
i 

 

i 

 

IN-LINE AND OFF-LINE MONITORING OF MULLING 

PROCESSES 

By  

SUYANG WU 

A thesis submitted to the  

Graduate School – New Brunswick 

Rutgers, The State University of New Jersey 

In partial fulfillment of the requirement 

For the degree of 

Master of Science 

Graduate Program in Chemical and Biochemical Engineering 

Written under the direction of  

Dr. Rohit Ramachandran 

And approved by 

_____________________________ 

_____________________________ 

_____________________________ 

_____________________________  

 

 

New Brunswick, New Jersey 

May, 2014 

  

 



ii 

 

ii 

 

ABSTRACT OF THE THESIS 

 

In-line and Off-line Monitoring of Mulling Processes 

 

By SUYANG WU 

Thesis Director: 

 Dr. Rohit Ramachandran 

The objectives of this study consisted of: (1) determining the optimal instrument 

set-up of a Near Infrared (NIR) spectrometer and, (2) monitoring and quantifying 

critical quality attributes (CQAs) of a continuous mulling process. For this, off-line 

and in-line calibration standards of alumina/nitric acid granules with known water 

concentrations were prepared. Subsequently, the relationship between sample-detector 

distance and prediction accuracy was investigated for a JDSU microNIR spectrometer. 

It was found that the optimal distance was around 15 mm, 15mm of sample thickness 

and 25 of scan number. Additionally, other set-ups which could be used for in-line 

monitoring have been investigated including monitoring from the side and/or bottom 

surface through glass or plastic. Next, after ensuring adequate method accuracy, NIR 

prediction models were built for the in-line measurement of CQAs: granule water 

content and agglomerate size.  
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Chapter 1 Introduction 

Inorganic metal-oxide supports offer interesting properties for immobilization of 

metal complexes, such as mechanical strength, surface area and porosity
1
. Alumina is 

one of the inorganic supports which are being widely used since a long time in the 

catalyst industry for various applications including in the petroleum industry
2
, 

petrochemical industry
3
, pharmaceutical industry

4
, for biofuel

5
, and so on. The 

presence of alumina support
5
 and even the structure of alumina

3
 could significantly 

affect the performance of catalysts, for example, as indicated by Luo Sha et al
3
. 

Catalysts supported on alumina, which are synthesized by ammonia precipitation, 

exhibit higher activity and selectivity to isobutene than the corresponding catalyst 

synthesized from hydrochloric acid reflux. Due to its importance and large demand in 

the catalyst industry, the large-scale manufacturing of extrudable alumina to achieve 

desired porosity and surface area is a challenging problem in the scientific and 

industrial community.   

Usually, the production of alumina is processed in three steps: mulling, extrusion and 

calcination. Mulling can be used to improve the flowability and with the help of a 

peptizing agent and at high temperature, the primary particle size would decrease, 

thus, increasing the porosity and shaping the pore size distribution. Extrusion is a 

commonly used shaping process in many industries, and it is also used in catalyst 

industry since extrudate catalyst support is much easier to handle and recycle. The 

main condition that the extrusion compounds have to fulfill is that they had to have 



2 

 

 

 

sufficient plasticity
8
. Alumina is a known non-plastic material and, therefore, 

extrusion of alumina pastes require processing additives such as binder and lubricant 

agents to impart plasticity and flow characteristics, which is another reason for 

mulling application in catalyst support production. In the mulling process, water or 

nitric acid solution could be used as the binder, whose amounts have significantly 

effect on the plasticity, which makes the monitoring of water content extremely 

meaningful. 

In plant scale manufacturing, companies mainly perform batch processing since the 

batchwise machinery is already installed and is more flexible, in terms of both 

machine application and productivity adjustment. However, continuous processing is 

more suitable for manufacturing based on Quality-by-Design (QbD). It is 

well-established in the chemical, cosmetics and food industry, and has many 

advantages 
6-7

: Firstly, it is much easier to scale up, which could be achieved by 

simply running the process longer, thus potentially leading to labor and cost savings. . 

Secondly, it could prevent segregation problems that can be caused by the handling 

and storing between different processes. Thirdly, this would save space and reduce the 

need for manual operators. 

During recent years, vibrational spectroscopic techniques like Near Infrared (NIR) 

combined with multivariate calibration routines have become increasingly important 

process analyzers in the pharmaceutical industry [1-24]. These analyzers offer several 

advantages over conventional wet chemistry techniques, which include 
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non-invasiveness, little or no sample preparation and rapid measurements. Raman and 

NIR sensors can provide critical quality information during different stages of the 

active pharmaceutical ingredient (API) and drug product manufacturing, and are 

commonly employed during raw material dispensing, chemical reactions (mostly 

Raman), granulations, drying (mostly NIR) and powder blending.
10

 

Water shows a very strong absorption in the NIR and is thereby the ideal analyte for 

this technology. NIR is very successfully used for determination of water content in 

the food, chemical and pharmaceutical industries.
 11

 Measurements in solids, liquids 

and pastes are possible without sample preparation; if required, this is possible online. 

A wide range of probes for both diffuse reflection and transmission measurements are 

available.
12

 Therefore, Near Infrared Spectroscopy has been selected as a technique to 

develop in this thesis. 
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Chapter 2 Near Infrared Based Sensing 

2.1 Near Infrared Introduction 

Near Infrared Spectroscopy (NIRS) is a spectroscopic method in which near infrared 

region of radiation (800 – 2500 nm) is utilized. The frequency range covers mainly 

overtones and combinations of the lower-energy fundamental molecular vibrations 

that include at least one X-H bond vibration. However, they are significantly weaker 

in absorption cross-section, compared with the fundamental vibrational bands from 

which they originate. Fortunately, an advantage, in terms of analytical specificity of 

NIR, is the sensitivity of the frequency and intensity of these X-H NIR absorption 

bands to near neighbors in the molecular structure. The local electronic environment 

has particularly strong influence on the X-H bond force constants and from this 

derives remarkably high information content in spectra. The functional groups almost 

exclusively involved in NIR are those involving the hydrogen atom: C-H, N-H, O-H, 

which are the overtones and combinations of their fundamental frequencies in the 

mid-IR and produce absorption bands of useful intensity in the NIR. And this is why 

Near Infrared is quite useful in quality control, and it is widely used in agricultural 

food, pharmaceutical, cosmetic and many other industries. 

One of the analyzer formats used to achieve full-spectrum information is the scanning 

grating monochromator. This is a robust piece of equipment, normally based on a 

concave holographic grating, controlled via industrial motor drive and optical 

tungsten-halogen source at 2800 K and suitable detector can achieve a near-perfect 
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match of the monochromator throughput with detector sensitivity and hence very high 

signal-to-noise ratio (SNR). 

An obvious extension of the scanning monochromator is the grating polychromator, 

fitted with a photodiode array (PDA). Whilst this system still requires an entrance slit 

to the concave grating, the exit slit is replaced with a PDA, which allows for a 

multiplex measuring advantages including shorter response time and high SNR. 

A further example of high-throughput full-spectrum device is the tunable filter 

instrument, normally based on an acousto-optical tunable filter (AOTF). In this case, 

no entrance slit is required. The AOTF filter is based on the use of a carefully oriented 

briefringent crystal, optically transparent across NIR. The crystal is driven by an 

RF-powered piezoelectric transducer, which sets up an acoustic wave that propagates 

through the crystal and interacts with the incident broadband NIR radiation. 

Finally, in the field of full-spectrum NIR methods, Fourier transform near-infrared 

(FTNIR) analyzers are included. An FTIR device is, in effect, an optical modulator 

which allows wavelength encoding. The input beam is unmodulated broadband NIR, 

and the exit beam from the interferometer is still broadband NIR, but with each 

optical frequency uniquely amplitude-modulated in the acoustic frequency range. This 

allows the detector signal (which is a combination of signals from all the incident 

broadband NIR frequencies) to be decomposed using Fourier transform, and the 

individual amplitudes of each optical frequency in the broadband input signal to be 

obtained. The system thus has no input or output restriction other than a resolution 
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defining Jacquinot stop. The uniquely defining feature of FTIR methods in NIR is that 

they all contain some inherent form of direct wavelength registration. Most practical 

devices employ a visible frequency laser to define the optical retardation sampling 

interval. This translates directly into the frequency axis of the recorded spectrum, 

linked intimately with the known HeNe laser frequency. 

These four very different NIR technologies represent the mainstream analyzer types 

and they also cover the main types of established commercially available analyzers. In 

the offline monitoring part of this thesis, we used Antaris FTNIR distributed by 

Thermo, and JDSU MicroNIR 2200 spectrometer, which is a polychromator used in 

inline monitoring. 

2.2 Multivariate Analysis 

Multivariate analysis is based on the statistical principle of multivariate statistics, 

which involves observation and analysis of more than one statistical outcome variable 

at a time. Since the spectrum generated by Near Infrared is actually a matrix with one 

row and hundreds of columns (depends on resolution wavelength range) and the 

information which could be used for either substance discrimination or quantification 

is a range including more than one wavelength, therefore multivariate analysis is 

required to extract the information from Near Infrared spectra. In this thesis, 

Unscrambler and TQanalys are the software used for spectra interpretation. And PCA 

(principal component analysis) and PLS (partial least square) are the methodology 

mainly used in this thesis. 
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2.2.1 Principal Component Analysis 

PCA is a bilinear modeling method that provides an interpretable overview of the 

main information contained in a multidimensional table. It is also known as a 

projection method, because it takes information carried by the original variables and 

projects them onto a smaller number of latent variables called Principal Components 

(PC). Each PC explains a certain amount of the total information contained in the 

original data and the first PC contains the greatest source of information in the data 

set. Each subsequent PC contains, in order, less information than the previous one. 

By plotting PCs, important sample and variable interrelationships can be revealed, 

leading to the interpretation of certain sample groupings, similarities or differences. 

When a measured variable exhibits large systematic variation, this is attributed to 

information. If a variable exhibits very little variation, it can be concluded there is no 

information associated with it and it may be contributing to “noise”. PCA aims to 

extract the information from a data table and disregard the noise. 

In matrix representation, the model with a given number of components has the 

following equation: 

X = TP
T
 + E 

where T is the scores matrix, P the loadings matrix and E the error matrix. These 

terms will be explained in more detail in this document. 

The combination of scores and loadings is the structured part of the data: the part that 
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is most informative. What remains is called error or residual, and represents the 

fraction of variation that cannot be modeled well. By multiplying the scores and the 

loadings together, the entire structure of the original data set can be reconstructed and 

hopefully, only a small residual is left, consisting of random fluctuations which 

cannot be meaningfully modeled. 

Each component of a PCA model is characterized by three complementary sets of 

attributes: scores, loadings and explained variance. 

Scores describe the properties of the samples and are usually shown as a map of one 

PC plotted against another. However, PCs can be plotted as line plots for describing 

time evolving processes.  

Loadings describe the relationships between variables and may be plotted as a line 

(commonly used in spectral data interpretation) or a map (commonly used in process 

or sensory data analysis).  

Explained variances are error measures that tell how much information is taken into 

account by each PC.  

Usually, scores plots coupling with Hotelling Circle could be used for the 

classification of samples, outlier detection and process control. Loading plot which 

tells the effect of variables could be used for design of experiment, although no 

significance could be determined by this method, the bright side is each run of 

experiments doesn’t have to be fixed. Explained variance could tell the adequacy of 
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one model, and if it’s not high, it remind you to find the variable which could have 

significant effect on the response. 

2.2.2 Partial Least Square Regression 

Partial Least Squares Regression (PLSR), also sometimes referred to as Projection to 

Latent Structures or just PLS, models both the X- and Y-matrices simultaneously to 

find the latent (or hidden) variables in X that will best predict the latent variables in Y. 

These PLS components are similar to principal components, but will be referred to as 

factors. 

The model generated by PLS could be used for future quantification of certain 

substance, but one thing is very important: Good models are generated from good data! 

If either the X or Y data are non-representative of future conditions, or if they were 

collected under poor conditions, then the results of the PLSR model may be useless. 

2.3 Near Infrared Liquid Content Standards 

As stated in 2.2, to predict the amount of certain chemical substance, one standard (or 

model) with different known amount has to be made. Thus, many standards of water 

had been made and they were validated by the prediction of samples with unknown 

water content. 

2.3.1 Materials, Equipment and Methods 

Materials: Purified water, nitric acid and DISPERAL boehmite alumina manufactured 

by Sasol were used in all experiments. 
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Equipment: Thermo Antaris Near Infrared spectrometer, VWR vortex, JDSU 

Miniature spectrometer, Labram Acoustic Mixer 

Methods: The standard curve was built by measuring NIR absorbance curve from 

samples with known water content achieved by adding different amounts of water into 

fixed amount of alumina. The water percentage varied from 45% to 65% with an 

interval of 2%. Due to sample loss from scratching, a correction factor was applied. A 

calibration model was built using multivariate analysis that was then validated using a 

test set, which consisted of several samples with random amounts of water within the 

calibration range.  

Many standards including 0.5% nitric acid standard, 1% nitric acid standard for 

Antaris NIR, and water standard for JDSU Miniature NIR have been created. 

Calibration ranges for some of them have been expanded from 0% to 75% (initially 

45% to 65%). 
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2.3.2 Antaris Water Standard 

 

Figure 2.1. Spectra for Antaris water standard 

Figure 2.1 shows the curves detected by NIR. Two significant peaks could be found 

around 7000 cm
-1

 and 5000 cm
-1

, and a shoulder is also spotted around 8600 cm
-1

. 

Initially, peaks I and II were assumed to represent water and alumina, respectively, 

whereas the shoulder assumed to have no significance. Later, upon detailed analysis 

of the data using the TQ Analyst software, an interesting fact was observed: Both the 

peaks and the shoulder correlated to water content very well. Their correlation 

coefficients are all above 0.996. Keeping in mind the limited wavelength range for the 

JDSU (5800-11,000 cm
-1

), 6700-7150 cm
-1

 was selected to be suitable for water 

content prediction models. 

Figure 2.2 is generated by TQanalyst to show the difference between the actual water 

content measured from the sample and the water content calibrated by TQanalyst. 

Points at 0.63 and 0.65 are clearly deviated from the curve, since alumina at that water 
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content is very sticky and minor operation mistakes could lead to such deviations. 

 

Figure 2.2. Plot of Actual Water Content vs Calculated Water Content 

Table 2.1 shows the result of actual water content and calculated water content. It can 

be seen that every point except the last two agree perfectly well.  

Table 2.1. Results of Calculated and Actual Water Content 

 

Validation was achieved by detecting the water content of samples which constituted a 

known amount of water. The sample was newly prepared for the purpose of 

validation. 

Table 2.2. Validation result of 20130226-water standard 

Water Content 52% 55% 58% 

1  0.52  0.55  0.56  
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2  0.52  0.54  0.57  

3  0.51  0.55  0.58  

This standard is expanded to 0% to 75% later and its corresponding coefficient is 

0.99963, and its validation result is given in Table 2.3: 

Table 2.3. Validation result of 20130226-water standard expanded 

Water Content 52% 55% 58% 

1  0.52  0.55  0.51  

2  0.52  0.54  0.51  

3  0.52  0.55  0.52  

Comparing table 2.2 and table 2.3, two conclusions can be made as follows: 

• For a known range, the unexpanded (narrow) range of moisture content 

distribution worked well. 

• For a range lower than the known range, the expanded model was used and there 

were deviations observed from the actual moisture content. 

2.3.3 Antaris 0.5% Nitric Acid Standard 

The corresponding coefficient was 0.99825, and its validation result is given in Table 

2.4. 

Table 2.4. Validation result of Antaris 0.5% nitric acid standard 

Water Content 52% 55% 58% 

1  0.52  0.55  0.56  

2  0.52  0.55  0.55  

3  0.52  0.55  0.58  

Table 2.5. Validation result of 0.5% nitric acid sample using Antaris water standard 
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Water Content 52% 55% 58% 

1  0.53  0.52  0.57  

2  0.53  0.54  0.58  

3  0.53  0.54  0.58  

Comparing table 2.4 and table 2.5, it can be concluded that Nitric acid standard is 

necessary, since the 0.5% nitric acid liquid content prediction given by water standard 

deviated from the actual liquid content. 

2.3.4 Antaris 1% Nitric Acid Standard 

The corresponding coefficient is 0.99777, and its validation result is: 

Table 2.6. Validation result of 1% nitric acid standard expanded 

 10%  20%  52%  55%  58%  

1  0.06  0.22  0.55  0.55  0.6  

2  0.11  0.22  0.52  0.54  0.61  

3  0.08  0.22  0.52  0.53  0.6  

2.3.5 Micro NIR (JDSU) Water Standard 

This standard could be used during continuous mulling due to the excellent R-square 

value and low RMSECV. 
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Figure 2.3. Predicted vs reference plot of JDSU NIR standard 

2.4 Near Infrared Particle Size Standard 

One articles
10

 points out that NIR can be used to measure particle size. This is 

achieved by baseline-corrected absorbance (ΔA), which is given in the form of the 

following equation: 

    ΔA = Ax – Ay 

The 1740 nm signal was used for correction of the background level and 2145 nm was 

applied as a particle size measurement wavelength 

2.4.1 Materials, Equipments and Methods 

Materials: Purified water and DISPERAL boehmite alumina manufactured by Sasol 

were used in this experiment. 

Equipments: Thermo Antaris Near Infrared spectrometer, KG-5 batch granulator, 

Malvern Laser diffraction, sieving device and oven. 

Methods: 

1. Mulling: To produce granules of different particle size, a batch granulator had 

been used.  
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2. Drying: For better sieving, the material was dried at 90°C until only bound water 

remained. 

3. Sieving: This separated all granules based on size differences. 

4. NIR Measurement: This created a dry, particle size single-variable standard. 

5. The particle size was measured by Malvern Laser Diffraction to give the true 

value of particle size (d50 used).  

2.4.2 Results 

Laser Diffraction: After sieving and NIR Measurement, laser diffraction was used to 

verify the exact particle size. Both methods were in general agreement.  

 

Figure 2.4. Particle size profile of particles which were retained on No. 40 pan and 

passed through No. 35 pan (from 420 to 500 microns) 

Neither R-square nor RMSECV of the method suggested in literature was optimal, so 

different ranges (wavelength) had been attempted. The difference between the original 

spectra plot and first derivative plots had been compared to determine the range. The 

first derivative method, supposedly, eliminates physical properties of samples, like 

particle size. Several ranges observed with a large difference between these two plots 

had been analyzed by PCA. The 4200-4600 cm
-1

 range was decided to be used.  
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Figure 2.5. PCA result of samples with different particle size in the 4200-4600 cm
-1

 

range 

In Figure 2.5, the pattern indicates that particles retained on the same sieving pan 

were grouped together and were distinguishable from other groups indicating that this 

range managed to classify the particle size effects.  

 

Figure 2.6. Predicted vs reference plot of particle size standard 
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Figure 2.7. Explained variance plot of particle size standard 

This plot indicates that more than 90% percent of variance could be explained by five 

factors, with room for improvement.  

Based on these results, it could be concluded that: 

1. The standard has been successfully created. 

2. To improve the model, a narrower range (wavelength and sieve range) would 

be needed. 

3. The cross validation results were not ideal (high RMSECV), prediction mode 

validation could be attempted instead. 
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Chapter 3 Design of Optimal Operational Condition of Near 

Infrared 

To determine the optimal operational conditions for MicroNIR 2200 spectrometer 

(JDSU), several experiments have been performed to investigate the effect of sample 

detector distance, sample thickness, scan number, sample agglomerate size, sample 

surface roughness, place orientation and type of transparent material the light beam 

could go through. 

3.1 Design of Experiment to identify optimal Distance, Sample 

Thickness and Scan Number 

During operation, the granulation process may cause dusting, which could lead to 

containment and clogging of NIR sensor and inaccurate prediction. Therefore, it 

would be better if the Near Infrared detector could be away from dusting sample for a 

reasonable distance. Also, the thickness of sample and scan number (the times of 

scanning made by detector to give the final spectrum) could also jeopardize results. 

Therefore, all these three parameters need to be investigated to identify the optimum 

values. 

In this study, two experiments have been designed to determine the effect of four 

variables: integration time, distance between sample and detector, sample thickness 

and number of sample. Integration time is the length of time that detector can capture 

light, and number of sample represents how many spectra the detector will take to 
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give an average final spectrum. As suggested by NIR sensor manufacturer (JDSU), 

highest signal noise ratio can only be achieved by setting at the right integration time 

for certain sample detector distance. In the first experiment, the effect of varying 

distance to a model at fixed integration time has been investigated. The objective of 

that experiment is to determine at what degree of variation of distance will jeopardize 

the prediction. And the second experiment is a DOE finished with all four variables 

mentioned above, and to give fair comparison of each distance. Only the optimal 

combination of integration time and distance giving highest signal noise ratio has 

been considered for second experiment. 

3.1.1 Experimental Set-up 

Equipment: Height-adjustable support, petri-dishes of different thickness (5, 10 and 

15mm), vernier caliper, JDSU Miniature NIR spectrometer. 

Software: Minitab (DOE analysis), IRSE (Spectra recording), Unscrambler (Data 

processing) 
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Figure 3.1. Experimental Setup 

The distance between JDSU and sample = Height of JDSU – Height of petri-dish  –  

Height of support (heights were measured by a Vernier caliper) 

Eight prediction models at different distances had been prepared to determine their 

accuracy toward the same sample. The models were built at 3, 6, 9, 12, 15, 18, 21 and 

24 mm distances. For each of these models, nine different distances had been tested. 

The distance ranged from 6mm below the distance of the model being built to 6mm 

above that model with an interval of 1.5 mm between the distances. As an example, 

for the 15mm model, the prediction sample distances were at 9, 10.5, 12, 13.5, 15, 

16.5, 18, 19.5 and 21mm from the JDSU. 

3.1.2 Distance effect experiment 

In this experiment, only one prediction model was used, and this model was created 
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with an integration time of 9000 µs and an initial sample detector distance of 3mm. 

This distance was varied to determine what gave an optimum prediction. The 

difference between true value (determined by LOD at 130°C) and the prediction was 

set as the response in the multivariate analysis.  

 

Figure 3.2. 3mm Different Distance Spectra 

 

Figure 3.3. 9mm Different Distance Spectra 
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Figure 3.4. 15mm Different Distance Spectra 

 

 

Figure 3.5. 24mm Different Distance Spectra (upper) Magnified section of circled 

area.(lower) 

Several conclusions can be made by comparing the spectra: 
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• The absorbance value decreases as the distance between sample and JDSU 

increases. 

• The spectra were not smooth at higher distance. 

• In figure 3.5(b), the spectra at different distances were supposed to be clustered 

into different groups, but instead there was some overlap, which might represent 

the “breakdown point” 

• Integration time increases as the distance increases. 

• The comparison of spectra from same and different distances indicated that 

distance could significantly change the absorbance value of the baseline. 

Models: 

The resulting models were reliable since they had R-square values close to 1 and 

RMSE lower than 0.003.  

 

Figure 3.6. Reference vs Predicted for 15mm water model 
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Pretreatments: 

To determine whether pretreatment (Savitzky Golay first derivative, 1
st
 order 

polynomial and with 15 points window) had any improvement on the prediction 

accuracy, comparisons to the 15mm model were made. 

(a) 

 

(b) 

 

Figure 3.7. Prediction with deviation plot for 15mm model (a) Prediction with 

deviation plot for 15mm model (b) 

Table 3.1. Prediction result of sample at different distance given by 15mm model of 

different pretreatment 

  Treated (SGolay) Untreated 

Distance(mm) reference Y predicted Deviation Y predicted Deviation 

9.0 0.363682 0.400717 0.031822 0.324083 0.010466 

10.5 0.36601 0.395892 0.027601 0.339701 0.008093 

12.0 0.368224 0.390574 0.019994 0.353962 0.005725 

13.5 0.371437 0.382929 0.01244 0.3647 0.003057 
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15.0 0.371471 0.375382 0.006265 0.374044 0.000994 

16.5 0.373814 0.368399 0.004204 0.381368 0.002228 

18.0 0.375419 0.359825 0.002997 0.387993 0.004765 

19.5 0.376306 0.350201 0.005271 0.393493 0.007355 

21.0 0.378703 0.340586 0.011272 0.398291 0.010338 

In Table 3.1, reference values are the water contents obtained from Loss on Drying 

(LOD) method, regarded as true values. Y predicted water content values are 

predicted by the model while the deviation values simply represent the standard 

deviations. 

Conclusions that can be drawn from this comparison: 

• Both methods gives accurate prediction at 15 mm  

• The pre-treated data did not give as good results in comparison to data that was 

untreated. Due to this, untreated data was used for building further models. 

Varying Distance: 

Table 3.2. Prediction result of sample at different distance given by 3mm model 

Distance(mm) Reference Y predicted Deviation Difference 

0 0.393059 0.403781 0.02524 0.010722 

1.5 0.324244 0.389906 0.01379 0.065661 

3 0.365066 0.393463 0.010729 0.028397 

4.5 0.367727 0.403183 0.005251 0.035457 

6 0.372821 0.409694 0.005811 0.036873 

7.5 0.371296 0.402569 0.007867 0.031273 

9 0.37341 0.373513 0.015283 0.000103 

Table 3.3. Prediction result of sample at different distance given by 9mm model 
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Distance(mm) Reference Y predicted Deviation Difference 

3 0.351856 0.318911 0.020438 0.032946 

4.5 0.354222 0.346502 0.019297 0.00772 

6 0.358536 0.366727 0.020904 0.008191 

7.5 0.362018 0.373338 0.024233 0.01132 

9 0.364685 0.376272 0.02428 0.011587 

10.5 0.367951 0.374805 0.026022 0.006854 

12 0.370215 0.37251 0.026496 0.002296 

13.5 0.372794 0.368145 0.025082 0.00465 

15 0.376509 0.360277 0.020526 0.016231 

Table 3.4. Prediction result of sample at different distance given by 15mm model 

Distance(mm) Reference Y predicted Deviation Difference 

9 0.363682 0.324083 0.010466 0.037035 

10.5 0.36601 0.339701 0.008093 0.029882 

12 0.368224 0.353962 0.005725 0.022351 

13.5 0.371437 0.3647 0.003057 0.011492 

15 0.371471 0.374044 0.000994 0.003911 

16.5 0.373814 0.381368 0.002228 0.005415 

18 0.375419 0.387993 0.004765 0.015594 

19.5 0.376306 0.393493 0.007355 0.026105 

21 0.378703 0.398291 0.010338 0.038116 

Table 3.5. Prediction result of sample at different distance given by 24mm model 

Distance(mm) Reference Y predicted Deviation Difference 

18 0.372982 0.380253 0.032791 0.007271 

19.5 0.37483 0.379672 0.025832 0.004842 

21 0.378021 0.376514 0.018684 0.001506 

22.5 0.379649 0.373563 0.010733 0.006085 

24 0.381187 0.371448 0.006799 0.009739 
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25.5 0.382565 0.368063 0.008142 0.014502 

27 0.383655 0.363318 0.014678 0.020336 

28.5 0.386425 0.351414 0.022664 0.035011 

30 0.385803 0.35341 0.024041 0.032393 

Following conclusions have been made: 

• Predictions at 3mm were not accurate, although, predictions at 9mm or longer 

were much more accurate. 

• 15mm was found to be the optimum distance due to its lowest Y difference 

• Deviation was usually small around the model preparation distance. 

3.1.3 DOE of four variables 

Four variables 

Integration time (int time), distance, scan number and sample thickness has been 

considered for study. Among these variables, integration time and distance were found 

to have a strong interaction. As discussed in the previous section, highest 

signal-to-noise ratio can only be achieved by setting the right integration time for 

specific sample-detector distance. Therefore, to give fair comparison of each distance, 

only the optimal combination of integration time and distance giving highest signal 

noise ratio was used in the second experiment. Thus, a new variable representing the 

combination of integration time and distance was created, called int-dis. The optimal 

combination used in this experiment is listed in Table 3.6, which was determined by 

calibrating a spectrolon (a white disk used as reference) to give 50-60K. 
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 Table 3.6. The optimal combination of integration time and distance used in DOE of 

four variables 

Int-dis Int time(µs) Distance(mm) 

Low level (-1) 34000 9 

Medium level (0) 75000 15 

High level (1) 125000 21 

Table 3.7. All variables used in DOE of four varibles 

 Int-dis Scan number Sample thickness 

(mm) 

Low level -1 25 5 

Medium level 0 50 10 

High level 1 75 15 

Responses: 

The response used in this study was the difference between true value (determined by 

LOD at 130°C) and the prediction. The objective of this study was to find the 

optimized setting of variables to minimize this response. 

DOE: 

Table 3.8. DOE run table 

Standard 

Order 

Run 

Order 

Int-dis Scan 

number 

Sample 

thickness 

(mm) 

Prediction – 

true value 

difference 

Deviation 

4 1 1 75 10 0.0067700 0.0065595 

7 2 -1 50 15 0.0036574 0.0064876 

1 3 -1 25 10 0.0039953 0.0058358 

8 4 1 50 15 0.0195654 0.0120493 

3 5 -1 75 10 0.0067050 0.0083772 
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6 6 1 50 5 0.0071823 0.0120963 

15 7 0 50 10 0.0076744 0.0045620 

14 8 0 50 10 0.0063972 0.0042981 

2 9 1 25 10 0.0144328 0.0104166 

11 10 0 25 15 0.0002820 0.0038985 

12 11 0 75 15 0.0020793 0.0040238 

13 12 0 50 10 0.0015597 0.0038432 

9 13 0 25 5 0.0006170 0.0038824 

10 14 0 75 5 0.0004370 0.0037262 

5 15 -1 50 5 0.0058594 0.0145700 

Standard order is the ID of each run 

Run order: the experiment is implemented at a randomized order to avoid bias. 

Result: 

Using Minitab: 
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Fig 3.8. Minitab Result for Prediction vs reference difference (upper) Residual 

analysis for prediction reference difference (lower) 

R-square adjusted of 70.61% represents a good model. Also, no pattern was found in 

the residual plot, this further support the fact that the model was adequate. Judging 

from P-value of the constant, int-dis, int-dis square is significant, interaction between 

int-dis and sample thickness could be significant. Therefore, the model could be 

simplified to: 

Y(difference) = 0.00521+ 0.003467 Int-dis + 0.005489 Int-dis
2
 + 0.003646 int-dis * 

sample thickness 
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Fig 3.9. Minitab Result for Deviation (upper) Residual analysis for prediction 

reference difference (lower) 

R-square adjusted value of 85.88% represents a good model. Judging from P-value, 

constant, int-dis square, int-dis thickness interaction is significant, interaction between 

int-dis and scan number, sample thickness square and sample thickness could be 

significant.As is the case with the previous model; this model can be simplified as 

follows: 
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Deviation = 0.004234 - 0.0016 Int-dis * scan number + 0.00549 Int-dis
2
 + 0.002009 

int-dis * sample thickness + 0.001576 sample thickness
2
 – 0.000977 sample thickness 

(a):                                   (b): 

   

Fig 3.10. Contour plot of Y difference (a) for int-dis vs scan number (b) for int-dis vs 

sample thickness 

Judging from figure , a saddle 3-Dimensional shape has been formed, scan number 

and sample thickness tend to be extreme to minimize the Y difference and int-dis is 

better to be lower than 0.5. 

To find the operation space, overlaid plot, in which multiple responses could be 

discussed, is used. Time consumption (product of integration time and scan number) 

and deviation are also considered. First, to preserve the possibility of 24mm, 5 

seconds (time consumption) is tested.  

(a):                                   (b): 



34 

 

 

 

 

(c):                                   (d): 

 

Fig 3.11. Overlaid plot for Y difference below 0.005, deviation below 0.005. (a) 

int-dis vs sample thickness and time consumption below 5s (b) int-dis vs scan number 

and time consumption below 5s (c) int-dis vs sample thickness and time consumption 

below 3s (c) int-dis vs scan number and time consumption below 3s 

In figure 3.11, the white area is the operation space which indicates that as long as all 

operation variable is maintain in that area, the responses should meet the standard set 

up. Then by analyzing these operation area, it is found that prediction made at a 

distance around 12mm, with sample as thick as 15mm and having scan number of 25 

will be fast and accurate. If time is not a concern, distance could range from 12 to 

15mm, scan number doesn’t matter at all and sample should be thicker than 7.5mm. 
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The conclusions coincide with the conclusion made in contour plots. Then the 

investigation continues with response optimizer: 

 

Fig 3.12. Response optimizer of all three responses 

Figure 3.12 demonstrates the optimizing result by minimizing all three responses 

including Y difference, time consumption and deviation. The optimum operation 

situation suggested by it is 13.5mm distance, 15mm sample and 25 scan number, 

which correlate with earlier conclusions. 

It is found that scan number and sample thickness are not significant while distance is 

significant, judging from multiple standards including P-value, response optimizer, 

contour plot. And the optimum operation situation suggested by this experiment is 

13.5mm distance, 15mm sample and 25 scan number. 

3.2 Effect of Place Orientation and Container Material 

Certainly long distance as 15mm could prevent the dusting problem, but it may be 
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better if the detection could happen behind a window. If so, not only dusting problem 

is not in concern, a flat surface similar as static status will also be guaranteed. 

Therefore, the influence of window material and place orientation (side and bottom) is 

discussed in this part.  

3.2.1. Pretreatment 

Four kinds of pretreatment are investigated, including untreated (absorbance), SNV 

smoothing, Savitzky-Golay first derivative and SNV smoothing followed by 

Savitzky-Golay first derivative. 

Table 3.9 Prediction table of Four Different treatment for 3mm detection from through 

plastic window (P represent prediction and D represent Deviation) 

 Untreated SNV SGolay SNV + SGolay  

 P D P D P D P D Water 

1 0.3899 0.0018 0.3972 0.0086 0.3931 0.0046 0.3967 0.0096 0.3945 

2 0.3900 0.0021 0.3981 0.0105 0.3903 0.0058 0.3973 0.0114 0.3945 

3 0.3899 0.0025 0.3988 0.0127 0.3879 0.0056 0.3980 0.0138 0.3945 

Judging from the values in table 3.9, it is found that the difference between prediction 

and reference water content is small, thus all pretreatment methods could work 

perfectly. Only two methods are remained to investigate in further study, which are 

untreated and SGolay first derivative. 

3.2.2 Placement 

Table 3.10 Prediction table of 0mm glass from bottom 

 Untreated SGolay Reference 
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Reading Prediction Deviation Prediction Deviation Water 

1 0.4004501 0.005329238 0.3993078 0.006037337 0.4006 

2 0.4012795 0.005687048 0.3994951 0.006442622 0.4006 

3 0.4021285 0.005699802 0.3994191 0.006020833 0.4006 

Table 3.11 Prediction table of 1.5mm glass from bottom 

 Untreated SGolay Reference 

Reading Prediction Deviation Prediction Deviation Water 

1 0.4070942 0.01111988 0.3989692 0.005197328 0.3997 

2 0.4077427 0.01249038 0.3993989 0.005558177 0.3997 

3 0.4092688 0.01093754 0.4005851 0.005221129 0.3997 

Table 3.12 Prediction table of 3mm glass from bottom 

 Untreated SGolay Reference 

Reading Prediction Deviation Prediction Deviation Water 

1 0.3865935 0.01240089 0.4241832 0.01018791 0.3950 

2 0.3901799 0.01514748 0.4262716 0.01026605 0.3950 

3 0.3864688 0.01644684 0.4230819 0.01027004 0.3950 

Table 3.13 Prediction table of 3mm plastic from side 

 Untreated SGolay Reference 

Reading Prediction Deviation Prediction Deviation Water 

1 0.4101674 0.003221418 0.4069191 0.004907767 0.3952 

2 0.4089093 0.00265529 0.4077766 0.003268295 0.3952 

3 0.4115997 0.002709718 0.4087723 0.003056557 0.3952 

By comparing the result of table 3.10, 3.11 and 3.12, one conclusion could be made 

that when the prediction accuracy tend to decrease when the distance increases, and 

the result is best when it’s touching, however this placement is considered not 

application because of mechanical vibration, heating and other problem introduced by 
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contact. And then by comparing the result of table 3.9 and 3.13, side measurement 

turned out to be unreliable. 

Therefore, in inline monitoring, measurement made from bottom is more desirable 

and should be used. 

3.2.3 Material Comparison 

Glass and plastic are discussed in this part. By comparing the result in table 3.9 to 

3.12, it was found that prediction measured through plastic window, is more reliable 

at 3mm. However, the reason that prediction through glass window might be glass 

window is thicker than plastic window. Considering the higher price and difficulty of 

using thinner glass, the recommendation of application of plastic window at 3mm is 

still valid. 

3.3 Agglomerate Size Effect 

To determine whether agglomerate size will interfere the prediction result of Near 

Infrared prediction, Near Infrared was applied on samples with different agglomerate 

size. 

One batch of granulation was run to obtain agglomerates with desirable size 

distribution. And then sieving was applied to separate agglomerates by size difference 

and several sets of agglomerates at same water content have been obtained as shown 

in figure 3.13 
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Fig 3.13 Agglomerate of different size 

 

 

(a) 

 

(b)                                       (c) 

Fig 3.14 Spectra at different time. (a) Spectra for prediction taken in February (b) 

spectra for calibration model I taken in January (c) spectra for calibration model II 

taken in March 
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Judging from spectra in figure 3.14, different patterns have been found that spectra 

taken at February which is used for prediction is much more rugged (large 

fluctuation). All these spectra are taken at same condition including same distance, 

integration time and scan number, therefore the reason of these fluctuation need to be 

investigated. Certainly, these fluctuations significantly sabotage the prediction. 

Table 3.14 Prediction table of 15mm pretreated by SNV Smoothing followed by first 

derivative 

Sample Size (μm) 
Prediction 

(NIR) 

Reference 

(LOD) 
Y Difference 

>2380 0.510457 0.386771 0.123687 

1410 - 2380 0.528135 0.415347 0.112788 

1190 - 1410 0.532571 0.419762 0.112809 

841 - 1190 0.531084 0.416524 0.11456 

<841 0.515367 0.418495 0.096872 

powder 0.486223 0.415935 0.070288 

Therefore, another pretreatment method called moving average is applied to smooth 

the spectra as shown in figure 3.15. 3 point window is used to keep as many 

information as possible. 
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Fig 3.14 Spectra for prediction taken in February treated by three-point moving 

window  

Table 3.14 Prediction table of 15mm pretreated by three-point moving window 

Sample Size (μm) 
Prediction 

(NIR) 

Reference 

(LOD) 
Y Difference 

>2380  0.334827 0.386771 0.051944 

1410 - 2380  0.328901 0.415347 0.086445 

1190 - 1410  0.32766 0.419762 0.092102 

841 - 1190  0.327493 0.416524 0.089031 

<841  0.287677 0.418495 0.130818 

powder  0.25602 0.415935 0.159915 

Table 3.15 Prediction table of 15mm pretreated by three-point moving window 

followed by first derivative 

Sample Size (μm) 
Prediction 

(NIR) 

Reference 

(LOD) 
Y Difference 

>2380  0.416229 0.386771 0.029458 

1410 - 2380  0.442791 0.415347 0.027445 

1190 - 1410  0.451027 0.419762 0.031265 

841 - 1190  0.44838 0.416524 0.031856 

<841  0.444017 0.418495 0.025522 

powder  0.44076 0.415935 0.024825 

Table 3.16 Prediction table of 15mm pretreated by three-point moving window and 

SNV followed by first derivative 

Sample Size (μm) 
Prediction 

(NIR) 

Reference 

(LOD) 
Y Difference 

>2380  0.38969 0.386771 0.002919 

1410 - 2380  0.412712 0.415347 0.002635 

1190 - 1410  0.419677 0.419762 0.000163 
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841 - 1190  0.419852 0.416524 0.003328 

<841  0.421018 0.418495 0.004278 

powder  0.414067 0.415935 0.001868 

Conclusions therefore have been made: 

1. Comparing the Y difference in table 3.16, there’s no significant interference 

introduced by agglomerate size. 

2. For unknown reason, the spectra taken at different time have different pattern and 

the interference introduced by this could be eliminated by 3 point moving average 

smoothing. At this point, atmosphere temperature is suspected to be reason and 

further investigation is under way. 

3. SNV smoothing followed by First Derivative is required to give true, accurate 

prediction.  

3.4 Sample Surface Roughness effects 

To determine whether surface characteristics has any effect on Near Infrared 

prediction, samples were made by mixing alumina with 40% of water by vortex mixer. 

Four samples, at different level of roughness, are prepared. Among all of them, 

roughness1 is the roughest one while roughness4 is the least rough one. Smooth 

sample is made by swiping the extra sample off of top 

Table 3.17 Prediction table of 15mm roughness experiment unpretreated 

Sample ID  
Prediction 

(NIR)  

Reference 

(LOD)  
Y Difference  

rough1 0.233801 0.39125 0.157449 
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rough2  0.241497 0.39148 0.149983 

rough3  0.248784 0.390373 0.14159 

rough4  0.238669 0.38977 0.1511 

smooth 0.230995 0.393246 0.162251 

Table 3.18 Prediction table of 15mm roughness experiment pretreated by first 

derivative 

Sample ID  
Prediction 

(NIR)  

Reference 

(LOD)  
Y Difference  

rough1 0.134577 0.39125 0.256673 

rough2 0.094796 0.39148 0.296684 

rough3 0.090543 0.390373 0.299831 

rough4 0.118859 0.38977 0.270911 

smooth 0.147246 0.393246 0.246 

Table 3.19 Prediction table of 15mm roughness experiment pretreated by SNV 

Sample ID  Prediction 

(NIR)  

Reference 

(LOD)  

Y Difference  

rough1 0.396468 0.39125 0.005218 

rough2 0.395231 0.39148 0.003751 

rough3 0.392518 0.390373 0.002144 

rough4 0.395348 0.38977 0.005578 

smooth 0.39625 0.393246 0.003004 

Table 3.20 Prediction table of 15mm roughness experiment pretreated by SNV 

followed by first derivative 

Sample ID Prediction  Reference  Y Difference  

rough1 0.39784 0.39125 0.00659 

rough2 0.401952 0.39148 0.010472 

rough3 0.400483 0.390373 0.01011 

rough4 0.396661 0.38977 0.006891 
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smooth 0.395156 0.393246 0.00191 

Judging from Y differences in table from 3.17 to3.20, one conclusion could be drawn 

that no significant difference due to surface characteristics if suitable pretreatment is 

applied (SNV or SNV followed by first derivative) 
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Chapter 4 Offline Monitoring 

4.1 Batch Granulation Operation 

It is necessary to know the end point in granulation since it allows the design of 

optimal formulations, it shortens the formulation development time and minimizes 

problems encountered during scale-up phase product development and assures batch 

reproducibility and consistency. And water distribution, in another word, uniformity, 

could be a parameter to determine end-point. 

4.1.1 Materials, Experiments and Method 

Material: DISPERAL boehmite alumina manufactured by Sasol, purified water. 

Equipment:  

 

Figure 4.1. KG-5 high shear granulator/mixer 

Method: The granulation could be divided into two stages: 
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The first is deagglomeration stage: In this stage, the powders are allowed to be 

deagglomerated at a lower set of impeller/chopper speed, which is 100/250 rpm. After 

two minutes, the water addition starts at a rate of 65 ml/min, and the impeller/chopper 

speed remains same. Usually the addition ends within seven to eight minutes, then the 

process steps into the second stage i.e. granulation. 

Granulation stage: In this stage, the impeller/chopper speed is set at a higher rate, 

500/550 rpm. The other parameters are shown in the table below:  

Table 4.1. Granulation processing variables 

Solid:Liquid ratio (S:L)  45:55  HNO3 Concentration  0%  

Alumina load  300g  Flow Rate  65ml/min  

Mixing time  30mins    

Granulation Stage  Impeller  300rpm  

Chopper  1500rpm  

Deagglomeration Stage  Impeller  150rpm  

Chopper  500rpm  

Table 4.1 shows the processing parameters used. The solid ratio, i.e. the ratio of 

alumina to water is 45:55. The peptizing agent is nitric acid, and its optimum 

concentration range is from 0.5% to 2%. Considering the fact that a big load is being 

used, 1% HNO3 was decided to be a suitable concentration. However, to simplify the 

procedure, no peptizing agent was used for this batch. For 300g of alumina and a flow 

rate of 65ml/min, the mixing time was 60 minutes
.
 Interestingly, a curious 

phenomenon was observed, where, the granule size increased tremendously after 50 
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minutes of mixing. Additionally, the NIR results (discussed in the following section) 

indicated that the granules had uniform water content after 36 minutes of mixing. 

Therefore, the optimum mixing time was reduced to ~ 45 minutes. 

4.1.2 Results 

 

Figure 4.2. The inside of granulator bowl during processing 

Figure 4.2 shows the non-uniform premature granules after 24 minutes of mixing. 

 

Figure 4.3. Samples shows the granulation process 

Figure 4.3 shows the sample during different mixing times as they progress from fine 
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powder to uniform granules at 6, 12, 18, 24, 30, and 36 minutes. At first, the sample 

was taken immediately after water addition when it was still fine powder. 

Subsequently, vials 2, 3 and 4 have clear lumps, whereas in vial 5 the sample has 

started getting uniform and lastly, vial 6 has highly uniform granules. 

4.2 Near Infrared Monitoring 

4.2.1 Method 

In this study, for a batch running ~ 60 mins, 30 samples were required. During the 

whole process, the batch was sampled ten times, with the first sampling carried out 

just after the water addition after which there was sampling every 6 mins until the end. 

Samplings were carried out at the following positions (Fig. 4.4). Samples from 

position 2 were used for the LOD measurements. All the samples were characterized 

on the Antaris NIR. 

 

Figure 4.4. Sampling locations 

4.2.2 Results 

Table 4.2 shows the water content of different samples at the three locations 

Table 4.2. Water Content of Samples 
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Sample time/point Water Content 

1 2 3 

6min 0.54 0.57 0.53 

12min  0.54 0.54 0.5 

18min  0.5 0.53 0.56 

24min  0.57 0.55 0.56 

30min  0.57 0.54 0.58 

36min  0.56 0.55 0.55 

And Figure 4.5 shows results from Table 4.2. It is clearly seen that the water content 

gradually becomes uniform, as was assumed. For the first three points, the difference 

is clear and big, after which the error shrinks and almost disappears as the end-point is 

approached. 

The samples selected from location 2, after being measured by NIR, was subject to 

LOD and the results are shown in Table , These results indicate that the difference 

between LOD and NIR is quite small, which proves that NIR could be used to detect 

water content. 
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Figure 4.5. Error bar showing the water content difference between sampling points 

Table 4.3. Comparison between LOD and NIR methods 

Sample time LOD water content NIR water content Difference % 

18min 0.53749 0.53 1.4126 

24min 0.54447 0.55 -1.0049 

36min 0.55314 0.55 0.5709 

 

Figure 4.6. PCA result of batch mulling 

All the points in Figure 4.6 are from samples collected from the three different 
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positions every 6 minutes. The phenomenon that points cluster together like sample 

collected at 36 minutes could indicates water content uniformity 
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Chapter 5 Inline Monitoring setup 

The inline monitoring setup is discussed as follows:  

Originally, one set-up as shown in the figure 5.1 was initialed. 

 

Figure 5.1 Inline monitoring set-up with tray 

Water will be injected into continuous granulator, mixing with alumina powder inside 

to produce granules. And all these granules falls on the tray which is below the outlet 

of granulator and have JDSU NIR detector attached on the bottom, which is touching 

condition. All granules should move downward driven by gravity, and spectra are 

collected by IRSE (software) during this movement. And then Unscrambler Pulse 

(software) could interpret the spectrum freshly taken by IRSE to water content by 

loading a previously created model. So this system could be regarded as real time 

monitoring, since only several seconds are needed to get water content in sample. 

However, this system faces flow problems, since granules stick to the tray and even 

detector. And since the detector can only measure the sample which is in contact in 
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this system, and the sample which is in contact hardly move, thus the spectra taken by 

NIR couldn’t represent the process at all.  

Then an improved version is achieved where a conveyor is used to replace tray and 

detector is placed on the top, 15mm away from sample, which is shown in figure 5.2 

 

Figure 5.2 Conveyor involved inline monitoring set-up 

However, another version could also be considered based on the result of 3.4. Near 

Infrared detector is placed 3mm below a transparent plastic conveyor while other 

parts are similar to the design in figure 5.2. 
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Chapter 6 Conclusions and Recommendations for Future 

Work 

In this thesis, the possibility of application of Near Infrared, a technique which could 

be used for substance discrimination and quantification based on perpetual molecular 

movement, on continuous granulation is discussed. To achieve the above goals, 

adequate calibration models are necessary. Many models, including those for 

calculating liquid content and particle size, were created. All the liquid content models 

passed the validation test and have close-to-1 R square and low RMSE values, which 

indicate adequate and reliable models. The particle size model has proven the 

possibility of application of NIR on particle size prediction, which could further be 

developed in future work. However, its high RMSE indicates the model came from a 

good calibration sample but the variance in sample size needs to be minimal. 

Then the limit of Near Infrared operation condition from top surface was investigated. 

The distance between detector and sample could be increased to as far as 24 mm, thus, 

eliminating the dust problem. According to these results, the optimal distance is 

15mm; no pretreatment method was needed to give a reliable prediction. Scan number 

of 25 results in a relatively fast reading (integration time for 15mm is 75000 μm, 

therefore one spectrum could be finished in 75000μm x 25, which is 1.875 seconds). 

Sample thickness has proved to be insignificant, although an optimum consistent 

thickness of 15mm could minimize variance. 

The surface of the sample i.e. rough or smooth also has a bearing on the NIR 
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predictions. A rough surface does not affect prediction as long as the model is created 

with proper pretreatment, in this case, Savitzky-Golay first derivative with 2
nd

 order 

polynomial utilizing 15 points. 

Whilst investigating the effect of using a window between the sample and detector, 

two types of material - glass and plastic were considered instead of measuring from 

top is investigated. Two detection locations - side and bottom instead of top, with 

respect to the sample, were studied. The results from glass are not very satisfactory 

and as the distance between glass and the detector increases, the prediction accuracy 

drops significantly. Glass performs moderately at 1.5 mm but at 3mm is not reliable. 

However, the results from plastic look more promising, which give good results at 

both 1.5 mm and 3mm. This may be due to the difference in thickness of the two 

materials. Since it is not very feasible to obtain glass that is considerably thin, plastic 

could prove to be a cost effective alternative. Allowing the detector to come in direct 

contact with the glass/plastic surface is not advisable as a host of other problems in 

the form of mechanical vibrations, thermal effects could result in inaccurate NIR 

readings. Measurements taken from the bottom of the sample give more accurate 

results than those taken from the side. 

NIR spectroscopy gives a way to determine process end-point by monitoring water 

uniformity. This could be done either by making predictions or classifying samples 

from different locations by principal components analysis scores plots. 

Two different setups for online monitoring have been suggested. The first involves 
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measuring from top, while the distance is 15mm between the sample on a conveyor 

and detector and an overhead fence placed in front of detector could give an even 

surface to sample. The second setup would be measuring from the bottom, 3mm away 

from a conveyor that is made of a plastic material. In the latter setup the detecting 

surface would be flat. 

The scope to further this study is tremendous. The ultimate goal could be set to 

continuously manufacture extrudable alumina granules that have satisfactory porosity 

with Near Infrared and other process analytical technology tools to control process. 

Obviously, water significantly affects extrudability, but other parameters could also 

have a serious influence. Once all the parameters affecting extrudability and porosity 

have been determined, suitable analytical techniques could be customized. As an 

example, confocal NIR microscopy could be used for off-line primary particle size 

detection. These techniques could then be transferred accordingly for continuous 

granulation to control process. 

  



57 

 

 

 

Reference 

1. Barbaro, Pierluigi, and Francesca Liguori. "Heterogenized homogeneous catalysts for fine chemicals production." 

Catalysis by Metal Complexes 33 (2010) 81-82. 

2. De La Ree, Ana, and Aloysius F. Hepp. Characterization of Catalyst Materials for Production of Aerospace Fuels. 

National Aeronautics and Space Administration, Glenn Research Center, 2012. 

3. LUO Sha, WU Nan, ZHOU Bo, HE Song-Bo, QIU Jie-Shan and SUN Cheng-Lin. “Effect of alumina support on 

the performance of Pt-Sn-K γ-alumina catalyst in the dehydrogenation of isobutene”, Journal of Fuel Chemistry 

and Technology, 41 (2013): 1481-1487 

4. Li, Qiang, et al. "Alumina incorporated with mesoporous carbon as a novel support of Pt catalyst for asymmetric 

hydrogenation." Catalysis Communications 42 (2013): 68-72. 

5. Paola Riani, Gabriella Garbarino, Mattia Alberto Lucchini, Fabio Canepa, Guido Busca, “Unsupported versus 

alumina-supported Ni nanoparticles as catalysts for steam/ethanol conversion and CO2 methanation”, Journal of 

Molecular Catalysis A: Chemical, 383-384 (2014): 10-16 

6. Fonteyne, Margot, et al. "Real-time assessment of critical quality attributes of a continuous granulation process." 

Pharmaceutical development and technology 18.1 (2013): 85-97. 

7. Martínez, Lizbeth, et al. "Use of near-infrared spectroscopy to quantify drug content on a continuous blending 

process: Influence of mass flow and rotation speed variations." European Journal of Pharmaceutics and 

Biopharmaceutics 84.3 (2013): 606-615. 

8. Händle, Frank. Extrusion in ceramics. Springer, 2007. 161 

9. Bakeev, Katherine A., ed. Process analytical technology: spectroscopic tools and implementation strategies for 

the chemical and pharmaceutical industries. John Wiley & Sons, 2010. 

10. Mattes, Robert A., Denise E. Root, and Andrew P. Birkmire. "In-line Process Analysis of Residual Moisture in a 

Fluid Bed Granulator–Dryer Using NIR Spectroscopy." Spectroscopy (2005). 

11. Rantanen, Jukka, et al. "Use of the near-infrared reflectance method for measurement of moisture content during 

granulation." Pharmaceutical development and technology 5.2 (2000): 209-217. 

12. Sulub, Yusuf, et al. "Real-time on-line blend uniformity monitoring using near-infrared reflectance spectrometry: a 

noninvasive off-line calibration approach." Journal of pharmaceutical and biomedical analysis 49.1 (2009): 48-54. 

13. Rantanen, Jukka, and Jouko Yliruusi. "Determination of Particle Size in a Fluidized Bed Granulator With a Near 

Infrared Set‐up." Pharmacy and Pharmacology Communications 4.2 (1998): 73-75. 

 


