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ABSTRACT OF THE THESIS
 

COMPLYING AND CURATING PUBLIC BIOASSAY DATA FOR CHEMICAL 

TOXICITY AND ANXIETY DRUG DISCOVERY STUDIES

BY ABENA BOISON

Thesis Director. Dr. Hao Zhu

Recent investigations suggest that ligands such as steroids inhibit the binding of 

[35S] t-butylbicyclophosphorothionate ([35S] TBPS) to the convulsant site in the 

aminobutyric acid type A (GABAA) receptor complex. Currently, most interest is 

centered on ligands with [35S] TBPS displacement properties. Ligands binding to the 

GABAA receptor, block GABA-gated chloride ion flux in a non-competitive manner, 

resulting in convulsions. Traditionally, [35S] TBPS inhibition studies are measured using 

animal tests. Testing compounds, using rat tests, for potentially new ligands are costly 

and time-consuming. Therefore, developing computational models to predict potential 

[35S] TBPS displacement could provide many opportunities for the discovery and 

development of new ligands acting on the GABAA receptor convulsant site, resulting in

the preventions of convulsions.

In this study, Quantitative Structure Activity Relationship (QSAR) approaches 

were used to develop several computational models for a series of novel and diverse 

types of compounds (steroids derivatives, Arylsulfonyl derivatives and Propofol 

analogues). The specific inhibition of [35S] TBPS binding to the GABAA convulsant site 

by these compounds was modeled. A database of 266 GABAA receptor compounds was 
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compiled. Duplicates, mixtures and salts were removed to prepare the dataset for 

modeling. The remaining 210 compounds were used for modeling and chemical 

descriptors for each compound were generated. After calculating descriptors for each 

compound, computational tools such as k-Nearest-Neighbor (kNN), Support Vector 

Machine (SVM) and Random Forest (RF) were used to develop QSAR models. The 

generated models were validated using five-fold cross validation. Furthermore, predicting 

the activities of the external set, compounds not used in the modeling set, validated the 

developed models. The correct classification rates (CCR) for all the models were between 

66% and 83%. Prediction values were relatively lower than accepted. However, applying 

an applicability domain (AD) increased the predictivity (CCR= 77% to 86%) and reduced 

the coverage (45%). The QSAR models developed in this study could be used to screen 

chemical libraries and identify potentially new GABAA receptor convulsant site 

compounds. 

High Throughput Screening (HTS) assays that measure the in vitro toxicity of 

environmental compounds have been widely used as an alternative to in vivo animal 

tests. Current HTS studies provide the community with rich toxicology information that 

has the potential to be integrated into toxicity research. The available in vitro toxicity 

data is updated daily in structured formats (e.g., deposited into PubChem and other data 

sharing web portals) or in unstructured ways (papers, laboratory reports, toxicity website 

updates, etc.) The information derived from the current toxicity data is so large and 

complex that it becomes difficult to process using available database management tools 

or traditional data processing applications. For this reason, it is necessary to develop a 

“Big Data” approach when conducting modern chemical toxicity research. 
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In-vitro data for a compound, obtained from meaningful bioassays, can be viewed 

as a response profile that gives detailed information about the compound’s ability to 

affect relevant biological protein/receptors. This information is critical for the evaluation 

of complex bio-activities (e.g., animal toxicities) and grows rapidly as “big data” in 

toxicology communities. This review focuses mainly on the existing structured in vitro 

data (e.g., PubChem datasets) as response profiles for compounds of environmental 

interest (e.g., potential human/animal toxicants). Potential modeling and mining tools 

used to process big data in chemical toxicity research are also described. 
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CHAPTER 1: Quantitative Structure Activity Relationship (QSAR) 
modeling of compounds binding to the Amino butyric acid type A 
(GABAA) receptor convulsant site. 

Section 1: Introduction   
 

The GABAA, is part of the inhibitory neurotransmitter of ion channels.1 It is one 

of the most complicated super families of ligand-gated ion channels and is responsible for 

anxiety and sleep disorders. The GABAA receptor is a hetero-oligomeric protein, 

composed of pentameric protein subunits arranged around a central opening that form a 

chloride ion channel.1,2 A number of different classes of pharmacological agents exert 

their effects on the GABAA receptor by binding to recognition sites that are distinct from 

the active binding site where GABA binds. GABA is the main inhibitory 

neurotransmitter in the central nervous system. It inhibits neurotransmissions in the brain 

and calms an anxious person after binding to the GABA site on the GABAA receptor. The 

binding of GABA to the GABAA receptor site activates the opening of the ion channel, 

which allows chloride anions to go down an electrochemical gradient.3 Compounds such 

as barbiturates, ethanol, anesthetics and convulsant agents that either directly or 

allosterically act on the GABAA receptor can regulate the inhibitory effects of GABA.4 

This study is centered on compounds binding directly to the GABAA receptor convulsant 

site.   

The convulsant binding site is located in the central opening that forms the 

chloride ion channel of the GABAA receptor.5 Compounds binding to this convulsant 

binding site include picrotoxinin, a number of insecticides (including dieldrine) and [35S] 

t-butylbicyclophosphorothionate ( [35S] TBPS).4 These compounds bind to the GABAA 
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receptor, blocking GABA-gated chloride ion flux in a non-competitive manner, resulting 

in convulsions.6 The convulsant [35S] TBPS is considered a GABAA receptor open 

channel blocker. The radiolabelled [35S] TBPS binds to GABAA receptor in the absence 

of GABA. Furthermore, low concentration of GABA enhances [35S] TBPS binding, while 

higher concentrations reduce binding. The modulation of [35S] TBPS binding could be 

used as an indicator of the efficacy of compounds that allosterically modulate GABAA 

receptor function.4,6,7 Recent studies have shown that steroids are capable of modulating 

the function of the receptor and displacing [35S] TBPS from the ion channel.8 However 

the interactions between steroids and [35S] TBPS is still not clear.8–10 The unknown 

mechanism of the modification of the GABAA receptor convulsant site has attracted great 

attention as information on the GABAA receptor increases.11 An understanding of how 

various ligands interact with the convulsant site would act as the starting point for 

developing potential therapeutics. Recently, the most active area of research has been the 

search for compounds that act on the convulsant binding site.12 

 

[35S] TBPS structure 
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Figure 1 GABAA receptor with its binding site. 
 

 In this study, various QSAR models were developed for a series of compounds 

(steroids derivatives, Arylsulfonyl derivatives and Propofol analogues) by modeling their 

ability to inhibit the specific binding of [35S] TBPS to the GABAA receptor convulsant 

site.  QSAR has gained significant interest of many scientists as a computational method 

to reveal favorable drug candidates.13 Specifically, QSAR allows researchers to build 

computational models and use the resulting models to virtually screen chemical libraries 

instead of experimentally testing all the new compounds. Therefore, it could save 

resources by avoiding testing unfavorable compounds.14 In QSAR studies, machine 

learning and statistical approaches are applied to establish quantitative relationships 
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between chemical structural features and biological activities of compounds that have 

been tested experimentally.14–18   

The traditional methods of experimental testing are expensive, and time- 

consuming in drug discovery.  Implementing computational methods as an alternative 

method to evaluate these drugs before synthesis would be cost effective and helpful in 

time management. There have been several reports in the literature on experimental 

testing of compounds with GABAA receptor convulsant activity.12,19 However, only a few 

computational models have been developed. Other studies in QSAR modeling used 

simple linear regression and only one type of descriptor. In this study, QSAR models 

were developed for the GABAA convulsant site using different types of descriptors and 

modeling tools. A database of 266 GABAA receptor compounds was gathered from 

literature. Compounds used in this study have been extensively investigated by 

Rybczyski, et al.20 According to the data collected, the biochemical interactions at the 

GABAA receptor convulsant site helped to determine the inhibition of [35S] TBPS and the 

binding affinity of [35S] TBPS was measured. In this study, combinations of different 

chemical descriptors and modeling approaches were used.  Moreover, computational 

tools such as k Nearest Neighbor (kNN),21 Random Forest (RF)22 and Support Vector 

Machine (SVM)23 were used. In addition, model predictivity was validated by an external 

set and five-fold cross-validation. The validated models could be used to screen chemical 

libraries.  
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Section 2: Materials and Methods  
 

Dataset  
 

The series of GABAA receptor compounds used in this study were obtained from 

the literature and other public sources.19,20,24 The initial data set contained 133 diverse 

classes of allosteric modulators such as Steroids, Arylsulfonyls and Propofols, which 

have been tested against ([35S] TBPS) assay. The active compounds had an IC50 value 

less than 50uM. Since all the compounds are GABAA receptor binders, in order to 

develop a model with comparable inactive compounds, we needed to include inactive 

compounds into the modeling set. Inactive compounds were expected to be the 

compounds that either do not displace [35S] TBPS or are not known to be neuroactive. 

Inactive compounds were obtained from an anti-cancer bioassay screen obtained from 

PubChem  (AID 248) .25   This anti-cancer dataset contained 55,728 compounds. To 

generate a balanced modeling set with a similar active/inactive ratio, we had to select a 

portion of the anti-cancer data set. A similarity search was applied to determine if the 

compounds in the anti-cancer dataset were structurally similar to the 133 active 

compounds.  Inactive compounds were selected when they were structurally similar to 

the active compounds.  The resulting modeling set contained 266 compounds (133 active, 

133 inactive).  

To avoid chemical structure errors, commercial software CASE Ultra26 and 

ChemAxon (www.chemaxon.com) Standardizer and Structure Checker 6.2.2, 2014 were 

used to curate all the chemical structures into 2D Simplified Molecular-Input Line-Entry 

System (SMILES). Then, all duplicates, mixtures, inorganics, metalorganics and salts 

were removed since our modeling tools cannot handle these types of compounds. The 
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remaining 210 unique compounds were used for QSAR modeling. 

Table 1 List of the 210 GABAA receptor modulators used in this study 

CIDS ACTIVITY SMILES 

1691 0 
COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(O)C(C)O5)c4c
(O)c3C(=O)c12)C(=O)CO 

2569 0 COC(COC(N)=O)C1C(=O)C(N2CC2)=C(C)C(=O)C=1N3CC3 

3228 0 
CCCCCCCCCCCCCCCCCCCCCC(=O)NC1C=CN(C2OC(CO)C(
O)C2O)C(=O)N=1 

12242 0 CCCCCC(C)(C)O 
61215 0 COCCOC1C(=O)C(N2CC2)=C(OCCOC)C(=O)C=1N3CC3 
64983 0 [H][n]1cccc1C2=NCC(=O)Nc3ccc(Cl)cc32 
65702 0 ClCCN(CCCl)P1(=O)OCCCN1CCCl 

65800 0 
C1CN(CCO1)P2(N=P(N=P(N=2)(N3CC3)N4CC4)(N5CC5)N6CC
6)N7CC7 

70732 0 Cc1ccc(O)c(C)n1 
71627 0 CCCOC1C(=O)C(N2CC2)=C(OCCC)C(=O)C=1N3CC3 

73492 0 
COC(=O)C(O)C(O)(CCC(C)C)C(=O)OC1C2c3cc4OCOc4cc3CCN
5CCCC25C=C1OC 

81863 0 OCN1CC(=O)N(CO)CC1=O 
91467 0 CC1CC(C)(O)CC(C(O)CC2CC(=O)NC(=O)C2)C1=O 
92114 0 COc1cc2c3CC4CCCN4Cc3c5cc(OC)c(OC)cc5c2cc1OC 
94737 0 O=P(N1CCOCC1)(N2CC2)N3CC3 
95892 0 O=P(Oc1ccc(OP(=O)(N2CC2)N3CC3)cc1)(N4CC4)N5CC5 

99105 0 
ClCCN(CCCl)P1(=O)NC(CCO1)OOC2CCOP(=O)(N2)N(CCCl)C
CCl 

99814 0 

CC(C)C1NC(=O)C(NC(=O)c2ccc(C)c3OC4=C(C)C(=O)C(NCCC
O)=C(C(=O)NC5C(C)OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C
6CCCN6C(=O)C(NC5=O)C(C)C)C4=Nc32)C(C)OC(=O)C(C(C)C)
N(C)C(=O)CN(C)C(=O)C7CCCN7C1=O 

122716 0 

CCC(C)C1NC(=O)C(NC(=O)C2=C(N)C(=O)C(C)=C3Oc4c(C)ccc(
C(=O)NC5C(C)OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C6CCC
N6C(=O)C(NC5=O)C(C)C)c4N=C32)C(C)OC(=O)C(C(C)C)N(C)
C(=O)CN(C)C(=O)C7CCCN7C1=O 

122799 0 

CCC(C)C1NC(=O)C(NC(=O)c2ccc(C)c3OC4=C(C)C(=O)C(N)=C(
C(=O)NC5C(C)OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C6CCC
N6C(=O)C(NC5=O)C(C)CC)C4=Nc32)C(C)OC(=O)C(C(C)C)N(C
)C(=O)CN(C)C(=O)C7CCCN7C1=O 

124693 0 OCCNC1C(=O)C(N2CC2)=C(NCCO)C(=O)C=1N3CC3 
227087 0 CCOC1C(=O)C(N2CC2)=C(OCC)C(=O)C=1N3CC3 

227091 0 
CCCC(=O)NC1C(=O)C(N2CC2)=C(NC(=O)CCC)C(=O)C=1N3C
C3 

238139 0 OC(=O)CCOc1ccccc1N(CCCl)CCCl 
238141 0 CCOC(=O)CCOc1ccccc1N(CCCl)CCCl 
238912 0 COc1ccc(OP(=O)(N2CC2)N3CC3)cc1 
239395 0 CCOC(=O)COc1ccc(cc1)N(CCCl)CCCl 
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241659 0 CC1CN1P(=O)(N2CCCCC2)N3CC3C 
242304 0 CC(=O)OC(CN1CC1)C=C 
242512 0 CCC(C)P(=O)(N1CC1)N2CC2 
245527 0 CN(CCN(C)P(=O)(N1CC1)N2CC2)P(=O)(N3CC3)N4CC4 
245645 0 CCOC(=O)C(Cc1ccc(cc1)N(CCCl)CCCl)NP2(=O)NCCCO2 
246259 0 CC1(C)CN1CC2CO2 
246845 0 COc1ccc2c3CN4CCCC4Cc3c5cc(OC)c(OC)cc5c2c1OC 
252674 0 Cc1cc2N=C3C(=O)NC(=O)N=C3N(CCN(CCCl)CCCl)c2cc1C 
261792 0 COc1cc2c3CN4CCCC4C(O)c3c5ccc(O)cc5c2cc1OC 

262126 0 
CC(C)CCCC(C)C1CCC2C3CCC4CC(CCC4(C)C3CCC12C)NC(=
O)N(CCF)N=O 

267924 0 CN1N=C(Br)C(=O)N(C(c2ccccc2)c3ccccc3)C1=O 

271070 0 
CC(=O)OCC1OC(OC(C)=O)C(NC(=O)N(CCCl)N=O)C(OC(C)=O
)C1OC(C)=O 

271100 0 CC(C)CCCC(C)C1CCC2C3CCC4CN(CCC4C3CCC12C)N=O 

276389 0 
COC(=O)CC(O)(CCC(C)(C)O)C(=O)OC1C2c3cc4OCOc4cc3CCN
5CCCC25C=C1OC 

277822 0 OCC1OC(C(O)C1O)N2C=CC(=O)CC2=O 

280145 0 
[H][n]1c2ccc(OC)cc2c3CCNC(CC4CC5N(CCc6cc(OC)c(OC)cc56)
CC4CC)c31 

282479 0 
CCCCCCCCCCCCCCCC(=O)OCC1OC(C(O)C1O)N2C=CC(N)=
NC2=O 

285033 0 
COC(=O)CC(O)(CCCC(C)(C)O)C(=O)OC1C2c3cc4OCOc4cc3CC
N5CCCC25C=C1OC 

286093 0 CN(C)N=Nc1ccc(cc1C(N)=O)N(=O)=O 
287401 0 Clc1ccc2NC(=O)CN=C(c3ccccn3)c2c1 
289158 0 CC(=O)OCC[n]1c2ccccc2c3c(C)c4cnccc4c(C)c31 
290774 0 O=C1CN(C(=O)CN2C(=O)c3ccccc3C2=O)C4(CCCCC4)O1 
291125 0 COc1ccc2c(c1)c3c(C)c4cnccc4c(C)c3[n]2CCO 
292761 0 Nc1ncnc2c1c(c[n]2C3OC(CO)C(O)C3O)C4NCCCN=4 
296462 0 Cc1ccc(cc1)C(=O)NC2N=CN(C3CC(O)C(CO)O3)C(=O)N=2 
296555 0 CN(C)N=Nc1ccc(cc1)S(=O)(=O)Nc2ncccn2 
300071 0 CCOC(=O)C(=CNc1ccc(OC)cc1N(=O)=O)C(=O)OCC 
302546 0 ClCCN(CCCl)CCC1OC(=O)c2ccccc2N=1 
302547 0 ClCCN(CCCl)CCN1C=Nc2ccccc2C1=O 
304437 0 COc1cc(ccc1N(CCCl)CCCl)C=Nc2ccc3c(c2)nc[n]3C 
304444 0 COc1cc(ccc1N(CCCl)CCCl)C=Nc2ccc3c(c2)nc(C)[n]3C 
304640 0 CCOC(=O)N(OCc1ccccc1)P(=O)(N2CC2(C)C)N3CC3(C)C 
304645 0 CCCOP(=O)(N1CC1(C)C)N2CC2(C)C 
308449 0 Cc1ccc(cc1C(O)=O)S(Cl)(=O)=O 
311908 0 CCC(C(C)N1CC(=O)NC(=O)C1)N2CC(=O)NC(=O)C2 
314656 0 CN1C(O)CCOP1(=O)N(CCCl)CCCl 
315960 0 OCC(O)CNC1C(=O)C(N2CC2)=C(NCC(O)CO)C(=O)C=1N3CC3 
317400 0 CN(CCO)C1C(=O)C(N2CC2)=C(N(C)CCO)C(=O)C=1N3CC3 

317858 0 
O=C1C(N2CCOCC2)=C(N3CC3)C(=O)C(N4CCOCC4)=C1N5CC
5 

318116 0 O=C1c2ccccc2C(c3ccccc3)=C1N4CCOCC4 
320696 0 CC1CCC2(CO)C(OC3C(O)C(O)C2(C)C43CO4)C=1 
409503 0 CCCCCCOP(=O)(N1CC1)N2CC2 
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412954 0 CCCCOP(=O)(N1CC1C)N2CC2C 
413456 0 CC(C)CCOP(=S)(N1CC1)N2CC2 
413529 0 CCN(CC)P(=O)(N1CC1)N2CC2 
413614 0 CCCCCCCCOP(=O)(N1CC1)N2CC2 
413615 0 CC1CN1P(=O)(OCC=C)N2CC2C 
414069 0 CCCOP(=S)(N1CC1(C)C)N2CC2(C)C 
414148 0 CC1CN1P(=O)(OCCC#N)N2CC2C 
414375 0 CCCCCCCCCCOP(=S)(N1CC1)N2CC2 
414525 0 CCOP(=S)(N1CC1(C)C)N2CC2(C)C 

419025 0 
[H][n]1cc(CC(NC(=O)OC(C)(C)C)C(=O)N2CCc3cc(OC)c(OC)cc3
C2CC4CC5N(CCc6cc(OC)c(OC)cc56)CC4CC)c7ccccc71 

419709 0 COC(=O)C(N)Cc1ccc(OC)c(c1)N(CCCl)CCCl 
419710 0 CCOC(=O)C(N)Cc1ccc(OC)c(c1)N(CCCl)CCCl 
419712 0 CCCCOC(=O)C(N)Cc1ccc(OC)c(c1)N(CCCl)CCCl 
420567 0 CC(C)Oc1ccc(CC(N)C(O)=O)cc1N(CCCl)CCCl 
420568 0 CCCCCCOc1ccc(CC(N)C(O)=O)cc1N(CCCl)CCCl 
420569 0 NC(Cc1ccc(OC2CCCC2)c(c1)N(CCCl)CCCl)C(O)=O 

421525 0 

CCOC(=O)C1C2OC(=O)C(C1C3CCC(CC4CCC(CC=4)C5C(C6O
C(=O)C5C(=O)C6CN(CCCl)CCCl)C(=O)OCC)=CC3)C(=O)C2CN
(CCCl)CCCl 

422111 0 CC(=O)OCC12CCC(C)=CC1OC3C(O)C(OC(C)=O)C2(C)C43CO4 
422455 0 COc1cc(ccc1N(CCCl)CCCl)C=Nc2cc(Cl)ccc2[n]3ccnc3C 

428565 0 
OCCN1CCN(CC1)C2C(=O)C(N3CC3)=C(N4CCN(CCO)CC4)C(=
O)C=2N5CC5 

429170 0 
OC1CCCN(C1)C2C(=O)C(N3CC3)=C(N4CCCC(O)C4)C(=O)C=2
N5CC5 

429285 0 
CN(Cc1cnc2nc(N)nc(N)c2n1)c3ccc(cc3)C(=O)NC(CCC(=O)OC(C
)(C)C)C(=O)OC(C)(C)C 

429922 0 CC(=O)OCC12CCC(C)=CC1OC3C(O)C(O)C2(C)C43CO4 
708507 0 Cc1cc(C)c(NC(=O)C=CC(O)=O)c(C)c1 

3978511 0 [H][n]1cnc2ncnc(SC3(CC)C(=O)NC(=O)NC3=O)c21 

5351130 0 
COC1C(O)C(C)OC(OC2C(O)C(O)C(C)OC2Oc3cccc4c(O)c5C(=O
)Oc6ccc(C)c7C(=O)Oc(c34)c5c67)C1O 

5357950 0 O=C1C=CC(C=C1)=NNc2cccc(c2)N(=O)=O 
5383847 0 CCOc1cc(OCC)c(C=CN(=O)=O)cc1OCC 
5384159 0 CC=CC(=O)OCC12CCC(C)=CC1OC3C(O)C(O)C2(C)C43CO4 
5798035 0 O=C1OC2CCCCC2C1=CN3CCCCC3 

5911723 0 
CCOC(=O)C1=CN=C2OC(=CNN3CC(CN4CCOCC4)OC3=O)C=
C2C1=O 

6711181 0 
CC(C)CC(=O)OC1CC2(COC(C)=O)C(OC3C(O)C(OC(C)=O)C2(
C)C43CO4)C=C1C 

44415057 0 

CC(C)C1NC(=O)C(NC(=O)c2ccc(C)c3OC4=C(C)C(=O)C(N)=C(C
(=O)NC5C(C)OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C6CCCN
6C(=O)C(NC5=O)C(C)C)C4=Nc32)C(C)OC(=O)C(C(C)C)N(C)C(
=O)CN(C)C(=O)C7CCCN7C1=O 

54602262 0 
CC(=O)OCC12CCC(C)=CC1OC3C(O)C(OC(=O)CCl)C2(C)C43C
O4 

54607467 0 CC(=C)C(=O)OCC12CCC(C)=CC1OC3C(O)C(O)C2(C)C43CO4 
54610857 0 CC(=O)OCC12CCC(C)=CC1OC3C(=O)C(OC(C)=O)C2(C)C43C
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O4 

54704409 0 
CN(C)C1C2CC3C(=C(O)c4c(O)cccc4C3(C)O)C(=O)C2(O)C(O)=
C(C(=O)NCN(CCCl)CCCl)C1=O 

9823370 1 CC(C)(C)OC(=O)c1nc[n]2c3cccc(Br)c3C(=O)N4CCCC4c12 
44375818 1 CC(=O)C1CCC2C3CCC4CC(O)(CCC4(C)C3CCC21C)CN=N#N 

10529558 1 
CC(=O)SCC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3CCC21C)N
5CCOC(C)(C)C5 

10766614 1 
CC1(C)CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(=O)CCl)C5(C)C
CC43)CC2O 

10626038 1 
CCCCC1(CCCC)CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C
5(C)CC(=O)C43)CC2O 

10790675 1 
CC(C)CC1CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C5(C)C
C(=O)C43)CC2O 

44375759 1 CC(=O)C1CCC2C3CCC4CC(O)(CCC4(C)C3CCC21C)C#C 

44291795 1 
CCOC1CC2(C)C(CCC3C4CCC(C(C)=O)C4(C)CC(C32)N(C)C)C
C1O 

44375748 1 COCC1(O)CCC2(C)C(CCC3C4CCC(C(C)=O)C4(C)CCC32)C1 

10790676 1 
CCC1(CC)CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C5(C)C
C(=O)C43)CC2O 

6918305 1 CC(=O)C1CCC2C3CCC4CC(C)(O)CCC4(C)C3CCC21C 
10717823 1 Clc1ccc(cc1Cl)C2CCCN(N=2)P(=O)(OC3CCCC3)c4ccccc4 

10790110 1 
CC(C)C1CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C5(C)CC
(=O)C43)CC2O 

3016 1 CN1C(=O)CN=C(c2ccccc2)c3cc(Cl)ccc13 
92786 1 CC(=O)C1CCC2C3CCC4CC(O)CCC4(C)C3CCC21C 

10765151 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3CCC21C)N5CCOC(
C)(C)C5 

10813342 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3CCC21C)N5CCSC(
C)(C)C5 

44375717 1 CC(=O)C1CCC2C3CCC4CC(O)(CCC4(C)C3CCC21C)C=C 

44290903 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3C(=O)CC21C)N5CC
(C)(C)OC(C)(C)C5 

22868799 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3C(=O)CC21C)N5CC
OC(C5)Cc6ccccc6 

44291114 1 
CC12CC(C(O)CC1CCC3C4CCC(C(=O)CBr)C4(C)CCC32)N5CC
OCC5 

10003232 1 
CC12CC(C(O)CC1CCC3C4CCC(C(=O)CCl)C4(C)CCC32)N5CC
OCC5 

44375980 1 CCCC1(O)CCC2(C)C(CCC3C4CCC(C(C)=O)C4(C)CCC32)C1 

10672358 1 
CC1(C)CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(=O)CCl)C5(C)C
C(=O)C43)CC2O 

10623901 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3C(=O)CC21C)N5CC
SC(C)(C)C5 

10454374 1 CCCCc1ccc(cc1)C2CCCN(N=2)S(=O)(=O)c3ccc(CCCC)cc3 
44375681 1 CC(=O)C1CCC2C3CCC4CC(O)(CCC4(C)C3CCC21C)CC#C 
11957655 1 CC12CCC(O)CC1CCC3C4CCC(C(=O)CO)C4(C)CCC32 
44375554 1 CC(=O)C1CCC2C3CCC4CC(O)(CBr)CCC4(C)C3CCC21C 
44375555 1 CC(=O)C1CCC2C3CCC4CC(O)(CF)CCC4(C)C3CCC21C 
44375804 1 CCOCC1(O)CCC2(C)C(CCC3C4CCC(C(C)=O)C4(C)CCC32)C1 
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44375726 1 CC(=O)C1CCC2C3CCC4CC(O)(CCC4(C)C3CCC21C)CC=C 

44291040 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3C(=O)CC21C)N5CC
(C)(C)SC(C)(C)C5 

44291209 1 
CC(=O)SCC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3CCC21C)N
5CCOCC5 

44375661 1 CC(=O)C1CCC2C3CCC4CC(O)(CCl)CCC4(C)C3CCC21C 
44375742 1 CCC1(O)CCC2(C)C(CCC3C4CCC(C(C)=O)C4(C)CCC32)C1 

10577865 1 
CC(=O)SCC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3C(=O)CC2
1C)N5CCOC(C)(C)C5 

10249569 1 CC(=O)C1CCC2C3CCC4CC(O)(CCC4(C)C3CCC21C)C(F)(F)F 

10598812 1 
CC1CN(CC(C)O1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C5(C)CCC
43)CC2O 

44291039 1 
CC(=O)OCC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3CCC21C)N
5CCOCC5 

10696819 1 
CC1(C)CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(=O)CSC#N)C5(C
)CC(=O)C43)CC2O 

44375725 1 CC(=O)C1CCC2C3CCC4CC(O)(CCC=C)CCC4(C)C3CCC21C 

44291794 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3CCC21C)N5CCOCC
5 

44375466 1 CC(=O)C1CCC2C3CCC4CC(O)(CCC4(C)C3CCC21C)CC=C=C 

44375628 1 
CC(=O)C1CCC2C3CCC4CC(O)(CCC4(C)C3CCC21C)COCc5ccc
cc5 

10577010 1 
CC(=O)OCC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3CCC21C)N
5CCOC(C)(C)C5 

10716882 1 
CC1CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C5(C)CCC43)
CC2O 

11801168 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3C(=O)CC21C)N5CC
OC(C5)(c6ccccc6)c7ccccc7 

10523173 1 CCCCc1ccc(cc1)C2CCCN(N=2)P(=O)(OC)c3ccccc3 

9803583 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3C(=O)CC21C)N5CC
OC(C)(C)C5 

44375607 1 CC(=O)C1CCC2C3CCC4CC(O)(CCC4(C)C3CCC21C)CC#N 
44375965 1 CCCOCC1(O)CCC2(C)C(CCC3C4CCC(C(C)=O)C4(C)CCC32)C1 
44375805 1 CC(=O)C1CCC2C3CCC4CC(O)(CI)CCC4(C)C3CCC21C 
10475111 1 CCCCc1ccc(cc1)C2CCCN(N=2)P(=O)(OCC)c3ccccc3 
10767121 1 CCCCc1ccc(cc1)C2CCCN(N=2)S(=O)(=O)c3ccc(I)cc3 
10837416 1 CCc1ccc(cc1)C2CCCN(N=2)S(=O)(=O)c3ccc(I)cc3 

53676432 1 
CCC1CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C5(C)CCC4
3)CC2O 

10766360 1 
CCCC1CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C5(C)CC(
=O)C43)CC2O 

10529493 1 
CC(=O)OCC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3C(=O)CC2
1C)N5CCOC(C)(C)C5 

10453392 1 CCOP(=O)(N1CCCC(=N1)c2ccc(Cl)c(Cl)c2)c3ccccc3 
11796910 1 CCOP(=O)(N1CCCC(=N1)c2ccc(Cl)c(c2)C(F)(F)F)c3ccccc3 
10570269 1 CCCCc1ccc(cc1)C2CCCN(N=2)S(=O)(=O)c3ccccc3 

54060826 1 
CC1CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C5(C)CC(=O)
C43)CC2O 

44291113 1 CC12CC(C(O)CC1CCC3C4CCC(C(=O)CO)C4(C)CC(=O)C32)N5
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CCOCC5 

44291020 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3C(=O)CC21C)N5CC
SCC5 

10549542 1 CC(C)OP(=O)(N1CCCC(=N1)c2ccc(Cl)c(Cl)c2)c3ccccc3 

21625943 1 
CCC1CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C5(C)CC(=
O)C43)CC2O 

10572108 1 CCCCc1ccc(cc1)S(=O)(=O)N2CCCC(=N2)c3ccc(CC)cc3 
44375937 1 CC(=O)C1CCC2C3CCC4CC(O)(CO)CCC4(C)C3CCC21C 

10624805 1 
CC1(C)CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(=O)CN=N#N)C5
(C)CC(=O)C43)CC2O 

10737922 1 CCCCc1ccc(cc1)C2CCCN(N=2)S(=O)(=O)c3ccc(C)cc3 

44291500 1 
CC(=O)C1CCC2C3CCC4CC(O)C(CC4(C)C3C(=O)CC21C)N5CC
OCC5 

44291153 1 
CC12CC(C(O)CC1CCC3C4CCC(C(=O)CO)C4(C)CCC32)N5CCO
CC5 

10647003 1 
CC1CN(CC(C)O1)C2CC3(C)C(CCC4C5CCC(C(C)=O)C5(C)CC(
=O)C43)CC2O 

10647712 1 
CC1(C)CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(=O)CO)C5(C)CC
(=O)C43)CC2O 

10837999 1 CC(C)c1ccc(cc1)C2CCCN(N=2)S(=O)(=O)c3ccc(I)cc3 
10807379 1 COc1ccc(cc1)C2CCCN(N=2)P(=O)(OC)c3ccccc3 
10669623 1 COP(=O)(N1CCCC(=N1)c2ccc(Cl)c(c2)C(F)(F)F)c3ccccc3 

44291194 1 
CC12CC(C(O)CC1CCC3C4CCC(C(=O)CCl)C4(C)CC(=O)C32)N
5CCOCC5 

10759993 1 CCOP(=O)(N1CCCC(=N1)c2ccc(F)cc2)c3ccccc3 
10782784 1 COP(=O)(N1CCCC(=N1)c2ccc(F)cc2)c3ccccc3 
10572969 1 CCCCc1ccc(cc1)S(=O)(=O)N2CCCC(=N2)c3ccc(cc3)C(C)C 
3000715 1 CCCC(C)C1(CC)C(=O)NC(=S)NC1=O 

4737 1 CCCC(C)C1(CC)C(=O)NC(=O)NC1=O 
4943 1 CC(C)c1cccc(C(C)C)c1O 

9882905 1 CC(C)c1cc(I)cc(C(C)C)c1O 
10687388 1 COC(CNCC(=O)Oc1c(cccc1C(C)C)C(C)C)OC 
10730904 1 COS(=O)(=O)c1cc(C(C)C)c(O)c(c1)C(C)C 
10589500 1 CC(C)c1cc(NC(=O)C(F)(F)F)cc(C(C)C)c1O 
10062776 1 CC(C)c1cccc(C(C)C)c1OC(=O)CN2CCCC2 
818538 1 CC(C)c1cc(N)cc(C(C)C)c1O 

10727719 1 CC(C)c1cc(cc(C(C)C)c1O)N(C)C 
10059055 1 CC(C)c1cc(Cl)cc(C(C)C)c1O 
10680603 1 CC(C)c1cc(cc(C(C)C)c1O)N(=O)=O 
10588978 1 CC(C)c1cc(cc(C(C)C)c1O)C(=O)c2ccccc2 
18469877 1 COC(=O)c1cccc(C(C)C)c1O 
10422572 1 CC(C)c1cc(Br)cc(C(C)C)c1O 

82712 1 CC(C)c1cc(C=O)cc(C(C)C)c1O 
600975 1 COc1c(cccc1C(C)C)C(C)C 

10779272 1 CC(C)c1cccc(C(C)C)c1OC(=O)c2ccccc2 
596091 1 CC(C)c1cccc(C(C)C)c1OC(C)=O 
15874 1 CCN(CC)CC(=O)Oc1c(cccc1C(C)C)C(C)C 

104845 1 CC(=O)C1CCC2C3CCC4CC(O)CCC4(C)C3C(=O)CC21C 
10503609 1 CC1(C)CN(CCO1)C2CC3(C)C(CCC4C5CCC(C(=O)CO)C5(C)CC
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Chemical Descriptors 
 

Molecular Operating Environment (MOE) and Dragon version 6.0 were used to 

calculate 2D descriptors. MOE descriptors included physical properties (such as n-

octanol water partition coefficient [Log P], molecular weight and molar refractivity), 

structural keys, E-state indices, subdivided surface areas, topological indices, topological 

polar surface area, atom counts and bond counts, Kier & Hall connectivity and kappa 

shape indices, adjacency and distance matrix descriptors, pharmacophore feature 

descriptors and partial charge descriptors. Dragon descriptors included E-state values and 

E-state counts, topological descriptors, constitutional descriptors, ring walk and path 

counts, connectivity indices, information indices, 2D autocorrelations, Burden 

eigenvalues, molecular distance edge, Kappa, hydrogen bond acceptor/donor counts, 

chemical fingerprints, molecular fragment counts, 2D matrix-based descriptors, 2D atom 

pairs, drug-like indices, Chemically Advanced Template Search 2D and geometrical 

descriptors. The Dragon software generated over 3,000 descriptors.  Redundant 

descriptors were removed. Additionally, descriptors with high correlation coefficients 

were removed. For example, if two descriptors had a correlation greater than 0.99, one 

was randomly removed.  A total of 186 MOE and 873 Dragon descriptors were used to 

develop the QSAR models. 

 

Modeling Approaches   
 

The application of RF, kNN and SVM algorithms available in R.2.15.127were 

used in this study. 
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Random Forest (RF) 
 

In machine learning, RF is a predictor, which creates trees from random selection 

of descriptors.  It yields the prediction by combining predictions from individual trees.  

RF can be used for classification or regression models. The algorithm for inducing a RF 

was developed by Breiman and Cutler.22 In the RF modeling procedure, n samples are 

randomly drawn from the training dataset based on the user-defined values. These 

samples are used to construct n training sets and to build n trees. These trees permit the 

evaluation of importance of each descriptor, taking into consideration the entire 

descriptor pool. It allows the isolation of the important descriptors.  For each node of the 

tree, m, which is the total number of input qualities in the dataset, are randomly chosen 

from all of the available chemical descriptors. The best data split are used to develop a 

decision tree model based on these m variables in the training set.22 This process repeats 

for each tree until the nodes are too small to split. RF produces a highly accurate 

classifier and runs efficiently on large databases. It also provides effective methods for 

detecting variable interactions. 

 

k Nearest Neighbor (kNN) 
 
 In kNN, the program uses a classification algorithm principle and variable 

selection technique for model development.28 kNN implies that similar compounds 

display similar activities.  This method predicts each activity as the average activity of k 

(number of compounds) most similar compounds from the training set. The initial step 

starts with the random selection of a subset of nvar (number of selected variables) 

descriptors. The nvar is set to different values, and the training set models are developed 
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with leave-one-out cross validation method, where each compound is eliminated from the 

training set and its biological activity is predicted as the average activity of the k is 

optimized as well (k= 1-5).29 The similarity is characterized by the Euclidean distance 

between compounds in multidimensional descriptor space. A method of simulated 

annealing with the Metropolis-like acceptance criteria is used to optimize the selection of 

variables.30 The objective of this method is to obtain the best leave-one-out cross-

validated (LOO-CV) Correct Classification Rates (CCR) by optimizing nvar and k. The 

additional details of the method can be found elsewhere.23,30 kNN provides a simple and 

effective method of modeling.  

 Following our general QSAR modeling workflow methodology, all of the kNN 

models were extensively validated. The modeling compounds were divided multiple 

times into training/test sets. The model acceptability cutoff values of the LOO-CV 

accuracy of the training sets and the prediction accuracy for test set were both set 

arbitrarily as 0.7. Models that did not meet both training and test set accuracy cutoff 

criteria of 0.7 were discarded. The cut-off of 0.7 was selected, because models that 

perform better than random (cutoff criteria 0.5) were desired.  

  

Support Vector Machine (SVM) 
 

SVM represents a set of supervised learning methods used for classification and 

regression modeling. SVM was developed by Vapnik21 as a general data modeling 

methodology where both the training set error and the model complexity are incorporated 

into a special loss function that is minimized during model development.  The 

methodology allows one to regulate the importance of the training set error versus the 
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model complexity to develop the optimal model that best predicts a test set. Later, SVM 

was extended to afford the development of SVM regression models for data sets with 

activities, such as QSAR.29 

In SVM, chemical descriptors are mapped onto a high dimensional space using 

kernel functions that is typically nonlinear. The system then looks for an optimal 

separation between two classes, such that each in their entirety lies on opposite sides of a 

separating hyperplane. This is achieved by maximizing the margin between the closest 

points, known as support vector, and the hyperplane.23 Advantages of using SVM is that 

it is effective in high dimensional spaces. SVM is likely to give poor prediction if the 

number of features is much greater than the number of samples.  

 

Combinatorial QSAR workflow   
 

The complete combinatorial QSAR modeling workflow is shown in Figure 2. 

Each model was developed using Dragon or MOE descriptors and either RF, SVM or 

kNN modeling approaches, resulting in six different models: Dragon-RF, Dragon-kNN, 

Dragon-SVM, MOE-RF, MOE- kNN, and MOE-SVM. In addition resulting models were 

averaged to generate a consensus model.  
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Figure 2 Combinatorial QSAR modeling workflow 

 

 

Five-fold cross validation  
 

The most common and effective approach to testing models is cross validation. In 

five-fold cross-validation, the modeling set is distributed randomly into five separate 

folds (Figure 3). Each fold contained 20% of the compounds in the modeling set; each 

fold was used as an external set while the remaining four (80%) jointly formed a 

modeling set. This was done until each fold had been treated as an external set. Our goal 

here was to evaluate the performance of all the compounds in the modeling set.  
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Figure 3 Five-fold cross validation workflow  
 

 

Universal statistical figures of merit for all models  
 

 The implementation of various modeling approaches and descriptors were used 

in the modeling method.  Universal statistical metrics were necessary for the evaluation 

of model performance. Furthermore, to harmonize the results of this study, the results 

were analyzed using sensitivity (the percentage of active compounds predicted correctly), 

specificity (the percentage of inactive compounds predicted correctly) and correct 

classification rate (CCR) to assess all predictions. These parameters are defined as 

follows: 

 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ % = ൬ ݏ݁ݒ݅ݐ݅ݏ ݁ݑݎݐ
ݏ݁ݒ݅ݐ݅ݏ ݁ݑݎݐ +   ൰100ݏ݁ݒ݅ݐܽ݃݁݊ ݁ݏ݈݂ܽ

 



 
 

19 

 

ݕݐ݂݅ܿ݅݅ܿ݁ܵ % =  ൬ ݏ݁ݒ݅ݐܽ݃݁݊ ݁ݑݎݐ
ݏ݁ݒ݅ݐܽ݃݁݊ ݁ݑݎݐ +  ൰100ݏ݁ݒ݅ݐ݅ݏ ݁ݏ݈݂ܽ

 

ܴܥܥ % = ൬ ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ + ݕݐ݂݅ܿ݅݅ܿ݁ݏ 
2 ൰100 

 

Applicability Domain (AD) 

A QSAR model can predict the target property for any compound for which 

chemical descriptors can be calculated. However, if a compound is highly dissimilar to 

all compounds of the modeling set, the reliable prediction of its activity is unlikely. The 

concept of the Applicability Domain (AD) was developed and used to avoid an 

unjustified extrapolation of activity predictions. In this study, the AD was defined as a 

threshold distance DT between a compound under prediction and its closest nearest 

neighbor of the training set, calculated as follows:31  

்ܦ = തܻ  +  ߪܼ

Here, തܻ  is the average Euclidean distance between each compound and its k nearest 

neighbors in the training set (where k is the parameter optimized in the course of QSAR 

modeling, and the distances are calculated using all descriptors and descriptors selected 

E\�WKH�RSWLPL]HG�PRGHO�RQO\���ı�LV�WKH�VWDQGDUG�GHYLDWLRQ�RI�WKHVH�(XFOLGHDQ�GLVWDQFHV��

and Z is an arbitrary parameter to control the significance level. We set the default value 

of this parameter Z to 0.5, which formally places the allowed distance threshold at the 

mean plus one-half of the standard deviation. Thus, if the distance of the external 
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compound from its nearest neighbor in the entire descriptor space or the subspace of 

descriptors selected in the training set exceeds this threshold, the prediction is not made.31  

External dataset  
 

For external validation, an external data set (76 compounds) from three bioassays 

studies from AID 71551,71835 and 71844 were compiled.32–34 These compounds have 

been extensively tested for their ability to inhibit the specific displacement of [35S] TBPS 

at the GABAA receptor convulsant site.  The test set was tested against the modeling set 

to remove compounds that existed in the training set.  
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Section 3: Results and Discussion  
 

Overview of modeling set and test set  

 
 
Figure 4. 3-D Plot of top three principal components using MOE descriptors for 210  
 
modeling set (purple) and 76 external set (red) compounds 
 
 

Principle component analysis (PCA) was used to evaluate the structural 

similarities in the modeling set. The chemical space of both the modeling set and the 

external set was analyzed by preforming a PCA using MOE chemical descriptors.  After 

calculating principal components using all 186 MOE descriptors, the top three principle 

components were selected to create a chemical space for 210 modeling set and 76 
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external set compounds. The chemical space of the modeling set and the external set is 

shown in Figure 4. 

 
 
Modeling Results  
 

Six individual and one-consensus category models were developed. The results 

for all the five-fold-cross validations (refer to methods for description) are shown in 

Figure 5.  The sensitivity, specificity and CCR for all the models ranged from 73-99%, 

87-96%, to 80-97%, respectively.  

 
Figure 5 Performance of seven individual and consensus GABAA binder QSAR models 
 
(N=210) using five-fold cross validation  

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sensitivity

Specificity

CCR

 



 
 

23 

 

Figure 6 Prediction results of external validation set 

 

Furthermore, the prediction results for the external compounds are shown in Figure 6. 

The sensitivity, specificity and CCR for all the models ranged from 52-70%, 84-96%, to 

74-82%, respectively.  Next, an AD35 was applied to identify outliers in the external set.  

The AD was defined by a distance between a compound being predicted and its nearest 

neighbor in the training set.35 For example, a compound “within domain” had a distance 

less than the defined valued. The CCR range for all the individual models and the 

consensus model was 76-86% (Figure 7).  Applying AD, increased the prediction 

accuracy but decreased the coverage (45%) (Table 2). 
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Figure 7 Prediction results of external validation set with applicability domain applied.  
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Table 2. The predictivity of various models without and with applicability domain.

AD STATISTICS
%

MODELS
Consensus RF 

MOE
SVM 
MOE

RF
Dragon

KNN
MOE

KNN
MOE

KNN
Dragon

NO
AD

N=76

Sensitivity 63 65 68 70 52 61 58
Specificity 96 94 88 94 84 89 96

CCR 79 79 78 82 68 75 74
WITH

AD
N=52

Sensitivity 72 77 72 72 80 72 75
Specificity 93 81 81 100 87 100 81

CCR 82 79 76 86 84 86 78

Descriptor Analysis
 

Chemical descriptors are numerical values that quantitatively represent the 

characteristic of a molecule. Descriptor analysis helps identify specific behaviors of the 

molecule and its interactions with the receptor. These descriptors could help provide 

meaningful explanations into the potential mechanisms since the exact mechanisms are 

unknown. Dragon descriptors from the kNN models were selected for this analysis. 

Dragon descriptors from the kNN models were specifically analyzed, because it

contained more diverse descriptors than MOE. The top two descriptors in the kNN

dragon QSAR models are shown in Table 3, along with their descriptions and frequency 

(%) out of 801 kNN models. Descriptor H-046 had the highest frequency (73%). The H-

046 descriptor represents hydrogen attached to carbon with sp3 hybridization.36 There 

was also a fragment descriptor (nCt) that was considered to be important in the models. 

Descriptor nCt represents the number of total tertiary carbons with sp3 hybridization.37–39

It is interesting to notice that the TBPS molecule also has both fragments. Both polar 

and non-polar characteristics of these molecules (i.e. TBPS and most  of the active   

compounds) should be the binding features to the GABAA receptor convulsant site.
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Table 3 Top two Dragon descriptors used to develop kNN QSAR models.  

 
 

Descriptor 
Name Description Illustration 

Example of active 
compound with 

descriptor 

Frequency 
(%) 

H-046 

H attached to 
CO (sp3) no X 

attached to 
next C 

 

 

73 

nCt 
Number of 

total tertiary 
carbons (sp3) 
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H

HO

CH3

C
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Section 4: Conclusion   
 

In this study, numerous approaches were used to develop a Combinatorial QSAR 

model. Models generated in this study showed high predictivity. Statistical techniques 

used to develop the models demonstrated that the models have the ability to predict new 

compounds.  Resulting models were validated by prediction of the activity of an external 

set from additional sources. The five-fold cross validation performed better than the 

external validation. However, applying an AD increased the predictivity (CCR= 76-86%) 

but reduced coverage. 

Overall, a good Combinatorial QSAR model was developed in this study from the 

data collected. Statistical methods used for modeling demonstrated the ability of the 

model to predict new chemicals. Descriptor analysis showed that potential GABAA 

receptor active compounds, including [35S] TBPS, have some common substructural 

features (e.g., those described by the H046 and nCt descriptors). These characteristics 

should be the binding features to the GABAA receptor convulsant site. Models in this 

study can be used to screen external chemical libraries and to identify potential active 

GABAA receptor convulsant site compounds. 
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CHAPTER 2: The Use of High Throughput Screening (HTS) in 
Chemical Toxicity Studies 

Section1: Introduction 
 

With the great progress of combinatorial chemistry since the 1990s, large 

chemical libraries became the major source of modern drug discovery procedure.40,41 

Over the past 10 years, this effort also stimulated the development of High Throughput 

Screening (HTS) techniques.42,43 Traditional toxicity testing protocols using animal 

models are expensive and time consuming. Because of the urgent need to use alternative 

methods in toxicity studies, the US National Research Council (NRC) outlined a new 

vision and strategies for the increased use of in vitro technologies for chemical risk 

assessment.44 With its low cost and short testing time, HTS has been viewed as a 

potential alternative to animal models.  

HTS is a process that screens from thousands to millions of compounds using a 

rapid and standardized protocol. Current HTS techniques are usually combined with 

robotic methods. Parallel data processing and biological assay miniaturization has 

become more and more popular in toxicology studies as they greatly reduce the cost of 

experimental testing.42,45 It is understandable that some “popular” compounds, especially 

those of toxicity interest (e.g., known human toxicants), have been tested multiple times 

and in many different bioassays. For this reason, the assay response data from multiple 

resources and/or multiple testing protocols could be viewed as the “response profile” of 

the compounds being tested. Figure 8 shows the current data construction of compounds 

in toxicity testing. Compared to the limited amount of historical animal toxicity data, the 

chemical-response data space obtained from HTS is much more complex and keeps 

growing daily.  
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Figure 8 The scenario of big data for chemical toxicity research 

 

The term “big data” describes a collection of data sets that are so large and 

complex that they are too difficult to process by traditional data analysis tools. 

Originally the “big data” focus was on advanced data storage and handling techniques, 

such as cloud-based computing or high-speed heterogeneous computational 

environments.46 Currently, the problem of big data is gaining increasing recognition in 

clinical studies and other research areas driven by biological data.47,48 Clearly the 

progress of HTS and relevant data sharing projects moved modern chemical toxicity 

research into the big data era. The need for novel techniques, including data 
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mining/generation, curation, storage and management, brings new challenges and 

opportunities to the current toxicology community. 
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Section 2: High Throughput Screening in Chemical Toxicology 
 

There were several important movements by regulatory agencies for the 

development of HTS assays, which are potential alternatives to animal testing. The 

National Institutes of Health (NIH) Roadmap for medical research was launched in 

2004.49 Fueled by this initiative, several molecular libraries screening centers were 

developed by the NIH Molecular Libraries Common Fund Program. The NIH Chemical 

Genomics Center (NCGC), which is now a branch of the National Center for Advancing 

Translational Sciences (NCATS), was one of them. In 2005, right after NCGC was 

initiated, the National Toxicology Program (NTP) and NCGC started a collaboration to 

1) develop a chemical library suitable for HTS; 2) develop HTS assays potentially 

informative for in vivo toxicity effects; and 3) experimentally test the chemical library 

by these HTS assays.43 This is one of the early efforts to systemically use the HTS 

technique within toxicology studies. During the same period, there were many other 

HTS projects that were performed by other research groups.50–54 Although these studies 

were not specifically designed for chemical toxicity, but for drug discovery and other 

areas, these HTS efforts also generated numerous bioassay data for large chemical 

libraries. For the early days of HTS development, several reviews are available.42,55–59 

In 2006, the U.S. Environmental Protection Agency (EPA) initiated a research 

program named toxicity forecaster (ToxCast). The goal of this program was to develop 

methods for utilizing in vitro toxicity tests and various toxicogenomics technologies to 

quickly evaluate the toxic potential of chemicals and to prioritize candidates for future 

animal testing.55 Phase I of ToxCast employed a chemical library of ca. 300 unique 

compounds, most of which were chemicals for agricultural use, such as pesticides, and 
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had relevant animal toxicity testing results available.60 Around 500 cell-free or cell-

based assays were used to screen this chemical library. From these, over 600 in vitro end 

points were measured for each chemical, generating over 200,000 concentration 

response data points. In ToxCast Phase II, another 767 compounds, including some 

failed pharmaceuticals, were screened using around 700 HTS assays.61 

In 2008, another big collaborative program, called Toxicity Testing in the 21st 

century (Tox21), was launched by NTP, NCGC and EPA,62–64 joined later by the U.S. 

Food and Drug Administration (FDA). The Tox21 collaboration brought together its 

partners’ expertise in the areas of experimental toxicology, in vitro assays, and 

informatics.64 The target chemical library of Tox21 screening contains over 8,000 

unique compounds, including commercial compounds, pesticides and all marketed 

pharmaceuticals.61 Screening of this extensive chemical library commenced in 2011 at 

NCGC, with a throughput capacity of approximately 25 assays per year.  
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Section 3: Current Toxicity Data Sharing Projects  
 

Facilitated by the combined efforts of HTS, as described above, and 

combinatorial chemical synthesis, modern screening programs produced enormous 

amounts of biological data, especially the chemical responses on specific targets.65 As a 

result, several data sharing projects, in parallel with the generation of HTS toxicity data, 

were also initiated in the past ten years. For example, PubChem is a public repository for 

chemical structures and their biological properties.66,67 Most of the HTS data (e.g., those 

generated from the above toxicology programs) were shared through PubChem. Figure 9 

shows the yearly increase of PubChem compounds.68–73 In the past five years, the 

number of PubChem compounds increased from 1.9 million in September 200868 to 4.8 

million in September 2013.72 During the same period, the number of bioassays that were 

deposited into PubChem increased from 1,197 in September 200868 to over 700,000 in 

September 2013.72 The tremendous amount of PubChem bioassay data, with total size of 

more than five terabytes, resulted in a big data pool for environmental compounds with 

various target response information. 
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Figure 9 The increase of compounds recorded in PubChem within five years (from 

September 2008 to September 2013). 

 

A large group of toxicity bioassay data, found in PubChem, but existing also as an 

individual data sharing project, is from the European Bioinformatics Institute (EBI).74 

The EBI’s goal is to provide freely available data and bioinformatics services to all 

branches of the scientific community. As a part of this goal, the ChEMBL database was 

compiled from publicly available data found in scientific publications. In 2011, the 

ChEMBL version 11(ChEMBL_11) was launched and includes 3.3 million bioassay 

readout data of 629,943 compounds. This was obtained from curating over 42,500 

scientific publications. 74  
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There are other programs specifically for sharing chemical toxicity data, including 

animal testing results. Starting in 2007, the U.S. EPA's National Center for 

Computational Toxicology (NCCT) program initiated a unique toxicity data search 

program, named Aggregated Computational Toxicology Resource (ACToR).75,76 The 

mission of ACToR was to develop a central database that links to a set of existing 

toxicity databases to bring together many types and sources of toxicity data for a large 

environmental chemical library. Aside from the results of in vitro bioassays, the current 

ACToR portal has the links to over 100 different animal toxicity data sources (e.g., 

ToxRefDB and DSSTox).76 The most recent product of ACToR is the newly launched 

Chemical Safety for Sustainability Dashboard (http://actor.epa.gov/dashboard/). This new 

function provides an interactive tool to explore rapid, automated (or in vitro high-

throughput) chemical screening data generated by the ToxCast project and the federal 

Tox21 collaboration. 

Similar to ACToR but with a different mission, the ToxNET program contains 

and allows navigation through 16 separate databases of much more diverse chemicals.77 

ToxNET was developed by the National Library of Medicines’ (NLM) Division of 

Specialized Information Services (SIS). By grouping the databases together, ToxNET 

allows for all information to be accessed from one query form. Although there are 14 

separate databases used as the query source of ToxNET, some toxicity data are similar 

and are grouped together in the integrated report. 

In response to the shortage of alternative testing methods, the European 

Commission and the European Cosmetics Association launched the most recent research 

initiative, so called Safety Evaluation Ultimately Replacing Animal Testing (SEURAT) 

 

http://actor.epa.gov/dashboard/
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in 2011.78 It is called "SEURAT-1", indicating that more steps have to be taken before 

the final version will be reached. Under the SEURAT-1 initiative, there were six research 

projects funded and heavy data curation/management analysis involved.79 For example, 

one of these projects, the COSMOS project, is dedicated to the development of freely 

available tools and workflows to predict the safety of cosmetic ingredients to humans.80 

In the recently released COSMOS database web portal (http://cosmosdb.cosmostox.eu/), 

there are over 5,500 unique cosmetic-type compounds with their relevant toxicity data. 

Toxicogenomics is a field of toxicology that addresses information concerning 

gene, protein, and metabolite changes within a particular cell or tissue of an organism in 

response to chemicals. Many modern in vitro toxicity studies result in outcomes via 

relevant toxicity mechanisms and these findings can be translated into biomarkers that 

could be applied to human exposure studies.81 Toxicogenomics investigations generate 

large amounts of “omics” data that are meant to predict toxicity or genetic susceptibility 

induced by chemicals. The Chemical Effects in Biological Systems (CEBS) database 

developed by the National Institute of Environmental Health Sciences (NIEHS) is now 

the public repository for all NTP conventional toxicology and carcinogenicity data as 

well as NCGC HTS data.82 Along with the Comparative Toxicogenomics Database 

(CTD) at Mount Desert Island Biological Laboratory, CEBS  aims to  promote 

comparative studies of genes and proteins across species.83–86 Currently, CTD data is 

searchable through the ToxNET portal and CEBS is available at 

http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm. In 2010 NIEHS 

launched DrugMatrix (https://ntp.niehs.nih.gov/drugmatrix/index.html), another large-

scale data sharing portal that contains in vitro and in vivo rat gene expression data, 

 

http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm
https://ntp.niehs.nih.gov/drugmatrix/index.html
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measured after chemical treatment, for over 600 chemicals and 10,000 genes. The Broad 

Institute since 2006 maintains the Connectivity Map (cmap) project 

(http://www.broadinstitute.org/cmap/), a collection of over 7,000 genome-wide 

expression profiles from cultured human cell lines for over 1,300 compounds. 87 

  

 

http://www.broadinstitute.org/cmap/
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Section 4: Characterizing Toxicants by Multiple Bioassay Data 
 

The direct consequence of the HTS testing effort in the past ten years is the 

massive amount of available biological data for organic compounds, especially those of 

environmental interest. A significant number of those compounds have been tested 

multiple times. For example, Table 4 shows 20 common toxicants obtained from the 

Integrated Risk Information System (IRIS) database (http://www.epa.gov/IRIS/). Based 

on the search result on PubChem (accessed on December of year 2013), these toxicants 

were reported to be tested in hundreds of PubChem bioassays. For example, chlordecone 

(CAS 143-50-0), which is an insecticide now banned from the market, showed active 

responses in 328 bioassays (Table 4). Other toxicants have similarly rich response 

information on PubChem (Table 4).  

The multiple bioassay data of a single compound can be viewed as its biological 

profile, reflecting its interactions. Profiling compounds, especially the toxicants, to study 

their toxicity potential is the most straightforward way to use the available bioassay data. 

ToxCast Phase I screened over 300 unique compounds, mostly food pesticides, in 467 

bioassays. The resulting data was used to profile screened compounds for their potential 

to induce carcinogenicity,88 developmental toxicity,89,90 reproductive toxicity,91 and 

endocrine disruption.92,93 
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Table 4. 20 human toxicants with their relevant PubChem bioassay responses.  

Chemicals C CAS 
Number 
of Active 
Responses 

Number 
of 
Inactive 
Responses 

CHLORDECONE 143-50-0 328 539 
TOXAPHENE 8001-35-2 294 112 
HEXACHLOROCYCLOPENTADIENE 77-47-4 208 262 
DICHLORVOS 62-73-7 181 633 
PENTACHLOROPHENOL 87-86-5 95 690 
HEPTACHLOR 76-44-8 85 624 
DDT, P,P'- 50-29-3 76 386 
DDD, P,P'- 72-54-8 70 186 
ENDOSULFAN 115-29-7 65 259 
NAPHTHALENE 91-20-3 61 890 
DDD, O,P'- 53-19-0 61 964 
1,4-DICHLOROBENZENE 106-46-7 57 362 
4,6-DINITRO-O-CRESOL 534-52-1 57 213 
PHENOL 108-95-2 53 518 
CHLORPYRIFOS 2921-88-2 48 739 
METHOXYCHLOR 72-43-5 47 710 
2,4-DINITROPHENOL 51-28-5 46 672 
TETRACHLOROPHENOL 25167-83-3 45 515 
BENZO(A)PYRENE 50-32-8 39 358 
4,4'-METHYLENEBIS(2-
CHLOROANILINE) 101-14-4 32 431 

 

Besides the bioassay data generated by the ToxCast program, the Tox21 

compounds have been tested in other screening projects. In the current big data era, the 

bioassay response profile can be very large for some compounds (e.g. those well-known 

toxicants shown in Table 4). The initial response space can be large, complex and 

unorganized. For example, Figure 10 shows the PubChem response space of 962 

ToxCast compounds by using 193 PubChem assays (accessed December 2013). By 

classifying the ToxCast compounds into four major categories,94 we could compare the 

response profiles of different types of compounds (Figure 11). Compared to phthalates 
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plasticizers, the pharmaceutical compounds and pesticides have been studied in most 

bioassays and the active response ratios are relatively high. 

 

Figure 10 The response space of 962 ToxCast compounds represented by the data 

obtained from 193 PubChem bioassays. The red dots represent active responses; the blue 

dots represent inactive responses; and the yellow dots represent no testing data or 

inconclusive results. 
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It is understandable that most areas within the initial response map are either “no 

testing” or “inconclusive” because many bioassays have only been applied to a small 

portion of this large chemical set. Furthermore, the nature of HTS assays, many of which 

represent very specific interactions, results in a biased distribution of responses for the 

target chemicals (many more “inactives” than “active” data entries). Since not all the 

bioassay data are relevant or useful for a particular type of toxicity, additional rational 

selection steps are needed to select useful information from the bulk of available big 

data. 
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Figure 11 The response spaces of different category ToxCast compounds represented by 

the data obtained from 193 PubChem bioassays: (a) 171 consumer use chemicals (not 

including pharmaceuticals or pesticides); (b) 470 pesticides; (c) 245 pharmaceuticals; (d) 

34 phthalates, plasticizers and alternatives. 
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Section 5: The Use of Bioassay Data to Prioritize Animal Toxicants 
 

 There have been some studies to use the current bioassay data to identify likely 

animal toxicants and/or prioritize them for future experimental animal testing. For 

example, the currently available ToxCast bioassays have been organized into a global 

scoring system, called ToxPi, to identify potential toxicants by their responses in these 

assays.90,92–95 Furthermore, toxicity pathways could also be generated, linking relevant 

bioassays together by analyzing their biological targets.96,97 ToxCast Phase I is the first 

time there has been a big data effort to generate and systemically use large scale 

bioassay data in chemical toxicity studies. In ToxCast Phase II, similar efforts continued 

with the new 767 target chemicals, including 111 failed pharmaceutical drug 

molecules.94 In the recent Tox21 program, the results obtained from ToxCast were used 

to select the most useful bioassays as the testing battery for a much larger 

database.63,98,99 

There are other research groups and agencies that use bioassays to study various 

in vivo toxicities, such as acute toxicity,100–103 developmental toxicity,104 and drug-drug 

interactions.105 One example is the AcuteTox collaborative project initiated within the 

European Union. Its purpose is to develop alternative testing strategies that could replace 

animal testing for predicting human acute oral systemic toxicity.103,106–110 Similar to 

ToxCast, AcuteTox generated large-scale in vitro toxicity data from multiple 

bioassays.107 All these efforts contributed to the initial pool of big data for chemical 

toxicants.  

 Dr Zhu’s group has also utilized bioassay data to predict animal toxicity of 

organic compounds. In the first two of our studies, multiple HTS data from NCGC 
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bioassays were used as biological descriptors to develop predictive models for various 

animal toxicity endpoints.111,112 The models with hybrid (combination of chemical and 

biological) descriptors showed better predictivity than the traditional Quantitative 

Structure-Activity Relationship (QSAR) models using only chemical descriptors. In 

another study, the biological descriptors obtained from toxicogenomics data were used to 

model animal hepatotoxicity.113  
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Section 6: Extracting Useful Bioassay Data from Multiple Data Resources 
 

The clear limitation of extrapolating results from in vitro assays to a whole 

organism is that each in vitro assay generally only considers one or several target sites 

rather than a comprehensive organism consisting of hundreds of potential targets.114,115 

The practical solution is to form a large battery of diverse in vitro assays for a specific 

animal toxicity, such as the ToxCast strategy.55,61 In the toxicant profiling studies 

described above, each project was limited to the use of the data generated by its own 

HTS assays. This lack of data integration across multiple related toxicity databases is 

clearly a big and open issue. How to integrate large scale datasets from various sources 

is the key question that needs to be addressed in the current big data scenario. To realize 

this goal, novel data mining tools need to be developed to extract useful data from 

different resources. Wild and his coworkers developed a framework called 

Chem2Bio2RDF to link several data resources, such as DrugBank, PubChem, ChEBL 

and others.116 This framework, including other similar data mining tools developed in 

the same group, was used to create complex systems biology models (e.g., for drug 

adverse effects).117–119 Recently Fourches et al. reported a newly developed software, 

named HTS Navigator, to extract, visualize, and analyze HTS data from various 

resources.120 
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Figure 12 A potential in vitro-in vivo relationship in toxicology studies 

 

In the current big data scenario, the most critical issue is to identify useful in vitro 

data. In principle, this could be done by a human expert using the knowledge of the 

design and quality of each particular bioassay (e.g., “Confidence Score” assigned during 

manual curation to each assay in ChEMBL). We, however, believe that data-driven 

approaches would provide more efficient ways. One possible strategy is to select assays 

based on their in vitro-in vivo relationships. Due to multiple mechanisms behind each 

toxicity phenotype, each bioassay is likely to show only partial correlation with in vivo 

effect. For example, if a bioassay represents a receptor that belongs to a toxicity pathway 
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relevant to the target animal toxicity, this bioassay should provide useful information, 

such as receptor/pathway perturbation. However, if compounds show inactive results in 

a particular bioassay, they can still be toxic since they may bind to other target sites 

(Figure 12). A previous study showed  that the bioassay results had a low false-positive 

rate to predict the relevant animal toxicity.121 But the false-negative rate, on the contrary, 

is high. Based on this study, we recently developed an automatic bioassay system to 

evaluate and extract the relevant bioassay data based on the in vitro-in vivo relationship. 

For example, we could automatically extract 50 bioassays based on their correlation with 

the rat fetal growth retardation in vivo testing results from PubChem (accessed 

December 2013). Figure 13 shows the response profile, based on those 50 bioassays, for 

107 compounds. The potential toxicants can then be prioritized by ranking the responses 

from these assays (Figure 13). 
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Figure 13 The response profiles of 50 PubChem bioassays for 107 compounds that may 

cause rat fetal growth retardation. 

 

  

 



 
 

49 

Section 7: Conclusions 
 

 Current innovative technologies enable rapid synthesis and high throughput 

screening of large libraries of compounds. Daily updated toxicity bioassay data have 

transformed current toxicology studies into a big data analysis. Fueled by the recent input 

from US and European governments, there are many ongoing data-generation and data-

sharing programs, accompanied with the development of data curation (e.g., Curvep,111 

https://github.com/sedykh/curvep) and automated data management (e.g., ‘EMBL-EBI’ 

KNIME workflow nodes for ChEMBL, ‘rpubchem’ R package to PubChem) approaches 

that could be used to sample HTS data in meaningful formats to facilitate chemical 

toxicity studies. New scoring and modeling methods are also under way to take 

advantage of the massive amount of bioassay data. Although the use of bioassay data in 

most current toxicological research projects is still limited to a small portion of well 

sampled HTS data, several novel approaches have been reported to be able to access and 

integrate multiple bioassay data resources to profile toxicants. Under the current big data 

scenario, it is expected that modern toxicology research will be able to better estimate the 

systemic effects of compounds on the whole organisms and to translate this into better 

informed regulation of the toxicants for animals and humans. 
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