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ABSTRACT OF THE DISSERTATION

Some results in the representation theory of strongly

graded vertex algebras

By JINWEI YANG
Dissertation Director:

Yi-Zhi Huang and James Lepowsky

In the first part of this thesis, we study strongly graded vertex algebras and their
strongly graded modules, which are conformal vertex algebras and their modules with
a second, compatible grading by an abelian group satisfying certain grading restriction
conditions. We consider a tensor product of strongly graded vertex algebras and its
tensor product strongly graded modules. We prove that a tensor product of strongly
graded irreducible modules for a tensor product of strongly graded vertex algebras
is irreducible, and that such irreducible modules, up to equivalence, exhaust certain
naturally defined strongly graded irreducible modules for a tensor product of strongly
graded vertex algebras. We also prove that certain naturally defined strongly graded
modules for the tensor product strongly graded vertex algebra are completely reducible
if and only if every strongly graded module for each of the tensor product factors
is completely reducible. These results generalize the corresponding known results for
vertex operator algebras and their modules.

In the second part, we derive certain systems of differential equations for matrix
elements of products and iterates of logarithmic intertwining operators among strong-

ly graded generalized modules for a strongly graded conformal vertex algebra under
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suitable assumptions. Using these systems of differential equations, we verify the con-
vergence and extension property needed in the logarithmic tensor category theory for

such strongly graded generalized modules developed by Huang, Lepowsky and Zhang.
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Chapter 1

Introduction

Vertex operator algebras, as defined in [FLM], and more generally, vertex algebras,
as defined in [B1], form a fundamental class of algebraic structures. The repre-
sentation theory of vertex (operator) algebras plays deep roles in the construction
and study of infinite-dimensional Lie algebra representations, in the developmen-
t of structure underlying sporadic finite simple groups, in string theory, in the
theory of modular functions, and in many other areas.

The difference between the terminology vertex operator algebra and vertex
algebra is that a vertex operator algebra amounts to a vertex algebra with a
conformal vector such that the eigenspaces of the operator L(0) are all finite
dimensional with (integral) eigenvalues that are truncated from below (cf. [LL]).
In [HLZ1] and [HLZ2], the authors use a notion of conformal vertex algebra,
which is a vertex algebra with a conformal vector and with an L(0)-eigenspace
decomposition, and a notion of strongly graded conformal vertex algebra, which
is a conformal vertex algebra with a second, compatible grading by an abelian
group satisfying certain grading restriction conditions.

In this thesis, we explore two important aspects of the representation theory
of strongly graded vertex algebras. In the first part of this work, we consider
tensor products of algebras and tensor products of modules for the respective
tensor factors. The second part of this work is motivated by tensor product
functors for modules for an algebra, and the corresponding tensor categories of
modules, a much different, and more sophisticated, aspect of the theory than

tensor products of algebras and their corresponding modules. Thus in this thesis,



“tensor products” are actually used in two completely different senses.

In a series of papers ([HL1]-[HL4], [H1]), Yi-Zhi Huang and James Lepowsky
developed a theory of braided tensor categories, and more precisely, of “vertex
tensor categories,” for the module category of what they called a “finitely re-
ductive” vertex operator algebra satisfying certain additional conditions; finitely
reductive means that the module category is semisimple and that certain finite-
ness conditions hold. But it is just as natural and important to develop a theory
for non-semisimple module categories in vertex operator algebra theory as it is in
the Lie theory. In [HLZ1] and [HLZ2], this tensor product theory is generalized
to a larger family of categories of strongly graded modules for a conformal vertex
algebra, under suitably relaxed conditions.

We would like to investigate vertex tensor categories in the sense of [HL1], but
more generally, in the setting of [HLZ1], associated with the tensor product of
strongly graded vertex algebras, and this motivates the problem of determining
the irreducible modules for this tensor product algebra. This problem is solved
in the first part of this thesis, Chapter 2.

To develop the representation theory of vertex operator algebras that are not
finitely reductive, it is necessary to consider certain generalized modules that are
not completely reducible and the logarithmic intertwining operators among them.
In [HLZ2], the authors prove that under certain conditions, matrix elements of
products and iterates of logarithmic intertwining operators among generalized
modules for a vertex operator algebra satisfy certain systems of differential equa-
tions. Using this result, they verify the convergence and extension property, an
important sufficient condition, introduced in its original form in [H1], for con-
structing vertex tensor categories for generalized modules for a vertex operator
algebra. In the second part of this thesis, Chapter 3, we generalize these ar-
guments to logarithmic intertwining operators among generalized modules for a
strongly graded vertex algebra.

Now we proceed to give more details.



In the first part of this thesis, Chapter 2, we prove that a tensor product
of strongly graded irreducible modules for a tensor product of strongly graded
vertex algebras is irreducible, and that conversely, such irreducible modules, up to
equivalence, exhaust certain naturally defined strongly graded irreducible modules
for a tensor product of strongly graded vertex algebras. (These terms are defined
in Chapter 2.) As a consequence, we determine all the strongly graded irreducible
modules for the tensor product of the moonshine module vertex operator algebra
V! with a vertex algebra associated with a self-dual even lattice, in particular,
the two-dimensional Lorentzian lattice.

The moonshine conjecture of Conway and Norton in [CN] included the conjec-
ture that there should exist an infinite-dimensional representation V' of the (not
yet constructed) Fischer-Griess Monster sporadic finite simple group M such that
the McKay-Thompson series T, for g € M acting on V' should have coefficients
that are equal to the coefficients of the ¢-series expansions of certain modular
functions. In particular, this conjecture incorporated the McKay-Thompson con-
jecture, which asserted that there should exist a (suitably nontrivial) Z-graded
M-module V' = ]_[2.2_1 V_; with graded dimension equal to the elliptic modular

2mi :
™7 1 in the upper

function j(7) — 744 = >, c(i)q’, where we write ¢ for e
half-plane. Such an M-module, the “moonshine module,” denoted by V!, was
constructed in [FLM], and in fact, the construction of [FLM] gave a vertex opera-
tor algebra structure on V* equipped with an action of M. In [FLM], the authors
also gave an explicit formula for the McKay-Thompson series of any element of
the centralizer of an involution of type 2B of M; the case of the identity element
of Ml proved the McKay-Thompson conjecture.

Borcherds then showed in [B2] that the rest of the McKay-Thompson series for
the elements of M acting on V¥ are the expected modular functions. He obtained
recursion formulas for the coefficients of McKay-Thompson series for V? from the

Euler-Poincaré identity for certain homology groups associated with a special Lie

algebra, the “monster Lie algebra,” which he constructed using the tensor product



of the moonshine module vertex operator algebra V% and a natural vertex algebra
associated with the two-dimensional Lorentzian lattice. The importance of this
tensor product vertex algebra motivates the first part of this thesis, Chapter 2.
In a series of papers ([HL1]-[HL4|, [H1]), the authors developed a tensor prod-
uct theory for modules for a vertex operator algebra under suitable conditions.

> which is much richer than

A structure called “vertex tensor category structure,’
braided tensor category structure, has thereby been established for many impor-
tant categories of modules for classes of vertex operator algebras (see [HL1]). It is
expected that a vertex tensor category together with certain additional structures
determines uniquely (up to isomorphism) a vertex operator algebra such that the
vertex tensor category constructed from a suitable category of modules for it is
equivalent (in the sense of vertex tensor categories) to the original vertex tensor
category. In [HLZ1] and [HLZ2], this tensor product theory is generalized to a
larger family of categories of “strongly graded modules” for a conformal vertex
algebra, under suitably relaxed conditions. We want to investigate the vertex
tensor category in the sense of [HL1], but in the setting of [HLZ1], associated
with the tensor product of the moonshine module vertex operator algebra V* and
the vertex algebra associated with the two-dimensional Lorentzian lattice. The
first step in thinking about this is to determine the irreducible modules for this
algebra.

For the vertex operator algebra case, it is proved in [FHL] that a tensor product
module W; ® - - - ® W), for a tensor product vertex algebra V; ®---® V), (where W;
is a V;-module) is irreducible if and only if each Wj is irreducible. The proof uses
a version of Schur’s Lemma and also the density theorem [J]. It is also proved
in [FHL] that these irreducible modules W are (up to equivalence) exactly all
the irreducible modules for the tensor product algebra Vi ® --- ® V,. The proof
uses the fact that each homogeneous subspace of W is finite dimensional. In this
paper, we generalize the arguments in [FHL] to prove similar, more general results

for strongly graded modules for strongly graded conformal vertex algebras.



For the strongly graded conformal vertex algebra case, the homogeneous sub-
spaces of a strongly graded module are no longer finite dimensional. However,
by using the fact that each doubly homogeneous subspace (homogeneous with
respect to both gradings) of a strongly graded conformal vertex algebra is finite
dimensional, we prove a suitable version of Schur’s Lemma for strongly grad-
ed modules under the assumption that the abelian group that gives the second
grading of the strongly graded algebra is countable.

To avoid unwanted flexibility in the second grading such as a shifting of the
grading by an element of the abelian group, we suppose that the grading abelian
groups A for a strongly graded conformal vertex algebra and A (which includes A
as a subgroup) for its strongly graded modules are always determined by a vector
space, which we typically call b, consisting of operators induced by V. We call this
kind of strongly graded conformal vertex algebra a “strongly (h, A)-graded con-
formal vertex algebra” and its strongly graded modules “strongly (b, fl)—graded
modules.” Important examples of strongly (b, A)-graded conformal vertex alge-
bras and their strongly (b, fl)—graded modules are the vertex algebras associated
with nondegenerate even lattices and their modules.

For strongly (b, A;)-graded modules W; for strongly (h;, A;)-graded conformal
vertex algebras V;, we construct a tensor product strongly (®_, b, ®F_, A;)-graded
module W7 & --- ® W, for the tensor product strongly graded conformal vertex
algebra V1 ®- - -®V,. Then we prove that this tensor product module W, ®- - -@W,
is irreducible if and only if each W is irreducible, under the assumption that each
grading abelian group A; for V; is a countable group.

To determine all the irreducible strongly graded modules (up to equivalence)
for the tensor product strongly graded conformal vertex algebra V; @ --- ® V,
the main difficulty is that we need to deal with the second grading by the abelian
groups. For the strongly (&?_h;, fl)—graded modules W for the tensor product
strongly (&4_,b,, ®Y_; A;)-graded vertex algebra V1 ®- - -®V},, we assume there is a
decomposition A = A, @ - - -@Ap, such that W is an (b;, fli)—graded module (that



is, a strongly graded module except for the grading restriction conditions) when
viewed as a V;-module. We call this kind of strongly (®?_,b;, A)-graded module a
strongly ((hy, Ay), ..., (b, /Ip))—graded module. In the main theorem, we prove
that if such a module is irreducible, then it is a tensor product of strongly graded
irreducible modules. Then, as a corollary of the main theorem, we classify the
strongly graded modules for the tensor product strongly graded conformal vertex
algebra V% @ V, where L is an even lattice, and in particular, where L is the
(self-dual) two-dimensional Lorentzian lattice.

It is proved in [DMZ] that every module for the tensor product vertex operator
algebra V; ® --- ® V,, is completely reducible if and only if every module for
each vertex operator algebra V; is completely reducible. We also generalize the
argument in [DMZ] to prove a similar result for tensor product strongly (b, A)-
graded conformal vertex algebras.

In the second part of this thesis, Chapter 3, we generalize the arguments in
[H3] and [HLZ2] to prove that for a strongly graded conformal vertex algebra V,
matrix elements of products and iterates of logarithmic intertwining operators a-
mong triples of strongly graded generalized V-modules under suitable assumption-
s satisfy certain systems of differential equations and that the prescribed singular
points are regular. Using these differential equations, we verify the convergence
and extension property needed in the theory of logarithmic tensor categories for
strongly graded generalized V-modules in [HLZ2|. Consequently, under certain
assumptions on the strongly graded generalized modules for a strongly graded
conformal vertex algebra V', we obtain a natural structure of braided tensor cat-
egory on the category of strongly graded generalized V-modules using the main
result of [HLZ2].

It was proved in [H3] that if every module W for a vertex operator algebra
V' = [,z Vin) satisfies the Cy-cofiniteness condition, that is, dim W/Cy(W) <

oo, where C1(W) is the subspace of W spanned by elements of the form u_jw



for u € Vi = [1,.0 Vin) and w € W, then matrix elements of products and iter-
ates of intertwining operators among triples of V-modules satisfy certain systems
of differential equations. Moreover, for prescribed singular points, there exist
such systems of differential equations such that the prescribed singular points
are regular. In Section 11 of [HLZ2] (Part VII), using the same argument as in
[H3], certain systems of differential equations were derived for matrix elements
of products and iterates of logarithmic intertwining operators among triples of
generalized V-modules. In the second part of my thesis, we prove similar, more
general results for matrix elements of products and iterates of logarithmic in-
tertwining operators among triples of strongly graded generalized modules for a
strongly graded vertex algebra.

In the second part of the thesis, Chapter 3, we generalize the C-cofiniteness
condition for generalized modules for a vertex operator algebra to a C -cofiniteness
condition with respect to A for strongly A-graded generalized modules for a strong-
ly graded vertex algebra. That is, every strongly graded generalized A-module W
for a strongly A-graded vertex algebra V satisfies the condition that for 8 € A,
dim W& /(CL(W))P) < oo, where W®) and (C1(W))®) are the A-homogeneous
subspace of W and C1(W) with A-grading 3, respectively. Furthermore, for a
strongly graded vertex subalgebra Vg of V| the C}-cofiniteness condition for W
as a Vg-module implies the Ci-cofiniteness condition for W as a V-module. In
particular, the case that W satisfies the C}-cofiniteness condition as a module
for V(©—the A-homogeneous subspace of V with A-weight 0—is the same as the
case that W satisfies the C-cofiniteness condition as a vertex operator algebra
module.

The key step in deriving systems of differential equations in [H3] is to construct
a finitely generated R = C[zi", 25, (21 — 22) ~']-module that is a quotient module
of the tensor product of R and a quadruple of modules for a vertex operator
algebra. However, for a strongly graded conformal vertex algebra, the quotient

module constructed in the same way is not finitely generated since there can



be infinitely many A-homogeneous subspaces in the strongly graded generalized
modules. In order to obtain a finitely generated quotient module, we assume that
fusion rules for triples of certain A-homogeneous subspaces of strongly graded
generalized V-modules viewed as V(®-modules are zero for all but finitely many
triples of such fl—homogeneous subspaces.

Under the assumption on the fusion rules for triples of certain A—homogeneous
subspaces and the C}-cofiniteness condition with respect to A for the strongly A-
graded generalized modules, we construct a natural map from a finitely generated
R-module to the set of matrix elements of products and iterates of logarithmic
intertwining operators among triples of strongly graded generalized V-modules.
The images of certain elements under this map provide systems of differential
equations for the matrix elements of products and iterates of logarithmic in-
tertwining operators, as a consequence of the L(—1)-derivative property for the
logarithmic intertwining operators. Moreover, for any prescribed singular point,
we derive certain systems of differential equations such that this prescribed sin-
gular point is regular. Using these systems of differential equations, we verify the
convergence and extension property needed in the construction of associativity
isomorphism for the logarithmic tensor category structure developed in [HLZ2].
Consequently, if all the assumptions mentioned above are satisfied, we obtain a
braided tensor category structure on the category of strongly graded generalized
V-modules.

The material in Chapters 2 and 3 is contained in [Y1] and [Y2], respectively.

It would be valuable to construct interesting examples of strongly graded mod-
ules other than modules for vertex algebras associated with non-positive-definite
even lattices. Not only would such examples broaden the applicability of the dif-
ferential equations constructed in the second part of this thesis, but they would

also shed further light on Huang-Lepowsky’s vertex tensor category theory.



Chapter 2

Tensor products of strongly graded vertex algebras and

their strongly graded modules

2.1 Strongly graded vertex algebras and their strongly graded mod-

ules

We recall the following four definitions from [HLZ1].

Definition 2.1.1 A conformal vertex algebra is a Z-graded vector space

V=11V (2.1)

neZ

(for v € V{y,), we say the weight of v is n and we write wt v = n) equipped with a

linear map V ® V' — V/[[z,z~!]], or equivalently,

V. — (End V)|[[z,27']]

v = Y(v,z) = Zvnx_"_l (where v, € End V), (2.2)

neL

Y (v, z) denoting the vertez operator associated with v, and equipped also with two
distinguished vectors 1 € V(o) (the vacuum vector) and w € V(9 (the conformal
vector), satisfying the following conditions for u,v € V: the lower truncation
condition:

u,v =0 for n sufficiently large (2.3)
(or equivalently, Y (u,z)v € V((x))); the vacuum property:
Y(1,2) = 1y; (2.4)
the creation property:

Y(v,2)1 € V[[z]] and limY(v,z)1 =v (2.5)

z—0
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(that is, Y (v, )1 involves only nonnegative integral powers of x and the constant

term is v); the Jacobi identity (the main axiom):

5( - x“’)wu,xl)m, z2) — 5( - ’”l)m, )Y (u, 21)

Zo —Zo

- leé(xl — xO)Y(Y(u, o)V, T2) (2.6)

T2
(note that when each expression in (2.6) is applied to any element of V, the
coefficient of each monomial in the formal variables is a finite sum; on the right-
hand side, the notation Y (-, z5) is understood to be extended in the obvious way

to V[zo, 25 "]]); the Virasoro algebra relations:

[L(m),L(n)] = (m —n)L(m+n)+ %(m3 — M) 6ntm.0C (2.7)

for m,n € Z, where

L(n) =wyy for n€Z, ie., Y(w,z)= ZL(H)ﬁ_n_Q, (2.8)

neL

ceC (2.9)

(the central charge or rank of V');

C%Y(v,x) =Y (L(—1)v,x) (2.10)

(the L(—1)-derivative property); and
L(0)v =nv = (wtv)v for n€Z and v € V). (2.11)

This completes the definition of the notion of conformal vertex algebra. We

will denote such a conformal vertex algebra by (V)Y 1, w).

Definition 2.1.2 Given a conformal vertex algebra (V)Y,1,w), a module for V

is a C-graded vector space

W= ][ W (2.12)

neC
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(graded by weights) equipped with a linear map V @ W — W{[z, z7!]], or equiv-

alently,
V — (End W)[[:v,x_l]]

v = Y(v,z) = Zvnx’"’l (where v, € End W) (2.13)

(note that the sum is over Z, not C), Y (v,x) denoting the vertex operator on
W associated with v, such that all the defining properties of a conformal vertex
algebra that make sense hold. That is, the following conditions are satisfied: the

lower truncation condition: for v € V and w € W,
vow =0 for n sufficiently large (2.14)
(or equivalently, Y (v, z)w € W((x))); the vacuum property:
Y(1,2) = lw; (2.15)

the Jacobi identity for vertex operators on W: for u,v € V,

6( - x2)y<u,x1>y<v, 7a) — 6( - “)m, )Y (u, 21)

Zo —Zo

_ x;%s(‘”l — xo)y(y(u, o)V, ) (2.16)
X2

(note that on the right-hand side, Y (u, z¢) is the operator on V' associated with

u); the Virasoro algebra relations on W with scalar ¢ equal to the central charge

of V:

[L(m),L(n)] = (m —n)L(m+n)+ %(m3 — M) 0ptm 0C (2.17)

for m,n € Z, where

L(n)=wpy1 forneZ, ie, Y(wx)= Z L(n)z™"% (2.18)
C%Y(v,x) Y (L(=1)v, 2) (2.19)

(the L(—1)-derivative property); and
(L(0) =n)w =0 for ne€ C and w € Wiy, (2.20)

where n = wt w.
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This completes the definition of the notion of module for a conformal vertex

algebra.

Definition 2.1.3 Let A be an abelian group. A conformal vertex algebra
V=1]Vw
nez
is said to be strongly graded with respect to A (or strongly A-graded, or just
strongly graded if the abelian group A is understood) if it is equipped with a
second gradation, by A,

v=][v",

acA

such that the following conditions are satisfied: the two gradations are compatible,
that is,
Ve — H V((noﬁ) (where V(Sf;) =V N V@) for any a € A;
nez

for any o, 8 € A and n € Z,

V(Ef;) =0 for n sufficiently negative; (2.21)
dim V%) < oo; (2.22)
(0).
1€ Vs (2.23)
(0).
v VB c Vetrh) forany ve V@ e Z. (2.25)

This completes the definition of the notion of strongly A-graded conformal

vertex algebra.

For modules for a strongly graded algebra we will also have a second grading
by an abelian group, and it is natural to allow this group to be larger than the
second grading group A for the algebra. (Note that this already occurs for the

first grading group, which is Z for algebras and C for modules.)
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Definition 2.1.4 Let A be an abelian group and V a strongly A-graded confor-
mal vertex algebra. Let A be an abelian group containing A as a subgroup. A

V-module
W = ]_[ Wiy

neC

is said to be strongly graded with respect to A (or strongly A-graded, or just
strongly graded if the abelian group A is understood) if it is equipped with a

second gradation, by A,

w=][w", (2.26)
BeA
such that the following conditions are satisfied: the two gradations are compatible,

that is, for any 3 € A,

B B
W = H W((n)) (where W((n)) = Wy N W®)

neC

forany a € A, f € Aand n € C,

W((fik) =0 for k € Z sufficiently negative; (2.27)
dim W) < o0 (2.28)
uW® Cc Weth) for any v e V@ [ € Z. (2.29)

This completes the definition of the notion of strongly A-graded module for a

strongly A-graded conformal vertex algebra.

Remark 2.1.5 It is always possible that there are different gradings on W by
A, such as by shifting by an element in A. However, in this paper, we shall fix

one particular A-grading on W.

In order to study strongly graded V-modules for tensor product algebras, we

shall need the following generalization:

Definition 2.1.6 In the setting of Definition 2.1.4 (the definition of “strongly
graded module”), a V-module (not necessarily strongly graded, of course) is dou-
bly graded with respect to A if it satisfies all the conditions in Definition 2.1.4
except perhaps for (2.27) and (2.28).



14

Example 2.1.7 Note that the notion of conformal vertex algebra strongly graded
with respect to the trivial group is exactly the notion of vertex operator algebra.
Let V be a vertex operator algebra, viewed (equivalently) as a conformal vertex
algebra strongly graded with respect to the trivial group. Then the V-modules
that are strongly graded with respect to the trivial group (in the sense of Definition
2.1.4) are exactly the (C-graded) modules for V' as a vertex operator algebra, with

the grading restrictions as follows: For n € C,
Wiy =0 for k€ Z sufficiently negative (2.30)

and

dim W(n) < Q. (2.31)

Example 2.1.8 An important source of examples of strongly graded conformal
vertex algebras and modules comes from the vertex algebras and modules asso-
ciated with even lattices. We recall the following construction from [FLM]. Let
L be an even lattice, i.e., a finite-rank free abelian group equipped with a non-
degenerate symmetric bilinear form (-, ), not necessarily positive definite, such
that (o, a) € 27Z for all &« € L. Let h = L ®7 C. Then b is a vector space with a
nonsingular bilinear form (-, -), extended from L. We form a Heisenberg algebra
b= [[ verece
neEZ, n#0

Let (L,”) be a central extension of L by a finite cyclic group (k | k* = 1). Fix a

primitive sth root of unity, say w, and define the faithful character
X : (k) = C*
by the condition
X(k) = w.
Denote by C, the one-dimensional space C viewed as a (x)-module on which (k)

acts according to x:

k-1=uw,
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and denote by C{L} the induced L-module
€{L} = Ind%,C, = C[Z] Oy Cr-

Then
V., = S(h;) ® C{L}

has a natural structure of conformal vertex algebra; see [B1] and Chapter 8of

[FLM]. For a € L, choose an a € L such that @ = «. Define
ta) =a®1eC{L}

and

V' = span {hy(—n1) - - - hp(—ng) @ v(a)},

where hy, ..., hx € b, ny,...,n, > 0, and where h(n) is the operator associated
with h®t" via the GZ-module structure of V. Then V7, is equipped with a natural

second grading given by L itself. Also for n € Z, we have

k
a _ 1
(VL)Eng = span {hi(—nq) - hx(—ng) @ 1(a)| a = «, an + 5(@, a) =n},
i=1

making V7, a strongly L-graded conformal vertex algebra in the sense of Definition
2.1.3. When the form (-,-) on L is also positive definite, then V, is a vertex
operator algebra, that is, as in Example 2.1.7, V, is a strongly A-graded conformal
vertex algebra for A the trivial group. In general, a conformal vertex algebra may
be strongly graded for several choices of A.

Any sublattice M of the “dual lattice” L° of L containing L gives rise to
a strongly M-graded module for the strongly L-graded conformal vertex algebra
(see Chapter 8 of [FLM]; cf. [LL]). In fact, any irreducible V;-module is equivalent
to a Vz-module of the form Vi, 3 C Vio for some 8 € L° and any Vz-module W

is equivalent to a direct sum of irreducible Vz-modules, i.e.,
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where ~;’s are arbitrary elements of L°, and n € N (see [D1], [DLM]; cf. [LL]).
In general, a module for a strongly graded vertex algebra may be strongly graded

for several choices of A.

Notation 2.1.9 In the remainder of this section, without further assumption,
we will let A be an abelian group and V' be a strongly A-graded conformal vertex
algebra. Also, we will let A be an abelian group containing A and W be a doubly
graded V-module with respect to A. When we need W to be strongly graded, we

will say it explicitly.

Definition 2.1.10 The subspaces V(ES) for n € Z, a € A in Definition 2.1.6 are
called the doubly homogeneous subspaces of V. The elements in V(SS) are called

doubly homogeneous elements. Similar definitions can be used for W((f )) in the

module W.

Notation 2.1.11 Let v be a doubly homogeneous element of V. Let wt v,,
n € Z, refer to the weight of v,, as an operator acting on W, and let A-wt v,, refer

to the A-weight of v, on W.

Lemma 2.1.12 Let v € V((nc;), forn € Z, o € A. Then for m € Z, wt v,, =

n—m—1 and A-wt v, = a.

Proof. The first equation is standard from the theory of graded conformal vertex

algebras and the second follows easily from the definitions. OJ

Definition 2.1.13 The algebra A(V; W) associated with V and W is defined to
be the algebra of operators on W induced by V, i.e., the algebra generated by
the set

{vn |v eV, nelZ}.

For a subspace V' of V, we use A(V'; W) to denote the subalgebra of A(V;W)
generated by the set
{v, |veV', nelZ)}
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For a subspace W' of W, we use A(V; W') to denote the subalgebra of A(V; W) p-
reserving W'. Similarly for V' and W', we use A(V'; ') to denote the subalgebra
of A(V;W) generated by the operators on W induced by V.

Remark 2.1.14 When W' is a submodule of W, there are two possible defini-
tions for A(V;W') in Definition 2.1.13. One is as an algebra associated with V/
and W', the other is as a subalgebra of A(V; ). But it does not matter because

they are both algebras of operators on W' generated by the set
{vp |v eV, nelZ}.
Similar comments hold for V' a subalgebra of V.

The following lemma follows easily from Lemma 2.1.12:

Lemma 2.1.15 The algebra A(V; W) is doubly graded by Z and A. Moreover

forn e Z,
AV W)y = span {(01);, -+ (0m)jn | > Wt (1)), =,
i=1
where m € N, v; €V, j; € Z, fori=1,...,m}
and for a € A,

AV W) = span {(v1);, -+ (Um)j | D Awt (v3);, = o,
=1

where me N, v; €V, j, € Z, fori=1,...,m}.

Proposition 2.1.16 Let W be an wrreducible doubly graded V-module with re-

spect to A. Then we have the following results:

(a) Each weight subspace Wy (h € C) is irreducible under the algebra A(V; Wp)).

(b) Each A-homogeneous subspace W) (8 € A) is irreducible under the algebra
A(V; W®),

c¢) Each doubly homogeneous subspace clC, pe A) is irreducible under
Each doubly h b W((f)) heC,BeA ducible und
the algebra A(V; W((f))).
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Proof. We only prove statement (a), the proofs of statements (b) and (c) being
similar. If W) is not irreducible, we can find a nontrivial proper submodule U of
W(xy under the algebra A(V; W, ). This submodule cannot generate all W under
the action by the algebra A(V; W), since by Lemma 2.1.15,

AV U = [TAVW)wUcUe [ W
nez meZ,m#h

This contradicts the irreducibility of W. OJ

Remark 2.1.17 A V-module W decomposes into submodules corresponding to

the congruence classes of its weights modulo Z: For u € C/Z, let
Wi = [ W (2.32)
n=p
where 7 denotes the equivalence class of n € C in C/Z. Then

w= ] W (2.33)
neC/Z
and each W, is a V-submodule of W. Thus if a module W is indecomposable

(in particular, if it is irreducible), then all complex numbers n for which W,y # 0

are congruent modulo Z to each other.

Definition 2.1.18 Let W; and W5 be doubly graded V-modules with respect to

A. A module homomorphism from Wy to Wy is a linear map v such that
V(Y (v, z)w) =Y (v, 2)(w) for v € V, w € Wy,

and such that 1 preserves the grading by A. An isomorphism is a bijective
homomorphism. An endomorphism is a homomorphism from W to itself, we

denote the endomorphism ring by End{(W).

Remark 2.1.19 Suppose V, Wy, Wy, ¢ are as in Definition 2.1.18. Then % is

compatible with both gradings:

V(W) € (W), heC,
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because 1) commutes with L(0) (see Section 4.5 of [LL]), and because 1 preserves

the grading by A.

Remark 2.1.20 The endomorphism ring Endé(W) is a subring of the commut-

ing ring
Eﬂdv(W)

£ {linear maps ¢ : W — W| ¢(Y (v, z)w) = Y (v, 2)(w), for v € V,w € W}.

Proposition 2.1.21 Suppose W is an irreducible strongly fl-gmded V-module.
Then End} (W) = C.

Proof. Forany A € C, vy € Endé(W), let Wf’ be the A-eigenspace of ¢). Then
Wf’ is a V-submodule of W. Because W is irreducible, Wip =0 or W. We still

need to show W;Z’ # 0, for some \ € C.

Choose h € C, € A such that W((f)) # 0. Then by Remark 2.1.19, ) preserves
W((f)). Since dim W((,f)) < oo and we are working over C, 1 has an eigenvector in

W((f)). Therefore W;ﬁ # 0 for some A\ € C. |

Proposition 2.1.22 Suppose A is a countable abelian group. Then Endy (W) =
C.

Proof. From Definition 2.1.3, Vin) = [[,ca V(Ef;), where each doubly homo-
geneous subspace V(ES) has finite dimension. Since A is a countable group, there
are countably many such doubly homogeneous subspaces V(ES), and hence V' has
countable dimension. Since W is irreducible, from Proposition 4.5.6 of [LL], we

know

W = span{v,w | v € V,n € Z},

for any nonzero element w in W. Since V has countable dimension, so does W.
Then the result follows from Dixmier’s Lemma, which says that if S is an irre-

ducible set of operators on a vector space W of countable dimension over C, then
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the commuting ring of S on W consists of the scalars (cf. Lemma 2.2 in [L], and

(W], p.11), where we take S to be A(V;W). n

2.2 Tensor products of strongly graded vertex algebras and their

strongly graded modules

In this section, we are going to introduce the notion of tensor product of finitely
many strongly graded conformal vertex algebras and their modules (see [FHL],
[LL], cf. [M1]).

Let Aj,..., A, be abelian groups, and let Vi,...,V, be strongly A,,..., A,-

graded conformal vertex algebras with conformal vectors w!, ..., w?, respectively.

Let
A=A - DA,

Then the vector space

V:V1®...®V;)

becomes a strongly A-graded conformal vertex algebra, which we shall call the ten-
sor product strongly A-graded conformal vertex algebra, with the following struc-
ture:

YoV @ - @u? ) =YW 2)® - @Y (P, 1)
for () € V; and the vacuum vector is
1=1®---®1.

(Here we use the notation 1 for the vacuum vectors of V' and each V;.) The

conformal vector is
w:w1®1®...®1+...+1®...®1®wl"

Then
Ln)=Lin)®1® - @1+---4+1® - ®1® L,(n)
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or n € Z. (Here we use the notation L;(n) for the operators on V; associated with
w'yi=1,...,p.) The A-grading of V' is given by

v=][v",

a€cA
with
VO =y g... g Ve,

where o; € A;, i =1,...,p, are such that a; +--- + a,, = a. The Z-grading of V'

is given by
V=11 Viw.
neZ
where
V= JI WMWa® &),

ni+-+np=n

(It follows that the Z-grading is given by L(0) defined above.)

Proposition 2.2.1 The tensor product of finitely many strongly graded confor-
mal vertex algebras is a strongly graded conformal vertex algebra whose central

charge is the sum of the central charges of the tensor factors.

Proof. The grading restrictions (2.21) and (2.22) clearly hold. The Jacobi
identity follows from the weak commutativity and weak associativity properties,

as in Section 3.4 of [LLJ. |

Notation 2.2.2 For each ¢ =1, ..., p, we identify V; with the subspace 1®---®
1®V,;®1®---®1of V. The strongly graded conformal vertex algebra V; is a
vertex subalgebra of V. However, it is not a conformal vertex subalgebra of V/

because the conformal vector of V' and V; do not match.

Remark 2.2.3 From the definition of tensor product strongly graded conformal

vertex algebra, we see that

V(1@ 2le@le --0l,1) =100y, @Y (0" 1)oly,, @ --®1y,
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for v € V;. In particular, we have
[Y(‘/iaxl)a Y(V};xQ)] = 07
fori,j=1,...,pand i # j.

Lemma 2.2.4 For alln € Z, (v\Y @ --- @ v®),, can be expressed as a linear
combination, finite on any given vector, of operators of the form (v ®@1®---®

1)i1"'(1®"'®1®v(p))ip-

Proof. We prove the result as in [FHL] by induction. When p = 2, taking

Res,, and the constant term in z( of the Jacobi identity, we find that

Y(v(l) @ v?), To) = ReSmZEEIY(Y(U(l) ®1,20)(1® 0(2)), T9)
= Res,, (71 — xQ)’lY(v(l) ®1,z1)Y(1® @), Tg)
— Resy, (—z2 4+ 21) Y1 @ 0®, 2)Y (0 @ 1, 19),
so that for all n € Z, (v(l) ®v(2))n can be expressed as a linear combination, finite
on any given vector, of operators of the form (v ®1),,,(1®v®),,.(Note that we
don’t need operators of the form (1 ® v®),, (v ® 1), because of the Remark
2.2.3))
For general p, taking Res,, and the constant term in x4 of the Jacobi identity,
we have
Y(U(l) Q- @vW, T5)
= Res, 20 Y (Y (W @ - @ 0P V@1, 20)(1® - @ 1@ 0P), 5)
= Res,, (1 — 1) 'YV @ 0P V@ L,2)Y(1®- - @ 100?, x)
—Resy, (—22+21) V(1 ®-- @120? 2)Y(0V @ - @ 0PV @1, 1).
It follows that (v ® --- @ v)), is a linear combination of the operators (v ®

e @uP VR, - (1®---®@1®v®),,. Thus the lemma holds by the induction
hypothesis. |
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Now we define the notion of tensor product module for tensor product strongly
A=A @ ® A,-graded conformal vertex algebra V =V, @ --- ® V, with the
notions above. Let A, ... ,Ap be abelian groups containing A;,..., A, as sub-

groups, respectively, and let Wy,... W, be strongly A, , Ap-graded modules

for Vi,...,V,, respectively.

Let

A=A --d A,
Then we can construct the tensor product strongly A-graded module
W=wo oW,
for the tensor product strongly A-graded algebra V' by means of the definition
Yo @ - @uv? 2) =YV, 2)® - Y @P,z) forv® eV, i=1,...,p,

Lin)=Li(n)®1®@--- @1+ +1®---®1® Ly(n) fornecZ.

(Here we use the notation L;(n) for the operators associated with w® on W;,
i=1,...,p.) The A-grading of W is defined as
W = H W('B),
BeA
with
B
WO =w ... Wk,

where 3; € A;, i =1,....p, are such that 8 +-- - + Bp = . The C-grading of W

is defined as

W = ]_[ Wiy,

neC
where

Wy = Z <W1>(m) Q- (Wp>(np)~

ni+-+np=n

It follows that the C-grading is given by the operator L(0) on W defined above.

It is clear that the algebra V' is also a module for itself.
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Proposition 2.2.5 The structure W constructed above is a strongly A-graded

module for the tensor product strongly A-graded conformal vertex algebra V.

Assumption 2.2.6 In the remainder of this section, we always assume that A,

and that each A; (i =1,---,p) is a countable abelian group.
Using Proposition 2.1.22, we now prove:

Theorem 2.2.7 Let W =W, ®---®@ W, be a strongly A=A® @ Ap—gmded
V-module, with the notations as above. Then W is irreducible if and only if each

W; s irreducible.

Proof. The “only if” part is trivial. For the “if” part, for simplicity of
notation, we take p = 2 without losing any essential content. Take a nonzero

) € W, be

submodule W C Wy @ Wa, let wV, ... w € W, and wl®, ... 0w

linearly independent such that Z;‘:laj(wj(l) ®wj(«2)) € W, where each a; # 0. Take
any w € Wi, w® € W,. By Proposition 2.1.22, the commuting ring consists of
the scalars for W7 and W5. Thus by the density theorem (see for example Section

5.8 of [J]), there are by € A(Vy; Wy @ Wa), by € A(Vy; Wi ® Wa) such that

by ~w§1) =w®, b ~wz-(1) =0, fori=2,...,n.
bg-w?) =w®?, bg-wi@) =0, fori=2,...,n.
Then
(bibe) - 7 aj(wi) @ wl?) = ay(w @ w?) € W.
Hence w® @ w® € W, and so W = W, @ Ws. |

2.3 Strongly (h, A)-graded vertex algebras and their strongly (h, A)-

graded modules

For some strongly A-graded vertex algebras V', there is a vector space h consisting

of mutually commuting operators induced by V such that the A-grading of V' is
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given by b in the following way: for a € A, V(@) is the weight space of b of weight

«. Here is an example:

Example 2.3.1 Consider the strongly L-graded conformal vertex algebra V7 in

Example 2.1.8. For h € b, there is an operator h(0) on V7, such that
h(0) - V¥ = (h, )V,
We identify f with the set of operators

{h(0) = (W(=1)-1)o | h € b}

(see Chapter 8 of [FLM]). Since the symmetric bilinear form (-, -) is nondegener-

ate, VL(a) is characterized as the weight space of h of weight «.

Consider the tensor algebra T'(V[t,t!]) over the vector space V[t,t~!]. Then
any V-module W, in particular, V itself, can be regarded as a T'(V[t,t!])-module
uniquely determined by the condition that for v € V., n € Z, v ® t" acts on W as
vp. In the following definitions, we consider a particular subspace of T'(V[t,t71])

acting on V' and W.

Definition 2.3.2 A strongly A-graded vertex algebra equipped with a vector
subspace

b T(V[tt])
is called strongly (h, A)-graded if there is a nondegenerate pairing
(w):hxA—C
(h,a) — (h.a)

linear in the first variable and additive in the second variable, such that § acts

commutatively on V' and

V@ ={veV |h-v=(ha), foral heb}.
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By Definition 2.3.2, the strongly graded conformal vertex algebra V; in Exam-
ple 2.3.1 is strongly (b, L)-graded, where b is the set of operators {(h(—1)-1)o | h €
L ®z C}.

For a strongly (h, A)-graded vertex algebra V', a natural module category is
the category of strongly A-graded V-modules W with an action of b, such that

the A-grading on W is given by weight spaces of . Here is an example:

Example 2.3.3 As in Example 2.1.8, any sublattice M of L° containing L gives
rise to a strongly M-graded Vp-module V,;. Take h = L ®; C and identify § as
the set of operators {(h(—1)-1)o | h € b} as in Example 2.3.1. Then for § € M,

VI = {we Vi | h-w=(h,Bw, forall h € b}.
so that we have examples of the following:

Definition 2.3.4 A strongly A-graded module for a strongly (h, A)-graded ver-

tex algebra is said to be strongly (h, A)-graded if there is a nondegenerate pairing
(,)V:hx A—C
(h, B) — (h, B)

linear in the first variable and additive in the second variable, such that the

operators in h act commutatively on W and
W& ={weW | h-w=(h,B)w, forall h € h}.

Remark 2.3.5 Submodules and quotient modules of strongly (b, fl)—graded con-
formal modules are also strongly (b,fl)—graded modules. Irreducible strongly
(h, A)-graded modules are strongly (b, A)-graded modules without nontrivial sub-
modules. Strongly (b, A)—graded module homomorphisms are strongly A-graded

module homomorphisms which commute with the actions of b.

The following propositions are natural analogues of Proposition 2.2.1 and

Proposition 2.2.5.
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Proposition 2.3.6 Let Vy,...,V, be strongly (b1, A1), .., (b,, A,)-graded con-
formal vertex algebras, respectively. Let A=A, ®--- DA, h=b1D---Db,, and
let (-,-); denote the pairing between b; and A;, for i =1,...,p. Then the tensor
product algebra V. = Vi ® --- ® V, becomes a strongly (b, A)-graded conformal

vertex algebra, where the nondegenerate pairing is given by:
(v):hpxA—C
p
(h7 Oé) L Z<h17 ai>i7
i=1
where h=hy+---+h,, a=a;+---+oy, forh;ebh;, ; € A;, 1 =1,...,p, and

V@O =ve. ..oV ={veVi® @V, | h-v={(ha), foralhe b}

Proof. 1t is easy to see that the pairing defined above is nondegenerate, and

V(@) i characterized uniquely as the eigenspace of . |

Proposition 2.3.7 Let Wy,..., W, be strongly (b1, Ay, ..., (bp, Ap)-gmded con-
formal modules for strongly (b1, A1), ..., (hp, Ap)-graded conformal vertex algebras
Vi,...,V,, respectively. Let A=A @ @ Ap, h=b@---db,, and let (-,-);
denote the pairing between b and A;, fori = 1,...,p. Then the tensor produc-
t module W = Wy ® --- ® W), becomes a strongly ([j,fl)—gmded module for the

strongly graded vertex algebra V', where the nondegenerate pairing is given by:
():hxA—C
(h,B) — i%, Bidis
i=1
where h="hy +---+h,, f=01+---+B,, for h; € b, B;eA;,i=1,....p, and
WO =W ..oW = {we Wi --@W, | h-w = (h, B)w, for all h € h}.
The following proposition is an analogue and consequence of Theorem 2.2.7.

Theorem 2.3.8 Let W = W, ® --- @ W, be a strongly (h, A)-graded module
constructed in Proposition 2.3.7. Then W is irreducible if and only if each W; is

irreducible.
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2.4 Irreducible modules for tensor product strongly graded algebra

Our goal is to determine all the strongly (b, fl)—graded irreducible modules for
the tensor product strongly (h, A)-graded conformal vertex algebra constructed
in Proposition 2.3.6. To do this, we need to define a more specific kind of strongly

(b, A)—graded modules as follows:

Definition 2.4.1 Let V,...,V,, V bestrongly (h1, A1), ..., (hy, 4,), (h, A)-graded
conformal vertex algebras, respectively, as in the setting of Proposition 2.3.6. Let
W be a strongly (b, fl)-graded V-module, where A is an abelian group containing

A as a subgroup, so that in particular, for 8 € A,
WO ={weW |h-w= (h,B)w, forall h € h}.

Assume that there exists an abelian subgroup A; of A containing A; as a subgroup

for each ¢ = 1,...,p such that
A=A @ a4,
(hi, Aj) = 0if i # j
and such that T is a doubly graded V;-module with respect to A; and the A,-
grading is given by b; in the following way: For 3; € A;,
W) = LweW | hi-w= (hy, Bi)w, for all h; € b;}.

Then W is called a strongly ((h1, A1), .. ., (b, A,))-graded V-module.

Remark 2.4.2 Submodules and quotient modules of strongly ((hy, A1), ...,

(b, Ay))-graded V-modules are also strongly ((h1, Ay), ..., (b, Ap))-graded mod-
ules. Irreducible strongly ((h1,4;),..., (b, A,))-graded modules are strongly
((h, A1), ..., (b,, A,))-graded modules without nontrivial submodules. Strongly
((h, A1), ..., (h,, A,))-graded module homomorphisms are strongly (h, A)-graded

V-module homomorphisms.
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Example 2.4.3 The strongly (h, A)-graded tensor product module Wi & - - ®
W, constructed in Proposition 2.3.7 is a strongly ((h1, Ay, ..., (hp,fip))—graded
Vi ® -+ ® Vp-module.

From Example 2.1.8, we can see that any V-module is a strongly L°-graded
module. Based on this fact, it is easy to show that the following example satisfies

the conditions in Definition 2.4.1.

Example 2.4.4 Let V% be the moonshine module constructed in [FLM], which is
a strongly ((0), (0))-graded conformal vertex algebra as in Example 2.1.7; let V7, be
the conformal vertex algebra associated with the even 2-dimensional unimodular
Lorentzian lattice L, which is a strongly (b, L)-graded conformal vertex algebra
as constructed in Example 2.1.8. Then any strongly (h, L)-graded module for
Vi ® Vy is strongly (((0),(0)), (b, L))-graded (note that L is a self-dual lattice,
ie., L°=1L).

Notation 2.4.5 For 8, € A, ... ,Bp € Ap, we let W (BBp) denote the following

common weight space of b,... b, i.e.,
WEPe) = Loy € W | hy - w = (hy, B;)w, for all h; € by, i =1,...,p}.

Next we assume W to be a strongly ((hy, A1), ..., (b, 4,))-graded Vi®- - -@V-

module, with the notation as in Definition 2.4.1.

Proposition 2.4.6 Suppose that W is irreducible. Then

for By € Al, .., PBp € Ap, WBL-B) s irreducible under the algebra of operators

Proof. The proof is similar to the proof of Proposition 2.1.16. |

Lemma 2.4.7 For 8 € A, we have

where B = [y + -+ Bp.
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Proof. This is a consequence of Definition 2.4.1. |

Theorem 2.4.8 Let W be a strongly ((hy, 4y), ..., (bp,ﬁp))-gmded irreducible
Vi ®---®V,-module, with the notions as in Definition 2.4.1. Then W is a tensor

product of irreducible strongly (b;, fli)-gmded Vi-modules, fori=1,...,p.

Proof. For simplicity of notation, we take p = 2, as above. Since W is irre-
ducible, by Remark 2.1.17, W = [[,_, W(y) for some u € C/Z, where n denotes
the equivalent class of n € C in C/Z. Choose 8 € A such that W® =£ 0. Then
there exists ng € C such that W((nﬁ 0)) is the lowest weight space of W), Since
W((f 0)) is finite dimensional and we are working over C, there exists a simultaneous
eigenvector wy € W((fo)) for the commuting operators L;(0) and the operators in
B, i = 1,2. Denote by ny,ny € Z the corresponding eigenvalues for L;(0), L2(0).
Then we have ng = ny + ng. Denote by 3 € Ay, By € A, the corresponding
weights for b1, ho. By Lemma 2.4.7, we have W) = W®L52) and g = 51 + fs.

Now the L(—1)-derivative condition and the L(0)-bracket formula imply that
[L1(0),Y (v @ 1,2)] = Y (L1 (0) (v @ 1), z) + x%Y{v(l) ® 1,1)
for v € ;. Thus for doubly homogeneous vector v() and n € Z,
wty (v @ 1), =wt; (v ®1) —n —1,

where wt; refers to L;(0)-eigenvalue on both V; ® V; and the space of operators
on W. In particular, (v ® 1), permutes L;(0)-eigenspaces. Moreover, since
(1®v®@),, for v € V4, commutes with L;(0), it preserves L;(0)-eigenspaces. Of

course, similar statements hold for L,(0), h1(0), h2(0).

By Lemma 2.4.6, W®152) is irreducible under the algebra of the operators
A(Vy @ Vo; WBLA2)) - Then WP152) is generated by wy by the irreducibility, and

is spanned by elements of the form

1 1 2 2
@ ® )y -+ (0 @ Ve (1@ 0 ), -+ (1 ® 00
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e

i Yj

weights of S, v\ and > i v](- ) are 0.

where vz-(l) € V7 and U](»Z e Vs, v are doubly homogeneous, and the A-

Hence W¥1:52) is the direct sum of its simultaneous eigenspaces for L;(0) and
h;, for i = 1,2, and the L1(0), Ly(0)-eigenvalues are bounded below by nq, ns,
respectively. It follows that the lowest weight space W((f ;)ﬂ 2) i filled up by the

simultaneous eigenspace for the operators L;(0) with eigenvalues n;. To be more

precise, we use WV, (BrB2) 0 denote the subspace W, Bl B2),

(n112) By a similar argumen-

t as in Proposition 2.4.6, W (B1,52) 22 is irreducible under the algebra of operators

Ay @ Vg, W)y,

nl n2

By the density theorem, the algebra A(V; ® Vy; W(2™)) fills up End W),

(n1,n2 (n1,n2)

Because A(Vi; leﬁ? ) and A(Vy; W, B 1’5 X ) are commuting algebras of operators
and A(V; ® Vs, W (B, 52 ) is generated by A(Vy; W (B, 522 ) and A(Va: W(ﬁl B2) ), we

nl ’n2) Tbl Tl2)

see that
EndWﬁlﬁz —A(V Wﬁlﬁz )A(V Wﬁ1ﬂ2)

(n1,m2) — (n1,n2) (n1,n2)

Choose an irreducible A(Vy; W (B1,82) j)-submodule M; of W, (B ﬂQ) Then

(n1,n2) (n1,n2)

A(Vi; W 5 115 »y) acts faithfully on M, since any element of A(V1; W, f 3 5 ;) annihi-

lating M; annihilates

AV WY My = A(Va WD AV W)Y - My

n1 TLQ) nl n2

B1,B
= (End W(n;n;;)M
(B1,82)

(n1,m2) "

Thus A(Vy; W, f b f 22)) ) restricts faithfully to End M; and hence is isomorphic to
W 51 52)

(n1.nyy) 18 isomorphic to a full matrix

a full matrix algebra. Similarly, A(V5;
algebra. It follows that

End W(/Bl 52 A(V W (B1,62) ) Q A(V W (B1,62) )

(n1,n2) (n1,m2) (n1,n2)
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Then W((fll f 22)) has the structure

W(ﬁlﬁz) = M, ® M,

(n1,n2)

as an irreducible A(Vy; W, (B1.2) )@ A(Vay W, (B,52) j)-module. Here, as an irreducible

(n1,m2) (n1,n2)

AV, W (B1.82) ) submodule of T/V(B1 62 , M; has A;-grading f3; induced by b;, and

(n1,n2)

has C-grading n; induced by L;(0), respectlvely, fori = 1,2.

Let
0 __
W =1y QY2

(where y; € M;, for i = 1,2) be a nonzero decomposable tensor in W((fllf 22)) . Let

W; be the doubly graded Vj-submodule of W generated by w". Then the module

Wi has a strongly (b, Al)—graded Vi-module structure such that

where

(Wl)(n) = span{ ® 1), (U](Dl) & 1)spw0 |
wt v%l)—31—1+---+wt U;I)_gp—lzn—m,
Awt o)+ Awt ol =y — By,

where v?), e ,UZ(,I) eV, s1,...,5, € Z}.

This module we constructed satisfies the grading restrictions (2.27) and (2.28)
in Definition 2.1.4, which follows from the fact that W is a strongly graded V; @ Vs-
module and each doubly homogeneous subspace of W lies in the doubly homoge-
neous subspace of W. Also, Wl(v) is the weight space of h; with weight v, hence
by Definition 2.3.4, Wy is a strongly (b, A;)-graded Vi-module.

We claim that W is Vj-irreducible (and similarly for W5). In fact, consid-
eration of the abelian group grading shows that any nonzero Vi-submodule of

W1 not intersecting W(¥1%2) will give rise to a nonzero V; ® Vi-submodule of W
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not intersecting W(¥-%2) Thus any nonzero V;-submodule of W, must intersec-
t W %) Then consideration of the weight shows that the (3;, 3)-subspace

(B1,82)

of any nonzero V;-submodule of W) not intersecting I/V(n1 2) would give rise to

a nonzero A(V; ® Vo; W¥B52))_submodule of W¥52) not intersecting W Brh2)

(n17n2)

Thus any nonzero Vi-submodule of W; must intersect W((f 11522)) But the irre-

ducible A(Vy; W) module A(Vy; W) . w0 is the full intersection of W;

(n1,n2) (n17n2)

and W8 2)) , so that the Vi-submodule must contain w® and hence be all of Wj.

(n1,n2

This proves the Vij-irreducibility of Wj.

Finally, to show that W is isomorphic to W; ® W5, consider the abstract tensor
product Vi ® Vo-module Wy ® Wy, where W; is the strongly /L»—graded Vi-module

defined above, for © = 1,2. Define a linear map
Wi Wy, - W
bl-w0®b2~w0»—>b1b2-w0,

where b; is any operator induced by V;. Then ¢ is well defined and is a V} ® Vs-
module homomorphism. Since W; ® W is irreducible by Theorem 2.2.7, ¢ is a

module isomorphism. |

Example 2.4.9 Let V;, be the conformal vertex algebra associated with an even
lattice L; as in Example 2.1.8, where¢ = 1,...,p. Let V7, ®---®VL  be the tensor
product strongly graded vertex algebra of V,,..., V. By the construction of a

lattice vertex algebra in Example 2.1.8, we have
Vi, ®-- @V, = Vig-eL,
and every irreducible Vi, q..qr,-module is equivalent to a module of the form

VL1+W1@~“G§LP+% = VL1+’YI K- VLp-i-'ypa

for some v; € L7, i =1,...,p. This example illustrates Theorem 2.4.8.

Now we can describe our main examples:
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Corollary 2.4.10 The only irreducible strongly (b, L)-graded module of Vi@V,
where L is the unique even 2-dimensional unimodular Lorentzian lattice and h =

{(h(=1)-1)o | h € L ®z C}, up to equivalence, is itself.

Proof. Let W be an irreducible strongly (b, L)-graded module of V¢ ® V.
Then by Example 2.4.4, W is a strongly (({0), (0)), (h, L))-graded module of V*®
V. By Theorem 2.4.8, it is a tensor product of an irreducible strongly ((0), (0))-
graded V*-module with an irreducible strongly (b, L)-graded V;-module. By [D2],
V% is its only irreducible module, up to equivalence. Also, by [D1] (cf. [LL],

Example 2.1.8), V, is its only irreducible module because L is self-dual. Therefore
W =Viel
as claimed. |

Remark 2.4.11 Thanks to Prof. Haisheng Li, we provide another proof for
Corollary 2.4.10. Let W be an irreducible module for V! ® V. Then W can
be viewed as a weak Vi-module. Since every weak module for V¥ is completely
reducible and the only irreducible module for V* is itself up to isomorphism (see

[D2] and [DLM]), W is a direct sum of V% up to isomorphism, i.e.,

w=]]v~

From Remark 4.7.1 in [FHL], Schur’s Lemma for irreducible modules holds for
irreducible modules of V# over C. Also, since the operators on W induced from V*
and V;, commute with each other, Homy:(V® W) can be viewed as a Vz-module.

We have the natural V¥ ® V;-module isomorphism

V* @ Homy: (V4 W) = V2 @ Homy: (VE, [ V)
=V'® HHomVu(Vu, V) ~ H Vi=W.
(See also Lemma 4.13 and Proposition 4.14 in [Li]). Since W is irreducible,

Homy: (V% W) has to be an irreducible V;-module, which is Vj, itself, up to iso-
morphism. So W ~ Vi® V; as a V? ® Vz-module.
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Remark 2.4.12 In Corollary 2.4.10, the 2-dimensional self-dual Lorentzian lat-

tice can of course be generalized to any self-dual nondegenerate even lattice.

2.5 Complete reducibility

Definition 2.5.1 Let V' be a strongly (h, A)-graded conformal vertex algebra.
Then a strongly (b, A)-graded V-module is called completely reducible if it is a
direct sum of irreducible strongly (b, A)-graded V-modules.

Notation 2.5.2 In the remainder of this section, we will always let A = A; &

...@Ap’b:hl@...@bp,andV:‘G@...@%.

Definition 2.5.3 A strongly ((h1, A1), ..., (b, A,))-graded module for the tensor
product conformal vertex algebra V' is called completely reducible if it is a direct

sum of irreducible strongly ((h1, A1), ..., (h,, A,))-graded V-modules.

Theorem 2.5.4 Let Vi, ..., V, be strongly (b1, A1), ..., (hyp, Ap)-graded conformal
vertex algebras, respectively, and let V' be their tensor product strongly (b, A)-
graded conformal vertex algebra. Then every strongly ((bl,ﬁl),...,(bp,ﬁp))-
graded V-module is completely reducible if and only if every strongly (hi,fli)-

graded V;-module is completely reducible.

Proof. Tt suffices to prove the result for n = 2. Let W be a strongly
((h1, Ay), (bg, Ag))-graded V = Vi ® Vo-module. Then by Proposition 2.4.7, we
can take w € W((fllf;), where 8; € A;, n; € C, for i = 1,2.
Let M be the strongly ((h1, A1), (be, Ay))-graded Vi @ Vi-submodule of W
generated by w, i.e., M is spanned by elements of the form
(017 @ L)y -+ (o) @ 1), (L 0y - (L@ 1),
where vg), e ,v;(,l) are doubly homogeneous elements in V; and 7152), e ,véz) are

doubly homogeneous elements in Vs, respectively, and si,...,s,,%1,...,%; € Z.
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Let M; be the doubly graded V;-submodule of M generated by w. Then M; is a
strongly (b;, fli)—graded Vi;-module, respectively, for ¢ = 1,2, in an obvious way as

in the proof of Theorem 2.4.8.

By Proposition 2.3.7 and Example 2.4.3, M;®Mj is strongly ((hy, Al), (ba, Ag))—
graded. Moreover, we have a strongly ((h1, A;), (b2, A3))-graded Vi @ Va-module
epimorphism from M; ® M, to M by sending byw ® bsw +— bibsw, where b; is
an operator induced by V;, for ¢ = 1, 2. If every strongly (f)i,fli)—graded V-
module is completely reducible, then M; is a direct sum of irreducible strongly
(bi, fli)—graded Vi-modules and therefore M; ® My is a direct sum of irreducible
strongly ((h1, A1), (ha, A3))-graded Vi @ Vo-modules (see Theorem 2.3.8). Then
as a quotient module of M; ® My, M is also a direct sum of irreducible strongly
((h1, Ay), (bg, Az))-graded Vi @ Va-modules, and consequently, W is a direct sum
of irreducible strongly ((h1, Ay), (b2, As))-graded Vi @ Va-modules.

Conversely, assume that every strongly ((h1, A1), (b, As))-graded V; ® Va-
module W is completely reducible. We first observe that V; ® V5 is strongly
((b1, A1), (ba, Az))-graded, hence a ((h1, A1), (b2, As))-graded Vi @ Vo-module it-
self by Proposition 2.3.6 and Example 2.4.3, and hence is a direct sum of ir-
reducible strongly ((hy, A1), (ha, A3))-graded modules. Let W be an irreducible
strongly ((h1, A1), (b2, Ay))-graded V; ®Va-module. Then W is a tensor product of
an irreducible strongly (b, /L)—graded module for V; and an irreducible strongly
(ha, Ag)—graded module for V5 by Theorem 2.4.8. In particular, V; has irreducible
strongly (B, Ay)-graded modules and V; has irreducible strongly (hs, A;)-graded

modules, respectively.

Let W, be a strongly (hl,/{l)—graded Vi-module and W5 be an irreducible
strongly (b2, As)-graded Vy-module. Since every strongly ((hy, Ay), (ha, A3))-graded

Vi ® Vo-module is completely reducible, W7 ® Wy is a direct sum of irreducible
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strongly ((h1, A1), (b2, Az))-graded modules:
Wy @ Wy = H M;

where each M,; is an irreducible strongly ((h1, A1), (ha, A3))-graded Vi@ Va-module.
Fix ¢ and let :cgi), e ,mﬁf) e W, and ygi), e ,yff) € Wy be linearly independent
doubly homogeneous elements such that ; ij§i) ® yj(»i) € M;, where ¢; € C,¢; #
0. By the density theorem (as in the proof of Theorem 2.2.7), each :cg»i) ®yj(-i) e M,.
Let W;; be the doubly graded Vi-submodule of W, generated by :r;g»?, for some j, €
{1,2,...,n}. Then W is a strongly (b, Al)—graded Vi-submodule as in the proof
of Theorem 2.4.8. By the irreducibility of M;, we see that M; = W;; ® W5 and that
W1 is an irreducible strongly (hl,fil)—graded Vi-submodule of W;. Therefore,
Wi @ Wy = ([, Wi1) ® Ws. By the density theorem, for any nonzero wy € Wh,
Wi ® wy = ([, Wi) ® w,. Hence as a Vi-module, Wy = (][, W;1), and thus W,

is completely reducible. Similarly for V5. |

Example 2.5.5 Let Vi, be the conformal vertex algebra associated with an even
lattice L; as in Example 2.1.8, where i = 1,...,p. Let Vg, ®---®Vy be the tensor
product strongly graded vertex algebra of Vz,,..., V. By the construction of a

lattice vertex algebra as in Example 2.1.8, we have
VL1 ® e ® VLp = VL1EB-~~EBLP-

As in Example 2.1.8, every module for Vi, 4..qr,, hence for Vo, ® --- ® V , is

completely reducible. This example illustrates Theorem 2.5.4.

Corollary 2.5.6 FEvery strongly (b, L)-graded module for the strongly (b, L)-graded
conformal vertez algebra V& ® Vi, where L is the unique even 2-dimensional u-
nimodular Lorentzian lattice and ) = {(h(—=1)-1)g | h € L ®z C}, is completely

reducible.
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Chapter 3

Differential equations and logarithmic intertwining

operators for strongly graded vertex algebras

3.1 Strongly graded generalized modules

In this section, we will recall the following definitions from [HLZ1]:

Definition 3.1.1 A generalized module for a conformal vertex algebra is defined
in the same way as a module for a conformal vertex algebra except that in the
grading (2.12), each space W, is replaced by Wi,), where W}, is the generalized
L(0)-eigenspace corresponding to the generalized eigenvalue n € C; that is, (2.12)
and (2.20) in the definition are replaced by

W= ] W

neC

and
for n € C and w € Wy, (L(0) —n)*w =0, for k € N sufficiently large,

respectively. For w € W), we still write wt w = n for the generalized weight of

w.

Definition 3.1.2 Let A be an abelian group and V a strongly A-graded confor-
mal vertex algebra. Let A be an abelian group containing A as a subgroup. A

generalized V-module

W= ] W

neC

is said to be strongly graded with respect to A (or strongly A-graded, or just
strongly graded) if the abelian group A is understood) if it is equipped with a
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second gradation, by A,

W = Hw(ﬂ)

BeA

such that the following conditions are satisfied: the two gradations are compatible,
that is, for any 3 € A,
WO =TIw, where W) =W, nw®
neC

for any o € A, f € A and n € C,

)

[n+k

dim W[(nﬁ) < 00;

| =0) for k €Z sufficiently negative; (3.1)

oW c Weth) forany v e VW, [ e Z.

A strongly fl—graded (generalized) V-module W is said to be lower bounded if

instead of (3.1), it satisfies the stronger condition that for any 5 € A,

W((f)) =0 (respectively, W[(f]) =0) for n € C and PR(n) sufficiently negative.

In this chapter, we will derive systems of differential equations for matrix
elements of products and iterates of logarithmic intertwining operators among
generalized modules for a strongly graded vertex algebra. For this purpose, first
we need the notion of contragredient module for a strongly graded (generalized)
module. With the strong gradedness condition on a (generalized) module, we can

indeed define the corresponding notion of contragredient module.

Definition 3.1.3 Let W = HBG Anec W ) be a strongly A- graded generalized
module for a strongly A-graded Conformal vertex algebra. For each 3 € A and
n € C, let us identify (W[ ]))* with the subspace of W* consisting of the linear
function on W vanishing on each W[(Tj]) with v # 8 or m # n. We define W’ to
be the (A x C)-graded vector subspaces of W* given by

=1 (W), where (W) = (W 7)".
BeAneC
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The adjoint vertex operators Y'(v,z) (v € V) on W' is defined in the same
way as vertex operator algebra in section 5.2 in [FHL] (see Section 2 of [HLZ1]).

The pair (W', Y”") carries a strongly graded module structure as follows:

Proposition 3.1.4 Let A be an abelian group containing A as a subgroup and V
a strongly A-graded conformal vertex algebra. Let (W,Y") be a strongly A-graded
V-module (respectively, generalized V -module). Then the pair (W', Y") carries a
strongly A-graded V-module (respectively, generalized V-module) structure. If W

is lower bounded, so is W'.

Definition 3.1.5 The pair (W', Y”) is called the contragredient module of (W,Y).

3.2 (i-cofiniteness condition

In this section, we will let V' denote a strongly A-graded conformal vertex algebra
and let W denote a strongly A—graded lower bounded (generalized) V-module,
where A, A are abelian groups such that A is an abelian subgroup of A.

In the following definition, we generalize the C}-cofiniteness condition for the
(generalized) modules for a vertex operator algebra to a C-cofiniteness condition
with respect to A for the strongly A-graded (generalized) modules for a strongly

graded conformal vertex algebra.

Definition 3.2.1 Let C;(W) be the subspace of W spanned by elements of the

form u_jw for

we V=]V

n>0

and w € W. The A-grading on W induces an A-grading on W/Cy(W):

wicw) = [Tw/cuw)®,

BeA
where

(W/CLW)E) =W /(0 (W) P
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for B € A. If dim (W/Cy(W))®) < oo for B € A, we say that W is Ci-cofinite

with respect to A or W satisfies the C1-cofiniteness condition with respect to A.

Remark 3.2.2 Let V) be a conformal vertex subalgebra of V' strongly graded
with respect to an abelian subgroup Ag of A. If W is Cj-cofinite with respect
to A as a strongly graded (generalized) Vj-module, then W is Cj-cofinite with

respect to A as a strongly graded (generalized) V-module.

Example 3.2.3 Let V;, be the conformal vertex algebra associated with a nonde-
generate even lattice L and let W be a strongly M-graded (generalized) V;-module
for a sublattice M of L° containing L as in Example 2.1.8. Then W satisfies the
C-cofiniteness condition with respect to M as a VL(O)—module. Thus W is also

C'-cofinite with respect to M as a strongly graded Vi -module.

3.3 Logarithmic intertwining operators

Logarithmic intertwining operators were introduced and studied in [M2]. We
first recall the relevant definitions from [M2] [M3], [HLZ2]; we use the versions in
[HLZ2).

Throughout this section, we shall use z,xg, z1,22,... to denote commuting
formal variables and z, zg, 21, 22, . . . to denote complex variables or complex num-
bers.

Definition 3.3.1 Let (Wy,Y7), (Wa, Ys) and (W3, Y;) be generalized modules for

a conformal vertex algebra V. A logarithmic intertwining operator of type (Wvlvsv2)
is a linear map
V(- z)-: Wy @ Wy — Wsllog z|{x}, (3.2)
or equivalently,
W) ® wez) = V(way, =Y > ww wer " (log )" € Wallog x){x}

neC keN

(3.3)
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for all w(;) € Wy and w(sy € Wa, such that the following conditions are satisfied:

the lower truncation condition: for any wqy € Wy, wez) € Wa and n € C,

w(l)z+m;kw(2) =0 for m € N sufficiently large, independently of k;  (3.4)

the Jacobi identity:

Zo

3 T — T
x015< L 2)Y3(v,x1)y(w(1),x2)w(2)

1y — 2
—xolé( & 1)y(wu),332)5/2(%3'31)1‘1(2)

= ;1;'2*15 (Il - I(J)y(Yl (v, xo)w(l), :L'2)w(2) (3.5)

)
forv e V, wuy € Wy and wey € Wa (note that the first term on the left-hand side

is meaningful because of (3.4)); the L(—1)-derivative property: for any wy € Wi,
d
YV(L(—Dway,z) = %J}(w(l), ). (3.6)

Definition 3.3.2 In the setting of Definition 3.3.1, suppose in addition that V'
and Wy, W5 and W3 are strongly graded. A logarithmic intertwining operator )

as in Definition 3.3.1 is a grading-compatible logarithmic intertwining operator if

for B,v € A and w, € Wl(ﬁ), wy € WQ(V), n € C and k € N, we have

(w1)npwo € Wg(ﬁﬂ).

Definition 3.3.3 In the setting of Definition 3.3.2, the grading-compatible loga-
rithmic intertwining operators of a fixed type (W?V%@) form a vector space, which
we denote by VVV‘I,/;"’WQ. We call the dimension of V&V,f% the fusion rule for Wy, Wy

and W3 and denote it by NV%WZ.

Let V' be a strongly A-graded vertex algebra and V) be a strongly Aj-graded
vertex subalgebra of V', where A is an abelian group and Ay is an abelian subgroup
of A. Let A be an abelian group containing A as its subgroup.

We shall use the following two sets in the next section: For 3; € A, i = 1,2, 3,
set

[P0 — (B + Ag) x (Ba + Ao) X (B + Ao).
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For any strongly A-graded generalized V-modules W; (¢ =0,1,...,4) and any
logarithmic intertwining operators ), and ), of type (W?Vém) and (W?%Vg)v respec-
tively, set

3w e W (i =1,2,3) sit.

13(25137‘22’53) _ (EI,B;’B;) c f(51,52,53)
Vi(wy, 1) Vo (wa, z3)ws # 0

For brevity, we will use 1(%1:52:%) to denote the set Ij(,f 13,i 2%) in the rest of this

paper.

Lemma 3.3.4 Suppose that every strongly A-graded V -module satisfies
C\-cofiniteness condition with respect to A as a Vo-module and that for any two
fized elements By and By in A and any triple of strongly graded generalized V -
modules My, My and Ms, the fusion rule

MPLtP2)

MO ()
for only finitely many pairs (51, 52) € (Bi+Ap) x (Ba+Ay). Then the set 1(P1:52:5)
defined above is a finite set.
Proof. Since for the triple of strongly graded generalized modules (Wy, Wy, W3),
the fusion rules vaffg):z@ # 0 for only finitely many pairs (BNl, ﬁNg) € (814 Ap) %
(B2 + Ap), the logarithmic intertwining operator Vs (ws, z2)ws, where wy € WQ(E;)
and w3 € Wé’%), have to be 0 except for finitely many pairs (B;, B;)) € (Ba+ Ap) x
(B3 4+ Ag), and then there are only finitely many triples (31, 32, 33) € [(51:52)

such that the products of logarithmic intertwining operators

Vi(wr, 21) Yo(wa, x2)ws # 0,

where w; € Wl(ﬁl), wy € WZ(BQ) and ws € Wéﬁ‘"’). Thus the set 1(%1:92:%) is a finite

set. O

Remark 3.3.5 In the case that Ay is a finite subgroup of A, the assumption in

Lemma 3.3.4 holds automatically.
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Example 3.3.6 Let W be a strongly M-graded (generalized) module for the
lattice vertex algebra V;, as in Example 3.2.3. Then W satisfies the assumption

in Lemma 3.3.4 because V) = V(O) and Ag is the trivial group in this case.

3.4 Differential equations

In this section, we assume that V is a strongly A-graded vertex algebra with a
vertex subalgebra Vj strongly graded with respect to an abelian subgroup Ag of
A, and we assume that every strongly graded fl—(generalized) V-module is R-
graded, lower bounded and satisfies C;-cofiniteness condition with respect to A
as a Vp-module.

Let W; be strongly A-graded generalized V-modules for i = 0,1,...,4 and
let ), and Y, be logarithmic intertwining operators of type ( W ) and (W2 Wg)
respectively. Let [(81:52:83) and [(F15283) he the two sets defined in the previous
section.

Let R = C[zF!, 25, (21 — 22) 7Y, B, B2 and fB3 be three fixed elements in A.
Set

T(B1,82,83) _ H R® Wo(ﬁl+,32+ﬁ3) Q Wl(ﬁl) Q W2(/32) Q W(ﬁs
(B1,B2,B3)€I(81:82,83)
and
T)(}?igzﬂ@ H R® W(/31+52+ﬁ3 Q W1(51) Q W(BQ W(ﬁzs ‘

(E7B;7B§)€[(517ﬁ27ﬂ3)

Then T(4182:5) and T J(f lyi 2%) have natural R-module structures. For convenience,

in the rest of this paper, we will use T(1%2:5) to denote Tj(ff lyi 2,8),

For simplicity, we shall omit one tensor symbol to write f(z1,22) ® wy ® w; ®
wy @ ws as f(z1, 29)we @ wy ® wy ® ws in TBuB2.83) and T(B1:P2:88)  For a strongly
A-graded generalized V-module W, let (W', Y”) be the contragredient module of
W (recall definition 3.1.5). In particular, for v € V and n € Z, we have the
operators u, on W’. Let u® : W — W be the adjoint of w, : W' — W’. Note
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that since wt u, = wt u —n — 1, we have wt v}, = —wt u+n+ 1. Also, A-wt v’

= —(A-wt u,).

Let (B},B},ﬁg) e [P1P205) and let 50 = 51 + 52 + 53 For u € (V)4 and
w; € VVZ-(Ei) (i =0,1,2,3), let JB1526) be the submodule of T(B1.82,85) generated

by elements of the form

A(% Wy, W1, W2, ws)

—1
= Z (—Zl)kU*_1_kwo X wy @ wy ®wz — Wy ®u_1w; ® Wy X ws
k>0 k
—1 —1-k
- Z (—=(21 — 22)) Wy @ Wy @ upwa & ws
k>0 k
—1 —1—k
_Z " (—21) W @ w1 @ wr @ upws,
k>0

B(Ua Wop, W1, W2, w3)

—1
= Z (_Zz)kut1—kw0 @ w; @ wy & ws
k>0 k
—1 —1-k
_Z (—(21 — 22)) Wy @ Upwy Q@ Wwe @ ws
k>0 k
—1 —1-k
—Wo @ W1 ® U_1W2 @ W3 — Z (—22) wo @ w1 ® wa @ UpWs,
k>0 k
C(U’? Wo, W1, W2, w3)
* -1 —1—k
= u_1w0®w1®w2®w3—z 21 Pwp @ upwy @ we @ ws
k>0 k
—1 —1-k
_Z 2y Wy @ wr @ upwa @ wy — wWo @ Wy & we @ u_1ws,

>0 k
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D(Ua Wo, W1, W2, w3)

= U 1Wy Q@ W ® we ® Ws

B Z | A g @ e O (=) POy (2 ) O Wy @y @ g
k>0 k

-2 Ay @ wy @ e K (—22)E Oy (—252) L0 Ehyp, @ wy
k>0 k

— W ® Wy ® we @ U’ Ws.

We shall also need a submodule ng 1)}52 25) of T(B1.82,83) generated by elements
of the form

Wo Q@ w1 Q we & wsa

for w; € Wi(gi)(i =0,1,2,3), (31,52,53) € J(P1.52.55) \ 1P182:8) - For simplicity, we

denote Séﬁltf;:ﬁs) by S(B1,82,83)

Lemma 3.4.1 Let 3; € A. Then

f(,317,327/33) — T(B1,82,83) D S(ﬁhﬂzﬁs)_

We shall find an R-submodule of 712:53) such that its complement in 7(%1:52:53)

is finitely generated. For this purpose, we use the following R-submodule of

T(Bl)ﬂQaﬂ?)):
j(/317,327,33) — J(ﬁl,ﬁQ,ﬂS) D S(ﬁl,ﬁz,ﬁs)_

For r € R, we can define the R-submodules T((TL?’BQ’B?’), F,.(TB1825)) and
E,(JPP283)) as in [H3]. Note that F,.(T(%1#2:5)) is a finitely generated R-module

since I191:52:83) is a finite set by Lemma 3.3.4.

Proposition 3.4.2 Let W; be strongly A-graded generalized V-modules and let
B, € A fori = 0,1,2,3. Then there exists M € 7Z such that for any r €
R, F(TWrh20)) ¢ F.(JOP28)) 4 Fy (TPF20)) . In particular, TG1-P25)
JB1B2.85) 4 Fy (T(B1B2:0)) .
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Proof. For EZ € A, let 50 denote 51 —1—52—1—53 and let (C’l(Wi))(@) be the subspace
of W; spanned by elements of the form u_jw; € VVi(gi ), where

ue (Vo)y = H(V())(n)

n>0

Since dim Wi@)/(C’l(Wi))(@) < oo for i =0,1,2,3, there exists M & Z such that

H T(ﬂ1,52,53) - H R((01<W0))(56) ® Wl(ﬁl) ® W2(ﬂ2) ® W3(63))

n)
n>M (E,B;B\?:)EIWLBQ‘%)

+ ROV @ (G ()P @ W) @ wi™)
+ RSP @ Wi @ (CL(We)) P @ Wi™)
+ ROV @ W @ Wi @ (C1(Ws)@).

(3.7)

We use induction on r € R. If r is equal to M, Fy (TB10285)) < Fy (JOBr288)) 4
Fo(TP1520)) - Now we assume that F,(TP0F20)) < F.(JB16208)) 4 Fy (T F1:52,8))
for r < s where s > M. We want to show that any homogeneous element of
T((£1’52’53) can be written as a sum of an element of Fy(J#1:%2:%)) and an element
of Fy(TP152:8))  Since s > M, by (3.7), any element of T((£1’62’53) is an element
of the right hand side of (3.7). We shall discuss only the case that this element
is in R(WO(BS) ® (Cl(Wl))(E) ® Wég) ® Wégg)); the other cases are completely
similar.

We need only discuss elements of the form wy ® u_jw; ® we ® w3, where
w; € VVZ-(@) for i = 0,2,3, u_qw; € (Cl(Wl))(E) and u € (V). We see from
Lemma 3.4.1 that the elements u*, ,w) ® w; @ wy ® w3, Wy @ W1 @ YW @ Ws
and wy @ wy ® wy @ upws for k > 0 are either in SPFvA20) or in TF1.828),
By assumption, the weight of wg ® u_jw; ® ws ® ws is s, then the weight of
Uty we @ Wy @ we @ w3, Wy ® Wy @ upwy @ ws and wy @ wy; @ wy @ upws for

k > 0, are all less than s. Thus these elements either lie in F,(J##2:5)) or in
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Fy_y (TP15289)) - Also, since A(u, wo, wy, wy, ws) € Fy(JP1P255)) we see that

Wy Q U_1wW1 Q) We @ w3

—1 k_ *
= A(U, Wp, W1, W2, U)g) + Z (_21) U_1_pWo X W ¥ wWe X ws
k>0 k
—1 -k
- (= (21 — 22)) ™ My ® w1 @ wgwy @ wy
>0 k
—1 1k
_Z (—21)" "wo ®@ w1 ® Wy ® ugws
k>0 k

can be written as a sum of an element of F,(J1#2:5)) and elements of
F,_1(T¥1828))  Thus by the induction assumption, the element
wo @ u_1w; @ ws @ w3 can be written as a sum of an element of Fs(j(ﬁlﬁ%&)) and

an element of Fy,(TF1:92:5)),

Now we have

T(B1:82,83) E (T 51752753
C H E.( 61752753 ) + FM(T(51’52’[33))
reR
— JB1.B2,8s) | Fy (T(ﬂlﬁ2ﬁ3))‘ 0

We immediately obtain the following:

Corollary 3.4.3 The quotient R-module T(#1:52:85) /(T(B15208) (y J(B1.2.85)) g

finitely generated.
Proof. We have the following R-module isomorphism:
T(ﬁhﬁzﬁs)/(T(ﬁlﬂmﬁ:a) N0 j(ﬁlﬁzﬂs)) ~ (T(ﬂ1,ﬁ2,53) + j(ﬂlﬁzﬁs))/j(ﬁlﬁzﬁs).

By the previous Proposition, the R-module (T(%1:5285) 4 J(B1.62,85)) / J(B1.52:65) is g

submodule of

(j(ﬁl,ﬁz,ﬁs) + FM(T(ﬁLBz,ﬂs)))/j(ﬁl,ﬁmﬁs)

~ Fy (T(51,52,53))/(FM (T(ﬁ17527/33)) N j(ﬁl,ﬁ%ﬁi&))’
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which is finitely generated. 0

For an element W € T%2:5)  we shall use W] to denote the equivalence
class in

T(B182.68) )T (B1B2:83) ( J(B15285) containing W. We also have:

Corollary 3.4.4 Let W; be strongly A-graded generalized V-modules for i =
0,1,2,3. For any A-homogeneous elements w; € W; (i = 0,1,2,3), let M, and
Ms be the R-submodules of

TBuP2s) JT(BLB2.Bs) Oy JB1B288) generated by [wy @ L(—1)Yw, @ wy ® ws), j > 0,
and by

[wy ® wy @ L(—1)7ws ® ws], 7 > 0, respectively. Then My, My are finitely gen-
erated. In particular, for any fl-homogeneous elements w; € W; (i = 0,1,2,3),

there exist ap(z1,22), bi(z1,22) € R fork=1,...,m and l =1,...,n such that

[wo @ L(—1)"w; @ wa ® ws] + ay(21, 22)[wo @ L(—1)"""w; ® wy @ w]

e ap(21, 20)[wo ® Wy ® wy @ ws) =0, (3.8)

[UJO X w1 X L(—l)nUJQ X ’LU3] + bl(Zl, ZQ)[U)[) & w1 & L(—l)n_llUQ X ’wg]

++bn(zl,22)[wo®w1®w2®w3] =0. (39)
Now we establish the existence of systems of differential equations:

Theorem 3.4.5 Suppose that every strongly A-graded V-module satisfies C-
cofiniteness condition with respect to A as a Vy-module and suppose that for any
two fized elements By and By in A and any triple of strongly graded generalized
V-modules My, My and Ms, the fusion rule

MPLtP2)

MPD (P2
for only finitely many pairs (51, B;) € (B1+Ag) X (Ba+Ay). Let W; be strongly A-

graded generalized V -modules for i =0,1,2,3,4 and let Y, and Yo be logarithmic
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intertwining operators of type (WKVIO;V), (WZVCVS) Then for any A-homogeneous

elements w; € W; (i =0,1,2,3), there exist
ar(z1, 22), bi(21, 22) € Cl2F, 25, (21 — 20) 7]
fork=1...,mandl=1,...,n such that the series
(wo, Y1 (w1, 21) Vo (ws, 22)ws), (3.10)

satisfying the expansions of the system of differential equations

" p

G + ai(z1, 2’2) §ar] + - Fam(z1, 22)p =0, (3.11)
871%0 anflso
2 + b1 (21, 22) gt + bz, 22)0 =0 (3.12)

in the region |z1| > |za| > 0.

Proof. The proof is similar to the proof of Theorem 1.4 in [H3] except for the
difference in the R-module J¥1-#2:85) We sketch the proof as follows:

Let A = wt wyg — wt w; — wt wy — wt ws. For (51,52,53) e 1BLP2P) et
Bo = B + Bo + B3. Let C({z}) be the space of all series of the form Y ner AnT"
for n € R such that a,, = 0 when the real part of n is sufficiently negative.

Consider the map

Oy, P TPy 21 ({22/21})[2?17 Z3 ]

defined by

Gy 3, (f (21, 22)wo ® w1 ® Wy ® w3)

= Uy >z >0 ([ (21, 22) ) (wo, Vi (w1, 21) Vo (w2, 22)w3),

where

UYnlslzal>0 : B — Cllzo/z]l[z, 2571

is the map expanding elements of R as series in the regions |z;| > |2z2] > 0.
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Using the Jacobi identity for the logarithmic intertwining operators, we have
that elements of J(¥172%) are in the kernel of ¢y, y,. The elements of S(%1:52:53)
are in the kernel by the construction of the set 191253 From Lemma 3.4.1, we

have

¢y17y2(j(51752ﬂ3)) =0.

Thus the map ¢y, y, induces a map
(EyLyQ . T(51’52’63)/T(ﬁ1’52”83) N JBuh26) ZlAC({Zz/Zl})[Ziﬂ, Z2i1]

Applying ¢y, y, to (3.8) and (3.9) and then use the L(—1)-derivative property
for logarithmic intertwining operators, we see that (3.10) indeed satisfies the

expansions of the system of differential equations in the regions |z1| > |z2| > 0.

O

Remark 3.4.6 Note that in the theorems above, ag(z1;29) for k=1,...,m —1
and by(z1;29) for [ = 1,...,1 — 1, and consequently the corresponding system,

depend on the logarithmic intertwining operators Y, Vs.

The following result can be proved by the same method, so we omit the proof.

Theorem 3.4.7 Suppose that every strongly A-graded V-module satisfies Ci-
cofiniteness condition with respect to A as a Vy-module and suppose that for any
two fized elements By and By in A and any triple of strongly graded generalized
V-modules My, My and Ms, the fusion rules

B1+B2
M?El 2) 7&0

M£B1)M§52)

for only finitely many pairs (51, 32) € (B4 Ag) X (B2+ Ag). Let W; be strongly A-
graded generalized V -modules for 1 =10,...,n+1. For any generalized V-modules
I/IA/Jl, cee I/I//;_/l, let

Vi, Va5 s V1, Vn
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be logarithmic intertwining operators of types

(o) o) (o) ()
Wi Wy 7 Wo Wy T Wi Wi 7 Wi Wit 7

respectively. Then for any A-homogeneous elements w£0) e Wg, way € Wi, ...,

Wint1) € Wiy, there exist

api(z1,. - 2n) €ClY o 2E (s —2) (s — 23) 7Y o (et — 20) 7
fork=1...,mandl=1,...,n such that the series

<w20), Vi (w(l 21) - yn( W(n), Zn)w(n+1)>

satisfies the system of differential equations

—|—Za SO - S P T (3.13)
aZl EI\Z1, -5 2 82{”’“ ) — Ly .

k=1

in the region |zi| > -+ > |z,] > 0.

Remark 3.4.8 Under the same condition as in the Theorem 3.4.5, it follows from
the same argument in this section that matrix elements of iterates of logarithmic

intertwining operators

<w20), V1(Va(wr, 21 — 22), 22)wo) (3.14)

also satisfy the expansions of the system of differential equations of the form

(3.11) and (3.12) in the region |z5| > |21 — 23] > 0.

Example 3.4.9 Let V} be the conformal vertex algebra associated with a nonde-
generate even lattice L. Then any strongly M-graded generalized V;-module W
(in this example, all the generalized modules are modules) satisfies the assump-
tion in Theorem 3.4.5 and the series (3.10), (3.14) satisfies the expansions of the
system of differential equations (3.11) and (3.12) in the regions |z;| > |22| > 0,

|22] > |21 — 22| > 0, respectively.
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3.5 The regularity of the singular points

We first recall the definition for reqular singular points for a system of differential
equations given in [K]. For the system of differential equations of form (3.13), a

singular point
20 = (z(()l), . ,z(()n))

is an isolated singular point of the coefficient matrix

api(z1,- - 2n) €CLAY 2 (1 —2) (s — 23) 7Y (et — 20) 7

»¥n )

fork=1,...,mandl=1,...,n. Fors=(s1,...,s,) € Z}, set

|s| = Z Si
1=0
and
(log(z — 2))* = (log(z1 — 25”))*t - - (log(z — 25))*".

For t = (tW, ..., t™) € C", set
(Z . Zo)t _ (Z1 . Z(()l))t(l) o (Zn . z((]n))t(n).

A singular point zj for the system of differential equations of form (3.13) is regular

if every solution in the punctured disc (D*)"
0< |z — z(gi)] < a;

with some a; € Ry (i =1,...,n) is of the form
p(z) =Y > (2= 2)"(log(z = 2))" firm(z — 20)
=1 |m|<M

with M,r € Z, and each f;, (2 — z9) holomorphic in (D*)". Theorem B.16
in [K] gives a sufficient condition for a singular point of a system of differential
equations to be regular.

As in [H3], for 7 € R, we define the R-modules F\*=*)(R), F\*=%)(T(81.52/53))
and F}zl:zz)(f(mﬁ?’ﬂ?’)), which provide filtration associated to the singular point

21 = 25 on R, R-modules T(#1:72:%3) and T(51’52’53), respectively.
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For convenience, we shall use [3;) to denote [5;1 + 52 + 33, for B; € B + Ao

(i = 1,2,3). We shall also consider the ring C[zi", 23] and the C[zi, z5]-module

(T(ﬁlﬁmﬁs))(zl:m) = H (C[Zl ) 25 ] ® WéﬁO) ® Wl(ﬁl) R W2(62) ® W(ﬁg,)
(B1,Ba,B3)€1(P1:52:63)
Let (T(ﬁlﬁ%ﬁ:&))

Ez; ) he the space of elements of (T(F1528))(z1=22) of weight r for
r € R. Let F,((TPA25))(1=2)) = HSQ(T(B“B%&))EZ; ) These subspaces give
(T

r

a filtration of (T(1-P25))(:1=22) in the following sense: F,((TP1:/2:5))(z1=2))
Fs((T(ﬁhﬁzﬁ:s))(%:Zz)) forr < s and (T 517527/33))(21222) — HreR Fr((T(ﬁhﬁzﬁzs))(2’1222))_
Let F1521:Z2)(j(/31,,32”33)) — F;z1122)(f(ﬂ1752753)) N j(ﬁhﬂz,ﬂs) for r € R. We have

the following lemma:

Lemma 3.5.1 For any r € R, F.((T¢r828))z1=2)) < FE=2)( J6ua6)) 4
FM(T(51752753))_

Proof. The proof is similar to the proof of Proposition 3.4.2 except for some
slight differences. We discuss elements of the form wy ® u_jw; ® wy ® ws with
weight s, where w; € Wi(ﬁi) fori =0,1,2,3 and u € (V). By definition of the

element A(u, wo, wy, we, w3) in the R-submodule J#1:528) e have

Wo X U_1W1 X wWa X Ws

-1
= Z I (—z1) U’ _pwo @ wy @ wy ® w3 — A(u, wo, wy, wa, W)
k>0
-1 1k
- (—(21 — 22)) " Mo @ w1 @ upwr @ Wy
k>0 k
-1 —1-k
_Z k: (—21) Wy ® w1 ® W @ UpwWs.
k>0

We know from Lemma 3.4.1 that the elements u*;_,wo® w; ® we @ w3, wo @ w; ®
Uy @ ws and wy ® wy @ wy @ ugws for k > 0 are either in SPLA255) J(B1,82,63)

or in TP1:528) with weights less than the weight of wy @ u_jw; ® wy @ ws.
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In the first case, since elements of the form wy ® w; ® upwy ® ws are in
FE=2(]) (= (21— 2)) " Fwy @ wy @ upwy @ wy € FE~2)(J). Thus in this case,
Wo ® U_1w, ® we @ ws is an element of ngl:@)(j(ﬁl’ﬁ?ﬁ?’)).

In the second case, by induction assumption, u*;_,wy ® w; ® wy @ ws, Wy @
Wy @ Wy @ UpWws € ngl:”)(j(ﬁl’@’ﬁ?’)) + g (TB18283)) and wy @ wy @ upwy @ ws €
FE=22)(J(Br5aBs)) 4 Fy (TF1828)) Hence the element (—(z — 25)) "' Fwo ®
wy ® upwy ® ws € Fg,(zlzzQ)(j(/Bl’fBQ’B?’)) + Fy (TB1828)) - Thus in this case, wy ®

U_1w; @ Wy ® w3 can be written as a sum of an element of FS,(“:”)(j(ﬁl’BQ’B?’)) and

an element of Fy, (T(%1:52:85)), O

Using Lemma 3.5.1, we get the following refinement of proposition 3.4.2:
Proposition 3.5.2 For any r € R,
F£Z1:22)(T(61’62’53)) C FT(ZIZZQ)(j(/Bl»BQaﬁS)) + FM(T(BLE%B?)))‘

In particular,

F(21=22)(T(517527ﬁ3)) _ F(21=22)(j(/31,/32753)) N TB1:52,085) + FM(T(ﬁ1’52’B3)).

r

Proof. 1t is a consequence of the decomposition:

r

F1521=22)(T(51,52,ﬁ3)) — H(Zl _ Zg)_iFr_i((T(BIﬂQ’ﬁS))(Zl:ZQ))
=0

and Lemma 3.5.1. O

Let w; € I/Vi(’gi) for i =0,1,2,3 and (51,52,@) € IP1828)  Then by Proposi-
tion 3.5.2,
Wy @ Wy @ we @ wg = Wy + Wy

where W, € F;m:zz)(j(ﬁhﬁmﬁ?))) N 7' (B1:82,83) — F(§21=22)(T(/317,327,33)) N j(ﬁhﬁzﬁa) and
W, € Fy(TP152:8)) Using the same proof as Lemma 2.2 in [H3], we have the

following lemma:
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Lemma 3.5.3 For any s € [0,1), there exist S € R such that s + S € Z4
and for any w; € W;, i = 0,1,2,3, satisfying o0 € s+ Z, (2 — z2)"+5W2 c
(T(/Bl ,82,03) ) (z1=22) )

Theorem 3.5.4 Suppose that every strongly A-graded V-module satisfies C-
cofiniteness condition with respect to A as a Vy-module and suppose that for any
two fized elements By and By in A and any triple of strongly graded generalized
V-modules My, My and Mj, the fusion rule

MPrH8D)

D g $P2)
for only finitely many pairs (51,32) € (B1+ Ao) X (B + Ao). Let Wi, w; € W;
fori=0,1,2,3,4, YV, and Y5 be the same as in Theorem 3.4.5. For any possible
singular point of the form (z; = 0,2, = 0,2, = 00,2y = 00,21 = %), 2] (21—22) =

0, or z, (21 — z) = 0, there emist
ar(z1, 22), bi(21, 22) € Clat', 23, (1 — 22) 7]

fork =1,....m andl = 1,...,n, such that this singular point of the system
(3.11) and (3.12) satisfied by (3.10) is regular.

Proof. The proof is the same as the proof of Theorem 2.3 in [H3] except that

we use Proposition 3.5.2 and Lemma 3.5.3 here. U

We can prove the following theorem using the same method, so we omit the

proof here.

Theorem 3.5.5 For any set of possible singular points of the system (3.13) in
Theorem 3.4.7 of the form z; = 0 or z; = 0o for some i or z; = z; for some
i # j, the agy(z1,...,2,) in Theorem 3.4.7 can be chosen for k = 1,....,m and

[=1,...,n so that these singular points are reqular.
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3.6 Braided tensor category structure

In the logarithmic tensor category theory developed in [HLZ1] and [HLZ2|, the
convergence and expansion property for the logarithmic intertwining operators
are needed in the construction of the associativity isomorphism. In this section,
we will recall the definition of convergence and expansion property for products
and iterates of logarithmic intertwining operators and then follow [HLZ2] to give
sufficient conditions for a category to have these properties.

Throughout this section, we will let M, (respectively, GM,,) denote the
category of the strongly A-graded (respectively, generalized) V-modules. We are
going to study the subcategory C of My, (respectively, GM,,) satisfying the

following assumptions.

Assumption 3.6.1 We shall assume the following;:
o Ay, A and A are abelian groups satisfying Ay < A < A.

e V is astrongly A-graded conformal vertex algebra with a strongly Ag-graded

vertex subalgebra Vj and V' is an object of C as a V-module.

e All (generalized) V-modules are lower bounded, satisfy the C}-cofiniteness
condition with respect to A as Vy-modules and for any two fixed elements
1 and S5 in A and any triple of strongly graded generalized V-modules M;,
My and M3, the fusion rule

B1+B2
Mél 2) 7&0

MPD P
for only finitely many pairs (5’1, 52) € (1 + Ag) x (B2 + Ao).
e For any object of C, the (generalized) weights are real numbers and in ad-

dition there exist K € Z such that (L(0) — L(0),)® = 0 on the generalized

module.

e (C is closed under images, under the contragredient functor, under taking

finite direct sums.
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Given objects Wy, Wa, W5, Wy, My and M, of the category C, let Vi, Vo, V!
and )Y? be logarithmic intertwining operators of types (W%ﬁ)’ (WT;VS), ( MZVI‘jVS)

and (WJI\%VQ), respectively. We recall the following definitions and theorems from

Section 11 in [HLZ2] (part VII):

Convergence and extension property for products For any § € A, there
exists an integer Ng depending only on ); and ), and 8, and for any doubly
homogeneous elements w(yy € (W)@ and wy € (W2)%) (81, B, € A) and any

wz) € W3 and w£4) € W, such that

B+ P2 = —p,

there exist M € N, ri, 81 € R, ig, 71 € N, k= 1,..., M, and analytic functions

fr(z)on |z| <1, k=1,..., M, satisfying
wt UJ(1)+Wt U)(g)‘i‘Sk >NB7 kzl,...,M,
such that

(Wiay Vi(wy, £1) Vo (wiz), T2)w @) wy |1 =21, zo=z

is absolutely convergent when |z;| > |23 > 0 and can be analytically extended to

the multivalued analytic function

21 — 22

D 25k (21 — 22)™ (log z2)"* (log (21 — 22))* fi

k=1

)

Z9

(here log(z; — 22) and log 23, and in particular, the powers of the variables, mean
the multivalued functions, not the particular branch we have been using) in the
region |za| > |21 — 29| > 0.

Convergence and extension property without logarithms for prod-
ucts When i, = j, =0 for k= 1,..., M, we call the property above the conver-
gence and extension property without logarithms for products.

Convergence and extension property for iterates For any 3 € A, there

exists an integer ]\75 depending only on Y! and Y? and 3, and for any doubly
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homogeneous elements w(yy € (W)@ and wy € (W2)%) (81, B, € A) and any
wz) € W3 and w24) € W, such that

B+ P2 = —p,

there exist M € N, 7., € R, i,k € N, k = 1,..., M, and analytic functions

fr(z)on |z| <1, k=1,..., M, satisfying
wt w(1)+wt w(2)+s~k > Ng, k= 1,...,M,

such that
<w20)7 yl (y2 (w(1)7 wO)w(2)7 'rQ)w(3)>W4 ‘I():Zl*ZQ, To=2z9
is absolutely convergent when |23| > |21 —23] > 0 and can be analytically extended

to the multivalued analytic function

T ST ix e £~
21" 23" (log 21)" (log 22)J’“fk(z—j)

M=

x>
I

1

(here log z; and log 2o, and in particular, the powers of the variables, mean the
multivalued functions, not the particular branch we have been using) in the region
|21| > |22] > 0.

Convergence and extension property without logarithmic for iterates
When i, = j, =0 for k =1,..., M, we call the property above the convergence
and extension property without logarithms for iterates.

If the convergence and extension property (with or without logarithms) for
products holds for any objects Wy, Wy, W3, W, and M; of C and any logarithmic
intertwining operators ); and )» of the types as above, we say that the conver-
gence and extension property for products holds in C. We similarly define the
meaning of the phrase the convergence and extension property for iterates holds
i C.

The following theorem generalizes Theorem 11.8 in [HLZ2] to the strongly

graded generalized modules for a strongly graded conformal vertex algebra:

Theorem 3.6.2 Let V' be a strongly graded conformal vertex algebra. Then
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1. The convergence and extension properties for products and iterates hold in
C. IfC is in M4 and if every object of C is a direct sum of irreducible objects
of C and there are only finitely many irreducible objects of C (up to equiva-
lence), then the convergence and extension properties without logarithms for

products and iterates hold in C.

2. For any n € Z,, any objects Wy,... , Wy,11 and I/IA/E,...,I/I//;: of C, any

logarithmic intertwining operators

yl,yQ,---,yn—hyn

(o) (o) (i) ()
Wi Wy 7 Wo Wy o W1 Wi ’ Wy Whia ’

respectively, and any wEO) e Wy, way € Wi, ..., Wigr) € Wi, the series

of types

(wioy, Vi(way, 21) -+ Yu(Winys 20)Wint1))

is absolutely convergent in the region |z| > --- > |z,] > 0 and its sum
can be analytically extended to a multivalued analytic function on the region
given by 21 # 0, @« = 1,...,n, z # zj, © # j, such that for any set of
possible singular points with either z; = 0,2; = o0 or z; = z; for i # j,
this multivalued analytic function can be expanded near the singularity as a
series having the same form as the expansion near the singular points of a

solution of a system of differential equations with reqular singular points.

Proof. The first statement in the first part and the statement in the second
part of the theorem follow directly from Theorem 3.4.7 and Theorem 3.5.5 and
the theorem of differential equations with regular singular points. The second

statement in the first part can be proved using the same method in [H3]. O

In order to construct braided tensor category on the category of strongly grad-
ed generalized V-modules, we need the following assumption on C (see Assump-

tion 10.1, Theorem 11.4 of [HLZ2]).
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Assumption 3.6.3 Suppose the following two conditions are satisfied:
1. C is closed under P(z)-tensor products for some z € C*.

2. Bvery finite-generated lower bounded doubly graded generalized V -module is
an object of C.

Conjecture 3.6.4 We conjectured that the category of certain strongly graded
generalized V-modules satisfying the first condition in Assumption 3.6.3. The

case for the vertex operator algebra was proved in [H2].

Under Assumption 3.6.1 and Assumption 3.6.3 on the category C C GM,,, we
generalize the main result (Theorem 12.15) of [HLZ2| to the category of strongly

graded generalized modules for a strongly graded vertex algebra:

Theorem 3.6.5 Let V' be a strongly graded conformal vertex algebra. Then the
category C, equipped with the tensor product bifunctor X, the unit object V', the
braiding isomorphism R, the associativity isomorphism A, and the left and right

unit isomorphisms 1 and r in [HLZ?2], is an additive braided tensor category.
In the case that C is an abelian category, we have:

Corollary 3.6.6 If the category C is an abelian category, then C, equipped with
the tensor product bifunctor X, the unit object V', the braiding isomorphism R,
the associativity isomorphism A, and the left and right unit isomorphisms | and

rin [HLZ2], is a braided tensor category.
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