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ABSTRACT OF THE THESIS

Design of Observers for systems with Slow and Fast Modes

by HEONJONG YOO

Thesis Director:

Professor Zoran Gajić

This thesis considers the design of observers for systems with slow and fast modes. The

existing design method were able to achieve that goal with O(ε) accuracy. Where ε

is a small positive parameter that indicates seperation of system state space variables

into slow and fast. We design independent slow and fast reduced-order observer with

exact accuracy, and place their closed-loop eigenvalues exactly at the desired location.

Furthermore, we apply the two stage method to design the full-order observer. The two

stage method results in full-state feedback control for each subsystems which makes

the subsystems asymptotic stable. Lastly, the crucial theme of the online savings is

the fact that the design allows complete time-scale seperation for both the observer

and controller through the complete and exact decomposition into slow and fast time

scales. The above method reduces both off-line and on-line computations. In this

thesis, we demonstrate the effectiveness of the two stage methods through theoretical

and simulation results.
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Chapter 1

Introduction

1.1 Singularly Perturbed Systems

Large time scale linear systems are encountered frequently in engineering problems.

The crucial theme is how to reduce a large time scale system into a reduced form to

enhance analysis, design and simulation. Consider a linear time invariant system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(1.1)

where x(t) ∈ Rn, u(t) ∈ Rr and y(t) ∈ Rp are state, control input, and output variables

respectively. As proposed by (Anderson, 1982), the above system (1.1) will be classified

as a two-time-scale system if the eigenvalues of A matrix, denoted as λ(A) can be

seperated into two disjoint sets

|qi| � |ri| for all qi in Q, and ri in R. (1.2)

The small parameter ε is the eigenvalue ratio

ε =
maxi|qi|
minj |ri|

(1.3)

which presents the system’s time scale seperation, and it defines (1.1) as a singularly

perturbation system. Now one can regard (1.1) as two coupled subsystems represented

by

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t)

ẋ2(t) = Ã21x1(t) + Ã22x2(t) + B̃2u(t)

y(t) = C1x1(t) + C2x2(t)

(1.4)
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where the general system matrices are A =

A11 A12

Ã21 Ã22

 and B =

B1

B̃2

. Note that

Ã21 , Ã22 and B̃2 have large elements. It can be shown that variations of x2(t) are fast,

which is a characteristic of singularly perturbed systems. Later, we will introduce the

Chang transformation to decouple the slow and fast subsystems. Using the spectral

norm, ε can be represented by (Anderson, 1982)

‖As‖
‖Af‖

≤ ε (1.5)

where As and Af are matrices obtained after the application of the Chang transfor-

mation to the system matrix A =

A11 A12

Ã21 Ã22

. This fact will be discussed in later.

Multiplying by ε the second equation in (1.4), the singularly perturbed system is given

by

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t)

εẋ2(t) = A21x1(t) +A22x2(t) +B2u(t)

y(t) = C1x1(t) + C2x2(t)

(1.6)

where A21 = εÃ21 , A22 = εÃ22 and B2 = εB̃2.

1.1.1 Slow and Fast Seperation of Singularly Perturbed Systems

A singularly perturbed system is in the explicit state variable form in which the deriva-

tives of some of the sates are multiplied by a small positive scalar ε. Consider the

singular perturbed system (1.6), where ε is a small singular perturbation parameter,

and x1(t) ∈ <n1 and x2(t) ∈ <n2 are state vectors. The system (1.6) may be approxi-

mately decomposed into a reduced system showing n1 slow modes and a fast subsystem

showing n2 fast modes, (O’Reilly, 1980). The reduced subsystem, in other word, slow

subsystem is obtained by setting ε = 0 in (1.6), that is

ẋs(t) = A11xs(t) +A12x2s(t) +B1us(t) (1.7)

0 = A21xs(t) +A22x2s(t) +B2us(t) (1.8)

ys(t) = C1xs(t) + C2x2s(t) (1.9)
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x2s(t) is the slow part for x2(t). Since x2(t) = x2s(t) + x2f (t), the reduced states x2s(t)

can be obtained when ε is set zero. The following assumption should be satisfied for

obtaining the slow subsystem.

Assumption 1.1.1. A−122 exists,

Under Assumption 1.1.1, x2s(t) can be obtained from (1.8) as

x2s(t) = −A−122 A21xs(t)−A−122 B2us(t) (1.10)

Substitution of (1.10) into (1.7) results in

ẋs(t) = A0xs(t) +B0us(t)

ys(t) = C0xs(t) +D0us(t)

(1.11)

with

A0 = A11 −A12A
−1
22 A21, B0 = B1 −A12A

−1
22 B2

C0 = C1 − C2A
−1
22 A21, D0 = −C2A

−1
22 B2

(1.12)

The fast subsystem (Kokotovic et al., 1999) is defined by

ẋf (τ) = A22xf (τ) +B2uf (τ)

yf (τ) = C2xf (τ)

(1.13)

where

τ =
(t− t0)

ε
(1.14)

In this section, we present how the original singularly perturbed system (1.6) can be

decomposed exactly into two sub-systems corresponding to slow and fast variables.

1.2 Chang Transformation : Block Triangular Form

The purpose of the Chang transformation is to decouple the fast subsystem from the

slow subsystem. The open loop system is considered regarding the Chang transforma-

tion in this section. The design of the Chang transformation is achieved in two steps.

Firstly, the upper triangular form is achieved and secondly, the block diagonal from is
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obtained to completely decouple the fast and slow sub-systems.

Consider a general continuous-time linear system which is given by

ẋ(t) = Ax(t) +Bu(t) (1.15)

where x(t) ∈ Rn, u(t) ∈ Rm, and A, B are constant matrices of appropriate dimensions.

There exists a similarity transformation defined by

x̄(t) = T−11 x(t) (1.16)

where

T1 =

In 0

L Im

 (1.17)

which transforms (1.15) into

ẋ(t) = T1T
−1
1 AT1T

−1
1 x(t) +Bu(t) (1.18)

Multiplying from the left by T−11 both side of (1.18), (1.18) becomes

˙̄x(t) = Āx̄(t) + B̄u(t) (1.19)

where

Ā = T−11 AT1, B̄ = T−11 B (1.20)

The above method is a state transformation of a general linear system. Now we apply

this method to the singularly perturbed system. Consider the singularly perturbed

system.

ẋ = Ãx(t) + B̃u(t), x(t0) = x0 (1.21)

with

Ã =

 A11 A12

1
εA21

1
εA22

 , B̃ =

 B1

1
εB2

 , x(t) =

x1
x2

 (1.22)

Using the state tranformation (1.16), the above singularly perturbed system (1.21) has

Ā = T1ÃT
−1
1 represented by

Ā =

In 0

L Im

 A11 A12

1
εA21

1
εA22

 In 0

−L Im

 =

A11 −A12L A12

f(L) LA12 + 1
εA22

 (1.23)
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with

f(L) = L(A11 −A12L) +
1

ε
(A21 −A22L) (1.24)

After the first step of the Chang tranformation, the block-triangular form (1.23) can be

obtained if f(L) = 0. Note that A21 and A22 are divided by ε when applying the first

step of the Chang tranformation. Furthermore, eigenvalues are preserved under Step

1 of the Chang tranformation. The following L equation is obtained by multiplying

(1.24) by ε

0 = εL(A11 −A12L) + (A21 −A22L) (1.25)

The newly obtained system will be block-triangular provided the n2 × n1 matrix L

satisfies (1.25).

1.2.1 Recursive Algorithm for Solving L-Equation

We use the fixed-point iteration to find the solution of (1.25), (Gajić and Shen, 1989)

Setting ε = 0, (1.25) becomes

A21 −A22L
o = 0 (1.26)

The unique solution of (1.25) is

Lo = A−122 A21 (1.27)

The sought value of matrix L is approximated by

L = L0 +O(ε) (1.28)

The recursive algorithm proposed by (Gajić and Shen, 1989) is

L(i+1) = A−122 (A21 + εL(i)A11 − εL(i)A12L
(i)) (1.29)

It was shown in Gajic(1986) that algorithm (1.29) converges with the rate of convergence

of O(ε), that is, after i-iterations, we have

‖L(i) − L0‖ = 0|εi| (1.30)
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1.3 Chang Transformation : Block Diagonal Form

One additional trasnformation matrix T2 leads to complete seperation of slow and fast

states of the singularly perturbed system (1.21). Consider general linear system (1.19).

From the upper triangular form, the state x̄(t) changes into the state x̂(t).

x̂(t) = T−12 x̄(t) (1.31)

with

T−12 =

In −εH

0 Im

 (1.32)

where x̄(t) are the states with the upper block-triangular form of Ā and x̂(t) are the

states corresponding to the block-diagonal form Â. The above state transformation

changes (1.19) into

˙̄x(t) = T2T
−1
2 ĀT2T

−1
2 x̄(t) + B̄u(t) (1.33)

The new coordinates of the state x̂(t) can be obtained by multiplying (1.33) by T2 from

the left side.

˙̂x(t) = Âx̂(t) + B̂u(t) (1.34)

with

Â = T−12 ĀT2, B̂ = T−12 B̄ (1.35)

In the case of the singularly perturbed system, x̂(t) contains fast and slow states given

by

x̂(t) =

xs(t)
xf (t)

 (1.36)

Consider the singularly perturbed system (1.21). After the first step of the Chang

transformation, (1.21) becomes

ẋ = Āx̄(t) + B̄u(t), x̄(t0) = x̄0 (1.37)

with

Ā =

A11 −A12L A12

0 LA12 + 1
εA22


B̄ = T−11 B̃

(1.38)
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In the same way, the block triangular form, obtained using (1.31), produces Â =

T−12 ĀT2, as

Â =

In −εH

0 Im

A11 −A12L A12

0 1
εA22 + LA12

In εH

0 Im


=

A11 −A12L ε(A11 −A12L)H +A12 − εH(A22/ε+ LA12)

0 1
εA22 + LA12


(1.39)

To make (1.39) block-diagonal, the element ε(A11−A12L)H +A12− εH(A22/ε+LA12)

should be zero. The H equation is given by

0 = ε(A11 −A12L)H +A12 −H(A22 + εLA12) (1.40)

Equation (1.40) is the Sylvester algebraic equation. Its unique solution always exists

since matrices A22 + εLA12 and ε(A11 −A12L) have no eigenvalues in common (Chen,

1999)

1.3.1 Recursive Algorithm for Solving the H-Equation

The iterative method is utilized to obtain the solution for H. Set ε = 0 in (1.40), to

obtain Ho as

Ho = A12A
−1
22 (1.41)

The solution value H has an approximation Ho and the error of O(ε), that is

H = H0 +O(ε) (1.42)

In the same process, applying the fixed-point recursive algorithm for L, we have

ε(A12 −A22L)H(i) −H(i+1)A22 − εH(i)LA12 +A12 = 0 (1.43)

Equation (1.43) can be rearranged for H(i+1) as

H(i+1) = ε(A12 −A22L)H(i)A−122 − εH
(i)LA12A

−1
22 +A12A

−1
22 (1.44)

It is no difficult to show that the convergence rate of (1.44) is O(ε).
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1.4 Chang Transformation : Composite Method

This section presents a combination of two previous sections and fully defined the

Chang transformation. The composite state transformation matrices Tc and T−1c are

represented by

Tc = T1T2 =

 In 0

−L Im

In εH

0 Im

 =

 In εH

−L −LεH + Im

 (1.45)

and

T−1c = T−12 T−11 =

In −εH

0 Im

In 0

L Im

 =

In − εHL −εH

L Im

 (1.46)

The matrix Tc is said to be the Chang transformation. Consider a general continuous-

time linear system (1.15) where x(t) ∈ Rn, u(t) ∈ Rm, and A,B are constant matrices

of appropriate dimensions. There exists a state transformation defined by

x̄(t) = T−1c x(t) (1.47)

where T−1c is given by (1.46) which transforms a general continuous-time linear system

(1.15) into

ẋ(t) = TcT
−1
c ATcT

−1
c x(t) +Bu(t) (1.48)

By multiplying T−1c on both side of (1.48), (1.48) becomes

˙̄x(t) = Āx̄(t) + B̄u(t) (1.49)

with

x̄(t) = T−1c x(t), Ā = T−1c ATc, B̄ = T−1c B (1.50)

The fast and slow states can be decomposed usingxs(t)
xf (t)

 =

In − εHL −εH

L Im

x1(t)
x2(t)

 (1.51)

Where xs(t) and xf (t) are states in the slow and fast coordinates and x1(t) and x2(t)

are states in the original coordinates. The original state can be recostructed byx1(t)
x2(t)

 =

 In εH

−L −LεH + Im

xs(t)
xf (t)

 (1.52)



9

Note that the complete slow and fast decomposition holds when we only consider un-

forced response. If we consider the input vector, we need an alternative way to exactly

decompose the slow and fast states. This fact will be considered later.

1.5 Introduction to Observers and Observer Based Controllers

Sometimes all state space variables are not available for measurements, or it is not

practical to measure all of them, or it is too expensive to measure all state space

variables. In order to be able to apply the state feedback control to a system, all of

its state space variables must be available at all times. Thus, we face the problem of

estimating system state space variables.

1.5.1 Full-Order Observer Design

Consider a linear time invariant system given as

ẋ(t) = Ax(t) +Buc(t), xt0 = x0 = unknown

y(t) = Cx(t)

(1.53)

where x(t) ∈ <n, u(t) ∈ <r, y(t) ∈ <p with constant matrices A,B,C having appro-

priate dimensions. We may construct a full-order observer having the same matrices

A,B,C such that

˙̂x(t) = Ax̂(t) +Buc(t), x̂t0 = x̂0

ŷ(t) = Cx̂(t)

(1.54)

Then we compare the output y(t) of the system (1.53) and the output ŷ(t) of the

full-order observer (1.54). These two outputs will be different since in the first case

the system initial condition is unknown, and in the second case it has been chosen

arbitrarily.

The difference between these two outputs will generate an error signal

y(t)− ŷ(t) = Cx(t)− Cx̂(t) = Ce(t) (1.55)

which can be used as the feedback signal to the full-order observer such that the estima-

tion error e(t) is reduced to zero. Considering the feedback signal (1.55), the observer
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structure is given by

˙̂x(t) = Ax̂(t) +Buc(t) +K(y(t)− ŷ(t)) (1.56)

Note that the observer has the same structure as the system plus the driving feedback

term that contain information about the observation error. The observer is implemented

on line as a dynamic system driven by the same input as the original system and the

measurements coming from the original systems, that is

˙̂x(t) = (A−KC)x̂(t) +Buc(t) +Ky(t) (1.57)

with

y(t) = Cx(t), uc(t) = Fx̂(t) (1.58)

This can be realized by proposing the system-observer structure as given in Figure. 1.1.

Figure 1.1: Full-order observer-based controller

It is easy to derive an expression for dynamics of the observation error as

ė(t) = ẋ(t)− ˙̂x(t) = (A−KC)e(t) (1.59)

If the observer gain K is chosen such that the matrix A−KC is asymptotically stable,

then the error e(t) can be reduced to zero at steady state. At this point, we need the

following assumption.

Assumption 1.5.1. The pair (A,C) is observable
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In practice, the observer eigenvalues should be chosen to be about 5−6 times faster

than the system eigenvalues so that the minimal real part of observer eigenvalues to be

5− 6 times bigger than the maximal real part of system eigenvalues, that is

|<(λmin)|observer > (5 or 6)× |<(λmax)|system (1.60)

1.5.2 Seperation Principle

This section presents the fact that the observer-based controller preserves the closed-

loop system eigenvalues. The system under state feedback control, that is u(t) =

−Fx(t) has the closed-loop form as

ẋ(t) = (A−BF )x(t) (1.61)

so that the eigenvalues of the matrix A − BF are the closed-loop system eigenvalues

under state feedback. In the case of the observer-based controller, as given in Figure

1.1, the control input signal applied to the observer-based controller is given as

uc(t) = −Fx̂(t) = −Fx(t) + Fe(t) (1.62)

Substituting equation (1.62) in the full-order observer (1.57) and the system (1.61), we

obtain the following augumented closed-loop matrix formẋ(t)

˙̂x(t)

 =

 A −BF

KC A−KC −BF

x(t)

x̂(t)

 (1.63)

At this point, we introduce the state transformation matrix given byx(t)

e(t)

 =

I 0

I −I

x(t)

x̂(t)

 = Taug

x(t)

x̂(t)

 (1.64)

Since matrix Taug is nonsingular, we can apply the similarity transformation to the

closed-loop matrix form (1.63), which leads toẋ(t)

ė(t)

 =

A−BF BF

0 A−KC

x(t)

e(t)

 (1.65)

It is well known that the similarity transformation preserves the same eigenvalues as in

the original system. The state matrix of the system (1.65) is upper block triangular and

its eigenvalues are equal to the eigenvalues λ(A − BF ) ∪ λ(A −KC), which indicates

that the independent placement of observer and controller eigenvalues is possible.
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1.6 An Observer for Singularly Perturbed Systems

The singularly perturbed system (1.6) may be rewritten as

ẋ(t) = Ãx(t) + B̃u(t), x(t0) = x0

y(t) = Cx(t)

(1.66)

with

Ã =

A11 A12

A21
ε

A22
ε

 , B̃ =

B1

B2
ε


x(t) =

x1
x2


(1.67)

The corresponding full-order observer for the singularly perturbed system (1.66) is given

as
˙̂x(t) = (Ã−KC)x̂(t) + B̃u(t) +Ky(t)

ŷ(t) = Cx̂(t)

(1.68)

where x̂(t) is an estimate of the state x(t) in (1.66) and the state error is defined as

e(t) = x̂(t)− x(t) (1.69)

The role of the observer (1.68) reconstruct the state x(t) of (1.66) in a uniformly asymp-

totic manner in the sense that

lim
t→∞

e(t) = 0 (1.70)

The observability Assumption 1.5.1 is needed for (1.70) to hold

1.6.1 An Observer for the Slow Subsystem

An observer for the reduced system (1.11) is given as (O’Reilly, 1979a)

˙̂xs(t) = (A0 −K0C0)x̂s(t) +K0ys(t) +B0us(t) (1.71)

where the state reconstruction error is given as

es(t) = x̂s(t)− xs(t) (1.72)
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The slow error dynamics can be represented by

ės(t) = (A0 −K0C0)es(t), es(t0) = e1(t0) (1.73)

The observer (1.71) will uniformly aymptotically reconstruct the state xs(t), that is

lim
t→∞

es(t) = 0 (1.74)

If the following assumption holds

Assumption 1.6.1. The pair (A0, C0) is observable.

1.6.2 An Observer for the Fast Subsystem

A full-order observer for the fast system (1.13) is given as (O’Reilly, 1979a)

˙̂xf (τ) = (
1

ε
A22 −

1

ε
K2C2)x̂f (τ) +

1

ε
K2yf (τ) +

1

ε
B2uf (τ) (1.75)

where the state reconstruction error is defined as

ef (τ) = x̂f (τ)− xf (τ) (1.76)

Similarly, the fast error dynamics can be represented by

ėf (τ) = (
1

ε
A22 −

1

ε
K2C2)ef (τ), ef (t0) = x̂f (0)− xf (0) (1.77)

The observer (1.75) will uniformly aymptotically reconstruct the state xf (τ) if

lim
τ→∞

ef (τ) = 0 (1.78)

The fast subsystem observability assumption is needed for (1.78) to hold

Assumption 1.6.2. The pair (A22, C2) is observable.

1.6.3 State Reconstruction for the Composite System

This section presents a composite observer design based on the two slow and fast ob-

servers (1.71) and (1.75) (O’Reilly, 1979a).
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Lemma 1.6.1. If the observer (1.68) is coupled to the system (1.66) with

K =

 K1

1
εK2

 (1.79)

where

K1 =
1

ε2
A12A

−1
22 K2 +K0[I −

1

ε2
C2A

−1
22 K2] (1.80)

and if A0 +K0C0 and A22 +K2C2 are uniformly asymptotically stable, then the eigen-

values related to the error dynamics in the original coordinates satisfy

λi = λi(A0 +K0C0) +O(ε), i = 1, ..., n1

λj = λj(
1

ε
A22 +

1

ε
K2C2) +

O(ε)

ε
, i = n1 + j, j = 1, ..., n2

(1.81)

1.7 Observer-based Controllers for Singularly Perturbed Systems

A dynamical feedback controllers for the singularly perturbed system (1.66) is given by

uc(t) = Fx̂(t) (1.82)

where x̂(t) is an estimate of the state x(t) and is generated by the full-order observer

(1.68). The overall closed-loop system for the original system (1.66) is given byẋ(t)

ė(t)

 =

Ã+ B̃F −B̃F

0 Ã−KC

x(t)

e(t)

 (1.83)

It is required that the controller (1.83) be uniformly asymptotically stable in the sense

that

lim
t→∞

x(t)

e(t)

 = 0 (1.84)

Obviously, this may be achieved if and only if (1.66) is stabilizable by feedback (1.82)

and the observer reconstruction error system, that is

ė(t) = (Ã−KC)e(t), e(t0) = x̂(t0)− x(t0) (1.85)

The observability Assumption 1.5.1 and the following Assumption is needed for (1.84)

to hold

Assumption 1.7.1. The pair (Ã, B) is controllable.
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1.7.1 A Controller for the Slow Subsystem

An observer-based controller for the slow subsystem (1.11) is given by (O’Reilly, 1980)

us(t) = F0x̂s(t) (1.86)

where x̂s(t) is an estimate of the original state xs(t) generated by the slow reduced-

order observer (1.71). The slow state reconstruction error es(t) defined by (1.72) satisfies

(1.73). Hence, the closed-loop slow subsystem is given byẋs(t)
ės(t)

 =

A0 +B0F0 −B0F0

0 A0 −K0C0

xs(t)
es(t)

 (1.87)

The slow subsystem (1.11) is uniformly completely stabilizable by the controller (1.86)

and the slow reduced-order observer (1.71) if

lim
t→∞

xs(t)
es(t)

 = 0 (1.88)

The observability Assumption 1.6.1 and the following Assumption is needed for (1.88)

to hold

Assumption 1.7.2. The pair (A0, B0) is controllable.

1.7.2 A Controller for the Fast Subsystem

An observer-based controller for the fast subsystem (1.13) is given in the fast time-scale

τ by

uf (τ) = F2x̂f (τ) (1.89)

where x̂f (τ) is an estimate of the original state xf (τ) generated by the fast reduced-order

observer (1.75). The slow state reconstruction error ef (τ) defined by (1.76) satisfies

(1.77). Hence, the closed-loop fast subsystem is given byẋf (τ)

ėf (τ)

 =

A22 +B2F2 −B2F2

0 A22 −K2C2

xf (τ)

ef (τ)

 (1.90)
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Furthermore, the fast subsystem (1.13) is uniformly completely stabilizable by the con-

troller (1.89) and the fast reduced-order observer (1.75) if

lim
τ→∞

xf (τ)

ef (τ)

 = 0 (1.91)

The observability Assumption 1.6.2 and the following Assumption is needed for (1.91)

to hold

Assumption 1.7.3. The pair (A22, B2) is controllable.

1.7.3 A Composite Observer-based Controller

At this point, we need to introduce the observer driven controller proposed by (O’Reilly,

1980).

Lemma 1.7.1. If the observer and controller are coupled to the system (1.66) with

F =
[
F1 F2

]
(1.92)

F1 = [I +K2A
−1
22 B2]F0 + F2A

−1
22 A21 (1.93)

K =

 K1

1
εK2

 (1.94)

K1 =
1

ε2
A12A

−1
22 K2 +K0[I −

1

ε2
C2A

−1
22 K2] (1.95)

and if the slow subsystem and fast subsystem are each uniformly stabilizable by two

observers (1.71) and (1.75) and controllers (1.86) and (1.89), then there exists a pos-

itive ε∗ sufficiently small such that the original system (1.66) is uniformly completely

stabilizable for any ε ∈ (0, ε∗].

This lemma indicates that the state and error dynamic can be reconstructed within

O(ε) approximation. There are several papers for observers and observer driven con-

trollers for singularly perturbed systems and all of them did design with O(ε) accuracy

(O′Reilly, 1980), (O′Reilly, 1979a),(O′Reilly, 1979b), (Gardner JrandCruz Jr, 1980),

and (Porter, 1974).
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1.8 Controller Eigenvalues Assignment

The goal is to find a similarity transformation P and the feedback gain F such that

P−1(A−BF )P = Λdesired (1.96)

with

λ(A−BF ) = λ(Λdesired) = λdesired (1.97)

If (A,B) is controllable, λ(A−BF ) can be arbitrarily located (Chen, 1999). Premultiply

(1.96) by P produces

AP −BFP = PΛdesired (1.98)

Rearranging (1.98), it becomes

AP − PΛdesired = BF̄ (1.99)

with

F̄ = FP (1.100)

The following lemma was presented in (Chen, 1999, pp. 240).

Lemma 1.8.1. If A and Λdesired have no eigenvalues in common, then the unique

solution P of AP − PΛdesired = BF̄ exists if and only if (A,B) is controllable and

(Λdesired, F̄ ) is observable.

1.8.1 Design Procedure

The procedure for computing the feedback gain through the Lyapunov method is pre-

sented in (Chen, 1999) Assume a controllable pair (A,B), where A is <n×n and B is

<n×m. Find a <m×n real matrix F such that (A−BF ) has a set of desired eigenvalues

that contains no eigenvalues of A.

Step 1. Select an <n×n matrix Λdesired that has the desired set of eigenvalues. The

form of Λdesired can be chosen arbitrarily, often it is a diagonal matrix

Step 2. Select an arbitrary <m×n vector F̄ such that (Λdesired, F̄ ) is observable

Step 3. Solve the Sylvester(Lyapunov) equation AP − PΛdesired = BF̄ for the unique
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P .

Step 4. Compute the feedback gain F = F̄P−1 if the matrix P is invertible. If P is not

invertible, go back to Step 2 and choose another F̄ .

1.9 Observer Eigenvalues Assignment

The corresponding Lyapunov method for obtaining the observer gain is to find the

observer gain in the original coordinates. To find the observer gain, we need to transpose

matrix (A−KC). Consider the similarity transformation

P−1(AT − CTKT )P = Λobsdesired (1.101)

where

λ(AT − CTKT ) = λ(Λobsdesired) = λdesired (1.102)

If (A,C) is observable, λ(A−KC) can be arbitrarily located according to (Chen, 1999).

It is well known that the closed-loop eigenvalues of the observer should be located 5−6

times farther to the left from the closed-loop system eigenvalues. Multiplying both side

of (1.101) by P , (1.101) becomes the following Lyapunov equation

ATP − PΛobsdesired = CT K̄T (1.103)

with

K̄T = KTP (1.104)

1.9.1 Design Procedure

For this section we introduce the procedure to compute the observer gain through the

Lyapunov method. The following design procedure is presented in (Chen, 1999).Con-

sider the observable pair (A,C), where A is <n×n and C is <p×n. Find a <n×p real K

such that (A−KC) has any set of desired eigenvalues that contains no eigenvalues of

A.

Step 1. Select an arbitrary matrix Λobsdesired that has no common eigenvalues with those
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of A.

Step 2. Select an arbitrary <p×n vector K̄T such that (Λobsdesired, K̄
T ) is observable.

Step 3. Solve for the unique P from the Sylvester equation ATP −PΛobsdesired = CT K̄T .

Step 4. Obtain the transposed observer gain from KT = K̄TP−1. If P is not invertible,

go back to Step 2 and choose another K̄T .

Step 5. Obtain the observer gain from K = (KT )T .

1.10 Conclusion

In this thesis, we will show that it is possible to design reduced-order slow and fast

controllers exactly and independently in slow and fast time scales.
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Chapter 2

Two-Time Scale Design for Singularly Perturbed Systems

2.1 Introduction

In this section, we will consider how one can place eigenvalues at the desired locations

for each subsystems. Since a singular perturbed system has two sets of seperated

eigenvalues, some of which are large, it might not be possible to place some of eigenvalues

at the desired location in the case of the inaccessible states.

2.2 State Feedback Control via the Chang Transformation

This section presents state feedback control via the Chang transformation and shows

how to obtain the feedback gain. Firstly, we show that the Chang transformation can’t

seperate slow and fast states when we consider the input signals.

Consider the singular perturbed system

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t), x1(t0) = x10

εẋ2(t) = A21x1(t) +A22x2(t) +B2u(t), x2(t0) = x20

(2.1)

We define matrices A and B as

A =

A11 A12

A21 A22

 , B =

B1

B2

 (2.2)

Dividing by ε ,the following matrix form is obtainedẋ1(t)
ẋ2(t)

 =

A11 A12

A21
ε

A22
ε

x1(t)
x2(t)

 +

B1

B2
ε

uc(t) (2.3)

Similarly, we define matrices Anew and Bnew as

Anew =

A11 A12

A21
ε

A22
ε

 , Bnew =

B1

B2
ε

 (2.4)
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The above general singularly perturbed system (2.3) can be transformed into the fol-

lowing form via the Chang transformation.ẋs(t)
ẋf (t)

 =

As 0

0
Af
ε

xs(t)
xf (t)

 +

Bs
Bf
ε

uc(t) (2.5)

System (2.5) can be divided into two subsystems represented by

ẋs(t) = Asxs(t) +Bsuc(t)

ẋf (t) =
Af
ε
xf (t) +

Bf
ε
uc(t)

(2.6)

It looks like that the fast states are seperated from the slow states. However, they are

coupled through the control signal as

uc(t) = −Fsxs(t)− Ffxf (t) (2.7)

substitute (2.7) into (2.6)

ẋs(t) = (As −BsFs)xs(t) +BsFfxf (t)

ẋf (t) =
1

ε
(Af −BfFf )xf (t) +

1

ε
BfFsxs(t)

(2.8)

From above (2.8), the pure seperation of fast and slow states are impossible, since the

first part of equation in (2.8) contains fast states and the second part of equation in

(2.8) contains slow states.

Therefore, the different method to seperate fast and slow states are proposed (Kokotovic

et al., 1999). Consider the composite state feedback form of a singularly perturbed

system,

ẋ(t) = (Anew +BnewF )x(t), x(t0) =

x1(t0)
x2(t0)

 (2.9)

with

Anew =

A11 A12

A21
ε

A22
ε

 , Bnew =

B1(t)

B2
ε (t)

 ,
F =

[
F1 F2

]
, x =

x1(t)
x2(t)


(2.10)

The first step of the Chang transformation producesẋs(t)
ẋf (t)

 =

A11f −A12fL A12f

0 LA12f + 1
εA22f

xs(t)
xf (t)

 (2.11)
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with

A11f = A11 +B1F1, A12f = A12 +B1F2, A21f = A21 +B2F1, A22f = A22 +B2F2 (2.12)

and

εLA11f − εLA12fL+A21f − εA22fL = 0 (2.13)

Note that feedback matrices from (2.12) are present in equation (2.13). Applying the

second step of the Chang transformation we obtainẋs(t)
ẋf (t)

 =

(A11f )− (A12f )L 0

0 L(A12f ) +
A22f

ε

xs(t)
xf (t)

 (2.14)

with

(A11f − LA12f )εH +H(εLA12f −A22f ) +A12f = 0 (2.15)

Where A11f , A12f and A22f are feedback matrices. If L equation (2.13) and H equation

(2.15) are satisfied, it is possible to decouple the slow and fast subsystems represented

by equation (2.14)

2.2.1 Slow and Fast Time Scales : Uncorrected Method

The seperation of slow and fast sub-systems is discussed in the previous section. In

this section, the method to obtain feedback gains for slow and fast subsystems will be

considered. The composite input uc(t) is given by

uc(t) = us(t) + uf (t) = F0xs(t) + F2xf (t) (2.16)

However, a realizable composite control requires that the system states xs(t) and xf (t)

be expressed in terms of the actual system states x1(t) and x2(t) is proposed by Koko-

tovic, (Kokotovic et al., 1999)

uc(t) = F0x1(t) + F2[x2(t) +A−122 (A21xs(t) +B2F0x1(t))]

= F1x1(t) + F2x2(t)

(2.17)

with

F1 = (Ir + F2A
−1
22 B2)F0 + F2A

−1
22 A21 (2.18)
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In the above design procedure the gain matrices F0 and F2 are seperately designed

in the slow and fast time scales. The following theorem is presented by Kokotovic

(Kokotovic et al., 1999)

Lemma 2.2.1. Let F2 be designed such that Reλ(A22 + B2F2) < 0, then ∃ an ε > 0

such that the composite control

uc(t) = F0xs(t) + F2[x2(t) +A−122 (A21xs(t) +B2F0xs(t))] (2.19)

applied to the system (2.3) , produces the closed-loop system, ( starting from any bounded

initial condition x10 and x20), with the following property

x1(t) = xs(t) +O(ε) (2.20)

x2(t) = −A−122 (A21 +B2F0)xs(t) + xf (t) +O(ε) (2.21)

uc(t) = us(t) + uf (t) +O(ε) (2.22)

for all finite time t ≥ t0 and all ε ∈ (0, ε∗]. If in addition F0 is designed such that

Reλ(A0 + B0F0) < 0, there exists an ε∗ > 0 such that the resulting closed-loop system

is asymptotically stable and (2.20) - (2.22) hold for all ε ∈ (0, ε∗ and t ∈ [t0,∞).

Proof. (Kokotovic et al., 1999) Consider a seperation of fast and slow states through

the Chang transformation applied to equation (2.14), which produces ẋs
εẋf

 =

(A11f )− (A12f )L 0

0 A22f + εL(A12f )

xs
xf

 (2.23)

with the initial conditions

x0s = x01 − εHx02

x0f = x02 + Lx01

(2.24)

Where A11f , A12f , A21f and A22f are feedback matrices of (2.12). Instead of using F1

and F2 as design parameters, we use Fs and F2 as design parameters given by

F1 = Fs + F2L (2.25)

Substituting equations (2.12) and (2.25) into L equation (2.13) results in the following

equation

L = A−122 (A21 +B2Fs) + εA−122 L[(A11 +B1Fs)−A12L] (2.26)
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and substituting (2.26) into (2.23), using (2.25) and (2.12), leads to the closed-loop

system  ẋs
εẋf

 =

As +BsFs 0

0 Af +BfFf

xs
xf

 (2.27)

with

As = A0 − εA12A
−1
22 L(A11 −A12L)

Bs = B0 − εA12A
−1
22 LB1

Af = A22 + εA12, Bf = B2 + εLB1

(2.28)

Since matrices A0, B0, A22 and B2 are approximation of matrices As, Bs, Af and Bf ,

we can say that the eigenvalues of matrices λ(As + BsFs) and λ(Af + BfFf ) are ap-

proximated by eigenvalues of λ(A0 +B0F0) and λ(A22 +B2F2).

Eigenvalue Assignment in Slow and Fast Time Scales : Uncorrected Method

Through the application of the Chang transformation, an n-dimensional eigenvalue

placement can be reduced to seperate eigenvalue placement problems of dimension n1

and n2. The following theorem is proposed by Anderson (Anderson, 1982)

Lemma 2.2.2. If a (A,B) is controllable, there exists at least one real m× n dimen-

sional feedback matrix F such that the closed-loop eigenvalues given by λ(A−BF ) can

be placed arbitrary by designer’s decision. If the original system is controllable, it can

be shown by linear algebra that the slow and fast subsystems in equation (2.27) are also

controllable.

The above lemma is considered in the original coordinates. However, one can ask a

question about whether a designer can place slow and fast eigenvalues seperately. The

singularly perturbed system has different sets of eigenvalues Q and R. It can be shown

that it is possible to relocate the n1 slow open-loop eigenvalues Q to n1 new eigenvalue

location Q
′
. The following theorem is presented by kokotovic (Kokotovic et al., 1999)

Lemma 2.2.3. If A−122 exits and if the slow subsystem pair (A0, B0) and the fast system

pair (A22, B2) are both controllable, and feedback gains F0, F2 are designed to assign

distinct eigenvalues λi, i = 1, ..., n1 and λj , j = 1, ..., n2, to the matrices A0 +B0F0 and
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A22 +B2F2 respectively, then ∃ an ε∗ > 0 such that for all ε ∈ (0, ε∗] the application of

the composite feedback control (uncorrected method) uc(t) given by

uc(t) = [(Ir + F2A
−1
22 B2)F0 + F2A

−1
22 A21]x1(t) + F2x2(t) (2.29)

results in a closed-loop system containing n1 slow eigenvalues (λ1, λ2, ...., λn1) and n2

fast eigenvalues (λn1+1, λn1+2, ...., λn1+n2) , which are approximated by

λi = λi(A0 +B0F0) +O(ε), i = 1, ..., n1

λj =
[λj(A22 +B2F2) +O(ε)]

ε
, i = n1 + j, j = 1, ..., n2

(2.30)

2.2.2 Slow and Fast Time Scales : Corrected Method

This method is different from the aforementioned uncorrected method since the state

trajectories of the singularly perturbed system (2.1) are approximated by O(ε2). The

following Lemma is proposed by Kokotovic (Kokotovic et al., 1999, pp. 99-101).

Lemma 2.2.4. Using As, Bs in (2.28), the corrected slow model is

ẋsc(t) = A0cxsc(t) +B0cusc(t)

A0c = A0 − εA12A
−1
22 L0(A11 −A12L0)

B0c = B0 − εA12A
−1
22 L0B1

(2.31)

with the initial condition

xsc(t0) = x01 − εH0(x
0
2 + L0x

0
1) (2.32)

Similarly, the corrected fast model in the τ = t−t0
ε scale is given by

ẋfc(τ) = A22cxfc(t) +B2cufc(t)

A22c = A22 + εL0A12

B2c = B2 + εL0B1

(2.33)

with the initial condition

x2fc(t0) = x02 + L1x
0
1 (2.34)

If the composite control

uc(t) = F1x1(t) + F2x2(t) (2.35)
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with

F1 = F0c + F2L1 (2.36)

is applied to the system (2.3) , and if A22 +B2F2 is a Hurwitz matrix, then there exists

an ε such that the state and control of the closed-loop system, starting from any bounded

initial conditions x01 and x02, are approximated based by

x1(t) = xsc(t) + εH0xfc(τ) +O(ε2) (2.37)

x2(t) = −L1xsc(t) + (Im − εL0H0)xfc(τ) +O(ε2) (2.38)

uc(t) = usc(t) + ufc(τ) +O(ε2) (2.39)

with

L0 = A−122 (A21 +B2F0),

L1 = A−122 (A21 +B2F0c) + εA−122 L0(A0 +B0F0)

H0 = (A12 +B1F2)(A22 +B2F2)
−1

(2.40)

If A0 + B0F0 is also Hurwitz then there exists an ε such that the closed-loop system is

asymptotically stable.

The above Lemma shows that state trajectories is approximated by O(ε2). The

aforementioned uncorrected method has states trajectories (2.20) ,(2.21) and (2.22)

with O(ε) which indicates corrected method is a better method to approximate states

and input.

Eigenvalues Assignment in Two-time Scale via the Corrected Method

Now that we consider the eigenvalue assignment via the corrected method, firstly, we

present the following lemma (Kokotovic et al., 1999)

Lemma 2.2.5. If A−122 exists and if the slow subsystem pair (A0, B0) and the fast

subsystem pair (A22, B2) are each controllable then there exists an ε∗ > 0 and gain

matrices F0c and F2 which arbitrarily assign eigenvalues λi, i = 1, ..., n1 and λj , j =

1, ..., n2 to the closed-loop matrices A0c + B0cF0c and A22c + B2cF2, respectively, such

that for all ε ∈ (0, ε∗] the application of the composite feedback control

uc(t) = [F0c + F2L1]x1(t) + F2x2(t) (2.41)
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with

L1 = A−122 (A21 +B2F0c) + εA−122 (A21 +B2F0)(A0 +B0F0) (2.42)

to the singularly perturbed system (2.3) results in the closed-loop system containing n1

slow eigenvalues (λc1, λ
c
2, ...., λnc1) and n2 fast eigenvalues (λcn1+1, λ

c
n1+2, ...., λ

c
n1+n2)

that

are approximated by

λci = λi(A0c +B0cF0c) +O(ε2), i = 1, ..., n1

λcj =
[λj(A22c +B2cF2c) +O(ε2)]

ε
, i = n1 + j, j = 1, ..., n2

(2.43)

The fast eigenvalues can be approximated by O(ε), since O(ε2) approximation of

the fast eigenvalues are devided by ε.

Numerical Example : Uncorrected Method

This section illustrates the uncorrected method, with the accuracies O(ε) and corrected

method O(ε2) specifically. The matrices of the singularly perturbed system are given

by

A =

A11 A12

A21
ε

A22
ε

 , B =

B1

B2
ε

 , C =
[
C1 C2

]
(2.44)

For the singularly perturbed system (Kokotovic et al., 1999, pp. 124-125), the matrices

A,B and C are given by

A =



0 0.4 0 0

0 0 0.345 0

0 −1
ε0.524 −1

ε0.465 1
ε0.262

0 0 0 −1
ε


, B =



0

0

0

1
ε


C =

1 0 0 0

0 0 1 0


(2.45)

The partitions matrices of A are represented by

A11 =

0 0.4

0 0

 , A12 =

 0 0

0.345 0

 ,
A21 =

0 −0.524

0 0

 , A22 =

−0.465 0.262

0 −1


(2.46)
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The open-loop system has four eigenvalues at (0,−0.4282,−4.2218,−10). A0 and B0

are defined in (1.12) and given by

A0 =

0 0.4

0 −0.3888


B0 =

 0

0.1944


(2.47)

Hence, the uncorrected slow gain F0 is given by

F0 =
[
−12.8571 −5.2741

]
(2.48)

The choice of F0 places the slow eigenvalues of A0+B0F0 at −0.707± j0.707. However,

the eigenvalues of the actual full system under this feedback control are approximated

by O( 1
10) in the case of ε = 0.1. We also place the eigenvalues of the fast modes at

(−7,−8). The fast gain matrix F2 is given by

F2 =
[
−0.3005 −0.0350

]
(2.49)

The ill-conditioning of computation can be eliminated by this two-time scale method.

Once we find the slow gain and the fast gain in the new coordinates, then the composite

gain matrix F in the original coordinates is given by

F =
[
F1 F2

]
(2.50)

with

F1 =
[
−12.8571 −5.2741

]
, F2 =

[
−0.3005 −0.0350

]
(2.51)

The poles of (A+BF ) are given by

λ(A+BF ) =



−0.6412 + 0.8832i

−0.6412− 0.8832i

−4.0273

−9.6904


(2.52)

of which the slow eigenvalues are observed to be within O(ε) of the prescribed eigenval-

ues (−0.707 ± j0.707) and the fast eigenvalues are also within O(1) of the prescribed

eigenvalues (−7,−8).
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Numerical Example : Corrected Method

Now that we consider the corrected method from the uncorrected method. As previ-

ously mentioned, this method assigns eigenvalues with O(ε2) approximation. Hence,

the corrected method improves the uncorrected method regarding the eigenvalues as-

signment. From (2.31), A0c and B0c are given by

A0c =

 0 0.4

−1.0162 −0.6488


B0c =

[
0 0.1944

] (2.53)

From (2.33), A22c and B2c are given by

A22c =

−0.3236 0.2620

0.1820 −1.0000


B2c =

[
0 1

] (2.54)

The slow gain F0c and the fast gain F2c are given by

F0c =
[
−7.6293 −3.9367

]
(2.55)

and

F2c =
[
−0.8664 −0.1764

]
(2.56)

Once we find the slow gain and the fast gain in the slow and fast coordinates through

the corrected method, then the gain matrices (2.35)-(2.36) in the original coordinates

are given by

F =
[
F1c F2c

]
(2.57)

with

F1c =
[
−15.4838 −8.2228

]
, F2c =

[
−0.8664 −0.1764

]
(2.58)

The eigenvalues of (A+BF ) are

λ(A+BF ) =



−0.7100 + 0.6922i

−0.7100− 0.6922i

−7.4970 + 0.8539i

−7.4970− 0.8539i


(2.59)
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The slow eigenvalues are observed to be within O(ε2) of the prescribed eigenvalues

(−0.707± j0.707) and the fast eigenvalues are within O(ε) of the prescribed fast eigen-

values (−7,−8).

2.3 Two-Stage Design

The above uncorrected method and the corrected method shows O(ε) and O(1) ap-

proximation for the fast eigenvalues, and O(ε2) and O(ε) approximation for the slow

eigenvalues. This section provides the exact assignment of both the slow and fast

eigenvalues via state feedback. If the original system is given by

ẋ(t) = Ax(t) +Buc(t) (2.60)

with

A =

A11 A12

A21
ε

A22
ε

 , B =

B1

B2
ε

 ,
x(t) =

x1
x2


(2.61)

Then (2.60) becomes the block-diagonal form using the Chang transformation (1.45),

that is xs
xf

 = T−1c

x1
x2

 (2.62)

Applying the Chang transformation (2.62) to the original singularly perturbed system

(2.60), we have

˙̃x(t) = Ãx̃(t) + B̃uc(t) (2.63)

with

Ã = T−1c ATc =

As 0

0
Af
ε

 , B̃ = T−1c B =

Bs
Bf
ε


x̃(t) =

xs
xf


(2.64)
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System (2.63) can be expressed as

ẋs = Asxs +Bsu(t)

ẋf =
Af
ε
xf +

Bf
ε
u(t)

(2.65)

It looks like that the fast states are seperated from the slow state by only considering

matrix Ã in (2.63). Consider the composite input is given by

uc(t) = −Fsxs(t)− Ffxf (t) (2.66)

Substituting (2.66) to (2.65), so that (2.65) becomes

ẋs(t) = (As −BsFs)xs(t) +BsFfxf (t)

ẋf (t) =
1

ε
(Af −BfFf )xf (t) +

1

ε
BfFsxs(t)

(2.67)

It follows from (2.67) that the seperation of fast and slow states is not obtained, since

the slow and fast states are mixed again. Hence, the different method is needed to

seperate exactly the fast and slow states via feedback control. Suppose, we desire to

relocate only n1 slow open-loop eigenvalues to n1 new closed eigenvalues locations.

Firstly, we only consider the driving term for the slow states represented by

uc(t) = v(t)− Fsxs(t) (2.68)

Substituting the driving terms from slow states (2.68) in (2.65), the following equations

are obtained

ẋs(t) = (As −BsFs)xs(t)

ẋf (t) =
Af
ε
xf (t) +

Bf
ε
Fsxs(t)

(2.69)

This shows that the slow subsystem has no terms from the fast states. However, the fast

subsystem has the terms with the slow state denoted by
Bf
ε Fsxs . Therefore, the second

transformation T2 needed to remove the remaining slow terms in ẋf (t) is presented in

the following lemma.

Lemma 2.3.1. (Anderson, 1982)

xfnew(t) = Pxs(t) + xf (t) (2.70)

and

P (As −BsFs)−
Bf
ε
Fs −

Af
ε
P = 0 (2.71)
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If the above algebraic Lyapunov equation (2.71) is satisfied, it is possible to completely

decouple the slow and fast states.

Proof. From the second transformation (2.70), we take the derivative of equation (2.70)

represented by

ẋfnew(t) = Pẋs(t) + ẋf (t)

= P (As −BsFs)xs(t) +
Af
ε

(xfnew(t)− Pxs(t))−
Bf
ε
Fsxs(t)

= [P (As −BsFs)−
Bf
ε
Fs −

Af
ε
P ]xs(t) +

Af
ε
xfnew(t)

(2.72)

Therefore, if the Lyapunov equation (2.71) is satisfied, (2.72) becomes

ẋfnew(t) =
Af
ε
xfnew(t) (2.73)

This result is quite amazing, since we realize that there is a method to assign the

slow eigenvalues without affecting the fast eigenvalues. To summarize the proposed

exact relocation of eigenvalues, the state transformation is represented byx1
x2

 = Tc

xs
xf

 = TcT2

 xs

xfnew

 = Ttot

 xs

xfnew

 (2.74)

with

T2 =

In1 0

−P In2


Tc =

In1 εH

−L In2 − εLH


(2.75)

This method is derived so as to obtain the gain F in the original coordinate from the

two stage transformed coordinate.

2.3.1 Two-Stage Design

This section summurizes previous method to assign exact eigenvalues assignment by

proposing the following design algorithm.

Stage 1.
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Step 1.

Apply the Chang transformation to the singularly perturbed system. Then, apply

slow states feedback control denoted by u(t) = v(t) − Fsxs(t). Substituting u(t) =

v(t)− Fsxs(t) into (2.63) producesẋs(t)
ẋf (t)

 =

As −BsFs 0

Bf
ε Fs

Af
ε

xs(t)
xf (t)

 +

Bs
Bf
ε

 v(t) (2.76)

From the above equation, we can place slow eigenvalues in the desired location repre-

sented by

λ(As −BsFs) = λdesireds (2.77)

At this point, we need the following assumption.

Assumption 2.3.1. The pair (As, Bs) is controllable.

Under this assumption, according to (Chen, 1999), the eigenvalues of As−BsFs can

be arbitrarily located into the desired locations.

Step 2. Introduce another transformation T2 xs(t)

xfnew(t)

 = T−12

xs(t)
xf (t)

 =

I 0

P I

xs(t)
xf (t)

 (2.78)

Apply the second transformation to (2.76) to obtain a block diagonal form as ẋs(t)

ẋfnew(t)

 =

As −BsFs 0

0
Af
ε

 xs(t)

xfnew(t)

 +

 Bs

PBs +
Bf
ε

 v(t) (2.79)

Which requires that the algebraic Lyapunov equation be satisfied

P (As −BsFs)−
Bf
ε
Fs −

Af
ε
P = 0 (2.80)

Stage2.

Firstly, we take v(t) = Ff2xfnew(t), then obtain the gain Ff using the eigenvalues

placement such that

λ(
Af
ε
− (PBs +

Bf
ε

)Ff2) = λdesiredf (2.81)

Similarly, we need the following assumption.
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Assumption 2.3.2. The pair (Af ,−εPBs −Bf ) is controllable.

Taking v(t) = Ff2xfnew(t), the subsystem (2.79) can be represented as

˙̄x(t) = Āfclx̄(t) (2.82)

with

Āfcl =

As −BsFs BsFf

0
Af
ε − (PBs +

Bf
ε )Ff2


x̄(t) =

 xs

xfnew


(2.83)

From the block triangular form of matrix Āfcl in (2.82), the independent slow and fast

eigenvalues assignment can be represented by

λ(Āfcl) = λ(As −BsFs)
⋃
λ[Af − (PBs +

Bf
ε

)Ff2] (2.84)

This two stage method shows the independent slow and fast eigenvalues assignment.

2.3.2 Exact Eigenvalues Assignment

After obtaining gain Fs and Ff2 via the two stage design, there is a way to go back to the

original coordinates without changing eigenvalues location. We define us(t) = Fsxs(t)

and v(t) = Ffxfnew(t). Therefore the input in (2.68) can be represented by

uc(t) = v(t) + Fsxs(t) = Ffxfnew(t) + Fsxs(t) (2.85)

Formula (2.85) can be expressed in the following matrix form.

uc(t) =
[
Fs Ff2

] xs(t)

xfnew(t)

 =
[
Fs Ff2

]
T−12

xs(t)
xf (t)


=

[
Fs Ff2

]I 0

P I

Tc
x1(t)
x2(t)


=

[
Fs + Ff2P Ff2

]
Tc

x1(t)
x2(t)


(2.86)
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where Tc is the Chang transformation (1.45) and T2 is the second transformation (2.70)

. Hence the gains F1 and F2 in the original coordinates are given by

u(t) = F

x1(t)
x2

 =
[
F1 F2

]x1(t)
x2(t)


=

[
Fs + Ff2P Ff2

]
Tc

x1(t)
x2(t)


(2.87)

and

F1 = Fs + Ff2P

F2 = Ff2

(2.88)

Q.E.D.

The formula (2.88) is the final step to obtain the gain F in the original coordinates

after we assign the eigenvalues for each subsystems via the two stage method.

2.3.3 Numerical Example : Two Stage Design

The singularly perturbed system is given by (2.45). For the design algorithm Step 1 in

Stage 1, we apply the Chang transformation to (2.45). The matrices As, Bs and Af , Bf

are given by

As =

0 0.4000

0 −0.4282

 , Bs =

−0.0325

0.2489


Af
ε

=

−4.2218 2.6200

0 −10.0000

 , Bf
ε

=

 0

10


(2.89)

Considering slow state feedback, the matrix form (2.76) can be obtained so that we can

assign the slow eigenvalues at the desired location λ[As+BsGs] = (−0.707±0.707× j).

The slow gain Fs is given by

Fs =
[
−11.6731 −5.4857

]
(2.90)

For Step 2 in Stage 1, after taking the second transformation (2.78), we solve the

algebraic Lyapunov equation (2.80) and matrix P is given by

P =

 9.7886 3.9027

12.8635 5.7780

 (2.91)
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For Stage 2 of the design algorithm, we can assign the fast eigenvalues using λ[Af +

(PBs +Bf )Ff2] = (−7,−8) and the fast two-stage transformed gain Ff2 is given by

Ff2 =
[
−0.3215 −0.0516

]
(2.92)

The final step is to compute the gain F in the original coordinate using (2.87) and

(2.88)

F =
[
−15.4838 −8.0664 −0.8282 −0.17640

]
(2.93)

The eigenvalues in the original coordinate λ(A+BF ) are given by

λ(A+BF ) =



−0.7070 + 0.7070i

−0.7070− 0.7070i

−7.0000

−8.0000


(2.94)

which exactly represent the eigenvalues we intend to place for each subsystem.
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Chapter 3

Two-Stage Observer Design for Singularly Perturbed

Systems

3.1 Introduction

The objective of this chapter is to present the design of a full-order observer in slow

and fast time scales. This chapter is organized as follows. Section 3.2 briefly reviews

the decomposition of a singularly perturbed system, for which a full-order observer

will be designed is Section 3.3 using the two-stage design. In Section 3.4, conditions

are formulated under which a composite observer reconstructs the state of the original

singularly perturbed system. The composite observer is reconstructed from the two

independent sub-systems in slow and fast time scales. Numerical example with the

exact observer eigenvalue assignment is presented in Sections 3.5 and 3.6. This chapter

concludes with a discussion of the duality between the observer and the controller

designs for singularly perturbed systems, Section 3.7.

3.2 Mode Seperation of Singularly Perturbed Linear Systems

Consider singularly perturbed linear time-invariant system with some inaccessible states

represented by

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t)

εẋ2(t) = A21x1(t) +A22x2(t) +B2u(t)

y(t) = C1x1(t) + C2x2(t)

(3.1)

where ε > 0 is small positive singular perturbation parameter, and x1(t) ∈ <n1 , x2(t) ∈

<n2 are state vectors. u(t) ∈ <p is p− dimensional control vector, and y(t) ∈ <q is

the system output vector. Equation (3.1) may be approximately decomposed into a
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reduced order system with n1 slow modes and a reduced-order fast subsystem with n2

fast modes. (Kokotovic et al., 1999). By neglecting the fast modes done by setting

ε = 0 in (3.1), we have

ẋs(t) = A11xs(t) +A12x2s(t) +B1us(t) (3.2)

0 = A21xs(t) +A22x2s(t) +B2us(t) (3.3)

ys(t) = C1xs(t) + C2x2s(t) (3.4)

Where x2s(t) is the slow state part of x2(t). Since x2(t) = x2s(t) + x2f (t) , the reduced

states x2s(t) in x2(t) can be obtained from (3.3). The following assumption has to be

satisfied for obtaining the slow subsystem.

Under Assumption 1.1.1, equation (3.3) can be solved for x2s(t), and substituting

(3.2) and (3.4), produces the reduced-order slow sub-system

ẋs(t) = A0xs(t) +B0us(t) , xs(t0) = x10

ys(t) = C0xs(t)

(3.5)

with

A0 = A11 −A12A
−1
22 A21,

B0 = B1 −A12A
−1
22 B2

C0 = C1 − C2A
−1
22 A21

(3.6)

Furthermore, the fast subsystem, defined by

ẋf (τ) = A22xf (τ) +B2uf (τ) , xf (t0) = x2(t0)− x2s(t0)

yf (τ) = C2xf (τ)

(3.7)

is represented by the fast time scale τ where

τ =
t− t0
ε

, ε = 0 at t = t0 (3.8)



39

3.3 Two-Stage Design of the Full-Order Observer

The singularly perturbed system (3.1) can be rewritten asẋ1(t)
ẋ2(t)

 =

A11 A12

A21
ε

A22
ε

x1(t)
x2(t)

 +

B1

B2
ε

u(t)

y(t) =
[
C1 C2

]x1(t)
x2(t)


(3.9)

A full-order observer the system (3.9) is given by (Luenberger 1964) ˙̂x1(t)

˙̂x2(t)

 =

A11 A12

A21
ε

A22
ε

x̂1(t)
x̂2(t)

 +

B1

B2
ε

uc(t) +

K1

K2
ε

 (y(t)− ŷ(t)) (3.10)

with

uc(t) =
[
F1 F2

]x̂1(t)
x̂2(t)


y(t) =

[
C1 C2

]x̂1(t)
x̂2(t)


(3.11)

When applying the two-stage method to a full-order observer, it will be needed to

transpose the full-order observer (3.10), that is ˙̂xT1 (t)

˙̂xT2 (t)

 =

AT11 AT21
ε

AT12
AT22
ε

x̂T1 (t)

x̂T2 (t)


+

F T1
F T2

[
BT

1
BT2
ε

]x̂T1 (t)

x̂T2 (t)

 +

CT1
CT2

KT (xT (t)− x̂T (t))

(3.12)

with

KT (xT (t)− x̂T (t)) =
[
KT

1
KT

2
ε

]
(

xT1 (t)

xT2 (t)

−
x̂T1 (t)

x̂T2 (t)

) (3.13)

where states x̂T1 (t) and x̂T2 (t) are the states in the transposed form of the full-order

observer defined in (3.12). The state transformation of Chang is defined byx̂T1 (t)

x̂T2 (t)

 =

 In εH

−L −LεH + Im

x̂Ts (t)

x̂Tf (t)

 = (T obsc )−1

x̂Ts (t)

x̂Tf (t)

 (3.14)
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where L and H matrices satisfy.

εL(AT11 −AT21L) + (AT12 −AT22L) = 0 (3.15)

ε(AT11 −AT21L)H +AT21 −H(AT22 + εLAT21) = 0 (3.16)

When we apply the Chang Transformation (3.14) to the transposed system of the full-

order observer (3.12), we obtain ˙̂xTs (t)

˙̂xTf (t)

 =

ATs 0

0 1
εA

T
f

x̂s(t)
x̂f (t)

 +

F Ts
F Tf

[
BT
s

1
εB

T
f

]x̂Ts (t)

x̂Tf (t)

 +

CTs
CTf

KT (xT − x̂T )

(3.17)

with ATs 0

0 1
εA

T
f

 = T obsc
−1

AT11 1
εA

T
21

AT12
1
εA

T
22

T obsc

F Ts
F Tf

 = (T obsc )−1

F T1
F T2


CTs
CTf

 = (T obsc )−1

CT1
CT2


(3.18)

The gain term KT can be regarded as state feedback of the transposed system. Using

a memoryless slow state feedback of the form KTxT (t) = v(t)−KT
s x

T
s (t) and KT x̂T =

v̂(t)−KT
s x̂

T
s (t) in (3.17), we obtain ˙̂xTs (t)

˙̂xTf (t)

 =

ATs + CTs K
T
s 0

CTf K
T
s

1
εA

T
f

x̂Ts (t)

x̂Tf (t)


+

F Ts
F Tf

[
BT
s

1
εB

T
f

]x̂Ts (t)

x̂Tf (t)

 +

CTs
CTf

 ((v(t)−KT
s x

T
s (t))− v̂(t))

(3.19)

At this point, it is possible to locate slow eigenvalues at the desired location given as

λ(As +KsCs) = λdesireds (3.20)

Now we introduce the second transformation T2 represented by x̂Ts (t)

x̂Tfnew(t)

 =

 I 0

Po I

x̂Ts (t)

x̂Tf (t)

 (3.21)
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where P satisfies the algebraic Lyapunov equation.

Po(A
T
s + CTs K

T
s ) + CTf K

T
s − (

ATf
ε

)Po = 0 (3.22)

By applying the second transformation (3.21) to (3.19), we obtain ˙̂xTs (t)

˙̂xTfnew(t)

 =

ATs + CTs K
T
s 0

0 1
εA

T
f

 x̂Ts (t)

x̂Tfnew(t)


+

 I 0

Po I

F Ts
F Tf

[
BT
s

1
εB

T
f

] x̂Ts (t)

x̂Tfnew(t)

 +

 I 0

Po I

CTs
CTf

 ((v(t)−KT
s x

T
s (t))− v̂(t))

(3.23)

Now that we apply v̂(t) = −1
εK

T
f2x̂

T
fnew(t) and v(t) = −1

εK
T
f2x

T
fnew(t) to the system

(3.23) , to obtain ˙̂xTs (t)

˙̂xTfnew(t)

 =

ATs + CTs K
T
s CTs

KT
f2

ε

0 (1εA
T
f ) + (PoC

T
s + CTf )

KT
f2

ε

 x̂Ts (t)

x̂Tfnew(t)


+

 F Ts

PoF
T
s + F Tf

[
BT
s

1
εB

T
f

] x̂Ts (t)

x̂Tfnew(t)

 +

 CTs

PoC
T
s + CTf

 (−1

ε
KT
f2x

T
fnew(t)−KT

s x
T
s (t))

(3.24)

The error dynamic is determined by the following equation (3.24) ės(t)

ėfnew(t)

 = Ae

 es(t)

efnew(t)

 (3.25)

with

Ae =

ATs + CTs K
T
s CTs

KT
f2

ε

0 (1εA
T
f ) + (PoC

T
s + CTf )

KT
f2

ε

 (3.26)

where

es(t) = e(A
T
s +C

T
s K

T
s )es(t0)

efnew(t) = e((
1
ε
ATf )+(PoCTs +CTf )

KTf2
ε

)efnew(t0)

(3.27)

At this point, it is possible to locate fast eigenvalues at the desired location represented

by

λ(
1

ε
Af +

Kf2

ε
(PoC

T
s + CTf )T ) = λdesiredf (3.28)
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Note that the matrix Ae indicates the seperation principle λ(ATs +CTs K
T
s )

⋃
λ(1εA

T
f +

(PoC
T
s + CTf )

KT
f2

ε ) which follows from the block triangular form of (3.26) . By trans-

posing (3.24), the observer system can be represented by ˙̂xs(t)

˙̂xfnew(t)

 =

As +KsCs 0

Kf2Cs (1εAf ) +
Kf2
ε (PoC

T
s + CTf )T

 x̂s(t)

x̂fnew(t)


+

 Bs

1
εBf

[
Fs PoFs + Ff

] x̂s(t)

x̂fnew(t)

 +

−Ks

−Kf2
ε

[
Cs (PoC

T
s + CTf )T

] xs(t)

xfnew(t)


(3.29)

It is required that the two-stage transformed observer (3.29) reconstruct the state xs(t)

xfnew(t)

 of the two-stage transformed original system in a uniformly asymptotic

manner in the sense that

lim
t→∞

 es(t)

efnew(t)

 = 0 (3.30)

The observability assumption is needed for (3.30) to hold

Assumption 3.3.1. The pair (A,C) is observable

Prior to designing a composite observer which will exactly describes the asymptotic

state reconstruction of the observer (3.10) with respect to original system (3.9), it is

necessary to consider slow and fast observers of (3.29).

3.3.1 An Observer for the Slow Subsystem

An observer for the slow subsystem is represented (Luenberger 1964) by

˙̂xs(t) = (As +KsCs)x̂s +Bsu(t)−Ksy(t) (3.31)

Where the state reconstruction error is represented by

es(t) = x̂s(t)− xs(t) (3.32)

From (3.25), the slow error dynamics can be represented by

ės(t) = (As −KsCs)es(t), es(t0) = x̂s(t0)− xs(t0) (3.33)
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By definition, the observer (3.31) will uniformly asymptotically reconstruct the state

xs(t) if

lim
t→∞

es(t) = 0 (3.34)

The observability assumption is needed for (3.34) to hold

Assumption 3.3.2. The pair (As, Cs) is observable

3.3.2 An Observer for the Fast Subsystem

Similarly, a full-order observer for the fast subsystem is represented by

˙̂xfnew(τ) =
1

ε
Af +

1

ε
Kf2(PoC

T
s + CTf )T )x̂fnew(τ) +

1

ε
Bfu(τ)− 1

ε
Kf2y(τ) (3.35)

where the state reconstruction error is defined by

efnew(τ) = x̂fnew(τ)− xfnew(τ) (3.36)

From (3.25)

ėfnew(τ) =
1

ε
Af +

1

ε
Kf2(PoC

T
s + CTf )T )efnew(τ) (3.37)

The observer (3.35) will reconstruct the state xf (τ) in an asymptotic manner if

lim
τ→∞

efnew(τ) = 0 (3.38)

The observability assumption is needed for (3.38) to hold

Assumption 3.3.3. The pair (Af , Cf + CsPo) is observable.

3.4 State Reconstruction for the Composite System

In this section we will obtain a composite observer based on the two time-scales ob-

servers (3.31) and (3.35) respectively. It is desired that this composite observer exactly

describes the original states. Sufficient conditions for an exact reconstruction are given

in the following theorem.

Lemma 3.4.1. If the observers (3.29) are applied to systems (3.9) with

K = (
[
KT
s + 1

εK
T
f2Po

1
εK

T
f2

]
T−1c )T (3.39)
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where Tc is the Chang transformation, P is the solution of the algebraic Lyapunov equa-

tion (3.22), and if As+KsCs and 1
εAf+ 1

εKf2(PC
T
s +CTf )T are uniformly asymptotically

stable, the eigenvalues related to the error dynamics in the original coordinates satisfy

λi = λi(As +KsCs), i = 1, ..., n1

λj =
[λj(Af +Kf2(εPoC

T
s + CTf )T )]

ε
, i = n1 + j, j = 1, ..., n2

(3.40)

Proof. Upon appropriate partitioning of the error system in the original coordinate

represented by  ė1(t)
εė2(t)

 =

Ã11 Ã12

Ã21 Ã22

e1(t)
e2(t)

 (3.41)

with

K =

K1

K2
ε

 (3.42)

and

Ã11 = A11 −K1C1, Ã12 = A12 −K1C2

Ã21 =
1

ε
(A21 −K2C1), Ã22 =

1

ε
(A22 −K2C2)

(3.43)

then a seperation of (3.41) into slow and fast mode is facilitated by the following total

transformation composed of the Chang transformation Tc and the second transforma-

tion T2 e1(t)
e2(t)

 =

In1 εH

−L −εLH + In2

 In1 0

−Po In2

 es(t)

efnew(t)

 (3.44)

where the matrices L , H are solution of the following algebraic equation

0 = εL(Ã11 − Ã12L) + (Ã21 − Ã22L) (3.45)

0 = ε(Ã11 − Ã12L)H + Ã12 −H(Ã22 + εLÃ12) (3.46)

and matrix P satisfies

Po(A
T
s + CTs K

T
s ) + CTf K

T
s − (

ATf
ε

)Po = 0 (3.47)

Since eigenvalues of the block traiangular matrix of (3.25) are composed of slow and fast

eigenvalues, it is possible to place eigenvalues of the slow and fast states independently.



45

We previously set KT x̂T (t) = v(t) −KT
s x̂

T
s (t) = −KT

s x̂
T
s (t) − 1

εK
T
f2x̂

T
fnew(t) in (3.19)

and (3.24) , which implies

KT x̂T =
[
KT
s

1
εK

T
f2

] x̂Ts

x̂Tfnew


=

[
KT
s

1
εK

T
f2

]In1 0

Po In2

x̂Ts
x̂Tf


=

[
KT
s + 1

εK
T
f2Po

1
εK

T
f2

]
T−1c

x̂T1
x̂T2


(3.48)

Hence
[
KT
s + 1

εK
T
f2P

1
εK

T
f2

]
T−1c represents transpose of observer gain matrix K in

original coordinates. From this fact, observer gain matrix K can be represented by

(3.39)

3.5 Design Algorithm for an Observer’s Gain

Given that the linear system (3.9) is observable, the following two-time scale design

algo-rithm can be applied for the design of a full-order observer of singularly perturbed

system.

Step 1. Transpose the full-order observer from (3.10) into (3.12)

Step 2. Apply the Chang transformation (3.14) to transform (3.12) into (3.17).

Step 3. Obtain the submatrices ATs ,
ATf
ε , C

T
s and CTf .

Step 4. Obtain slow observer gain KT
s using eigenvalue placement of matrix λ(ATs +

CTs K
T
s ).

Step 5. Solve Lyapunov equation (3.22) using ATs ,
ATf
ε , C

T
s , C

T
f and KT

s .

Step 6. Place fast observer eigenvalues in the desired location using the eigenvalue

placement for matrix λ(
ATf
ε + (PoC

T
s + CTf )

KT
f2

ε ).

Step 7. Go back to the original coordinates using (3.39).

3.6 A Numerical Example : ε = 0.1

Consider a 4th− order system with the system matrices A,B and C are as given below

(Kokotovic et al., 1999, pp. 124-125)
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A =



0 0.4000 0 0

0 0 0.3450 0

0 −5.2400 −4.6500 2.6200

0 0 0 −10.0000


, B =



0

0

0

10


and C =

1 0 0 0

0 0 1 0



The observability matrix has full column rank and therefore the pair (A,C) is observ-

able.

Firstly, we transpose original system matrices A,B and C and obtain AT = AT , BT =

BT and CT = CT . According to Step 2 and Step 3 of the Chang transformation for

the transposed system, the following sub-matrices are obtained

ATs =

 0 0

0.4406 −0.4282

 , ATfε =

−4.2218 0

2.7372 −10.0000

 , CTs =

 1 0

−0.0107 −1.3813

 ,
CTf =

0.0077 1

0.0030 0


Following Step 4, we place the slow eigenvalues at (−0.707 ± 0.707 × j) via the slow

feedback gain matrix

KT
s =

−2.8280 −2.8280

−1.7065 1.7593


For Step 5 of the algorithm, we solve the Lyapunov equation and obtain matrix

Po =

0.7366 0.24810

0.2116 0.1793


In Step 6 of the algorithm, we place fast observer’s eigenvalues at the desired location.

Our 1
εK

T
f2 of λ(

ATf
ε + (PCTs + CTf )

KT
f2

ε ) is given by

1
εK

T
f2 =

−23.7655 −44.6933

−9.3580 50.4362


Step 7. Using (3.39) , matrices K is given by

K =



29.9320 −2.0620

15.6874 −9.0759

0.6434 21.0740

44.6933 −50.4362


and check λ(A−KC) in the original coordinate given by
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λ(A−KC) =



−2.8280 + 2.8280i

−2.8280− 2.8280i

−32.0000

−28.0000


which is the same as we placed the slow and fast eigenvalues in the two time scales.

3.7 Observer Controller Duality

In this section, we consider the duality between the full-order observer design of this

paper and the stabilizing feedback controller design. Traditionally, the stabilization

problem is one of finding the feedback gain F for given A and B such that the closed

system

ẋ(t) = (A−BF )x(t) (3.49)

is uniformly asymptotically (exponentially) stable. It is closely related to the state

recontruction problem of finding the observer gain K for the given matrices A and C

such that the error dynamics

ė(t) = (A−KC)e(t) (3.50)

is uniformly asymptotically (exponentially) stable. One problem we have already seen

in the two stage design of the full-order observer is that stability of (3.50) is identical

to that of the dual system

ė(t) = (AT − CTKT )e(t) (3.51)

Examination of the results presented confirms that this observation extends to the

full-order observer design and stabilizing feedback controllers for singularly perturbed

systems.

The feedback controlled system is defined by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(3.52)
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with

A =

A11 A12

A21
ε

A22
ε

 , B =

B1

B2
ε


C =

[
C1 C2

] (3.53)

The reduced subsystem is

ẋs(t) = Asxs(t) +BsFsxs(t)

ys(t) = Csxs(t)

(3.54)

The fast subsystem is

ẋfnew(t) =
Af
ε
xfnew(t) + (PfBs +

Bf
ε

)Ff2xfnew(t)

yfnew(t) = Cfnewxfnew(t)

(3.55)

The controllability pair is

(As, Bs) and (
Af
ε
, (PfBs +

Bf
ε

)) (3.56)

The composite controller gain is

F = [Fs + Ff2Pf , Ff2]Tc (3.57)

The algebraic Lyapunov equation is given by

Pf (As +BsGs) +
Bf
ε
Fs −

Af
ε
Pf = 0 (3.58)

The dual full-order observer system is

ẋT (t) = ATxT (t) + CTu(t)

yT (t) = BTxT (t)

(3.59)

with

AT =

AT11 (A21
ε )T

AT12 (A22
ε )T

 , BT =
[
BT

1 (B2
ε )T

]

CT =

CT1
CT2


(3.60)
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The reduced slow subsystem is

ẋTs (t) = ATs x
T
s (t) + CTs KsTx

T
s (t)

ys(t) = BT
s x

T
s (t)

(3.61)

The fast subsystem is

ẋTfnew(t) =
ATf
ε
xTfnew(t) + (PoC

T
s + CTf )

1

ε
KT
f2x

T
fnew(t)

yf (t) = Bfnewx
T
fnew(t)

(3.62)

The observability pair is

(As, Cs) and (
Af
ε
, (PoC

T
s + CTf )T ) (3.63)

The composite observer gain is

K = (
[
KT
s + 1

εK
T
f2Po

1
εK

T
f2

]
T−1c )T (3.64)

The algebraic Lyapunov equation for Po is

Po(A
T
s + CTs K

T
s ) + CTf K

T
s −

ATf
ε
Po = 0 (3.65)

3.8 Conclusion

In this chapter, the numerically ill-conditioned eigenvalue placement technique of sin-

gularly perturbed systems is exactly solved in terms of two slow and fast subsystem

(3.31) and (3.35) via slow and fast time scale decomposition. Furthermore, due to the

split into two subsystems, eigenvalue placement techniques are applied for each subsys-

tems. We have formulated the observer design problem for linear singularly perturbed

systems as one of designing exactly seperate observers for the slow and fast subsystem

models. A main result is in Lemma 3.4.1, which presents sufficient conditions under

which the state reconstruction of the original singularly perturbed systems is exactly

achieved through the composite observer design.
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Chapter 4

Slow and Fast Observer-based Controller for Singularly

Perturbed System

4.1 Introduction

In the previous chapter, we design the observer gain K in the original coordinates via

the slow and fast time scale decomposition. In the last part of Chapter 2, we have also

designed the controller gain F via the two stage design. These two methods provides

us with the exact eigenvalues assignment for both the system and the observer.In this

chapter, we put them together and consider the observer-based controller for singularly

perturbed linear system.

4.2 Slow and Fast Observer-Based Controller Derivation

Firstly, we seek a composite observer-based controller through the two stage design

for the reduced and fast subsystems (1.11) and (1.13). It is expected that this com-

posite controller stabilize the singularly perturbed system (1.6) with inaccessible state.

Sufficient conditions for this stabilization are given in the following lemma.

Lemma 4.2.1. If the reduced system (1.11) and the fast system (1.13) are each uni-

formly completely stabilizable by the slow and fast observers (3.31) and (3.35), and the

controllers (2.86) through the two stage, then there exists a ε∗ sufficiently samll such

that the linear singularly perturbed system is uniformly completely stabilizable for any

ε ∈ (0, ε∗]. Furthermore, such a stabilizing observer’s gain and controller’s gain are
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given by

F =
[
F1 F2

]
=

[
Fs + Ff2Pf Ff2

]
T conc

K =

K1

K2

 = (
[
KT
s + 1

εK
T
f2Po

1
εK

T
f2

]
(T obsc )−1)T

(4.1)

where the first part of T conc is the Chang-transformation defined for the controller and

the second part of T obsc is the Chang-Transformation defined for the observer.

The above lemma shows that we can design a composite observer based controller

through the two stage for observer and controller. The observer is driven by the system

measurements and control inputs, that is ˙̂x1(t)

˙̂x2(t)

 =

 A11 −K1C1 A12 −K1C2

1
εA21 − 1

εK2C1
1
εA22 − 1

εK2C2

x̂1(t)
x̂2(t)

 +

 B1

1
εB2

uc(t) +

 K1

1
εK2

 y(t)

(4.2)

It is known from Chapter 1 that there exists a nonsingular transformation Tc2 defined

by (1.45) such that (4.2) is decoupled into pure-slow and pure-fast local observers driven

by  ˙̂xs(t)

˙̂xf (t)

 =

Asocl 0

0 1
εAfocl

x̂s(t)
x̂f (t)

 +

 Bs

1
εBf

uc(t) +

 Ks

1
εKf

 y(t) (4.3)

with Asocl 0

0 1
εAfocl

 = T−1c2

 A11 −K1C1 A12 −K1C2

1
εA21 − 1

εK2C1
1
εA22 − 1

εK2C2

Tc2
 Bs

1
εBf

 = T−1c2

 B1

1
εB2


 Ks

1
εKf

 = T−1c2

 K1

1
εK2


(4.4)

Thus, these two observers (4.3) can be implemented independently in the slow and fast

time scales
˙̂xs(t) = Asoclx̂s(t) +Bsuc(t) +Ksy(t)

˙̂xf (t) =
1

ε
Afoclx̂f (t) +

1

ε
Bfuc(t) +

1

ε
Kfy(t)

(4.5)
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The control input in the x̂s − x̂f coordinates is given by

uc(t) = F

x̂1(t)
x̂2(t)

 =
[
F1 F2

]x̂1(t)
x̂2(t)

 =
[
Fs Ff

]x̂s(t)
x̂f (t)

 (4.6)

where Fs and Ff are obtained from

[
Fs Ff

]
= FTc2 (4.7)

In summary, the procedure to obtain the solution for the slow and fast observer-based

controller problem is given by the following design algorithm.

4.2.1 Design Algorithm

Step 1. Solve (2.81), (2.80), and (2.81) to get Pf , Fs and Ff2.

Step 2. Compute a composite controller gain F in terms of Pf , Fs and Ff2 using (4.1).

Step 3. Solve (3.20), (3.22), and (3.28) to get Po,Ks and Kf2.

Step 4. Compute a composite observer gain K in terms of Po,Ks and Kf2 using (4.1).

Step 5. Find the closed-loop state matrices, input matrices, observer and controller

gains Asocl, Afocl, Bs, Bf , Ks,Kf and Fs, Ff from (4.4) and (4.7).

Step 6. Find the pure-slow and pure-fast observers in the x̂s − x̂f coordinates given as

(4.5).

The importance of the proposed design procedure is of the fact that it allows the

complete and exact decomposition of the feedback control and observer problems into

slow and fast time scale subproblems.

4.2.2 Numerical Example

Consider a 4th− order system with the system matrices A,B and C are in section 1.9.

(Kokotovic et al., 1999) The controllability matrix has full row rank and therefore the

pair (A,B) is controllable. Furthermore, the observability matrix has full column rank

and therefore the pair (A,C) is observable.

The results obtained by using MATLAB are given below. For assigning slow and fast

eigenvalues, we locate slow eigenvalues at λdesiredcs = (−2,−3) and fast eigenvalues at
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λdesiredcf = (−7,−8) for the controller, and slow eigenvalues at λdesiredos = 4 × (−2,−3)

and fast eigenvalues at λdesiredos = 4× (−7,−8) for the observer.

Following design procedure of Section 4.2.1, the completely decoupled observer in the

xs − xf coordinates, driven by the system measurements and control inputs, are

˙̂xs(t) =

 −52.1 0.7

−2679.2 32.1

 x̂s(t) +

−0.0611

−2.6711

uc(t) +

 −1.0341 0.1828

−69.1001 11.4078

 y(t)

˙̂xf (t) =

 −50.0000 2.6200

−151.1450 −10.0000

 x̂f (t) +

 0

10

uc(t) +

 1974 45

15349 148

 y(t)

4.2.3 Simulation Results

Figures 4.2, 4.3, 4.4 and 4.5 present the results when we simulate the traditional slow

and fast observer-based controller as presented in Figure 4.1. The results presented in

Figures 4.2, 4.3, 4.4 and 4.5 shows that the states and error convergence are compared

with the ones through the composite observer-based controller 1.1 . Figures 4.7 and

4.8 present the results when we simulate the on-line saving using the block diagram in

Figure 4.6, which indicate composite parallelism of controller and observer designs in

slow and fast time scales.



54

Figure 4.1: Traditional slow and fast observer-based controller
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Figure 4.2: Comparison of the slow states x1(t) ∈ <2

Figure 4.3: Comparison of the slow errors e1(t) ∈ <2
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Figure 4.4: Comparison for the fast states x2(t) ∈ <2
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Figure 4.5: Comparison for fast error e2(t) ∈ <2
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Figure 4.6: Complete parallelism and exact decomposition of the observer-based con-
troller for singularly perturbed linear systems
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Figure 4.7: Convergence of the slow states x1(t) ∈ <2
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Figure 4.8: Convergence of the fast states x2(t) ∈ <2
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4.3 Conclusion

The importance of the proposed method is in the fact that it allows time-scale paral-

lelism of the observer and control tasks through the complete and exact decomposition

of the control and observer problems into slow and fast time scales, which reduces both

off-line and on-line required computations.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We have designed slow and fast observer-based controllers by locating eigenvalues in

a composite manner for slow and fast subproblems. The numerically ill-conditioning

problem is solved using the two stage method for singularly perturbed linear systems,

we can apply the feedback control to each sub-systems. We have demonstrated that the

full-order singularly perturbed system can be successfully controlled via the eigenvalue

placement technique with the state feedback controllers designed on the subsystem

levels. The two stage method is successfully implemented for the full-order observer.

5.2 Future Work

It is expected that the two stage method might be applied to a reduced-order observer.

Furthermore, we can extend the results of this thesis to the systems composed of N

subsystems using the decoupling transformation for N subsystems.
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