BIOMARKER DISCOVERY FOR MICROARRAY DATA
BY ENRICHED METHODS, STOCHASTIC
APPROXIMATION AND MIXED EFFECT MODELS

By

LAN YI

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Graduate Program in Statistics

written under the direction of
Javier Cabrera

and approved by

New Brunswick, New Jersey

May, 2014
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Javier Cabrera

Nowadays microarray technology enables scientists to monitor the expression levels of hun-
dreds of thousands of genes simultaneously. Because of the high cost of such experiments,
the sample size is small, typically, only a few dozen. In this thesis, we propose a new perspec-
tive on microarray data. We believe microarray data generally contain three types of signals:
specific signal, non-specific signal and spurious signal. We propose an enriched method for
biomarker discovery which strengthens the specific signal (biomarkers) and weakens the
spurious signal. We show that our enriched version of principal component analysis will
highlight the specific signals in the data and can help separate different signals. We also
show that enriched principal component analysis along with linear discriminant analysis
will improve the classification and prediction of microarray data, comparing to some other
popular methods. The results from our method are easy to interpret, too. We also prove the
stochastic approximation procedure used in conditional ¢ test converges under some general
assumptions. Finally we discuss about analyzing the data from one novel experiment to find
groups of genes (biomarkers), applying hierarchical clustering and nonlinear mixed effect

models.
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Chapter 1

Introduction

Nowadays microarray technology enables scientists to monitor the expression levels of hun-
dreds of thousands of genes simultaneously. By studying the gene expression data, hopefully,
we can get some idea about the biomarkers for the underlying biological state or condition.
Because of the high cost of such experiments, the sample size is small, typically, only a few
dozen. To analyze such high-dimensional but small-sample-size data, various methods were
proposed.

One direction in microarray data analysis is to identify differentially expressed genes. For
this purpose, different hypothesis testing procedures were suggested (we will review some
of them in chapter 3). Most of these procedures analyze each gene separately. Classical
two-sample t test is one natural choice. As it tends to give a high type I error rate for
gene whose variability is low and a high type II error rate for gene whose variability is
high, different ways were proposed to adjust classical two-sample t test for small-sample-
size microarray data, for example, SAM ¢ test, Limma ¢ test and conditional ¢ test. In
addition, as we perform thousands of hypothesis testings simultaneously, how to control the
overall Type I error is an issue. For example, suppose we are testing 10000 genes about
whether each of them is differentially expressed. If we control each hypothesis test at level
0.01, assuming the 10000 tests are independent, we will identify 100 genes as differentially
expressed wrongly on average, which is quite disturbing when the scientists are expecting
to get around 500 differentially expressed genes in total. Traditionally, familywise error rate
(section 3.2.1) is adopted to be the overall Type I error. However, controlling familywise
error rate is too conservative for microarray data. Still using the example before, if we’d
like to control the familywise error rate at level 0.05, then by Bonferroni method, the level

of each test is only 5 x 1079, Thus we lose too much power. Benjamini and Hochberg



(1995) [9] proposed to control the false discovery rate, which will be discussed and used in
this thesis whenever we need to deal with the overall Type I error of multiple hypothesis
testings.

Another direction in microarray data analysis is to do classification and prediction, by
which we could get insight ideas about the gene expression pattern of some underlying
disease and help screening diseased tissues. Classical classification methods such as linear
discriminant analysis require the sample size to be larger than the dimension of the data.
Otherwise, the estimated within-class scatter matrix for microarray data is singular. Various
methods were given to address the problem. Roughly speaking, these methods could be
classified into two classes: one class of methods work on the matrix itself, manually making
all eigenvalues positive; another class of methods try to reduce the high dimensionality of
data by selecting a small subset of genes, or by projecting into a space with much smaller
dimension, for example, applying principal component analysis or partial least squares.
Statisticians argued that working with high-dimension matrix is not appealing as these
estimated matrix is quite unstable when the sample size is small. They also argued that
projecting into a small dimension space might give suboptimal answers. Some other classical
classification methods, such as support vector machine and logistic regression, can be applied
for classification and prediction of microarray data. They do not require the sample size
to be larger than the dimension of the data. However, their performances are bad due to
problems like overfitting. Adding penalties to their objective functions of these methods
is suggested. Fast algorithms were written for these penalized methods to give efficient
answers. However, the results from penalized methods are difficult to justify from biological
view.

In this thesis, we propose a new perspective on microarray data. In our opinion, though
its statistical structure could be quite complicated, microarray data generally contain three
types of signals: specific signal, non-specific signal and spurious signal. Specific signal is
generated by the process that the experiment is studying. Non-specific signal is due to
some secondary effect. Spurious signal comes from the large proportion of noise, which is

typically very strong in microarray data.



We propose an enriched method to strengthen the specific signal and weaken the spuri-
ous signal. We show that our enriched version of principal component analysis will highlight
the specific signals in the data and can help separate different signals. We also show that
enriched principal component analysis along with linear discriminant analysis will improve
the classification and prediction of microarray data, comparing to some other popular meth-
ods. By checking the loadings of the enriched principal components, we can find a set of
genes which will help the scientists to find the biomarkers. The results from our method
are easy to interpret, too.

To address the small sample size problem, conditional ¢ test is applied in the weighting
procedure. In this thesis, we also try to show that the stochastic approximation procedure
used in conditional ¢ test converges under some general assumptions. We will show that
the stochastic approximation algorithm can be applied to improve the performance of the
sample correlation matrix.

With the development of microarray technology, new ideas about adopting microarray
technology to study the behavior of each gene are proposed. We will introduce some new
technology in this thesis, which can be used to shut down one specific gene. We will discuss
our way to analyze such data to find out a set of interesting genes (biomarkers), applying
hierarchical clustering and nonlinear mixed effect methods.

The rest of this thesis is organized as follows. In chapter 2, we will review the concepts of
gene and gene expression, describe a typical microarray experiment, give a rough idea about
how to deal with the scanned image to get intensity values, and outline the preprocessing
steps. In chapter 3, we will review different methods for identifying differentially expressed
genes, discuss the familywise error rate and false discovery rate and review different methods
for classification and prediction of microarray data. In chapter 4, we will discuss the details
about our enriched principal component analysis and linear discriminant analysis methods
and show the advantages of our method by one microarray data. In chapter 5, we will prove
that the stochastic approximation procedure used in conditional ¢ test converges under some
general assumptions and show the power of the procedure by simulation. In chapter 6, data
analysis about one novel experiment is discussed. Finally in chapter 7, we give a short

summary about the topics in this thesis and discuss future research.



Chapter 2

Preliminaries

2.1 Gene and Gene Expression

A gene is a stretch of deoxyribonucleic acids (DNA) that has a function in the organism,
holding information to build and maintain an organism’s cells and passing genetic traits
to offspring. A DNA molecule consists of two long strands wound tightly around each
other in a spiral structure known as a double helix, which is chemically inert. Hence,
DNA is a stable carrier of genetic information. Each strand of the DNA molecule is a linear
arrangement of repeating similar units called nucleotides, which composed of a carbon sugar
(deoxyribose), a phosphate group and a nitrogenous base. The fundamental component of
each nucleotide is a nitrogenous base, which could be adenine (A), thymine (T), guanine
(G) or cytosine (C). The pairing rules of these four nitrogenous bases are: guanine only
pairs with cytosine; adenine only pairs with thymine (this rule is called ‘the complementary
base-pairing rules’). Therefore, the two strands of DNA must be complementary. Due to the
chemical composition of the pentose residues of the bases, DNA strands have directionality.
All nucleic acid synthesis in a cell occurs in one particular direction. DNA is organized
into long structures (called chromosomes) in cells. The total complement of genes in an
organism or cell is known as its genome, which may be stored on one or more chromosomes.

There is another type of nucleic acid which performs multiple vital roles in the coding,
decoding, regulation and expression of genes: ribonucleic acid (RNA). RNA is a single-
stranded chain of nucleotides, which contains a ribose sugar instead of a deoxyribose sugar

as in DNA. In addition, RNA contains uracil instead of thymine.



2.1.1 Gene Expression

Gene expression is the process by which information from a gene is used in the synthesis of
a functional gene product. Generally, the product of the gene expression process is some
protein, which contains one or more chains of amino acids. Proteins differ from one another
primarily in their sequence of amino acids, which is dictated by the nucleotide sequence
of their genes. Genes that encode proteins are composed of a series of three-nucleotide
sequences (codons). Codons serve as the words in the genetic language. The genetic code
specifies the correspondence during protein translation between codons and amino acids.
Proteins are large biological molecules, or macromolecules. They perform and regulate
most of life’s basic functions, including catalyzing metabolic reactions, replicating DNA,
responding to stimuli, and transporting molecules from one location to another.

There are several steps in the gene expression process: transcription, RNA processing,
non-coding RNA maturation, RNA export, translation, folding, translocation, and protein
transport. In our study, we focus on the transcription and translation steps.

In transcription step, gene information must be transcribed from DNA to messenger
RNA (mRNA). The nucleotide sequence of mRNA is complementary to the DNA from
which it is transcribed. The DNA strand whose sequence matches that of the RNA is
known as the coding strand and the strand from which the RNA is synthesized is the
template strand. In translation step, information is translated from mRNA into protein.
Translation of the mRNA requires RNA adaptor molecules called tRNAs. Each triplet
codon is recognized by a tRNA, which is associated with a cognate amino acid. Out of 64
(4 x 4 x 4) potential codons, 61 are used to specify the 20 amino acid building blocks of

proteins, whereas 3 are used to provide chain-terminating signals (UAA, UAG, UGA).

2.2 Microarray

Knowing which subset of genes are expressed in one particular cell at a given time, we
could make inferences about the state of the cell. By studying the mRNAs (the product
in the transcription step of gene expression) or proteins (the product in the translation

step), we will get some insight about the subset of expressed genes. Comparing to mRNA,



studying proteins could be more complicated. For one thing, the function of a protein is
determined by not only the amino acid sequence but also its spacial structure; for another,
it is more difficult to purify proteins. Therefore, scientists adopted the way of studying the
type and the quantities of mRNAs presented in one cell. The complete collection of mRNAs
(including their alternative splicing variants) is referred to as the organism’s transcriptome.

The DNA microarray is the most widely used technology for studying gene expression
levels. This technology lies on the hybridization fact: two DNA strands (or one DNA strand
and one mRNA strand) will hybridize with each other, regardless of whether they originated
from a single source or from two different sources, as long as their base pair sequences match
according to the complementary base-pairing rules. A hybrid DNA molecule will be formed

as long as there is sufficient similarity between the two strands.

2.2.1 A Typical Microarray Experiment

There are four basic steps in a typical microarray experiment (this part is taken from

Amaratunga and Cabrera (2003) [1]).

Microarray Preparation

A DNA microarray (also commonly known as DNA chip or biochip) is a collection of
microscopic DNA spots attached to a solid surface. A drop of each type of purified single-
stranded DNAs in some collection is placed onto a specially prepared glass microscope slide
by a robotic machine called an arrayer. This process is called arraying or spotting. The
arrayer can quickly produce a regular grid of thousands of spots in a dime-sized area. The
DNA in the spots is bonded to the glass to keep it from washing off during the hybridization
reaction and subsequent wash. If it is cDNA used in the arraying procedure, the microarray
is called cDNA microarray; if it is oligonucleotides, the microarray is called oligonucleotide

array.

Sample Preparation

The sample is prepared by purifying mRNA from total cellular contents. As mRNA degrades

quickly, it is reverse-transcribed into more stable cDNA or cRNA. Fluorescent dyes (which



will fluoresce when exposed to a specific wavelength of light) are used to label the sample
so that it is able to detect which cDNAs are bound to the microarray. We call a microarray
with only one fluorophore one-channel microarray. When two samples are applied to the
same microarray (for example, one sample from diseased tissue and the other from healthy
tissue), two different fluorophores are applied (for example, the diseased sample is labeled
with green fluorophore and the healthy one with red fluorophore). We call such a microarray

two-channel microarray.

The Hybridization Step

The labeled sample is poured onto the microarray at this step. The scientists will make
sure that the sample diffuses uniformly all over the microarray. Then it is sealed in a
hybridization chamber and incubated at a specific temperature for enough time to ensure
that the hybridization reactions complete. All areas of the microarray should be exposed
to a uniform amount of labeled sample all the time. The microarray is then removed from
the hybridization chamber and thoroughly, but carefully, washed to eliminate any excess

labeled sample. Finally the microarray is dried up.

Scanning the Microarray

When hybridization is completed, the microarray is scanned to determine the amount of
labeled sample bound to each spot. The emitted light from the fluorophore when stimulated
by a laser is captured by a scanner and the intensity is recorded. Spots with more bound
sample will have larger intensities. The result is a series of images.The scanner “reads” a
microarray by dividing it up into a very large number of pixels and recording the intensity
level of the fluorescence at each pixel. The resulting rectangular array of pixels and their

associated intensities constitutes the image of the microarray.

2.3 Processing the Scanned Image

The image of microarray must be converted from pixel intensities into spot intensities, so

that every DNA sequence that was spotted on the microarray gets an intensity measure,



called the spot intensity, reflecting the amount of labeled sample that hybridized to it.

2.3.1 Converting the Scanned Image to the Spotted Image
Gridding

As the arraying process in practice is not perfect, the grid that is actually arrayed is not a
regular rectangular grid. To define the center of the spot, we overlay an appropriately sized

grid on the microarray and then manipulate the rows and columns to align more properly.

Segmentation

Because the spots vary considerably in size, shape and regularity, the region of the slide
on which ¢cDNA was arrayed (called the spot) needs to be separated from the background.
One seeded region growing algorithm (Amaratunga and Cabrera (2003) [1] was suggested

for this problem, which allocates the pixels to either signal or background region.

Quantification
Quantification step will assign each spot an intensity value.

Spot Intensity The intensity of the spot located at the rth row and cth column of the
array will be denoted as {S1I,.}, which is the average intensity of the pixels in that

spot which are designated as signal.

Spot background The intensity of the background for the spot located at the rth row
and cth column of the array will be denoted as { BI,.}, which is the average intensity

of the pixels around the spot which are designated as background.

2.3.2 Quality Assessment

Once the spotted image and related statistics are obtained, it is advisable to (1) assess the
quality of the array and (2) evaluate the quality of the individual spots on the array. For
example, checking whether the background intensities { BI,.} are uniformly distributed; or
check whether the extreme values in either the spot or the background are randomly scat-

tered throughout the array or clustered together or distributed according to some pattern.



2.3.3 Adjusting for Background

In reality, the background intensity from the image data is not zero because of nonspecific
fluorescence. It is concerned that the raw spot intensities may also contain some amount
of the nonspecific fluorescence. Therefore, the raw spot intensities should be adjusted for
background. It is assumed that the spot signal intensity is an additive combination of the
true spot intensity and the background.

There are several ways to estimate background: global background adjustment (by the
average intensity of all the pixels not belonging to spots), spot background adjustment
(by the spot background intensity), smoothed background adjustment (running a simple
smoothing procedure through the array) and zonal background adjustment (a variation of
smoothed background adjustment)

Suppose that the spot intensity at the gth spot is SI; and the background intensity is
estimated to be BI,. The background-adjusted spot intensity value, Al,, is obtained by

shifting the spot intensity down by the background intensity:
Al, = SI, — Bl,.

To make sure Al, is positive, a threshold is set. For example, if T" is a low percentile of
the SI, values (say, the fifth percentile), take the background-adjusted thresholded spot
intensity value, Al,, to be

Al, = max(S1, — BI,,T).

2.4 Preprocessing Microarray Data

Preprocessing prior to formal analysis is needed to address several data-related issues: to
transform the data into a scale suitable for analysis; to remove the effects of systematic

sources of variation; and to identify discrepant observations and arrays.

2.4.1 Logarithmic Transformation

It is preferable to work with logged intensities rather than absolute intensities for a number

of reasons: the variation of logged intensities tends to be less dependent on the magnitude of
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the values; taking logs reduces the skewness of highly skewed distributions; and taking logs
improves variance estimation. Moreover logged intensities facilitate visual inspection of the
data: the data is spread out more evenly. For some other variance stabilizing transformation,

please check Amaratunga and Cabrera (2003) [1].

2.4.2 Normalization

It has been noticed that substantial differences in intensity measurements exist even among
microarrays that were treated exactly alike. The differences can generally be traced to sys-
tematic effects. To remove these effects and improve the comparability among microarrays
which are treated alike, normalization process was introduced.

One popular method is quantile normalization, whose objective is to make the distri-
butions of the transformed spot intensities, as similar as possible across the microarrays.
Either a subset of quantiles or all the quantiles may be equated. For the details about
different normalization methods, please check Amaratunga and Cabrera (2003) [1].

In the following chapters, we assume our microarray data has already been suitably

transformed and normalized.

2.5 Replicates

2.5.1 Technical Replicates

Technical replicates are used to deal with technical variation, which arises from the handling
steps, such as mRNA extraction, amplification, labeling, hybridization, and scanning. This
variation introduces uncertainty to the intensity measurements associated with a gene.
Using technical replicates and averaging across them allows gene expression levels to be
estimated with greater precision. The higher the number of replicates, the greater the

precision.

2.5.2 Biological Replicates

Biological replicates are used to deal with biological variation, which is the natural variabil-

ity among subjects due to genetic diversity, environmental effects and other causes. This
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variation also contributes uncertainty to the intensity measurements associated with a gene.
Using biological replicates and averaging across them allows gene expression levels to be
estimated with greater biological precision. The higher the number of replicates, the greater

the precision.
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Chapter 3

Microarray Data Analysis

3.1 Analyze each Gene Separately

Gene expression analysis across various biological conditions, cell cycle states, tissues and
subjects may help identify differentially expressed genes, which could be interesting biomark-
ers. This type of information is a valuable pinpoint in the investigation of biological pro-
cesses and functional disorders. The idea of most of the statistical methods for identifying
differentially-expressed genes is to do hypothesis testing for each gene with null hypothesis
‘Hy : gene g is not differentially-expressed’, though different methods would choose different
test statistics.

The following notation will be used in this chapter. Assume we are comparing the
expression levels of a set of G genes in two groups of microarrays: Group 1 and Group 2.
There are ny microarrays in Group 1 and ne microarrays in Group 2, and the total sample
size is N = nq + na. Let x4; denote the intensity measurement for the gth gene in the ith
microarray in the jth group, where i = 1,--- ,n;; j=1,2;and g =1,--- ,G. Let Zy;, 545,

denote, respectively, the mean and standard deviation of gene g in the jth group.

3.1.1 Basics of Statistical Hypothesis Testing

With microarray data, there are G null hypotheses being tested, the gth null hypotheses,
for g =1, -, G, being that the gth gene is not differentially expressed across the groups.
If the decision of the test is to reject the null hypothesis, we get a positive finding. The

decision can be true or false:
True Positive: if the null hypothesis is false;

False Positive: if the null hypothesis is true; this is also called a Type I error.
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If the decision of the test is not to reject the null hypothesis, we get a negative finding. The

decision can be true or false:
True Negative: if the null hypothesis is true;

False Negative: if the null hypothesis is false; this is also called a Type II error.

3.1.2 Fold Changes

Early analyses of microarray data declared a gene differentially expressed if its fold increase

or fold decrease exceeded a specified cutoff. On a logarithmic scale, the decision rule is: if
[Tg2 — Tg1| > log(h),

we say gene ¢ is differentially-expressed. In other words, when the change is larger than
h-fold, the gene is differentially-expressed.

Schena et al. (1995) [58] declared a gene differentially expressed if its expression level
showed a fivefold difference between the two mRNA samples. Using fold change has been
criticized, since genes with high variability have a reasonable probability of having a large

fold change which means the fold change could be statistically non-significant.

3.1.3 The Two-Sample t Test

The more basic statistical test for comparing the means of two groups is the two-sample ¢

test. The two-sample t test statistic is given by

|jgl — 592|

b
1 1
Sop\/ 7y T s

Tye =

where

9p ny +ng — 2 '

is the pooled estimate of variance.
If the data is drawn from a normal distribution and is homoscedastic: zg;; ~ N (fg;, 03),

the null distribution of T} is a t-distribution with degrees of freedom v = nq +mng — 2. If
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the observed value of Ty is Tye.0ps, gene g is declared significantly differentially expressed
at level of significance o if pge = Pr(|Tye| > Tyeiops) < .

There are times we would like to focus on more meaningful differences - the absolute
difference of the average intensities in the two groups is larger than a specified value A

(A =log(2) for a twofold difference):

T _ ‘jgl_fg2|_A
98 = /1 1
Sgp n71+n72

The null distribution of Ty is a t-distribution with degrees of freedom v = n; 4+ ng — 2.

The assumptions of normality and homoscedasticity are critical for the ¢ test to func-
tion properly. When the assumption of homoscedasticity is not tenable, Welch’s ¢ test is

proposed:
o |§g1 *592’ — A

T, =
gu 2 2
Sg1 Sg2
Ve
The null distribution of T}, is approximately a t-distribution with degrees of freedom:
2
321 522
Vg = 2 2°
1 51 1 S
ny—1 <7§1> + ng—1 (7”f2>

If the observed value of Ty, is T}y.0ps, gene g is declared significantly differentially expressed

at level of significance o if pgy = Pr(|Tyu| > Tyuobs) < .
For microarray data, the small sample size makes the ¢ test unreliable: a high false
positive rate for genes whose variability is low and a high false negative rate for genes

whose variability is high.

3.1.4 Small Variance-Adjusted ¢ Tests: SAM ¢ Test

One method to adjust ¢ tests for microarray data was suggested by Tusher et al. (2001)

[71]. They added a carefully chosen constant ¢ to the denominator of the ¢ statistic:

Tgl — Tg2
Tgs(c): | !]1 91| ,
Sgp H+E+C

where sg,, is defined at (3.1). This test statistic is often called the SAM ¢ statistic, where

SAM stands for “significance analysis of microarrays”.



15

Computation of ¢
1. Let s* be the a percentile of the s,, values.
2. Compute the 100 quantiles of the sg, values, denoted by ¢1 < g2 < -+ < q100-

3. For a € (0,0.05,0.10,--,1.0), compute v; =mad(Tys(s*)|sgp € [¢j,qj+1)), J =
1,2,---,100, where mad is the median absolute deviation from the median, divided

) )

by 0.64. Compute cv(a) = coeflicient of variation of the v; values.

4. Choose @ = argmin[cv(a)]. Then ¢ = s%.

Assess Significance
1. Compute order statistics T(1)s(c) < T(2)s(c) < -+ < T(g)s(c).

2. Take B sets of permutations of the samples. A balanced permutation will be each of
the new groups contain nj/2 Group 1 samples and ng/2 Group 2 samples. For each
permutation b compute statistics T3?(c) and corresponding order statistics 7, (*1”)3(c) <

T*b

(2)8(6) << Tg((g)s(c)

3. For the set of B permutations, estimate the expected order statistics by T(g)s(c) =

> T@b)s(c)/B forg=1,2,--- ,G.
4. Plot the T(g),(c) values versus the T'(4),(c).

5. For a fixed threshold A, starting at the origin, and moving up to the right find the first

g = g1 such that |T{y),(c) — T(4)s(c)| > A. All genes past g; are called “significance”.

3.1.5 Conditional ¢t Test

By assuming (a) o4 is the same for both groups and is distributed as F, and (b) o, is
independent of ji4 for both groups, Amaratunga and Cabrera (2009) [2] proposed a novel
method to address the dependence of Ty, from sy, by determining, from the distribution of
Tye conditioned on sy, the critical value of Ty, that separates significance from nonsignif-
icance. They borrowed information from other genes in estimating o,’s distribution Fi,.

This method is called the conditional ¢ (CT) approach, containing the following two steps.
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Step 1. Estimate F,

Due to the small sample size of microarray data, the empirical distribution of s, FS, is
a biased estimator of the distribution F,,. The bias can be corrected by using stochastic
approximation method to solve the target estimation (Cabrera and Fernholz (1999) [21]
and Cabrera and Watson (1997) [24]) of F}, through bootstrap. The idea is to estimate the
function g : [0,1] — [0, 1] defined by g(F,(z)) = Fi(x). Then the bias-corrected estimate of

F, will be §~'(F}). The algorithm is as follows:

1. Generate a null distribution for the data by subtracting the sample means and dividing

by the standard deviations.

2. Assume that F,(z) is the true distribution of o. Then sample from the null distribution
of z to get a sample of size N and multiply the sample by a ¢ generated from F} ().

Repeat this 10,000 times and get 10,000 sets of samples.

3. For each set of samples, calculate a value for the pooled sample standard deviation,
namely sy, for b=1,---,10,000. Let Fy (x) be the empirical distribution of the s}’s.
Then the estimator of g is obtained by mapping the empirical distribution F, into

Fs*i

g(y = Fs(‘r)) = Fs*(Fgl(y))

and

i () = F(F ()
Hence the bias corrected estimator of F, is

Fy(r) = FS(FS_*I(FS(HT))>'

F,(x) will be used in the second part of the method to generate the standard deviations

of the gene populations.

Step 2. Estimate the Conditional Distribution of Tj|s,

1. Generate a null distribution for the data by subtracting the sample means and dividing

by the standard deviations.
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2. Resample from the null distribution of z and multiply each sample by a o generated
from F, (z). Repeat this 10,000 times and obtain 10,000 sets of samples. From each
set of samples, calculate a value for the pooled sample standard deviation and the

two-sample ¢ statistic, namely s, and t, for g = 1,---, 10, 000.

3. Estimate t,(s4) using a quantile regression estimate for ¢, versus s, and estimate the

regression quantile curve for the 1 — a quantile.

Denote the pooled variance estimate as s and let ¢ be the statistic for a randomly selected
gene. Let f(t,s) be the joint probability density function of ¢ and s. The CT procedure
rejects the null hypothesis if ¢ > h(s) and conditioning on s the probability of type I error

is a. Then the overall unconditional probability of type I error is also a:

[ s = [ ([ st ) g
= A /;f@&ﬂﬁ%za.

3.1.6 LIMMA ¢ Test

Smyth (2004) [61] built hierarchical model to “borrow strength across genes” by assuming

prior distributions for the sets of parameters. They assumed

— — 2 2
Tg1 — Tg2|pg1 — pg2,05 ~ N(pgr — fig2,v40y)

2
2| 2 99 o
Sg‘O'g ~ d—gxdg
1 B
03 doS%Xdo
Pr(pgr — pg2 #0) = p

Hg1 — ,u92|03,,u91 — g2 #0 ~ N(OWOUE)

52

g) in place of ordinary sample standard deviations to

They used the posterior mean of 02 (

moderate t-test
%v _ Egl — Egg

I S9\/Vg
§2 _ 2’8 ) d080+dgs

where sg doFdy . And they showed that under null hypothesis:

tg ~ tdo+d,-
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3.2 Multiplicity

In identifying differentially-expressed genes, we perform thousands of hypothesis testings
simultaneously. For these multiple inferences, we would like to calculate and control the
overall type I error, as unguarded use of single-inference procedures will increase false pos-
itive rate. For example, suppose we are testing about 5000 genes, if we treat these tests
independent, and set the significant level of each one as 0.05, on average, we could falsely
identify 250 genes as differentially-expressed, which could be quite misleading.

There are several ways of controlling the overall type I error rate. Before we discuss them,
let’s introduce some notations. Consider testing simultaneously G (null) hypotheses, of
which mg (unknown) are true. R is the number of hypotheses rejected, which is observable.

But U,V,S,T are unobservable random variables.

Declared Declared Total
non-significant  significant

True null hypotheses U \% mo
Non-true null hypotheses T S G —mg
G—-R R G

Table 3.1: Multiple Hypothesis Testing

3.2.1 Familywise Error Rate (FWER)

The traditional way to control the overall type I error rate is to control
PV >1),

that is, controlling the probability of committing any false positive among all the hypotheses
test, which is called familywise error rate (FWER). Several simple and sequential multiplic-
ity adjustment methods for FWER will be reviewed here.

Suppose p1,--- , pa are the G observed p-values for GG statistical tests. Classical p-value
adjustments are single-step procedures in that the same adjustment is applied to each p-

value regardless of their ordering.

e Bonferroni: The Bonferroni p-value for the kth test is simply ﬁf = Gpg. If it exceeds

1, it is set to 1. The Bonferroni adjustment is highly conservative, consequently the
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adjusted tests have low power.

e Sidak: The Sidak p-value for the kth test is ﬁf =1— (1 —p)€. Sidak p-values are

slightly less conservative than Bonferroni p-values.

An alternative approach is sequential p-value adjustment, which takes the order of the
observed p-values into account with smaller p-values being adjusted more than larger p-

values. Suppose that the unadjusted p-values have been ordered so that: p() < pz) <

e Holm-Bonferroni (Holm (1979)[44]): The Holm-Bonferroni step-down p-values are

determined as

Pay = Gpq)

Py = max(pay, (G —1)pe) (3.2)
PGy = max(P;-1), (G —j+Dpy) (3.3)
p) = max(pG-1),P@G))

As always, if any adjusted p-value exceeds 1, it is set to 1.

e Holm-Sidak: The Holm-Sidak step-down p-values are determined similarly as Holm-
Bonferroni procedures: taking the adjustments to be 1 — (1 — p(g))(G_l) at (3.2) and
1— (1= p )7+ at (3.3).

e Hochberg: Assuming that the G p-values are independent under their respective null
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hypotheses, Hochberg (1988) [43] provided a set of step-up p-values:

b b

Pa-1) min(p(q), 2p(G-1))
) min(pj+1), (G — 7+ 1)p))
P(1) min(p 2y, Gp(1))

He showed that this procedure is sharper than Holm-Bonferroni step down procedure

under the assumption of independence.

e Westfall-Young (Westfall and Yong (1993) [73]): Let the ordered p-values have indexes

1,72, TG, 80 that p1y = Pry P@) = Prar > P(G) = Prey)- Denote Hy = N H;.

The Westfall-Young step-down p-values are determined as

D, = Pr min P < H,
pay (le{n,rz,---,rc} 1 < pay|Ho)
Py = max[pyy,Pr(  min P < py)|Ho)
16{7’2,~~,TG}
PGy = max[pg_1),Pr( min P <pg;|Ho)]
le{rj,,ra
Py = max[pg_1y, Pr(Prg < pe)|Ho)]

These adjusted p-values are estimated by simulation and can be computationally
intensive. But as this method takes into account the dependence characteristics among

the tests, it is less conservative.

The restrictiveness of the familywise error rate criterion makes multiple testing proce-

dures not powerful in the sense that the probability of rejecting null hypotheses that are

false will be small.
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3.2.2 False Discovery Rate

As controlling FWER is quite conservative for microarray data analysis, more allowance
needs to be given. Benjamini and Hochberg (1995) [9] suggested controlling false discovery
rate (FDR) instead. The FDR is defined as the expected proportion of false positives among
the positive findings (the expected proportion of true null hypotheses which are erroneously

rejected, out of the total number of hypotheses rejected):

FDR — E(%) _ E[%]R > 0] Pr(R > 0).

Controlling false discovery rate allows investigators to increase power while maintaining a
principled bound on error. If all the null hypotheses are true (i.e., mg = G), the FDR is
equal to the FWER and controlling the FDR would be equivalent to controlling the FWER.
If not every null hypothesis is true (i.e., mg < G), the FDR is smaller than or equal to the
FWER. Hence, any procedure controlling the FWER, also controls the FDR. A procedure
controlling the FDR can be less stringent and give more power. The potential for increase in
power is larger when more hypotheses are not true. Benjamini and Hochberg (1995) [9], also
Yekutieli and Benjamini (1999) [76], suggested the following step-up procedure to adjust

the ordered p-values in order to control the FDR when the test statistics are independent:

e Benjamini-Hochberg: The Benjamini-Hochberg adjusted p-values are

~BH

Pe = PG
~BH . [ ~BH G
Pg—kr)y = M| DPG—_k+1) mp(a—k) ) (3.4)

Benjamini and Yekutieli (2001) [13] shows that the above procedure controls FDR such
that FDR < ¢ - my/G for positively dependent test statistics. Depending on mg/G, the

Benjamini and Hochberg procedure could be too conservative. More power could be gained

if we could estimate mg and use é”j’k in (3.4). Benjamini and Hochberg (2000) [10] and

Benjamini et al. (2006) [11] implemented the idea by some adaptive two-step procedures.
The idea used in Westfall and Young (1993) [73] was applied in Yekutieli and Ben-

jamini (1999) [76] to propose a resampling FDR adjustments to account for the dependence

structure between the test statistics. Yekutieli (2008) [75] presented a modification of the
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Benjamini and Hochberg false discovery rate controlling procedure for testing non-positive
dependent test statistics. Romano et al. (2008) [56] applied bootstrap and subsampling to
control FDR under dependence.

There are many other articles about Benjamini and Hochberg (1995) [9] FDR control
procedure. For example, Reiner et al. (2003) [54] studied some of these procedures using
simulation and found that they controlled FDR at the desired level. Benjamini and Liu

(1999) [12] proposed a set of step-down adjusted p values: when i < m(1—¢q) 41,

- m—i—i—l[

Py = )m—i-‘rl] .

9

1—(1=p,

when i > m(1 —q) + 1,

P = 1.
The step-down procedure neither dominates nor is dominated by the step-up procedure.
In a large simulation study of the power of the two procedures, the step-down procedure
turns out to be more powerful when the number of test hypotheses is small and many of the
hypotheses are far from being true. Genovese et al. (2006) [36] suggested incorporating prior

information about the hypotheses when controlling FDR. Yekutieli (2012) [77] proposed

hierarchical FDR-controlling methodology.

3.2.3 The Positive False Discovery Rate

Storey (2003) [63] defined the positive false discovery rate (pFDR)
pFDR = E [;]R > 0] :

emphasizing the fact that we only worry about false discovery rate when there are rejections.

By the definition, pFDR can only be estimated for a fixed significance region (I):

pFDR(T) = E [;ER’R(D > o] .

Positive false discovery rate has a good interpretation under Bayesian principals. Let H; =0
when the ith null hypothesis is true and H; = 1 when it is false, i = 1,--- ,G. Denote the
statistics used for these tests as 17, - -+ , Tz. When assuming that (7;, H;) are i.i.d. random

variables, T;|H; ~ (1 — H;) - Fo + H; - Fy for some null distribution Fy and alternative
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distribution Fj, and H; ~ Bernoulli(7;) for ¢ = 1,--- G, the positive false discovery rate

is the following posterior probability:
pFDR(T') =Pr(H =0|T € T),

where mg = 1 — 7. In addition, under these assumptions, the following equation holds:

V(I) _ E[V(I)]
E [Rm’R(” > 0} = EIR(T)]

Storey (2002) [62] proposed one approach to estimate the pFDR on the basis of inde-

pendent p-values: all rejection regions are of the form p € [0,~] for some v > 0.

pFDR(y) = Pr(H =0|P <~)
o Pr(P < ~|H =0)
Pr(P <7)
oY
Pr(P <7)

A conservative estiamte of 7 is

ﬁ(A)_#{ppA}_ W)
M7 1=NGE T 1-NG

for some well-chosen A\, where p1,--- , pg are the observed p-values and W () = #{p; > \}.

A natural estimate of Pr(P < «) is:

Brp <) - #{piGS v Rg)’

where R(y) = #{p; < 7v}. When R(y) = 0, the estimate would be undefined, therefore,
R(7) is replaced with R(y) V 1. Also 1 — (1 — )% is a lower bound for Pr(R(y) > 0).

Therefore, pFDR is estimated as:

o fo(A)y _ WAy
pFDR, (v) = PP <){l—(1-7C¢ ([A=M{R(M)VIHI-(1-7)°%}

Similarly, by this method, FDR can be estimated as:

WAy _ WOn
Pr(P<v) (- VROV

They also discussed a pFDR. analogue of the p-value, called g-value. Recall for a nested

FDR,(7) =

set of rejection regions {I'}, the p-value of an observed statistic 7' = t is defined to be

p-value(t) = lggierllﬂ{Pr(T el'|H=0)}.
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For an observed statistic T' = ¢, the g-value of ¢ is defined to be
-value(t) = mi FDR(T")}.
q-value(t) = min {pFDR(I')}

For a set of hypothesis tests conducted with independent p-values, the g-value of the ob-

served p-value p is:
q(p) = inf {pFDR(7)}. (3.5)
y2p

For the G hypothesis tests, calculate the p-values p1,--- ,pg, let pqy < -+ < p(g) be

the ordered p-values.
i(p(c)) = PFDR(p(c)):
i(p(s)) = min{PFDR(p(s). d(p(i+1))},
fori=G-1,G-2,---,1.
Storey and Tibshirani (2001) [65] estimated pFDR under dependence. Storey and Tib-

shirani (2003) [66] applied pFDR and g-value to genomewide studies. Theoretical aspects

of pFDR have also been developed in these references.

3.2.4 Benjamini-Hochberg and Storey Methods

Benjamini-Hochberg way is to fix the acceptable rate a beforehand and estimate a signif-
icance threshold to obtain this rate conservatively on average. Storey way is to fix the
significance threshold and provide a conservative estimate of the rate over that threshold.
Storey, Taylor and Siegmund (2004) [64] showed that in both finite sample and asymp-
totic settings that the goals of the two approaches are essentially equivalent. We prefer

Benjamini-Hochberg way as it is simple and easy to implement.

3.3 Class Prediction

Classification and prediction are important topics in microarray data analysis. For example,
in studies of cancer, it is hoped that gene expression profiling enables us to diagnose tumors
precisely and systematically. By studying and contrasting gene expression profiles of normal

and tumorous tissues, we can not only gather valuable information regarding the gene
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expression pattern of the underlying disease process, but also predict the class of a new
tumor based on its gene expression profile. By studying the contribution of each gene to
the classification model, we will find a set of good biomarkers.

Depending on the experiment, the N samples may correspond to N tissues, cell lines,
tumors, or something else. The N samples belong to k£ different classes. The class each
sample belongs to is known and there are n; samples from the ith class, Zle n; = N.
The N-vector, y = {y;;}, indicates to which class each sample belongs: y;; = i is the
classification indicator of the jth sample in the ith class. Let xz- = (z4j1, -, Tija), a G-
dimensional column vector, denote the gene expression levels on the jth sample in the ith
class. X; = > 7% xé. /ni; X = Zle n;X;/N. Generally, one classification rule will partition
the space of all possible x’s into k£ disjoint subsets, A1, --- , A, such that if x falls into A,,,

then x is predicted to belong to class m.

3.3.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is one of the oldest and simplest methods of supervised
classification. It calculates the projection matrix Wg g4 that maximizes the Fisher’s Linear

Discriminant criterion:

wTs,w
Wopt arg max "VVTSVVH (36)
where
1 F
=5 Zni(ii —-X)(x; - x)7T, (3.7)
i=1

is the between-class scatter matrix and

kE n; k
sw:%ZZ(x;l—m)(x;l—xz ]‘b; ni —1)S;, (3.8)

i=1 j=1

is the within-class scatter matrix. It aims to simultaneously minimizes the within-class
distance and maximize the between-class distances in order to achieve maximum discrim-
ination. If S, is a non-singular matrix, S5} has at most d = min(k — 1,G) non-zero
eigenvalues. W, is consisted of the corresponding eigenvectors wy,--- ,wy. For a new

sample x, the predicted class is
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Although LDA performs well in many applications, we cannot directly use LDA for
microarray data analysis because of the small sample size problem, for which S, is singular.

Tian et al. (1986) [69] tried to replace the inverse S, with the pseudo-inverse Sy :

M = ((xj—%1),(x3 —X1), -, (X, — X1),
(X} — Xa), (x5 — X2), -+, (X, — X2),
............ (3.9)
(xf — %), (x5 —%p), -+, (xF, — %))

Sto= MMTM)2MT

To handle the singularity problem, Hong and Yang (1991) [45] added a singular value

perturbation to S, to make it nonsingular based on the following theorem:

Theorem 1. Let A = UXV7T be an n x n matriz, rank(A)=r. ¢ represents the set of n.xn
matrices whose rank is less or equal to k, 0 < k < r. If X is a matriz in ¢ and it satisfies
the condition:

A-—X||p=min||A-S

I = min | IF

then

JA = X|lr = A1+ Akga + -+ An

where \/A; is a singular value of A and X. || - ||p is the Frobenius norm which is a unitary

mvariance norm.

Denote singular value decomposition (SVD) of Sy, as: Sy, = ULV’ where rank(S,,) = r,
¥ =diagonal{v/A1, VA2, ,vVAr,0,--+ 0} and Ay > A\g > --- > \,; U and V are orthonor-
mal matrices. ); is the nonzero eigenvalue of matrix (S,,S1); it is also the eigenvalue of
(SLS,). Vi is called the singular value of S,. Any column vector u; and v; of U,V are
the eigenvectors which correspond to the eigenvalue \; of (S,S1) and (S1S,,) respectively.

A small perturbation A is added to S,: Sy, + A = S,,, such that
Sw=U3VT,
where ¥ =diagonal{v/A1, vz, -, VA, V0, -+ ,V/d}, and 0 < § < .. Then according to

the above theorem, with Frobenius norm, S,, is a nonsingular matrix which is the closest

to S, and the difference between S, and Sy, is v/(n — 7)d.
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Friedman (1989) [30] expressed LDA by assuming that samples from class ¢ follow some

distribution with density function f;(x):
1
filx) = (2m) O |57V expl—3 (x = i) 377 (x = ), (3.10)

where p; and 3; are the class i(1 < i < k) population mean vector and covariance matrix.

The classification rule is: choose 7 such that

i = argmax f;(x)m;
1<i<k

where 7; is the unconditional prior probability of observing a class ¢ member, which is
equivalent to

) = argmin(x — p;) 727 (x — ) +1n 5] — 21n ;.
1<i<k

When all of the class covariance matrices are presumed to be identical:
=%, 1<:<k, (3.11)

it is linear discriminant analysis (LDA). Without the assumption (3.11), the above classifica-
tion rule is called quadratic discriminant analysis (QDA). To obtain more reliable estimates
of the eigenvalues in the sample covariance matrix, a ridge-type regularized estimate ii(k, v)

was proposed:

where

’ - (I =X)n; + AN .

The classification rule with (), v) is called regularized discriminant analysis (RDA), which
is also a compromise between LDA and QDA.

Hastie et al. (1995) [40] proposed to replace ¥,, by a regularized version ¥,, + A,
where () is a penalty matrix. They called this method penalized discriminant analysis
(PDA), whose purpose is to impose a spatial smoothness constraint on the coefficients,
which is not necessary for microarray analysis.

Dudoit et al. (2002) [26] considered Diagonal Linear Discriminant Analysis (DLDA),

where the class densities (3.10) have the same diagonal covariance matrix:

Y = diag(a%, T 70-%')
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for all 1 <4 < k. Then the classification rule is:

— %2
C(x) = argmin I = %1 .
1<k 0

They pointed out that the “weighted gene voting scheme” for binary classification in Golub
et al. (1999) [37] was a variant of DLDA using maximum likelihood estimation.

Li et al. (2003) [48] proposed a new feature extraction criterion, the maximum margin
criterion (MMC), to avoid the small sample size problem. From a geometric standpoint,

MMC maximizes the (average) margin between classes.
Wopt = arg max tr(W7 (S — Sy, )W).
w

Li et al. (2005) [49] developed a generalized linear discriminant analysis (GLDA) that
is a general, direct, and complete solution to optimize Fisher’s criterion. They wrote the

Fisher’s criterion as:

WTS,W|
WOpt = argv{/nax tr (WW y (312)
where
St = Sp + Sw- (3.13)

This equation is equivalent to (3.6) when S,, is nonsingular. They used Moore-Penrose

inverse of singular S,.

Definition 1 (Moore-Penrose Inverse). A matriz A" satisfying the following conditions is

unique and is called the Moore-Penrose inverse of A:

AATA = A
ATAAT = AF
(AtA)T = AtA

(AATYT = A4t

They showed that the Fisher’s criterion (3.12) is maximized by the largest eigenvectors

of S, Sp. Their algorithm is summarized as follows:
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1. Calculate M = [\/p1(X1 —X), - ,/Pe(Xx —X)] and X = ﬁ[(xl —X), 0, (xy —X)];

2. Perform the SVD X = UAl/QVT;

1 ~~ 1~
4. Perform the SVD S, 2 M = UAz V7T,
+1~
5. W =25, U,

where SVD represents singular value decomposition.

Sharma and Paliwal (2008) [59] proposed to optimize the Fisher’s criterion by using
gradient descent algorithm, which they called Gradient LDA (GLDA). The GLDA algorithm

is as follows:

0J(W).
ow ’

W W -«
2. W + Normalize each of the column vectors of W separately;

where J(W) = 1/J(W),

dJ(W)
oW

= 2] (W) [SuW (WS, W) " — S W (WTS,W) ]

and a > 0 is the learning rate parameter.

3.3.2 Reducing the High Dimensionality

Classical classification techniques assume that the number of samples are larger than the
number of features (variables, genes here) in the data. But most of microarray data consist
of a much larger number of features (genes) compared to the number of samples. Thus, to
apply classical classification methods directly, like LDA, we need to reduce the dimension
first.

As Sharma and Paliwal (2008) [59] pointed out, different methods used for dimension
reduction can be grouped into two categories: feature extraction methods and feature se-
lection methods. While feature extraction methods construct a few features from the large
number of original features through their linear or nonlinear combination, feature selection

(or feature filtering) methods retain original useful features and discard others.
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Feature Extraction

Principal component analysis (PCA) and partial least squares (PLS) are often applied to

reduce the high dimensionality in microarray data. Denote the microarray data as a matrix:

_ 1 1 1 2 2 2 k k k
X—(Xl,XQ,"',X )

The correlation matrix is:

1 1
Rexe = —XUexe — alamlgm)XT-

Denote the eigenvalue decomposition of R as R = UAUT, where A =diag{\; > Ay >
- > An-—1} are the ordered nonzero eigenvalues, and U = {uj,us,--- ,un_1} are the
corresponding eigenvectors. The ith principal components is a linear combination of the
original variables, X u;.
The objective equation of PCA could be written as follows:
u, = arg max var(X 7’ u) (3.14)
uTu=1

subject to the orthogonality constraint
cov(XTu, XTu;) =0, forall 1 <j < s.

The maximum number of nonzero components is the rank of X. As the objective equation
(3.14) does not involve the response variable, it does not necessarily yield components pre-
dictive of the response variable. To include the response variable in the objective equation,
PLS was introduced. The objective equation of PLS is:
w, = arg max cov’ (X Tw,y) (3.15)
wlw

subject to the orthogonality constraint
cov(XTw, XTw;) =0, forall 1 < j < s.

The maximum number of components is also the rank of X. The ith PLS components are
also a linear combinations of the original predictors, Xw;. As Nguyen and Rocke (2002)

[52] pointed out, it is reasonable to suspect that if the original variables (genes) are already
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predictive of response classes, then the constructed components from PCA would likely be
good predictors of response classes. But they did report an improvement in classification
by using PLS rather than PCA for microarray data.

Belhumeur et al. (1997) [8] and Khan et al. (2001) [47] applied principal component
analysis (PCA) for dimensionality reduction. This method is criticized to be sub-optimal
that PCA step may discard dimensions that contain important discriminative information.

Chen et al. (2000) [25] pointed out that the null space of Sy, (3.8) carries most of the

discriminative information: for a projection direction a, if Sy,a = 0, and Spa # 0, then

a’ Sya
al'S,a

is maximized. They proposed a two-stage procedure:

1. Suppose Vy = span{co;|Swa; = 0, a; € RE, |oy| = 1, ofaj =0, i # j, i =
1,---,G — r} where r = rank(Sy), i.e. Vp is the null space of S,,. Denote Q =
{a1, a9, ,ag—,}. Projecting the data into Vj, we get the within-class and between-

class scatter matrix of the transformed samples in Vj ( §b, Sy ):
S = QQ"SQQT,
Sw = QQ"S,QQ" = 0.

2. Calculate the eigenvectors corresponding to the set of the largest eigenvalues of §b

and use them to form the most discriminant vector set for LDA.

The drawback of this method is that it needs to compute the rank of S,,, which is an ill-
defined operation due to floating-point imprecision, and that the computational complexity
of determining the null space of S, is very high.

Yu and Yang (2001) [78] provided a direct LDA algorithm for high-dimensional data.
The key idea of their algorithm is to discard the null space of Sp (3.7) - which contains
no useful information - rather than discarding the null space of S,,, which contains the
most discriminative information. This can be achieved by diagonalizing S first and then
diagonalizing S,,. The traditional procedure takes the reverse order. Both approaches

produce the same result when 5, is not singular. The algorithm is outlined below:
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1. Diagonalize Sp: find matrix V such that VTS,V = A, where VIV = I and A is
a diagonal matrix sorted in decreasing order. Let Y be the first m columns of V,

YTS,Y = Dy > 0, where Dy, is the m x m principal sub-matrix of A.

_1
2. Let Z=YD, ?, 7Z7S,7Z = I. Diagonalize Z1'S,,Z by eigen-analysis: U7 Z7 S, ZU =
D.,, where UTU = 1I.

3. Let the LDA matrix A = UTZT. AS, AT = D,,, ASAT =1.
4. The final transformation that spheres the data should be
1
T < Dy 2 Ax.

In Direct LDA, one may also employ S; instead of S,,. In this way, Direct LDA is actually
equivalent to the PCA+LDA. Therefore, Direct LDA may be regarded as a “unified PCA-
LDA” since there is no separate PCA step.

Huang et al. (2002) [46] first removed the null space of S; (3.13), which is the common

null space of Sy and S, and has no use in discrimination analysis, and then LDA-PCA was

performed in the lower-dimensional projected space. Their procedures are as follows:

1. Remove the null space of S;: do eigen-analysis on the N x N matrix %MtT M, where

My = ((x; —X),(x3 —X)," - 7(X}L1 - X),
(xl _i)v (X2 _i)v e 7(X2L2 - X),
............ (3.16)
(le _X)7(X2 _i)v"' 7(Xi€zk _X))

and S; = MtMtT ; let U be the matrix whose columns are all the eigenvectors of S;

corresponding to the nonzero eigenvalues, then: S/, = U7 S, U and Sy = UTSU.

2. Calculate the null space of Sl,: @, then S = QTS/,Q = 0 and S} = QTS,Q =
UQ)"S,(UQ).
3. Remove the null space of Sy if it exists: let V' be the matrix whose columns are all the

eigenvectors of S} corresponding to the nonzero eigenvalues or part of them associated

with the largest eigenvalues, then the final LDA projection is: W = UQV.
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Lu et al. (2005) [50] merged LDA and PCA in a unified framework, which they called

hybrid PCA and LDA analysis, with the following objective equation:

(W1 = X) - Sp + X - S|

Wopt = arg max , 3.17
S T ) St W) 47
where the range of the parametric pair (A, n) is from (0,0) to (1,1). When (A = 0,7 = 0),
(3.17) reduces to LDA; when (A = 1,7 = 1), (3.17) reduces to PCA; when (A = 0,n = 1),

(3.17) maximizes the scatters among the classes with minimal effort on clustering each class;

when (A = 1,7 =0), (3.17) minimizes the scatter matrices of within-classes.

Feature Selection

Feature selection (filtering) is done by ranking all the genes according to some statistics.
When the statistics used in selecting feature do not involve the response variable, for ex-
ample, the overall variance and overall mean across all samples (Amaratunga and Cabrera
(2003) [1] and Talloen et al. (2007) [68]), the methods are called “unsupervised feature
selection”. When they do involve the response variable, for example, an ordinary t statistic,
or statistics “borrowing strength” amongst genes such as conditional ¢ (Amaratunga and
Cabrera (2009) [2]), or LIMMA ¢ (Smyth (2004) [61]), or SAM ¢ statistic (Tusher et al.
(2001) [71]), or score statistic (Bair et al. (2006) [6]), the methods are called “supervised
feature selection”.

Golub et al. (1999) [37] did gene selection through their degree of correlation with the
class distinctions. They measured the correlation by the ‘signal-to-noise’ ratio. Denoting the
means and standard deviations of the log of the expression level of gene g as (u1(g),01(9))

and (u2(g),02(g)) respectively, they define the ‘signal-to-noise’ ratio as

P(g) = [n1(g) — 12(9)l/[o1(g) — o2(9)]-

Large values of |P(g)| indicate a strong correlation. The sign of P(g) being positive or
negative corresponds to g being more highly expressed in class 1 or class 2. They ranked
the genes by the absolute values of the correlation coefficients, selected equal number of
genes with positive and negative correlation, and did classification by ‘weighted voting’,

where each informative gene casts a vote for one of the classes and the magnitude of each
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vote is decided based on the degree of correlation. Slonim et al. (2000) [60] applied the
same selection procedure. Furey et al. (2000) [34] applied Golub’s selection method, but
selected genes only by the absolute values of the correlation coefficients.

Guyon et al. (2002) [38] also preferred gene selection methods. They claimed that
it is of practical importance to select a small subset of genes to build diagnostic tests.
It is also cost-efficient and will be easy to verify the relevance of selected genes. But
they found that these feature ranking with correlation methods are based some implicit
orthogonality assumptions, since each coefficient is computed without taking into account
mutual information between genes. Instead, they brought out one feature subset ranking
criterion using Recursive Feature Elimination (RFE). They treated each subset like a model
and ranked each subset using some model selection criterion. Dudoit et al. (2002) [26]
selected genes by somewhat random procedures: bagging and boosting.

Cautions about feature selection methods are: (1) selecting too many genes may not
reduce the dimensionality enough, while selecting too few genes may lose too much infor-
mation; (2) feature selection based on methods studying each gene separately may ignore
the fact that genes are related. Bo and Jonassen (2002) [16] showed that a pair of genes in
combination separates two classes better than doing the filtering gene by gene. Gene pairs
(or other multiples) can be selected using Hotelling’s ¢ test.

As Amaratunga and Cabrera (2003) [1] and Becker et al. (2011) [7] pointed out that a
pre-set limit on the number of features to be chosen may exclude some informative genes
and result in bad performance, feature filtering is generally implemented in this way: genes
whose statistics are larger than some threshold will be picked up. How to determine the
threshold remains one issue for filtering methods. Cross validation could be applied, but it
is not appealing in genetic association studies since most microarray data have small sample

sizes.

Penalization

In reviewing penalized method here, to simplify the notations, we assume that k£ = 2, i.e.,
the samples are grouped into 2 classes. To avoid overfitting in high dimensional settings,

different penalties were introduced into the objective functions to shrink the coefficients
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of the variables (genes) toward 0, hence achieve the reduction of dimensionaltiy or feature

selection. Here are some popular penalties:

LASSO: Lasso penalty was introduced in Tibshirani (1996) [70]. By imposing an L
penalty on the regression coefficients, the lasso does both continuous shrinkage and

automatic variable selection simultaneously. The penalty function is as follows:
PE(B) = |1B]1; (3.18)

Elastic-Net: Zou and Hastie (2005) [80] pointed out that the lasso selects at most N
variables when G > N, which makes L; penalty inappropriate for microarray data.
Also if a group of variables are highly correlated, the lasso tends to select one from
the group and ignore the others. To address this problem, they proposed the elastic

net penalty function, which is a combination of quadratic penalty and the L penalty:
1
PYN(B) = (1—a)-§HﬂH§+a' 18111 (3.19)

SCAD: On the other hand, the lasso is criticized for the significant bias toward 0 for large
regression coefficients. To diminish the bias, Fan and Li (2001) [28] proposed the

smoothly clipped absolute deviation (SCAD) penalty:

AlB if [B] < A,
PiSAP(B) = § —BEZANBEE g\ < (g <an (3.20)
@DX i 1B] > ah

for A > 0 and a > 2. It is symmetric, nonconvex, and singular at the origin. The
SCAD penalty has the same form as the lasso penalty at the neighborhood of 0, and

applies a constant penalty for large coefficients.

MCP: Zhang (2010) [79] proposed the minimax concave penalty (MCP):

2
ABl =L if 18] < a,

pay " (8) = ) ; (3.21)
ar if |3 > aX

with A > 0 and a > 1. It is symmetric, nonconvex, and singular at the origin. The
MCP relaxes the penalization continuously until |3] < aA, then it applies a constant

penalty.
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Regression models with SCAD or MCP have oracle property: the performance is asymp-
totically as good as if one knows the true positions of nonzero coefficients.
The linear logistic regression model is one popular method for classification and predic-

tion:
1
14 exp(—(Bo +xB))’

where [y, 8 are the coefficients. The penalized objective function is as follows:

p(x) = Pr(y = 1x) =

N
max |3 (Iyuo logp(x:) + Iiy—1) log(1 — p(x:))) — AP(B), (3.22)

(Bo,B)ERGHL | N —
where P(B) could be the lasso (3.18), elastic-net (3.19), SCAD (3.20) or MCP (3.21) penalty.
For the lasso and elastic-net penalties, Zou and Hastie (2005) [80] tried to find the optimum
by steepest descent which can be time consuming. Friedman et al. (2010) [31] proposed
the Glmnet algorithm, which is quite efficient for solving this problem. Breheny and Huang
(2011) [19] applied coordinate descent algorithm to solve the nonconvex regression problems
with MCP or SCAD penalty along with a Lo penalty.

Support vector machine (SVM) is one of the most powerful supervised classification
techniques, which separates two classes by a hyperplane with maximum margin. For non-
separable data, the soft-margin SVM uses slack variables to control the upper bound of the
misclassification error. Since G > N, our data can always be separated by a hyperplane.
Also Hastie et al. (2001) [42] pointed out: linear classifiers often give better performances
than nonlinear ones in many applications with G > N, even though nonlinear classifiers

are known to be more flexible. Hence, we only consider linear SVM here, which finds a

hyperplane f(x) = b+ w - x by minimizing
1 N
S w4 w )+ A (3.23)
=1

where b is a constant, w is the directional vector, and w-x = Z]-Gzl w;x;. The quantity ||w]|?
is the inverse of the squared width of the margin for the classifier. The tuning parameter
A controls the trade-off between minimizing the loss function and maximizing the margin.
The hinge loss [1 — y;(b+ w - x;)]+ is a convex upper bound for the 0-1 loss function.
Even with linear SVM, a relatively large sample size is needed, otherwise the spurious

signal will generate a huge margin that is almost unbeatable by the good signal. Suppose
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that we have a typical microarray experiment with 545 observations and 45000 genes. By a
single gene, there are 0150 /2 = 126 ways that the 10 samples are separated into two groups
with equal sample size. Then by random order, the probability that one gene separates
the two groups correctly is 1/126. Since we have 45000 genes, on average there would be
45000/126 = 357 genes that will separate perfectly the two groups just by chance. Each
of these genes has a corresponding separation margin, and the best will be the biggest. In
addition the combination of these genes would form a huge margin, which could be much
larger than the one produced by the good signal. To improve the performance of SVM,
different methods were proposed.

Fung and Mangasarian (2001) [32] brought out a new formulation:
N
Iglin)\Z[l —yi(b+w-x)2 + w'w + b2, (3.24)

which they call “linear proximal SVM”. The advantage of this formulation is that it has
an explicit exact solution and can be solved by 6 lines of MATLAB code. As pointed out
in Hastie et al. (2001) [42], the objective function (3.23) has the “loss and penalty” form.
From this perspective, the various penalties used in regression can be applied in SVM. The
L1-SVM was proposed by Bradley and Mangasarian (1998) [18]. Fung and Mangasarian
(2004) [33] developed a fast Newton algorithm to solve the dual problem of the L; SVM.
Wang et al. (2006) [72] adapted the Elastic Net penalty to SVM (Elastic Net SVM), whose
optimization problem is:

L1 )
min < ;[1 —yif (x0)]4+ + MWl + Aeflwllz,
whereas A1, Ay > 0 are the corresponding tuning parameters. Becker et al. (2011) [7] showed

that Elastic SCAD SVM using the following penalty

penx(w Zpasgfm wi) + Ao w3, (3.25)

provided sparser classifiers in terms of median number of features selected and better pre-
dictions in terms of misclassification error than Elastic Net SVM.
Penalized methods are used to shrink the coefficients of some genes by the penalties

in the objective functions. This implements variable selection automatically and could
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improve the performance of prediction. There are algorithms for efficiently computing the
penalized methods. However, since penalized methods do variable selection based on the
prediction performance, they could select a group of non-specific genes that predict well
in the existing data but poor for future data. For example, suppose in one unbalanced
experiment, the control group consists of all men, while the treatment group consists of
all women. Therefore, the genes related to gender will give a perfect prediction, and could
easily be selected by penalized methods. But the performance of the model relying heavily
on gender genes would be terrible for future data. In addition, the procedure of picking up
genes by penalized methods is a black box and what scientists and statistician can do after

fixing the model is quite limited.
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Chapter 4

Enriched PCA-LDA

4.1 Introduction

In microarray experiments, the expression levels of tens of thousands of genes are monitored
simultaneously. But because of the high cost, the sample size is typically small: only a few
dozen. In most cases, only a relatively small proportion out of the tens of thousands of
genes carry information related to the response. As we have reviewed in chapter 2, there are
different methods for classification of microarray data. In summary, the methods could be
classified into two categories: one is two-step method, which reduces the high dimensionality
by feature selection or feature extraction and does the classification by classical methods
such as LDA and SVM; the other is penalized method which integrates the dimension
reduction step and the classification step together. Here, we introduce a new perspective
on microarray data analysis: though microarray data have quite complicated structures, we
believe they generally contain three types of signals - specific signal, non-specific signal and
spurious signal.

Specific signal is the signal truly associated with the response being studied and is
generated by the process that creates this response. For example, in a cancer screening
study, specific signal is the one generated by the genes involved in the cancer process. Non-
specific signal is due to some secondary effect unrelated to the experiment in the population
but it is possible that in a particular dataset such an effect would be correlated with the
response. For example, in data from unbalanced designs, covariates such as gender, blood
type, race, age, and disease severity, which have nothing to do with the response, may
introduce some signal because the unbalancedness induces a correlation of the covariate
with the response. These two types of signals are hard to separate at the data analysis

stage but could be separated with new data that does not have the same unbalanced design
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or via subject-matter knowledge. For example, a group of apparently significant genes may
turn out to be from the X/Y chromosomes indicating that the signal is related to gender
and hence non-specific. Spurious signal is due to the large number of genes in relation to
the sample size. The huge number of noise components could generate a random pattern,
which appears to be a signal.

Spurious signal in microarray data is typically very strong. It may conceal the other
two types of signal. Take one simulation in Bair et al. (2006) [6] as an example. Let xg;
denote the “expression level” of the gth gene in the jth sample. The data (which contains

5000 genes and 100 samples) are generated according to the following model:

3+ €45 if g <50,5 <50

4+ ey if g < 50,5 > 50

3.5+ 1.5 I(u; < 0.4) + ¢y if 51 < g <100

Lgj = (4.1)
8.5+ 0.5 I(ug; < 0.7) +eg; if 101 < g < 200

3.5 — 1.5 I(uzj < 0.3) + ¢4 if 201 < g < 300

3.5 + €g4j if g > 301
where the random variables u4;’s independently follow uniform(0, 1), the €4;’s are indepen-
dent standard normal variables, and I(z) is an indicator function. We assume the first 50
samples are in group 1, and the last 50 samples in group 2. Then according to our simu-
lation model (4.1), the signal from the first 50 genes is related to the classification, while
the signals from genes 51-100, 101-200, 201-300 are not. In other words, the simulated data
contains 1 specific signal, 3 non-specific signals (shown in Figure 4.3) and perhaps some
spurious signals. The singular values of the 5 dominant principal components are 97.52,
88.08, 82.04, 79.98,and 79.73 respectively, and the first two components correspond to two
non-specific signals. The third principal component with singular value 82.04 is the one
related to the classification (see Figure 4.4), which is just above that of the first spurious
signal: 79.73. As dimension increases, spurious signals may ultimately dominate some good
signals (see Figure 4.6).

Hence, in analysis of microarray data, weakening the spurious signal and highlighting the
specific and non-specific signals are appealing. In this chapter, we propose a new method

which can achieve this purpose, and can also separate the specific and non-specific signals
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when the non-specific signal is not parallel to the specific one. Our method performs a soft-
filtering to reach the weakening and strengthening purpose: instead of setting a threshold
to do hard-filtering (pick up or discard), we assign general weights (real numbers from 0 to
1; not 0 or 1 weights as in hard-filtering) to all genes. In order to find out the signals, we
apply principal component analysis (PCA) to the weighted data. After strengthening the
specific signal by weighting, different principle components can be reranked and the specific
signal goes up. This helps improving the performance of prediction, which will be done by
linear discriminant analysis (LDA) on the space of a few principal components. We call this
method “Enriched PCA-LDA”.

Just as LDA and logistic regression for low dimensional classification, enriched PCA-
LDA can be viewed as the corresponding method of LDA compared to penalized logistic
regression in high dimensional classification problems. The penalized logistic regression
which is solved by coordinate descent algorithm has more of the flavor of enriched methods.
It starts by looking at variables individually and discards those which have no prediction
power. Then it does not optimize the objective function following a generic steepest descent
direction, instead, it follows only coordinate directions. When the penalty constraint is
meet, it stops and goes to the next step with the next constraint value. The main advantage
of enriched PCA-LDA comparing to penalized logistic regression is: results from enriched
PCA-LDA can be interpreted easily, and sometimes help scientists digging out interesting
things.

The rest of this chapter is organized as follows. In section 4.2, we give the detail of
our method. We validate our method by simulation in section 4.3. Then, in section 4.4,
we analyze Sialin data from a new perspective, compare these methods using this data and

also give some results about the data.

4.2 Enriched PCA-LDA for Classification and Prediction

Here are a few notations which will be used later. Given a training set {(x;,y;)}~,, where
x; = (214, ,2q) € R is the input vector (x; is the expression level of gene k in the

ith sample) and y; € {+1, —1} indicates the group label, where y; = 1 means sample i is in
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group 1 and y; = —1 means sample ¢ is in group 2. Denote the data as a matrix: Xgx, =
(xT,xT, .- xI). X is partitioned as X = (X1, X2), where X is the gene expression matrix

(G x ny) of group 1 and Xy is that of group 2 (G X ng2) (n = ni + ng).

4.2.1 Owur Method: Enriched PCA-LDA

Weighting is the most important part in enriched PCA-LDA. The idea of weighting is sim-
ilar to “the ABC clustering” (Amaratunga et al. (2008) [4]), “enriched random forest”
(Amaratunga et al. (2008) [5]) and “ensemble classifiers” (Amaratunga et al. (2012) [3]).
Among all the genes on each microarray, some genes are differentially expressed between
groups while some other genes are not. Intuitively, differentially expressed genes help in
classification. Hence, we’d like to pay more attention to those differentially expressed genes,
i.e., they will receive higher weights. The criterion for differential expression levels is based
on hypothesis testing, where the null hypothesis is that the gene is not differentially ex-
pressed. We have reviewed different test statistics in section 3.1. When the sample size is
small, the ordinary ¢ test is less efficient than the methods that borrow strength amongst
genes, such as conditional ¢ test, SAM ¢ test or LIMMA ¢ test.

Here is how we get the weight for each gene. First, we obtain the p values from the
hypotheses test. To adjust for multiplicity we will correct the p-values by the False Discovery
Rate (FDR) (Benjamini and Hochberg (1995) [9]) as in (3.4), or correct the p-values by the
positive False Discovery Rate (pFDR) (Storey (2003) [63]) as in (3.5). The corrected p-
values are also called g-values(Storey and Tibshirani (2003) [66]). The g values are effectively
adjusted for the spurious signal so the only signal left is the one that is stronger than the
signal happening by chance.

Based on the g values, we can define the weight for each gene. What we would want
the weights to do is highlighting the genes with relatively small ¢ values and diluting the
genes with relatively large ¢ values. Nonnegative decreasing function of ¢ values will do
the job. Most often, we use wi(q) = —log(q) and wa(q) = 1/g — 1. Since ¢ € (0,1)
and function f(x) = 1/x explodes at z = 0, w;(q) = log(1/q) is much more conservative
than wa(q) = 1/q — 1 (see Figure 4.1). A small difference for ¢ values at the left tail will
be picked up by wa(q): w2(0.01) = 100, w2(0.009) = 111.11, while w;(0.01) = 4.61 and
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w1(0.009) = 4.71. Further, we know ws(q) = y/1/q— 1 is comparable to wi(g). From w3(q)
we propose a general set of weight functions: wa(q) = (1/¢)* —1,(0 < a < 1). We show

some of these weight functions in Figure 4.1.

—log(x)
1x-1
XN=1/2) -
XN(-1/3) -
XN(-1/4) -

Figure 4.1: Weight functions. The vertical dashed line is cut at = 0.05

The explosion pattern at the neighborhood of 0 of all these functions gives us some
freedom to add our preference about when to stop differentiating two ¢ values: say, we
may think ¢ values 10~7 and 1075 make no difference, we could set a threshold B; = 1076
and any ¢ values less than B; will be set as B;. In this way, situation where only one or
two genes dominate will be avoided. In addition, in some conservative circumstances where
you prefer to discard no genes, a threshold B, for q values could be applied: any ¢ values
greater than B, will be set as B,. Such a B, is needed in ensemble methods where every
gene should have a positive probability to be picked up. Hence, in general, the weight wei;
for gene g is given by:

weiy, = median(w(By), w(qy), w(By)),
where B; and B,, are the lower and upper thresholds for the ¢ values, and w(q) is the weight

function you choose. Depending on the nature of the data and the choices of w(q), B; and

B, the scale of weights for all the genes could be so big that weighting would introduce some
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unnecessary complexity to the data. To avoid such embarrassment, we do standardization:
-/

wei,

G

g=1

wety = ,

weiy
where weig is the final weight we are going to use for gene g in further analysis.

In Figure 4.2, we show a plot of the ¢ values, and the corresponding weights using
w1(q), wa(q) and ws(q). B; = 4.5 % 107° for all weight functions. Figure 4.2 shows that
w1(q) = —log(q) considers the most genes comparing to the other two weight functions.
Moreover, by convention, genes with ¢ values less than 0.05 are considered significant. ws(q)
does not give any considerations for g values between 0.01 and 0.05, and even some ¢ values
less than 0.01. ws(g) does consider most of the genes w;(q) considered. But it gives too
much weights to the 3 genes with relatively small ¢ values. Of course, these pictures are for
the same B;. Relatively larger B; for ws(q) and even larger B; for wo(q) could give weights
plots considering the same amount genes as the one for wi(q). The choice of weight function
is still a research question. But it is clear that if one aims at a smaller group of genes, it
is better to use wqy(q), (0 < a < 1) with small Bj; while if one aims at a larger group, it is
better to use the minus log weights, or the wq(¢), (0 < a < 1) with large B;. However, it
could be more difficult to justify the choices of B; for wy(q), (0 < o < 1). Here, we prefer
minus log weights for our data, which is more stable: the resulting weights are more spread
out.

Once we get the weights, we can do further analysis on the weighted data. Suppose
Xgxn (G > n) is centered so that the columns have zero means. Denote the weighted
data as X* = (X7, X3) = WX = (WX, WXs), where W = diag{wei,--- ,weig} is the
diagonal matrix of weights.

To reduce the dimensionality, we get the principal components of X*. Unlike the prin-
cipal components of X, weighting strengthens the principal component related to y so that
the first few (two or three) principal components of X* can give sufficient information (veri-
fied in section 4.3 by simulation data). Hence, typically we would like to pick the first two or
three principal components and no more than n/2. Denote the singular value decomposition

(SVD) of X* as follows:

Xon = UcsnDnxnVik

nxn:

(4.2)
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Figure 4.2: The corresponding ¢ values and weights of genes with p values less than 0.001
of our data on day 0. The green dashed line for ¢ values is at 0.05, while the red dashed
line is at 0.01.

Projecting X* onto the k-dim subspace spanned by the first k columns of U: Uy, we get
the first k£ principal components Z = U,z’ X*. Then we apply ordinary linear discriminant
analysis (LDA) to Z. In order to assess performance, this procedure can be easily combined

with cross-validation or splitting the data into one training and one testing sets.

In all, the procedure of our enriched PCA-LDA can be summarized as follows:

1. Get weighted data set X* from the weight matrix W and centered X: X* = W X.
2. Get the projections Z of X™*: the first few eigenvectors of the SVD of X*.

3. Apply ordinary linear discriminant analysis (LDA) to Z.

The algorithm is very fast, due to the computational efficiency of the SVD of a matrix with
a large number of rows but a small number of columns. The computation of the weights is
also fast but it comprises the main computational effort of the algorithm.

When a new data vector x comes in, we first centralize it X’ = x — élGXllgxlx,
then apply the weight matrix W onto the centralized vector x’: x” = Wx/, then get the
projection of x”: z” = Ul'x”, and finally, we predict the class of z” based on the LDA

model of Z, hence, we get the prediction of x.
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To weaken the effect of spurious signal, similar to our idea of enriched PCA-LDA, we

could do enriched SVM.

4.3 Evaluate our Method based on Simulation

In this section, we evaluate our enriched version of PCA based on simulated data. The
simulation model is the same as (4.1). The mean structures of the first four blocks (Each
of the first two blocks contain 50 genes, while the third and the forth blocks consist of 100
genes respectively) are shown in Figure 4.3. The first 50 samples are in group 1, and the
rest 50 samples are in group 2. Clearly signal similar to the top left plot of Figure 4.3 is
what we are pursuing.

The data we get from (4.1) is one 5000 x 100 matrix. The first to the sixth principal
components (PCs) from ordinary principal component analysis (PCA) are plotted in Fig-
ure 4.4. We can see that by ordinary principal component analysis the first three principal
components show some pattern. But obviously, only the 3rd one will contribute to clas-
sification. And the largest four singular values are 97.62, 88.08, 82.04 and 79.98. Hence,
the singular value of the most interesting principal component (i.e., the third one) is only
slightly larger than the fourth and the fifth ones, which show no pattern and could be some
spurious signal.

Our enriched version of PCA was applied to the same data set. The p values were
obtained from conditional ¢ test, and were adjusted by FDR as in Benjamini and Hochberg
(1995) [9] (3.4). The weight function is w(q) = —log(g) with U; = 10~°. The corresponding
principal components from enriched principal component analysis are in Figure 4.5. We
see that weighting in the enriched-PCA strengthened the specific signal: while in ordinary
PCA, the PC related to the response is at the third place, and its singular value is only
slightly larger than the fourth one, which could belong to some spurious signal; in enriched-
PCA, the first PC is the one related to the response (classification), and its singular value
is twice as big as the second singular value.

Figure 4.6 and 4.7 are replications of Figure 4.4 and 4.5 with one 45000 * 100 matrix,

which consists of the same 5000 * 100 matrix as before and another 40000 * 100 matrix of
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Figure 4.3: The mean of the first four blocks as in model (4.1). As we have designed, the
first block is related to the response. The second block has some determinant structure,
which does not tell anything about the response. The third and forth blocks have some
weak determinant structures.

pure noise. In this case, the ordinary PCA fails to give any meaningful PCs. The signals

are concealed by noise. However, our enriched-PCA still works.

4.3.1 Comparing with other Methods

To study how noisy genes could impact ordinary principal component analysis, we tried
PCA with data which consists of different number of genes. Data A contains the expression
levels of 300 genes: which are those in the first 4 blocks with signals as in model (4.1).
Data B contains the expression levels of 500 genes: adding another 200 genes with pure
noise into Data A. Data C' contains the expression levels of 1000 genes: adding another 500
pure noise genes into Data B. Data D contains the expression levels of 5000 genes: adding
another 4000 pure noise genes into Data C. We also tried different sample size. Table 4.2
contains the result for one simulation with sample size 100, and Table 4.3 with sample size
20. Using PCA, genes with large loadings (for example, loading coefficients larger than
half of the largest loading coefficient) will be picked up as possible biomarkers. For these
four cases, the number of genes in the first five blocks contribute to the first three PCs are

almost the same, as we can see in Table 4.2 and Table 4.3. More noisy genes included, we
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Figure 4.4: Ordinary principal component analysis of our simulated data: in addition to the
first four blocks which contains some determinant structures, we add another 4700 rows of
pure noise. Ordinary principal component analysis discovers 3 signals which are plotted in
the first row. Obviously the third principal component is the specific signal we are looking
for. It has a singular value of 82.04, which is just a little higher than those of the fourth

and fifth principal components.

Singular value: 0.8

S
34
polip=}
5
5 w
g2 S A
g S
8
s g
2 8 4
g S
5 w
= 8
2 9
s g
a 3
'

sample

Singular value: 0.3

<
£ 8
2 s 7]
g
E
8
2 8
= =1
£
5

o
2 38
e o T
S5
&

Enriched principle component 2

Enriched principle component 5

-005 000 005 010

-0.10

-0.05 0.00 0.05

-0.10

Singular value: 0.4

Sample

Singular value: 0.3

0O 20 40 60 80 100

Sample

Enriched principle component 3

Enriched principle component 6

0.00 0.05

-0.05

-0.02 0.02 0.06

-0.06

Singular value: 0.3

Sample

Singular value: 0.3

sample

Figure 4.5: Enriched principal component analysis of the 5000 x 100 data matrix as in
Figure 4.4. Through weighting, we strengthen the specific signal and weaken the others.
The first principal component from enriched PCA is what we want. It has a singular value

of 0.8 which is two times of the singular value of the second principal component.
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Figure 4.6: Ordinary principal component analysis of our simulated data: in addition to the
first four blocks which contains some determinant structures, we add another 44700 rows
of pure noise. The plot here shows the 44700 rows of pure noise conceal the determinant
signal of the first four blocks. It seems the forth and fifth principal components show some
correlation to the response, but not obviously.
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Figure 4.7: Enriched principal component analysis of the 45000 x 100 data matrix as in
Figure 4.6. Enriched PCA is not affected by the huge number of noise. Still, it strengthens
the specific signal. Though now we have a singular value of 0.7, instead of 0.8.
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get more noisy genes contributed in the three PCs.

We also tried enriched PCA onto Data D, with conditional ¢ test and Limma ¢ test
separately. Similarly, genes with large loadings (for example, loading coefficients larger than
half of the largest loading coefficient) in our enriched PCA will be picked up as possible
biomarkers. We can see that Limma ¢ test is more conservative than conditional ¢ test:
while using conditional ¢ test, 37 genes out of the first 50 genes are picked up, Limma ¢ only
picks 5 genes out of the first 50 genes, when sample size is 100 (shown in Table 4.2). Also
in Table 4.3, when sample size is 20, conditional ¢ enriched PCA picks 12 genes out of the
first 50 genes, while Limma ¢ only picks 5 genes.

For penalized methods (GLMNET and Penalized SVM) on Data D, adding Ly norm
to the penalty functions pick up more informative genes than enriched PCA, but with the
price of a large proportion of noisy genes, comparing to the additional number of informative
genes being picked. When the sample size is 20, noisy genes being picked up are around
four times of informative genes that have been picked up.

The fitting errors and prediction errors of each method are stored in Table 4.1, where we
can see that for ordinary PCA-LDA, the classification error also increase with the number
of noisy genes. By Table 4.1, we see that our enriched PCA gives a smaller fitting error and
prediction error, comparing to GLMNET and Penalized SVM. When sample size is smaller,

i.e. 20, the advantage of our enriched method is more obvious.
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Sample size 100

Sample size 20

Method Fit Error | Prediction Error || Fit Error | Prediction Error
Ordinary PCA-LDA (A) 1 1 0 1
Ordinary PCA-LDA (B) 1 1 1 1
Ordinary PCA-LDA (C) 1 3 1 1
Ordinary PCA-LDA (D) 13 18 5 10
Enriched PCA-LDA

Limma t 0 0 0 0
Enriched PCA-LDA

conditional t 0 0 0 0
GLMnet(LASSO) 0 2.04 1.45 5.41
GLMnet(a=0.5) 0 1.00 0.75 5.44
SVM 0 13 0 6
SCAD SVM 0 4 1 3
Elastic SCAD SVM 0 1 0 4

Table 4.1: Compare the misclassification error of different methods. Simulation is based on
model 4.1. The advantage of our enriched method is more obvious when the sample size is

small, i.e., 20.
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Genes selected in each block
Method Block 1 | Block 2 | Block 3 | Block 4 | Block 5
OPC PC1 1 8 3 100 0
Data A PC2 7 50 8 14 0
300 genes PC3 50 13 24 13 0
Total 50 50 33 100 0
oprC PC1 4 11 4 100 5
Data B PC2 8 50 8 15 14
500 genes PC3 50 12 25 16 32
Total 50 50 34 100 50
OPC PC1 3 12 4 100 28
Data C PC2 8 50 9 19 53
1000 genes PC3 50 15 23 13 86
Total 50 50 32 100 159
OopPC PC1 5 19 6 100 287
Data D PC2 8 50 9 23 420
5000 genes PC3 50 15 13 18 568
Total 50 50 26 100 1168
. PC1 37 0 0 0 0
EnrichedPCA PC2 93 0 0 0 0
Conditional t Total 37 0 0 0 0
. PC1 1 0 0 0 0
EnrichedPCA PC2 4 0 0 0 0
Limma t Total 5 0 0 0 0
LASSO 29 0 0 0 6
GLMNET a=0.5 47 0 0 0 22
. SCAD 29 0 0 0 3
PenalizedSVM SCAD-+ Ly m 0 0 0 43

Table 4.2: Genes selected in each block by different methods. Simulation is based on model
4.1: 5000 x 100 data matrix. For Data A, B, C, D, ordinary principal component analysis
picks almost the same number of genes from the first 4 blocks, and the number of noisy genes
picked up increase with the number of noisy genes in the data. Enriched-PCA, GLMNET,
Penalized SVM are applied on data D. We can see that Limma ¢ is more conservative than
conditional ¢. Penalized methods (GLMNET and Penalized SVM) including Ly norm pick
up relatively more genes than conditional ¢ enriched PCA, with the price of more noisy
genes.
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Genes selected in each block
Method Block 1 | Block 2 | Block 3 | Block 4 | Block 5
OPC PC1 14 20 19 94 0
Data A PC2 20 48 39 34 0
300 Genes PC3 39 20 35 34 0
Total 49 49 68 98 0
OoPC PC1 18 25 27 96 40
Data B PC2 23 48 35 32 69
500 Genes PC3 39 26 42 36 66
Total 48 49 74 98 123
OoprPC PC1 19 23 25 97 145
Data C PC2 19 48 35 30 218
1000 Genes PC3 38 19 30 36 203
Total 47 49 69 98 419
OPC PC1 20 27 34 93 1312
Data D PC2 17 44 38 36 1475
5000 Genes PC3 28 34 21 41 1510
Total 43 49 66 96 3098
. PC1 12 0 1 0 7
EnrichedPCA PC2 7 0 0 0 3
Conditional t Total 12 0 1 0 7
. PC1 2 0 0 0 0
EnrichedPCA PC2 4 0 0 0 1
Limma t Total 5 0 0 0 1
LASSO 5 0 0 0 8
GLMNET a=0.5 17 0 1 0 56
. SCAD 4 0 0 0 1
PenalizedSVM | geapyr, | 26 2 2 3 101

Table 4.3: Simulation using model 4.1: 5000 x 20 data matrix. This table is almost the
same as Table 4.2, except that here the sample size is 20.
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4.4 Analysis of our Data

Our method and some other popular methods will be evaluated on the dataset from one
experiment for finding out the pathogenic mechanism of sialic acid storage diseases (which
is due to the mutations in gene “Slc17A5” - encoding the protein Sialin). Raghavan et
al. (2007) [53] and Amaratunga et al. (2008) [5] studied this data set. Two groups of
mouse are studied in this experiment. One group consists of mice with gene “Slc17A5”
knocked out, while the other group consists of wild type mice. Data is collected at three
time points. At day 0, RNA samples from the whole embryo are studied. At this stage,
there are no obvious phenotype traits that differ between the two groups but there would
be gene expression differences. At day 10 and day 18, RNA samples from total brain
tissue are studied. At these two stages, impaired sialic acid transport leads to observable
morphological alterations such as defects in myelination. There are 6 biological samples
for each group at each time point, except the control group for day 10, which has only
5 biological samples. All the samples (35 samples) are independent. For each sample,
expression levels of 45101 genes are measured. In terms of sample size, the Sialin data is
very typical, since microarray experiments are generally of sample size 3 to 10 per group.
Some data sets generated by clinical trials are larger in sample size, but sometimes the
samples are not independent and they usually come with covariates such as gender, race,

age and others. Hence for all practical purposes the small sample size remains.

4.4.1 Our New Perspective

All the analysis that have been done about this data set till now treated each time point
separately. Different models were built for different time points and were validated by cross
validation or permutation on its own data sets. As we have noticed that, for each time
point, the sample size is 12 or 11, which is quite small for cross validation. But as mice at
each time point got the same treatment (half were wild mice, half received the treatment:
gene “Slc17A5” was knocked out), these data were about their development at different time
points. Intuitively, data on day 0 should give some information about what will happen

on day 10 and day 18; and similarly, by studying the data on day 18, we could get some
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Figure 4.8: PC1 vs PC2 of day 0: standard PCA (left) and enriched PCA (right)

idea about what might happen on day 0 and day 10. Therefore, our new perspective about
analyzing these three data is: after one model is built for some time point, data on the
other two time points will serve to validate the model and the finding. In this way, we can
avoid applying cross validation to data with small sample size. Moreover, we also gain more

power by treating these three time points together.

4.4.2 Value of Enriching
Comparing to Ordinary Principal Component Analysis

In Figure 4.8, we display the results of performing PCA on the Sialin data of day zero
(Sialin 0): both standard and enriched. The reason of emphasizing data of day 0 instead of
day 10 or day 18 here is: the truly informative genes on day 0 is much less, comparing to
other two time points, i.e., the ratio of noise to signal is pretty large at day 0; hence, the
advantage of enriching is much more obvious. The left plot in Figure 4.8 shows the graph of
the first two principal components from the standard PCA analysis. There is no separation
between the knock-out group and the wild type group. The huge amount of noise conceal
the specific signals. The right plot shows the first 2 principal components from the enriched
PCA, and this time the separation is perfect. This shows clearly the value of enriching:

strengthening the specific signal.
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Comparing to Filtering Principal Component Analysis

Now let’s see the advantage of weighting comparing to gene selection (filtering) based on
day 18 data. The reason for emphasizing day 18 data now is: at day 18, a lot of things are
going on in the brain; the structure of the data is very complicated; hence identifying the
truly informative genes (biomarkers), based on which we could get the perfect predictions
of day 0 and day 10, is more challenging than at the other two time points. The usual way
to do filtering is to set a threshold for the p values and choose genes with p values smaller
than that threshold. Then do analysis with the set of genes chosen. Here in this section,
we show the plot of the first and second principal components of day 18 data in dots, the
projections of data on day 0 (as described in section 4.2.1) in circles, and the projections of
day 10 data in triangles. We tried thresholds 0.01, 0.05, and 0.1 respectively on the p values
of conditional ¢ test on data of day 18, picking up 2218, 4757, and 7306 genes respectively.
The plots are shown in Figure 4.9, 4.10. In all figures, day 18 and day 10 data are well

separated by some line, but not day 0 data.

« day18
o day 0
A day 10

10

« day18
o day 0
A day 10

-20 -10 0 10 -20 -10 0 10 20

PC1 PC1

Figure 4.9: PCs 1 & 2; Filter out genes with p values larger than 0.01 (left) and 0.05 (right);
day 18

Setting a threshold for p values can be criticized to be subjective. To improve, we can
do some sophisticated filtering: let the data decide the threshold through cross validation.

3-fold and 6-fold cross validations are tried. With 3-fold cross validation, each time, 4 + 4

samples are used to build one model and the number of errors in predicting the classes
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Figure 4.10: Left plot is about PCs 1 & 2; Filter out genes with ¢ values larger than 0.1 of
day 18. Right plot is about cross validation to determine the threshold for p value

of the remaining 2 4+ 2 samples is calculated. With 6-fold cross validation, we build the
model using 5+ 5 samples and get prediction error for the remaining 1+ 1 samples. Genes
are selected by the order of significance based on p values. The mean of the number of
prediction errors from 50 kinds of splitting is obtained. In predicting the day 0 and day 10
data, we use the whole day 18 data. Since any threshold between 0.001 to 0.5 for p value
gives 0 test error for cross validation, 3-fold and 6-fold cross validation give similar plots of
test error and prediction error: Figure 4.10. Prediction of day 10 data based on day 18 data
is not challenging: the prediction error is always 0. The flat test error makes it impossible
to choose the threshold for p value based on cross validation on day 18 data. However, the
green curve shows that to get a perfect prediction of day 0 data, the threshold for filtering
should not be bigger than 0.002 (obviously, the threshold should not be too small either). In
all, by cross validation on day 18 data alone, any threshold from 0.001 to 0.5 works, which
actually gives no insight about the threshold. Even if one has day 10 data in addition to
day 18 data, still, any threshold from 0.001 to 0.5 works, as we have seen in Figure 4.10, the
prediction error of day 10 based on day 18 is always 0. But to get perfect prediction of day
0 data, threshold should be in some interval (Figure 4.11). This makes the performance of
filtering unstable.

Figure 4.11 is the plot for enriched method. We see that the performance of our enriched
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method is perfect. To conclude, we have seen that with data of small sample size, filtering
by subjectively thresholding or by cross validation is challenging and unstable. Our method

bypasses the messy hard-filtering procedure, getting efficiency without losing any power.
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Figure 4.11: Left plot: PCs 1 & 2; Filter out genes with ¢ values larger than 0.001; day 18.
Right plot: PCs of day 18 by enriched PCA; project day 0 onto these two directions

4.4.3 Visualization of our Data by Enriched Biplot
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Figure 4.12: Left plot: Biplot of day 0; Right plot: Biplot of day 10.

Now we show the visualization of our data using weighted principle components analysis.

In left plot of Figure 4.12, we plot the first two principal components of day 0 data in dots,
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Genes 2nd PCA | Annotation

1429116_a SLC gene that was knocked out in treatment group.

1435559_at Myo6, Growth.

1437522 _x_at Gh growth hormone.

1454905_at Inhibitor of Bruton agammaglobulinemia tyrosine kinase.

Genes 1st PCA | Annotation

1417210_at Eukaryotic translation initiation factor 2, subunit 3,
structural gene Y-linked Kif-2gy, Spy, Tfy

1426438 _at Box polypeptide 3, Y-link ed 8030469F12Rik, D1Pasl-rs1, Dby

1427262 _at Inactive X specific transcripts A430022B11, AI314753.
Exper Embryonic brain development.

1436936_s_at Inactive X specific transcripts A430022B11, AI314753
Experiment Embryonic brain development.

Table 4.4: Gene annotations for the two components of the enriched PCA of the Sialin day
0 data. Scientists could find interesting biomarkers from the loadings in the 2nd PCA.

projections of day 10 data in circles and projections of day 18 data in triangles. Similar
plots for day 10 and day 18 are in Figure 4.12 and 4.13. In all plots, we visualize genes
with relatively large contribution in classification in terms of their loadings in the principal
components. Genes with loadings greater than some threshold will be shown as vectors
in the plot. The lengths of these vectors in the plot are shrunk to the range of principal

components.

Separation of Signals

As we have expected, the structures in data of day 0 (Figure 4.12) are relatively simpler
than those of day 10 and day 18. Genes contribute in two main directions. The direction
of the separating hyperplane, which is almost parallel to the second principal component,
is dominated by genes: 1429116_a, 1435559 _at, 1437522 _x_at and 1454905_at. The other
direction, which is almost parallel to the separating hyperplane and the first principal
component, is dominated by genes: 1417210_at, 1426438 _at, 1427262_at and 1436936 _s_at.

In Table 4.4 we give a description of the annotations for each of the genes that con-
tributes to the first and second principal components. It appears that the second principal
component is specific and contains the Sialin gene plus other genes whose annotations in-

dicate their contribution to growth pathways. This is in fact the type of signal that we are
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Figure 4.13: Left plot: Biplot of day 18. Right plot: PCs 1 3 of enriched PCA of day 0.

after and help us learn which pathways are affected by the knocked out gene at the embryo
phase of the mouse development. The genes contribute to this principal component could
be biomarkers. The first principal component is loaded with genes that are part of the X
and Y chromosomes and therefore the second component corresponds to gender. This is
what we call a non-specific signal. The fact that the two groups are not balanced with
respect to the response implies that gender genes are differentially expressed and contribute
to the signal.

This example helps us understand the three types of signals that appear in microarray

data:

e The signal found in the second principal component is specific and is the primary

signal of interest.

e The signal found in the first principal component is a non-specific signal that is at-

tributable to a secondary effect in the data.

e The spurious signal in the third principal component (Figure 4.13), which does not

give any information of day 0 data.

The enriched method is able to avoid the spurious signal and detect the other two. Then it

is up to the scientist or analyst to separate the specific signals from the rest.
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4.4.4 Comparing Results of all Methods in terms of Prediction Error

Here, we compare the prediction power of our method with some of the methods we reviewed
in section 3.3. When cross validation is needed, we use 6-fold cross validation. When the
performance of one method is not stable, we perform 100 times and calculate the mean
number of prediction errors. Working with enriched PCA-LDA, we only choose the first
2 or 3 principle components. The SVM is performed with the R package e1071. We have
tried the four kinds of penalty in the R package “penalizedSVM”. The results are in Table
4.5.

The predictions of enriched PCA-LDA are perfect. Logistic model with Li and Lo
penalties works best when o = 1, i.e. with Ly penalty only. Enriched SVM does not work
as well as we expected. The SVM model with L; and Ly penalties (ElasticNet SVM) does
not converge. Among the three penalties, SCAD SVM works best.

From Figure 4.12, to Figure 4.13, we can see that more and more genes become active.
On day 0 and day 10, Sialin gene (1429116_at) has a large leverage in the direction of
separating plane, but not on day 18. Since most genes shown in Figure 4.13 does not
appear in Figure 4.12, prediction of day 0 data based on day 18 data is the most difficult

one (see Table 4.5). Our enriched method handles it perfectly.

4.4.5 Conclusion

In this chapter, we introduced one efficient weighted principle component analysis method
(we call enriched PCA-LDA), bypassing the subjectively thresholding step or the cross
validation step in feature filtering methods, without losing any power. Enriched PCA-
LDA helps separating different signals in the data, hence helps identifying the specific
signals. Penalization can not separate the signals into specific and non-specific. After
getting a subset of genes, one can not decide which gene contributes to the specific signal.
Hence, enriched PCA-LDA improves the interpretation about the data. We compared
the prediction results to some other popular methods, showing enriched PCA-LDA works
perfectly for our data, even in the most difficult situation: predicting day 0 data from day

18 data.
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Method DO0-10 | D0-18 | D10-0 | D10-18 | D18-0 | D18&-10
Enriched PCA-LDA

Limma. t 0 0 0 0 0 0
Enriched PCA-LDA

conditional t 0 0 0 0 0 0
GLMnet(LASSO) 0.78 0.78 0.30 0.36 1.23 0.12
GLMnet(a=0.75) 1.10 0.88 6 0 6 0
GLMnet(a=0.5) 0.97 2.79 6 0 6 0
SVM 6 6 6 6 6 5
Enriched (1/¢) SVM 0 0 6 6 6 0
Enriched (—log) SVM 0 0 6 6 6 0
Proximal SVM 6 6 6 6 6 )
LASSO SVM 0 2 4 0 6 2
SCAD SVM 0 0 0 1 6 1
ElasticNet SVM - - - - -
Elastic SCAD SVM 0 6 6 0

Table 4.5: Comparisons of the prediction performance of different methods. D0-10 means
using day 0 data to predict day 10 data, D0-18 means using day 0 data to predict day 18
data and so on. Each cell is the number of prediction errors. ‘-’ means the algorithm does
not converge. The fraction number is the mean of prediction errors in 100 repeats.

The drawback of this method could be that the correlation between genes is ignored in
the weighting step. Asin microarray experiments, mRNA is extracted out of specific animals
and tissues under biological conditions that are functionally associated with the mechanism
examined, consequently, the genes tend to subgroup into highly correlated expression levels
for reasons such as co-regulations based on genomic locations. In future work, we are
going to consider the dependency structure among genes. But as we do not exclude genes

completely, it could be all right in some situation, for example, data used in this chapter.
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Chapter 5

Stochastic Approximation

5.1 Introduction

One characteristic of microarray data is that the number of variables (genes) is in the
thousands while the sample size is only a few dozen. Statistical power is quite poor in
analysis about each gene. Borrowing strength across genes is one popular way to improve
the performance of such statistical analysis. In methods for borrowing strength across genes,

the model used for the expression levels of gene ¢ is generally assumed as follows:

Xg’”g ~ N(Mgaag)

o, ~ F().

For example, in Limma t, F(-) assumes one inverse x? distribution. In conditional ¢, effort
is made to estimate F'(-) from the empirical distribution of the sample variances of all genes.
But because of the small sample size, the sample variances are poor estimates of the true
variances for the genes, hence, the empirical distribution of the sample variances is a poor
estimate of F'. To improve the estimation, resampling methods are applied (Section 3.1.5).

In this chapter, we’d like to show the theoretical properties of the resampling methods
used in conditional ¢ test. Here are some notations which will be used in this chapter.
Suppose we observe the expression levels of gene g in m samples: X, = {xg1,2g2, - , Tgm }-

We estimate 02 by the sample variance of X,: s2. Then the empirical distribution of

>
{s2:9=1,---,G} (F,) will be used to estimate F.

The idea used in conditional ¢ is assuming there is a mapping:
M:FeF—F, e Fg,

where F is the set of all possible probability distributions and Fg is the set of all step
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probability distribution. For the F, we get, we hope to recover the true F' by estimating

the mapping M, thus improve the performance of F.

5.2 Preliminary

Here we review some methods in similar problems, which will give us some idea about how
to improve the performance of Fj.
5.2.1 Stochastic Approximation

Robbins and Monro (1951) [55] proposed stochastic approximation to solve the equation
M(z) = a, (5.1)
where M (z) = [*_ydH (y|z) is the expected value of Y for the given 2. They assumed:

e H(y|x) is, for every z, a distribution function in y, and that there exists a positive
constant C' such that

C
dH(ylz) =1, V. (5.2)
C

Pr{Y(2)] < C] = /

e For every z the expected value M (x) exists and is finite.

e There exist finite constants «, # such that

M(z) < aforz<®,

M(z) > aforx>0. (5.3)

They defined a (nonstationary) Markov chain {z,} by taking x; to be arbitrary constant

and defining

Ipt+l — Tn = an(a - yn)u (54)

where y,, is a random variable such that Prly, < y|z,] = H(y|z,), and {a,} is a fixed
sequence of positive constants such that 0 < Y 7° a? = A < co. They showed under some

conditions x, — @ in probability.
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Wolfowitz (1952) [74] weakened conditions in Robbins and Monro (1951) [55] and as-
sumed |[M(z)] < C < oo, [% (y— M(z))?dH(y|z) < 0% < oo, and that either M(z) <
a—10, x<0; M(z)>a+4d, >0, for some § > 0, or else M(z) < a,for z < 0; M(0) =
a; M(xz) > a,for x > 60, and for some positive §, M(x) is strictly increasing if |x — 6] <
and infj,_g>5 [M(z) — a] > 0. Let {a,} be a sequence of positive numbers such that
S0 Lan = 00, Y02 a2 < oo. Let ¥1 be an arbitrary number. The Robbins-Monro
convergence scheme is defined recursively for all n by x,4+1 = z,, + an(a — y,), where y,, is
a random variable with distribution function H (y|zy). They showed that z, converges to
f in probability.

Blum (1954) [14] extended to multidimensional cases, assuming {Yx(ll) PN SRR {Yx(lk) )

are k families of random variables with corresponding families of distribution functions

{Fé})mk}, . ,{Fé’f)wk}, each depending on k real variables (z1,--- ,xy). Let

M(i)(x1,~- , k) —/ deaEQ‘..@k,

—o0
for i = 1,--- ,k, be the corresponding regression functions. Assume that it is possible to
make an observation on the random variable Yx(f)xk fort =1,--- ,k, and any choice of
real numbers (z1,---,z). If aq, -+, ax are k specified numbers,

M(i)(xla"'7$k):ai7 izla"'vka

Blum created one sequence of approximating random vectors which converges a.s. to a
solution of the equation.

There are some other papers about Robbins-Monro stochastic approximation procedure
(RM procedure). Blum (1954) [15] and Dvoretzky (1956) [27] showed that under some
conditions the RM procedure would converge almost surely. Sacks (1958) [57] showed that
under some conditions, the RM procedure would converge in distribution.

One assumption made by Robbins-Monro stochastic approximation is that we can get
observations sequentially, which is not the case in experiments about microarray technology.
Because the time and cost involved, the number of observations in microarray data is often

small and fixed.
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5.2.2 Double Bootstrap

Hall and Martin (1988) [39] and Martin (1992) [51] proposed a unifying approach to a
general form of bootstrap resampling. Let Fy be the true distribution, F; be the empirical
distribution based on a random sample, f(Fp, F}) be a known function of Fj and Fy, and
E(:|Fy) be expectation given that the data came from Fy. They pointed out that a typical

statistical problem has the form: choose f from a designated class so that
E{f(Fo, F1)|Fo} = 0. (5.5)

The resampling solution of f runs as follows: draw a same-size sample at random, with
replacement, from the original sample; let F5 denote its empirical distribution function,
conditional on Fi; arguing that the relationship between F} and F5 should be similar to

that between Fy and Fi, choose f from the class of eligible f’s so that
E{f(F1, Fy)|F1} = 0. (5.6)

The resulting f, depending on Fj, approximates the unobservable f which solves (5.5). If
the problem could be formulated in a way that f could be indexed by a vector t, and take
T(Fp) to be the ‘ideal’ t which solves (5.5), the resampling principle produces T'(F}), the
solution of (5.6), as the bootstrap estimate of T'(Fp). Then fr (g, is the bootstrap estimate
of f.

The idea behind the iterated bootstrap is a simple but powerful one: use the boot-
strap to estimate and correct for errors in bootstrap procedures. This involves resampling
from samples that are themselves resamples from the original data; that is, bootstrap the
bootstrap.

Suppose one is interested in reducing the bias of an estimator 6 = ¥(F1) in estimating

0 = 1(Fy). The bias of § in estimating 6 is
bias(0) = E(0) — 0 = E(¥(F)|Fy) — v(Fo).

The bootstrap estimate of the bias of 6 is constructed as follows. Let X* be a resample
from X, and denote by * the version of § computed using the resample X* instead of the

sample X. The bootstrap estimate of bias is

bias(f) = E(6*|X) — 6 = E((Fy)|F1) — v(Fy),
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where Fj is the empirical distribution, conditional on Fp, based on the resample X*. Con-
sequently, the bootstrap bias-corrected estimate of 4 is

—

01 = 6 — bias(d) = 20(F)) — E((F)|Fy).

Bias can be further reduced by iterating the above procedure. The form of the estimator
after j bias corrections is:

Jj+1

b;=>_ Cra(-D)™ME{W(FR)FA},

i=1
where F; is the empirical distribution, conditional on F;_1, of a resample from F;_1. The
bootstrap quantity E{¢(F;)|F1} is approximated by Monte Carlo algorithm. The gave
asymptotic results about the orders of bias. However, when sample sizes are small, high-
order iterations can result in increased bias.

The idea ‘bootstrap the bootstrap’ is quite appealing for microarray data, since we could

not get more observations most of the time. But then it is difficult to formulate our problem

in a form like (5.5).

5.2.3 Target Estimation

Cabrera and Fernholz (1999) [21] proposed target estimation to correct the bias of some
estimator. Suppose the statistic T'(F},) estimates the parameter T'(Fy), where 7' is a statis-
tical functional and F, is the empirical distribution function corresponding to the sample
X1, -+, X, (iid. random variables with common distribution function Fy, with 6 € ©).
Assume the expectation of T'(F),), g(0) = Ep(T(F,)), exists for all # € O, where Ey indi-
cates the expectation with respect to Fy. The function g is assumed to be one-to-one and
differentiable.
g (T)=T

is called the the target functional of T and T(F,) will be the target estimator of .

The target estimate of 6 corresponds to choosing the value 6 = T(Fn), which solves the
equation

Ey(T(Fyn)) = T(Fn),

where F}, is the observed value of F,.
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They showed that when g¢(f) satisfies some properties, targeting will reduce the bias,
and when the von Mises kernels of T satisfy some properties, the variance of the target
estimator will be reduced.

Cabrera and Hu (2001) [22] showed that if g(6) = 0 +b(0)n~! + O(n=2), Eo(T,, — 6)* =
O(n~!) then

[1+6(0)n"] - Eglg™"(Tn) — 0] = O(n™?),

which shows that the target estimator reduces the bias of a root n consistent estimator 7},
by a factor of n. Using the target estimation approach, Cabrera and Watson (1997) [24]
introduced a median bias reduction procedure. Fernholz (1997) [29] studied the asymptotic
normality and the robustness of target estimator. Cabrera and Hu (2001) [22] also sug-
gested that using Robbins and Monro’s stochastic approximation to implement the target
estimation. They compared their algorithm with Bootstrap and Jackknife bias reduction
methods by simulation and demonstrated that target estimation is quite useful. Cabrera et
al. (2005) [20] applied target estimation to logistic regression models. Cabrera and Fernholz
(2004) [23] extended the target estimation to multivariate situations.

The way Cabrera and Fernholz (1999) [21] formulated the problem gives us the idea

about how to formulate our problem.

5.3 Stochastic Approximation to Improve F,

We formulate the problem in the following form:
M:FecF—F,c Fa,

and try to improve it by the idea of target estimation. Bootstrap the bootstrap is the
main idea of the algorithm and each time we correct the estimation by a small step as in
Robbins-Monro stochastic approximation. For the F, we get, we hope to recover the true
F to some extent, hence to improve Fy.

Instead of working on continuous functions, let’s work with the quantiles. Denote g(a)
be the vector of quantiles corresponding to @ = (ay, -+ ,ag) = (1,2,--- ,G)/(G + 1).

Reformulate the problem as

M(g¢(@)) = ¢(). (5.7)
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What kind of properties do M have? Obviously, no monotonicity exists, since the space
F is partially ordered. It is also possible that M is unidentifiable. But we assume it is

identifiable.

5.3.1 One Procedure

The procedure we propose is the following:
¢"* (@) = sort {¢" (@) + an(d(@) — M(¢"(@)))},

where sorting is trying to keep ¢"*!(a) in increasing order. We choose ¢'(a) = §(a) and

an = % so that Y °° 1 a, = 0o and >_°2 ;a2 < oo (the same as the procedure in Robbins

and Monro (1995)).
We don’t know M(+), so we estimate it by bootstrap. For a given ¢"(«), we simulate m

samples from Normal(0, ¢"(c;)) and get the sample variances s? (i = 1,2, ,G).

(1) — (X1, X12,-, X1m) — 83

() — (Xar,Xog, -+, Xom) — 83;

ag) = (Xn1, Xn2,- - Xnm) — se

Then

M(qn(a)) = SOI‘t(S%, 8%7 e 752G) = Sn(a)'
To improve the efficiency of the procedure, we may do the bootstrap B times, and get:
M(qn(a)) = mean(sort(sil, 81%,2) e 7513,(}') b= ]-7 T 7B)

By the simulation step, (s%,s3,--- ,s%) are independent. As we assume that given the o%’s
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the X’s follow normal distribution, we have

st

s3 N (m—1)¢ -f((m_US%)f((m_1>S%)--~f((m_l)82G)
2 020302 o? o3 o2
o1 192 G i 2 G

52, o3

where f is the density function of x2, ; distribution. To show the theoretical properties of

our procedure, the perfect way will be getting the distribution of

2
5(1)
2
52)
: 2
90
2
St 72)
U(2G>

However, it seems impossible. Even for G = 2, the distribution function is quite messy
and it is difficult to get the mean of (8%1), 3%2)). Instead of working on the high-dimensional
vector, assumptions about each element s"(«)|q"(«) are made. This is not exactly what we

would love to prove, but is what we can do for the moment.

5.3.2 Assumption I

Sl=

s"(a)q" (@) ~ (¢"(a),

Justification of this Assumption

This assumption is based on the following fact. Let Xi,---,X,, ~ F. Fix k numbers:

0<ap <ay <---<ag<1. If F has density function f and f is positive and continuous
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at the a;th quantile (i = 1,--- , k) of F, denote:

ém:(ém(Jél?'” Jémak)7 62(50617.” 7§0¢k)7

where émai is the sample «a;th quantile; then when m — oo, we have

~

Vm(&m — &) = N(0,A),
where A is a k x k matrix and its (4, ) element is
Aij = ai(1 = o) /[f (&) f(&)]-
Especially when k = 1,
Vin(&mp = &) = N(0,p(1 = p)/f*(&))-

Thus, we see that E(s"(a)|¢"(a)) ~ ¢" () and Var(s"(«)|¢"(a)) ~ O(1/m).

5.3.3 Assumption II

Justification of this Assumption

This assumption is based on the following fact. Suppose the samples are taken from a

2
normal distribution. Then using the fact that % is a chi squared random variable

with (m — 1) degrees of freedom, we get

—1)5?
Var (mUQ) = Varx?,_; =2(m —1);
Hence:
2 4
Var §? = L.
m—1

5.4 Convergence of the Procedure

Now we prove the convergence of our procedure under those two assumptions separately.

we will show that that ¢"(a) converges to the solution of (5.7): ¢*(«) in probability.
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E(@" ™ (e) = ¢ (a))* = (¢"(@) — ¢* () + an(q(e) — M(q"(2))))?
= E(¢"(a) — ¢"(2))* + ap E(4(ar) — M(q"(e)))?

+2a,E[(¢" () — ¢"(a)) - (q(a) = M(q"()))]

Denote 72 = E(¢"(a) — ¢*(«))?. To prove the convergence of our procedure, we need to

show 72 — 0.
Top1 = Ty +apB(q(a) = M(q"()))? + 2an B[(¢" (@) — ¢*(a)) - (d(@) = M(q"(a)))]
When we use s"(«) to estimate M (q"(«)), we have

Top1 = Tp+apB(q(a) = s"(@)® + 20, E[(¢" (@) — ¢*())(d(@) — s"(a))]  (5.10)

5.4.1 TUnder Assumption I

By assumption (5.8), we have:

El(¢"(2) = ¢ (@) - (4(e) = s"(@))] = E{[(¢" () = ¢"(a)) - (¢(cr) = s"())]l¢" ()}

= E[(¢"(@) —¢"(a)) - (¢(@) — ¢"(@))] (5.11)

E@q(a) = s"(a))* = ()’ —24(e)Eq" () + B(s"(a))?

= q(a)? ~ 24(a)Bq" (@) + B(g" (@) + -
= Bli(o) ~ "(0)* + (512)
Plugging in (5.11) and (5.12) into (5.10), we have:
P = T aB0) - 4" (@) + 20 Bl(q" (@) ~ ¢(0)) - (d(e) — ()] + %
= (= a7 4 200(1 — an)(d(0) — ¢ (0) B (" (@) — ()
a2l + (3(0) — ¢ (@) (1)

Now we need to check the term E(¢"(«) — ¢*(«)) in (5.13).

¢"Ha) — g (@) = ¢"(@) =" () + an(d(@) — s"(a)).
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Denoting b, = E(¢" () — ¢*(0)), as a, = 1, we have:

bnyr = (1= an)bn + an(G(a) — ¢*(@))
= (1 — an)(l - an—l) : (1 - a2>b2 +
[(1—=an)(l—apn—1)---(1—ag)ag+ -+ (1 —an)an—1 + an](§(a) — ¢*())

= L+ 2 L) - () (5.14)

n

Plugging (5.14) into (5.13), we have:

P = (1 )7 o+ 2an(1 — an) (@) — 6" (@) B(g"(0) ~ a*(@)
a2l + (3(0) — g (@)
n—1 1
~ (7)273 + EC

where C' = 2b,Cy + 2C3 + L and Cp = §(a) — ¢*(a).
Hence we have
9 399 n—3

Tatl = (ﬁ) T3 + 70
which says: 72 — 0. Therefore, our procedure converges under assumption I.
5.4.2 Under Assumption II
Continuing with (5.10):
Tap1 = 7o+ anB(q(a) = s"()? + 20, B[(¢" (@) = ¢"(a)) - (@) — 8" ()]

By assumption (5.9), we have:

Bga) = "(@))2 = d(a)? — 24(a) Eq"(a) + E(s"(a))?
= G(a)? ~ 20(e)Bq" (@) + "B (g (@)
= PR (@) - 2 (a))? + ——(q())?



74

Then
Top1 = 7o +anB(q(e) = s"(@)? + 20, B(¢"(@) — ¢*(a)) - (4(e) — s"(@))]
2
= " () - L) e i) +
20, E[(¢" (@) — ¢"(a)) - (G(a) — ¢" ()]
= a2 O 200 B (@) — ()] + o (d(e)?
_20%7_7% + QGnCOE(qn(a) - q*(Oé))
— [1 - 2a, + mT;L_lai] T,% + [QGi mr: 101 + 2anC0} by,
m+1 g(a)?
tan [ Cf + m+ 1} '
Since
bns1 = (L= an)bn + an(q(a) — ¢"(a))
= (1 — an)(l - an—l) : (1 - a2>b2 +
[(1—an)(1I—apn—1)---(1—ag)ag+ -+ (1 —an)an—1 + an](§(a) — ¢*())
= b+ () — (@),
we have:
T2 = [1 — 2a, + mﬂt 1(1%} T+ |:2a727,m7:; 101 + 2anCO:| : [252 + = 1(@(04) —¢"(a))
m+1 ., 4(e)
+a? [ Cf + mt 1]
< mTH(l —a,)*72 + a2 Ch

< (1 —ap)m?+d2Cy
The last inequality holds when n > m + 1. Thus we have:
Toir S (L=an)(l = an-1)70 g + (1= an)as_ +a;]Cy
< (IT—an) - (1= amp1)Tms +

[(1 —an) - (1 - am+2)a%n+1 +ot (L —an)an 1 + ai] Cy

m o 1 1 1
= —|— e
m+1+n[m+1+ +n] 2
m logn
< 77314—1 ) Cs
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Therefore, the procedure converges under assumption II.

5.5 Simulation

5.5.1 Estimating the Distribution of Variance

The model we assume is:

In our simulation, we have a sample of o2 of size 5000 from xi distribution; for each o2,
we get a sample of size m from the distribution N(0,0?).

Figure 5.1 is the simulation results about the situation when the sample size is 20 and
the x? distribution of the variances has 20 degrees of freedom. These plots are the quantiles
of true variances versus the quantiles of estimated variances. The top left one is about
the sample variances. The top right one is about the stochastic approximation with 5
iterations. The bottom left one is the stochastic approximation with 10 iterations and the
bottom right one with 20 iterations. From the top left plot, we see that the distribution of
sample variances is one inflated estimate of the distribution of true variances: the sample
quantiles tend to underestimate the small quantiles of the true variances and overestimate
the large quantiles of the true variances. We also see 5 iterations of our procedure will
correct the bias obviously and 20 iterations will give a quite good estimation about the true
distribution of the variances.

Figure 5.2 is the simulation results about the situation when the samples size is 20 and
the x? distribution of the variances has 10 degrees of freedom. In Figure 5.3, the sample size
is 20 and the degree of freedom for the x? distribution is 30. By comparing these 3 sets of
figures, we see that when the sample size is smaller than the degrees of freedom (Figure 5.3),
the empirical distributions of the sample variances behave quite badly. However, stochastic
approximation provides good improvement over the sample variances. When the sample

size is larger than the degrees of freedom, the empirical distribution of the sample variances
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is acceptable (Figure 5.1). Of course, stochastic approximation works almost perfectly for
this situation. Therefore, by simulation, we see the power of the stochastic approximation

we proposed.
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Figure 5.1: Simulation with m = 20 and X%o- QQ plot for the true variances against the
estimated variances. The top left one is about the sample variances. The top right one is
about the stochastic approximation with 5 iterations. The bottom left one is the stochastic
approximation with 10 iterations and the bottom right one with 20 iterations.

5.5.2 Verification of the Assumption 1

In Figure 5.4, we verify our assumption I (5.8):

).

3=

s"(a)lg" (@) ~ (¢"(@),
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Figure 5.2: Simulation with m = 20 and X%o- QQ plot for the true variances against the
estimated variances. The top left one is about the sample variances. The top right one is
about the stochastic approximation with 5 iterations. The bottom left one is the stochastic
approximation with 10 iterations and the bottom right one with 20 iterations.
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Figure 5.3: Simulation with m = 20 and X%o- QQ plot for the true variances against the
estimated variances. The top left one is about the sample variances. The top right one is
about the stochastic approximation with 5 iterations. The bottom left one is the stochastic
approximation with 10 iterations and the bottom right one with 20 iterations.
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Figure 5.4: Simulation with m = 20 and Xgo-

and assumption II (5.9):

(@)l (@) ~ ("), L1,
m
We sample 5000 variances from X%o- For each variance 03 (g =1,---,5000), we simulate 20
sample points from Normal(0, 03) and get the sample variances sg(g =1,---,5000). Denote
the ordered sample variances as s%g) (g =1,---,5000). For each sample variances s?g), we

simulate 1000 sets of samples with sample size 20 from Normal(0, s%g)) and get the ordered
sample variances s%g) p (b=1,2,---,1000). For each g, we get the mean 5, and variances

S%g),B of {s%g),b :b=1,2,---,1000} and plot E%g) (the left one)and s%g)’B (the right one)

2

against the s (9

) in Figure 5.4. From the left plot of Figure 5.4, we see our assumption
E(s"(a)lg"(a)) = ¢"(a)
is reasonable. The right plot of Figure 5.4 shows that
Var(s" (@)]g"(0)) <
m

which seems to suggest that our assumptions about the variances are too much for cases

like this.
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5.6 Extension to Correlation Matrix Estimation

As we all know, genes do not work independently. They work in groups and a set of genes
may impact the same pathways. If we can get the correlations among genes, the analysis
will be improved greatly. It is well known that when the sample size is small, compared with
the dimension of the measurement space, the correlation matrix estimates become highly
variable. Pearson’s correlation coefficient is the most popular correlation estimator used in
multivariate analysis. However, its performance is poor when applied to microarray data
because of the small sample size. The stochastic approximation procedure we talk about in
those sections before in this chapter can be applied to estimate correlation matrix for small-
sample-size problems. If we vectoralize the correlation matrix, the stochastic approximation
can be applied directly. Of course, we need to make sure the approximated matrix is positive
definite. In this section, we will talk about improving the correlation matrix estimation by

stochastic approximation.

5.6.1 Fisher Transformation

Hypotheses about the value of the population correlation coefficient p between variables X
and Y can be tested using the Fisher z-transformation applied to the sample correlation

coefficient r. The transformation is defined by

1 147
z=—=In ,
2 1—r

where In is the natural logarithm function. If the samples are independently from the same

bivariate normal distribution, then we have

1 1 1
z ~ Normal(= In el , ).
2 1-p) n—-3

Then we can see that Fisher transformation is an approximate variance-stabilizing trans-
formation for r under the assumption of bivariate normal distribution. This means that
the variance of z is approximately constant for all values of the population correlation co-
efficient p. Without the Fisher transformation, the variance of r grows smaller as |p| gets
closer to 1. Fisher z-transformation guarantees that our assumptions made in the proof will

be satisfied.
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The procedure introduced before will be applied on sorted Fisher-z transformed sample
correlations. Sorting is very important. Without sorting, the improvement is little. To
make sure the matrix will be positive definite, we change the negative eigenvalues to a
small positive value, say 1073.

One simulation result is plotted in Figure 5.5, 5.6, and 5.7. It shows clearly that stochas-

tic approximation improves empirical correlation matrix.

5.7 Discussion

In this chapter, we proved the algorithm used in conditional ¢ converges under two as-
sumptions. Sorting is applied in the algorithm to make sure the monotonicity of estimated
quantiles. It would be much better if convergence could be shown for the vector of the
quantiles, instead of for each quantile. Future work will focus on this part. It is also worth
to point out that sorting is very important in the proposed algorithm. In approximating
the correlation matrix, theoretically, sorting is not quite necessary as there is no mandatory
monotonicity for the correlation coefficients. However, by simulation, we found that with-
out the sorting procedure, stochastic approximation alone cannot make any improvement.

We will study this in detail in future.



Figure 5.5: Heatmap of the True correlation matrix

Figure 5.6: Heatmap of the Empirical correlation matrix

Figure 5.7: Heatmap of the Stochastic Approximated correlation matrix
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Chapter 6

Data Analysis about one Novel Experiment

In this chapter, we discuss new development in experiment applying microarray technology.
It is believed that when people get cancer, some genes which have effects on the cell growth
rate behave wildly. With development of biological technology, the idea of shutting down
those wild genes is quite appealing. With new technology, scientists now can introduce
additional sequences into the genome. When one gene containing the inserted sequences
expresses, the resulting mRNA which is single stranded normally will contain a small part
of double-stranded sequence which is quite chemically inert. When the cell tries to interpret
the codons of the mRNA and produce the corresponding amino acid chain according to the
sequence of codons, this double-stranded sequence interrupts. The production of amino acid
chain stops as the cell can not interpret the double-stranded sequence chemically. In this
way, the gene expression is interrupted and we call the gene is shut down/silenced /knocked
down. Then one question is which genes (biomarkers) should be shut down, i.e., shutting
down which genes could reduce the cell growth rate. Along with the method of silencing
some gene, some compound is also applied to the cell in purpose of slowing down the cell
growth rate. Then the other question is what will the interaction effect between shutting
down one gene and the compound be. Scientists have designed some novel experiment
addressing these two questions.

In this chapter, we will discuss the data analysis about such experiment. We first give
a short introduction about the new technology, then discuss the detailed information about
the experiment and about the data we get from the experiment. We then address different

issues in the analysis. Finally we show the results of our analysis.
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6.1 Introduction of the New Technology

In all organisms, there are two major steps separating a protein-coding gene from its pro-
tein: transcription and translation. In transcription step, the gene information must be
transcribed from DNA to messenger RNA (mRNA). In translation step, the information is
translated from mRNA into protein. A simplified graph of these two steps (transcription

and translation) is in Figure 6.1.
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O—
>— —
>— —

y— )
>—
O— O
—H— >
>—
O— O
O— O
—— >
O— O

4
mRNA

G UGG CcC A UCUGACU

~ =~~~ =~

| | |
Y H L T

Protein

Figure 6.1: Simplified graphical representation of the transcription and translation steps in
gene expression.

When genetically engineered molecules are inserted into the host genome, they are tran-
scribed in the nucleus by some polymerase into mRNA. The corresponding mRNA will con-
tain a small double-stranded sequence, which will interrupt the translation of the mRNA:
the construction of the amino acid chain is halted, no protein will be produced, therefore,
the corresponding gene is silenced. A simplified graph (Figure 6.2) shows a rough idea
how the translation step in gene expression process is impacted. Technology development
enables scientists to silence/shut down one specific gene by one specific molecule. One gene

could have several different molecules which can shut down it: different molecules integrate
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Figure 6.2: Graphical representation of ‘PROBE’ shutting down one gene

into different places of the gene. However, the efficiency of the shutdown is usually un-
known. The molecules are inheritable: when the genome of one cell gets such molecule,
the genome of its daughter cells will also contain that molecule. There are large libraries of
such molecules targeting thousands of genes in parallel. For convenience, from now on, we
will call the molecule ‘PROBE’. It is in capital letters because it is different from probe for
one gene. However, as one probe represents one gene and one gene can have several probes,

we think the name ‘PROBE’ is convenient for interpretation.

6.2 Our Experiment

The experiment here is about one compound, which can slow down the cell growth rate
when added to a collection of cells. The objectives of the experiment are: (1) the effect
of knocking down one gene by ‘PROBE’ on the cell growth rate; (2) the interaction effect
between each gene and the compound.

For objective (1), no compound is added. When one gene is knocked down by some
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‘PROBE’, and the cell growth rate is larger than some criterion, we say knocking down this
gene will promote the cell growth rate (Denoted as ‘GP’ - growth promoting); similarly,
if the cell growth rate is smaller than the criterion, we say knocking down the gene will
inhibit the cell growth rate (Denoted as ‘GI’ - growth inhibiting); finally, if the cell growth
rate does not change when the gene is silenced and no compound is added, we say knocking
down the gene has no effect on the cell growth rate (Denoted as ‘GN’ - growth neutral).

For objective (2), different doses of the compound were added into the cells. As the
compound will slow down the cell growth rate, there is a maximum dose level of the com-
pound that can be added into the cells. Any dose level larger than the maximum dose
level would kill all the cells. We call the maximum dose level ‘clinical dose’ and denote
it as C. When one gene is knocked down by some ‘PROBE’, we’d like to know whether
there is any interaction effect between the knockdown of the gene and the compound in
the concentration level (0,C). The cell growth rate in this interval will be a function of
the concentration level, we call it ‘growth rate curve’. If the growth rate curve is always
below some reference curve, we say knocking down the gene will strengthen the compound
effect (denoted as ‘S’); if the cell growth rate curve is always above the reference curve, we
say knocking down the gene will weaken the compound effect (denoted as ‘W’); if the cell
growth rate curve is always ‘close’ to the reference curve, we say knocking down the gene
has no interaction with the compound (denoted as ‘NI’). However, there are cases when
the growth rate curve and the reference curve cross each other in the interval (0, C'). Then
the interaction effect could be strengthening in one part and weakening in the other, and
vice versa. We will not study such cases in detail, instead we say that the interaction effect
between knocking down of the gene and the compound is changing (denoted as ‘C’).

In all, each gene may fall into one of the 12 possible classes listed in Table 6.1. We are
most interested in those genes which may interact with the compound, i.e. genes fall into
classes ‘GN_S’, ‘GP_S’, ‘GI.S’, ‘GN_W’, ‘GP_W’, and ‘GI_W’, as those genes could be the
possible biomarkers that the scientists are after.

When doing the experiment, one pooled ‘PROBE’ plasmid library packaged in virus
was poured into a large collection of cells. Sufficient time was given to make sure almost

all ‘PROBE’s were integrated into some cell. We assume each cell contains at most 1
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class | Absence of Compound | Presence of Compound | Abbreviation

1 Growth Neutral No Interaction GN_NI
2 Growth Promoting No Interaction GP_NI
3 Growth Inhibiting No Interaction GINI
4 Growth Neutral Strengthening GN_S
5 Growth Promoting Strengthening GP_S
6 Growth Inhibiting Strengthening GIS

7 Growth Neutral Weakening GN_W
8 Growth Promoting Weakening GP_W
9 Growth Inhibiting Weakening GI.W
10 Growth Neutral Changing GN_C
11 Growth Promoting Changing GP_C
12 Growth Inhibiting Changing GLC

Table 6.1: 12 possible categorizations describing the effect of knocking down one gene on
the cell growth rate and the interaction effect between knocking down one gene and the
compound.

‘PROBE’. Then cells without ‘PROBE’ will be removed by puromycine, the remaining cells
will be used in our experiment. The aforementioned procedure was repeated to get enough
samples. Then different concentration (or dose) levels of the compound will be added to
each sample. Let the cells in each sample grow for a certain amount of time. Then using
microarray technology, the abundance of cells that host a specific ‘PROBE’ can be read
out as intensities on a probe-specific arbitrary scale. Comparison of intensities at different
time points enables estimation of the (exponential) growth rate of cells hosting any given
‘PROBE’, and hence the effect of knocking down of the associated target gene on cell

proliferation.

6.2.1 Data from the Experiment
The Total Number of ‘PROBE’s and its Distribution

Our experiment involves 54020 ‘PROBE’s (We denote the total number of ‘PROBE’s as S
later for convenience), corresponding to more than 11248 genes (the corresponding genes of
some ‘PROBE’s are missing). Table 6.2 contains the number of genes with different number
of ‘PROBE’s, since one ‘PROBE’ will shut down one gene and different ‘PROBE’s could
shut down the same gene. From this table, we see there are 9 genes which have only 1

corresponding ‘PROBE’ that could shut down each of them; most of these genes have 4 or 5
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Figure 6.3: Rough idea about the experiment.

‘PROBE’s: 2220 genes have 4 ‘PROBE’s and 8387 genes have 5 ‘PROBE’s. In the extreme

case, there are 31 ‘PROBE’s which will shut down the same gene.

# ‘PROBE | 1 | 2 3 4 5 6 | 7]81]9
# gene 9 |69 | 406 | 2220 | 8387 | 33 | 44 | 22 | 12
# ‘PROBE’ | 10 | 11 | 12 13 14 | 15|17 | 31
# gene 2011 7 3 2 11111

Table 6.2: The number of genes with different number of ‘PROBE’s

Time Points and Concentration Levels

For each concentration level of the compound, data will be collected at three time points:
each time point corresponds to one doubling time roughly, which is the period of time
required for the number of cells to double. T1 will denote the first doubling time, T2 the
second doubling time and T3 the third doubling time. T1, T2, T3 denote different number
of days for different concentration level of the compound. As our compound will decrease the

growth rate, the larger the concentration level, the longer the days for doubling (as shown
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in the right table of Table 6.3). There are 4 concentration levels in our experiment: 0 (no
compound), 1, 2.5, 5. Hence, we have 12 experimental conditions (12 combinations of time
points and concentration levels of the compound) (see Table 6.3). At each condition, we
have 4 samples. Whether these 4 samples are technical replicates and biological replicates

is not clear to us. But we assume these samples are independent with each other.

TimePoint Concentration

Concentration | T1 | T2 | T3 | subTotal days |0 |1 |25 |5
0 4 | 4 | 4 12 7T (414 4]0

1 4 | 4 | 4 12 11 |414| 4 | 4

2.5 4 | 4 | 4 12 18 |44 0 |0

5 4 | 4 | 4 12 20 (OO 4 | 4
subTotal 16 | 16 | 16 48 31 100 0 |4

Table 6.3: Number of samples in each combination of timepoint and concentration

6.2.2 Data We Have
From the experiment, we get the following data:

1. log, intensity value log, Iy ;(t,c) of the kth (k = 1,2,---,5) ‘PROBE’ for the ith
(1 =1,2,3,4) sample at time ¢ (t = 1,2,3) with compound dose ¢ (¢ =0, 1,2.5,5). By
microarray technology, the number of cells with different ‘PROBE’s could be read and
then transformed into log, intensity values. The more the cells with one ‘PROBE’,

the larger the intensity values.

2. Total cells counts of the ith sample at time ¢ and compound dose ¢: Nyo i(t, ¢) (Table
6.4).

3. For each ‘PROBE’ modifier, its mapping to the targeted gene.

6.2.3 Date Preprocess

Intensity values from microarray technology could not be compared among different samples.
They are the relative intensity of each ‘PROBE’ in each sample. Moreover, to find out how
knocking down the genes and the compound interact with each other, it is preferable to

work with the growth rates of cells hosting different ‘PROBE’s. The cell counts at different
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TimePoint
Concentration T1 T2 T3

0 7 days 11 days 18 days

2 x 109 2.95%x1010 [ 7.41x10"2

167654400 | 3.48x10'0 | 7.78x10'2

2.28 %107 3.9x1010 | 6.81x10'2

2.15x10° | 30137554944 | 6.25x10'?

mean 2.03x10° | 3.34x100 | 7.06x10"?
1 7 days 11 days 18 days

1.80x107 | 2.70x100 | 3.91x10"?

1.40%10? 2.45x1010 | 3.17x10'?

1.52x10° | 2.10x10'° | 3.90x10'2

1.78%x10° | 2.74x10'0 | 3.60x10"2

mean 1.63x10% | 2.50x10™0 | 3.65x10"2
2.5 7 days 11 days 20 days

1.13x107 | 1.53x10'°0 | 2.63x10"?

1.20x10? 1.42x10'°0 | 3.40%x10'?

1.20x10° | 1.38x10'0 | 2.92x10'?

1.31x10? 1.42x10'°0 | 2.53%x10'?

mean 1.21x10° 1.44x1010 | 2.87x10!2
5 11 days 20 days 31 days

8.32x10% | 43922781940 | 4.97x 10"

755155872 | 4.78x10'0 | 4.60x10"2

814349040 | 40456974419 | 5.01x10"2

727993056 | 35399052552 | 4.02x10"2

mean 7.82x10% | 4.19x10'0 | 4.65x10™2

Table 6.4: Total number of cells of sample at each combination

time points with a certain concentration will give us some idea of the cell growth rate.
Hence we’d like to get the cell counts for each ‘PROBE’ in each sample from the intensity
values and total cell counts.

The cell counts Ng(t, ¢) for kth ‘PROBE’ on the ith sample at time ¢ and concentration
c is:

Ik’i(t, C)
2:1 Ik‘,i(t’ C)

In Figure 6.4, we plot the cell counts versus time (days) for one ‘PROBE’, coloring

Nk7i(t,0) = . Ntot’i(t,c).

the points by the corresponding concentration of the compound. We see that there is an
exponential relationship between the cell counts and time for each concentration, suggesting
that log transformation of the cell counts could give linear relationships with the time for

each concentration level (the right plot in Figure 6.4). These plots were in agreement with
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the general models for cell growth:
Ny = Ny exp(K't) (6.1)
or
log(N;) = log(Np) + K - t; (6.2)

where N is the cell count at the beginning; NV; is the cell count after time ¢ and K is the

growth rate:

s = o8N ~ og(My)

0 microM 0 microM

1.5e+08
|

5 microM 5 microM

1.0e+08
|
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5.0e+07
|
le+04
|
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Time (days) Time (days)

Figure 6.4: The relationship between time and Cell Count for some ‘PROBE’

Mean-Variance Relationship

The mean and variance of log cell counts with each ‘PROBE’ has some pattern as shown
in Figure 6.5, which suggests that we should be careful when we apply statistics such as t

test which require the mean and variance to be independent.
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Figure 6.5: The mean and variance of log cell counts for each ‘PROBE’

6.3 Modeling for each ‘PROBE’

6.3.1 Cell Growth Rate
By assuming that the cell proliferates in a model as (6.1) or (6.2), growth rate of cells with
kth ‘PROBE’ at time t and concentration ¢ can be estimated by:

_ log(N(t, c)) — log(No)
; )

Kk(c)

where Ny is the number of cells with kth ‘PROBE’ at time 0 - the beginning of the ex-
periment. To count the cell numbers, the cells will be killed. Therefore, we do not have
the initial count of total cells for each sample. Instead, they will be estimated by grouped

linear regression among the different concentrations over time, with common intercept (i.e.
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Figure 6.6: Possible dose-response curves

log(Np)) but concentration specific slopes (Figure 6.4):

log(Ny.i(t,c)) =10g(No) +I(c =0) - Bt + I(c =1) - Bt + I(c = 2.5) - Brst + I(c = 5) - Bat.

It is easy to see that K% (0) = fr1, Kx(1) = Bra, Ki(2.5) = B3, Ki(5) = Bra-

6.3.2 Dose-Response Model

To study the effect of the compound on the growth rate of cells, dose-response relationship,
or exposure-response relationship is ideal. Dose-response model for growth rate K(c) at

dose ¢ is assumed as follows:

Kmax

1+ (c/ EC50)Slope’

K(c) =

where Kmax is the maximal growth rate, i.e. the cell growth rate without any compound
here; EC50 is the concentration level at which 50% of the cell growth is inhibited; Slope
is the Hill coefficient. Possible growth rate curves are shown in Figure 6.6, where we can
see that Slope will control the shape of the dose-response curve. We also can see that the

growth rate curves will cross each other.
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6.3.3 Two Possible Models

One intuitive way to build the models for analyzing the data is to concatenate the two

models together.
MODEL I: Linear regression plus dose-response model:
Step I: Estimate the growth rate of cell with kth ‘PROBE’ Kj(c) by grouped linear

regression as in section 6.3.1.

Step II: Fit one 3-parameter dose-response model for growth rate (from step I) and con-

centration c:

Kmax

1+ (c/ EC50)Slope”

Ki(c) =

One problem with model I is the errors in estimating Kj(c) will be ignored in step II.
Though working with the growth rates is reasonable, what we can get directly from the data
is the cell counts. Instead of estimating the growth rate for further analysis, we suggest

working with the cell counts:

MODEL II: Fit one model for log Cell Counts with concentration ¢ and time ¢:

Kmax

(¢/ EC50)Slope

log (N (t = t-
Og( k( 70)) BO + 1+
where g is the cell counts with kth ‘PROBE’ at t.

By integrating the two steps in model I together, model II accounts for the errors of the two
steps in model I, which improves the convergence of the nonlinear part. Building model 1
for each ‘PROBE’, we got 216 models out of 54020 models which do not converge; while
building model II, we got only 17 models which do not converge. It may seem only a small
proportion, but it is definitely some improvement. Therefore, we prefer model II.

From Figure 6.7, we see that there is not much difference in the estimation of the log of

cell counts at time 0 using these two models.
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Figure 6.7: Comparing log of cell counts at time 0 from the 2 models

6.4 Define Reference

To comment on the effect of one ‘PROBE’ on the cell growth rate and the interaction
effect between certain ‘PROBE’/gene and the compound on the growth rate of cells, we
need some benchmark/criterion. Since we do not have any direct observations which could
represent the normal growth rate of cells without any effect from the knockdown of any
gene and the compound, we should create one benchmark. The implicit assumption of this
experiment is that there are only a few genes which will affect cell proliferation and interact
with the compound. Therefore, the behavior of the majority of the genes could serve as the

benchmark, which we call the “reference”.

6.4.1 Method I of Defining the Reference

One way of defining reference is taking the mean of the cell counts for each ‘PROBE’ on

each sample (at time ¢ and with concentration c):

S
Nr,i(ta C) = ZNk,i(t>c)/Sa
k=1

and treating {N,;(t,c),t = 1,2,3;¢ = 0,1,2.5,5;4 = 1,2,3,4} as the reference ‘PROBE’.
Then modeling the reference with each ‘PROBE’/gene together.

As we can see in Figure 6.8, the variance of the 4 replicates at each time and each dose in
the reference is very small. But generally, the variance of the 4 replicates of each ‘PROBE’
is much larger. When defining the reference this way, it will be inappropriate if we try
to model the reference with other ‘PROBE’ together and assume homoscedasticity at the

same time.
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Figure 6.8: Define the mean of each sample as reference

6.4.2 Method II of Defining the Reference

Since our reference is some criterion used in comparison, fixed quantity could be better. We
fit our model II to the reference ‘PROBE’ N, ;(t,¢), and define its growth rate curve as the

reference. For our data, we get the three parameters of the reference curve as

0y := (Kmaxg, EC500, Slopey) = (0.7290, 5.6287, 2.2460).

6.4.3 Method III of Defining the Reference

Recall that our reference should represent the behavior of the majority of genes. The mean
of each sample is a mixture of different behavior and it may not represent the behavior
of the majority of genes. Another way of defining reference is: fit the nonlinear model

(Model II) for each ‘PROBE’ separately, and take the spatial median of the parameters as
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the reference. In a normed vector space of dimension two or greater, the “spatial median”

minimizes the expected Lq distance
a— E(||X —al|)

where X and a are vectors, if its expectation has a finite minimum. What we get from our

data is:
0y := (Kmaxg, EC50, Slopey) = (0.7237, 5.5703, 2.2749)

The marginal means of the 3 parameters are: (0.7181,5.5321,2.2907). The marginal me-
dians of the 3 parameters are (0.7226, 5.5600, 2.2652). Since we have more than 54000
‘PROBE’s in total, the standard deviations are very small: (0.0337,0.3070,0.3426). We
prefer this definition since it is more close to the idea of the behavior of the majority of

genes.

6.5 Ways of Dealing with Multiple ‘PROBE’s

Gene PRKD1

0.8 1.0
I

0.6

Growth rate

0.4

0.2

0.0
I

Dose

Figure 6.9: 5 ‘PROBE’s for gene 1 with the reference

In Figure 6.9, we plot the growth curve of each ‘PROBE’ for one gene with the reference
curve together. We see that, for genes with multiple ‘PROBE’s, curves for each ‘PROBE’

may cross. Directly comparing each ‘PROBE’ with the reference, we will get different
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conclusions for each ‘PROBE’ of one gene. To get a unified conclusion for the corresponding
gene, we need to find a way to analyze all the ‘PROBE’s to give one reasonable answer for
the gene.

One naive way is model all the ‘PROBE’s for one gene with common growth rate pa-
rameters. A more sophisticated way is building mixed effect model for all the ‘PROBE’s of
one gene. Either way, we need to justify the model: when is it reasonable to model all the
‘PROBE’s with common parameters? Hierarchical clustering is proposed for this purpose.
If by some criterion, all the ‘PROBE’s fall into one cluster, then it is safe to model all the

‘PROBE’s with common parameters.

6.5.1 Hierarchical Clustering

The hierarchical clustering is based on the following likelihood ratio test: Take 2 ‘PROBE’s
of one gene and fit two models for them: one is the full model where each ‘PROBE’ has its

own parameters:

Kmax; > N ( Bop 1 t Kmaxs > .
(c/EC501)5tper /gy " L+ (¢/EC502)5Pe2 /sy

log(Vit,)) = (B +

the other is the simple model where the 2 ‘PROBE’s share one common set of growth rate

parameters (Kmax, EC50, Slope):

Kmax
(c/ ECE)O)SIOP‘3 '

log(Ng(t,c)) = Bor- (k=1)+ Poz- (k=2)+1t- T
The hypothesis test is:
Hy : The Simple Model H; : The Full Model

If by likelihood ratio test, the simple model is adopted, we group the 2 ‘PROBE’s into 1
cluster.

Suppose we have s ‘PROBE’s for one gene, we take all the possible C2? groups of 2
‘PROBE’s and do the likelihood ratio test above. If the largest p value is smaller than
the critical value we set up, we stop the process and treat each ‘PROBE’ as one cluster
respectively. Otherwise, we group the 2 ‘PROBE’s with the biggest p value into 1 cluster.

Then we treat this new cluster as one new ‘PROBE’ and continue the clustering process
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until either all ‘PROBE’s are grouped into 1 cluster or the largest p value is smaller than

the critical value. The flow of this procedure is in Figure 6.10.

Gene with
s shRNAs

Yes, s — 5

Group
the 2

b e "PROBE's Gene with Lo
pee with the * s 1 (e 2
critical SR ‘PROBE's ?
value? p value
together
No

Break: all
‘PROBE's

are in 1
cluster

Figure 6.10: Graphical representation of hierarchical clustering

6.6 Model Selection

After clustering the ‘PROBE’s, each cluster can be modeled in mixed effect model or general

nonlinear model dealing with heteroscedasticity.

6.6.1 Mixed Effect Model

Denote the number of cells containing ‘PROBE’ which belongs to gene i as Ny, (¢, ¢), where
ki =1,---,s with s as the total number of ‘PROBE’s for this gene. Treat the observations
for the s ‘PROBE’ as random sample from one common population.

The model is as follows:

Kmax; + by, 1

’ 02 ’ 63
1+ (¢/ (BEC50; + by, 2))S1opeitor, ) ) (6.3)

log(Nix, (t,¢))|[bg, ~ N (B, +t -
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where
op; 0 0
bi, = (bk;1, b2, bi3) ~N |0, 0 6% 0 ;o V=12, s
0 0 o4

6.6.2 General Nonlinear Model
In this model, we assume the log cell counts in each combination of time of each ‘PROBE’
has a different variance:

Kmax )
1+ (C/ EC50)Slope’ Oik; (t))7

log(Ni, (¢,¢)) ~ N(Bik, + -

where k; =1,2,--- ,s.

6.6.3 Compare these two Models

# ‘PROBE’ | M:= AIC(MEM)-AIC(GNLS) < —10 | —10< M <10 | M > 10
4 2057 (80.6%) 287 (11.2%) | 208 (8.2%)
5 9372 (82.3%) 1287 (11.3%) | 727 (6.4%)

Table 6.5: Model selection between mixed effect model and general nonlinear model

From Table 6.5, we see mixed effect model behaves much better than the general non-

linear model, by AIC. Therefore, we will use mixed effect model later.

6.7 Categorize each Cluster of ‘PROBE’s

The purpose of the experiment is to decide the function of each gene on cell proliferation
and its interaction with the compound. In Figure 6.11, we plot several growth curves.
The difference showing along the ‘(1)” arrow is the effect of ‘PROBE’ irrespective of the
compound. The grey dashed line is the reference. We see that cells with the two clusters of
‘PROBE’s corresponding to the green and light blue curves respectively have smaller growth
rates than the reference when there is no compound added. Therefore, such ‘PROBE’s (i.e.

silencing the corresponding genes) are inhibiting the growth rate. On the other hand,
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Figure 6.11: Graphical representation of our objective

‘PROBE’s corresponding to the red and blue curves are growth promoting. As the dose-
response model shows, the difference along the (1)’ arrow is accounted by the parameter
Kmax.

The difference along ‘(2)” arrow in Figure 6.11 shows the interaction between each cluster
of ‘PROBE’s and the compound. The interaction effect is difficult to determine from the
curves there, since we need to adjust the difference along the ‘(1)” arrow first. After adjusting
the effect on the cell growth rate of each ‘PROBE’ without the compound, we will have
curves as in Figure 6.12. Cases shown in Figure 6.12 are the simplest ones. It will be
easy to see that the cluster of ‘PROBE’s corresponding to the red curve strengthens the
compound effect, while the cluster of ‘PROBE’s corresponding to the blue curve weakens
the compound effect.

The idea of determining the effect of one cluster of ‘PROBE’s without the compound,
and the interaction effect of one cluster of ‘PROBE’s with the compound is shown in Figure
6.13. We compare the Kmax to get the effect of each cluster of ‘PROBE’s on the cell growth
rate; and work with (EC50, Slope) to get the interaction effect.

Suppose from the model in section 6.6, we get the estimates of parameters for the
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Figure 6.12: Graphical representation of our objective

HO: Kmax=Kmax_0, EC50=EC50_0, Slope=Slope 0

v v
Reject HO H Accept HO: Growth Neutral and No Interaction
+ ‘ )
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i I N5 i ! %
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Figure 6.13: Graphical representation of the procedure. IP is the intersection point and C
is the clinical dose. The left part is to determine the effect of each ‘PROBE’/gene when
there is no compound; the right part is to determine the interaction effect between each

‘PROBE’/gene with the compound.
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dose-response model for each cluster of ‘PROBE’s: (m, m, w), along with the
estimate of covariance matrix of these three parameters:
S S B
Y= Sy T ZA323
Y31 g Ygg
As Figure 6.13 shows, before comparing Kmax and (EC50, Slope) separately, we first

test the three parameters together by constructing a simultaneous confidence interval for

them. A (1 — «) simultaneous confidence interval for the 3 parameters is:
6:0-0)27(60-0)" <xiia) (6.4)

If the parameter vector for the reference 6y is in the confidence interval, we conclude
this cluster behaves similar to the reference, i.e. the major part of all the genes. Then this
cluster of ‘PROBE’s are growth neutral and have no interaction with the compound.

If 6 is not in the confidence interval, we’d like to see which one of these three parameters

are different from the reference.

6.7.1 Absence of Compound

To determine the effect of the cluster of ‘PROBE’s on the cell growth rate when there is no
compound, we compare its Kmax to that of the reference Kmaxg. If Kmax > Kmaxg, then
the cluster of ‘PROBE’s is growth promoting; if Kmax < Kmaxg, the cluster of ‘ PROBE’s is
growth inhibiting; if Kmax = Kmaxg, the cluster of ‘PROBE’s is growth neutral. Therefore,
the problem turns into hypothesis testing: Hp : Kmax = Kmaxg vs H; : Kmax # Kmax.

The following Wald test will be used:

—

Kmax — Kmaxg
sqrt(f]ll)

(6.5)

If Hy is accepted, we call this cluster of ‘PROBE’s are growth neutral. When Hj is rejected,
if Kmax > Kmaxg, we call this cluster of ‘PROBE’s are growth promoting; if Kmax <

Kmaxg, we call this cluster of ‘PROBE’s are growth inhibiting.
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6.7.2 Presence of Compound

To determine the interaction of one cluster of ‘PROBE’ with the compound, we need to

compare the adjusted cell growth rate:

1

1+ (¢/EC50)Stope” (6.6)

which adjusts the effect of each cluster of ‘PROBE’s on the cell growth rate when there is

no compound. It is equivalent to determine the following relationship:

C < C
(50" £ (s ™" (6.7)

If for all ¢, we have
_°
EC50

Cc

)Slope < (
EC50q

)Slopeo

(

)

then the cluster of ‘PROBE’s weakens the compound effect. If for all ¢, we have

_°
EC50

c

)Slope > (
EC50q

)Slopeo

(

9

then the cluster of ‘PROBE’s strengthens the compound effect. If for all ¢, we have

C

(ECSO

c

7)Slopeo
EC500

)

)Slope _ (

then the cluster of ‘PROBE’s has no interaction with the compound. Obviously, the above
cases are the simplest situations. In reality, the interaction effect could be changing in the
dose/concentration interval we are interested in (0, C'), for those cases, we say the interaction
effect depending on the concentration. Moreover, the relationship between the parts on the
two sides of (6.7) is not so clear with real data.

To determine the interaction effect, we need to apply hypothesis testing on the pa-
rameters (EC50, Slope). First, we test the two parameters together. Construct a (1 — «)

simultaneous confidence interval for 6, := (EC50, Slope):
{01: (61— 027101 —01)" <3, .} (6.8)

where

i:22 ZA323

232 233

£1>
Il
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If the parameter vector of the reference 1o := (EC50, Slopey) is in the interval, we say this
cluster of ‘PROBE’s have no interaction with the compound. If 81 is not in the interval, we
calculate the intersection point (IP) of the growth rate curves for the cluster of ‘PROBE’s

and the reference:

EC5OSlOpe m
::<Ecah$®%> '

If Slope > Slope, we have

c Slope __ c Slopey | i Slope—Slopey
(ECE)O) (EC500) (IP) ’
When ¢ < IP, we have:
(L)SIOPB (L)Slopeo
EC50 EC50q ’

then the corresponding adjusted growth rate (6.6) is larger than that of the reference, which

means the cluster of ‘ PROBE’s weakens the effect of the drug. When ¢ > IP, we have:

_°
EC50

C

Slope
) = (EC500

)Slopeo

(

)

then the corresponding adjusted growth rate is smaller than that of the reference, which
means the cluster of ‘PROBE’s strengthens the effect of the drug. The strengthening or
weakening effect is shown in Figure 6.14. Therefore, we have seen that the interaction effect

is different on the two sides of the intersection point (IP).

Figure 6.14: Graphical representation of strengthening or weakening effect

Remember, for this experiment, the compound will slow down the cell growth rate; and

we are interested in the interaction effect with dose level in the interval (0,C). Hence when
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0 <IP< C, the interaction effect between the cluster of ‘PROBE’s and the compound is
changing. However, when IP= 0 or IP> C, the interaction effect is determined by Slope.

If the intersection point (IP) is larger than the clinical dose (C'), when the slope for this
cluster is smaller than Slope,, we say the cluster of ‘PROBE’s strengthens the effect of the
drug; when the slope for this cluster is larger than Slope;, we say the cluster of ‘PROBE’s
weakens the effect of the drug.

If the intersection point (IP) is smaller than the clinical dose (C'), we'd like to see if
the intersection point is close to 0, which will be done by hypothesis testing Hy : IP = 0.

Applying delta method to calculate the variance of the intersection point:

IP(EC50, Slope) = (EC5051°P¢ /) Sone=s

OlnIP Slope 1

OEC50  Slope—b EC50

OlnIP _blnEC50—lna

OSlope (Slope — a)?
dInIP

. OlnIP OInIP OEC50
IP) = . E 1 .

varlP) = (GECB0 oStope) YA ((HOS0Slope)) - |

JdSlope

where a = EC505°P% and b = Slopey. Then we use Wald’s statistic to test Ho:

IP

=" N(0,1).

If the Hp hypothesis that ‘the intersection point is 0’ is retained, when the slope for this
cluster is larger than Slope,, we say the cluster of ‘PROBE’s strengthens the effect of the
drug; when the slope for this cluster is smaller than Slope,, we say the cluster of ‘PROBE’s

weakens the effect of the drug.

6.8 Analysis of the Data

So far, we have discussed the details of every step in the analysis. The proposed method

could be summarized in section 6.8.1.

6.8.1 Method I: HC_MEM _Test

This method is discussed in detail before.
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Method I: e Apply hierarchical clustering to the different ‘PROBE’s for one gene.
e Fit mixed effect model for each cluster.

e Define reference as in section 6.4.3: spatial median of the parameters for all

‘PROBE’s.

e To determine the effect of each cluster of ‘PROBE’s on the cell growth rate with
and without the compound, we go through the steps listed in the flow chart in

Figure 6.13 as discussed in section 6.7.

6.8.2 Method II: MEM _Test

We would also like to mention another method here: ignore the possibility that each
‘PROBE’ for one gene may behave differently. Instead, we simply treat each ‘PROBE’
as some replication of one gene and build mixed effect model for all ‘PROBE’s of one gene.
Comparing the method to the one before, we could justify the hierarchical clustering in

Method 1.

Method 1II: e Fit mixed effect model for all ‘PROBE’s of each gene;

e Go through the steps listed in the flow chart in Figure 6.13 as discussed in section
6.7.

6.9 Results

6.9.1 Method I: Hierarchical Clustering and Mixed Effect Model

The categorization of genes with different ‘PROBE’s using Method I (section 6.8.1) is
summarized in Table 6.11 (for genes with 1 — 7 ‘PROBE’s), Table 6.6 (for genes with 8
‘PROBE’s), Table 6.7 (for genes with 9 ‘PROBE’s), Table 6.8 (for genes with 10 ‘PROBE’s),
Table 6.9 (for genes with 11 ‘PROBE’s), Table 6.10 (for genes with more than 12 ‘PROBE’s).
For genes with n(3 <n <7) ‘PROBE’s, if we get n —1 ‘PROBE’s in one cluster, this clus-
ter of ‘PROBE’s (cluster I) will represent the gene. The conclusions about the effect of

cluster I on the cell growth rate without the compound and the interaction effect between
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the compound and cluster I will be the conclusions about shutting down the correspond-
ing gene. However, when we don’t get such clusters, for example, if for one gene with 5
‘PROBE’s, by hierarchical clustering, 3 ‘PROBE’s are grouped into one cluster, and the
other 2 ‘PROBE’s are grouped into another cluster, then we are not sure what we can say
about the corresponding genes. Therefore, those genes were excluded in Table 6.11. Of
course, we can use the cluster containing 3 ‘PROBE’s as the represent of the corresponding
gene. But for now, we do not consider those cases. For genes with more than 7 ‘PROBE’s,
we showed the detail categorization of each cluster of one gene in those tables. In method I,
the critical values used in hierarchical clustering and in hypothesis testing or simultaneous
intervals of the flow chart (Figure 6.13: to determine the effect of the cluster of ‘PROBE’s
without the compound and the interaction effect between the cluster of ‘PROBE’s and the
compound) are all 0.001. Obviously, other critical values can be used. But we consider the
case with 0.001 here.

By Table 6.11, we see that shutting down most genes are growth neutral and have no
interaction with the compound (denote as “GN_NI"): 8 genes out of 9 with only 1 ‘PROBE’
are GN_NI; 64 out of 69 genes with 2 ‘PROBE’s are GN_NI; 301 out of 409 genes with 3
‘PROBE’s are GN_NI; 1544 out of 2231 genes with 4 ‘PROBE’s are GN_NT; 4964 out of 8373
genes with 5 ‘PROBE’s are GN_NI; 20 out of 33 genes with 6 ‘PROBE’s are GN_NI; and 21
out of 44 genes with 7 ‘PROBE’s are GN_NI. These support the assumption we made when
defining the reference: only shutting down a small proportion of genes will impact the cell
growth rate and have interaction with the compound.

The columns “GP_NI" and “GI_NI” are about genes shutting down of which may pro-
mote or inhibit the cell growth rate but they have no interaction with the compound, i.e.,
shutting down them will not strengthen or weaken the effect of the compound. In Table
6.11, there are 111 genes in column “GP_NI” and 208 genes in column “GI_NI”.

In the highlighted columns of Table 6.11, numbers of genes shutting down of which
may strengthen or weaken the effect of the compound are listed. We can see that 23
genes with 3 ‘PROBE’s are “GN_S”, i.e., shutting down those 23 genes have no impact
on the cell growth rate when there is no compound but will strengthen the effect of the

compound; 3 genes with 3 ‘PROBE’s are “GN_W”, i.e., shutting down those 3 genes have
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no impact on the cell growth rate when there is no compound but will weaken the effect of
the compound. Similarly, there are 131 genes with 4 ‘PROBE’s which are GN_S; and 83
genes with 4 ‘PROBE’s are GN_W. 227 genes with 5 ‘PROBE’s are GN_S and 155 genes
with 5 ‘PROBE’s are GN_W.

The column “GI_S” is about the number of genes shutting down of which are growth
inhibiting when there is no compound and will strengthen the effect of the compound (i.e.,
when there is no compound, shutting down those genes will inhibit the cell growth rate;
moreover, when the compound is added, shutting down those genes will slow down the cell
growth rate even more.). The column “GP_W” is about the number of genes shutting down
of which are growth promoting when there is no compound and will weaken the effect of the
compound. As we have already know the compound will slow down the cell growth rate,
shutting down genes in these two columns are consistent with and without the compound.
By Table 6.11, we can see there are 28 genes in column “GI.S” and 35 genes in column
“GP_W”.

The column “GP_S” is about the number of genes shutting down of which are growth
promoting when there is no compound but will strengthen the effect of the compound. The
column “GI_W?” is about the number of genes shutting down of which are growth inhibiting
when there is no compound but will weaken the effect of the compound, which is quite
the opposite of “GP_S”. Shutting down those genes in these two columns will get opposite
effects when the compound is added. By Table 6.11, we see that there are 7 genes in column
“GP_S” and 5 genes in column “GI_-W”.

The columns “GN_C”, “GP_C” and “GI_C” are about the genes whose interaction effect
with the compound will be changing with the concentration level of the compound. The
scientists are not sure about what to do with them right now.

When genes with more than 7 ‘PROBE’s, it is difficult to get a unified answer with
hierarchical clustering. But as there are not many genes with more than 7 ‘PROBE’s, we
show the details of the categorization of each cluster of ‘PROBE’s in Tables 6.6, 6.7, 6.8,
6.9, and 6.10. We need more information from the scientists to do further analysis with

those genes.
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No Compound With Compound
# ‘PROBE’s | genes || Neut | Prom | Inhi || Nolnter | Stren | Weaken | Changing
8 (0.001) 8 8 0 0 8 0 0 0
1 8 0 0 0 0 0 8
1 8 0 0 7 1 0 0
1 8 0 0 6 2 0 0
4 8 0 0 4 4 0 0
1 4 0 4 4 4 0 0
1 6 2 0 4 4 0 0
1 8 0 0 0 5 0 3
1 8 0 0 0 5 3 0
1 8 0 0 3 5 0 0
1 8 0 0 0 4 0 4
1 3 0 5 5 0 0 3

Table 6.6: Categorization of genes with 8 ‘PROBE’s using method I with critical value
0.001. There are 22 genes in total. We have 8 genes which are growth neutral and have no
interaction with the compound (the 1st row). There is 1 gene which is growth neutral and
the interaction effect with the compound is changing with the concentration level (the 2nd
row). The two genes on the 3rd and 4th rows could be taken as growth neutral and having
no interaction with the compound. It is difficult to say anything about other genes.

6.9.2 Method II: Mixed Effect Model

The categorization of genes with different ‘PROBE’s using Method II (section 6.8.2) is
summarized in Table 6.12. Again, we see that most of genes are growth neutral and have no
interaction with the compound. By this method, relatively less genes fall into the highlighted
columns. More genes were classified as having no interaction with the compound. The

critical value used is 0.001.



No Compound With Compound
# ‘PROBE’s | Neut | Prom | Inhi || Nolnter | Stren | Weaken | Changing

9 (0.001) 9 0 0 9 0 0 0
9 0 0 0 9 0 0
9 0 0 8 1 0 0
9 0 0 7 0 0 2
7 0 2 7 0 2 0
5 0 4 5 4 0 0
9 0 0 0 6 0 3
9 0 0 0 2 0 7
4 5 0 5 4 0 0
9 0 0 5 4 0 0
9 0 0 5 2 2 0
9 0 0 6 3 0 0

111

Table 6.7: Categorization of genes with 9 ‘PROBE’s using method I with critical value
0.001. There are 12 genes in total. We have 1 genes which are growth neutral and have
no interaction with the compound (the 1st row). There is 1 gene which is growth neutral
and will strengthen the effect of the compound (the 2nd row). The third genes on the
3rd, 4th and 5th rows could be taken as growth neutral and having no interaction with the
compound. It is difficult to say anything about other genes.

No Compound With Compound
# ‘PROBE’s | genes || Neut | Prom | Inhi || Nolnter | Stren | Weaken | Changing
10 (0.001) 3 10 0 0 10 0 0 0
2 10 0 0 8 2 0 0
1 10 0 0 8 0 0 2
2 10 0 0 7 3 0 0
1 10 0 0 0 3 7 0
1 7 0 3 10 0 0 0
1 10 0 0 6 4 0 0
1 10 0 0 4 6 0 0
1 0 5 5 10 0 0 0
1 7 3 0 7 0 3 0
1 7 3 0 7 0 0 3
1 1 3 6 10 0 0 0
1 10 0 0 0 6 4 0
1 6 0 4 10 0 0 0
1 10 0 0 6 4 0 0
1 4 0 6 6 4 0 0

Table 6.8: Categorization of genes with 10 ‘PROBE’s using method I with critical value
0.001. There are 12 genes in total. We have 3 genes which are growth neutral and have no
interaction with the compound (the 1st row). The genes on the 2nd, 3rd, 4th and 6th rows
could be taken as growth neutral and having no interaction with the compound. The gene
on the 5th row could be taken as growth neutral and weakening the effect of the compound.
It is difficult to say anything about other genes.
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No Compound With Compound
# ‘PROBE’s | Neut | Prom | Inhi || Nolnter | Stren | Weaken | Changing
11 (0.001) 11 0 0 11 0 0 0
11 0 0 8 3 0 0
11 0 0 3 8 0 0
8 0 3 8 3 0 0
4 7 0 9 2 0 0
7 4 0 7 4 0 0
11 0 0 6 3 2 0
4 0 7 11 0 0 0
4 0 7 7 0 4 0
11 0 0 4 0 7 0
9 0 2 6 0 2 3

Table 6.9: Categorization of genes with 11 ‘PROBE’s using method I with critical value
0.001. There are 11 genes in total. The gene on the 1st row is growth neutral and having
no interaction with the compound. The genes on the 2nd and 4th rows could be taken as
growth neutral and having no interaction with the compound. The gene on the 3rd row
could be taken as growth neutral and strengthening the interaction effect of the compound.
It is difficult to say anything about other genes.

No Compound With Compound
# ‘PROBE’s | Neut | Prom | Inhi || Nolnter | Stren | Weaken | Changing
12 (0.001) 12 0 0 12 0 0 0
12 0 0 8 4 0 0
12 0 0 9 0 0 3
10 2 0 2 3 0 7
10 0 2 2 7 3 0
9 0 3 12 0 0 0
7 0 5 12 0 0 0
13 (0.001) 13 0 0 8 5 0 0
10 0 3 7 6 0 0
8 5 0 4 1 8 0
14 (0.001) 11 0 3 9 5 0 0
10 4 0 9 0 5 0
15 (0.001) 9 6 0 6 9 0 0
17 (0.001) 8 4 5 13 0 0 4
31 (0.001) 21 4 6 5 20 0 6

Table 6.10: Categorization of genes with more than 12 ‘PROBE’s using method I with
critical value 0.001. It is difficult to give a unified answer for one gene with more than 12
‘PROBE’s. We need more information from the scientists about these situations.
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6.10 Comparing HC_MEM_MD (0.001) and MEM_MD (0.001)

Comparisons the results about the two methods on genes with 5 ‘PROBE’s are shown in
Table 6.13. We can safely say that for a large proportion of genes, these two methods give

almost the same results.

‘PROBE’ NN |PN|IN | NS |PS|IS|NW | PW | IW | NC | PC | IC
5 (1) 4964 | 74 | 162 || 227 | 2 | 19| 155 20 4 72 8 3

5 (II) 7778 | 56 | 204 || 153 | 1 10 | 92 4 1 67 4 2

5 (common) | 4933 | 33 | 107 || 127 | O | 7 | 57 4 1 45 |1 2 | 0

Table 6.13: Compare the results about the two methods on genes with 5 ‘PROBE’s, more
comparisons can be found in Table 6.11 and 6.12. Here, the columns are named by two char-
acters. The first one indicates the effect of knocking down the gene on the cell growth rate
when there is no compound: ‘N’ means ‘growth neutral’; ‘P’ means ‘growth promoting’; ‘I’
means ‘growth inhibiting’. The second one indicates the interaction effect between knocking
down the gene and the compound: ‘N’ means ‘No Interaction’; ‘S’ means ‘Strengthening
the effect of the compound’; ‘W’ means ‘Weakening the effect of the compound’ and ‘C’
means ‘the interaction effect is changing with the compound level’. The row ‘5(I)" is the
result of categorizing the genes with method I. The row ‘5(II)’ is the result of method II.
The row ‘5(common)’ is the number of genes which are categorized into the same group by
the two methods.

In Table 6.13, we see that the numbers of genes in each column do not differ quite much.
However, the common genes which are classified into each column by these two methods
are not as many as we would hope, which means these two methods would give different
answers for one gene. Let’s check the columns ‘PS’ and ‘IW’ here, since there are not many
genes in those two columns.

First, Let’s check the column ‘PS’, where the genes are categorized as ‘Growth Promot-
ing and Strengthening the compound effect’. By method I, 2 genes fall into this column.
However, we find out that these 2 genes are categorized as ‘Growth Neutral and No In-
teraction with the Compound’ by method II. The growth rate curves and the adjusted
growth rate curves of these 2 genes are plotted in Figure 6.15. By hierarchical clustering,
each of these 2 genes has two clusters: one cluster containing 4 ‘PROBE’s and one cluster
containing 1 ‘PROBE’. Black and red curves are the growth rate curves for each cluster.
The purple curve is the growth rate curve by method II, which always lies between the
growth rate curves of the two clusters. The gene which is categorized as ‘PS’ by method

1T is plotted in Figure 6.16. By hierarchical clustering, those 5 ‘PROBE’s of this gene were
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Figure 6.15: The two genes which are categorized as ‘Growth Promoting and Strengthening
the compound effect” by method I, but are categorized as ‘Growth Neutral and No Interac-
tion with the Compound’. Black and red curves are the growth rate curves for each cluster.
The purple curve is the growth rate curve by method II. The pink curve is the reference.
Growth rate curves with Kmax = 1 are adjusted growth rate curves.

grouped into 2 clusters: one cluster contains 3 ‘PROBE’s and the other cluster contains 2
‘PROBE’s. The first cluster is categorized as ‘Growth Neutral and the interaction effect is
Changing’; while the second cluster is categorized as ‘Growth Neutral and the interaction
effect is Strengthening’.

Next, Let’s check the column ‘IW’, where the genes are categorized as ‘Growth Inhibit-
ing and Weakening the compound effect’ (‘IW’). By method I, 4 genes fall into this column.
Among them, 1 gene is also categorized as ‘IW’ by method II. However, we find out that
these other 3 genes are categorized as ‘Growth Neutral and No Interaction with the Com-
pound’ (‘NN’) by method II. The growth rate curves and the adjusted growth rate curves
of these genes are plotted in Figure 6.17 and 6.18. The plot for the common gene is the left
one in Figure 6.17. The 5 ‘PROBE’s are grouped into one cluster by hierarchical clustering.
The other three plots in these two Figures are for these three genes which are classified as
‘IW’ by method I but are categorized as ‘NN’ by method II. Those ‘PROBE’s for the three
genes are grouped into two clusters respectively: one cluster consists of 4 ‘PROBE’s and the
other consists of 1 ‘PROBE’. The clusters containing 4 ‘PROBE’s are categorized as ‘TW’.

When applying method II to these three genes, the cluster containing 1 ‘PROBE’ may have
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Figure 6.16: The gene which is categorized as ‘Growth Promoting and Strengthening the
compound effect’ by method II, but can not be categorized by method I since the two clusters
(one contains 3 ‘PROBE’s and the other contains 2 ‘PROBE’s) give different opinions: the
first cluster claims ‘Growth Neutral and the interaction effect is Changing’; while the second
cluster claims ‘Growth Neutral and the interaction effect is Strengthening’. Black and red
curves are the growth rate curves for each cluster. The purple curve is the growth rate
curve by method II. The pink curve is the reference. Growth rate curves with Kmax = 1
are adjusted growth rate curves.

large leverage and drag the fixed effect of the other 4 ‘PROBE’s towards the reference, as
we see in Figure 6.17 and Figure 6.18. In cases like these, we prefer the results given by

method I.

6.10.1 Conclusion

The advantage of method II is obvious: we can always get one unified answer for each gene,
since hierarchical clustering may split the ‘PROBE’s into two or more clusters and each
cluster may give a different answer. But in cases like the gene in the right plot of Figure
6.17, the result of method I (using only the cluster with 4 ‘PROBE’s as the representation
of the gene) is more reasonable. We can see the gene which is grouped into one cluster
behaves rather differently from the other 4 ‘PROBE’s, and it looks like one outlier. In all,

we prefer doing hierarchical clustering before building the mixed effect models.
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Figure 6.17: The left one is for the gene which is categorized as ‘Growth Inhibiting and
Weakening the compound effect’ (‘IW’) by both methods. The right one is for one gene
which is categorized as ‘IW’ by method I but is categorized as ‘NN’ (Growth Neutral and
No Interaction) by method II. Black and red curves are the growth rate curves for each
cluster. The purple curve is the growth rate curve by method II. The pink curve is the
reference. Growth rate curves with Kmax = 1 are adjusted growth rate curves.
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Figure 6.18: The right one is for one gene which is categorized as ‘IW’ by method I but
is categorized as ‘NN’ (Growth Neutral and No Interaction) by method II. Black and red
curves are the growth rate curves for each cluster. The purple curve is the growth rate
curve by method II. The pink curve is the reference. Growth rate curves with Kmax = 1
are adjusted growth rate curves.
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6.11 Discussion

In this chapter, we discussed the data analysis of one novel experiment, applying hierarchical
clustering, nonlinear mixed effect models and hypothesis testing. As this kind experiment is
quite new, such analysis is not quite mature. The scientists are not sure about how to deal
with the multiple ‘PROBE’s for each gene. Each ‘PROBE’ works on a different location of
the gene. Their efficiency may not be the same and they may give a different answer, as
we have seen in those plots in section 6.10. Hierarchical clustering is proposed to deal with
the multiple ‘PROBE’s for one gene. The idea is that if by hierarchical clustering, the s
‘PROBE’s for one gene are grouped into one cluster or into two clusters where one cluster
contains s — 1 ‘PROBE’s, then it is safe to use the big cluster as the representation of the
gene. Hence, it is reasonable to build mixed effect model for this cluster with the fixed
effect as that of the corresponding gene and the random effect as that of each individual
‘PROBE’. However, the drawback of hierarchical clustering is: we do not always get a big
cluster. Instead, we could get several small clusters. For example, for one gene with 5
‘PROBE’s, by hierarchical clustering, we may get 2 clusters, one containing 3 ‘PROBE’s
and the other containing 2 ‘PROBE’s. Even worse, we may get 3 clusters, two containing
2 ‘PROBE’s each and one containing 1 ‘PROBE’. If each cluster gives a different answer
about the effects on the cell growth rate with and without the compound, it is difficult
to make conclusion about the corresponding gene. More information is needed from the
scientists to deal with such cases.

Nonlinear models are used in the analysis. While they fit the data quite reasonably, the
convergence issues of nonlinear model exist. Even when it does converge, different start
values could give relatively different coefficient estimates and different covariance matrix
estimates, which could make some corresponding hypothesis testing unstable. In addition,
there are issues about likelihood ratio tests on nonlinear mixed effects models. Right now
we treat the likelihood ratio tests on nonlinear mixed effects models the same as on fixed

effect models. Improvement about this part could improve the whole data analysis.
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Chapter 7

Summaries and Future Research

In this thesis, we brought a new perspective on analyzing microarray data: categorizing the
signals in microarray data into three classes - specific signal, nonspecific signal and spurious
signal. We discussed one enriched method (enriched PCA-LDA) to highlight the specific
signal and weaken the spurious signal. We also showed this method can separate different
signals and improve the performance of classification and prediction comparing to some
other methods. But as in the weighting procedure, we works with each gene separately, the
correlation between genes is ignored. In future, we’d like to consider it. In addition, we
would like to try our method on more data, too.

In chapter 5, a theoretical proof about the convergence of the stochastic approximation in
conditional ¢ was given. We proved that each element of the vector converges in probability
under some reasonable assumptions. However, it would be better if we could prove the
vector converges in probability, which will be in our future work.

In chapter 6, we applied hierarchical clustering and nonlinear mixed effect models to
analyze ‘PROBE’ data, in order to determine the effect of each gene on the cell growth rate
and the interaction effect between each gene and some compound. We got good results.
However, by hierarchical clustering, we could get several small groups of the ‘PROBE’s.
For example, suppose one gene has 6 ‘PROBE’s and by hierarchical clustering, 3 genes
are grouped into one class and the other 3 genes are grouped into another class. Then
by the nonlinear mixed effect model, each class gives a different answer about the effects
on the cell growth rate and the interaction effects. Then it is difficult to get conclusion
about the corresponding gene, as theoretically, all 6 ‘PROBE’s can shut down the same
gene, they should give the same answer, which will then be used as the answer for the

corresponding gene. Right now, we ignore those genes when interpreting the results. We do
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hope the scientists could give us some idea about how to deal with those cases. In addition,
while nonlinear model goes well with the data, its convergence is one issue. Even when it
does converge, different start values could give different coefficient estimates and covariance
matrix estimates, which could give opposite answers in hypothesis testing occasionally. We

would like to work on this part in our future work, too.
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6.18. The right one is for one gene which is categorized as ‘IW’ by method I but
is categorized as ‘NN’ (Growth Neutral and No Interaction) by method II.
Black and red curves are the growth rate curves for each cluster. The purple
curve is the growth rate curve by method II. The pink curve is the reference.
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6.13. Compare the results about the two methods on genes with 5 ‘PROBE’s,
more comparisons can be found in Table 6.11 and 6.12. Here, the columns
are named by two characters. The first one indicates the effect of knocking
down the gene on the cell growth rate when there is no compound: ‘N’
means ‘growth neutral’; ‘P’ means ‘growth promoting’; ‘I’ means ‘growth
inhibiting’. The second one indicates the interaction effect between knocking
down the gene and the compound: ‘N’ means ‘No Interaction’; ‘S’ means
‘Strengthening the effect of the compound’; ‘W’ means ‘Weakening the effect
of the compound’ and ‘C’ means ‘the interaction effect is changing with the
compound level’. The row ‘5(I)" is the result of categorizing the genes with
method I. The row ‘5(II)’ is the result of method II. The row ‘5(common)’ is
the number of genes which are categorized into the same group by the two

methods. . . . . . e 114



