Does Sea Ice Influence Greenland Ice Sheet Surface-melt?

Rutgers University has made this article freely available. Please share how this access benefits you.

Your story matters. [https://rucore.libraries.rutgers.edu/rutgers-lib/44723/story/]

This work is the VERSION OF RECORD (VoR)

This is the fixed version of an article made available by an organization that acts as a publisher by formally and exclusively declaring the article "published". If it is an "early release" article (formally identified as being published even before the compilation of a volume issue and assignment of associated metadata), it is citable via some permanent identifier(s), and final copy-editing, proof corrections, layout, and typesetting have been applied.

Terms of Use: Copyright for scholarly resources published in RUcore is retained by the copyright holder. By virtue of its appearance in this open access medium, you are free to use this resource, with proper attribution, in educational and other non-commercial settings. Other uses, such as reproduction or republication, may require the permission of the copyright holder.

Article begins on next page
Does sea ice influence Greenland ice sheet surface-melt?

Asa K Rennermalm, Laurence C Smith, Julienne C Stroeve and Vena W Chu

1 Department of Geography, University of California Los Angeles, 1255 Bunche Hall, Box 95155, Los Angeles, CA 90095-1524, USA
2 Department of Earth and Space Sciences, University of California Los Angeles, Los Angeles, CA, USA
3 National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA

E-mail: akr@ucla.edu

Received 27 January 2009
Accepted for publication 3 June 2009
Published 19 June 2009
Online at stacks.iop.org/ERL/4/024011

Abstract
Recent decreases in Arctic sea ice and increases in Greenland ice sheet surface-melt may have global impacts, but the interactions between these two processes are unknown. Using microwave satellite data, we explore the spatial and temporal covariance of sea ice extent and ice sheet surface-melt around Greenland from 1979 to 2007. Significant covariance is discovered in several loci in the late summer, with the strongest covariance in western Greenland, particularly in the southwest (Kangerlussuaq). In this region, wind direction patterns and a statistical lag analysis of ice retreat/advance and surface-melt event timings suggest that sea ice extent change is a potential driver of ice sheet melt. Here, late summer wind directions facilitate onshore advection of ocean heat, and enhanced melting on the ice sheet commonly occurs after reductions in offshore sea ice. Hence, this study identifies for the first time the covariability patterns of sea ice and ice sheet melt and suggests that a retreating sea ice margin may enhance melting over the ice sheet.

Keywords: Greenland, ice sheet, sea ice, Arctic, surface-melt

1. Introduction

Greenland ice sheet surface-melt accelerated in the late-20th/early-21st century (e.g. Abdalati and Steffen 2001, Mote 2007, Tedesco 2007), coinciding with a period of rapid sea ice loss in surrounding seas and oceans (Stroeve et al 2007, Comiso et al 2008, Parkinson and Cavalieri 2008). Both are projected to continue in the 21st century (Meehl et al 2007). Large ice mass losses from Greenland may increase global sea levels up to 0.5 m (Pfeffer et al 2008) with tremendous global socio-economic impacts (Stern 2007).

On the Greenland ice sheet, the recent surface-melt anomalies are governed by rising surface temperatures and lowered ice albedo (Abdalati and Steffen 1997, Tedesco 2008). Here, we explore the possibility of a third factor influencing melt extent, namely the presence or absence of offshore sea ice. Sea ice presence is known to influence local and regional surface climate (Alexander et al 2004, Rinke et al 2006, Honda et al 1999), surface temperatures (Ogi and Wallace 2007, Lawrence et al 2008), precipitation patterns (Singarayer et al 2006) and cyclone frequency (Deser et al 2000). In principle, sea ice can be linked to ice sheet surface-melt through a chain of high correlations between sea ice and ocean temperatures (Comiso 2002), ocean and coastal temperatures (Hanna and Cappelen 2003), and coastal temperatures and ice sheet surface-melt (Abdalati and Steffen 2001, Mote 2007). In fact, JRA-25 and NCEP/NCAR reanalysis fields suggest that the recent emergence of surface-based Arctic warming is in response to reduced sea ice extent (Serreze et al 2009). Expanding open-water areas in summer absorbs solar energy, increases the specific heat content of the upper ocean, and further melts sea ice. This allows for enhanced heat transfer...
from the ocean to the atmosphere during autumn and winter, causing strongest warming in these seasons.

Put simply, we hypothesize that reduced offshore sea ice concentration, i.e. greater open-water fraction, warms the ocean mixed layer and increases onshore advection of sensible and turbulent heat fluxes, in turn raising air temperatures over the ice sheet and the probability of surface-melt occurring. We explore this hypothesis for the Greenland ice sheet using simultaneous passive microwave satellite observations of surrounding open-water extent and inland surface-melt extent from 1979 to 2007.

2. Study area, data and methods

Our study area is the Greenland ice sheet and its surrounding oceans and seas, divided into 16 land and 16 ocean regions (figure 2). Between 62.5° N and 80° N we divided the study area into 2.5° meridional bands separated east–west along 42° W, and with the ocean regions extending 20 grid cells (~500 km) outwards from the Greenland coast. One southern and one northern region cover the remaining land and ocean area below 62.5° N and above 80° N, respectively.

Temporal and spatial patterns in Greenland surface-melt were obtained from the dataset of Abdalati (2007). This dataset is a binary classification of melt/no-melt determined with the cross-polarized gradient ratio algorithm (Abdalati and Steffen 1997) utilizing passive microwave brightness temperatures measured by the scanning multi-channel microwave radiometer (SMMR) and the special sensor microwave/imager (SSM/I). Although active microwave data is more sensitive to snow wetness (Nghiem et al 2001), passive microwave sensors have been operational for much longer and capture Greenland melt anomalies quite well (Abdalati and Steffen 1997, Tedesco 2007). The dataset was processed to provide daily and average monthly time-series between 1979 and 2007 (before 1988 the SSMR sensor provides only data every other day). The melt event lags were determined in the period from May to July (figure 1). In southwest Greenland, the monthly covariability between each region’s respective time-series of offshore open-water extent and inland surface-melt during the melting season from May to September, and (2) to quantify the frequency of surface-melt events following/preceding open-water events, using daily data and various time lags.

The covariability was quantified with correlation coefficients obtained from linear regression. Regions with significant correlations were identified by testing the null hypothesis that the correlation was a result of random chance using a confidence level of $\alpha = 0.05$. However, because the likelihood of finding significant relationships can be inflated by the presence of autocorrelation and cross-correlation (Lettenmaier et al 1994, Gujarti 2003), two additional statistical tests were also performed. First, the influence of autocorrelation was tested using the Durbin–Watson test (e.g. Gujarti 2003). Second, in which the number of regions with significant correlations could be due to cross-correlations were identified using the bootstrap test of Burn and Elnur (2002). The bootstrap test established the expected number of regions with significant correlations arising due to chance, but with cross-correlations preserved, at a given significance level α. If this number is less than the number of regions with significant correlations in the actual data, the actual data is field significant at a significance level of α. Hence, months with field significant data are likely to be unaffected by cross-correlation.

The lag study examined if the relative timings between open-water and surface-melt events support the notion that offshore ocean conditions can influence the ice sheet. Assuming similar response time to external forcing, strong external forcing should result in both surface-melt and open-water events occurring on the same day (i.e., zero time lag), whereas open-water extent forcing should favor melt events after open-water events (i.e., positive time lag but not a negative one). We define an ‘event’ (meaning an expansion or contraction of surface-melt or open-water area) as the occurrence of a sign change, exceeding one standard deviation, in the time-series derivatives in SSM/I data between 1988 and 2007 (before 1988 the SSMR sensor provides only data every other day). The melt event lags were determined in the period between surface-melt onset and the time of maximum open-water expansion. The frequency of melt events occurring at time lags within ±8 days of open-water events was determined. The result was tested against the null hypothesis that melt events occur at random in relation to open-water events by employing a permutation resample test (e.g. Hesterberg et al 2006). Significance level is established as the corresponding percentile of the test data.

3. Results

Position of the mean sea ice edge sweeps progressively northward, in concert with expanding ice sheet surface-melt area, from May to July (figure 1). In southwest Greenland, open-water expansion into the Davis Strait is mirrored by inwards surface-melt expansion into the ice sheet. In August
and September, the sea ice edge continues to migrate northward while the inland surface-melt area contracts, leaving only a thin coastal, fragmented band of surface-melt by September. In contrast to the relatively uniform zonal inwards expansion and contraction of surface-melt throughout the summer, the pattern of sea ice retreat differs for the east and west coasts of Greenland. While the eastern sea ice stays proximal to the coast while retreating northwards, the western coastal areas are the first to become ice-free as the sea ice edge moves northwest into Davis Strait and Baffin Bay (figure 1).

Monthly melt extent varies independently of open-water extent except in seven of the sixteen regions during the month of August (figure 2). Only then does the bootstrap test show that the fraction of regions with significant trends \(p < 0.05 \) is field significant at a confidence level of \(\alpha = 0.05 \), suggesting that significant correlations in all other months are due to cross-correlation. Similarly, the Durbin–Watson test suggests significant autocorrelation in several time-series pairs, but none in the August time-series pairs. Thus, both tests indicate that the high correlations cannot be due to cross- or autocorrelation in the month of August. High correlations could be a result of errors in the passive microwave dataset used to determine both open-water and melt extent, but this error is considered negligible given the low correlation in most regions.

In August, most regions on the west coast of Greenland display significant positive correlations between the two variables, but the highest correlation is in the Kangerlussuaq region \(r = 0.71 \) (demarked with a ‘K’ in figure 2). For this region three different observations suggest a link between open-water fraction and ice sheet melt. First, ocean–land interactions are facilitated by the presence of westerly winds during the melting season suggesting favorable meteorological conditions for the advection of ocean air masses onto the ice sheet open-water (figure 3(a)). In all months, northeasterly katabatic winds flowing down the ice sheet interior dominate (45° from North), but in the melting season a second mode with westerly winds (270° from North) suggests a period of ocean–ice sheet interactions. Second, assuming that both sea ice and melt extent respond with a similar time lag to external forcing, the significant frequency of melt events occurring 0–2 days after open-water events (figure 3(b)) suggests that the arrival of open-water offshore is able to contribute to the arrival of surface-melt on the ice sheet. Third, given the strong relation between air temperature and surface mass balance...
Figure 3. The relationship between open-water fraction and melt extent examined for the Kangerlussuaq region, the region with the highest correlation: (a) the distribution of sub-daily observed wind directions at the Kangerlussuaq meteorological station for each month between 1980 and 2008, (b) the frequency of melt events lagging open-water events derived from daily data, and the 99th percentile of the randomized data corresponding to the 99% confidence level, (c) time-series of average monthly melt extent and in situ air temperature from the Kangerlussuaq meteorological station, (d) time-series of average monthly melt and open-water extent. The Kangerlussuaq meteorological station is situated on land between the ocean and the ice sheet (67.017 N, −50.70 E) (data available at: National Climatic Data Center, http://www.ncdc.noaa.gov/oa/ncdc.html).

(e.g. De Woul and Hock 2005), melt extent is likely a good measure of ice sheet surface mass balance, as indicated by the strong linear relation between melt extent and in situ air temperature (figure 3(c)). The potential sea ice influence on melt is strongest before 1999, thereafter the open-water fraction reaches its near maximum every year (figure 3(d)).

4. Discussion

Open-water and ice sheet surface-melt covariability is significant in seven of sixteen regions in the month of August, with most of these regions located on the west coast. Relative to northern and southern Greenland, the western and eastern parts of Greenland have a higher probability of occurrence of seasonal sea ice (Kinnard et al 2008) at the time of year when the ice sheet surface is most susceptible to melting. Thus, the western and eastern parts are more likely to experience simultaneous variability in both sea ice and surface-melt, facilitating a higher correlation between the two variables. Relative to Greenland’s east coast, the west coast interactions between the ocean and the land are helped by: (1) gentle topographic slopes (Bamber et al 2001) and (2) the nature of sea ice retreat. In contrast to the east coast, the west coast ice retreats westward into the Davis Strait leaving a growing near-shore open-water area, allowing for more solar heating in expanding open-water areas and ocean warming in close proximity to the ice sheet (figure 1).

The strongest covariability between open-water and melt extent occurs in the Kangerlussuaq region in August, the latter part of the melting season. Prevalence of a positive time lag between melt and open-water suggests that open-water enhances ice sheet melt in this area (figure 3(b)). Other factors also explain why this relationship is strongest in the late melting season. First, the late melting season generally has warmer ocean temperatures (World Ocean Atlas World Oceanographic Database 1998). Second, the arrival of westerly winds (figure 3(a)) allows advection of ocean heat onto the ice sheet potentially enhancing ice sheet melt. Third, while a strong relationship between late summer air temperature and surface-melt may not hold universally, it does so in the Kangerlussuaq region (figure 3(c)). Fourth, ice sheet albedo typically decreases during the melting season (Stroeve et al 2001), making the ice sheet more susceptible to late season melting. Finally, declining ocean heat flux
(Perovich and Elder 2002), and the possibility of ocean to atmosphere heat transfer (Steele et al 2008) may increase the relative importance of heat advected from the ocean in the late summer/fall.

This study suggests that the sea ice retreat can enhance surface-melting on the Greenland ice sheet, especially in southwestern Greenland during late summer. Future work should assess the importance of sea ice in controlling solar heating of ocean surface water, local weather patterns and the validity of the assumption of identical response time of open-water and melt area to changes in external forcings. Regardless of how the mechanism of open-water influence on ice sheet melt takes place, if model predictions of a northwards sea ice edge retreat in the 21st century are correct (Meehl et al 2007), the ice sheet region influenced by sea ice variability might reasonably be expected to correspondingly migrate northwards. North of the Kangerlussuaq area is the Jakobshavn ice-stream, which accounts for ~10% of current Greenland mass losses (Rignot and Kanagaratnam 2006). Although surface-melt is an insignificant driver of the Jakobshavn ice-stream’s present-day discharge variability (Joughin et al 2008), future increased sensitivity in combination with enhanced surface-melt may further increase the discharge from Jakobshavn ice-stream.

Acknowledgments

This research was supported through funding provided by the NASA Cryospheric Sciences Program (Grant NNG05GN89G).

References

Abdalati W 2007 Greenland Ice Sheet Melt Characteristics Derived from Passive Microwave Data (Boulder, CO: National Snow and Ice Data Center)

Abdalati W and Steffen K 1997 Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data J. Clim. 10 165–75

Comiso J C 2002 Correlation and trend studies of the sea-ice cover and surface temperatures in the Arctic Ann. Glaciol. 34 420–8

Comiso J C and Kwok R 1996 Surface and radiative characteristics of the summer Arctic sea ice cover from multisensor satellite observations J. Geophys. Res. 101 28397–416

De Woul M and Hock R 2005 Static mass-balance sensitivity of Arctic glaciers and ice caps using a degree-day approach Ann. Glaciol. 42 217–24

Hanna E and Cappellen J 2003 Recent cooling in coastal southern Greenland and relation with the north Atlantic oscillation Geophys. Res. Lett. 30 1132

Ogi M and Wallace J M 2007 Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation J. Geophys. Res. Lett. 34 L12705

Serreze M, Barrett A P, Stroeve J, Kidings D N and Holland M M 2009 The emergence of surface-based Arctic amplification Cryosphere 3 11–19

Steele M, Ermold W and Zhang J L 2008 Arctic Ocean surface warming trends over the past 100 years Geophys. Res. Lett. 35 L02614

A K Rennermalm et al

Tedesco M 2007 Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations *Geophys. Res. Lett.* 34 L02504

Tedesco M 2008 Diagnosing the extreme surface melt event over southwestern Greenland in 2007 *Cryosphere* 2 159–66

World Oceanographic Database 1998 *National Oceanographic Data Center* data provided by the NOAA/OAR/ESRL PSD, Boulder, CO, USA, from their website at http://www.cdc.noaa.gov/