
c© 2014

CHUAN XU

ALL RIGHTS RESERVED

SIMULATION APPROACH TO TWO-STAGE BOND
PORTFOLIO OPTIMIZATION PROBLEM

BY CHUAN XU

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Operations Research

Written under the direction of

DR. ANDRÁS PRÉKOPA

and approved by

New Brunswick, New Jersey

May, 2014

ABSTRACT OF THE THESIS

SIMULATION APPROACH TO TWO-STAGE BOND

PORTFOLIO OPTIMIZATION PROBLEM

by CHUAN XU

Thesis Director: DR. ANDRÁS PRÉKOPA

Studies on two sides are done in this thesis. First, we consider bond port-

folio optimization problem under stochastic optimization structure; second,

specific algorithm to solve the problem is explored. A stochastic model for

the problem is constructed. Investor is able to minimize the cost of set-

ting up bond portfolio to cover random obligations with our model. The

idea of rebalancing is introduced into our model. Investor could adjust the

portfolio after he have set up the bond portfolio. Thus, we develop a two-

stage stochastic programming with recourse model for bond optimization

problem. Specific algorithms to solve the problem are also discussed in the

thesis. We focus on simulation approach since it is able to handle special

case of the problem whose random variables in constraints have continuous

distribution. The key points of the approach are introduced and discussed.

ii

We successfully implement the approach on our model. Various numerical

example tests with different scenario settings are carried out to see the im-

pacts of different factors on the optimum value, optimum solution and the

quality of results. The validity of our model and the efficiency of simulation

approach are proved by the results. Several future research directions on

this topic are also discussed in the thesis.

iii

Acknowledgements

I would like to express my deep gratitude to Dr. András Prékopa, my thesis advisers,

for his contribution, guidance, and invaluable critiques of this research. Without his

inspiration, it’s impossible for me to figure out the model and find the right direction

to solve the problem.

I would also like to extend my special thanks Jin Xin and Bin Zhao for their help in

offering resources and support.

Finally, I wish to thank my family and my girlfriend Jie Shen, for the unwavering

support, encouragement and belief in me throughout the course of my study.

iv

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Tables . viii

List of Figures . x

1. Introduction . 1

2. Literature Review . 3

3. Mathematical Formulation . 6

3.1. Generic Two-Stage Stochastic Programming Model 6

3.2. Bond Portfolio Optimization Problem 7

3.2.1. Deterministic Model . 8

3.2.2. Two-Stage Stochastic Programming Model 9

v

4. Approach to Two-Stage Stochastic Programming with Recourse . . 13

4.1. ξ Has Discrete Distribution . 13

4.2. ξ Has Continuous Distribution . 14

4.2.1. Validation Analysis . 16

4.2.2. Choice of Sample Size . 19

4.2.3. Statistical Inference . 20

5. Result and Analysis . 24

5.1. Generic Model . 24

5.2. Bond Portfolio Model . 25

5.2.1. Bond Data Introduction . 26

5.2.2. Numerical Results . 28

5.2.3. Several Special Examples . 37

5.2.4. Result Analysis . 40

vi

6. Conclusion . 43

References . 45

Appendices . 47

vii

List of Tables

3.1. Notations Introduction . 7

5.1. Result of Generic Model (1) . 24

5.2. Result of Generic Model (2) . 25

5.3. Result of r = 0.02 (Seed 1) . 29

5.4. Result of r = 0.02 (Seed 2) . 29

5.5. Result of r = 0.02 (Seed 3) . 30

5.6. Result of r = 0.045 (Seed 1) . 31

5.7. Result of r = 0.045 (Seed 2) . 31

5.8. Result of r = 0.045 (Seed 3) . 32

5.9. Result of r = 0.07 (Seed 1) . 32

viii

5.10. Result of r = 0.07 (Seed 2) . 33

5.11. Result of r = 0.07 (Seed 3) . 33

5.12. Result of Downward r (Seed 1) . 34

5.13. Result of Downward r (Seed 2) . 35

5.14. Result of Downward r (Seed 3) . 35

5.15. Result of Upward r (Seed 1) . 36

5.16. Result of Upward r (Seed 2) . 36

5.17. Result of Upward r (Seed 3) . 37

5.18. Result of r = 0.07, Sample Size Limit = 500,000 (Seed 1) 38

5.19. Result of r = 0.07 and Higher Covariance Matrix (Seed 1) 39

5.20. Result of r = 0.07 and No Upper Bound on Cash (Seed 1) 39

5.21. Result of r = 0.07, Bonds Number = 98 40

ix

List of Figures

5.1. The Scatter Plot of Bond Price . 26

5.2. The Scatter Plot of Coupon Rate . 27

5.3. The Scatter Plot of Bond Price at t∗ . 27

x

1

Chapter 1

Introduction

Based on the definition of Wikipedia, a bond is an instrument of indebtedness of the

bond issuer to the holders. Bond has many good features we can explore, for instance, it

can provide cash flows periodically to holders based on its coupon rate before maturity

date and return the principal to holders eventually. Normally, we think bond is a kind

of very safe investment instrument. Thus it’s a very popular investment instruments in

insurance industry. Based on Capital Special Market 1, by the end of 2010, bonds have

the biggest weight in the investment portfolio of U.S. insurance companies. That’s

about 70%. The second one is common stock which has about 10% weight. Based

on these data, we can see how important bonds are in insurance industry. Countless

studies about quantitative management approaches on bonds have been carried out by

numerous scholars, such as Lev Dynkin and Frank J. Fabozzi. Those researches focused

on portfolio active management, index replicating, liquidation management and so on.

Part of those results can be found in [5], [8] and [7].

Beside those interesting topics, one special strategy, Exact Matching or Dedication,

was developed due to the special properties of bonds. More introductions about the

strategy can be find in page 533 to page 537 of [6]. The idea behind the strategy is

very simple: find out a bond portfolio which can provide certain pattern of cash flows.

1http://www.naic.org/capital markets archive/110819.htm

2

Since it’s nature for us to try to minimize the cost for such pattern, we successfully

transform the problem into a optimization problem. If all the information are known

and deterministic, this is only a simple linear or non-linear programming problem which

we can handle easily. But when random factors are involved, the problem become quite

complex. Moreover, since the random nature of our world, investors would always keep

adjusting their portfolio based on new information to correct the errors which caused

by differences between predictions and facts. Thus, a two-stage stochastic program-

ming model for the problem is worth to discuss. Dr. Prékopa proposed a stochastic

programming model for bond portfolio management problem in his Stochastic Program-

ming lecture notes. The way to solve two-stage stochastic programming model with

discrete distribution can be found in [19]. But it’s nature to think what will happen

when those random variables have continuous distribution. Thus, we have two purposes

in this thesis: First, we try to develop a two-stage stochastic programming model for

bond portfolio optimization problem; second, we try to explore the approaches to solve

the model when the random variables has continuous distribution.

This thesis make two primary contribution: first, we develop a two-stage stochastic

programming model for bond portfolio optimization problem; second, we successfully

implement the simulation approach on the model and give out numerical examples. The

simulation algorithm is proved to be efficient on the model. Moreover, the numerical

results also prove the validity of our model.

This thesis is organized as following. Chapter 2 is literature review. Chapter 3 intro-

duces mathematical formulation of bond optimization problem with two-stage stochas-

tic programming. Chapter 3 gives details about the simulation approach. Chapter 5

shows the settings of different scenarios and their results. Some future research direc-

tions on the topic are discussed in Chapter 6. The full MATLAB codes of simulation

approach to our model can be found in Appendices.

3

Chapter 2

Literature Review

As I mentioned before, quantitative management of bond portfolio has been proposed

and discussed for a long time. For instance, in [5], bond selection, asset allocation, index

replicating, risk management and liquidation management are discussed. Multiple types

of bonds are involved in their discussion. Frank J. Fabozzi is involved several books on

bond portfolio management, such as [8] and [7]. Similar topics as in [5] are covered in

these books.

Operations research methodologies were applied into the bond portfolio management

long time ago. In [1], a dynamic model of bond portfolio management was proposed.

The bond portfolio management problem was taken as a multistage decision problem in

which actions were taken in the successive points. In [13], a linear programming model

was proved to be able to improve the bond portfolio performance efficiently. Based on

these results, Ronn further developed the linear programming model of bond portfolio

management. He considered trading cost and tax-clientle effects with the model in [22].

He pointed out that the model was able to show investors’ yield curve.

Optimization of the system under uncertainty can be traced back to fifties, such as

the [4] wrote by George B. Dantzig. But not until eighties, with the development

of computer power, this topic got more discussions. Dr. Prékopa introduced various

4

topics on stochastic programming in his book [19]. Specifically, he showed how to use

decomposition algorithm to solve the two-stage stochastic programming problems in the

book. Frauendorfer published a special book [9] for stochastic two-stage programming

problems in 1992. This book included from the basic analysis of stochastic two-stage

programming problems to the special techniques to solve the problems.

Talking about the idea to use simulation approach to solve stochastic programming

problems, it’s hard to trace back the origin. Rubinstein and Shapiro discussed the

stochastic counterparts algorithm in [23]. The score function method, or likelihood

ratio method, was able to handle the discrete event dynamic systems with a single

simulation experiment. In [24], Shapiro provided the convergence analysis for gradient

decent algorithms. In [17], a method related to retrospective simulation optimization

was developed by Plambeck, Fu, Suri and Robinson. The method overcame some

limitations of stochastic approximation but was still under the structure of discrete

systems. More recent study on this topic can see [18]. Polson and Sorensen developed

a simulation-based approach to estimate the Q-values to solve the Bellman equation.

This method works in both continuous and discrete state.

A lot of literatures focused on investigations of stochastic programs with recourse. [27],

the corresponding deterministic problem of stochastic programs with fixed recourse was

investigated. The solvability, stability and dualizability of the equivalent deterministic

program was reviewed in this paper. Higle and Sen developed methods to test the

optimality of solutions for two-stage stochastic programming with recourse in [12]. The

work was carried out under the framework of Stochastic Decomposition algorithm. The

stopping criterion of such algorithm which satisfied KKT conditions was proposed in

the paper. In [21], quantitative continuity of optimal solution sets to convex stochastic

programs with complete recourse was investigated. A general sufficient conditions for

the crucial strong-convexity assumption was given and verified.

Sample-path optimization method, or sample average approximation method, is based

5

on Monte Carlo ideas. A brief introduction of this method was given in [11]. More works

on how to apply this method on two-stage stochastic programs with recourse problems

can be found in Shapiro’s and his students Tito Hemem-de-Mello’s work. In [14] and

[25], they analysed the basic principal of this method, gave out details of algorithm and

showed several numerical examples. Part of my work in the thesis is just built on these

results.

The discussions about distribution of insurance aggregate claim size during some time

intervals can be found in many literatures. For instance, in [16], Pai, Shand and Wang

tested the aggregate claim size of Canadian pet insurance with Compound Poison dis-

tribution with covariates. They tested the model with eight-year period data. Based

on the results, the model works well. In [2], the authors investigated the distribution

of property loss insurance claim indices and found that lognormal distribution is better

than Paretian.

6

Chapter 3

Mathematical Formulation

3.1 Generic Two-Stage Stochastic Programming Model

Let x and y designate the first and second stage decision vectors, and let ξ be the

random vector to be observed. Assume x and ξ are fixed, then we can formulate the

second stage problem or recourse problem as follows:

Minimize qT y

subject to:

Tx+Wy = ξ

y ≥ 0

(3.1)

Assume that the first stage decision vector x has some deterministic constraints:

Ax = b, x ≥ 0 (3.2)

let q(x , ξ) designate the optimum value of (3.1), then Q(x) = E [q(x , ξ)] is called re-

course function . Thus we can formulate the first stage problem as follows:

7

Minimize cTx+Q(x)

subject to:

Ax = b

x ≥ 0

x ∈ S

(3.3)

S is the set of x when problem (3.1) has feasible solutions.

3.2 Bond Portfolio Optimization Problem

Let me repeat the bond portfolio optimization problem briefly: How to minimize the

cost to set up a bond portfolio which is used to cover some obligations.

First, let me introduce some notations we will use in the formulation:

pij the price of bond i at time j

Bij the purchase amount of bond i at time j

Sij the selling amount of bond i at time j

aij cash flow generated by bond i at time j

Zj the cash surplus we transferred from time j to j + 1

rj the risk-free reinvestment rate from time j to j + 1

ξj the random aggregate obligation size from time j + 1 to j + 2

bj the deterministic aggregate obligation size from time j + 1 to j + 2

N the number of candidate bond

T the number of time interval

t∗ the time to do the portfolio adjustment

Table 3.1: Notations Introduction

8

3.2.1 Deterministic Model

We have several assumptions for the deterministic model: the obligations have no

random properties; the portfolio will not be rebalanced since it has been set up; all

transaction costs can be neglected; the reinvestment rate during the whole time horizon

is known; all cash flows generated by bonds can be collected immediately. Then we have

the deterministic bond portfolio model as follows:

Minimize

N∑
i=1

Pi1Bi1 + Z1

subject to:

N∑
i=1

aijBi1 + Zj(1 + rj)− Zj+1 = bj , j = 1, . . . , T − 1

N∑
i=1

aijBi1 + Zj(1 + rj) = bj , j = T

Bi1 ≥ 0, i = 1, . . . , N

Zj ≥ 0, j = 1, . . . , T

(3.4)

In the formulation, we minimize the cost to set up the bond portfolio through the

objective function. In a real-world bond portfolio, it is usually constructed by two

parts: bond and cash.
∑N

i=1 Pi1Bi1 represents the bond part, Z1 is the cash part. The

constraints guarantee that the obligations are satisfied by the cash flows generated by

those bonds we purchased when we set up the portfolio and the cash we invested on

the risk-free reinvestment rate. At the last period, there is no need to move any cash

forward to the next period, so the constraint is a little different. All variables are

positive due to the nature of our finance world.

The model was first proposed in [13] by S. D. Hodges and S. M. Schaefer. They proved

the model could reduce the cost to set up bond portfolio with same cash flow pattern.

9

Ehud I. Ronn developed this model in [22] by introducing bid price and ask price of

bonds into the model. He also discussed tax-clientele effects on the pricing of U.S.

government bonds and derived tax-specific bond portfolio with the model. This model

is a deterministic model. The problem can be solved easily with linear programming

algorithm if we have all the necessary information.

3.2.2 Two-Stage Stochastic Programming Model

Let me change some of the assumptions in 3.2.1: the obligations are random events; we

will rebalance the portfolio after setting up it.

It’s worth to discuss briefly why the two assumptions are involved. Most events in

our real world are random, for instance, the aggregate insurance claim size in one

year follows Compound Poisson distribution(see [16]). And bond is very populous in

insurance industry. Besides, people usually have better short-term forecasting ability

than long term. Thus using new information between two stages to update the model

may give the portfolio better performance.

In the model, the reinvestment rate is critical. We can also use stochastic model to

describe the behaviours of reinvestment rate. It has been discussed a lot(see e.g.,

[3], [10]). This has been beyond our topic. So in our discussion, we will make some

assumptions on it for simplicity.

Thus, following the generic model in 3.1, the second stage of bond portfolio problem

can be formulated as follows:

10

Minimize

N∑
i=1

Pit∗Bit∗ −
N∑
i=1

Pit∗Sit∗ − Zt∗

subject to:

N∑
i=1

aij(Bi1 +Bit∗ − Sit∗) + Zj(1 + rj)− Zj+1 = ξj , j = t∗, . . . , T − 1

N∑
i=1

aij(Bi1 +Bit∗ − Sit∗) + Zj(1 + rj) = ξj , j = T

Bi1 +Bit∗ ≥ Sit∗ , i = 1, . . . , N

Bit∗ ≥ 0, i = 1, . . . , N

Sit∗ ≥ 0, i = 1, . . . , N

Zj ≥ 0, j = t∗ + 1, . . . , T

(3.5)

The first thing we should notice is that the random variables on the Right Hand Side

(RHS) of the constraints. That means we have random obligations to cover with our

bond portfolio in the second stage. The properties of these random variables are very

important in the problem since it decides the ways we can use to deal with this problem.

We will see more discussion on it in the next parts.

At the beginning of the second stage, since we have some cash surplus transferred from

the end of first stage, we need to minus those surplus cash Zt∗ from the objective

function. The thing we need to be careful about is that Zt∗ is not a part of the decision

variables of the second stage problem, in fact, it’s a decision variable of the first stage

problem.

The third line of the constraints in (3.5) is not trivial. It keeps us from exploring the

opportunities of short-selling some over-priced bonds which happened in real finance

world. With this constraint, for a certain bond, the amount we can sell at the second

stage is the total amount we bought at the first and second stage. The reason we impose

the constraint here is for the simplicity, but it can be cancelled. Also, in our model, for

11

simplicity, we assume that the bid price and ask price for bonds are just the same and

we neglect the other trade costs. Thus, it’s possible to see that in some solutions of the

second stage, we buy and sell same amount for certain bonds simultaneously. In fact,

that makes no sense for such behaviours. But this flaw will be overcome if we introduce

the real bid price and ask price and trade costs. In fact, this constraint can be written

as Bi1 ≥ Sit∗ , i = 1, . . . , N if we put more reality into this model, but again, for

simplicity, we keep our assumption for the same bid price and ask price.

Similarly, as the end of the second stage problem, the constraint is a little different

since we have no need to transfer more money into the next period. And all decision

variables in the second stage problem keep positive due to the nature of finance world

and the no short-selling assumption in our model.

Just as what we have showed in the (3.3), let Q(x) be the recourse function of the

second stage, the we can formulate the first stage as follows:

Minimize
N∑
i=1

Pi1Bi1 + Z1 +Q(Bi1, Zj)

subject to:

N∑
i=1

aijBi1 + Zj(1 + rj)− Zj+1 = bj , j = 1, . . . , t∗ − 1

Bi1 ≥ 0, i = 1, . . . , N

Zj ≥ 0, j = 1, . . . , t∗

Bi1 ∈ S, i = 1, . . . , N

Zj ∈ S, j = 1, . . . , t∗

(3.6)

The same as in 3.1, instead of random variables, the RHS of the constrains in the first

stage problem are some numbers we already know the values. Thus, except the recourse

function Q(Bi1, Zj), the first stage problem is a deterministic problem.

12

Even Zj , j = 1, . . . , t∗ − 1 have zero coefficients in the second stage problem, they

still have impacts in second stage, since Zt∗ will affect the objective value of the second

stage problem. Moreover, since at the end of the first stage, we will still move some

money to the next period (to the beginning of the second stage problem), so all the

constraints have uniform form in the first stage. Just we stated in 3.1, S is the set

of Bi1 when (3.5) has feasible solutions. Just as we have repeated for many times, all

decision variables must be positive in the first stage.

13

Chapter 4

Approach to Two-Stage Stochastic Programming with

Recourse

4.1 ξ Has Discrete Distribution

For (3.3), if several conditions are met: ξ has discrete distribution; there are finite

possible values of ξ; for each possible value ξ1, ξ2, . . . , ξN , there are corresponding

probability p1, p2, . . . , pN . Then we can write problem (3.3) as follows:

Minimize cTx+ p1q
T y1 + p2q

T y2 + · · ·+ pNq
T yN

subject to:

Ax = b

Tx+Wy1 = ξ1

...
. . .

...

Tx +WyN = ξN

x ≥ 0, y1 ≥ 0, y2 ≥ 0, . . . , yN ≥ 0

(4.1)

Then it can be solved by decomposition algorithm. More details of this approach can

be found in [19] and [20]. One numerical example was given by M. Mine Subasi and

Ersoy Subasi in [26].

14

4.2 ξ Has Continuous Distribution

First, if ξ has continuous distribution, then let us assume that the P.D.F. of ξ, p(·)

exists. In such a case, (4.1) is not valid. Here, we want to show the simulation based

approach to solve (3.3).

First, let us make the following assumption:

For the vector z = (Tx− ξ)T , we define the following two sets:

{y : Wy = z, y ≥ 0} and {z : W T z ≤ q} (4.2)

We assume that the two sets y and z are not empty.

Based on the assumption, we can claim that (3.1) has finite optimum values.

And if the expectation of ξ exists, then we claim Q(x) exists (see [19] for the proofs of

both claims).

For simplicity, we can rewrite (3.1) as the following form:

G(z) = q(x, ξ) = inf{qT y : Wy = z, y ≥ 0} (4.3)

Suppose now that a random sample of ξ1, ξ2, . . . , ξN of i.i.d. (independent identical

distribution) are generated, then Q(x) can be estimated by the sample average function:

15

Q̂(x) = N−1
N∑
i=1

G(ξi − Tx) (4.4)

Then, (3.3) can be approximated by

Minimize cTx+ Q̂(x)

subject to:

Ax = b

x ≥ 0

x ∈ S

(4.5)

(4.5) is a deterministic linear programming or non-linear programming problem.

With the previous arguments, we can construct the conceptual idea fo simulation based

algorithm to solve two-stage stochastic programming problem:

Algorithm 1 Simulation Based Algorithm for Two-Stage Stochastic Programming

Problem (Conceptual Idea)

Let x0 ← any initial guess

Generate a random sample ξ1, ξ2, . . . , ξN0 based on the corresponding P.D.F. p(·) of

ξ

repeat

Estimate Q̂i(x
i) with (4.4)

Combining (3.3) with Q̂i(x
i) to get a new iteration point xi+1 with a chosen

algorithm

until stopping criterion is satisfied

This approach is known as sample-path optimization or sample average approximation

method. More details of this approach can be found in [11], [23], [17].

16

Now we have the conceptual idea to solve the two-stage stochastic programming with

recourse when the random variable has continuous distribution, but more details need to

be explored. A general discussion to develop the verification methods of optimality and

to test the solution optimality of two stage stochastic programming with recourse can

be found in [12]. The central point of [12] is: for stochastic decomposition algorithm,

it may be difficult to obtain valid estimators of a lower bound on the optimal value. It

would be easier to use the derivatives of objective function to do the test. A. Shappiro

and Y. Wardi gave the framework of providing the convergence of Monte Carlo based

approximation algorithm with probability one in [24]. Tito Homem-de-Mello further

developed the idea proposed in [12] and gave detail analysis on the algorithm. In [25]

and [14], Tito Homem-de-Mello and Alexander Shapiro gave more details about the

stopping criterion designation for algorithm to two-stage stochastic programming with

recourse. Here, let me follow the framework he used in [14] to give a brief introduction

to those basic principals of the algorithm.

4.2.1 Validation Analysis

Let we consider the following non-linear optimization problem:

Minimize f(x)

subject to:

gi(x) ≥ 0, i = 1, . . . ,m

gj(x) = 0, j = m+ 1, . . . , l

x ∈ Rm

(4.6)

By generalized KKT conditions, we have that:

17

∇f(x∗)−
∑

i∈I(x∗)

λi∇gi(x∗) = 0 (4.7)

Where:

• x∗ is and optimal solution of (4.6)

• λi is the Lagrange multipliers such that λi ≥ 0, i ∈ J(x)

• J(x) = {i : gi(x) = 0, i = 1, . . . ,m} is the constraints active at x

• I(x) = {m+ 1, . . . , l} ∪ J(x)

Consider:

G(x) = {z ∈ Rm : z =
∑
i∈I(x)

αi∇gi(x), αi ≥ 0, i ∈ J(x)} (4.8)

Then (4.7) can be written in the form ∇f(x∗) ∈ G(x∗).

Suppose that f(x) = E[f(x, ξ)] is differentiable at point x0, ∇f(x0) can be estimated

by a random vector γ(x0) such that γ(x0)→ ∇f(x0) with probability one as N →∞,

and γ(x0) has asymptotically a multivariate normal distribution with the mean vector

∇f(x0) and a covariance matrix Ω. Combining with previous discussion, we can test

the following hypothesis with the estimator γ(x0):

H0 : ∇f(x0) ∈ G(x0); H1 : ∇f(x0) /∈ G(x0) (4.9)

18

Suppose that covariance matrix Ω is nonsingular, and a consistent estimater Ω̂ is avail-

able. We define the following statistic:

T1 = min
z∈G(x0)

(γN (x0)− z)T Ω̂−1(γN (x0)− z) (4.10)

Then by [15], this is an asymptotic analogue of Hotelling’s test. In particular, under

H0, the null distribution of T0 is central chi-square with m−s degrees of freedom where:

s = card(I(x0)) = m+ card(J(x0)) (4.11)

Therefore we can calculate the p-value with the value of T0, that is

p = P{χ2
m−s ≥ T0} (4.12)

This p-value indicate the quality of the approximation result. A large p-value means

high precision of algorithm, a small p-value means we are far from the optimal value.

The thing we need to be careful here is that for Ω, we assume that it is nonsigular.

But in practice, it may be nearly singular, thus it’s not invertible. Then, the following

alternative test is used:

T2 = min
z∈G(x0)

(γN (x0)− z)T (γN (x0)− z) (4.13)

What we need to be careful about is T2 is not central or non-central chi-square. In fact,

the distribution of T2 is a weighted sum of chi-square, variables. We may use Pearson’s

approach to approximate the distribution.

19

4.2.2 Choice of Sample Size

The sample size choice is a very important issue in the simulation based algorithm,

since it’s a trade-off between precision and efficiency. At the beginning stage, since we

are far from the real optimal solution, there is no need to use a big sample size. In

the evolution of algorithm, we have to choose a appropriate sample size to ensure that

the algorithm proceeds in significant improvement of current solution. Basically, we

employed similar idea in 4.2.1 to choose the the sample size.

With similar assumption, we have

Q = N(γN (x0)−∇f(x))T Ω̂−1N (γN (x0)−∇f(x)) (4.14)

Where Ω̂N is sample covariance matrix and Ω̂ = Ω̂N/N . Q has approximately (asymp-

totically) a chi-square distribution with m degrees of freedom, where m is dimension of

x. Then, an (approximately) 100(1− α)% confidence region for 5f(x) is given by the

following ellipsoid:

EN (x) = {z ∈ Rm : (z − γN (x))T Ω̂−1N (z − γN (x)) ≤ rN} (4.15)

Where

rN = χ2
m(α)/N (4.16)

Consider the null space L generated by constraints defining the set S in (3.3), and let

P be the orthogonal projection on to L, we want to find a N which satisfies that the

20

vector P (c+ z) forms an acute angle with P (c+ γN (x)) under 100(1− α)% confidence

level where z ∈ EN (x).

Thus, we need to compute r∗N = max{r : ψ(r) ≥ 0} where ψ(r) = minz∈EN (x) α
TP (c+z)

and α = P (c+ γN (x)). By KKT conditions, we have that:

r∗N = (αTα)2(αT Ω̂Nα)−1 (4.17)

Combining (4.16) and (4.17), we have the new sample size:

N
′

= max{χ
2
m(α)

r∗N
, N} (4.18)

In practice, we add a factor to restrict that the jump from N to N
′

in case N
′

is too

big. In our algorithm, the factor is 10.

4.2.3 Statistical Inference

To test whether xk+1 is a significantly better solution than xk, we can use standard

t-test. We have the following hypothesis:

H0 : f(xk) = f(xk+1); H1 : f(xk) > f(xk+1) (4.19)

Suppose N1 and N2 are two independent samples of sizes, we can reject H0 if:

21

cTxk + Q̂N1(xk) > cTxk+1 + Q̂N2(xk+1) + zα(
σ̂2N1(x̂k)

N1
+
σ̂2N2

(x̂k + 1)

N2
)1/2 (4.20)

Where zα/2 is a constant related to the selected confidence level, for instance, zα/2 =

2.58 corresponding to 99% confidence level.

If N1 and N2 are not independent, we can test the previous hypothesis with paired t-

test. Suppose Q̂N (xk) and Q̂N (xk+1) has the same sample size N and H1, H2, . . . ,HN

are the generated random sample to estimate (4.4). Let H = N−1
∑N

i=1Hi represent

Q̂N (xk) − Q̂N (xk+1) and sample variance be s2 = (N − 1)
∑N

i=1(Hi − H)2, then we

reject H0 if:

cT (xk − xk+1) +H > zαN
−1/2s (4.21)

Let v̂N be the optimal value and x̂N be the optimal solution to (4.5), let v∗ be the

optimal value and x∗ be the optimal solution to (3.3), the upper bound and lower

bound of v̂N can be calculated by the following way:

By the Central Limit Theorem we have that

N1/2[Q̂(x)−Q(x)]⇒ N(0, σ2(x)) (4.22)

Where N(0, σ2(x)) denotes a normal distribution with mean zero and variance σ2(x).

And σ2(x) can be estimated by the sample variance σ̂2N (x).

22

Based on the discussion in [14], therefore, under mild regularity conditions, we have:

N1/2[v̂N − v∗]⇒ N(0, σ2(x∗)) (4.23)

Then a confidence interval of v∗ can be written in the form:

[v̂N − zα/2N1/2σ̂N (x̂N), v̂N + zα/2N
1/2σ̂N (x̂N)] (4.24)

23

With the previous information, now we have the following algorithm:

Algorithm 2 Simulation Based Algorithm for Two-Stage Stochastic Programming

Problem
Let x0 ← any initial guess

Generate a random sample ξ1, ξ2, . . . , ξN0 based on the corresponding P.D.F. p(·) of

ξ

repeat

Estimate Q̂i(x
i) with (4.4)

Combining (3.3) with Q̂i(x
i) to get a new iteration point xi+1 with a chosen

algorithm

if f(xi) and f(xi+1) fail to reject H0 with the paired t-test in 4.21 then

Calculate N
′
i+1 as in 4.2.2 and expand the sample to ξ

N
′
i+1

end if

Test the optimality of xi+1 and f(xi+1) as in 4.2.1

until Stopping criterion is satisfied

More detail about the algorithm can be found in [14].

24

Chapter 5

Result and Analysis

5.1 Generic Model

First, let us see two examples of generic two-stage stochastic programming with recourse

model as in 3.1. The same parameters of the numerical example in [14] were used

here. We gave different random number generator seeds to each example to show how

the algorithm would respond to different sample. All results keep four digits behind

the decimal point. Sequential quadratic algorithm (SQP) was used in the non-linear

programming step. All codes are completed in MATLAB.

Iter. x1 x2 x3 x4 x5 x6 x7 x8

1 0.7661 0.0167 0.6704 0.0000 0.9652 0.2354 0.9483 1.1307

9 0.7790 0.0000 0.6290 0.0000 0.8241 0.2972 0.8744 0.9777

18 0.7790 0.0000 0.6290 0.0000 0.8241 0.2972 0.8744 0.9777

Iter. x9 x10 fN (xi) ∆ T2 Value p-Value N

1 0.6061 0.2744 24.4841 1.0000 0.0490 0.8392 50

9 0.6981 0.3020 23.9744 0.0000 0.0000 0.8648 500

18 0.6981 0.3020 23.9218 0.0000 0.0000 1.0000 500

Table 5.1: Result of Generic Model (1)

25

Iter. x1 x2 x3 x4 x5 x6 x7 x8

1 0.7665 0.0000 0.6693 0.0000 0.9635 0.2195 0.9475 1.1271

3 0.8423 0.6665 0.6944 0.0000 1.0110 0.8827 0.9474 1.2665

23 0.8693 0.6092 0.6940 0.0000 0.9787 0.8203 0.9501 1.2230

28 0.8693 0.6091 0.6939 0.0000 0.9789 0.8202 0.9500 1.2230

Iter. x9 x10 fN (xi) ∆ T2 Value p-Value N

1 0.6075 0.2817 24.3728 1.0000 0.3300 0.6124 50

3 0.5904 0.0000 25.8009 0.6040 0.1547 0.7413 500

23 0.5856 0.0209 25.4843 0.0000 2.8319 0.1224 1331

28 0.5856 0.0210 25.4610 0.0000 0.0814 0.8555 5000

Table 5.2: Result of Generic Model (2)

The time cost of 5.1 is 39 minutes. The upper bound for the optimum value is 23.9574,

the lower bound is 23.8845.

The time cost of 5.2 is 16 minutes. The upper bound for the optimum value is 25.4934,

the lower bound is 25.4287.

Based on the two examples, the performance of the algorithm is quite good. Both

examples return us the optimum solution with high p-Value before the algorithm reaches

its limit of sample size (5000). The optimum values and optimum solutions are quite

close for the two examples. This quite makes sense since we used the same mean,

covariance matrix and other parameters for the two examples. Besides, the time costs

of two example are reasonable.

5.2 Bond Portfolio Model

Let me introduce the assumptions we used in the numerical examples first.

26

• No trading cost.

• The bid price and ask price of bonds are the same.

• The risk-free reinvestment rate is known during all periods.

• No default happens.

• All bonds will pay coupons twice a year.

• All cash flows can be collected immediately.

• ξ has multivariate normal distribution.

5.2.1 Bond Data Introduction

Because of no default assumption, only U.S.A. government bonds are considered as the

candidates. All the data of bonds are collected from Bloomberg.

There are 98 U.S.A. government bonds whose prices are available on March 31, 2014

and maturities are greater than 5-year. The following is the scatter plot of the prices

of the 98 bonds:

Figure 5.1: The Scatter Plot of Bond Price

27

The following is the scatter plot of the corresponding coupon rates of the 98 bonds.

Figure 5.2: The Scatter Plot of Coupon Rate

The prices of bonds at t∗ are randomly generated based on their prices on March 31,

2014, the following figure is the scatter plot of the bonds prices at t∗:

Figure 5.3: The Scatter Plot of Bond Price at t∗

28

5.2.2 Numerical Results

The detail of the example are as following: The time span of the problem is 5-year, each

year is divided into two periods. This means T = 10. We want set up a bond portfolio

on March 31, 2014 and will rebalance the portfolio at the beginning of the third year,

thus t∗ = 5. Since we assume that those bonds would pay coupon twice a year, the cash

flows generated during each period are used to cover the obligation of the next period.

The obligation of the first four periods are known, and they are random in the next 6

periods. The random variables ξ have a multivariate normal distribution and all ξi are

independent. Besides, we impose a upper bound 10 to cash position at t = 1.

All the necessary parameters are randomly generated as following:

b = [94.7800, 108.8700, 107.8400, 74.9900]T ;

µ = [101.6400, 107.4800, 97.2700, 115.7600, 95.1900, 103.2800];

Ω = [10.16400, 10.74800, 9.72700, 11.57600, 9.51900, 10.32800];

Due to the time cost, we only involve 30 bonds in the numerical examples. They

are randomly selected from the 98 bonds. And the upper bound of sample size is

50,000. Five different scenarios are considered, they are r = 0.02, 0.045, 0.07, upward

reinvestment rate and downward reinvestment rate. For each scenario, we used three

different seeds for random number generator to generate samples. Only those variables

with values ≥ 0 will be showed. The (*) in the table represent that new samples are

generated in the current iteration. The lower bound and upper bound of optimum value

is for the last iteration in table.

When r = 0.02:

29

The time cost of 5.3 is about 5.8 minutes. The upper bound for the optimum value is

3192.30, the lower bound is 3189.20.

Iter. x1 Z1 Z2 Z3 Z4 Z5

1 24.7595 10.0000 15.6959 7.4158 0.0000 0.0000

3 25.0226 10.0000 16.7614 9.5680 3.2607 29.6773

5 24.9289 8.0210 14.3636 6.7430 0.0000 25.9721

7 24.7759 10.0000 15.7625 7.5503 0.2038 25.5604

Iter. fN (xi) ∆ T2 Value p-Value N

1 3192.60 1.0000 1.8125 0.2705 50 (*)

3 3165.20 6.2672 1.0001 0.3173 500 (*)

5 3185.00 1.3862 30.6842 0.0000 5000 (*)

7 3190.80 0.3465 0.0241 0.8787 50000 (*)

Table 5.3: Result of r = 0.02 (Seed 1)

The time cost of 5.4 is about 69 minutes. The upper bound for the optimum value is

3206.80, the lower bound is 3205.00.

Iter. x1 x2 Z1 Z2 Z3 Z4 Z5

1 24.7595 0.0000 10.0000 15.6959 7.4158 0.0000 0.0000

2 24.7595 0.0000 10.0000 15.6959 7.4158 0.0000 24.5774

4 25.0969 0.0000 10.0000 17.0624 10.1761 4.1821 30.9182

8 0.0000 42.4069 1.0863 9.6948 4.3855 0.0000 28.3768

Iter. fN (xi) ∆ T2 Value p-Value N

1 3188.80 1.0000 0.9961 0.3183 50 (*)

2 3167.60 25.0690 0.9933 0.3189 500 (*)

4 3161.40 1.5668 14.3469 0.0000 5000 (*)

8 3206.2 0.0979 0.0245 0.5103 50000

Table 5.4: Result of r = 0.02 (Seed 2)

30

The time cost of 5.5 is about 63 minutes. The upper bound for the optimum value is

3206.80, the lower bound is 3205.00.

Iter. x1 x3 x8 Z1 Z2 Z3 Z4 Z5

1 24.7595 0.0000 0.0000 10.0000 15.6959 7.4158 0.0000 0.0000

2 24.7595 0.0000 0.0000 10.0000 15.6959 7.4158 0.0000 24.5775

4 25.6207 0.0000 0.0000 8.9840 4.0577 10.1761 0.0629 28.8382

7 0.0000 36.3371 77.5572 1.2244 10.0371 4.9360 0.7629 29.3563

Iter. fN (xi) ∆ T2 Value p-Value N

1 3287.00 1.0000 4.1489 0.0486 50 (*)

2 3185.00 25.0690 0.9262 0.3359 500 (*)

4 3167.10 1.5668 0.9877 0.3203 5000 (*)

7 3516.80 0.0979 0.7968 0.3720 50000 (*)

Table 5.5: Result of r = 0.02 (Seed 3)

When r = 0.045:

The time cost of 5.6 is about 68 minutes. The upper bound for the optimum value is

3100.00, the lower bound is 3099.20.

31

Iter. x1 x4 x5 Z1 Z2 Z3 Z4 Z5

1 24.6911 0.0000 0.0000 10.0000 15.6959 7.5033 0.0000 0.0000

3 25.3087 0.0000 0.0000 10.0000 15.6691 7.5033 0.0000 23.9233

5 24.9289 0.0000 0.0000 8.0210 14.3636 6.7430 0.0000 25.9721

10 2.9274 22.8130 2.7407 10.0000 16.2614 8.7145 1.8581 27.5431

Iter. fN (xi) ∆ T2 Value p-Value N

1 3186.60 1.0000 0.9474 0.3319 50 (*)

3 3159.50 6.2499 1.0000 0.3173 500 (*)

5 3165.90 0.3906 2.3721 0.1260 5000 (*)

10 3099.60 0.0000 1.0526 0.3049 50000

Table 5.6: Result of r = 0.045 (Seed 1)

The time cost of 5.7 is about 73 minutes. The upper bound for the optimum value is

3181.70, the lower bound is 3180.80.

Iter. x1 Z1 Z2 Z3 Z4 Z5

1 24.6911 10.0000 15.6691 7.5033 0.0000 0.0000

3 24.6911 10.0000 15.6691 7.5033 0.0000 25.0091

5 24.6911 10.0000 15.6691 7.5033 0.0000 25.0091

7 24.6911 10.0000 15.6691 7.5033 0.0000 25.0091

Iter. fN (xi) ∆ T2 Value p-Value N

1 3181.70 1.0000 1.5292 0.2168 50 (*)

3 3178.80 6.2499 11.7211 0.0000 500 (*)

5 3180.60 0.0000 1.0092 0.3151 5000 (*)

7 3181.30 0.0000 1.0003 0.3172 50000 (*)

Table 5.7: Result of r = 0.045 (Seed 2)

The time cost of 5.8 is about 63 minutes. The upper bound for the optimum value is

3542.60, the lower bound is 3541.70.

32

Iter. x1 x3 Z1 Z2 Z3 Z4 Z5

1 24.6911 0.0000 10.0000 15.6691 7.5033 0.0000 0.0000

3 25.3087 0.0000 3.1239 10.9849 5.1096 0.0000 27.5104

6 25.0200 0.6695 2.1791 10.4867 5.0413 0.3997 28.3992

7 25.4190 0.0000 2.3059 10.5768 5.1298 0.4678 28.4460

Iter. fN (xi) ∆ T2 Value p-Value N

1 3282.90 1.0000 2.4357 0.1253 50 (*)

3 3151.60 6.2499 1.0000 0.3173 500 (*)

6 3156.60 0.0977 1.2848 0.2756 5000

7 3542.20 0.0244 1.0430 0.3071 50000 (*)

Table 5.8: Result of r = 0.045 (Seed 3)

When r = 0.07:

The time cost of 5.9 is about 52 minutes. The upper bound for the optimum value is

3004.20, the lower bound is 3003.40.

Iter. x1 Z1 Z2 Z3 Z4 Z5

1 24.6255 10.0000 15.6413 7.5875 0.0000 0.0000

6 26.0955 10.0000 21.6067 19.9358 19.1780 51.2171

13 26.1566 9.5747 21.3992 19.9615 19.4532 51.7593

17 26.1596 9.5855 21.4230 19.9991 19.5056 51.8275

Iter. fN (xi) ∆ T2 Value p-Value N

1 3178.50 1.0000 0.7657 0.3885 50 (*)

6 3009.30 1.5581 2107.90 0.0000 861 (*)

13 3004.50 0.0487 167.4845 0.0000 8497 (*)

17 3003.60 0.0122 1.0004 0.3172 50000 (*)

Table 5.9: Result of r = 0.07 (Seed 1)

33

The time cost of 5.10 is about 69 minutes. The upper bound for the optimum value is

3170.20, the lower bound is 3169.30.

Iter. x1 x3 Z1 Z2 Z3 Z4 Z5

1 24.6226 0.0000 10.0000 15.6413 7.5875 0.0000 0.0000

2 0.0000 40.7024 10.0000 15.6413 7.5876 0.0000 23.2994

4 24.6225 0.0000 10.0000 15.6413 7.5875 0.0000 24.7313

6 24.6225 0.0000 10.0000 15.6413 7.5875 0.0000 24.7313

Iter. fN (xi) ∆ T2 Value p-Value N

1 3159.30 1.0000 1.0000 0.3173 50 (*)

2 3168.20 24.9303 9.0440 0.0026 500 (*)

4 3169.70 0.3830 0.9640 0.3262 5000 (*)

6 3170.30 0.0000 1.0194 0.3127 50000 (*)

Table 5.10: Result of r = 0.07 (Seed 2)

The time cost of 5.11 is about 57 minutes. The upper bound for the optimum value is

3144.60, the lower bound is 3143.80.

Iter. x1 x3 x4 Z1 Z2 Z3 Z4 Z5

1 24.6226 0.0000 0.0000 10.0000 15.6413 7.5875 0.0000 0.0000

2 0.0000 40.7024 0.0000 10.0000 15.6413 7.5876 0.0000 23.2994

4 25.3691 0.0000 0.0000 2.0655 10.1749 4.7619 0.0000 27.7548

8 24.9692 0.0000 0.4392 2.7072 10.7570 5.2803 0.4502 28.1320

Iter. fN (xi) ∆ T2 Value p-Value N

1 3278.80 1.0000 0.9995 0.3174 50 (*)

2 3155.60 24.9303 3.2995 0.0695 500 (*)

4 3147.90 1.5581 0.9909 0.3195 5000 (*)

8 3144.20 0.0243 1.1197 0.2900 50000

Table 5.11: Result of r = 0.07 (Seed 3)

34

For the downward reinvestment rate, we have r = 0.07 at t = 1, 2, 3, r = 0.02 at

t = 4, 5, 6, 7, r = 0.0025 at t = 8, 9, 10:

The time cost of 5.12 is about 68 minutes. The upper bound for the optimum value is

3167.00, the lower bound is 3166.10.

Iter. x1 x3 Z1 Z2 Z3 Z4 Z5

1 24.6225 0.0000 10.0000 15.6413 7.5875 0.0000 0.0000

3 24.8958 0.0000 10.0000 16.4575 9.8783 3.5578 29.4669

5 24.8062 0.0000 10.0000 16.3849 9.1268 2.3906 27.9134

8 0.0000 41.0158 10.0000 16.4087 9.1761 2.4672 28.0153

Iter. fN (xi) ∆ T2 Value p-Value N

1 3198.60 1.0000 0.1394 0.7093 50 (*)

3 3168.50 6.2326 1.0254 0.0000 500 (*)

5 3177.70 0.3895 1.5972 0.3318 5000 (*)

8 3166.60 0.0061 0.2600 0.6401 50000

Table 5.12: Result of Downward r (Seed 1)

The time cost of 5.13 is about 68 minutes. The upper bound for the optimum value is

3146.30, the lower bound is 3145.50.

35

Iter. x1 x3 Z1 Z2 Z3 Z4 Z5

1 24.6226 0.0000 10.0000 15.6413 7.5875 0.0000 0.0000

3 24.6225 0.0000 10.0000 15.6413 7.5875 0.0000 24.7313

7 25.6527 0.0000 2.2189 11.4877 7.3152 3.8807 32.8618

10 11.7044 23.0779 1.4724 10.7392 6.5647 3.1279 32.1442

Iter. fN (xi) ∆ T2 Value p-Value N

1 3191.30 1.0000 0.7270 0.4001 50 (*)

3 3189.80 6.2326 1.4932 0.2220 500 (*)

7 3150.00 1.5581 0.0725 0.7878 5000

10 3145.90 0.0974 0.2558 0.6236 50000

Table 5.13: Result of Downward r (Seed 2)

The time cost of 5.14 is about 65 minutes. The upper bound for the optimum value is

3165.60, the lower bound is 3164.70.

Iter. x1 x3 x4 Z1 Z2 Z3 Z4 Z5

1 24.6225 0.0000 0.0000 10.0000 15.6413 7.5875 0.0000 0.0000

2 0.0000 40.7026 0.0000 10.0000 15.6413 7.5875 0.0000 24.4415

4 0.0000 33.5056 5.8833 4.6693 12.5965 6.9944 2.0302 29.4669

6 15.4616 16.1465 0.0000 5.1565 12.9158 7.1283 1.9656 29.1932

Iter. fN (xi) ∆ T2 Value p-Value N

1 3287.90 1.0000 0.9995 0.3174 50 (*)

2 3173.20 24.9303 9.1647 0.0026 500 (*)

4 3143.80 1.5581 3.4092 0.0651 5000 (*)

6 3165.10 0.0974 0.9996 0.3174 50000 (*)

Table 5.14: Result of Downward r (Seed 3)

For the upward reinvestment rate, we have r = 0.0025 at t = 1, 2, 3, r = 0.02 at

t = 4, 5, 6, 7, r = 0.07 at t = 8, 9, 10:

36

The time cost of 5.15 is about 33 minutes. The upper bound for the optimum value is

3184.80, the lower bound is 3183.90.

Iter. x1 Z1 Z2 Z3 Z4 Z5

1 24.8072 10.0000 15.7141 7.3525 0.0000 0.0000

2 24.8072 10.0000 15.7141 7.3525 0.0000 24.6248

4 24.8072 10.0000 15.7141 7.3525 0.0000 25.4791

7 24.8072 10.0000 15.7141 7.3525 0.0000 25.4791

Iter. fN (xi) ∆ T2 Value p-Value N

1 NaN 1.0000 0.1665 0.6847 50 (*)

2 3189.70 25.1173 1.0001 0.3173 500 (*)

4 3182.30 0.2179 1.8810 0.1703 5000 (*)

7 3184.30 0.0000 0.0517 0.8207 50000

Table 5.15: Result of Upward r (Seed 1)

The time cost of 5.16 is about 72 minutes. The upper bound for the optimum value is

3185.00, the lower bound is 3184.00.

Iter. x1 Z1 Z2 Z3 Z4 Z5

1 24.8072 10.0000 15.7141 7.3525 0.0000 0.0000

4 24.8072 10.0000 15.7141 7.3525 0.0000 25.4791

6 24.8072 10.0000 15.7141 7.3525 0.0000 25.4791

11 24.8072 10.0000 15.7141 7.3525 0.0000 25.4791

Iter. fN (xi) ∆ T2 Value p-Value N

1 3181.80 1.0000 0.0412 0.8440 50 (*)

4 3178.90 0.2178 0.9999 0.3173 500 (*)

6 3182.10 0.0000 1.1672 0.2800 5000 (*)

11 3184.50 0.0000 0.6140 0.4333 50000

Table 5.16: Result of Upward r (Seed 2)

37

The time cost of 5.17 is about 60 minutes. The upper bound for the optimum value is

3153.00, the lower bound is 3152.20.

Iter. x1 Z1 Z2 Z3 Z4 Z5

1 24.8072 10.0000 15.7141 7.3525 0.0000 0.0000

2 24.8072 10.0000 15.7141 7.3525 0.0000 24.6248

4 25.0806 10.0000 16.8215 9.5700 3.3304 29.9835

6 25.2528 8.4466 15.9615 9.4052 3.8626 31.2236

Iter. fN (xi) ∆ T2 Value p-Value N

1 3282.80 1.0000 0.3125 0.5762 50 (*)

2 3181.90 25.1173 5.5118 0.0191 500 (*)

4 3161.30 1.5698 0.9999 0.3173 5000 (*)

6 3152.60 0.3925 0.9995 0.3174 50000

Table 5.17: Result of Upward r (Seed 3)

5.2.3 Several Special Examples

Let us see a example with larger sample size limit. In this example, instead of 50,000,

we set sample size limit as 500,000. We used Seed 1 to generate the random samples,

set r = 0.07 and kept the other parameters.

The time cost of 5.18 is about 590 minutes. The upper bound for the optimum value

is 3004.00, the lower bound is 3003.80.

38

Iter. x1 Z1 Z2 Z3 Z4 Z5

1 24.6225 10.0000 15.6413 7.5875 0.0000 0.0000

6 26.0955 10.0000 21.6067 19.9358 19.1780 51.2171

13 26.1566 9.5747 21.3992 19.9615 19.4532 51.7593

17 26.1596 9.5855 21.4230 19.9991 19.5056 51.8275

24 26.1616 9.5438 21.3862 19.9675 19.4795 51.8073

Iter. fN (xi) ∆ T2 Value p-Value N

1 NaN 1.0000 0.7657 0.3885 50 (*)

6 3009.30 1.5581 2107.90 0.0000 861 (*)

13 3004.50 0.0487 167.4845 0.0000 8497 (*)

17 3003.60 0.0122 1.0004 0.3172 84970 (*)

24 3003.90 0.0000 0.0201 0.8872 500000

Table 5.18: Result of r = 0.07, Sample Size Limit = 500,000 (Seed 1)

In the previous examples, we assume that all random variables ξ are independent and

the covariance matrix Ω is equal to 10% of µ. We keep first part of the assumption but

change the covariance matrix Ω to 50% of µ. We used Seed 1, set r = 0.07 and kept

the other parameters.

The time cost of 5.19 is about 70 minutes. The upper bound for the optimum value is

3122.00, the lower bound is 3120.00.

39

Iter. x1 x3 Z1 Z2 Z3 Z4 Z5

1 24.626 0.0000 10.0000 15.6413 7.5875 0.0000 0.0000

4 24.8913 0.0000 10.0000 16.7296 9.8403 3.4988 29.5634

6 25.1798 0.0000 6.0417 13.6628 7.0232 2.0426 29.5634

11 0.0000 41.7662 4.6323 12.5036 6.8360 1.8017 29.2649

Iter. fN (xi) ∆ T2 Value p-Value N

1 3330.30 1.0000 0.8292 0.3698 50 (*)

4 3130.60 1.5581 1.2086 0.2716 500 (*)

6 3127.00 0.3895 1.0037 0.3164 5000 (*)

11 3121.00 0.1298 1.9406 0.1636 50000

Table 5.19: Result of r = 0.07 and Higher Covariance Matrix (Seed 1)

We gave a upper bound (10) on cash position in previous examples. In the following

example, we kept all the other settings except cancelled the upper bound on cash.

The time cost of 5.20 is about 95 minutes. The upper bound for the optimum value is

3542.40, the lower bound is 3477.40.

Iter. x1 Z1 Z2 Z3 Z4 Z5

1 0.2469 325.5226 254.5295 164.4762 69.1495 0.0000

2 0.1852 326.7259 255.5667 165.3364 69.8199 0.4673

4 0.1389 327.7175 256.4402 166.0835 70.4318 0.9346

6 0.1341 329.7977 256.5065 166.1349 70.4673 0.9530

Iter. fN (xi) ∆ T2 Value p-Value N

1 NaN 1.0000 1.0074 0.3155 50 (*)

2 NaN 0.2500 0.6229 0.4336 500 (*)

4 3534.10 0.0625 1.2098 0.2714 5000 (*)

6 3510.40 0.0039 1.0546 0.3044 50000 (*)

Table 5.20: Result of r = 0.07 and No Upper Bound on Cash (Seed 1)

40

Due to the consideration on time cost, we selected 30 from 98 bonds and reduced the

decision variables from 103 to 35. Now let us see a example with 98 bonds. We set

r = 0.07, used a different seed and kept the other parameters.

The time cost of 5.21 is about 383 minutes. The upper bound for the optimum value

is 2704.10, the lower bound is 2703.80.

Iter. x7 x15 x17 x18 x28 Z1 Z2 Z3

1 0.0000 8.9888 2.0136 9.7543 0.0000 10.0000 15.6413 7.5875

4 0.0000 0.0000 0.0000 20.8932 0.0000 10.0000 16.7296 9.8403

6 0.0000 0.0000 0.0000 21.2969 0.0000 3.4028 11.6183 6.3189

8 0.0000 8.1295 0.0000 13.0243 0.0000 5.2986 13.1599 7.4815

11 11.2260 0.0000 0.0000 0.0000 35.8596 0.5668 9.1424 4.2282

Iter. Z4 Z5 fN (xi) ∆ T2 Value p-Value N

1 0.0000 0.0000 2912.20 1.0000 3.2816 0.0775 50 (*)

4 3.4988 29.5634 2740.60 1.5581 55.1468 0.0000 500 (*)

6 1.6785 29.5634 2729.40 0.3895 1.0005 0.3172 5000 (*)

8 2.4356 29.8866 2735.40 0.0974 0.1272 0.7226 50000 (*)

11 0.0000 28.3259 2704.00 0.0568 0.0118 0.9135 500000

Table 5.21: Result of r = 0.07, Bonds Number = 98

5.2.4 Result Analysis

Based on the previous examples, we can see that the algorithm works quite well on the

model. The optimum values converge in the evolution of algorithm. The p-Value is

greater than 0.29 in all examples. We get high p-Value (≥ 0.80) in several examples,

such as in 5.3, 5.15

41

The results are reasonable. The optimum values should be close since similar parameters

are used. The idea is proved by the results. In most case, the optimum values are around

3100. And the changes on reinvestment rate r don’t bring too many effects on optimum

values.

In most cases we choose similar bonds, such as x1, x3 and x4. Since the bond data we

used are collected from real market. The arbitrage opportunities in the real financial

market must be rare. Our model should be able to find out such opportunities and

explore them as much as possible. Thus, it quite makes sense to see a few bonds in our

optimum solutions.

In 5.2.2, we set 50,000 as the sample size limit. The p-Value is around 30% in most

cases. Since generally speaking, larger sample would bring higher precision, thus we

want to see what the impact would be on p-Value if we use a larger sample. In 5.18,

we raise the sample size limit to 500,000. With the same seed and parameter setting,

we improve the p-Value from 0.3172 to 0.8872 with the cost of operation time.

In 5.19, we still have similar optimum solution and optimum value as in 5.2.2. It seems

that bigger covariance doesn’t affect the result a lot.

In 5.20, we can see that the upper bound on cash has great impact on result. The result

proves the validity of our model again. Since as I mentioned before, our model should

be able to recognize those arbitrage opportunities and try to explore them as much as

possible. In the examples, we impose no cost on cash (the coefficient of Z1 is 1). This

makes cash much cheaper than bonds. Once we cancelled the limit on cash position

when we set up portfolio, the model successfully explored the opportunity.

The last example shows that our model works well when we have larger inputs. The

optimum value is lower than the examples in 5.2.2, p-Value is high (≥ 0.90). The thing

42

we should notice is in 5.21, those bonds appear in optimum solutions are not among

those 30 bonds we used in 5.2.2.

43

Chapter 6

Conclusion

This paper developed two-stage stochastic programming with recourse model for bond

portfolio optimization problem. We introduced simulation based algorithm to two-stage

stochastic programming and applied it on this model to handle when random variables

ξ has continuous distribution instead of discrete distribution. We carried out the tests

of numerical examples under various scenarios and got good results. The efficiency of

the simulation based algorithm on our model has been proved by these results.

There are several possible directions for future research on the topic:

First, we can add more realistic factors into the model, for instance, the possibility of

bond default. Since in generic two-stage stochastic programming model, beside ξ, T

could be random too. Thus we can include bond default into the model by randomizing

T . By including bond default, more categories of bonds can be candidates of our model,

such as corporate bonds and even those junk bonds. We can see in 5.21, more bond

candidates may reduce the cost of setting up portfolio.

Second, finding ways to increase p-Value.Most final optimum solutions in our examples

have p-Value around 0.30. But in some cases, we have p-Value which is greater than

0.80. So it’s important to find our how to get higher p-Value for the cases whose p-Value

44

are relatively low. One guess is that the violation of the assumption (4.2) may bring

low p-Value. Instead, in examples 5.1 and 5.2, the assumption is always guaranteed. So

it’s worthy to do further study on whether eliminating the infeasibility or the violation

of the previous assumption would bring good p-Value.

Third, based on our examples, we can see that the time cost is huge in some cases,

especially when we have large sample size limit, such as 500,000. But when we have

many decision variables, large sample size is necessary to guarantee the precision of

result. There are many ways to increase the efficiency of algorithm, for instance, coding

with C++ instead of MATLAB and improving the code structure.

45

References

[1] Sthephen P. Bradley and Dwight B. Crane. A dynamic model for bond portfolio
mangament. Managment Science, 19(2), October 1972.

[2] Krzysztof Burnecki, Grzegorz Kukla, and Rafal Weron. Property insurance loss
distribution. Physica A, 287:269–278, 2000.

[3] Andrew J.G. Cairns. Interest Rate Models. John Wiley and Sons, 2004.

[4] George B. Dantzig. Linear programming under uncertainty. Management Science,
1(3/4):197–206, 1955.

[5] Lev Dynkin, Anthony Gould, Jay Hyman, Vadim Konstantinovsky, and Bruce
Phelps. Quantitative Management of Bond Portfolio. Princeton Unversity Press,
2006.

[6] Edwin J. Elton, Martin J. Gruber, Stephen J. Brown, and William N. Goetzmann.
Mordern Portfolio Theory and Investment Analysis. Wiley, sixth edition, 2003.

[7] Frank J. Fabozzi. Bond Portfolio Management. Frank J. Fabozzi Associates,
second edition, 2001.

[8] Frank J. Fabozzi, Lionel Martellini, and Philippe Priaulet, editors. Advanced Bond
Portfolio Management. Wiley, 2006.

[9] Karl Frauendorfer. Stochastic Two-Stage Programming. Springer-Verlag, 1992.

[10] Rajna Gibson, Franois-Serge Lhabitant, and Denis Talay. Modeling the term struc-
ture of interest rates: An overview. The Journal of Risk, 1(3), 1999.

[11] Gül Gürkan, A. Yonca Özge, and Stephen M. Robinson. Sample-path optimization
in simulation. In Proceedings of the 1994 Winter Simulation Conference, July 1994.

[12] Julia L. Higle and Suvrajeet Sen. Statistical verification of optimality conditions
for stochastic programs with recourse. Annals of Operations Research, 30:215–240,
1991.

[13] S. D. Hodges and S. M. Schaefer. A model for bond portfolio improvement. Journal
of Financial and Quantitative Analysis, 12:243–260, June 1977.

[14] Tito Homem-de-Mello and Alexander Shapiro. A simulation-based approach to
two-stage stochastic programming with recourse. Mathematical Programming,
81:301–325, 1998.

46

[15] Robb J. Muirhead. Aspects of multivariate statistical theory. Wiley, 1982.

[16] Jeffrey S. Pai, Kevin J. Shand, and Xikui Wang. Compound poisson model with
covariates: a case study on pet insurance. North American Actuarial Journal,
10(4):219–234, April 2007.

[17] Erica L. Plambeck, Bor-Ruey Fu, Stephen M. Robinson, and Rajan Suri. Sample-
path optimization of convex stochastic performance functions. Mathematical Pro-
gramming, 75:137–176, 1996.

[18] Nicholas G. Polson and Morten Sorensen. A simulation-based approach to stochas-
tic dynamic programming. Applied Stochastic Models In Business and Industry,
27:151–163, 2011.

[19] András Prékopa. Stochastic Programming. Akadémiai Kiadó and Kluwer Aca-
demic Publishers, 1995.

[20] András Prékopa. Stochastic Programming. Rutgers Center of Operations Re-
search, Jan. 2013.

[21] Werner Römisch and Rüdiger Schultz. Stability of solutions for stochastic pro-
grams with complete recourse. Mathematics of Operations Research, 18(3):590–
609, August 1993.

[22] Ehud I. Ronn. A new linear programming approach to bond portfolio management.
The Journal of Financial and Quantitative Analysis, 22(4):439–466, Dec. 1987.

[23] Reuven Y. Rubinstein and Alexander Shapiro. Optimization of static simulation
models by the score function method. Mathematics and Computers in Simulation,
32:373–392, 1990.

[24] A. Shapiro and Y. Wardi. Convergence analysis of stochastic algorithms. Mathe-
matics of Operations Research, 21(3):615–628, Aug. 1996.

[25] Alexander Shapiro. Stochastic programming by monte carlo simulation methods.
Stochastic Programming E-Print Series, 2000.

[26] M.Mine Subasi and Ersoy Subasi. Two-stage bond portfolio optimization problem.
Research Project, Spring 2002.

[27] Roger J.-B. Wets. Stochastic programs with fixed recourse: The equivalent deter-
ministic program. SIAM Revier, 16(3), July 1974.

Appendices

47

48

Algorithm Codes

49

1 t1 = tic;

2 pR = 0.70; % the required P level

3 delta =[];

4 delta = [delta 1]; % default delta value

5 zAlpha = 1.64; % alpha = 0.05, one tail

6 zAlpha2 = 1.96; % alpha = 0.05, two tails

7 chiSquareAlpha = 0.05;

8 NUpLimit = 50000;

9 k = 0;

10 options = optimset(’Algorithm’,’sqp’);

11

12 optX = [];

13 optX = [optX, x0];

14 N =[];

15 N =[N, 50];

16 optValue = [];

17 T2 = [];

18 T22 = [];

19 alphaOpt = [];

20 pIndex = [-1];

21 p = [];

22 p = [p, -3];

23 opTime = [];

24

25 numTest;

26 rng(seed);

27 Z = sampleGen(mu,sigma,N(k + 1));

28 Z1 = Z;

29

30 sizeX = size(optX);

50

31 lb = zeros(sizeX);

32 ub = ones(sizeX) * Inf;

33 ub(31) = 10;

34

35 endCount = 3;

36

37 while p(k + 1) < pR || pIndex(k + 1) == 0

38 time = tic;

39

40 if k == 0

41

42 [gK,gdK,gddK,fDK] = ggdRCal(optX(:, k + 1),optX(:, k + 1),...

43 c,Z,N(k + 1),T,W,WP,q,mu,sigma);

44 [xK, fValK] = fmincon(@(x)lKCal(x,optX(:, k + 1),T,c,gK,gdK),...

45 optX(:, k + 1),[],[],A,b,lb,ub,...

46 @(x)nLCon(x,T,optX(:, k + 1),delta(k + 1)),options);

47 optX = [optX, xK];

48 k = k + 1;

49 N = [N, N(k)];

50 [gK,gdK,gddK,fDK,GK,LK,sRK,fGK,rIK] = ggdRCal(optX(:, k + 1),...

51 optX(:, k + 1),c,Z,N(k),T,W,WP,q,mu,sigma);

52 optValueK = fKCal(optX(:, k + 1),c,fGK);

53 optValue = [optValue, optValueK];

54

55 [T2K, alphaOptK] = T2Cal(A,c,T,gdK);

56 T2 = [T2, T2K];

57 alphaOpt = [alphaOpt, alphaOptK];

58 [T22K,pK] = pCal(A,N(k),fDK,T2K);

59 p = [p, pK];

60 T22 = [T22, T22K];

51

61 if alphaOptK > 0

62 pIndex = [pIndex, 1];

63 else

64 pIndex = [pIndex, 0];

65 end

66

67 else

68

69 [gK1,gdK1,gddK1,fDK1,GK1,LK1,sRK1,fGK1,rIK1] = ggdRCal(...

70 optX(:, k + 1),optX(:, k + 1),c,Z1,N(k + 1),T,W,WP,q,mu,sigma);

71 rK = rKCal(optX(:, k),optX(:, k + 1),c,T,gK,gK1,gdK,gddK);

72 Z = Z1;

73 if rK < 0.25

74 deltaK = norm(T * optX(:, k + 1) - T * optX(:, k), Inf) / 4;

75 delta = [delta, deltaK];

76 else

77 if rK > 0.75 && norm(T * optX(:, k + 1) - T * ...

78 optX(:, k), Inf) == delta(k)

79 deltaK = 2 * delta(k);

80 delta = [delta deltaK];

81 else

82 deltaK = delta(k);

83 delta = [delta deltaK];

84 end

85 end

86

87 gK = gK1;

88 gdK = gdK1;

89 [xK, fValK] = fmincon(@(x)lKCal(x,optX(:, k + 1),T,c,gK,gdK),...

90 optX(:, k + 1),[],[],A,b,lb,ub,...

52

91 @(x)nLCon(x,T,optX(:, k + 1),delta(k + 1)),options);

92 optX = [optX, xK];

93 k = k + 1;

94 N = [N, N(k)];

95 [gK,gdK,gddK,fDK,GK,LK,sRK,fGK,rIK] = ggdRCal(optX(:, k + 1),...

96 optX(:, k + 1),c,Z,N(k),T,W,WP,q,mu,sigma);

97 optValueK = fKCal(optX(:, k + 1),c,fGK);

98 optValue = [optValue, optValueK];

99

100 if N(k) == N(k - 1)

101

102 t = pairedTTest(optX(:, k),optX(:, k + 1),...

103 gK1,gK,c,N(k),GK1,LK1,GK,LK,zAlpha);

104

105 if t == 0

106

107 NK = nCal1(optX(:, k + 1),c,N(k),...

108 NUpLimit,T,A,fDK,gdK,chiSquareAlpha);

109 N(k + 1) = NK;

110 rng(seed);

111 Z1 = sampleGen(mu,sigma,N(k + 1));

112

113 end

114

115 end

116

117 [T2K, alphaOptK] = T2Cal(A,c,T,gdK);

118 T2 = [T2, T2K];

119 alphaOpt = [alphaOpt, alphaOptK];

120 [T22K,pK] = pCal(A,N(k),fDK,T2K);

53

121 p = [p, pK];

122 T22 = [T22, T22K];

123 if alphaOptK > 0

124 pIndex = [pIndex, 1];

125 else

126 pIndex = [pIndex, 0];

127 end

128

129 end

130

131 tK = toc(time);

132 opTime = [opTime, tK];

133

134 if N(k) == NUpLimit

135 endCount = endCount - 1;

136 end

137

138 if endCount == 0

139 break;

140 end

141

142 end

143

144 [optVLowerBound, optVUpperBound] = boundCal(optX(:, k + 1),...

145 optX(:, k + 1),c,Z,N(k),T,W,WP,q,mu,sigma,zAlpha2,optValue(k));

146

147 tW = toc(t1) / 60;

54

1 function [g,gd,gdd,fD,G,L,secResult,feaG,resultIndex] ...

2 = ggdRCal(x,xK,c,Z,N,T,W,WP,q,mu,sigma)

3

4 tK = tKCal(T,xK);

5 t = T * x;

6 YK = yKCal(Z,tK,N);

7 G = [];

8 sizeQ = size(q);

9 lb = zeros(sizeQ);

10 resultIndex = zeros(N,1);

11 secResult = [];

12

13

14 for i = 1 : N

15 [f,fVal,exitflag] = linprog(q,WP,xK,W,YK(:,i),lb);

16 secResult = [secResult, f];

17 G = [G,fVal];

18 if exitflag == 1

19 resultIndex(i) = 1;

20 end

21 end

22

23 L = [];

24 YKT =YK’;

25 tT = t’;

26

27 for i = 1 : N

28 temp = mvnpdf(YKT(i,:),mu-tT,sigma) / mvnpdf(YKT(i,:),mu-tK’,sigma);

29 L = [L,temp];

30 end

55

31

32 cSigma = diag(sigma);

33 cISigma = cSigmaˆ(-1);

34 D = [];

35

36 for i = 1 : N

37 temp = YK(:,i) - mu’ + t;

38 D = [D,temp];

39 end

40

41 g = (G * L’) / N;

42

43 feaG = 0;

44

45 for i = 1 : N

46 if resultIndex(i) == 1

47 temp = G(i) * L(i);

48 feaG = feaG + temp;

49 end

50 end

51

52 feaG = feaG / sum(resultIndex);

53

54 sizeYK = size(YK);

55 gd = zeros(sizeYK(1),1);

56

57 for i = 1 : N

58 temp = G(i) * L(i) * cISigma * D(:,i);

59 gd = gd + temp;

60 end

56

61

62 gd = gd ./ N;

63

64 fD = [];

65

66 for i = 1 : N

67 temp = c + T’ * (G(i) * L(i) * cISigma * D(:,i));

68 fD = [fD, temp];

69 end

70

71 gdd = cISigma * 0;

72

73 for i = 1 : N

74 temp = G(i) * L(i) * ((cISigma * D(:,i)) ...

75 * (cISigma * D(:,i))’ - cISigma);

76 gdd = gdd + temp;

77 end

78

79 gdd = gdd ./ N;

57

1 function t = pairedTTest(xK0,xK1,g0,g1,c,N,G0,L0,G1,L1,zAlpha)

2

3 wA = fKCal(xK0,c,g0) - fKCal(xK1,c,g1);

4 wI = [];

5

6 for i = 1 : N

7 temp = c’ * xK0 + G0(i) * L0(i) - c’ * xK1 - G1(i) * L1(i);

8 wI = [wI, temp];

9 end

10

11 rN2 = sum((wI - wA).ˆ2) / (N - 1);

12 sN = sqrt(rN2 / N);

13

14 if wA > zAlpha * sN

15 t = 1;

16 else

17 t = 0;

18 end

19

58

1 function nP = nCal1(xK,c,N,NUpperLimit,T,A,fD,gd,chiSquareAlpha)

2

3 sampleCM = cov(fD’);

4 W = A’;

5 P = W * (W’ * W) ˆ (-1) * W’;

6 v = P * (c + T’ * gd);

7 rNOpt = (v’ * v) ˆ 2 / (v’ * sampleCM * v);

8 sizeX = size(xK);

9 chiSquareV = chi2inv(1 - chiSquareAlpha, sizeX(1));

10 nT = ceil(chiSquareV / rNOpt);

11 nP = max(nT, N);

12

13 if nP >= 10 * N

14 nP = 10 * N;

15 end

16

17 nP = min(nP, NUpperLimit);

59

1 function [T2,alphaOpt] = T2Cal(A,c,T,gd)

2

3 AT = A’;

4 gammaN = c + T’ * gd;

5 alphaOpt = (AT’ * AT)ˆ(-1) * AT’ * gammaN;

6 T2 = (gammaN - AT * alphaOpt)’ * (gammaN - AT * alphaOpt);

60

1 function [T22,p] = pCal(A,N,fD,T2)

2

3 AT = A’;

4 Q = AT * (AT’ * AT) ˆ (-1) * AT’;

5

6 sampleCM = cov(fD’);

7 simCMN = sampleCM ./ N;

8 sizeQ = size(Q);

9 I = eye(sizeQ);

10 beta = eig((I - Q) * simCMN);

11

12 theta1 = sum(beta);

13 theta2 = sum(beta.ˆ2);

14 theta3 = sum(beta.ˆ3);

15

16 v = theta2 ˆ 3 / theta3 ˆ 2;

17 c = theta3 / theta2;

18 b = theta1 - (theta2 ˆ 2 / theta3);

19 T22 = (T2 - b) / c;

20

21 if isinteger(v)

22 p = 1 - chi2cdf((T2 - b) / c, v);

23 else

24 p = 1 - gamcdf((T2 - b) / c, v / 2, 2);

25 end

61

1 function [lbb, ubb] = boundCal(x,xK,c,Z,N,T,W,WP,q,mu,sigma,zAlpha2,optR)

2

3 tK = tKCal(T,xK);

4 t = T * x;

5 YK = yKCal(Z,tK,N);

6 G = [];

7 sizeQ = size(q);

8 lb = zeros(sizeQ);

9 resultIndex = zeros(N,1);

10

11 for i = 1 : N

12 [f,fVal,exitflag] = linprog(q,WP,xK,W,YK(:,i),lb);

13 G = [G,fVal];

14 if exitflag == 1

15 resultIndex(i) = 1;

16 end

17 end

18

19 L = [];

20 YKT =YK’;

21 tT = t’;

22

23 for i = 1 : N

24 temp = mvnpdf(YKT(i,:),mu-tT,sigma) / mvnpdf(YKT(i,:),mu-tK’,sigma);

25 L = [L,temp];

26 end

27

28 optV = [];

29

30 for i = 1 : N

62

31 if resultIndex(i) == 1

32 temp = c’ * x + G(i) * L(i);

33 optV = [optV, temp];

34 end

35 end

36

37 standDevOptV = sqrt(var(optV));

38

39 lbb = optR - zAlpha2 * standDevOptV / sqrt(sum(resultIndex));

40 ubb = optR + zAlpha2 * standDevOptV / sqrt(sum(resultIndex));

63

1 function Z = sampleGen(mu,sigma,N)

2

3 Z = [];

4

5 for i = 1 : N

6 Z = [Z;mvnrnd(mu,sigma)];

7 end

8

9 Z = Z’;

64

1 function [c,ceq] = nLCon(x,T,xK,delta)

2

3 tK = tKCal(T,xK);

4 t = T * x;

5 c = norm((t - tK),Inf) - delta;

6 ceq = [];

65

1 function f = fKCal(xK,c,g)

2

3 f = c’ * xK + g;

66

1 function lK = lKCal(x,xK,T,c,g,gd)

2

3 tK = tKCal(T,xK);

4 t = T * x;

5 cT = c’;

6 lK = cT * x + g - gd’ * (t - tK);

67

1 function qK = qKCal(x,xK,g,gd,gdd,c,T)

2

3 tK = tKCal(T,xK);

4 t = T * x;

5 cT = c’;

6 qK = cT * x + g - gd’ * (t - tK) + 0.5 * (t - tK)’ * gdd * (t - tK);

68

1 function rK = rKCal(xK0,xK1,c,T,g0,g1,gd0,gdd0)

2

3 rK = (fKCal(xK0,c,g0) - fKCal(xK1,c,g1)) ...

4 / (fKCal(xK0,c,g0) - qKCal(xK1,xK0,g0,gd0,gdd0,c,T));

69

1 function tK = tKCal(T,x)

2

3 tK = T * x;

70

1 function YK = yKCal(Z,t,N)

2

3 YK = [];

4

5 for i = 1: N

6 temp = Z(:,i) - t;

7 YK = [YK,temp];

8 end

