Description: Stephanie problem solving excerpts	
from the four and three-tall towers problem	Page: 1 of 1
Location: Harding Elementary School	
Researcher: Amy Martino	
Date: 10/11/90	

Line	Time	Speaker	Transcript
$\mathbf{1}$		Overlay	How many combinations can you make of 4-tall towers selecting from blue and red?
$\mathbf{2}$		Stephanie	Eliminate it. [counting] Sixteen.
$\mathbf{3}$		Overlay	For 3-tall towers are there fewer, the same, or more?
$\mathbf{4}$		Stephanie	It's less, its only eight. Well because once you take these apart. Once you take the parts apart you start to see that they match because one token enough can mean a whole different.
$\mathbf{5}$		R1	First of all, what do you think you learned from what you did?
$\mathbf{6}$			

6
WEtepheabienned that, well with the Unifix cubes we learned that even though there might less, there might be, um, less, you might think there would be more because there's less blocks and there's more combinations you can make> There's less because once you take block off. Say you have red, red, red, red and you have red, red, red, blue once you take on red away and one blue away they are the same.

