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ABSTRACT OF THE DISSERTATION

Some results in the representation theory of strongly

graded vertex algebras

By JINWEI YANG

Dissertation Director:

Yi-Zhi Huang and James Lepowsky

In the first part of this thesis, we study strongly graded vertex algebras and their

strongly graded modules, which are conformal vertex algebras and their modules with

a second, compatible grading by an abelian group satisfying certain grading restriction

conditions. We consider a tensor product of strongly graded vertex algebras and its

tensor product strongly graded modules. We prove that a tensor product of strongly

graded irreducible modules for a tensor product of strongly graded vertex algebras

is irreducible, and that such irreducible modules, up to equivalence, exhaust certain

naturally defined strongly graded irreducible modules for a tensor product of strongly

graded vertex algebras. We also prove that certain naturally defined strongly graded

modules for the tensor product strongly graded vertex algebra are completely reducible

if and only if every strongly graded module for each of the tensor product factors

is completely reducible. These results generalize the corresponding known results for

vertex operator algebras and their modules.

In the second part, we derive certain systems of differential equations for matrix

elements of products and iterates of logarithmic intertwining operators among strong-

ly graded generalized modules for a strongly graded conformal vertex algebra under

ii



suitable assumptions. Using these systems of differential equations, we verify the con-

vergence and extension property needed in the logarithmic tensor category theory for

such strongly graded generalized modules developed by Huang, Lepowsky and Zhang.
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Chapter 1

Introduction

Vertex operator algebras, as defined in [FLM], and more generally, vertex algebras,

as defined in [B1], form a fundamental class of algebraic structures. The repre-

sentation theory of vertex (operator) algebras plays deep roles in the construction

and study of infinite-dimensional Lie algebra representations, in the developmen-

t of structure underlying sporadic finite simple groups, in string theory, in the

theory of modular functions, and in many other areas.

The difference between the terminology vertex operator algebra and vertex

algebra is that a vertex operator algebra amounts to a vertex algebra with a

conformal vector such that the eigenspaces of the operator L(0) are all finite

dimensional with (integral) eigenvalues that are truncated from below (cf. [LL]).

In [HLZ1] and [HLZ2], the authors use a notion of conformal vertex algebra,

which is a vertex algebra with a conformal vector and with an L(0)-eigenspace

decomposition, and a notion of strongly graded conformal vertex algebra, which

is a conformal vertex algebra with a second, compatible grading by an abelian

group satisfying certain grading restriction conditions.

In this thesis, we explore two important aspects of the representation theory

of strongly graded vertex algebras. In the first part of this work, we consider

tensor products of algebras and tensor products of modules for the respective

tensor factors. The second part of this work is motivated by tensor product

functors for modules for an algebra, and the corresponding tensor categories of

modules, a much different, and more sophisticated, aspect of the theory than

tensor products of algebras and their corresponding modules. Thus in this thesis,
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“tensor products” are actually used in two completely different senses.

In a series of papers ([HL1]–[HL4], [H1]), Yi-Zhi Huang and James Lepowsky

developed a theory of braided tensor categories, and more precisely, of “vertex

tensor categories,” for the module category of what they called a “finitely re-

ductive” vertex operator algebra satisfying certain additional conditions; finitely

reductive means that the module category is semisimple and that certain finite-

ness conditions hold. But it is just as natural and important to develop a theory

for non-semisimple module categories in vertex operator algebra theory as it is in

the Lie theory. In [HLZ1] and [HLZ2], this tensor product theory is generalized

to a larger family of categories of strongly graded modules for a conformal vertex

algebra, under suitably relaxed conditions.

We would like to investigate vertex tensor categories in the sense of [HL1], but

more generally, in the setting of [HLZ1], associated with the tensor product of

strongly graded vertex algebras, and this motivates the problem of determining

the irreducible modules for this tensor product algebra. This problem is solved

in the first part of this thesis, Chapter 2.

To develop the representation theory of vertex operator algebras that are not

finitely reductive, it is necessary to consider certain generalized modules that are

not completely reducible and the logarithmic intertwining operators among them.

In [HLZ2], the authors prove that under certain conditions, matrix elements of

products and iterates of logarithmic intertwining operators among generalized

modules for a vertex operator algebra satisfy certain systems of differential equa-

tions. Using this result, they verify the convergence and extension property, an

important sufficient condition, introduced in its original form in [H1], for con-

structing vertex tensor categories for generalized modules for a vertex operator

algebra. In the second part of this thesis, Chapter 3, we generalize these ar-

guments to logarithmic intertwining operators among generalized modules for a

strongly graded vertex algebra.

Now we proceed to give more details.
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In the first part of this thesis, Chapter 2, we prove that a tensor product

of strongly graded irreducible modules for a tensor product of strongly graded

vertex algebras is irreducible, and that conversely, such irreducible modules, up to

equivalence, exhaust certain naturally defined strongly graded irreducible modules

for a tensor product of strongly graded vertex algebras. (These terms are defined

in Chapter 2.) As a consequence, we determine all the strongly graded irreducible

modules for the tensor product of the moonshine module vertex operator algebra

V ♮ with a vertex algebra associated with a self-dual even lattice, in particular,

the two-dimensional Lorentzian lattice.

The moonshine conjecture of Conway and Norton in [CN] included the conjec-

ture that there should exist an infinite-dimensional representation V of the (not

yet constructed) Fischer-Griess Monster sporadic finite simple group M such that

the McKay-Thompson series Tg for g ∈ M acting on V should have coefficients

that are equal to the coefficients of the q-series expansions of certain modular

functions. In particular, this conjecture incorporated the McKay-Thompson con-

jecture, which asserted that there should exist a (suitably nontrivial) Z-graded

M-module V =
⨿

i≥−1 V−i with graded dimension equal to the elliptic modular

function j(τ) − 744 =
∑

i≥−1 c(i)q
i, where we write q for e2πiτ , τ in the upper

half-plane. Such an M-module, the “moonshine module,” denoted by V ♮, was

constructed in [FLM], and in fact, the construction of [FLM] gave a vertex opera-

tor algebra structure on V ♮ equipped with an action of M. In [FLM], the authors

also gave an explicit formula for the McKay-Thompson series of any element of

the centralizer of an involution of type 2B of M; the case of the identity element

of M proved the McKay-Thompson conjecture.

Borcherds then showed in [B2] that the rest of the McKay-Thompson series for

the elements of M acting on V ♮ are the expected modular functions. He obtained

recursion formulas for the coefficients of McKay-Thompson series for V ♮ from the

Euler-Poincaré identity for certain homology groups associated with a special Lie

algebra, the “monster Lie algebra,” which he constructed using the tensor product



4

of the moonshine module vertex operator algebra V ♮ and a natural vertex algebra

associated with the two-dimensional Lorentzian lattice. The importance of this

tensor product vertex algebra motivates the first part of this thesis, Chapter 2.

In a series of papers ([HL1]–[HL4], [H1]), the authors developed a tensor prod-

uct theory for modules for a vertex operator algebra under suitable conditions.

A structure called “vertex tensor category structure,” which is much richer than

braided tensor category structure, has thereby been established for many impor-

tant categories of modules for classes of vertex operator algebras (see [HL1]). It is

expected that a vertex tensor category together with certain additional structures

determines uniquely (up to isomorphism) a vertex operator algebra such that the

vertex tensor category constructed from a suitable category of modules for it is

equivalent (in the sense of vertex tensor categories) to the original vertex tensor

category. In [HLZ1] and [HLZ2], this tensor product theory is generalized to a

larger family of categories of “strongly graded modules” for a conformal vertex

algebra, under suitably relaxed conditions. We want to investigate the vertex

tensor category in the sense of [HL1], but in the setting of [HLZ1], associated

with the tensor product of the moonshine module vertex operator algebra V ♮ and

the vertex algebra associated with the two-dimensional Lorentzian lattice. The

first step in thinking about this is to determine the irreducible modules for this

algebra.

For the vertex operator algebra case, it is proved in [FHL] that a tensor product

module W1⊗· · ·⊗Wp for a tensor product vertex algebra V1⊗· · ·⊗Vp (where Wi

is a Vi-module) is irreducible if and only if each Wi is irreducible. The proof uses

a version of Schur’s Lemma and also the density theorem [J]. It is also proved

in [FHL] that these irreducible modules W are (up to equivalence) exactly all

the irreducible modules for the tensor product algebra V1 ⊗ · · · ⊗ Vp. The proof

uses the fact that each homogeneous subspace of W is finite dimensional. In this

paper, we generalize the arguments in [FHL] to prove similar, more general results

for strongly graded modules for strongly graded conformal vertex algebras.
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For the strongly graded conformal vertex algebra case, the homogeneous sub-

spaces of a strongly graded module are no longer finite dimensional. However,

by using the fact that each doubly homogeneous subspace (homogeneous with

respect to both gradings) of a strongly graded conformal vertex algebra is finite

dimensional, we prove a suitable version of Schur’s Lemma for strongly grad-

ed modules under the assumption that the abelian group that gives the second

grading of the strongly graded algebra is countable.

To avoid unwanted flexibility in the second grading such as a shifting of the

grading by an element of the abelian group, we suppose that the grading abelian

groups A for a strongly graded conformal vertex algebra and Ã (which includes A

as a subgroup) for its strongly graded modules are always determined by a vector

space, which we typically call h, consisting of operators induced by V . We call this

kind of strongly graded conformal vertex algebra a “strongly (h, A)-graded con-

formal vertex algebra” and its strongly graded modules “strongly (h, Ã)-graded

modules.” Important examples of strongly (h, A)-graded conformal vertex alge-

bras and their strongly (h, Ã)-graded modules are the vertex algebras associated

with nondegenerate even lattices and their modules.

For strongly (hi, Ãi)-graded modulesWi for strongly (hi, Ai)-graded conformal

vertex algebras Vi, we construct a tensor product strongly (⊕p
i=1hi,⊕

p
i=1Ãi)-graded

module W1 ⊗ · · · ⊗Wp for the tensor product strongly graded conformal vertex

algebra V1⊗· · ·⊗Vp. Then we prove that this tensor product moduleW1⊗· · ·⊗Wp

is irreducible if and only if eachWi is irreducible, under the assumption that each

grading abelian group Ai for Vi is a countable group.

To determine all the irreducible strongly graded modules (up to equivalence)

for the tensor product strongly graded conformal vertex algebra V1 ⊗ · · · ⊗ Vp,

the main difficulty is that we need to deal with the second grading by the abelian

groups. For the strongly (⊕p
i=1hi, Ã)-graded modules W for the tensor product

strongly (⊕p
i=1hi,⊕

p
i=1Ai)-graded vertex algebra V1⊗· · ·⊗Vp, we assume there is a

decomposition Ã = Ã1⊕· · ·⊕ Ãp, such that W is an (hi, Ãi)-graded module (that
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is, a strongly graded module except for the grading restriction conditions) when

viewed as a Vi-module. We call this kind of strongly (⊕p
i=1hi, Ã)-graded module a

strongly ((h1, Ã1), . . . , (hp, Ãp))-graded module. In the main theorem, we prove

that if such a module is irreducible, then it is a tensor product of strongly graded

irreducible modules. Then, as a corollary of the main theorem, we classify the

strongly graded modules for the tensor product strongly graded conformal vertex

algebra V ♮ ⊗ VL, where L is an even lattice, and in particular, where L is the

(self-dual) two-dimensional Lorentzian lattice.

It is proved in [DMZ] that every module for the tensor product vertex operator

algebra V1 ⊗ · · · ⊗ Vp is completely reducible if and only if every module for

each vertex operator algebra Vi is completely reducible. We also generalize the

argument in [DMZ] to prove a similar result for tensor product strongly (h, A)-

graded conformal vertex algebras.

In the second part of this thesis, Chapter 3, we generalize the arguments in

[H3] and [HLZ2] to prove that for a strongly graded conformal vertex algebra V ,

matrix elements of products and iterates of logarithmic intertwining operators a-

mong triples of strongly graded generalized V -modules under suitable assumption-

s satisfy certain systems of differential equations and that the prescribed singular

points are regular. Using these differential equations, we verify the convergence

and extension property needed in the theory of logarithmic tensor categories for

strongly graded generalized V -modules in [HLZ2]. Consequently, under certain

assumptions on the strongly graded generalized modules for a strongly graded

conformal vertex algebra V , we obtain a natural structure of braided tensor cat-

egory on the category of strongly graded generalized V -modules using the main

result of [HLZ2].

It was proved in [H3] that if every module W for a vertex operator algebra

V =
⨿

n∈Z V(n) satisfies the C1-cofiniteness condition, that is, dim W/C1(W ) <

∞, where C1(W ) is the subspace of W spanned by elements of the form u−1w
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for u ∈ V+ =
⨿

n>0 V(n) and w ∈ W , then matrix elements of products and iter-

ates of intertwining operators among triples of V -modules satisfy certain systems

of differential equations. Moreover, for prescribed singular points, there exist

such systems of differential equations such that the prescribed singular points

are regular. In Section 11 of [HLZ2] (Part VII), using the same argument as in

[H3], certain systems of differential equations were derived for matrix elements

of products and iterates of logarithmic intertwining operators among triples of

generalized V -modules. In the second part of my thesis, we prove similar, more

general results for matrix elements of products and iterates of logarithmic in-

tertwining operators among triples of strongly graded generalized modules for a

strongly graded vertex algebra.

In the second part of the thesis, Chapter 3, we generalize the C1-cofiniteness

condition for generalized modules for a vertex operator algebra to a C1-cofiniteness

condition with respect to Ã for strongly Ã-graded generalized modules for a strong-

ly graded vertex algebra. That is, every strongly graded generalized Ã-moduleW

for a strongly A-graded vertex algebra V satisfies the condition that for β ∈ Ã,

dim W (β)/(C1(W ))(β) < ∞, where W (β) and (C1(W ))(β) are the Ã-homogeneous

subspace of W and C1(W ) with Ã-grading β, respectively. Furthermore, for a

strongly graded vertex subalgebra V0 of V , the C1-cofiniteness condition for W

as a V0-module implies the C1-cofiniteness condition for W as a V -module. In

particular, the case that W satisfies the C1-cofiniteness condition as a module

for V (0)—the A-homogeneous subspace of V with A-weight 0—is the same as the

case that W satisfies the C1-cofiniteness condition as a vertex operator algebra

module.

The key step in deriving systems of differential equations in [H3] is to construct

a finitely generated R = C[z±1
1 , z±1

2 , (z1−z2)−1]-module that is a quotient module

of the tensor product of R and a quadruple of modules for a vertex operator

algebra. However, for a strongly graded conformal vertex algebra, the quotient

module constructed in the same way is not finitely generated since there can
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be infinitely many Ã-homogeneous subspaces in the strongly graded generalized

modules. In order to obtain a finitely generated quotient module, we assume that

fusion rules for triples of certain Ã-homogeneous subspaces of strongly graded

generalized V -modules viewed as V (0)-modules are zero for all but finitely many

triples of such Ã-homogeneous subspaces.

Under the assumption on the fusion rules for triples of certain Ã-homogeneous

subspaces and the C1-cofiniteness condition with respect to Ã for the strongly Ã-

graded generalized modules, we construct a natural map from a finitely generated

R-module to the set of matrix elements of products and iterates of logarithmic

intertwining operators among triples of strongly graded generalized V -modules.

The images of certain elements under this map provide systems of differential

equations for the matrix elements of products and iterates of logarithmic in-

tertwining operators, as a consequence of the L(−1)-derivative property for the

logarithmic intertwining operators. Moreover, for any prescribed singular point,

we derive certain systems of differential equations such that this prescribed sin-

gular point is regular. Using these systems of differential equations, we verify the

convergence and extension property needed in the construction of associativity

isomorphism for the logarithmic tensor category structure developed in [HLZ2].

Consequently, if all the assumptions mentioned above are satisfied, we obtain a

braided tensor category structure on the category of strongly graded generalized

V -modules.

The material in Chapters 2 and 3 is contained in [Y1] and [Y2], respectively.

It would be valuable to construct interesting examples of strongly graded mod-

ules other than modules for vertex algebras associated with non-positive-definite

even lattices. Not only would such examples broaden the applicability of the dif-

ferential equations constructed in the second part of this thesis, but they would

also shed further light on Huang-Lepowsky’s vertex tensor category theory.
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Chapter 2

Tensor products of strongly graded vertex algebras and

their strongly graded modules

2.1 Strongly graded vertex algebras and their strongly graded mod-

ules

We recall the following four definitions from [HLZ1].

Definition 2.1.1 A conformal vertex algebra is a Z-graded vector space

V =
⨿
n∈Z

V(n) (2.1)

(for v ∈ V(n), we say the weight of v is n and we write wt v = n) equipped with a

linear map V ⊗ V → V [[x, x−1]], or equivalently,

V → (End V )[[x, x−1]]

v 7→ Y (v, x) =
∑
n∈Z

vnx
−n−1 (where vn ∈ End V ), (2.2)

Y (v, x) denoting the vertex operator associated with v, and equipped also with two

distinguished vectors 1 ∈ V(0) (the vacuum vector) and ω ∈ V(2) (the conformal

vector), satisfying the following conditions for u, v ∈ V : the lower truncation

condition:

unv = 0 for n sufficiently large (2.3)

(or equivalently, Y (u, x)v ∈ V ((x))); the vacuum property:

Y (1, x) = 1V ; (2.4)

the creation property:

Y (v, x)1 ∈ V [[x]] and lim
x→0

Y (v, x)1 = v (2.5)
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(that is, Y (v, x)1 involves only nonnegative integral powers of x and the constant

term is v); the Jacobi identity (the main axiom):

x−1
0 δ

(
x1 − x2
x0

)
Y (u, x1)Y (v, x2)− x−1

0 δ

(
x2 − x1
−x0

)
Y (v, x2)Y (u, x1)

= x−1
2 δ

(
x1 − x0
x2

)
Y (Y (u, x0)v, x2) (2.6)

(note that when each expression in (2.6) is applied to any element of V , the

coefficient of each monomial in the formal variables is a finite sum; on the right-

hand side, the notation Y (·, x2) is understood to be extended in the obvious way

to V [[x0, x
−1
0 ]]); the Virasoro algebra relations:

[L(m), L(n)] = (m− n)L(m+ n) +
1

12
(m3 −m)δn+m,0c (2.7)

for m,n ∈ Z, where

L(n) = ωn+1 for n ∈ Z, i.e., Y (ω, x) =
∑
n∈Z

L(n)x−n−2, (2.8)

c ∈ C (2.9)

(the central charge or rank of V );

d

dx
Y (v, x) = Y (L(−1)v, x) (2.10)

(the L(−1)-derivative property); and

L(0)v = nv = (wt v)v for n ∈ Z and v ∈ V(n). (2.11)

This completes the definition of the notion of conformal vertex algebra. We

will denote such a conformal vertex algebra by (V, Y,1, ω).

Definition 2.1.2 Given a conformal vertex algebra (V, Y,1, ω), a module for V

is a C-graded vector space

W =
⨿
n∈C

W(n) (2.12)
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(graded by weights) equipped with a linear map V ⊗W → W [[x, x−1]], or equiv-

alently,

V → (End W )[[x, x−1]]

v 7→ Y (v, x) =
∑
n∈Z

vnx
−n−1 (where vn ∈ End W ) (2.13)

(note that the sum is over Z, not C), Y (v, x) denoting the vertex operator on

W associated with v, such that all the defining properties of a conformal vertex

algebra that make sense hold. That is, the following conditions are satisfied: the

lower truncation condition: for v ∈ V and w ∈ W ,

vnw = 0 for n sufficiently large (2.14)

(or equivalently, Y (v, x)w ∈ W ((x))); the vacuum property:

Y (1, x) = 1W ; (2.15)

the Jacobi identity for vertex operators on W : for u, v ∈ V ,

x−1
0 δ

(
x1 − x2
x0

)
Y (u, x1)Y (v, x2)− x−1

0 δ

(
x2 − x1
−x0

)
Y (v, x2)Y (u, x1)

= x−1
2 δ

(
x1 − x0
x2

)
Y (Y (u, x0)v, x2) (2.16)

(note that on the right-hand side, Y (u, x0) is the operator on V associated with

u); the Virasoro algebra relations on W with scalar c equal to the central charge

of V :

[L(m), L(n)] = (m− n)L(m+ n) +
1

12
(m3 −m)δn+m,0c (2.17)

for m,n ∈ Z, where

L(n) = ωn+1 for n ∈ Z, i.e., Y (ω, x) =
∑
n∈Z

L(n)x−n−2; (2.18)

d

dx
Y (v, x) = Y (L(−1)v, x) (2.19)

(the L(−1)-derivative property); and

(L(0)− n)w = 0 for n ∈ C and w ∈ W(n), (2.20)

where n = wt w.



12

This completes the definition of the notion of module for a conformal vertex

algebra.

Definition 2.1.3 Let A be an abelian group. A conformal vertex algebra

V =
⨿
n∈Z

V(n)

is said to be strongly graded with respect to A (or strongly A-graded, or just

strongly graded if the abelian group A is understood) if it is equipped with a

second gradation, by A,

V =
⨿
α∈A

V (α),

such that the following conditions are satisfied: the two gradations are compatible,

that is,

V (α) =
⨿
n∈Z

V
(α)
(n) (where V

(α)
(n) = V(n) ∩ V (α)) for any α ∈ A;

for any α, β ∈ A and n ∈ Z,

V
(α)
(n) = 0 for n sufficiently negative; (2.21)

dimV
(α)
(n) <∞; (2.22)

1 ∈ V
(0)
(0) ; (2.23)

ω ∈ V
(0)
(2) ; (2.24)

vlV
(β) ⊂ V (α+β) for any v ∈ V (α), l ∈ Z. (2.25)

This completes the definition of the notion of strongly A-graded conformal

vertex algebra.

For modules for a strongly graded algebra we will also have a second grading

by an abelian group, and it is natural to allow this group to be larger than the

second grading group A for the algebra. (Note that this already occurs for the

first grading group, which is Z for algebras and C for modules.)
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Definition 2.1.4 Let A be an abelian group and V a strongly A-graded confor-

mal vertex algebra. Let Ã be an abelian group containing A as a subgroup. A

V -module

W =
⨿
n∈C

W(n)

is said to be strongly graded with respect to Ã (or strongly Ã-graded, or just

strongly graded if the abelian group Ã is understood) if it is equipped with a

second gradation, by Ã,

W =
⨿
β∈Ã

W (β), (2.26)

such that the following conditions are satisfied: the two gradations are compatible,

that is, for any β ∈ Ã,

W (β) =
⨿
n∈C

W
(β)
(n) (where W

(β)
(n) = W(n) ∩W (β))

for any α ∈ A, β ∈ Ã and n ∈ C,

W
(β)
(n+k) = 0 for k ∈ Z sufficiently negative; (2.27)

dimW
(β)
(n) <∞ (2.28)

vlW
(β) ⊂ W (α+β) for any v ∈ V (α), l ∈ Z. (2.29)

This completes the definition of the notion of strongly Ã-graded module for a

strongly A-graded conformal vertex algebra.

Remark 2.1.5 It is always possible that there are different gradings on W by

Ã, such as by shifting by an element in Ã. However, in this paper, we shall fix

one particular Ã-grading on W .

In order to study strongly graded V -modules for tensor product algebras, we

shall need the following generalization:

Definition 2.1.6 In the setting of Definition 2.1.4 (the definition of “strongly

graded module”), a V -module (not necessarily strongly graded, of course) is dou-

bly graded with respect to Ã if it satisfies all the conditions in Definition 2.1.4

except perhaps for (2.27) and (2.28).
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Example 2.1.7 Note that the notion of conformal vertex algebra strongly graded

with respect to the trivial group is exactly the notion of vertex operator algebra.

Let V be a vertex operator algebra, viewed (equivalently) as a conformal vertex

algebra strongly graded with respect to the trivial group. Then the V -modules

that are strongly graded with respect to the trivial group (in the sense of Definition

2.1.4) are exactly the (C-graded) modules for V as a vertex operator algebra, with

the grading restrictions as follows: For n ∈ C,

W(n+k) = 0 for k ∈ Z sufficiently negative (2.30)

and

dimW(n) <∞. (2.31)

Example 2.1.8 An important source of examples of strongly graded conformal

vertex algebras and modules comes from the vertex algebras and modules asso-

ciated with even lattices. We recall the following construction from [FLM]. Let

L be an even lattice, i.e., a finite-rank free abelian group equipped with a non-

degenerate symmetric bilinear form ⟨·, ·⟩, not necessarily positive definite, such

that ⟨α, α⟩ ∈ 2Z for all α ∈ L. Let h = L⊗Z C. Then h is a vector space with a

nonsingular bilinear form ⟨·, ·⟩, extended from L. We form a Heisenberg algebra

ĥZ =
⨿

n∈Z, n ̸=0

h⊗ tn ⊕ Cc.

Let (L̂,̄ ) be a central extension of L by a finite cyclic group ⟨κ | κs = 1⟩. Fix a

primitive sth root of unity, say ω, and define the faithful character

χ : ⟨κ⟩ → C∗

by the condition

χ(κ) = ω.

Denote by Cχ the one-dimensional space C viewed as a ⟨κ⟩-module on which ⟨κ⟩

acts according to χ:

κ · 1 = ω,
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and denote by C{L} the induced L̂-module

C{L} = IndL̂⟨κ⟩Cχ = C[L̂]⊗C[⟨κ⟩] Cχ.

Then

VL = S(ĥ−Z )⊗ C{L}

has a natural structure of conformal vertex algebra; see [B1] and Chapter 8of

[FLM]. For α ∈ L, choose an a ∈ L̂ such that ā = α. Define

ι(a) = a⊗ 1 ∈ C{L}

and

V
(α)
L = span {h1(−n1) · · ·hk(−nk)⊗ ι(a)},

where h1, . . . , hk ∈ h, n1, . . . , nk > 0, and where h(n) is the operator associated

with h⊗tn via the ĥZ-module structure of VL. Then VL is equipped with a natural

second grading given by L itself. Also for n ∈ Z, we have

(VL)
(α)
(n) = span {h1(−n1) · · ·hk(−nk)⊗ ι(a)| ā = α,

k∑
i=1

ni +
1

2
⟨α, α⟩ = n},

making VL a strongly L-graded conformal vertex algebra in the sense of Definition

2.1.3. When the form ⟨·, ·⟩ on L is also positive definite, then VL is a vertex

operator algebra, that is, as in Example 2.1.7, VL is a strongly A-graded conformal

vertex algebra for A the trivial group. In general, a conformal vertex algebra may

be strongly graded for several choices of A.

Any sublattice M of the “dual lattice” L◦ of L containing L gives rise to

a strongly M -graded module for the strongly L-graded conformal vertex algebra

(see Chapter 8 of [FLM]; cf. [LL]). In fact, any irreducible VL-module is equivalent

to a VL-module of the form VL+β ⊂ VL◦ for some β ∈ L◦ and any VL-module W

is equivalent to a direct sum of irreducible VL-modules, i.e.,

W =
⨿

γi∈L◦, i=1,...,n

Vγi+L,
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where γi’s are arbitrary elements of L◦, and n ∈ N (see [D1], [DLM]; cf. [LL]).

In general, a module for a strongly graded vertex algebra may be strongly graded

for several choices of Ã.

Notation 2.1.9 In the remainder of this section, without further assumption,

we will let A be an abelian group and V be a strongly A-graded conformal vertex

algebra. Also, we will let Ã be an abelian group containing A and W be a doubly

graded V -module with respect to Ã. When we need W to be strongly graded, we

will say it explicitly.

Definition 2.1.10 The subspaces V
(α)
(n) for n ∈ Z, α ∈ A in Definition 2.1.6 are

called the doubly homogeneous subspaces of V . The elements in V
(α)
(n) are called

doubly homogeneous elements. Similar definitions can be used for W
(β)
(n) in the

module W .

Notation 2.1.11 Let v be a doubly homogeneous element of V . Let wt vn,

n ∈ Z, refer to the weight of vn as an operator acting on W , and let A-wt vn refer

to the A-weight of vn on W .

Lemma 2.1.12 Let v ∈ V
(α)
(n) , for n ∈ Z, α ∈ A. Then for m ∈ Z, wt vm =

n−m− 1 and A-wt vm = α.

Proof. The first equation is standard from the theory of graded conformal vertex

algebras and the second follows easily from the definitions. �

Definition 2.1.13 The algebra A(V ;W ) associated with V and W is defined to

be the algebra of operators on W induced by V , i.e., the algebra generated by

the set

{vn | v ∈ V, n ∈ Z}.

For a subspace V
′
of V , we use A(V

′
;W ) to denote the subalgebra of A(V ;W )

generated by the set

{vn | v ∈ V
′
, n ∈ Z}.
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For a subspaceW
′
ofW , we use A(V ;W

′
) to denote the subalgebra of A(V ;W ) p-

reservingW
′
. Similarly for V

′
andW

′
, we use A(V

′
;W

′
) to denote the subalgebra

of A(V ;W ) generated by the operators on W
′
induced by V

′
.

Remark 2.1.14 When W
′
is a submodule of W , there are two possible defini-

tions for A(V ;W
′
) in Definition 2.1.13. One is as an algebra associated with V

and W
′
, the other is as a subalgebra of A(V ;W ). But it does not matter because

they are both algebras of operators on W
′
generated by the set

{vn | v ∈ V, n ∈ Z}.

Similar comments hold for V
′
a subalgebra of V .

The following lemma follows easily from Lemma 2.1.12:

Lemma 2.1.15 The algebra A(V ;W ) is doubly graded by Z and A. Moreover

for n ∈ Z,

A(V ;W )(n) = span {(v1)j1 · · · (vm)jm |
m∑
i=1

wt (vi)ji = n,

where m ∈ N, vi ∈ V, ji ∈ Z, for i = 1, . . . ,m}

and for α ∈ A,

A(V ;W )(α) = span {(v1)j1 · · · (vm)jm |
m∑
i=1

A-wt (vi)ji = α,

where m ∈ N, vi ∈ V, ji ∈ Z, for i = 1, . . . ,m}.

Proposition 2.1.16 Let W be an irreducible doubly graded V -module with re-

spect to Ã. Then we have the following results:

(a) Each weight subspaceW(h) (h ∈ C) is irreducible under the algebra A(V ;W(h)).

(b) Each Ã-homogeneous subspace W (β) (β ∈ Ã) is irreducible under the algebra

A(V ;W (β)).

(c) Each doubly homogeneous subspaceW
(β)
(h) (h ∈ C, β ∈ Ã) is irreducible under

the algebra A(V ;W
(β)
(h) ).
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Proof . We only prove statement (a), the proofs of statements (b) and (c) being

similar. If W(h) is not irreducible, we can find a nontrivial proper submodule U of

W(h) under the algebra A(V ;W(h)). This submodule cannot generate allW under

the action by the algebra A(V ;W ), since by Lemma 2.1.15,

A(V ;W )U =
⨿
n∈Z

A(V ;W )(n)U ⊂ U ⊕
⨿

m∈Z,m̸=h

W(m).

This contradicts the irreducibility of W . �

Remark 2.1.17 A V -module W decomposes into submodules corresponding to

the congruence classes of its weights modulo Z: For µ ∈ C/Z, let

W(µ) =
⨿
n̄=µ

W(n), (2.32)

where n̄ denotes the equivalence class of n ∈ C in C/Z. Then

W =
⨿
µ∈C/Z

W(µ) (2.33)

and each W(µ) is a V -submodule of W . Thus if a module W is indecomposable

(in particular, if it is irreducible), then all complex numbers n for which W(n) ̸= 0

are congruent modulo Z to each other.

Definition 2.1.18 Let W1 and W2 be doubly graded V -modules with respect to

Ã. A module homomorphism from W1 to W2 is a linear map ψ such that

ψ(Y (v, x)w) = Y (v, x)ψ(w) for v ∈ V, w ∈ W1,

and such that ψ preserves the grading by Ã. An isomorphism is a bijective

homomorphism. An endomorphism is a homomorphism from W to itself, we

denote the endomorphism ring by EndÃV (W ).

Remark 2.1.19 Suppose V , W1, W2, ψ are as in Definition 2.1.18. Then ψ is

compatible with both gradings:

ψ((W1)
(β)
(h)) ⊂ (W2)

(β)
(h), h ∈ C,
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because ψ commutes with L(0) (see Section 4.5 of [LL]), and because ψ preserves

the grading by Ã.

Remark 2.1.20 The endomorphism ring EndÃV (W ) is a subring of the commut-

ing ring

EndV (W )

, {linear maps ψ : W →W | ψ(Y (v, x)w) = Y (v, x)ψ(w), for v ∈ V,w ∈ W}.

Proposition 2.1.21 Suppose W is an irreducible strongly Ã-graded V -module.

Then EndÃV (W ) = C.

Proof . For any λ ∈ C, ψ ∈ EndÃV (W ), letWψ
λ be the λ-eigenspace of ψ. Then

Wψ
λ is a V -submodule of W . Because W is irreducible, Wψ

λ = 0 or W . We still

need to show Wψ
λ ̸= 0, for some λ ∈ C.

Choose h ∈ C, β ∈ Ã such thatW
(β)
(h) ̸= 0. Then by Remark 2.1.19, ψ preserves

W
(β)
(h) . Since dim W

(β)
(h) < ∞ and we are working over C, ψ has an eigenvector in

W
(β)
(h) . Therefore W

ψ
λ ̸= 0 for some λ ∈ C.

Proposition 2.1.22 Suppose A is a countable abelian group. Then EndV (W ) =

C.

Proof . From Definition 2.1.3, V(n) =
⨿

α∈A V
(α)
(n) , where each doubly homo-

geneous subspace V
(α)
(n) has finite dimension. Since A is a countable group, there

are countably many such doubly homogeneous subspaces V
(α)
(n) , and hence V has

countable dimension. Since W is irreducible, from Proposition 4.5.6 of [LL], we

know

W = span{vnw | v ∈ V, n ∈ Z},

for any nonzero element w in W . Since V has countable dimension, so does W .

Then the result follows from Dixmier’s Lemma, which says that if S is an irre-

ducible set of operators on a vector space W of countable dimension over C, then
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the commuting ring of S on W consists of the scalars (cf. Lemma 2.2 in [L], and

[W], p.11), where we take S to be A(V ;W ).

2.2 Tensor products of strongly graded vertex algebras and their

strongly graded modules

In this section, we are going to introduce the notion of tensor product of finitely

many strongly graded conformal vertex algebras and their modules (see [FHL],

[LL], cf. [M1]).

Let A1, . . . , Ap be abelian groups, and let V1, . . . , Vp be strongly A1, . . . , Ap-

graded conformal vertex algebras with conformal vectors ω1, . . . , ωp, respectively.

Let

A = A1 ⊕ · · · ⊕ Ap.

Then the vector space

V = V1 ⊗ · · · ⊗ Vp

becomes a strongly A-graded conformal vertex algebra, which we shall call the ten-

sor product strongly A-graded conformal vertex algebra, with the following struc-

ture:

Y (v(1) ⊗ · · · ⊗ v(p), x) = Y (v(1), x)⊗ · · · ⊗ Y (v(p), x)

for v(i) ∈ Vi and the vacuum vector is

1 = 1⊗ · · · ⊗ 1.

(Here we use the notation 1 for the vacuum vectors of V and each Vi.) The

conformal vector is

ω = ω1 ⊗ 1⊗ · · · ⊗ 1+ · · ·+ 1⊗ · · · ⊗ 1⊗ωp.

Then

L(n) = L1(n)⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ Lp(n)
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or n ∈ Z. (Here we use the notation Li(n) for the operators on Vi associated with

ωi, i = 1, . . . , p.) The A-grading of V is given by

V =
⨿
α∈A

V (α),

with

V (α) = V
(α1)
1 ⊗ · · · ⊗ V (αp)

p ,

where αi ∈ Ai, i = 1, . . . , p, are such that α1 + · · ·+ αp = α. The Z-grading of V

is given by

V =
⨿
n∈Z

V(n),

where

V(n) =
⨿

n1+···+np=n

(V1)(n1) ⊗ · · · ⊗ (Vp)(np).

(It follows that the Z-grading is given by L(0) defined above.)

Proposition 2.2.1 The tensor product of finitely many strongly graded confor-

mal vertex algebras is a strongly graded conformal vertex algebra whose central

charge is the sum of the central charges of the tensor factors.

Proof. The grading restrictions (2.21) and (2.22) clearly hold. The Jacobi

identity follows from the weak commutativity and weak associativity properties,

as in Section 3.4 of [LL].

Notation 2.2.2 For each i = 1, . . . , p, we identify Vi with the subspace 1⊗· · ·⊗

1 ⊗ Vi ⊗ 1 ⊗ · · · ⊗ 1 of V . The strongly graded conformal vertex algebra Vi is a

vertex subalgebra of V . However, it is not a conformal vertex subalgebra of V

because the conformal vector of V and Vi do not match.

Remark 2.2.3 From the definition of tensor product strongly graded conformal

vertex algebra, we see that

Y ((1⊗· · ·⊗1⊗v(i)⊗1⊗· · ·⊗1, x) = 1V1⊗· · ·⊗1Vi−1
⊗Y (v(i), x)⊗1Vi+1

⊗· · ·⊗1Vp ,
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for v(i) ∈ Vi. In particular, we have

[Y (Vi, x1), Y (Vj, x2)] = 0,

for i, j = 1, . . . , p and i ̸= j.

Lemma 2.2.4 For all n ∈ Z, (v(1) ⊗ · · · ⊗ v(p))n can be expressed as a linear

combination, finite on any given vector, of operators of the form (v(1) ⊗ 1⊗ · · · ⊗

1)i1 · · · (1⊗ · · · ⊗ 1⊗ v(p))ip.

Proof. We prove the result as in [FHL] by induction. When p = 2, taking

Resx1 and the constant term in x0 of the Jacobi identity, we find that

Y (v(1) ⊗ v(2), x2) = Resx0x
−1
0 Y (Y (v(1) ⊗ 1, x0)(1⊗ v(2)), x2)

= Resx1(x1 − x2)
−1Y (v(1) ⊗ 1, x1)Y (1⊗ v(2), x2)

− Resx1(−x2 + x1)
−1Y (1⊗ v(2), x2)Y (v(1) ⊗ 1, x1),

so that for all n ∈ Z, (v(1)⊗v(2))n can be expressed as a linear combination, finite

on any given vector, of operators of the form (v(1)⊗1)n1(1⊗v(2))n2 .(Note that we

don’t need operators of the form (1 ⊗ v(2))n2(v
(1) ⊗ 1)n1 because of the Remark

2.2.3.)

For general p, taking Resx1 and the constant term in x0 of the Jacobi identity,

we have

Y (v(1) ⊗ · · · ⊗ v(p), x2)

= Resx0x
−1
0 Y (Y (v(1) ⊗ · · · ⊗ v(p−1) ⊗ 1, x0)(1⊗ · · · ⊗ 1⊗ v(p)), x2)

= Resx1(x1 − x2)
−1Y (v(1) ⊗ · · · ⊗ v(p−1) ⊗ 1, x1)Y (1⊗ · · · ⊗ 1⊗ v(p), x2)

− Resx1(−x2 + x1)
−1Y (1⊗ · · · ⊗ 1⊗ v(p), x2)Y (v(1) ⊗ · · · ⊗ v(p−1) ⊗ 1, x1).

It follows that (v(1) ⊗ · · · ⊗ v(p))n is a linear combination of the operators (v(1) ⊗

· · · ⊗ v(p−1) ⊗ 1)n1 · (1⊗ · · · ⊗ 1⊗ v(p))n2 . Thus the lemma holds by the induction

hypothesis.
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Now we define the notion of tensor product module for tensor product strongly

A = A1 ⊕ · · · ⊕ Ap-graded conformal vertex algebra V = V1 ⊗ · · · ⊗ Vp with the

notions above. Let Ã1, . . . , Ãp be abelian groups containing A1, . . . , Ap as sub-

groups, respectively, and let W1, . . . ,Wp be strongly Ã1, . . . , Ãp-graded modules

for V1, . . . , Vp, respectively.

Let

Ã = Ã1 ⊕ · · · ⊕ Ãp,

Then we can construct the tensor product strongly Ã-graded module

W = W1 ⊗ · · · ⊗Wp

for the tensor product strongly A-graded algebra V by means of the definition

Y (v(1) ⊗ · · · ⊗ v(p), x) = Y (v(1), x)⊗ · · · ⊗ Y (v(p), x) for v(i) ∈ Vi, i = 1, . . . , p,

L(n) = L1(n)⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ Lp(n) for n ∈ Z.

(Here we use the notation Li(n) for the operators associated with ωi on Wi,

i = 1, . . . , p.) The Ã-grading of W is defined as

W =
⨿
β∈Ã

W (β),

with

W (β) =W
(β1)
1 ⊗ · · · ⊗W (βp)

p ,

where βi ∈ Ãi, i = 1, . . . , p, are such that β1 + · · ·+ βp = β. The C-grading of W

is defined as

W =
⨿
n∈C

W(n),

where

W(n) =
∑

n1+···+np=n

(W1)(n1) ⊗ · · · ⊗ (Wp)(np).

It follows that the C-grading is given by the operator L(0) on W defined above.

It is clear that the algebra V is also a module for itself.
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Proposition 2.2.5 The structure W constructed above is a strongly Ã-graded

module for the tensor product strongly A-graded conformal vertex algebra V .

Assumption 2.2.6 In the remainder of this section, we always assume that A,

and that each Ai (i = 1, · · · , p) is a countable abelian group.

Using Proposition 2.1.22, we now prove:

Theorem 2.2.7 Let W = W1 ⊗ · · · ⊗Wp be a strongly Ã = Ã1 ⊕ · · · ⊕ Ãp-graded

V -module, with the notations as above. Then W is irreducible if and only if each

Wi is irreducible.

Proof . The “only if” part is trivial. For the “if” part, for simplicity of

notation, we take p = 2 without losing any essential content. Take a nonzero

submodule W ⊂ W1 ⊗ W2, let w
(1)
1 , . . . , w

(1)
n ∈ W1 and w

(2)
1 , . . . , w

(2)
n ∈ W2 be

linearly independent such that Σn
j=1aj(w

(1)
j ⊗w(2)

j ) ∈ W , where each aj ̸= 0. Take

any w(1) ∈ W1, w
(2) ∈ W2. By Proposition 2.1.22, the commuting ring consists of

the scalars for W1 and W2. Thus by the density theorem (see for example Section

5.8 of [J]), there are b1 ∈ A(V1;W1 ⊗W2), b2 ∈ A(V2;W1 ⊗W2) such that

b1 · w(1)
1 = w(1), b1 · w(1)

i = 0, for i = 2, . . . , n.

b2 · w(2)
1 = w(2), b2 · w(2)

i = 0, for i = 2, . . . , n.

Then

(b1b2) · Σn
j=1 aj(w

(1)
j ⊗ w

(2)
j ) = a1(w

(1) ⊗ w(2)) ∈ W.

Hence w(1) ⊗ w(2) ∈ W , and so W = W1 ⊗W2.

2.3 Strongly (h, A)-graded vertex algebras and their strongly (h, Ã)-

graded modules

For some strongly A-graded vertex algebras V , there is a vector space h consisting

of mutually commuting operators induced by V such that the A-grading of V is
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given by h in the following way: for α ∈ A, V (α) is the weight space of h of weight

α. Here is an example:

Example 2.3.1 Consider the strongly L-graded conformal vertex algebra VL in

Example 2.1.8. For h ∈ h, there is an operator h(0) on VL such that

h(0) · V (α)
L = ⟨h, α⟩V (α)

L .

We identify h with the set of operators

{h(0) = (h(−1) · 1)0 | h ∈ h}

(see Chapter 8 of [FLM]). Since the symmetric bilinear form ⟨·, ·⟩ is nondegener-

ate, V
(α)
L is characterized as the weight space of h of weight α.

Consider the tensor algebra T (V [t, t−1]) over the vector space V [t, t−1]. Then

any V -moduleW , in particular, V itself, can be regarded as a T (V [t, t−1])-module

uniquely determined by the condition that for v ∈ V , n ∈ Z, v⊗ tn acts on W as

vn. In the following definitions, we consider a particular subspace of T (V [t, t−1])

acting on V and W .

Definition 2.3.2 A strongly A-graded vertex algebra equipped with a vector

subspace

h ⊂ T (V [t, t−1])

is called strongly (h, A)-graded if there is a nondegenerate pairing

⟨·, ·⟩ : h× A −→ C

(h, α) 7−→ ⟨h, α⟩

linear in the first variable and additive in the second variable, such that h acts

commutatively on V and

V (α) = {v ∈ V | h · v = ⟨h, α⟩v, for all h ∈ h}.
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By Definition 2.3.2, the strongly graded conformal vertex algebra VL in Exam-

ple 2.3.1 is strongly (h, L)-graded, where h is the set of operators {(h(−1)·1)0 | h ∈

L⊗Z C}.

For a strongly (h, A)-graded vertex algebra V , a natural module category is

the category of strongly Ã-graded V -modules W with an action of h, such that

the Ã-grading on W is given by weight spaces of h. Here is an example:

Example 2.3.3 As in Example 2.1.8, any sublattice M of L◦ containing L gives

rise to a strongly M -graded VL-module VM . Take h = L ⊗Z C and identify h as

the set of operators {(h(−1) · 1)0 | h ∈ h} as in Example 2.3.1. Then for β ∈M ,

V
(β)
M = {w ∈ VM | h · w = ⟨h, β⟩w, for all h ∈ h}.

so that we have examples of the following:

Definition 2.3.4 A strongly Ã-graded module for a strongly (h, A)-graded ver-

tex algebra is said to be strongly (h, Ã)-graded if there is a nondegenerate pairing

⟨·, ·⟩ : h× Ã −→ C

(h, β) 7−→ ⟨h, β⟩

linear in the first variable and additive in the second variable, such that the

operators in h act commutatively on W and

W (β) = {w ∈ W | h · w = ⟨h, β⟩w, for all h ∈ h}.

Remark 2.3.5 Submodules and quotient modules of strongly (h, Ã)-graded con-

formal modules are also strongly (h, Ã)-graded modules. Irreducible strongly

(h, Ã)-graded modules are strongly (h, Ã)-graded modules without nontrivial sub-

modules. Strongly (h, Ã)-graded module homomorphisms are strongly Ã-graded

module homomorphisms which commute with the actions of h.

The following propositions are natural analogues of Proposition 2.2.1 and

Proposition 2.2.5.
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Proposition 2.3.6 Let V1, . . . , Vp be strongly (h1, A1), . . . , (hp, Ap)-graded con-

formal vertex algebras, respectively. Let A = A1⊕· · ·⊕Ap, h = h1⊕· · ·⊕hp, and

let ⟨·, ·⟩i denote the pairing between hi and Ai, for i = 1, . . . , p. Then the tensor

product algebra V = V1 ⊗ · · · ⊗ Vp becomes a strongly (h, A)-graded conformal

vertex algebra, where the nondegenerate pairing is given by:

⟨·, ·⟩ : h× A −→ C

(h, α) 7−→
p∑
i=1

⟨hi, αi⟩i,

where h = h1 + · · ·+ hp, α = α1 + · · ·+αp, for hi ∈ hi, αi ∈ Ai, i = 1, . . . , p, and

V (α) = V
(α1)
1 ⊗ · · · ⊗ V (αp)

p = {v ∈ V1 ⊗ · · · ⊗ Vp | h · v = ⟨h, α⟩v, for all h ∈ h}.

Proof. It is easy to see that the pairing defined above is nondegenerate, and

V (α) is characterized uniquely as the eigenspace of h.

Proposition 2.3.7 Let W1, . . . ,Wp be strongly (h1, Ã1), . . . , (hp, Ãp)-graded con-

formal modules for strongly (h1, A1), . . . , (hp, Ap)-graded conformal vertex algebras

V1, . . . , Vp, respectively. Let Ã = Ã1 ⊕ · · · ⊕ Ãp, h = h1 ⊕ · · · ⊕ hp, and let ⟨·, ·⟩i

denote the pairing between hi and Ãi, for i = 1, . . . , p. Then the tensor produc-

t module W = W1 ⊗ · · · ⊗ Wp becomes a strongly (h, Ã)-graded module for the

strongly graded vertex algebra V , where the nondegenerate pairing is given by:

⟨·, ·⟩ : h× Ã −→ C

(h, β) 7−→
p∑
i=1

⟨hi, βi⟩i,

where h = h1 + · · ·+ hp, β = β1 + · · ·+ βp, for hi ∈ hi, βi ∈ Ãi, i = 1, . . . , p, and

W (β) = W
(β1)
1 ⊗· · ·⊗W (βp)

p = {w ∈ W1⊗· · ·⊗Wp | h·w = ⟨h, β⟩w, for all h ∈ h}.

The following proposition is an analogue and consequence of Theorem 2.2.7.

Theorem 2.3.8 Let W = W1 ⊗ · · · ⊗ Wp be a strongly (h, Ã)-graded module

constructed in Proposition 2.3.7. Then W is irreducible if and only if each Wi is

irreducible.
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2.4 Irreducible modules for tensor product strongly graded algebra

Our goal is to determine all the strongly (h, Ã)-graded irreducible modules for

the tensor product strongly (h, A)-graded conformal vertex algebra constructed

in Proposition 2.3.6. To do this, we need to define a more specific kind of strongly

(h, Ã)-graded modules as follows:

Definition 2.4.1 Let V1, . . . , Vp, V be strongly (h1, A1), . . . , (hp, Ap), (h, A)-graded

conformal vertex algebras, respectively, as in the setting of Proposition 2.3.6. Let

W be a strongly (h, Ã)-graded V -module, where Ã is an abelian group containing

A as a subgroup, so that in particular, for β ∈ Ã,

W (β) = {w ∈ W | h · w = ⟨h, β⟩w, for all h ∈ h}.

Assume that there exists an abelian subgroup Ãi of Ã containing Ai as a subgroup

for each i = 1, . . . , p such that

Ã = Ã1 ⊕ · · · ⊕ Ãp,

⟨hi, Ãj⟩ = 0 if i ̸= j

and such that W is a doubly graded Vi-module with respect to Ãi and the Ãi-

grading is given by hi in the following way: For βi ∈ Ãi,

W (βi) = {w ∈ W | hi · w = ⟨hi, βi⟩w, for all hi ∈ hi}.

Then W is called a strongly ((h1, Ã1), . . . , (hp, Ãp))-graded V -module.

Remark 2.4.2 Submodules and quotient modules of strongly ((h1, Ã1), . . . ,

(hp, Ãp))-graded V -modules are also strongly ((h1, Ã1), . . . , (hp, Ãp))-graded mod-

ules. Irreducible strongly ((h1, Ã1), . . . , (hp, Ãp))-graded modules are strongly

((h1, Ã1), . . . , (hp, Ãp))-graded modules without nontrivial submodules. Strongly

((h1, Ã1), . . . , (hp, Ãp))-graded module homomorphisms are strongly (h, Ã)-graded

V -module homomorphisms.
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Example 2.4.3 The strongly (h, Ã)-graded tensor product module W1 ⊗ · · · ⊗

Wp constructed in Proposition 2.3.7 is a strongly ((h1, Ã1), . . . , (hp, Ãp))-graded

V1 ⊗ · · · ⊗ Vp-module.

From Example 2.1.8, we can see that any VL-module is a strongly L◦-graded

module. Based on this fact, it is easy to show that the following example satisfies

the conditions in Definition 2.4.1.

Example 2.4.4 Let V ♮ be the moonshine module constructed in [FLM], which is

a strongly (⟨0⟩, ⟨0⟩)-graded conformal vertex algebra as in Example 2.1.7; let VL be

the conformal vertex algebra associated with the even 2-dimensional unimodular

Lorentzian lattice L, which is a strongly (h, L)-graded conformal vertex algebra

as constructed in Example 2.1.8. Then any strongly (h, L)-graded module for

V ♮ ⊗ VL is strongly ((⟨0⟩, ⟨0⟩), (h, L))-graded (note that L is a self-dual lattice,

i.e., L◦ = L).

Notation 2.4.5 For β1 ∈ Ã1, . . . , βp ∈ Ãp, we let W
(β1,...,βp) denote the following

common weight space of h1, . . . , hp, i.e.,

W (β1,...,βp) := {w ∈ W | hi · w = ⟨hi, βi⟩w, for all hi ∈ hi, i = 1, . . . , p}.

Next we assumeW to be a strongly ((h1, Ã1), . . . , (hp, Ãp))-graded V1⊗· · ·⊗Vp-

module, with the notation as in Definition 2.4.1.

Proposition 2.4.6 Suppose that W is irreducible. Then

for β1 ∈ Ã1, . . . , βp ∈ Ãp, W
(β1,...,βp) is irreducible under the algebra of operators

A(V1 ⊗ · · · ⊗ Vp;W
(β1,...,βp)).

Proof. The proof is similar to the proof of Proposition 2.1.16.

Lemma 2.4.7 For β ∈ Ã, we have

W (β) =W (β1,...,βp),

where β = β1 + · · ·+ βp.
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Proof. This is a consequence of Definition 2.4.1.

Theorem 2.4.8 Let W be a strongly ((h1, Ã1), . . . , (hp, Ãp))-graded irreducible

V1⊗· · ·⊗Vp-module, with the notions as in Definition 2.4.1. Then W is a tensor

product of irreducible strongly (hi, Ãi)-graded Vi-modules, for i = 1, . . . , p.

Proof . For simplicity of notation, we take p = 2, as above. Since W is irre-

ducible, by Remark 2.1.17, W =
⨿

n̄=µW(n) for some µ ∈ C/Z, where n̄ denotes

the equivalent class of n ∈ C in C/Z. Choose β ∈ Ã such that W (β) ̸= 0. Then

there exists n0 ∈ C such that W
(β)
(n0)

is the lowest weight space of W (β). Since

W
(β)
(n0)

is finite dimensional and we are working over C, there exists a simultaneous

eigenvector w0 ∈ W
(β)
(n0)

for the commuting operators Li(0) and the operators in

hi, i = 1, 2. Denote by n1, n2 ∈ Z the corresponding eigenvalues for L1(0), L2(0).

Then we have n0 = n1 + n2. Denote by β1 ∈ Ã1, β2 ∈ Ã2 the corresponding

weights for h1, h2. By Lemma 2.4.7, we have W (β) = W (β1,β2), and β = β1 + β2.

Now the L(−1)-derivative condition and the L(0)-bracket formula imply that

[L1(0), Y (v(1) ⊗ 1, x)] = Y (L1(0)(v
(1) ⊗ 1), x) + x

d

dx
Y (v(1) ⊗ 1, x)

for v(1) ∈ V1. Thus for doubly homogeneous vector v(1) and n ∈ Z,

wt1(v
(1) ⊗ 1)n = wt1(v

(1) ⊗ 1)− n− 1,

where wt1 refers to L1(0)-eigenvalue on both V1 ⊗ V2 and the space of operators

on W . In particular, (v(1) ⊗ 1)n permutes L1(0)-eigenspaces. Moreover, since

(1⊗ v(2))n, for v
(2) ∈ V2, commutes with L1(0), it preserves L1(0)-eigenspaces. Of

course, similar statements hold for L2(0), h1(0), h2(0).

By Lemma 2.4.6, W (β1,β2) is irreducible under the algebra of the operators

A(V1 ⊗ V2;W
(β1,β2)). Then W (β1,β2) is generated by w0 by the irreducibility, and

is spanned by elements of the form

(v
(1)
1 ⊗ 1)m1 · · · (v

(1)
k ⊗ 1)mk

(1⊗ v
(2)
1 )n1 · · · (1⊗ v

(2)
l )nl

w0
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where v
(1)
i ∈ V1 and v

(2)
j ∈ V2, v

(1)
i , v

(2)
j are doubly homogeneous, and the A-

weights of
∑m

i=1 v
(1)
i and

∑n
j=1 v

(2)
j are 0.

Hence W (β1,β2) is the direct sum of its simultaneous eigenspaces for Li(0) and

hi, for i = 1, 2, and the L1(0), L2(0)-eigenvalues are bounded below by n1, n2,

respectively. It follows that the lowest weight space W
(β1,β2)
(n0)

is filled up by the

simultaneous eigenspace for the operators Li(0) with eigenvalues ni. To be more

precise, we use W
(β1,β2)
(n1,n2)

to denote the subspace W
(β1,β2)
(n0)

. By a similar argumen-

t as in Proposition 2.4.6, W
(β1,β2)
(n1,n2)

is irreducible under the algebra of operators

A(V1 ⊗ V2;W
(β1,β2)
(n1,n2)

).

By the density theorem, the algebra A(V1 ⊗V2;W
(β1,β2)
(n1,n2)

) fills up End W
(β1,β2)
(n1,n2)

.

Because A(V1;W
(β1,β2)
(n1,n2)

) and A(V2;W
(β1,β2)
(n1,n2)

) are commuting algebras of operators

and A(V1 ⊗ V2;W
(β1,β2)
(n1,n2)

) is generated by A(V1;W
(β1,β2)
(n1,n2)

) and A(V2;W
(β1,β2)
(n1,n2)

), we

see that

End W
(β1,β2)
(n1,n2)

= A(V1;W
(β1,β2)
(n1,n2)

)A(V2;W
(β1,β2)
(n1,n2)

).

Choose an irreducible A(V1;W
(β1,β2)
(n1,n2)

)-submodule M1 of W
(β1,β2)
(n1,n2)

. Then

A(V1;W
(β1,β2)
(n1,n2)

) acts faithfully on M1 since any element of A(V1;W
(β1,β2)
(n1,n2)

) annihi-

lating M1 annihilates

A(V2;W
(β1,β2)
(n1,n2)

) ·M1 = A(V2;W
(β1,β2)
(n1,n2)

)A(V1;W
(β1,β2)
(n1,n2)

) ·M1

= (End W
(β1,β2)
(n1,n2)

)M1

= W
(β1,β2)
(n1,n2)

.

Thus A(V1;W
(β1,β2)
(n1,n2)

) restricts faithfully to End M1 and hence is isomorphic to

a full matrix algebra. Similarly, A(V2;W
(β1,β2)
(n1,n2)

) is isomorphic to a full matrix

algebra. It follows that

End W
(β1,β2)
(n1,n2)

= A(V1;W
(β1,β2)
(n1,n2)

)⊗ A(V2;W
(β1,β2)
(n1,n2)

).
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Then W
(β1,β2)
(n1,n2)

has the structure

W
(β1,β2)
(n1,n2)

=M1 ⊗M2

as an irreducible A(V1;W
(β1,β2)
(n1,n2)

)⊗A(V2;W (β1,β2)
(n1,n2)

)-module. Here, as an irreducible

A(Vi;W
(β1,β2)
(n1,n2)

)-submodule of W
(β1,β2)
(n1,n2)

, Mi has Ãi-grading βi induced by hi, and

has C-grading ni induced by Li(0), respectively, for i = 1, 2.

Let

w0 = y1 ⊗ y2

(where yi ∈ Mi, for i = 1, 2) be a nonzero decomposable tensor in W
(β1,β2)
(n1,n2)

. Let

Wi be the doubly graded Vi-submodule of W generated by w0. Then the module

W1 has a strongly (h1, Ã1)-graded V1-module structure such that

W1 =
⨿

n∈C, γ∈Ã

(W1)
(γ)
(n),

where

(W1)
(γ)
(n) = span

{
(v

(1)
1 ⊗ 1)s1 · · · (v(1)p ⊗ 1)spw

0
∣∣

wt v
(1)
1 − s1 − 1 + · · ·+ wt v(1)p − sp − 1 = n− n1,

A-wt v
(1)
1 + · · ·+ A-wt v(1)p = γ − β1,

where v
(1)
1 , . . . , v(1)p ∈ V1, s1, . . . , sp ∈ Z

}
.

This module we constructed satisfies the grading restrictions (2.27) and (2.28)

in Definition 2.1.4, which follows from the fact thatW is a strongly graded V1⊗V2-

module and each doubly homogeneous subspace of W1 lies in the doubly homoge-

neous subspace of W . Also, W
(γ)
1 is the weight space of h1 with weight γ, hence

by Definition 2.3.4, W1 is a strongly (h1, Ã1)-graded V1-module.

We claim that W1 is V1-irreducible (and similarly for W2). In fact, consid-

eration of the abelian group grading shows that any nonzero V1-submodule of

W1 not intersecting W (β1,β2) will give rise to a nonzero V1 ⊗ V2-submodule of W
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not intersecting W (β1,β2). Thus any nonzero V1-submodule of W1 must intersec-

t W (β1,β2). Then consideration of the weight shows that the (β1, β2)-subspace

of any nonzero V1-submodule of W1 not intersecting W
(β1,β2)
(n1,n2)

would give rise to

a nonzero A(V1 ⊗ V2;W
(β1,β2))-submodule of W (β1,β2) not intersecting W

(β1,β2)
(n1,n2)

.

Thus any nonzero V1-submodule of W1 must intersect W
(β1,β2)
(n1,n2)

. But the irre-

ducible A(V1;W
(β1,β2)
(n1,n2)

)-module A(V1;W
(β1,β2)
(n1,n2)

) · w0 is the full intersection of W1

and W
(β1,β2)
(n1,n2)

, so that the V1-submodule must contain w0 and hence be all of W1.

This proves the V1-irreducibility of W1.

Finally, to show thatW is isomorphic toW1⊗W2, consider the abstract tensor

product V1 ⊗ V2-module W1 ⊗W2, where Wi is the strongly Ãi-graded Vi-module

defined above, for i = 1, 2. Define a linear map

φ : W1 ⊗W2 → W

b1 · w0 ⊗ b2 · w0 7→ b1b2 · w0,

where bi is any operator induced by Vi. Then φ is well defined and is a V1 ⊗ V2-

module homomorphism. Since W1 ⊗W2 is irreducible by Theorem 2.2.7, φ is a

module isomorphism.

Example 2.4.9 Let VLi
be the conformal vertex algebra associated with an even

lattice Li as in Example 2.1.8, where i = 1, . . . , p. Let VL1⊗· · ·⊗VLp be the tensor

product strongly graded vertex algebra of VL1 , . . . , VLp . By the construction of a

lattice vertex algebra in Example 2.1.8, we have

VL1 ⊗ · · · ⊗ VLp = VL1⊕···⊕Lp ,

and every irreducible VL1⊕···⊕Lp-module is equivalent to a module of the form

VL1+γ1⊕···⊕Lp+γp = VL1+γ1 ⊗ · · · ⊗ VLp+γp ,

for some γi ∈ L◦
i , i = 1, . . . , p. This example illustrates Theorem 2.4.8.

Now we can describe our main examples:
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Corollary 2.4.10 The only irreducible strongly (h, L)-graded module of V ♮⊗VL,

where L is the unique even 2-dimensional unimodular Lorentzian lattice and h =

{(h(−1) · 1)0 | h ∈ L⊗Z C}, up to equivalence, is itself.

Proof . Let W be an irreducible strongly (h, L)-graded module of V ♮ ⊗ VL.

Then by Example 2.4.4, W is a strongly ((⟨0⟩, ⟨0⟩), (h, L))-graded module of V ♮⊗

VL. By Theorem 2.4.8, it is a tensor product of an irreducible strongly (⟨0⟩, ⟨0⟩)-

graded V ♮-module with an irreducible strongly (h, L)-graded VL-module. By [D2],

V ♮ is its only irreducible module, up to equivalence. Also, by [D1] (cf. [LL],

Example 2.1.8), VL is its only irreducible module because L is self-dual. Therefore

W = V ♮ ⊗ VL

as claimed.

Remark 2.4.11 Thanks to Prof. Haisheng Li, we provide another proof for

Corollary 2.4.10. Let W be an irreducible module for V ♮ ⊗ VL. Then W can

be viewed as a weak V ♮-module. Since every weak module for V ♮ is completely

reducible and the only irreducible module for V ♮ is itself up to isomorphism (see

[D2] and [DLM]), W is a direct sum of V ♮ up to isomorphism, i.e.,

W =
⨿

V ♮.

From Remark 4.7.1 in [FHL], Schur’s Lemma for irreducible modules holds for

irreducible modules of V ♮ over C. Also, since the operators onW induced from V ♮

and VL commute with each other, HomV ♮(V ♮,W ) can be viewed as a VL-module.

We have the natural V ♮ ⊗ VL-module isomorphism

V ♮ ⊗ HomV ♮(V ♮,W ) = V ♮ ⊗ HomV ♮(V ♮,
⨿

V ♮)

= V ♮ ⊗
⨿

HomV ♮(V ♮, V ♮) ≃
⨿

V ♮ =W.

(See also Lemma 4.13 and Proposition 4.14 in [Li]). Since W is irreducible,

HomV ♮(V ♮,W ) has to be an irreducible VL-module, which is VL itself, up to iso-

morphism. So W ≃ V ♮ ⊗ VL as a V ♮ ⊗ VL-module.
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Remark 2.4.12 In Corollary 2.4.10, the 2-dimensional self-dual Lorentzian lat-

tice can of course be generalized to any self-dual nondegenerate even lattice.

2.5 Complete reducibility

Definition 2.5.1 Let V be a strongly (h, A)-graded conformal vertex algebra.

Then a strongly (h, Ã)-graded V -module is called completely reducible if it is a

direct sum of irreducible strongly (h, Ã)-graded V -modules.

Notation 2.5.2 In the remainder of this section, we will always let A = A1 ⊕

· · · ⊕ Ap, h = h1 ⊕ · · · ⊕ hp, and V = V1 ⊗ · · · ⊗ Vp.

Definition 2.5.3 A strongly ((h1, Ã1), . . . , (hp, Ãp))-graded module for the tensor

product conformal vertex algebra V is called completely reducible if it is a direct

sum of irreducible strongly ((h1, Ã1), . . . , (hp, Ãp))-graded V -modules.

Theorem 2.5.4 Let V1, . . . , Vp be strongly (h1, A1), . . . , (hp, Ap)-graded conformal

vertex algebras, respectively, and let V be their tensor product strongly (h, A)-

graded conformal vertex algebra. Then every strongly ((h1, Ã1), . . . , (hp, Ãp))-

graded V -module is completely reducible if and only if every strongly (hi, Ãi)-

graded Vi-module is completely reducible.

Proof. It suffices to prove the result for n = 2. Let W be a strongly

((h1, Ã1), (h2, Ã2))-graded V = V1 ⊗ V2-module. Then by Proposition 2.4.7, we

can take w ∈ W
(β1,β2)
(n1,n2)

, where βi ∈ Ãi, ni ∈ C, for i = 1, 2.

Let M be the strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-submodule of W

generated by w, i.e., M is spanned by elements of the form

(v
(1)
1 ⊗ 1)s1 · · · (v(1)p ⊗ 1)sp(1⊗ v

(2)
1 )t1 · · · (1⊗ v(2)q )tqw

where v
(1)
1 , . . . , v

(1)
p are doubly homogeneous elements in V1 and v

(2)
1 , . . . , v

(2)
q are

doubly homogeneous elements in V2, respectively, and s1, . . . , sp, t1, . . . , tq ∈ Z.
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Let Mi be the doubly graded Vi-submodule of M generated by w. Then Mi is a

strongly (hi, Ãi)-graded Vi-module, respectively, for i = 1, 2, in an obvious way as

in the proof of Theorem 2.4.8.

By Proposition 2.3.7 and Example 2.4.3,M1⊗M2 is strongly ((h1, Ã1), (h2, Ã2))-

graded. Moreover, we have a strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-module

epimorphism from M1 ⊗M2 to M by sending b1w ⊗ b2w 7→ b1b2w, where bi is

an operator induced by Vi, for i = 1, 2. If every strongly (hi, Ãi)-graded Vi-

module is completely reducible, then Mi is a direct sum of irreducible strongly

(hi, Ãi)-graded Vi-modules and therefore M1 ⊗M2 is a direct sum of irreducible

strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-modules (see Theorem 2.3.8). Then

as a quotient module of M1 ⊗M2, M is also a direct sum of irreducible strongly

((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-modules, and consequently, W is a direct sum

of irreducible strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-modules.

Conversely, assume that every strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-

module W is completely reducible. We first observe that V1 ⊗ V2 is strongly

((h1, A1), (h2, A2))-graded, hence a ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-module it-

self by Proposition 2.3.6 and Example 2.4.3, and hence is a direct sum of ir-

reducible strongly ((h1, Ã1), (h2, Ã2))-graded modules. Let W be an irreducible

strongly ((h1, Ã1), (h2, Ã2))-graded V1⊗V2-module. ThenW is a tensor product of

an irreducible strongly (h1, Ã1)-graded module for V1 and an irreducible strongly

(h2, Ã2)-graded module for V2 by Theorem 2.4.8. In particular, V1 has irreducible

strongly (h1, Ã1)-graded modules and V2 has irreducible strongly (h2, Ã2)-graded

modules, respectively.

Let W1 be a strongly (h1, Ã1)-graded V1-module and W2 be an irreducible

strongly (h2, Ã2)-graded V2-module. Since every strongly ((h1, Ã1), (h2, Ã2))-graded

V1 ⊗ V2-module is completely reducible, W1 ⊗W2 is a direct sum of irreducible
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strongly ((h1, Ã1), (h2, Ã2))-graded modules:

W1 ⊗W2 =
⨿
i

Mi

where eachMi is an irreducible strongly ((h1, Ã1), (h2, Ã2))-graded V1⊗V2-module.

Fix i and let x
(i)
1 , . . . , x

(i)
n ∈ W1 and y

(i)
1 , . . . , y

(i)
n ∈ W2 be linearly independent

doubly homogeneous elements such that
∑

j cjx
(i)
j ⊗ y

(i)
j ∈Mi, where cj ∈ C, cj ̸=

0. By the density theorem (as in the proof of Theorem 2.2.7), each x
(i)
j ⊗y(i)j ∈Mi.

LetWi1 be the doubly graded V1-submodule ofW1 generated by x
(i)
j0
, for some j0 ∈

{1, 2, . . . , n}. ThenWi1 is a strongly (h1, Ã1)-graded V1-submodule as in the proof

of Theorem 2.4.8. By the irreducibility ofMi, we see thatMi = Wi1⊗W2 and that

Wi1 is an irreducible strongly (h1, Ã1)-graded V1-submodule of W1. Therefore,

W1 ⊗W2 = (
⨿

iWi1) ⊗W2. By the density theorem, for any nonzero w2 ∈ W2,

W1 ⊗ w2 = (
⨿

iWi1) ⊗ w2. Hence as a V1-module, W1
∼= (

⨿
iWi1), and thus W1

is completely reducible. Similarly for V2.

Example 2.5.5 Let VLi
be the conformal vertex algebra associated with an even

lattice Li as in Example 2.1.8, where i = 1, . . . , p. Let VL1⊗· · ·⊗VLp be the tensor

product strongly graded vertex algebra of VL1 , . . . , VLp . By the construction of a

lattice vertex algebra as in Example 2.1.8, we have

VL1 ⊗ · · · ⊗ VLp = VL1⊕···⊕Lp .

As in Example 2.1.8, every module for VL1⊕···⊕Lp , hence for VL1 ⊗ · · · ⊗ VLp , is

completely reducible. This example illustrates Theorem 2.5.4.

Corollary 2.5.6 Every strongly (h, L)-graded module for the strongly (h, L)-graded

conformal vertex algebra V ♮ ⊗ VL, where L is the unique even 2-dimensional u-

nimodular Lorentzian lattice and h = {(h(−1) · 1)0 | h ∈ L ⊗Z C}, is completely

reducible.
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Chapter 3

Differential equations and logarithmic intertwining

operators for strongly graded vertex algebras

3.1 Strongly graded generalized modules

In this section, we will recall the following definitions from [HLZ1]:

Definition 3.1.1 A generalized module for a conformal vertex algebra is defined

in the same way as a module for a conformal vertex algebra except that in the

grading (2.12), each space W(n) is replaced by W[n], where W[n] is the generalized

L(0)-eigenspace corresponding to the generalized eigenvalue n ∈ C; that is, (2.12)

and (2.20) in the definition are replaced by

W =
⨿
n∈C

W[n]

and

for n ∈ C and w ∈ W[n], (L(0)− n)kw = 0, for k ∈ N sufficiently large,

respectively. For w ∈ W[n], we still write wt w = n for the generalized weight of

w.

Definition 3.1.2 Let A be an abelian group and V a strongly A-graded confor-

mal vertex algebra. Let Ã be an abelian group containing A as a subgroup. A

generalized V -module

W =
⨿
n∈C

W[n]

is said to be strongly graded with respect to Ã (or strongly Ã-graded, or just

strongly graded) if the abelian group Ã is understood) if it is equipped with a
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second gradation, by Ã,

W =
⨿
β∈Ã

W (β),

such that the following conditions are satisfied: the two gradations are compatible,

that is, for any β ∈ Ã,

W (β) =
⨿
n∈C

W
(β)
[n] , where W

(β)
[n] =W[n] ∩W (β);

for any α ∈ A, β ∈ Ã and n ∈ C,

W
(β)
[n+k] = 0) for k ∈ Z sufficiently negative; (3.1)

dimW
(β)
[n] <∞;

vlW
(β) ⊂ W (α+β) for any v ∈ V (α), l ∈ Z.

A strongly Ã-graded (generalized) V -module W is said to be lower bounded if

instead of (3.1), it satisfies the stronger condition that for any β ∈ Ã,

W
(β)
(n) = 0 (respectively,W

(β)
[n] = 0) for n ∈ C and R(n) sufficiently negative.

In this chapter, we will derive systems of differential equations for matrix

elements of products and iterates of logarithmic intertwining operators among

generalized modules for a strongly graded vertex algebra. For this purpose, first

we need the notion of contragredient module for a strongly graded (generalized)

module. With the strong gradedness condition on a (generalized) module, we can

indeed define the corresponding notion of contragredient module.

Definition 3.1.3 Let W =
⨿

β∈Ã,n∈CW
(β)
[n] be a strongly Ã-graded generalized

module for a strongly A-graded conformal vertex algebra. For each β ∈ Ã and

n ∈ C, let us identify (W
(β)
[n] )

∗ with the subspace of W ∗ consisting of the linear

function on W vanishing on each W
(γ)
[n] with γ ̸= β or m ̸= n. We define W ′ to

be the (Ã× C)-graded vector subspaces of W ∗ given by

W ′ =
⨿

β∈Ã,n∈C

(W ′)
(β)
[n] , where (W ′)

(β)
[n] = (W

(−β)
[n] )∗.
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The adjoint vertex operators Y ′(v, z) (v ∈ V ) on W ′ is defined in the same

way as vertex operator algebra in section 5.2 in [FHL] (see Section 2 of [HLZ1]).

The pair (W ′, Y ′) carries a strongly graded module structure as follows:

Proposition 3.1.4 Let Ã be an abelian group containing A as a subgroup and V

a strongly A-graded conformal vertex algebra. Let (W,Y ) be a strongly Ã-graded

V -module (respectively, generalized V -module). Then the pair (W ′, Y ′) carries a

strongly Ã-graded V -module (respectively, generalized V -module) structure. If W

is lower bounded, so is W ′.

Definition 3.1.5 The pair (W ′, Y ′) is called the contragredient module of (W,Y ).

3.2 C1-cofiniteness condition

In this section, we will let V denote a strongly A-graded conformal vertex algebra

and let W denote a strongly Ã-graded lower bounded (generalized) V -module,

where A, Ã are abelian groups such that A is an abelian subgroup of Ã.

In the following definition, we generalize the C1-cofiniteness condition for the

(generalized) modules for a vertex operator algebra to a C1-cofiniteness condition

with respect to Ã for the strongly Ã-graded (generalized) modules for a strongly

graded conformal vertex algebra.

Definition 3.2.1 Let C1(W ) be the subspace of W spanned by elements of the

form u−1w for

u ∈ V+ =
⨿
n>0

V(n)

and w ∈ W . The Ã-grading on W induces an Ã-grading on W/C1(W ):

W/C1(W ) =
⨿
β∈Ã

(W/C1(W ))(β),

where

(W/C1(W ))(β) = W (β)/(C1(W ))(β)
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for β ∈ Ã. If dim (W/C1(W ))(β) < ∞ for β ∈ Ã, we say that W is C1-cofinite

with respect to Ã or W satisfies the C1-cofiniteness condition with respect to Ã.

Remark 3.2.2 Let V0 be a conformal vertex subalgebra of V strongly graded

with respect to an abelian subgroup A0 of A. If W is C1-cofinite with respect

to Ã as a strongly graded (generalized) V0-module, then W is C1-cofinite with

respect to Ã as a strongly graded (generalized) V -module.

Example 3.2.3 Let VL be the conformal vertex algebra associated with a nonde-

generate even lattice L and letW be a stronglyM -graded (generalized) VL-module

for a sublattice M of L◦ containing L as in Example 2.1.8. Then W satisfies the

C1-cofiniteness condition with respect to M as a V
(0)
L -module. Thus W is also

C1-cofinite with respect to M as a strongly graded VL-module.

3.3 Logarithmic intertwining operators

Logarithmic intertwining operators were introduced and studied in [M2]. We

first recall the relevant definitions from [M2] [M3], [HLZ2]; we use the versions in

[HLZ2].

Throughout this section, we shall use x, x0, x1, x2, . . . to denote commuting

formal variables and z, z0, z1, z2, . . . to denote complex variables or complex num-

bers.

Definition 3.3.1 Let (W1, Y1), (W2, Y2) and (W3, Y3) be generalized modules for

a conformal vertex algebra V . A logarithmic intertwining operator of type
(

W3

W1W2

)
is a linear map

Y(·, x)· : W1 ⊗W2 → W3[log x]{x}, (3.2)

or equivalently,

w(1) ⊗ w(2) 7→ Y(w(1), x)w(2) =
∑
n∈C

∑
k∈N

w(1)
Y
n; k
w(2)x

−n−1(log x)k ∈ W3[log x]{x}

(3.3)
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for all w(1) ∈ W1 and w(2) ∈ W2, such that the following conditions are satisfied:

the lower truncation condition: for any w(1) ∈ W1, w(2) ∈ W2 and n ∈ C,

w(1)
Y
n+m; k

w(2) = 0 for m ∈ N sufficiently large, independently of k; (3.4)

the Jacobi identity:

x−1
0 δ

(
x1 − x2
x0

)
Y3(v, x1)Y(w(1), x2)w(2)

−x−1
0 δ

(
x2 − x1
−x0

)
Y(w(1), x2)Y2(v, x1)w(2)

= x−1
2 δ

(
x1 − x0
x2

)
Y(Y1(v, x0)w(1), x2)w(2) (3.5)

for v ∈ V , w(1) ∈ W1 and w(2) ∈ W2 (note that the first term on the left-hand side

is meaningful because of (3.4)); the L(−1)-derivative property: for any w(1) ∈ W1,

Y(L(−1)w(1), x) =
d

dx
Y(w(1), x). (3.6)

Definition 3.3.2 In the setting of Definition 3.3.1, suppose in addition that V

and W1, W2 and W3 are strongly graded. A logarithmic intertwining operator Y

as in Definition 3.3.1 is a grading-compatible logarithmic intertwining operator if

for β, γ ∈ Ã and w1 ∈ W
(β)
1 , w2 ∈ W

(γ)
2 , n ∈ C and k ∈ N, we have

(w1)n;kw2 ∈ W
(β+γ)
3 .

Definition 3.3.3 In the setting of Definition 3.3.2, the grading-compatible loga-

rithmic intertwining operators of a fixed type
(

W3

W1W2

)
form a vector space, which

we denote by VW3
W1W2

. We call the dimension of VW3
W1W2

the fusion rule for W1, W2

and W3 and denote it by NW3
W1W2

.

Let V be a strongly A-graded vertex algebra and V0 be a strongly A0-graded

vertex subalgebra of V , where A is an abelian group and A0 is an abelian subgroup

of A. Let Ã be an abelian group containing A as its subgroup.

We shall use the following two sets in the next section: For βi ∈ Ã, i = 1, 2, 3,

set

Ĩ(β1,β2,β3) = (β1 + A0)× (β2 + A0)× (β3 + A0).
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For any strongly Ã-graded generalized V -modules Wi (i = 0, 1, . . . , 4) and any

logarithmic intertwining operators Y1 and Y2 of type
(

W ′
0

W1W4

)
and

(
W4

W2W3

)
, respec-

tively, set

I
(β1,β2,β3)
Y1,Y2

=

(β̃1, β̃2, β̃3) ∈ Ĩ(β1,β2,β3)

∣∣∣∣∣ ∃ wi ∈ W
(β̃i)
i (i = 1, 2, 3) s.t.

Y1(w1, x1)Y2(w2, x2)w3 ̸= 0

 .

For brevity, we will use I(β1,β2,β3) to denote the set I
(β1,β2,β3)
Y1,Y2

in the rest of this

paper.

Lemma 3.3.4 Suppose that every strongly Ã-graded V -module satisfies

C1-cofiniteness condition with respect to Ã as a V0-module and that for any two

fixed elements β1 and β2 in Ã and any triple of strongly graded generalized V -

modules M1, M2 and M3, the fusion rule

N
M

(β̃1+β̃2)
3

M
(β̃1)
1 M

(β̃2)
2

̸= 0

for only finitely many pairs (β̃1, β̃2) ∈ (β1+A0)×(β2+A0). Then the set I(β1,β2,β3)

defined above is a finite set.

Proof. Since for the triple of strongly graded generalized modules (W1,W2,W3),

the fusion rules N
W

(β̃1+β̃2)
3

W
(β̃1)
1 W

(β̃2)
2

̸= 0 for only finitely many pairs (β̃1, β̃2) ∈ (β1+A0)×

(β2 +A0), the logarithmic intertwining operator Y2(w2, x2)w3, where w2 ∈ W
(β̃2)
2

and w3 ∈ W
(β̃3)
3 , have to be 0 except for finitely many pairs (β̃2, β̃3) ∈ (β2+A0)×

(β3 + A0), and then there are only finitely many triples (β̃1, β̃2, β̃3) ∈ Ĩ(β1,β2,β3)

such that the products of logarithmic intertwining operators

Y1(w1, x1)Y2(w2, x2)w3 ̸= 0,

where w1 ∈ W
(β̃1)
1 , w2 ∈ W

(β̃2)
2 and w3 ∈ W

(β̃3)
3 . Thus the set I(β1,β2,β3) is a finite

set. �

Remark 3.3.5 In the case that A0 is a finite subgroup of A, the assumption in

Lemma 3.3.4 holds automatically.
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Example 3.3.6 Let W be a strongly M -graded (generalized) module for the

lattice vertex algebra VL as in Example 3.2.3. Then W satisfies the assumption

in Lemma 3.3.4 because V0 = V
(0)
L and A0 is the trivial group in this case.

3.4 Differential equations

In this section, we assume that V is a strongly A-graded vertex algebra with a

vertex subalgebra V0 strongly graded with respect to an abelian subgroup A0 of

A, and we assume that every strongly graded Ã-(generalized) V -module is R-

graded, lower bounded and satisfies C1-cofiniteness condition with respect to Ã

as a V0-module.

Let Wi be strongly Ã-graded generalized V -modules for i = 0, 1, . . . , 4 and

let Y1 and Y2 be logarithmic intertwining operators of type
(

W ′
0

W1W4

)
and

(
W4

W2W3

)
,

respectively. Let Ĩ(β1,β2,β3) and I(β1,β2,β3) be the two sets defined in the previous

section.

Let R = C[z±1
1 , z±1

2 , (z1 − z2)
−1], β1, β2 and β3 be three fixed elements in Ã.

Set

T̃ (β1,β2,β3) =
⨿

(β̃1,β̃2,β̃3)∈Ĩ(β1,β2,β3)

R⊗W
(β̃1+β̃2+β̃3)
0 ⊗W

(̃β1)
1 ⊗W

(̃β2)
2 ⊗W

(̃β3)
3

and

T
(β1,β2,β3)
Y1,Y2

=
⨿

(β̃1,β̃2,β̃3)∈I(β1,β2,β3)

R⊗W
(β̃1+β̃2+β̃3)
0 ⊗W

(̃β1)
1 ⊗W

(̃β2)
2 ⊗W

(̃β3)
3 .

Then T̃ (β1,β2,β3) and T
(β1,β2,β3)
Y1,Y2

have natural R-module structures. For convenience,

in the rest of this paper, we will use T (β1,β2,β3) to denote T
(β1,β2,β3)
Y1,Y2

.

For simplicity, we shall omit one tensor symbol to write f(z1, z2)⊗w0 ⊗w1 ⊗

w2 ⊗w3 as f(z1, z2)w0 ⊗w1 ⊗w2 ⊗w3 in T̃ (β1,β2,β3) and T (β1,β2,β3). For a strongly

Ã-graded generalized V -module W , let (W ′, Y ′) be the contragredient module of

W (recall definition 3.1.5). In particular, for u ∈ V and n ∈ Z, we have the

operators un on W ′. Let u∗n : W → W be the adjoint of un : W ′ → W ′. Note
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that since wt un = wt u− n− 1, we have wt u∗n = −wt u+ n+ 1. Also, A-wt u∗n

= −(A-wt un).

Let (β̃1, β̃2, β̃3) ∈ Ĩ(β1,β2,β3) and let β̃0 = β̃1 + β̃2 + β̃3. For u ∈ (V0)+ and

wi ∈ W
(β̃i)
i (i = 0, 1, 2, 3), let J (β1,β2,β3) be the submodule of T̃ (β1,β2,β3) generated

by elements of the form

A(u,w0, w1, w2, w3)

=
∑
k≥0

 −1

k

 (−z1)ku∗−1−kw0 ⊗ w1 ⊗ w2 ⊗ w3 − w0 ⊗ u−1w1 ⊗ w2 ⊗ w3

−
∑
k≥0

 −1

k

 (−(z1 − z2))
−1−kw0 ⊗ w1 ⊗ ukw2 ⊗ w3

−
∑
k≥0

 −1

k

 (−z1)−1−kw0 ⊗ w1 ⊗ w2 ⊗ ukw3,

B(u,w0, w1, w2, w3)

=
∑
k≥0

 −1

k

 (−z2)ku∗−1−kw0 ⊗ w1 ⊗ w2 ⊗ w3

−
∑
k≥0

 −1

k

 (−(z1 − z2))
−1−kw0 ⊗ ukw1 ⊗ w2 ⊗ w3

−w0 ⊗ w1 ⊗ u−1w2 ⊗ w3 −
∑
k≥0

 −1

k

 (−z2)−1−kw0 ⊗ w1 ⊗ w2 ⊗ ukw3,

C(u,w0, w1, w2, w3)

= u∗−1w0 ⊗ w1 ⊗ w2 ⊗ w3 −
∑
k≥0

 −1

k

 z−1−k
1 w0 ⊗ ukw1 ⊗ w2 ⊗ w3

−
∑
k≥0

 −1

k

 z−1−k
2 w0 ⊗ w1 ⊗ ukw2 ⊗ w3 − w0 ⊗ w1 ⊗ w2 ⊗ u−1w3,
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D(u,w0, w1, w2, w3)

= u−1w0 ⊗ w1 ⊗ w2 ⊗ w3

−
∑
k≥0

 −1

k

 zk+1
1 w0 ⊗ ez

−1
1 L(1)(−z21)L(0)uk(−z−2

1 )L(0)e−z
−1
1 L(1)w1 ⊗ w2 ⊗ w3

−
∑
k≥0

 −1

k

 zk+1
2 w0 ⊗ w1 ⊗ ez

−1
2 L(1)(−z22)L(0)uk(−z−2

2 )L(0)e−z
−1
2 L(1)w2 ⊗ w3

−w0 ⊗ w1 ⊗ w2 ⊗ u∗−1w3.

We shall also need a submodule S
(β1,β2,β3)
Y1,Y2

of T̃ (β1,β2,β3) generated by elements

of the form

w0 ⊗ w1 ⊗ w2 ⊗ w3

for wi ∈ W
(β̃i)
i (i = 0, 1, 2, 3), (β̃1, β̃2, β̃3) ∈ Ĩ(β1,β2,β3) \ I(β1,β2,β3). For simplicity, we

denote S
(β1,β2,β3)
Y1,Y2

by S(β1,β2,β3).

Lemma 3.4.1 Let βi ∈ Ã. Then

T̃ (β1,β2,β3) = T (β1,β2,β3) ⊕ S(β1,β2,β3).

We shall find anR-submodule of T̃ (β1,β2,β3) such that its complement in T (β1,β2,β3)

is finitely generated. For this purpose, we use the following R-submodule of

T̃ (β1,β2,β3):

J̃ (β1,β2,β3) = J (β1,β2,β3) ⊕ S(β1,β2,β3).

For r ∈ R, we can define the R-submodules T
(β1,β2,β3)
(r) , Fr(T

(β1,β2,β3)) and

Fr(J̃
(β1,β2,β3)) as in [H3]. Note that Fr(T

(β1,β2,β3)) is a finitely generated R-module

since I(β1,β2,β3) is a finite set by Lemma 3.3.4.

Proposition 3.4.2 Let Wi be strongly Ã-graded generalized V -modules and let

βi ∈ Ã for i = 0, 1, 2, 3. Then there exists M ∈ Z such that for any r ∈

R, Fr(T (β1,β2,β3)) ⊂ Fr(J̃
(β1,β2,β3)) + FM(T (β1,β2,β3)). In particular, T (β1,β2,β3) ⊂

J̃ (β1,β2,β3) + FM(T (β1,β2,β3)).
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Proof. For β̃i ∈ Ã, let β̃0 denote β̃1+ β̃2+ β̃3 and let (C1(Wi))
(β̃i) be the subspace

of Wi spanned by elements of the form u−1wi ∈ W
(β̃i)
i , where

u ∈ (V0)+ =
⨿
n>0

(V0)(n).

Since dim W
(β̃i)
i /(C1(Wi))

(β̃i) <∞ for i = 0, 1, 2, 3, there exists M ∈ Z such that⨿
n>M

T
(β1,β2,β3)
(n) ⊂

⨿
(β̃1,β̃2,β̃3)∈I(β1,β2,β3)

R((C1(W0))
(β̃0) ⊗W

(β̃1)
1 ⊗W

(β̃2)
2 ⊗W

(β̃3)
3 )

+ R(W
(β̃0)
0 ⊗ (C1(W1))

(β̃1) ⊗W
(β̃2)
2 ⊗W

(β̃3)
3 )

+ R(W
(β̃0)
0 ⊗W

(β̃1)
1 ⊗ (C1(W2))

(β̃2) ⊗W
(β̃3)
3 )

+ R(W
(β̃0)
0 ⊗W

(β̃1)
1 ⊗W

(β̃2)
2 ⊗ (C1(W3))

(β̃3)).

(3.7)

We use induction on r ∈ R. If r is equal to M , FM(T (β1,β2,β3)) ⊂ FM(J̃ (β1,β2,β3))+

FM(T (β1,β2,β3)). Now we assume that Fr(T
(β1,β2,β3)) ⊂ Fr(J̃

(β1,β2,β3))+FM(T (β1,β2,β3))

for r < s where s > M . We want to show that any homogeneous element of

T
(β1,β2,β3)
(s) can be written as a sum of an element of Fs(J̃

(β1,β2,β3)) and an element

of FM(T (β1,β2,β3)). Since s > M , by (3.7), any element of T
(β1,β2,β3)
(s) is an element

of the right hand side of (3.7). We shall discuss only the case that this element

is in R(W
(β̃0)
0 ⊗ (C1(W1))

(β̃1) ⊗ W
(β̃2)
2 ⊗ W

(β̃3)
3 ); the other cases are completely

similar.

We need only discuss elements of the form w0 ⊗ u−1w1 ⊗ w2 ⊗ w3, where

wi ∈ W
(β̃i)
i for i = 0, 2, 3, u−1w1 ∈ (C1(W1))

(β̃1) and u ∈ (V0)+. We see from

Lemma 3.4.1 that the elements u∗−1−kw0 ⊗ w1 ⊗ w2 ⊗ w3, w0 ⊗ w1 ⊗ ukw2 ⊗ w3

and w0 ⊗ w1 ⊗ w2 ⊗ ukw3 for k ≥ 0 are either in S(β1,β2,β3) or in T (β1,β2,β3).

By assumption, the weight of w0 ⊗ u−1w1 ⊗ w2 ⊗ w3 is s, then the weight of

u∗−1−kw0 ⊗ w1 ⊗ w2 ⊗ w3, w0 ⊗ w1 ⊗ ukw2 ⊗ w3 and w0 ⊗ w1 ⊗ w2 ⊗ ukw3 for

k ≥ 0, are all less than s. Thus these elements either lie in Fs(J̃
(β1,β2,β3)) or in
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Fs−1(T
(β1,β2,β3)). Also, since A(u,w0, w1, w2, w3) ∈ Fs(J̃

(β1,β2,β3)), we see that

w0 ⊗ u−1w1 ⊗ w2 ⊗ w3

= A(u,w0, w1, w2, w3) +
∑
k≥0

 −1

k

 (−z1)ku∗−1−kw0 ⊗ w1 ⊗ w2 ⊗ w3

−
∑
k≥0

 −1

k

 (−(z1 − z2))
−1−kw0 ⊗ w1 ⊗ ukw2 ⊗ w3

−
∑
k≥0

 −1

k

 (−z1)−1−kw0 ⊗ w1 ⊗ w2 ⊗ ukw3

can be written as a sum of an element of Fs(J̃
(β1,β2,β3)) and elements of

Fs−1(T
(β1,β2,β3)). Thus by the induction assumption, the element

w0⊗u−1w1⊗w2⊗w3 can be written as a sum of an element of Fs(J̃
(β1,β2,β3)) and

an element of FM(T (β1,β2,β3)).

Now we have

T (β1,β2,β3) =
⨿
r∈R

Fr(T
(β1,β2,β3))

⊂
⨿
r∈R

Fr(J̃
(β1,β2,β3)) + FM(T (β1,β2,β3))

= J̃ (β1,β2,β3) + FM(T (β1,β2,β3)). �

We immediately obtain the following:

Corollary 3.4.3 The quotient R-module T (β1,β2,β3)/(T (β1,β2,β3) ∩ J̃ (β1,β2,β3)) is

finitely generated.

Proof. We have the following R-module isomorphism:

T (β1,β2,β3)/(T (β1,β2,β3) ∩ J̃ (β1,β2,β3)) ≃ (T (β1,β2,β3) + J̃ (β1,β2,β3))/J̃ (β1,β2,β3).

By the previous Proposition, the R-module (T (β1,β2,β3) + J̃ (β1,β2,β3))/J̃ (β1,β2,β3) is a

submodule of

(J̃ (β1,β2,β3) + FM(T (β1,β2,β3)))/J̃ (β1,β2,β3)

≃ FM(T (β1,β2,β3))/(FM(T (β1,β2,β3)) ∩ J̃ (β1,β2,β3)),
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which is finitely generated. �

For an element W ∈ T (β1,β2,β3), we shall use [W ] to denote the equivalence

class in

T (β1,β2,β3)/T (β1,β2,β3) ∩ J̃ (β1,β2,β3) containing W . We also have:

Corollary 3.4.4 Let Wi be strongly Ã-graded generalized V -modules for i =

0, 1, 2, 3. For any Ã-homogeneous elements wi ∈ Wi (i = 0, 1, 2, 3), let M1 and

M2 be the R-submodules of

T (β1,β2,β3)/T (β1,β2,β3) ∩ J̃ (β1,β2,β3) generated by [w0 ⊗ L(−1)jw1 ⊗ w2 ⊗ w3], j ≥ 0,

and by

[w0 ⊗ w1 ⊗ L(−1)jw2 ⊗ w3], j ≥ 0, respectively. Then M1, M2 are finitely gen-

erated. In particular, for any Ã-homogeneous elements wi ∈ Wi (i = 0, 1, 2, 3),

there exist ak(z1, z2), bl(z1, z2) ∈ R for k = 1, . . . ,m and l = 1, . . . , n such that

[w0 ⊗ L(−1)mw1 ⊗ w2 ⊗ w3] + a1(z1, z2)[w0 ⊗ L(−1)m−1w1 ⊗ w2 ⊗ w3]

+ · · ·+ am(z1, z2)[w0 ⊗ w1 ⊗ w2 ⊗ w3] = 0, (3.8)

[w0 ⊗ w1 ⊗ L(−1)nw2 ⊗ w3] + b1(z1, z2)[w0 ⊗ w1 ⊗ L(−1)n−1w2 ⊗ w3]

+ · · ·+ bn(z1, z2)[w0 ⊗ w1 ⊗ w2 ⊗ w3] = 0. (3.9)

Now we establish the existence of systems of differential equations:

Theorem 3.4.5 Suppose that every strongly Ã-graded V -module satisfies C1-

cofiniteness condition with respect to Ã as a V0-module and suppose that for any

two fixed elements β1 and β2 in Ã and any triple of strongly graded generalized

V -modules M1, M2 and M3, the fusion rule

N
M

(β̃1+β̃2)
3

M
(β̃1)
1 M

(β̃2)
2

̸= 0

for only finitely many pairs (β̃1, β̃2) ∈ (β1+A0)×(β2+A0). Let Wi be strongly Ã-

graded generalized V -modules for i = 0, 1, 2, 3, 4 and let Y1 and Y2 be logarithmic
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intertwining operators of type
(

W ′
0

W1W4

)
,
(

W4

W2W3

)
. Then for any Ã-homogeneous

elements wi ∈ Wi (i = 0, 1, 2, 3), there exist

ak(z1, z2), bl(z1, z2) ∈ C[z±1 , z±2 , (z1 − z2)
−1]

for k = 1, . . . ,m and l = 1, . . . , n such that the series

⟨w0,Y1(w1, z1)Y2(w2, z2)w3⟩, (3.10)

satisfying the expansions of the system of differential equations

∂mφ

∂zm1
+ a1(z1, z2)

∂m−1φ

∂zm−1
1

+ · · ·+ am(z1, z2)φ = 0, (3.11)

∂nφ

∂zn2
+ b1(z1, z2)

∂n−1φ

∂zn−1
2

+ · · ·+ bn(z1, z2)φ = 0 (3.12)

in the region |z1| > |z2| > 0.

Proof. The proof is similar to the proof of Theorem 1.4 in [H3] except for the

difference in the R-module J̃ (β1,β2,β3). We sketch the proof as follows:

Let ∆ = wt w0 − wt w1 − wt w2 − wt w3. For (β̃1, β̃2, β̃3) ∈ I(β1,β2,β3), let

β̃0 = β̃1 + β̃2 + β̃3. Let C({x}) be the space of all series of the form
∑

n∈R anx
n

for n ∈ R such that an = 0 when the real part of n is sufficiently negative.

Consider the map

ϕY1,Y2 : T
(β1,β2,β3) −→ z∆1 C({z2/z1})[z±1

1 , z±1
2 ]

defined by

ϕY1,Y2(f(z1, z2)w0 ⊗ w1 ⊗ w2 ⊗ w3)

= ι|z1|>|z2|>0(f(z1, z2))⟨w0,Y1(w1, z1)Y2(w2, z2)w3⟩,

where

ι|z1|>|z2|>0 : R −→ C[[z2/z1]][z±1
1 , z±1

2 ]

is the map expanding elements of R as series in the regions |z1| > |z2| > 0.
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Using the Jacobi identity for the logarithmic intertwining operators, we have

that elements of J (β1,β2,β3) are in the kernel of ϕY1,Y2 . The elements of S(β1,β2,β3)

are in the kernel by the construction of the set I(β1,β2,β3). From Lemma 3.4.1, we

have

ϕY1,Y2(J̃
(β1,β2,β3)) = 0.

Thus the map ϕY1,Y2 induces a map

ϕ̄Y1,Y2 : T
(β1,β2,β3)/T (β1,β2,β3) ∩ J̃ (β1,β2,β3) −→ z∆1 C({z2/z1})[z±1

1 , z±1
2 ].

Applying ϕ̄Y1,Y2 to (3.8) and (3.9) and then use the L(−1)-derivative property

for logarithmic intertwining operators, we see that (3.10) indeed satisfies the

expansions of the system of differential equations in the regions |z1| > |z2| > 0.

�

Remark 3.4.6 Note that in the theorems above, ak(z1; z2) for k = 1, . . . ,m− 1

and bl(z1; z2) for l = 1, . . . , l − 1, and consequently the corresponding system,

depend on the logarithmic intertwining operators Y1, Y2.

The following result can be proved by the same method, so we omit the proof.

Theorem 3.4.7 Suppose that every strongly Ã-graded V -module satisfies C1-

cofiniteness condition with respect to Ã as a V0-module and suppose that for any

two fixed elements β1 and β2 in Ã and any triple of strongly graded generalized

V -modules M1, M2 and M3, the fusion rules

N
M

(β̃1+β̃2)
3

M
(β̃1)
1 M

(β̃2)
2

̸= 0

for only finitely many pairs (β̃1, β̃2) ∈ (β1+A0)×(β2+A0). Let Wi be strongly Ã-

graded generalized V -modules for i = 0, . . . , n+1. For any generalized V-modules

W̃1, . . . , W̃n−1, let

Y1,Y2, . . . ,Yn−1,Yn
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be logarithmic intertwining operators of types(
W0

W1 W̃1

)
,

(
W̃1

W2 W̃2

)
, . . . ,

(
W̃n−2

Wn−1 W̃n−1

)
,

(
W̃n−1

WnWn+1

)
,

respectively. Then for any Ã-homogeneous elements w′
(0) ∈ W ′

0, w(1) ∈ W1, . . . ,

w(n+1) ∈ Wn+1, there exist

ak,l(z1, . . . , zn) ∈ C[z±1
1 , . . . , z±1

n , (z1 − z2)
−1, (z1 − z3)

−1, . . . , (zn−1 − zn)
−1]

for k = 1, . . . ,m and l = 1, . . . , n such that the series

⟨w′
(0),Y1(w(1), z1) · · · Yn(w(n), zn)w(n+1)⟩

satisfies the system of differential equations

∂mφ

∂zml
+

m∑
k=1

ak,l(z1, . . . , zn)
∂m−kφ

∂zm−k
l

= 0, l = 1, . . . , n (3.13)

in the region |z1| > · · · > |zn| > 0.

Remark 3.4.8 Under the same condition as in the Theorem 3.4.5, it follows from

the same argument in this section that matrix elements of iterates of logarithmic

intertwining operators

⟨w′
(0),Y1(Y2(w1, z1 − z2), z2)w2⟩ (3.14)

also satisfy the expansions of the system of differential equations of the form

(3.11) and (3.12) in the region |z2| > |z1 − z2| > 0.

Example 3.4.9 Let VL be the conformal vertex algebra associated with a nonde-

generate even lattice L. Then any strongly M -graded generalized VL-module W

(in this example, all the generalized modules are modules) satisfies the assump-

tion in Theorem 3.4.5 and the series (3.10), (3.14) satisfies the expansions of the

system of differential equations (3.11) and (3.12) in the regions |z1| > |z2| > 0,

|z2| > |z1 − z2| > 0, respectively.
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3.5 The regularity of the singular points

We first recall the definition for regular singular points for a system of differential

equations given in [K]. For the system of differential equations of form (3.13), a

singular point

z0 = (z
(1)
0 , . . . , z

(n)
0 )

is an isolated singular point of the coefficient matrix

ak,l(z1, . . . , zn) ∈ C[z±1
1 , . . . , z±1

n , (z1 − z2)
−1, (z1 − z3)

−1, . . . , (zn−1 − zn)
−1]

for k = 1, . . . ,m and l = 1, . . . , n. For s = (s1, . . . , sn) ∈ Zn+, set

|s| =
n∑
i=0

si

and

(log(z − z0))
s = (log(z1 − z

(1)
0 ))s1 · · · (log(zn − z

(n)
0 ))sn .

For t = (t(1), . . . , t(n)) ∈ Cn, set

(z − z0)
t = (z1 − z

(1)
0 )t

(1) · · · (zn − z
(n)
0 )t

(n)

.

A singular point z0 for the system of differential equations of form (3.13) is regular

if every solution in the punctured disc (D×)n

0 < |zi − z
(i)
0 | < ai

with some ai ∈ R+ (i = 1, . . . , n) is of the form

φ(z) =
r∑
i=1

∑
|m|<M

(z − z0)
ti(log(z − z0))

mfti,m(z − z0)

with M, r ∈ Z+ and each fti,m(z − z0) holomorphic in (D×)n. Theorem B.16

in [K] gives a sufficient condition for a singular point of a system of differential

equations to be regular.

As in [H3], for r ∈ R, we define the R-modules F
(z1=z2)
r (R), F

(z1=z2)
r (T (β1,β2,β3))

and F
(z1=z2)
r (T̃ (β1,β2,β3)), which provide filtration associated to the singular point

z1 = z2 on R, R-modules T (β1,β2,β3) and T̃ (β1,β2,β3), respectively.
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For convenience, we shall use β̃0 to denote β̃1 + β̃2 + β̃3 for β̃i ∈ βi + A0

(i = 1, 2, 3). We shall also consider the ring C[z±1 , z±2 ] and the C[z±1 , z±2 ]-module

(T (β1,β2,β3))(z1=z2) =
⨿

(β̃1,β̃2,β̃3)∈I(β1,β2,β3)

C[z±1 , z±2 ]⊗W
(β̃0)
0 ⊗W

(β̃1)
1 ⊗W

(β̃2)
2 ⊗W

(β̃3)
3 .

Let (T (β1,β2,β3))
(z1=z2)
(r) be the space of elements of (T (β1,β2,β3))(z1=z2) of weight r for

r ∈ R. Let Fr((T (β1,β2,β3))(z1=z2)) =
⨿

s≤r(T
(β1,β2,β3))

(z1=z2)
(s) . These subspaces give

a filtration of (T (β1,β2,β3))(z1=z2) in the following sense: Fr((T
(β1,β2,β3))(z1=z2)) ⊂

Fs((T
(β1,β2,β3))(z1=z2)) for r ≤ s and (T (β1,β2,β3))(z1=z2) =

⨿
r∈R Fr((T

(β1,β2,β3))(z1=z2)).

Let F
(z1=z2)
r (J̃ (β1,β2,β3)) = F

(z1=z2)
r (T̃ (β1,β2,β3)) ∩ J̃ (β1,β2,β3) for r ∈ R. We have

the following lemma:

Lemma 3.5.1 For any r ∈ R, Fr((T (β1,β2,β3))(z1=z2)) ⊂ F
(z1=z2)
r (J̃ (β1,β2,β3)) +

FM(T (β1,β2,β3)).

Proof. The proof is similar to the proof of Proposition 3.4.2 except for some

slight differences. We discuss elements of the form w0 ⊗ u−1w1 ⊗ w2 ⊗ w3 with

weight s, where wi ∈ W
(β̃i)
i for i = 0, 1, 2, 3 and u ∈ (V0)+. By definition of the

element A(u,w0, w1, w2, w3) in the R-submodule J̃ (β1,β2,β3), we have

w0 ⊗ u−1w1 ⊗ w2 ⊗ w3

=
∑
k≥0

 −1

k

 (−z1)ku∗−1−kw0 ⊗ w1 ⊗ w2 ⊗ w3 −A(u,w0, w1, w2, w3)

−
∑
k≥0

 −1

k

 (−(z1 − z2))
−1−kw0 ⊗ w1 ⊗ ukw2 ⊗ w3

−
∑
k≥0

 −1

k

 (−z1)−1−kw0 ⊗ w1 ⊗ w2 ⊗ ukw3.

We know from Lemma 3.4.1 that the elements u∗−1−kw0⊗w1⊗w2⊗w3, w0⊗w1⊗

ukw2 ⊗w3 and w0 ⊗w1 ⊗w2 ⊗ ukw3 for k ≥ 0 are either in S(β1,β2,β3) ⊂ J̃ (β1,β2,β3)

or in T (β1,β2,β3) with weights less than the weight of w0 ⊗ u−1w1 ⊗ w2 ⊗ w3.
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In the first case, since elements of the form w0 ⊗ w1 ⊗ ukw2 ⊗ w3 are in

F
(z1=z2)
s−k−1 (J̃), (−(z1−z2))−1−kw0⊗w1⊗ukw2⊗w3 ∈ F

(z1=z2)
s (J̃). Thus in this case,

w0 ⊗ u−1w1 ⊗ w2 ⊗ w3 is an element of F
(z1=z2)
s (J̃ (β1,β2,β3)).

In the second case, by induction assumption, u∗−1−kw0 ⊗ w1 ⊗ w2 ⊗ w3, w0 ⊗

w1⊗w2⊗ukw3 ∈ F
(z1=z2)
s (J̃ (β1,β2,β3))+FM(T (β1,β2,β3)) and w0⊗w1⊗ukw2⊗w3 ∈

F
(z1=z2)
s−k−1 (J̃ (β1,β2,β3)) + FM(T (β1,β2,β3)). Hence the element (−(z1 − z2))

−1−kw0 ⊗

w1 ⊗ ukw2 ⊗ w3 ∈ F
(z1=z2)
s (J̃ (β1,β2,β3)) + FM(T (β1,β2,β3)). Thus in this case, w0 ⊗

u−1w1⊗w2⊗w3 can be written as a sum of an element of F
(z1=z2)
s (J̃ (β1,β2,β3)) and

an element of FM(T (β1,β2,β3)). �

Using Lemma 3.5.1, we get the following refinement of proposition 3.4.2:

Proposition 3.5.2 For any r ∈ R,

F (z1=z2)
r (T (β1,β2,β3)) ⊂ F (z1=z2)

r (J̃ (β1,β2,β3)) + FM(T (β1,β2,β3)).

In particular,

F (z1=z2)
r (T (β1,β2,β3)) = F (z1=z2)

r (J̃ (β1,β2,β3)) ∩ T (β1,β2,β3) + FM(T (β1,β2,β3)).

Proof. It is a consequence of the decomposition:

F (z1=z2)
r (T (β1,β2,β3)) =

r⨿
i=0

(z1 − z2)
−iFr−i((T

(β1,β2,β3))(z1=z2))

and Lemma 3.5.1. �

Let wi ∈ W
(β̃i)
i for i = 0, 1, 2, 3 and (β̃1, β̃2, β̃3) ∈ I(β1,β2,β3). Then by Proposi-

tion 3.5.2,

w0 ⊗ w1 ⊗ w2 ⊗ w3 = W1 +W2

where W1 ∈ F
(z1=z2)
σ (J̃ (β1,β2,β3)) ∩ T (β1,β2,β3) = F

(z1=z2)
σ (T (β1,β2,β3)) ∩ J̃ (β1,β2,β3) and

W2 ∈ FM(T (β1,β2,β3)). Using the same proof as Lemma 2.2 in [H3], we have the

following lemma:



56

Lemma 3.5.3 For any s ∈ [0, 1), there exist S ∈ R such that s + S ∈ Z+

and for any wi ∈ Wi, i = 0, 1, 2, 3, satisfying σ ∈ s + Z, (z1 − z2)
σ+SW2 ∈

(T (β1,β2,β3))(z1=z2).

Theorem 3.5.4 Suppose that every strongly Ã-graded V -module satisfies C1-

cofiniteness condition with respect to Ã as a V0-module and suppose that for any

two fixed elements β1 and β2 in Ã and any triple of strongly graded generalized

V -modules M1, M2 and M3, the fusion rule

N
M

(β̃1+β̃2)
3

M
(β̃1)
1 M

(β̃2)
2

̸= 0

for only finitely many pairs (β̃1, β̃2) ∈ (β1 + A0) × (β2 + A0). Let Wi, wi ∈ Wi

for i = 0, 1, 2, 3, 4, Y1 and Y2 be the same as in Theorem 3.4.5. For any possible

singular point of the form (z1 = 0, z2 = 0, z1 = ∞, z2 = ∞, z1 = z2), z
−1
1 (z1−z2) =

0, or z−1
2 (z1 − z2) = 0, there exist

ak(z1, z2), bl(z1, z2) ∈ C[z±1 , z±2 , (z1 − z2)
−1]

for k = 1, . . . ,m and l = 1, . . . , n, such that this singular point of the system

(3.11) and (3.12) satisfied by (3.10) is regular.

Proof. The proof is the same as the proof of Theorem 2.3 in [H3] except that

we use Proposition 3.5.2 and Lemma 3.5.3 here. �

We can prove the following theorem using the same method, so we omit the

proof here.

Theorem 3.5.5 For any set of possible singular points of the system (3.13) in

Theorem 3.4.7 of the form zi = 0 or zi = ∞ for some i or zi = zj for some

i ̸= j, the ak,l(z1, . . . , zn) in Theorem 3.4.7 can be chosen for k = 1, . . . ,m and

l = 1, . . . , n so that these singular points are regular.
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3.6 Braided tensor category structure

In the logarithmic tensor category theory developed in [HLZ1] and [HLZ2], the

convergence and expansion property for the logarithmic intertwining operators

are needed in the construction of the associativity isomorphism. In this section,

we will recall the definition of convergence and expansion property for products

and iterates of logarithmic intertwining operators and then follow [HLZ2] to give

sufficient conditions for a category to have these properties.

Throughout this section, we will let Msg (respectively, GMsg) denote the

category of the strongly Ã-graded (respectively, generalized) V -modules. We are

going to study the subcategory C of Msg (respectively, GMsg) satisfying the

following assumptions.

Assumption 3.6.1 We shall assume the following:

• A0, A and Ã are abelian groups satisfying A0 ≤ A ≤ Ã.

• V is a strongly A-graded conformal vertex algebra with a strongly A0-graded

vertex subalgebra V0 and V is an object of C as a V -module.

• All (generalized) V -modules are lower bounded, satisfy the C1-cofiniteness

condition with respect to Ã as V0-modules and for any two fixed elements

β1 and β2 in Ã and any triple of strongly graded generalized V -modulesM1,

M2 and M3, the fusion rule

N
M

(β̃1+β̃2)
3

M
(β̃1)
1 M

(β̃2)
2

̸= 0

for only finitely many pairs (β̃1, β̃2) ∈ (β1 + A0)× (β2 + A0).

• For any object of C, the (generalized) weights are real numbers and in ad-

dition there exist K ∈ Z such that (L(0) − L(0)s)
K = 0 on the generalized

module.

• C is closed under images, under the contragredient functor, under taking

finite direct sums.
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Given objects W1,W2,W3,W4,M1 and M2 of the category C, let Y1,Y2,Y1

and Y2 be logarithmic intertwining operators of types
(

W4

W1M1

)
,
(

M1

W2W3

)
,
(

W4

M2W3

)
and

(
M2

W1W2

)
, respectively. We recall the following definitions and theorems from

Section 11 in [HLZ2] (part VII):

Convergence and extension property for products For any β ∈ Ã, there

exists an integer Nβ depending only on Y1 and Y2 and β, and for any doubly

homogeneous elements w(1) ∈ (W1)
(β1) and w(2) ∈ (W2)

(β2) (β1, β2 ∈ Ã) and any

w(3) ∈ W3 and w′
(4) ∈ W ′

4 such that

β1 + β2 = −β,

there exist M ∈ N, rk, sk ∈ R, ik, jk ∈ N, k = 1, . . . ,M , and analytic functions

fk(z) on |z| < 1, k = 1, . . . ,M , satisfying

wt w(1) + wt w(2) + sk > Nβ, k = 1, . . . ,M,

such that

⟨w′
(4),Y1(w(1), x1)Y2(w(2), x2)w(3)⟩W4 |x1=z1, x2=z2

is absolutely convergent when |z1| > |z2| > 0 and can be analytically extended to

the multivalued analytic function

M∑
k=1

zrk2 (z1 − z2)
sk(log z2)

ik(log(z1 − z2))
jkfk(

z1 − z2
z2

)

(here log(z1 − z2) and log z2, and in particular, the powers of the variables, mean

the multivalued functions, not the particular branch we have been using) in the

region |z2| > |z1 − z2| > 0.

Convergence and extension property without logarithms for prod-

ucts When ik = jk = 0 for k = 1, . . . ,M , we call the property above the conver-

gence and extension property without logarithms for products.

Convergence and extension property for iterates For any β ∈ Ã, there

exists an integer Ñβ depending only on Y1 and Y2 and β, and for any doubly
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homogeneous elements w(1) ∈ (W1)
(β1) and w(2) ∈ (W2)

(β2) (β1, β2 ∈ Ã) and any

w(3) ∈ W3 and w′
(4) ∈ W ′

4 such that

β1 + β2 = −β,

there exist M̃ ∈ N, r̃k, s̃k ∈ R, ĩk, j̃k ∈ N, k = 1, . . . , M̃ , and analytic functions

f̃k(z) on |z| < 1, k = 1, . . . ,M , satisfying

wt w(1) + wt w(2) + s̃k > Ñβ, k = 1, . . . , M̃ ,

such that

⟨w′
(0),Y1(Y2(w(1), x0)w(2), x2)w(3)⟩W4 |x0=z1−z2, x2=z2

is absolutely convergent when |z2| > |z1−z2| > 0 and can be analytically extended

to the multivalued analytic function

M̃∑
k=1

zr̃k1 z
s̃k
2 (log z1)

ĩk(log z2)
j̃k f̃k(

z2
z1
)

(here log z1 and log z2, and in particular, the powers of the variables, mean the

multivalued functions, not the particular branch we have been using) in the region

|z1| > |z2| > 0.

Convergence and extension property without logarithmic for iterates

When ik = jk = 0 for k = 1, . . . ,M , we call the property above the convergence

and extension property without logarithms for iterates.

If the convergence and extension property (with or without logarithms) for

products holds for any objects W1,W2,W3,W4 and M1 of C and any logarithmic

intertwining operators Y1 and Y2 of the types as above, we say that the conver-

gence and extension property for products holds in C. We similarly define the

meaning of the phrase the convergence and extension property for iterates holds

in C.

The following theorem generalizes Theorem 11.8 in [HLZ2] to the strongly

graded generalized modules for a strongly graded conformal vertex algebra:

Theorem 3.6.2 Let V be a strongly graded conformal vertex algebra. Then
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1. The convergence and extension properties for products and iterates hold in

C. If C is in Msg and if every object of C is a direct sum of irreducible objects

of C and there are only finitely many irreducible objects of C (up to equiva-

lence), then the convergence and extension properties without logarithms for

products and iterates hold in C.

2. For any n ∈ Z+, any objects W1, . . . ,Wn+1 and W̃1, . . . , W̃n−1 of C, any

logarithmic intertwining operators

Y1,Y2, . . . ,Yn−1,Yn

of types (
W0

W1 W̃1

)
,

(
W̃1

W2 W̃2

)
, . . . ,

(
W̃n−2

Wn−1 W̃n−1

)
,

(
W̃n−1

WnWn+1

)
,

respectively, and any w′
(0) ∈ W ′

0, w(1) ∈ W1, . . . ,W(n+1) ∈ Wn+1, the series

⟨w′
(0),Y1(w(1), z1) · · · Yn(w(n), zn)w(n+1)⟩

is absolutely convergent in the region |z1| > · · · > |zn| > 0 and its sum

can be analytically extended to a multivalued analytic function on the region

given by z1 ̸= 0, i = 1, . . . , n, zi ̸= zj, i ̸= j, such that for any set of

possible singular points with either zi = 0, zi = ∞ or zi = zj for i ̸= j,

this multivalued analytic function can be expanded near the singularity as a

series having the same form as the expansion near the singular points of a

solution of a system of differential equations with regular singular points.

Proof. The first statement in the first part and the statement in the second

part of the theorem follow directly from Theorem 3.4.7 and Theorem 3.5.5 and

the theorem of differential equations with regular singular points. The second

statement in the first part can be proved using the same method in [H3]. �

In order to construct braided tensor category on the category of strongly grad-

ed generalized V -modules, we need the following assumption on C (see Assump-

tion 10.1, Theorem 11.4 of [HLZ2]).
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Assumption 3.6.3 Suppose the following two conditions are satisfied:

1. C is closed under P (z)-tensor products for some z ∈ C×.

2. Every finite-generated lower bounded doubly graded generalized V -module is

an object of C.

Conjecture 3.6.4 We conjectured that the category of certain strongly graded

generalized V -modules satisfying the first condition in Assumption 3.6.3. The

case for the vertex operator algebra was proved in [H2].

Under Assumption 3.6.1 and Assumption 3.6.3 on the category C ⊂ GMsg, we

generalize the main result (Theorem 12.15) of [HLZ2] to the category of strongly

graded generalized modules for a strongly graded vertex algebra:

Theorem 3.6.5 Let V be a strongly graded conformal vertex algebra. Then the

category C, equipped with the tensor product bifunctor �, the unit object V , the

braiding isomorphism R, the associativity isomorphism A, and the left and right

unit isomorphisms l and r in [HLZ2], is an additive braided tensor category.

In the case that C is an abelian category, we have:

Corollary 3.6.6 If the category C is an abelian category, then C, equipped with

the tensor product bifunctor �, the unit object V , the braiding isomorphism R,

the associativity isomorphism A, and the left and right unit isomorphisms l and

r in [HLZ2], is a braided tensor category.
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