Description: Clip 5 of 10: Recognizing	Transcriber(s): Aboelnaga, Eman
the Symmetry for the two Colors across	Verifier(s): Yedman, Madeline
the Cases when building Unifix Towers	Date Transcribed: Fall 2010
4-cubes tall	Page: 1 of 3
Parent Tape: Early Algebra Ideas	
About Binomial Expansion, Stephanie's	
Interview Five of Seven	
Date: 1996-03-13	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

Time	Line	Speaker	Transcript
0:00	1	R1	So you do get sixteen four-high.
	2	Stephanie	Mm-hmm.
	3	R1	Right?
	4	Stephanie	Yes.
	5	R1	And, um, in all of these, I focused on red. Talked about the
			positions for red, right?
	6	Stephanie	Mm-hmm.
	7	R1	For these four high, you can imagine these sixteen there. And,
			of these sixteen, I could say, of these sixteen, there'll be no reds
			and there's going to be one of those. And there's going to be
			exactly one red-
	8	Stephanie	And there'd be four of those.
	9	R1	And so forth, right? Um, what about yellows? Don't we have to
			do the same thing for yellows? So wouldn't that give us 32?
	10	Stephanie	Yeah.
	11	R1	But this thing only produces sixteen. If I were to do the same
			thing here for yellow, right-
	12	Stephanie	Mm-hmm.
	13	R1	-and if I said, let's now find out how many exactly no yellows,
			let's find out exactly one yellow out of the four, exactly two
			yellows out of the four, three yellows out of the four, don't you
			agree that you'd get another sixteen?
	14	Stephanie	Yeah.
	15	R1	But then 16 and 16 gives you 32, not 16.
	16	Stephanie	But wouldn't it be the same thing? Like, only the opposite way?
			'Cause, look, if there's two red, then there's two yellow.
			[<i>writing</i>] And if there's three red, then there's one yellow. And
			if there's one red, then there's three yellow, so isn't it the same
			thing?
	17	R1	Is it?
	18	Stephanie	Yeah.
	19	R1	Ok, you're sure of that?

Description: Clip 5 of 10: Recognizing	Transcriber(s): Aboelnaga, Eman
the Symmetry for the two Colors across	Verifier(s): Yedman, Madeline
the Cases when building Unifix Towers	Date Transcribed: Fall 2010
4-cubes tall	Page: 2 of 3
Parent Tape: Early Algebra Ideas	
About Binomial Expansion, Stephanie's	
Interview Five of Seven	
Date: 1996-03-13	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

Time	Line	Speaker	Transcript
	20	Stephanie	Yeah.
	21	R1	And-and that's why if you think about that as a strategy, if
			you've already figured out exactly one, do you know exactly
			three?
	22	Stephanie	Um?
	23	R1	See this was the exactly one here, right?
	24	Stephanie	Mm-hmm.
	25	R1	Right?
	26	Stephanie	Yes.
	27	R1	That was exactly one red. And when you did exactly three red, I
			asked you to move one, you also got four.
	28	Stephanie	Yeah, well, I guess it's just the opposite.
	29	R1	Isn't that interesting?
	30	Stephanie	Yeah.
	31	R1	So, it saves you some work.
	32	Stephanie	Yeah.
	33	R1	And that's kind of important to realize. If you know exactly
			none, right, do you know exactly all?
	34	Stephanie	Yeah, but I mean, I wouldn't have thought of that. Like-
	35	R1	Yeah, well, that kind of pulls some of the ideas together.
	36	Stephanie	Yeah.
	37	R1	I think also if you think about that, it might help you. So if we
			went, to towers five, it might be interesting to look at some of
			this, now that you're looking at it from another point of view –
			combinations or selections – which, by the way, um, is a field
			of math that's called counting, and counting, um, is a field of
			math that you study as sort of a prelude to studying things like
			probability
	38	Stephanie	Mm-hmm.
	39	R1	and statistics. So it's a very important field, and, um, if you start
			to pick up a book at the college level or advanced high school,
			and you see all these formulas and you see all this notation, and
			with the notation, there's formulas.

Description: Clip 5 of 10: Recognizing	Transcriber(s): Aboelnaga, Eman
the Symmetry for the two Colors across	Verifier(s): Yedman, Madeline
the Cases when building Unifix Towers	Date Transcribed: Fall 2010
4-cubes tall	Page: 3 of 3
Parent Tape: Early Algebra Ideas	
About Binomial Expansion, Stephanie's	
Interview Five of Seven	
Date: 1996-03-13	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

Time	Line	Speaker	Transcript
25:00 -	40	Stephanie	Mm-hmm.
29:59			
	41	R1	There are students who work with this and have no sense of
			what it means. See, the advantage you're going to have when
			you get to work with this is if you could think about what this
			means, you say "Oh, selection, towers."
	42	Stephanie	Yeah.
	43	R1	You know what I'm saying?
	44	Stephanie	Yeah.
	45	R1	That's like exactly one out of the four being this. See what
			helps is if you can, all the work- all the hard work you've done
			for years, if you can, in your mind, try to say, "This is like this"
			or "This is almost like this", then you can build on these ideas
			and then when you get the formulas, you know, they don't
			always apply directly. It's like, sort of, the problem you had
			yesterday with the factoring.
	46	Stephanie	Yeah.
3:59	47	R1	It really was the same problem. You know, sort of tricky,
			wasn't it? Once you saw it a certain way, you realized it was the
			same problem. Well that's part of what you have to do. You
			have to be able to see it, you know, to be able to visualize it,
			which is part of the strength.