithm, Alg5, has performance results that lie in between its depen-

dent algorithms. Although it uses more energy than Alg3, its recall is much better. In

other words, it captures relevant data that Alg3 misses because it is presumably focused

a local maxima at some points throughout the flight. Alg5 is however, not as precise,

but still much better than Alg2. While Alg2 may be over estimating the thermocline

region, Alg5 will eventually switch the firing of sensors as soon as Alg3 ’s peak gradient

is stable.

The performance of all the algorithms nevertheless rely on parameters and the

evaluation standard they are judged against. For example, Alg1 captures the water

column based only on the depth and temperature thresholds specified. Alg2 requires

periodic resets of the depth bins. Like Alg1, this parameter may require fine tuning

during deployments. The extension depth parameter of Alg3 could cause the area

around the thermocline to be over or under sampled depending on what is considered

relevant scientific data. Alg4 also contains the concept of an extension depth, and

also requires parameters that specify how the thresholds for the thermocline should be

adjusted. Thus, the energy savings presented in Table 7.2 and Table 7.3 could change

depending on the parameters specified. However, reasonable defaults were chosen for

the implementations given the glider flight data.

The energy saved using the triggering strategy can have a significant impact on both

the endurance of the vehicle as well as the scientific data samples that can be collected.

The glider, unlike propeller driven vehicles, are meant for long term deployments to

collect data over long periods of time. Using sensor triggering as described, all imple-

mented algorithms would be capable of extending the sensing of ECO-Puck data to
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the whole mission. In the case of Alg3, the glider could have also been equipped with

the expensive FIRe sensor and triggered it for half the time the algorithm detected

the thermocline. Alternatively, the energy saved could have been allocated towards the

flight of the vehicle to extend the deployment by approximately 3.5 days or 24%.

Deployment

Section 7.7.4 described how sensor triggering can be used to save significant amounts

of energy through simulations of a previously flown mission. This technique has also

been developed and deployed in two separate sea trials using the Slocum Glider. The

deployments took place out of Belmar, New Jersey, approximately 26 km off the coast

and in 60 m of water.

The algorithm implemented for the mission was based on Alg3. However, instead

of collecting and averaging the temperatures within the depth bins, only the latest

temperature per bin was used. The algorithm also calculated the peak gradient after

each new CTD sensor reading instead of calculating it only at inflection points as

described in [Zhang et al., 2012]. Thus, at times, the peak gradient could shift while

flying through the thermocline as new CTD data was collected.

The algorithm was run on the AVBot single board computer as a service. The

SBC communicated with the vehicle via a RS-485 serial connection to the glider’s flight

controller. Previous, the SBC was connected to the vehicle’s science computer, however,

to decrease the delays in sending control commands, it now communicates directly with

the flight controller. This trade-off causes delays for the SBC to receive CTD readings

because the science computer must first send the data to the flight controller before it

can be sent to the SBC. Ideally, separate data lines should be connected o both vehicle

computers. A simplified version of the algorithm could have also been implemented

using the GLOC scripting language on a stock glider’s flight controller.
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Figure 7.20: A thermocline tracking deployment on September 27th, 2012 off the coast
of New Jersey. The solid line depicts the glider’s flight profile. The darkened sections
of the profile present the portions of the profile where the tracking algorithm triggered
the use of sensors.

The flight profile of one segment of the two sea trials is shown in Figure 7.20. The

darkened sections of the profile indicate when the algorithm activates the ECO-Puck

sensors. The drastic change in temperature through the water column is indicative of

a thermocline. Like the simulations, the sensors were forced on for the first dive profile

of the segment. Due to implementation concerns, the sensors were also on while at the

surface. For the segment shown, an extension depth of five meters was used around

the peak gradient, although several segments were also flown with three and four meter

extension depths. The profile data shown was obtained from the flight controller. It

is apparent that there is a delay between when the SBC receives the temperature and

depth data to when the trigger occurs because the center of the darkened lines are

not aligned. As previously mentioned, the CTD data must first be sent to the flight

controller which in turn sends it to the SBC. When the algorithm wants to trigger the

command to fire a sensor, the command must first be sent to the flight controller which

forwards the request to the science CPU that activates the ECO-Pucks. However, from

the SBC point of view, the sensors were triggered at the correct time and the darkened

lines align with the peak gradient. For this reason, several segments were performed
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Algorithm Energy (kJ) Recall Precision

Baseline 3.8 1.00 0.09

Alg3 Inspired 1.4 (37%) 0.88 0.23

Table 7.4: Deployed thermocline triggering results

with different extension depths because of the possible data propagation delays.

The results of the Alg3 inspired algorithm are shown in Table 7.4. The baseline

of the table indicates the energy, recall, and precision that would occur if the vehicle

flew normally without the sensor management technique. The recall of the deployed

algorithm is fairly high, even though the data propagation delays and CTD sampling

caused the maximum gradient to shift slightly throughout the flight. The precision

is low compared to the simulation results of Alg3. Again, this is due to having the

sensor on at the surface and during the first dive of the segment. The segment was

also short, approximately one hour, while typical segments in missions are three to four

hours long. This has a negative affect on the precision because the time at surface

and initial dive is proportionately large relative to the rest of the flight. Compared to

the baseline, triggering of sensors saved a significant amount of energy. The estimated

cost of using the buoyancy engine for the whole flight segment is 1.3 kJ. Therefore,

the baseline energy of the sensors is nearly three times that of the buoyancy engine.

The implemented algorithm on the other hand, is only 7% more than the energy of the

engine. The dramatic conservation of energy observed in both the sea trials and the

simulations leads us to believe that the proposed sensor management technique would

indeed have a substantial impact, especially on long endurance missions.

7.7.5 Discussion

Dynamic feature tracking, like thermocline tracking, demonstrate a promising step

forward in making AUVs more effective scientific and military instruments. A new
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sensor management technique was described that makes use of published thermocline

tracking algorithms to simulate the triggering of sensors while a vehicle is within the

thermocline instead of modifying its flight profile. This sensor management technique

has also been successfully used in two real world sea trials and was shown to be capable

of saving a significant amount of energy.

The thermocline tracking algorithms and triggers were implemented as services in

the new programming framework and executed on AVBot. Simplified versions of these

algorithms could have also been implemented for the GLOC scripting engine and ex-

ecuted on the flight or science computing platforms on a stock vehicle. Hierarchical

power managements techniques like in [Sorber et al., 2005; Banerjee et al., 2007] could

be used in conjunction with AVBot. For example, a specialized GLOC script could ex-

ecute every control cycle to update its view of the water column so it is consistent with

the real world. When the thermocline tracking services is later executed to detect the

thermocline, it can use the “cached” view of the water column. This is architecturally

similar to the StrongARM computer periodically updated its web cache while acting as

a proxy server for a laptop in Turducken [Sorber et al., 2005].

In Section 4.6, the thermocline sensor specification as part of a state made used the

exact same thermocline tracking services created in this Section. This showcases that

the programming infrastructure is mature and capable of bringing advanced services,

such as the thermocline triggering, from software simulation to sea. The presented

trigger is also simple to specify in the language and enables the programmer to easily

explore energy and sensing trade-offs.



156

Chapter 8

Conclusion and Future Work

Autonomous underwater vehicles have become a crucial component in studying the

world’s oceans. The Slocum Electric Glider is a popular AUV used by the scientific

community, private sector, and the military to perform long endurance missions. How-

ever, like other AUVs, it is based on the layered control subsumption architecture and

can be difficult to program. Users of the vehicle typically do not create new missions

themselves but simply use the existing set of missions developed and tested by the

manufacturer with different arguments.

In this dissertation, I presented a new energy aware programming framework for

autonomous underwater vehicles. The framework currently uses the Slocum Electric

Glider as its implementation platform, however much of the work is applicable to other

types of autonomous systems including autonomous land and air vehicles. The domain

specific language and compiler of the framework enables users to easily create new and

dynamic missions for the AUV. Embedded in the language are domain specific features

that empower the mission writer to pick a satisfiable trade-off point in the trade-off

space. For example, the quality of the sensor readings may be sacrificed in order to

gain an increase in mission endurance. Furthermore, the system has been designed

and tested to meet practical constraints of a mission critical system that operates in

extreme environments.

During the development of the framework, a power measurement board was de-

signed and deployed to create energy models for the glider. The measurement board
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was equipped on several gliders and captured the power requirements of individual

components of the vehicle. The longest sea trial was approximately one month long

and was critical in the development of the energy model for the buoyancy engine that

provides the propulsion for the AUV.

To enable mission programmers to effectively explore and ultimately choose accept-

able trade-offs, the energy models have been incorporated into two glider simulators.

The simulation infrastructures are capable of running faster-than-real-time and use en-

vironmental information to produce realistic virtual deployments. Authors are quickly

provided with feedback on their trade-off decisions after running their missions using

the framework.

A number of applications and challenges were explored during the development of

the programming framework. These include acoustic communication, swarming and

coordination, path planning, high performance computing and adaptive feature-based

energy management of sensors. These challenges were researched to gain familiarity

with the field and have helped the framework to mature and become a practical sys-

tem. The feature-based energy management technique, for example, is available in the

domain specific language and has been effectively used in sea trials to save energy while

still capturing relevant data.

There are many areas of future research. A comprehensive user study outside of the

pilots and scientists at Rutgers University could help enhance the framework and help

it to be adopted by a broader audience. Such a study may also bring about suggestions

for new domain specific features and algorithms that could be added to the framework.

Again, the focal point is to allow non-experts to efficiently program AUVs in a way

that makes sense to them by incorporating domain specific features. Scientists are

the individuals who will consume the collected data so they will know best on what

trade-offs they will need to make in order for sea trials to remain useful.
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Further work on the simulation front is also needed to enable more refined and accu-

rate mission estimations. Thus far, not all components of the software ported simulator

have been made to work on commodity hardware. For example, by porting over more of

the glider control system, the simulator would also become more useful in training new

glider pilots. Instead of investing in a Shoebox or Pocket simulator, a complete repro-

duction of the glider piloting environment would be instrumental in gaining the interests

of potential pilots as part of a classroom course. Even the programming framework in

its current state could be used in such a way.

Potentially, with the integration of a Linux single board computer and the port of

the glider’s software, an alternative infrastructure to control the glider is in sight. A

replacement for the glider’s science infrastructure is more immanent and more easily

accomplished, since a new flight controller would require more difficult drivers to be

programmed. However, such a process could be staged and only portions of the control

software could be handled on the SBC initially. For instance, the behavior and layered

control execution could occur on the SBC while the generated command data structure

could still be filled and executed by the glider’s flight controller.

Further research on services on the vehicle itself, on shore, as well as their inter-

actions is also necessary. The compiler must ensure that services that are required

by programs will provide the necessary data resolution for each other. Interestingly,

this may involve simulations to determine whether a service is capable of providing

adequate spatiotemporal resolution that makes another dependent service, that is also

providing some sort of trade-off, possible. In the case of thermocline sensor triggering

that relies on temperature and depth measurements, for example, simulations in the

area of operation may indicate that the water is shallow and that only a subset of the

profiles are required to capture an acceptable snapshot of the water column.

With the addition of the single board computer, more advanced sensor processing
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is possible. This work has provided an infrastructure that is capable of hierarchical

power measurement techniques. Thus far, this mechanism has not been used to its full

potential. As part of future research, investigating more advanced energy management

techniques that schedule and plan sensors, actuators, and services is also of interest.

Such work could involve using the power measurement infrastructure to refine the energy

model for a particular glider while in flight and to perform live task profiling and

scheduling

Further refinements to the energy model are also necessary and are part of future

work. Because many of the vehicle’s services are envisioned to make use of energy

and quality of result trade-offs, an accurate energy model is of extreme importance. A

new measurement infrastructure is in development that enables plugin sensor boards,

allowing not just power measurement, but other sensors such as an accelerometer to be

easily integrated into the glider. The new board is also more power efficient and should

be capable of being deployed on regular glider flights without becoming a burden.

Finally, identifying what components and lessons of the described system can be used

in other cyber-physical systems is of extreme importance and should be investigated

further. Other autonomous systems have very similar constraints that include concerns

for safety, practicality, resource optimizations and trade-offs, a limited energy budget,

and sporadic communication. The framework was designed around these constraints so

many of the approaches should be applicable to other systems like autonomous aerial

drones, terrestrial vehicles and satellites. Much of the compiler infrastructure that is

used to create and build services and check for the consistency of state definitions could

also be retrofitted for use on other CPSs. Exploring these other avenues may in fact

lead to new lessons that are also applicable to the new programming framework on the

Slocum Glider.
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