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Exotic species and collapses of native species pose equivalently severe threats to 

global biodiversity and ecological health. Much work has been done to improve our 

understanding of the patterns and processes associated with biological invasions and 

population declines. However, due to the complexity of the issues posed to conservation 

and management, we still lack fundamental knowledge about their population dynamics. 

Early-action is often recommended to deal with both situations, which, as has been 

argued, requires minimal detail about the population biology of the target species. While 

this holds true in many cases, it does not justify ignoring population biology as a whole. 

Indeed, by analyzing data about past events we can greatly improve our ability to manage 

future ones. Furthermore, applying powerful tools and concepts from other disciplines 

can help develop expectations for general trends across taxa and systems.  

In this dissertation I explore statistical methods to identify and describe poorly 

explained population growth patterns, using both exotic and native species. I used a large, 
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uncommonly complete database of citizen-collected data and developed efficient, robust 

methods to quantify population lag phases and collapses. I found lags—periods of low 

population growth rates relative to future growth—to be common in exotic birds in 

Hawaii. I found seemingly spontaneous population collapses—>90% declines in 

abundance within a specified timeframe—in nearly half of the populations investigated. I 

expand on the details of the method I developed for collapses to account for variation 

about important portions of any population’s growth patterns; specifically estimated 

maximum abundances and the duration of observed declines. I applied this method to 

endemic Hawaiian forest birds to display its utility and assess limitations.  

These results have important implications for conservation management, and yield 

novel conclusions about the population biology of exotic and native species. By 

establishing methods to classify populations experiencing lags or collapses, we can begin 

to develop models to anticipate their occurrence prescribe well prepared management 

actions and conservation strategies. With more knowledge of the spatial dynamics of 

exotic populations we can strategically apply targeted control measures in efficient, cost-

effective ways. 
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Introduction 

In the last decade the field of population biology has been heavily integrated with 

invasion ecology to explore core ecological principles and provide sound management 

advice (Sakai et al 2001). Management options for invasive species include eradication, 

exclusion, and control efforts (Courchamp et al. 2003). Eradication involves the most 

effort, requiring the complete reduction of a target population so that none remain. 

Exclusion can be enacted on a smaller scale, in an attempt to preserve targeted 

management areas, but is less practical on a regional scale. Control is less accurately 

defined (Courchamp et al. 2003), but involves physical (e.g., barriers) or biological (e.g., 

predators) mechanisms. Either control option is best implemented with an intimate 

knowledge of the population biology of the species targeted for control. Some authors 

have raised questions about the goal of management, whether it should be used to reduce 

the number of invaders or to reduce their negative effects (Lodge and Shrader-Frechette 

2003, Lodge et al. 2006). However, for the most part, reducing effects of invaders can be 

accomplished by reducing their numbers (100 individuals of a species can do less harm 

than 1,000).  

In many ways, invasion ecology represents the polar opposite perspective from 

conservation management (Lockwood et al. 2013); while the former is aimed at limiting 

growth and spread, the latter is aimed at enhancing those very things. Thus, pursuits to 

increase our understanding of the population biology of exotic species often have a great 

deal of overlap with pursuits aimed at improving our understanding of the population 

biology of threatened species. For instance, the most parsimonious approach to managing 

invasive species is to eradicate them as early as possible, which does not require any 
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consideration of population biology (Simberloff 2003, Allendorf and Lundquist 2003). 

Similarly, conservation strategies aimed at preventing a collapse from leading to an 

extinction can be successful without incorporating knowledge of the targeted species’ 

population biology. Despite this, information aiding in the prediction of invasive (and 

native) species’ population dynamics and which populations may become invasive (or 

collapse) can only benefit management efforts. For instance, while eradication without 

regard to population biology may be possible, eradication cannot be implemented if the 

target species is below its detection threshold (i.e., cannot eradicate what cannot be 

found). Similarly, conservation actions may be prematurely halted once a species 

declines below this detection threshold, if it assumed to be extinct. A better 

understanding of a species’ population biology will better prepare us to deal with very 

rare populations when they are detectable, but before they have become so pervasive that 

it makes management much more difficult, and will improve our ability to protect even 

common (but variably abundant) species. 

My work will contribute to the fields of conservation and invasive species population 

biology by exploring complex population dynamics and relate these to management 

goals. My research uses exotic and native species abundance data extensively, which—in 

the case of exotics—is directly related to impacts (Parker et al. 1999, Thomsen et al. 

2011), as in the density-impact curves presented by Yokomizo et al. (2009). These 

density-impact relationships depend on species-level characteristics—life history traits, 

for example. Some populations can have large impacts at low abundances, while others 

produce noticeable impacts only at high abundance. This is captured by three basic curve 

shapes: logarithmic (curve I), with high species impact at all but the lowest densities; 
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sigmoidal (curve II), with increasing impact at intermediate density; and exponential 

(curve IV), with high impacts only at high abundances. Each of these curves is 

distinguished from curve III, a simple linear increase of impact with density (Yokomizo 

et al. 2009). The impact in each of these curves is in terms of economic cost, but can 

easily be extended to ecological impacts (Lockwood et al. 2013).  

Density-impact curves establish expectations about management practices and timing 

in employing these practices. My results provide insight regarding when these impacts 

may occur and how long they may last. For instance, prolonged lag phases in population 

growth will lead to extended delays in appreciable impact for invasive species. 

Furthermore, if a population experiences a collapse, it may quickly and dramatically 

decline to such low abundances that it displays little impact. The three chapters of my 

dissertation are designed to help answer these questions using statistical models and the 

rich data sources associated with the birds of Hawaii. 

Pyšek et al. (2008) review the biases in geographic and taxonomic focus of invasion 

ecology. They found that the ecological impact of an invasive species in the main 

predictor of whether a species is targeted for investigation; a logical finding given that 

more attention is expected to be paid to more troublesome species. Similarly, there is a 

preponderance of studies involving invasions in North America and Europe; 

disproportionately more than Oceania (Australia and Pacific islands) when numbers of 

naturalized exotics are considered (Pyšek et al. 2008). This bias stems from the number 

of academic researchers working in North America and Europe. Other reviews have 

found a lack of adequate temporal variety in studies of invasive species (Strayer et al. 

2006). Because evolutionary processes occur on the timescale of biological invasions, the 
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need for the inclusion of long time-scales when exploring biological invasions is even 

greater (Whitham et al. 2006), especially considering the ever-changing status of an 

invasive species’ measured impact (Yokomizo et al. 2009). Together, these reviews call 

for more research of all invaders (whether currently exhibiting impacts or not), in areas 

with high numbers of naturalized exotic species (especially islands), and with long term 

considerations to increase predictability of exotic species impacts. The research I present 

in this preliminary proposal fills these voids. 

Objectives 

 Measure the occurrence and characteristics of lags in the population growth rate 

of exotic birds on Hawaii.  

 Develop a method to accurately quantify uncertainty about critical aspects of 

population dynamics to standardize determinations of collapsed populations. 

 Detect and describe unexpected declines in abundance among exotic birds on 

Hawaii, labeling those of certain intensity as collapses.  

Lags 

Lags are a widely acknowledged but seldom quantified property of most biological 

invasions (Crooks 2005). Part of the trouble with assessing the prevalence and 

mechanisms of lag phases is the lack of a quantitative definition. This definition issue 

was addressed recently by Aikio et al. (2010) and Larkin (2012). Based on their work, I 

define a lag as a discrete stage in population growth that has a clearly distinguishable end 

point after which the population transitions into a phase of rapid growth. Thus, I 

established a single stage process of exponential growth as the default expectation, and 

classified populations that diverge from this expectation (i.e., those that are best 
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explained by two separate processes) as having lag phases. I found evidence for the 

occurrence of lag phases in 14 out of 17 exotic avian populations on the Hawaiian 

Islands. Results suggest that management officials cannot afford to delay management 

actions for exotic species that have existed in low numbers for a long time, as their rarity 

may not continue indefinitely. 

This chapter is formatted for Diversity and Distributions and was published there 

(Aagaard and Lockwood, 2014). 

 

Collapses 

Detecting population collapses is of considerable importance within many applied 

biological fields. Collapses are broadly defined as rapid declines in abundance. I develop 

a Bayesian approach to quantify uncertainty in observed maximum abundance, a critical 

step when defining collapses as a percentage drop from this value. I translate this 

uncertainty into confidence limits around the magnitude of decline that should be 

considered a collapse. Finally, I use three different statistical functions—linear, 

exponential, and a LOESS curve— to assess the period of collapses. I show that four of 

12 native bird populations on Hawaii have declined by >90% over the span of 10 years. 

The method we present here helps fill the missing gaps of systematic tools for assessing 

uncertainty and can be readily applied to any system with sufficient time series of 

abundance data. 

This chapter is formatted for Methods in Ecology and Evolution and will be submitted 

there (Aagaard and Lockwood, in prep). 
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Population collapses in exotic species 

Following establishment, some exotic species exhibit spontaneous population 

collapses, occasionally all the way to extinction (Simberloff and Gibbons 2004). 

Collapses are another population phenomenon, in addition to lags, that is thought to be 

somewhat common, but are not well-defined either empirically or quantitatively. Here, I 

rely on the IUCN (World Conservation Union 2001) criteria of a population collapse as 

my quantitative definition. This definition states that a collapse is a decline in abundance 

of ≥90% within 10 years or three generations, whichever is longer. I use statistical 

models to determine the 90% reduction (or, a decline to below 10% of previous 

abundance), using Bayesian hierarchical models to identify the appropriate ‘previous 

abundance’ with which to establish the lower-bound threshold. I found collapses in 14 of 

33 established populations with sufficient data. I have shown the clear utility of these 

methods for the identification and description of collapses, which may be a more 

common feature of exotic species’ population dynamics than previously anticipated. 

This chapter is formatted for Methods in Ecology and Evolution and will be submitted 

there (Aagaard and Lockwood, in prep). 
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ABSTRACT  

Aim A key aspect of the ecology and management of biological invasions is the 

prevalence and duration of lag phases in population growth. We explore the occurrence 

of lag phases in exotic bird populations using Audubon Christmas Bird Count data. 

Location Hawaiian Island archipelago. 

Methods We expand on the use of piece-wise model fitting techniques to detect lags 

in exotic bird populations on Hawaii. We searched for explanations as to the occurrence 

of these lags using five possible mechanisms (body size, niche breadth, propagule 

pressure, length of record, and lag phase growth rate). 

Results We found evidence of lag phases for 14 of 17 species we evaluated (range: 

10 - 38 years, mean using observed data = 16 + 12), and we discovered very rapid growth 

to maximum abundance following the end of the lag phase (mean using observed data= 8 

+ 6 years). We found no evidence for any association between the possible mechanisms 

influencing the occurrence and duration of the lag phases.  

Main Conclusions Our results are the first to rigorously quantify lags in exotic 

animal populations; most existing evidence comes from plants. We show that lags are as 

common in birds as in plants, although we provide preliminary evidence that the duration 

of lags in birds is shorter than in plants. We highlight the need for continued efforts to 

elucidate lag phase occurrence and duration in biological invasions, and we demonstrate 

the expanded utility of piecewise model fitting approaches to quantify these lags using 

count data.  

KEYWORDS: Audubon Christmas Bird Counts, biological invasions, exotic birds, lag 

phases, piecewise models, population dynamics 



10 
 

 

INTRODUCTION 

Population lag phases have been defined as a period of slow population growth 

followed by a marked increase in rate of growth (Crooks 2005, Aikio et al. 2010). The 

occurrence of lag phases within exotic populations is seen as a serious complicating 

factor in our ability to predict and manage invasive species (Crooks 2005, Larkin 2012). 

Their existence suggests that currently rare exotic species may later explode in numbers 

and geographic extent. Therefore, there is practical interest in predicting the prevalence 

of lag phases and how long they may last, as well as understanding which elements of a 

species’ life history and the invaded habitat (or both) might allow predictions of the 

extent and type of lag phase (Crooks 2005). This effort is hindered by the inconsistency 

of definitions applied to lag phases across studies, and statistical limitations associated 

with lag detection resulting from low population abundances characteristic of slow 

growth rates (Crooks and Soulé 1999, Aikio et al. 2010). The few authors who have 

quantified lag phases have done so for plants, and their results suggest that lags are 

common and can regularly last over 50 years (e.g., Kowarik 1995, Aikio et al. 2010, 

Larkin 2012). Here we expand on the methods of Aikio et al. (2010) to produce what is to 

our knowledge the first rigorous, quantitative survey of lag phases in exotic animals, 

which can have equally pernicious effects as exotic plants on native ecosystems (Clout 

and Williams 2009). 

Early work on lag phases included anecdotal compilations of case studies that applied 

inconsistent definitions of ‘exotic’ and ‘lags’ (Crooks and Soulé 1999). A primary issue 

was whether observed lag phases were congruous with basic population models such as 

the exponential or logistic (Crooks and Soulé 1999, Crooks 2005). These models produce 
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initial phases of slow growth followed by rapid increases (Figure 1). Crooks (2005) 

defined the slow-growth phases of such models as ‘inherent’ lags and suggested that they 

should be distinguished from ‘unexpected’ lags, which he defines as a period of slow 

population growth that differs in length from what one should expect from exponential 

models (Figure 1). Here, we focus on this latter class of lag phases.  

Aikio et al. (2010) refined the difference between inherent and unexpected lags by 

categorizing lag phases that can be modeled using only one mathematical expression 

(e.g., linear, exponential, logistic) as one-stage processes, whereas unexpected lags 

require the incorporation of two distinct expressions (e.g., two separate models). This 

definition is a clear step forward in the effort to identify and understand lag phases, in 

part because it sets a one-stage process as a null expectation, leaving any deviation from 

this (specifically, a two-stage process) as a phenomenon that requires further biological 

explanation (Aikio et al. 2010). These methods provide a robust way to analyze 

population time series for evidence of lag phases, and we apply it here to abundance 

records for 17 populations of exotic birds in Hawaii.  

In part due to the observed high prevalence of lag phases in plants (e.g., Kowarik 

1995) much interest was generated into uncovering consistent mechanisms for their 

production (Crooks 2005). The mechanisms that can produce lag phases include—among 

others—Allee effects, post-establishment evolution, shifts in environmental factors, and 

genetic impoverishment (Crooks 2005, Lockwood et al. 2013). Thus far, there is no 

consensus on the importance of suggested mechanisms; all of them have at least some 

empirical support (Crooks 2005, Lockwood et al. 2013). In addition it is unclear whether 

animals, which are more vagile than plants, should exhibit a similarly high prevalence or 
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duration of lags (e.g., Kowarik 1995, Aikio et al. 2010, Essl et al. 2011, Larkin 2012). 

For example, we may expect that exotic animals will overcome Allee effects (i.e., mean 

individual fitness increases with abundance) more readily than plants through their ability 

to actively search for and associate with intraspecific individuals. Similarly, animals can 

actively choose habitat and ‘escape’ the confines of marginal habitat into which they may 

have been initially released. Plants on the other hand must grow in place and may take 

longer to ‘find’ more suitable habitat. While plants can ‘search’ for mates and ‘find’ 

habitat surprisingly well via seed/pollen dispersal, these mechanisms are only applicable 

during times of reproduction or with animal facilitation. Without exploring lag phases 

and their causes across broad taxonomic groups, all potential mechanistic differences will 

remain speculative. This is an especially important gap in knowledge given how unlike 

the causes of lag phases across different taxa are likely to be. We begin to fill this gap 

here. 

We tested five mechanisms that might have produced the lag phases we see in exotic 

Hawaiian birds. First, we expect lags to last relatively longer (as compared to other birds) 

for species that have life histories typified by low reproductive rates and long generation 

times, here indexed as high body mass following Bennett and Owens (2002). Such slow 

life history species tend to have heightened vulnerability to environmental and 

demographic stochasticity (Blackburn et al. 2009). Second, we expect species with 

broader niches to be less constrained by environmental factors at the location of their 

initial release and therefore exhibit shorter lag phases. Populations of these species will 

increase in numbers quickly, relative to those with narrow niche requirements. Third, we 

expect that species that were introduced in very small initial numbers (i.e., low propagule 
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size) are more likely to show longer lag phases than those with higher propagule sizes. 

Species founded by few individuals may have strong genetic founder effects and 

bottlenecks, and thus may suffer from inbreeding depression that inhibits their population 

growth (Crooks 2005). Low propagule pressure will also subject populations to Allee 

effects, which will tend to create periods of slow or no population growth after initial 

introduction (Courchamp et al. 2008). Next, we expect that lags will be detected more 

readily in species in which the length of the lag is short relative to the length of residence 

on Hawaii. Essentially, longer time series provide more data points for fitting regression 

lines, and thus greater statistical power to differentiate between one and two-stage 

processes. Finally, we expect to find faster growth rates associated with shorter lag 

phases, since fast growth rates would allow for a lag to occur in a shorter amount of time 

allowing us to more easily detect it in time series with limited data points. 

 

METHODS 

To identify species that exhibit lag phases, we assembled time series of abundance 

counts for 17 species of birds introduced to the Hawaiian Islands (Table 1—with 

scientific names for each population, also see Figure S1 in Supporting Information for 

full time series). Abundance records were taken from the Audubon Christmas Bird Count 

(CBC; National Audubon Society 2010), which began in Hawaii in 1938. We included 

counts conducted up to and including 2010 (the most recent available reported year, at 

the time of data acquisition). Many fundamental sampling biases are accounted for within 

CBC records by scaling reported count numbers by survey effort (party hours), by 

standardizing the time of year and location of counts, and by standardizing methodology. 
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Furthermore, we used the methods of Link et al. (2006, 2008) for scaling the counts 

according to effort variation and to ensure proper comparability among count circles. 

While we have taken these precautions for the proper use and application of our data, the 

time series we analyzed here are still best thought of as estimates of relative abundance.  

For 14 of 17 species, the CBC records encompass the entire residence time on the 

Hawaiian Islands, sometimes spanning over 40 years. The date of introduction preceded 

CBC records for the remaining three species: house sparrows (Passer domesticus); 

hwamei (Garrulax canorus); and nutmeg mannikin (Lonchura punctulata) (Pyle and Pyle 

2009). We included these three species because historical records indicated that their 

populations were extremely low up to 1938 (Pyle and Pyle 2009), so we have some 

confidence that the early counts in the CBC record are indicative of the status of that 

population from the time of its initial introduction. For these three species our 

determination of lag presence will be conservative (i.e., tending toward concluding no 

lag), similarly the estimation of lag phase duration, if detected, will be conservatively 

short. Our dataset consists of one species (cattle egret, Bulbulcus ibis) that likely 

colonized Hawaii naturally; five species (hwamei; red avadavat, Amandava amandava; 

red-vented bulbul, Pycnonotus cafer; red-whiskered bulbul, Pycnonotus jocosus; yellow-

fronted canary, Serinus mozambicus) that were accidentally introduced (cage escapees); 

with the rest being intentionally introduced. 

All populations we considered show very small initial abundances, with a few then 

reaching and sustaining higher numbers by the end of their period of record (see Figure 

S1 in Supporting Information). Most populations evinced complex dynamics after their 

initial increase phase, occasionally showing a marked drop in population size during the 
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later years of the record. No population shows a population trajectory that can clearly be 

labeled as either exponential or logistic growth (Figure S1), which is perhaps 

unsurprising given that the CBC annual count data (as well as all count data) must be 

influenced by environmental and demographic stochasiticity as well as count error 

(beyond what is already acknowledged and accounted for; see above).  

The complexity of these population time series presented us with two inter-related 

methodological issues. The first issue is as much related to the definition of a lag phase, 

as it is methodological. By definition a lag is a marked change in population growth rate 

that characterizes how an exotic species establishes itself after initial colonization 

(Crooks 2005, Aikio et al. 2010). Based on this definition, the longer-term dynamics of 

the exotic population are not of interest. We could certainly fit complex, non-linear 

statistical models to the full population growth trajectories of our 17 species. However, 

providing a good over-all fit is not our objective and such complex non-linear models, by 

design, will obscure the details of growth associated with any particular piece that 

function; which for our purposes is the dynamics of early population growth. 

Nevertheless, complex longer-term dynamics statistically make it difficult to identify 

when a population may have realized a true increase in growth rate. For example, how do 

we know that a few years of high abundance reflect a real change in underlying 

demographic rates (i.e. higher fecundity and survival) rather than a few years in which 

counts were biased high? This insight raises the second issue: how to distinguish true and 

lasting changes in growth rates from the occasional stochastic bumps in demographic 

rates or biases in counts.  
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In recognition of these issues, we extracted and analyzed only the portion of each 

population’s time series from the date of first record—or establishment, as above—to the 

maximum abundance estimate observed within the record. This truncation allowed us to 

carefully characterize the early colonization dynamics of our focal species. We then 

created a distribution of possible maximum abundance values that reflected the overall 

variance in the annual counts across the entire record, with the observed maximum 

servings as the initial mean of that distribution (Figure S2). To do this, we fit a Bayesian 

model of the following form:  

Y[i] ~ N(μ[i], σ2), 

μ[i+1] = μ[i] * λ[i], 

λ[i] ~ N(λ, τ), 

τ ~ Unif(0, 10), 

σ2 ~ Unif(0, 100), 

where Y is the time series for each target population, with i representing each year’s count 

within the time series, μ is the estimated maximum abundance for each population 

(assuming year to year exponential growth, with the mean growth rate = λ and variance 

τ), and σ2 is the variance about the annual estimates, at first unknown and therefore given 

an uninformative prior. We allowed this model to run for 10,000 iterations, with a burn-in 

of 1,000 to allow for convergence (achieved quickly with this simple model). After all 

iterations are complete, the resulting posterior distribution can be thought of as a 

collection of all likely maximum abundances, given the observed maximum and year-to-

year variance in counts for that species. Thus, if a species’ population time series shows 

little year-to-year differences in counts, then the range of likely maximum abundances 
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will be small; and vice versa. This method effectively allows the entire population time 

series to inform our belief that the observed maximum abundance is due to a factor other 

than stochasticity or count error. It is important to note that since the abundance data (y-

axis on Figure S2) we use here have been corrected for observer effort, they are 

continuous and not discrete making the use of a normal rather than Poisson prior 

distribution appropriate. 

To identify which species a two-stage process best represented we fit three classes of 

models to each species’ population growth trajectory. We first fit a single linear model. 

Populations grow in a near-linear fashion during a lag phase (Crooks 2005; Figure 1). It 

is possible that the populations we analyzed were introduced recently enough that they 

have not yet emerged from a lag phase, and thus, a linear model alone may provide the 

best fit for these populations. We fit a linear model of the form Nt = r*t + N0; where Nt is 

the size of the population at a given time, N0 is the size of the initial population, t is time, 

and r is the population growth rate.  

We next fit an exponential model, which we used to approximate a non-linear growth 

trajectory. The exponential curve has widespread use in modeling the growth of 

biological systems and is the classic expectation for population growth after initial 

colonization (Crooks and Soulé 1999, Crooks 2005). We fit an exponential model with 

the following form: Nt = N0*e(r*t); where Nt represents population size at a given time, N0 

is the size of the initial population, e is base of the natural logarithm, r represents the 

growth rate, and t represents time. Note that fitting a logistic model to the full time series 

is not warranted because we truncate the data at the maximum observed value and 



18 
 

 

therefore such a model will always fit less well than an exponential because of the extra 

parameter (an asymptote, k) to be estimated.  

For the third class of model, we followed the methods of Aikio et al. (2010) and fit a 

piecewise model consisting of multiple combinations of two separate models applied 

sequentially, which may be disconnected as time here is discrete (we have no data on 

abundance estimates between CBC records). We fit only a linear model to the early 

portions of all time series following the logic of Aikio et al. (2010). We fit a linear and 

exponential model to the second portion of each time series. However, the linear model 

consistently out-performed the exponential across all species and all estimates of 

maximum abundance (Table S2-A). We therefore only report the results from fitting two 

linear models henceforth. We bounded the piecewise model so that there were always at 

least four points with which to fit each portion. That is to say, for a population with J 

total years of data we fit the first linear model to the first x years of data, and then fit the 

second linear model to the remaining J – x years of data, for all x = years. The piecewise 

model fitting resulted in 3 – 32 representations of population growth per species, with the 

number of models for each species determined by the length of its count record. To 

determine which piecewise model best fit the empirical abundance estimates per species, 

we used least squares linear regression. We selected the model with the lowest sum of the 

squared error (SSE) as the most parsimonious of the set of candidate linear-piecewise 

models.  

We compared the most parsimonious piecewise model to the single linear and single 

exponential models using AICc, which penalizes models for extra parameters, to select 

the best model of the three candidates. With this procedure we were able to account for 
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differences in scale among the target populations and avoid selecting a model with a low 

SSE value that is attributable to small differences in abundance estimates (i.e. some 

populations had maximum abundances of less than one individual observed per party 

hour, while others were observed in abundances greater than 40 per party hour).  

To account for uncertainty in the maximum abundance value, we extracted the lower 

(2.5%) and upper (97.5%) confidence interval (CI) estimates of the posterior maximum 

abundance distribution (see above). We then re-ran the above procedure replacing the 

observed maximum with the upper CI estimate of maximum abundance, and then again 

with the lower CI estimate (Figure S2). We noted when either of these two alternative 

maximum values resulted in a different model being ranked as the best fit by AICc, and 

when such differences occurred, we also noted the resulting estimate of lag length. We 

label species as having ‘true lags’ when the two-piece model provided the best fit 

regardless of the uncertainty in the maximum abundance observed. We labeled species as 

exhibiting ‘probable lags’ when the best-fit model was not always the two-piece (i.e. 

when there was disagreement in results when allowing the maximum to vary). Species 

which had population time series that were always best described by either a linear or 

exponential model alone were considered to show no lag. When lags were observed, the 

differences in estimated lag lengths provide us with a range of lag durations; thus 

reflecting our uncertainty over the true value of the maximum abundance.  

Finally, we used least squares regression to explore the relationship between duration 

of lags (duration of lag = 0 if not detected) and our five explanatory variables. We used 

Sibley (2009) to determine the body mass of each of the 17 species we considered. Niche 

breadth was quantified following Cassey (2002). Briefly, we assigned each species all 
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applicable food (eight total, e.g., seed/grain, insects, vegetation/fruit) and habitat 

categories (eight total, e.g., grassland, urban, lowland woods) and scored the species with 

a maximum of 16 ‘niches’. Those species with a larger available diet or broader habitat 

range were considered to have wider niche breadths. We calculated propagule pressure 

by summing the propagule sizes of all reported introduction events for each species, 

determined by reviewing historical records presented in Pyle and Pyle (2009). Any 

species with nebulous or poorly defined propagule sizes were excluded from this 

particular analysis (e.g., species with reports of “many” introduced individuals rather than 

a specific number were ignored). We tallied the number of years each species was 

recorded in the CBC as our measure of the length of abundance record. Lastly, we 

correlated the growth rate in the lag phase of each species’ population growth trajectory 

with both the duration of the lag phase and the growth rate in the increase phase (see 

Table S1). All analyses were conducted in R v. 2.15.0 (R Development Core Team 

2012).  

 

RESULTS 

Time series for the 17 species we examined showed that nine species showed 

evidence of a true lag, while an additional three species showed evidence of probable lags 

(Table 1, see also Table S2). The average lag phase duration was 15.6 + 11.6 years when 

using the observed maximum abundance estimate; 15.1 + 12.3 when using the upper 

bound of the 95% CI of the maximum abundance estimate; and 11.5 + 10.6 when using 

the lower bound of the 95% CI of the maximum abundance estimate. Six species 

experienced lag phases ≥ 20 years under all estimates of maximum abundance. The only 



21 
 

 

species that did not display a lag phase using any maximum abundance estimates were 

the northern cardinal (Cardinalis cardinalis), the house sparrow, and the chestnut 

manikin (Lonchura atricapilla). These results highlight our inability to distinguish 

between cases in which a population has either not yet exited its lag phase (as is a 

possibility with the northern cardinal and house sparrow), is showing an inherent lag (as 

is likely with the chestnut mannikin), or simply does not exhibit a lag phase. The years in 

which lagged populations began to increase in abundance ranged from 1955 to 2008 

(lengths ranging from 10 to 38 years) with no obvious year in which all populations 

transitioned to more rapid growth (Figure 2). The average time between the end of the lag 

phase and the year of maximum abundance was 7.7 + 6.3 years using the observed value, 

8.2 + 6.5 using the upper bound of the 95% CI, and 11.8 + 9.7 years using the lower 

bound of the 95% CI. Twelve species reached their maximum abundances in ≤ five years 

following the end of their lag phase using the observed maximum abundance estimate; 11 

using the upper bound of the 95% CI, and seven using the lower bound of the 95% CI.  

We found no evidence that any of the five potential mechanisms we tested dictated 

lag duration. First, we found no evidence that longer lags for species with low 

reproductive rates and long generation times (using body mass as a proxy; R2 = 0.062). 

Second, we did not find shorter lags for species with broader niches (R2 = 0.037). Third, 

we posited low propagule size would lead to longer lags, however, it showed no 

relationship (R2 = 0.147). Fourth, we expected that longer time series would provide 

greater statistical power to differentiate between one and two-stage processes, and 

perhaps produce longer lag phases; however we found no evidence for such a relationship 

(R2 = 0.083). Our final hypothesis was that we would find faster growth rates associated 
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with shorter lag phases overall; but we again found no evidence for such a relationship 

(R2 = 0.232). Given the lack of results provided by these analysis, we correlated the lag 

phase and increase phase growth rates, but still found no relationship (R2 = 0.368). 

 

DISCUSSION 

Exotic birds show a high prevalence of lag phases in population growth, similar to 

results found for exotic plants (e.g., Aikio et al. 2010). Although the existence of lag 

phases has been recognized for quite some time (e.g., Hobbs and Humphries 1995), the 

few quantitative surveys for lags have been conducted exclusively on plants. Our 

methods represent a refinement of the approach of Aikio et al. (2010) for use with small 

datasets and count data, and our results extend evidence for the prevalence of lags to 

birds specifically and vertebrates more broadly. Deliberate eradication of exotic 

vertebrates is becoming more common as logistical and technological advances are made 

(Howald et al. 2007). However, published information on management of exotic 

vertebrates has largely ignored the issue of population lag phases and what that might 

mean for allocation of limited capital for eradication campaigns. Our results suggest that 

it is not prudent for managers to assume that exotic vertebrates that have existed in low 

numbers for a long period will remain rare into the future.  

We show that the exotic birds of Hawaii had average lags of 11 to 15 years, with 

some lasting > 20 years. Based on similar methods and definitions as we use here, Aikio 

et al. (2010) show that exotic plants of New Zealand have lag phases averaging 20 – 30 

years, with a small fraction lasting for over 40 years. Similarly, Larkin (2012) 

demonstrates that exotic plants in the upper-Midwest US have lags averaging just under 
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50 years, with an upper limit of 140 years. This comparison suggests that exotic birds 

experience lag phases of shorter duration than do plants, perhaps due to inherent 

differences in vagility between the two groups. However, absent more quantitative 

analyses of other taxa besides birds and plants, this conclusion is tentative.  

All existing mechanistic explanations for lag phases assume the newly established 

exotic population emerges from a lag via a marked increase in demographic rates (Crooks 

2005). Detecting such a rate change is statistically challenging, especially when the 

underlying data is based on empirical counts instead of accumulations of records. Count 

data are inherently noisy since they reflect environmental and demographic stochasticity 

and myriad sources of count error (Link et al. 2006, Link et al. 2008). Our approach to 

explicitly account for this uncertainty represents a novel extension of the methods in 

Aikio et al. (2010) and should prove useful to others when using count-based records of 

exotic population growth to detect lags. Using this approach we were able to highlight 

species for which we were uncertain about the presence of a lag. For example, we could 

not be certain of lags in species that existed at abundances near their observed maximum 

for only brief periods of time (e.g., nutmeg mannikin); those with generally low 

abundance for the duration of their time series (e.g., rose-ringed parakeet); or those with 

‘spikes’ in abundance of only minor degree (e.g., northern cardinal).  Accounting for this 

uncertainty allows us a more nuanced view of the prevalence of lags, and perhaps also 

into the suite of mechanisms that produce such lags.  

Exotic birds show a very stark difference between the slow growth rates indicative of 

being in a lag and the rapid growth rates after a lag. Statistically we see that the 

difference in how well an exponential versus a two-piece model fits the empirical data is 
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extreme, with the latter often holding nearly 100% of the weight of evidence (see Table 

S2). In terms of management, the order of magnitude increase in population growth rate 

for a population after emerging from a lag not only suggests that exotic populations may 

grow slowly for long periods of time only to increase later, but also that this increase can 

be extremely rapid. This places a high premium on controlling or eradicating an exotic 

population early while still in a lag phase. Biologically, this sudden shift between low and 

fast growth rates suggests a near point-in-time mechanism that allows an exotic 

population to markedly increase in fitness. The degree to which all exotic populations 

show the same stark transition in growth rates is an open question, but one that certainly 

increases the dividend for searching for lags within other taxonomic groups or 

geographical locations.  

Our failure to find evidence in favor of any of our tested mechanisms underlying 

variability in lag duration is consistent with results reported by Larkin (2012), who found 

only weak support for the factors he evaluated. In our case, we may have found no 

association because of the (i) inherent uncertainty associated with using historical 

information; (ii) low statistical power associated with our dataset (N ≤ 17), or (iii) 

influence of these factors was truly weak. Larkin (2012) suggests that the mechanisms 

producing lag phases almost certainly interact with one another, making statistical 

associations difficult to detect and prediction nearly impossible. Our results reinforce this 

conclusion, leading us to suggest that the search for broadly consistent cross-species 

explanations for lags may be quixotic. A more fruitful next step may be to explore, via 

observation, experimentation, or simulation, the mechanisms behind any single empirical 

example of an exotic population that demonstrates a lag phase; of which there are now 
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many stemming from our work and that of Aikio et al. (2010) and Larkin (2012). The 

mechanisms producing lags likely vary across species, and perhaps across populations of 

the same species. It is through exploration of several detailed case studies that we are 

more likely to generate predictive insights. The growth in the number of quantitative 

surveys for lag phases similar to ours will improve our ability to predict and interpret the 

dynamics of lags, and the mechanisms that produce them. 

 

ACKNOWLEDGEMENTS 

We thank W. Link, P. Cassey, and T. Blackburn for input early in this work. We also 

thank E. Green, D. Fonseca, D. Simberloff, P. Morin, P. Smouse, J. C. Burkhalter, O. 

Robinson, J. Avery, the Morin Lab, and anonymous reviewers for their feedback on 

various drafts of this manuscript. The authors report no conflict of interest. 

  



26 
 

 

REFERENCES 

Aikio, S., Duncan, R.P., & Hulme, P.E. (2010) Lag-phases in alien plant invasions: 

separating the facts from the artefacts. Oikos. 119, 370-278.  

Bennett, P.M., & Owens, P.F. (2002) Evolutionary Ecology of Birds: Life Histories, 

Mating Systems, and Extinction. (ed. by R. M. May and P. H. Harvey), Oxford 

University Press, New York, New York, USA. 

Blackburn, T.M., Cassey, P., & Lockwood, J.L. (2009) The role of species traits in the 

establishment success of exotic birds. Global Change Biology. 15, 2852-2860. 

Cassey, P. (2000) Life history and ecology influences establishment success of 

introduced land birds. Biological Journal of the Linnean Society. 76, 465-482. 

Clout, M.N., & Williams, P.A. (2009) Invasive Species Management: A Handbook of 

Techniques. Oxford University Press, New York, New York, USA.  

Courchamp, F., Berec, L., & Gascoigne, J. (2008) Allee Effects in Ecology and 

Conservation. Oxford University Press, Inc. New York, New York, USA.  

Crooks, J.A. (2005) Lag times and exotic species: The ecology and management of 

biological invasions in slow-motion. Ecoscience. 12, 316-329. 

Crooks, J.A., Soulé, M.E. (1999) Lag times in population explosions of invasive species: 

Causes and implications. Invasive Species and Biodiversity Management (ed. by O.T. 

Sandlund, P.J. Schei, & A. Viken), pp. 103-125. Kluwer Academic Press, Dordrecht, 

The Netherlands. 

Daehler, C.C. (2009) Short lag times for invasive tropical plants: evidence from 

experimental plantings in Hawai’i. PLoS ONE. 4, e4462.  

Essl, F., Dullinger, S., Rabitsch, W., Hulme, P.E., Hulber, K., Jarosik, V., Kleinbauer, I., 

Krausmann, F., Kuhn, I., Nentwig, W., Villa, M., Genovesi, P., Gherardi, F., 

Desprez-Loustau, M., Roques, A., & Pysek, P. (2011) Socioeconomic legacy yields 

an invasion debt. PNAS. 108, 203-207. 

Fritts, T.H., & Rodda, G.H. (1998) The role of introduced species in the degradation of 

island ecosystems: A case history of Guam. Annual Review of Ecological Systems. 

29, 113-140. 

Hobbs, R.J., & Humphriesm, S.E. (1995) An integrated approach to the ecology and 

management of plant invasions. Conservation Biology. 9, 761-770. 

Howald, G., Donlan, C.J., Galván, J. P., Russell, J. C., Parkes, J., Samaniego, A., Wang, 

Y., Veitch, D., Genovesi, P., Pascal, M., Saunders, A., & Tershy, B. (2007) Invasive 

rodent eradication on islands. Conservation Biology. 21, 1258-1268.  

Kowarik, I. (1995) Time lags in biological invasions with regard to the success and 

failure of alien species. Plant Invasions—General Aspects and Special Problems (ed. 

by Pysek, P. Prack, K., Rejmanek, M., & Wade, M.) pp 15-38. SPB Academic 

Publishing, Amsterdam, The Netherlands. 

Larkin, D.J. (2012) Lengths and correlates of lag phases in upper-Midwest plant 

invasions. Biological Invasions. 14, 827-838. 

Link, W.A., Sauer, J.R., & Niven, D.K. (2006) A hierarchical model for regional analysis 

of population change using Christmas Bird Count data, with application to the 

American Black Duck. The Condor. 108, 13-24. 

Link, W.A., Sauer, J.R., & Niven, D.K. (2008) Combining Breeding Bird Survey and 

Christmas Bird Count data to evaluate seasonal components of population change in 

Northern Bobwhite. Journal of Wildlife Management. 72, 44-51. 



27 
 

 

Lockwood, J.L., Hoopes, M.F., & Marchetti, M.P. (2013) Invasion Ecology, 2nd edn. 

Wiley-Blackwell Publishing, Malden, Massachusetts, USA.  

National Audubon Society (2010) The Christmas Bird Count Historical Results [Online]. 

Available: http://www.christmasbirdcount.org [Accessed November 2011] 

Parker, I.M., Simberloff, D., Lonsdale, W.M., Goodell, K., Wonham, M., Kareiva, P.M., 

Williamson, M.H., Von Holle, B., Moyle, P.B., Byers, J. E., & Goldwasser, L. (1999) 

Impact: toward a framework for understanding the ecological effects of invaders. 

Biological Invasions. 1,3-19. 

Pyle, R.L., Pyle, P. (2009) The Birds of the Hawaiian Islands: Occurrence, History, 

Distribution, and Status. B.P. Bishop Museum, Honolulu, HI, U.S.A. Version 1 (31 

December 2009) http://hbs.bishopmuseum.org/birds/rlp-monograph/  

R Development Core Team. (2012) R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-

900051-07-0, URL: http://www.R-project.org/. 

Sibley, D.A. (2009) The Sibley Field Guide to Bird Life and Behavior. Knopf Doubleday 

Publishing Group, New York, New York, USA. 

Thomsen, M.S., Olden, J. D., Wernberg, T., Griffin, J.N., Silliman, B. R. (2011) A broad 

framework to organize and compare ecological invasion impacts. Environmental 

Research. 111, 899-908. 

 

BIOSKETCH 

The authors’ interests lay in the fields of invasion ecology and population dynamics. We 

use models to inform predictions about the processes of established exotic species. 

Author contributions: K.A. and J.L.L. conceived the ideas and wrote the manuscript 

jointly. 

  

http://birds.audubon.org/christmas-bird-count


28 
 

 

Table 1. Here we show the estimated length of lag phases for the three datasets used; 1) 

using the upper bound of the 95% confidence interval (CI) of the observed maximum 

abundance (“Upper bound”), 2) using the observed maximum abundance itself 

(“Observed”, and 3) using the lower bound of the 95% CI of the observed maximum 

abundance (“Lower bound”). For species with not lag phase detected, we report the best 

fitting model (whether “Exponential” or “Linear”), or we report that no model was 

clearly better fit to the data (“None”). 

Common Name 

Species name 

Estimated lag phase length 

Upper bound Observed Lower bound 

Cattle Egret 

Bubulcis ibis 
Exponential None 14 

Chestnut Mannikin 

Lonchura atricapilla 
Exponential Exponential Exponential 

Common Waxbill 

Estrilda astrild 
38 37 23 

House Sparrow 

Passer domesticus 
None None None 

Japanese Bush-Warbler 

Cettia diphone 
19 18 19 

Java Sparrow 

Padda oryzivora 
19 19 19 

Lavender Waxbill† 

Estrilda caerulescens 
24 24 22 
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Hwamei 

Garrulax canorus 
13 13 13 

Northern Cardinal 

Cardinalis cardinalis 
None None None 

Nutmeg Mannikin† 

Lonchura punctulata 
None 10 None 

Red Avadavat† 

Amandava amandava 
22 22 22 

Red-vented Bulbul 

Pycnonotus cafer 
12 12 Linear 

Red-whiskered Bulbul 

Pycnonotus jocosus 
13 13 13 

Rose-ringed Parakeet† 

Psittacula krameri 
34 34 None 

Saffron Finch† 

Sicalis flaveola 
22 22 22 

White-rumped Shama† 

Copsychus malabaricus 
13 13 None 

Yellow-fronted Canary 

Serinus mozambicus 
28 28 28 
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FIGURE LEGENDS 

Figure 1. All exotic populations grow slowly, starting from initially small numbers, as 

exemplified by an exponential model. Such populations show inherent lags between the 

time they are introduced (t0) and the time when the number of individuals accelerates. 

Populations that exhibit periods of linear growth rate (to tlag), followed by non-linear 

growth, show lag phases that are best approximated using piecewise models.  

Figure 2. Here we present the duration of lag phases across all species, with the symbols 

representing the year in which the lag phase ended for each population as estimated using 

the observed maximum abundance estimate (●), and the lower (□) and upper (∆) bounds 

of the 95% confidence interval about the maximum abundance estimate. The left and 

right hash marks represent the year of first record and the year of maximum abundance in 

the CBC, respectively. Any symbol on the left hash mark represents the absence of a lag 

phase. 
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Figure 1. 
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Figure 2 
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SUPPORTING INFORMATION 

Additional supporting information may be found in the online version of this article. 

Table S1. Parameter estimates for the target species, denoted with their common name. 

‘rlag’ is the growth rate for the first linear model; ‘rincrease’ is the growth rate for the 

second linear model; ‘rexponential’ is the growth rate for the exponential model; and ‘Δ (rlag 

– rincrease)’ is the difference between the growth rates of the two linear models, when 

applicable (i.e., a growth rate change from negative to positive does not yield a 

meaningful % increase result). For some species, like the northern cardinal, the data was 

not more accurately estimated by either the exponential or single linear model. 

Common Name 

Parameter Estimates 

rlag rincrease rexponential Δ (rlag – rincrease) % increase 

Cattle Egret NA NA NA NA NA 

Chestnut Mannikin NA NA 0.22 NA NA 

Common Waxbill 0.07 0.63 NA 0.56 822 

House Sparrow NA NA NA NA NA 

Japanese Bush-Warbler 0.01 0.11 NA 0.10 865 

Java Sparrow 0.06 1.25 NA 1.19 1970 

Lavender Waxbill -0.006 0.06 NA 0.06 NA 

Hwamei 0.02 0.07 NA 0.06 324 

Northern Cardinal NA NA NA NA NA 

Nutmeg Mannikin -0.23 16 NA 16 NA 

Red Avadavat 0.02 0.21 NA 0.20 1311 

Red-vented Bulbul 0.11 0.83 NA 0.73 693 
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Red-whiskered Bulbul 0.003 0.13 NA 0.13 4903 

Rose-ringed Parakeet 0.0002 0.02 NA 0.02 8596 

Saffron Finch -0.003 0.64 NA 0.65 NA 

White-rumped Shama -0.006 0.08 NA 0.09 NA 

Yellow-fronted Canary -0.003 0.69 NA 0.69 NA 
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Table S2. Here we show AICc weights for each population and each model, using 

different values for the maximum abundance estimate. ‘Upper bound’ represents the 

outcome of applying our models to each time series using the upper bound of the 95% 

confidence interval (CI) about the maximum abundance estimates. ‘Observed’ represents 

the outcome of applying our models to each time series using the observed value of the 

maximum abundance estimate. ‘Lower bound’ represents the outcome of applying our 

models to the lower bound of the 95% CI about the maximum abundance estimate. If a 

two-piece model best fit the observed count data, we listed the length of the lag in last 

column (Lag). If the exponential or linear model provided the best fit, we indicated this in 

the Lag column. If we could not distinguish a best-fit model amongst the candidate set, 

the ‘Lag’ column is labelled as ‘None’. (A) shows AICc weights when the piecewise 

exponential model was included in the analysis; (B) shows the AICc weights when the 

piecewise exponential model was not included. 

(A)  

Species 

Upper bound 

Linear Exponential 

Piecewise 

Linear 

Piecewise 

Exponential 

Lag 

Cattle Egret 2% 95% 2% 1% Exponential 

Chestnut Mannikin 16% 83% 1% 0.09% Exponential 

Common Waxbill 0% 0% 100% 0% 38 

House Sparrow 7% 30% 61% 1% None 

Japanese Bush-Warbler 0.11% 0% 99% 0% 19 

Java Sparrow 0.38% 0.40% 99% 0% 19 
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Lavender Waxbill 0% 0% 100% 0% 24 

Hwamei 0.03% 0% 99% 0% 13 

Northern Cardinal 46% 47% 7% 0% None  

Nutmeg Mannikin 0.37% 47% 53% 0.49% None 

Red Avadavat 6% 0% 94% 0% 22 

Red-vented Bulbul 3% 0.02% 97% 0% 12 

Red-whiskered Bulbul 0.14% 0% 99% 0% 13 

Rose-ringed Parakeet 0% 0% 100% 0% 34 

Saffron Finch 0% 0% 100% 0% 22 

White-rumped Shama 3% 0% 97% 0% 13 

Yellow-fronted Canary 0% 0% 100% 0% 28 

Species 

Observed maximum abundance 

Linear Exponential 

Piecewise 

Linear 

Piecewise 

Exponential 

Lag 

Cattle Egret 21% 39% 40% 0.22% None 

Chestnut Mannikin 20% 78% 2% 0.04% Exponential 

Common Waxbill 0.27% 0% 99% 0% 37 

House Sparrow 10% 34% 55% 1% None 

Japanese Bush-Warbler 0.04% 0% 99% 0% 18 

Java Sparrow 0.17% 0.01% 99% 0% 19 

Lavender Waxbill 0% 0% 100% 0% 24 

Hwamei 0.01% 0% 99% 0% 13 

Northern Cardinal 46% 47% 7% 0% None 
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Nutmeg Mannikin 0.29% 29.84% 69.51% 0.36% 10 

Red Avadavat 14% 0% 86% 0% 22 

Red-vented Bulbul 3% 0.02% 97% 0% 12 

Red-whiskered Bulbul 0.01% 0% 99% 0% 13 

Rose-ringed Parakeet 19% 0% 81% 0% 34 

Saffron Finch 0% 0% 100% 0% 22 

White-rumped Shama 3% 0% 97% 0% 13 

Yellow-fronted Canary 0% 0% 100% 0% 28 

Species 

Lower bound maximum abundance 

Linear Exponential 

Piecewise 

Linear 

Piecewise 

Exponential 

Lag 

Cattle Egret 0% 0% 100% 0% 14 

Chestnut Mannikin 23% 71% 7% 0.01% Exponential 

Common Waxbill 3% 0% 97% 0% 23 

House Sparrow 44% 33% 19% 4% None 

Japanese Bush-Warbler 25% 0% 75% 0% 19 

Java Sparrow 0.03% 0% 99% 0% 19 

Lavender Waxbill 0.01% 0% 99% 0% 22 

Hwamei 0.55% 0% 99% 0% 13 

Northern Cardinal 38% 15% 47% 0% None 

Nutmeg Mannikin 0.83% 35% 64% 0.53% None 

Red Avadavat 0.16% 0% 99% 0% 22 

Red-vented Bulbul 95% 0.60% 5% 0% Linear 
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Red-whiskered Bulbul 19% 0% 81% 0% 13 

Rose-ringed Parakeet 43% 0% 57% 0% None 

Saffron Finch 11% 0% 89% 0% 22 

White-rumped Shama 49% 0% 51% 0% None 

Yellow-fronted Canary 0.32% 0% 99% 0% 28 

 

(B) 

Species 

Upper bound maximum abundance 

Linear Exponential 

Piecewise 

Linear 

Lag 

Cattle Egret 2% 96% 2% Exponential 

Chestnut Mannikin 16% 83% 1% Exponential 

Common Waxbill 0% 0% 100% 38 

House Sparrow 7% 31% 62% None  

Japanese Bush-Warbler 0.11% 0% 99% 19 

Java Sparrow 0.38% 0.40% 99% 19 

Lavender Waxbill 0% 0% 100% 24 

Hwamei 0.03% 0% 99% 13 

Northern Cardinal 46% 47% 7% None 

Nutmeg Mannikin 0.37% 47% 53% None 

Red Avadavat 6% 0% 94% 22 

Red-vented Bulbul 3% 0.02% 97% 12 

Red-whiskered Bulbul 0.14% 0% 99% 13 
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Rose-ringed Parakeet 0% 0% 100% 34 

Saffron Finch 0% 0% 100% 22 

White-rumped Shama 3% 0% 97% 13 

Yellow-fronted Canary 0% 0% 100% 28 

Species 

Observed maximum abundance 

Linear Exponential 

Piecewise 

Linear 

Lag 

Cattle Egret 21% 39% 41% None 

Chestnut Mannikin 20% 78% 2% Exponential 

Common Waxbill 0.27% 0% 99% 37 

House Sparrow 10% 35% 55% None 

Japanese Bush-Warbler 0.04% 0% 99% 18 

Java Sparrow 0.17% 0.01% 99% 19 

Lavender Waxbill 0% 0% 100% 24 

Hwamei 0.01% 0% 99% 13 

Northern Cardinal 46% 47% 7% None 

Nutmeg Mannikin 0.29% 30% 70% 10 

Red Avadavat 14% 0% 86% 22 

Red-vented Bulbul 3% 0.02% 97% 12 

Red-whiskered Bulbul 0.01% 0% 99% 13 

Rose-ringed Parakeet 19% 0% 81% 34 

Saffron Finch 0% 0% 100% 22 

White-rumped Shama 3% 0% 97% 13 
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Yellow-fronted Canary 0% 0% 100% 28 

Species 

Lower bound maximum abundance 

Linear Exponential 

Piecewise 

Linear 

Lag 

Cattle Egret 0% 0% 100% 14 

Chestnut Mannikin 23% 71% 7% Exp 

Common Waxbill 3% 0% 97% 23 

House Sparrow 46% 35% 19% None 

Japanese Bush-Warbler 25% 0% 75% 19 

Java Sparrow 0.03% 0% 99% 19 

Lavender Waxbill 0.01% 0% 99% 22 

Hwamei 0.55% 0% 99% 13 

Northern Cardinal 38% 15% 47% None  

Nutmeg Mannikin 0.83% 35% 64% None  

Red Avadavat 0.16% 0% 99% 22 

Red-vented Bulbul 95% 0.60% 5% Linear 

Red-whiskered Bulbul 19% 0% 81% 13 

Rose-ringed Parakeet 43% 0% 57% None  

Saffron Finch 11% 0% 89% 22 

White-rumped Shama 49% 0% 51% None  

Yellow-fronted Canary 0.32% 0% 99% 28 
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Table S3. We list the year of the first report in the CBC (first record). We also report the 

body mass (grams), niche breadth, and propagule pressure associated with each species 

(see text for more details regarding the units and strategies used to calculate niche breath 

and propagule pressure). 

Common Name 

Scientific Name 

First record Body mass Niche breadth Propagule pressure 

Cattle Egret 

Bubulcis ibis 

1966 392 3 121 

Chestnut Mannikin 

Lonchura atricapilla 

1978 13 8 23 

Common Waxbill 

Estrilda astrild 

1966 9 8 24 

House Sparrow 

Passer domesticus 

1940 28 9 9 

Japanese Bush-Warbler 

Cettia diphone 

1960 63 10 177 

Java Sparrow 

Padda oryzivora 

1972 19 4 138 

Lavender Waxbill† 

Estrilda caerulescens 

1970 25 8 13 

Hwamei 

Garrulax canorus 

1966 9 7 NA 

Northern Cardinal 1960 45 8 352 
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Cardinalis cardinalis 

Nutmeg Mannikin† 

Lonchura punctulata 

1960 13 8 NA 

Red Avadavat† 

Amandava amandava 

1967 10 6 NA 

Red-vented Bulbul 

 Pycnonotus cafer 

1969 33 7 6 

Red-whiskered Bulbul 

Pycnonotus jocosus 

1968 33 7 2 

Rose-ringed Parakeet† 

Psittacula krameri 

1973 118 8 NA 

Saffron Finch† 

Sicalis flaveola 

1968 20 7 NA 

White-rumped Shama† 

Copsychus malabaricus 

1960 28 2 NA 

Yellow-fronted Canary 

Serinus mozambicus 

1961 11 8 48 
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Figure S1. Time series for all 17 exotic bird populations analyzed here. These data were 

obtained from the Audubon Christmas Bird Counts (CBC) for the Hawaiian Islands. Each 

time series constitutes data from the date of first record in the CBC to the date of 

maximum reported abundance, thus the x-axes are not all the same. Similarly, the y-axes 

have been scaled to each species’ maximum abundance, and cannot be compared directly 

without this consideration. The vertical line in each plot corresponds to the year in which 

the maximum abundance estimate was observed; we have applied the methods reported 

in the body of the paper to all data points up to and including that point for each species. 

  



44 
 

 

 

Figure S2. Here we show the process for assimilating the uncertainty about the maximum 

abundance estimate. The observed maximum abundance is initially treated as the mean of 

a normal distribution with a uniform variance. Through a Bayesian process, we allow the 

variance from the entire time series to inform this prior, resulting in a posterior normal 

distribution with a variance range dictated by the ‘noise’ in the observed count data. Time 

series with much variation, including having outliers as shown here, have 

correspondingly wide posterior variances (representing the 95% confidence interval, CI) 

in which the ‘true’ maximum abundance estimate may lie. Panel A shows an example of 

a time series in which the 95% CI about the maximum abundance estimate overlaps many 

of the other data points, reducing confidence that the estimate is in fact a 

demographically dictated maximum instead of a result of noise in the data. In panel B, 

however, the time series has a 95% CI about the maximum abundance estimate that is 
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always above all other data points, conferring a high degree of confidence that that the 

observed maximum reflects a true shift in demographic rates, albeit short-lived. Also of 

note, the scale on the y-axis is far smaller than on the x-axis, making the maximum in 

panel A even easier to explain as ‘noise’ than the maximum in panel B, which is an order 

of magnitude above any other estimate. 
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Figure S3–S19. Observed time series for each of the 17 species we evaluated. The most 

parsimonious of the candidate models is plotted (solid line) alongside the observed time 

series data (squares), truncated at the maximum observed abundance (see text for details). 

For those time series in which none of the models provided a robust fit, there is no model 

line included. We also plot the upper confidence interval maximum value (95% CI upper 

bound), and the lower confidence interval maximum value (95% CI lower bound) as 

triangles. These values were substituted for the observed maximum abundance in 

alternative model fitting exercises to judge the robustness of our proclamation of lags and 

their lengths (see text for details). For most populations, the best fitting model was the 

two-piece model, which was allowed to be disconnected. 
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Figure S4. 
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Figure S5. 
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Figure S6.  
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Figure S7.  
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Figure S8.  
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Figure S9.  
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Figure S10.  
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Figure S11.  
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Figure S 12.  
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Figure S13.  
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Figure S14.  
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Figure S15.  
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Figure S16.  
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Figure S17.  
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Figure S18.  
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Figure S19. 
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ABSTRACT 

(1) Detecting population collapses (crashes, failures, rapid declines) is of considerable 

importance within a variety of applied biological fields including conservation and 

fisheries. Collapses are broadly defined as substantial drops in abundance over 

relatively short time periods. Here, we develop a flexible, rigorous method to account 

for uncertainty in the two components of this definition: proportional loss and the 

time frame over which this loss occurs. We then employ this approach to evaluate the 

prevalence of collapses among native Hawaiian birds. 

(2)  We develop a Bayesian approach to account for uncertainty an observed maximum 

abundance, which is a necessary step when defining collapses as a percentage drop 

from this value. This uncertainty is then translated into confidence limits around the 

magnitude of decline that should be considered a collapse. Finally, we employ three 

different statistical functions—linear, exponential, and a LOESS curve— to assess the 

period of collapses. 

(3)  Using these methods, we show that six of 12 declining native bird populations on 

Hawaii have declined by >90% over the span of 10 years, with the uncertainty 

estimates for the remaining six being too large to render collapse classifications. It 

took on average 3.3 (+2.9) years for populations to collapse from their maximum 

abundance.  

(4)  The dearth of standardized methodology to quantify population collapses is in part 

due to the lack of systematic tools for assessing uncertainty within time series for 

populations across taxonomic groups, of different sizes, and from multiple locations. 
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The method we present here helps fill these gaps and can be readily applied to any 

system with sufficient time series of abundance data. 

KEY WORDS: Audubon Christmas Bird Counts, birds, collapses, conservation, Hawaiian 

Islands, population  
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INTRODUCTION 

Rapid and substantial declines in population abundance result from changes in 

climate, over-harvesting, infectious diseases, and habitat destruction (e.g., Houlahan et 

al., 2000; Coulson et al., 2001; Green, 2003; Eterovick et al., 2005; Mullon et al., 2005; 

Conrad et al., 2006; LaDeau et al., 2007; Pinsky et al., 2011). Such declines have been 

given many names in the literature (e.g., crashes, rapid declines); for consistency, here we 

adhere to the most often used term, ‘collapse’ (e.g., Simberloff & Gibbons, 2004; 

Hutchings & Reynolds, 2004; Mullon et al., 2005; Pinsky et al., 2011, Cooling et al., 

2012). No matter their cause, identifying a population collapse is critical for policy-

makers and managers if they are to swiftly institute response measures that can stop, or 

perhaps reverse, the decline. We suggest that existing methods used to classify and 

quantify collapses fail to adequately incorporate uncertainty about their magnitude and 

time frame. Without consideration of uncertainty, policy-makers and managers risk either 

failing to detect a collapse when it is occurring or expending limited capital to address a 

population that is not in a steep a decline. Here we provide a novel method to account for 

uncertainty in defining a collapse while continuing to allow for its context-specific 

uses—a crucial aspect of this topic given the breadth of its relevance.  

Biologists have developed several ways to describe population increases, however 

there are comparatively few tools for consistently classifying and quantifying population 

declines. For this reason, there is a tendency in the literature to identify and define 

collapses on a case-by-case basis. In some studies, collapses were quantified as 

reductions in population size that left abundance at or below 10% of the maximum for 

three or more years (Mullon et al., 2005; Pinsky et al. 2011). In other studies, collapses 
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were quantified as rates of decline of over 90% within a 10-year period (Conrad et al., 

2006), or by calculating the standard error of changes in abundance from year to year and 

recording drops in this value through time (Caruso & Lips, 2013). This variety speaks to 

the need to settle on a flexible but rigorous definition of collapse that can be used across 

taxa and regardless of the underlying causes. A common denominator among most 

definitions of collapse is that they are the product of two inter-related measures: a 

proportional reduction in abundance from a recorded maximum value, and the time frame 

over which this reduction occurred. We suggest that in attempting to quantify a collapse 

it is vital to account for uncertainty in each of these quantities. 

All declines (including collapses) represent a drop from an observed maximum to a 

lower abundance value within a time series. Any empirical time series will show year-to-

year variation in abundance, even when the population is large and near its maximum and 

has been corrected for observational or process error (Kéry & Schaub, 2012). Thus it is 

not straightforward to determine what abundance value to use as the benchmark from 

which to calculate a percent decline. However, this decision is critical since declines are 

measured from this value, so any uncertainty in its designation represents uncertainty in 

the magnitude of observed decline. Once we have identified the maximum value and 

calculated uncertainty around it, we still require a consistent process to determine how 

much time it took for the population to decline by a given magnitude from this value. 

Uncertainty in choosing what sampling event represents the benchmark maximum 

translates into uncertainty in how long it takes for a population to decline by a specified 

proportion. Furthermore, the same year-to-year variation in abundance estimates present 

near the maximum value will remain (or be magnified) when considering low abundance 
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values. This variation makes it very difficult to determine in what year abundance 

dropped below any specified threshold value.  

Below we describe a method for explicitly accounting for these two inter-related 

sources of uncertainty, and then we apply our solution to the native birds in Hawaii as a 

test case for its use. Islands typically support high levels of biodiversity and endemism, 

and Hawaii in particular is home to several rare endemic birds (Pyle & Pyle, 2009). We 

use >50 years of abundance data from Audubon Christmas Bird Counts (CBC; National 

Audubon Society, 2010) to evaluate 12 species that have consistently appeared in surveys 

and have experienced at least one population decline over their period of record. Using 

our method, we determined which of these populations showed a collapse. For our 

purposes, we define a collapse as a reduction of at least 90% within the longer of 10 years 

or three generations (World Conservation Union, 2001); however our method applies to 

any magnitude and duration of decline that may be of conservation concern.  

 

MATERIALS AND METHODS 

Case study background 

Hawaii was home to over 100 endemic bird species before human colonization, with 

48 of these becoming extinct prior to the arrival of Europeans in 1778, and another 23 

since (Leonard, 2008). Of the 42 currently extant endemic bird species, 29 species and 

two sub-species are currently listed as endangered; several of these have not been 

observed in over 40 years and are likely extinct (Pyle & Pyle, 2009). Hawaii’s birds have 

suffered from over-exploitation, massive habitat loss and fragmentation, invasive species, 

and emerging infectious disease (Pyle & Pyle, 2009). For these reasons, the Hawaiian 
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avifauna has been the subject of intense scrutiny in terms of the conservation status of its 

endemic birds, and there is a continuing need to assess when their populations (threatened 

or not) suffer unexpected declines in abundance (Leonard, 2008). Our results inform 

these efforts, while also serving to demonstrate the advancements and limitations of our 

method.  

Residents of Hawaii have participated in the CBC since 1938, yielding an 

uncommonly long record of annual abundance information for many of native bird 

species (National Audubon Society, 2010). CBC counts involve searches for all species 

seen within a fixed location of known size (15 mile diameter circle) during one day, with 

the number of individuals observed per species recorded. These counts are standardized 

(by time of year and location) and are reported in terms of effort per party hour (e.g., one 

person counting for 10 hours equates to five people counting for two). There are between 

seven and nine CBC count circles visited by observers across the archipelago each year, 

depending on participation and expert availability. Of these, we utilize six in our analysis 

because they intersect substantial native habitat (where nearly all remaining endemic 

Hawaiian birds reside) and have been surveyed consistently enough that we could extract 

at least 10 consecutive years of data.  

Because we are using the CBC, which is an exclusively land-based survey, we 

included only endemic year-round resident bird species of Hawaii. We excluded what 

Pyle & Pyle (2009) term ‘breeding visitors’ that breed on the islands but spend a 

substantial part of their lives elsewhere (n = 14). Of the remaining 34 species, all but two 

are endemic to a single island. Thus, these 32 species’ annual abundance records are 

captured by a single count circle (though not the same single count circle for all 32 



70 
 

 

species). All results for these species are therefore based on counts within the single 

circle that overlaps their geographical range.  

Two species that we consider occur across the archipelago, the ‘apapane (Himatione 

sanguinea) and the ‘i‘iwi (Vestiaria coccinea). Both species have been noted to move 

between islands (Pyle &Pyle, 2009). The ‘i‘iwi, however, only occurred in two count 

circle records, one on Kauai and one on the Big Island, which are located >250 miles 

apart. We consider each of these as two independent population of ‘i‘iwi, and analyze 

abundance records within each of their count circles separately. In contrast, the ‘apapane 

occurred in three count circles on three different islands that are located close enough to 

each other that there is a reasonable chance that individuals of these species could move 

between them (Kauai, Oahu, and the Big Island). We treat the record for ‘apapane as a 

single archipelago-wide population, pooling the data from the three count circles. To 

account for inter-count circle differences when pooling data for the ‘apapane, we 

followed the approach of Link et al. (2006). This method requires scaling the abundance 

estimates within each circle based on effort variation across count circles, so that they can 

be compared to one another. These corrections remove the influence of the varying use of 

count circles from year to year.  

 

Method requirements 

We apply four criteria for selecting abundance records to analyze. First, a population 

must display a decline at some point in their period of record, because a collapse 

presupposes at least one episode of decline (i.e. a continuously growing population 

cannot simultaneously be classified as collapsed). Second, the data must have been 
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collected from a sampling area that reasonably approximates either the geographic range 

of the targeted species, or a discreet subpopulation. This requirement can be relaxed 

without reducing the performance of our model if there is a clear reason that a non-

discrete subset of a species is of particular economic or ecological importance (see 

Mullon et al. 2005). Third, there must be at least as many consecutive sampling events in 

the record as the length of time needed to define a collapse. For our purposes, we define a 

collapse as a <90% decline within 10 years or three generations. All of the species we 

consider have generation times of 1-3 years, leaving the 10-year cut-off as our default 

collapse time frame. Therefore, we did not include any species that did not have at least a 

10-year span of abundance records. This limit can (and should) be specific to the species 

being considered and the time frame chosen for the collapse definition. There is, 

however, a lower limit to the number of years of data included (or sampling events, if 

censuses occur more frequently than once a year), since fewer data complicate model 

fitting (see below).  

Finally, we only consider species that were likely present over their period of record, 

while accounting for low probabilities of detecting individuals in censuses—often very 

low for rare species (Delaney & Leung, 2010). Ideally a time series will include 

information on detection probability, which can then be used to directly evaluate the 

likelihood that a recorded zero abundance value in any given year was a true absence 

versus a non-detection (Kéry & Schaub, 2012). In such cases, the following step may not 

be needed. This ideal is rarely met however, especially with time series that are collected 

over a long time period or over large spatial scales as is the case with the CBC (and other 

large-scale citizen science programs). Thus, to determine whether a species was present 
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(but uncounted) or truly absent in our data, we use a detection threshold assessment in 

OpenBUGS v. 3.2.1 (Lunn et al., 2009), assuming a wide range of detection probabilities.  

We use a Bayesian approach to formulate expected probabilities of the population 

being present for the duration of their time series (P) based on their recorded abundances. 

We set detection probability values (pd, the probability of an observer detecting an 

individual given that the individual is actually present) to be between (but excluding) 

zero and one (0.1 < pd < 0.9). We increment pd by 0.1 within this range for each run of 

the persistence model. We assume that the theoretical presence or absence of individuals 

(Tp) follows a Bernoulli distribution, with the probability of presence (r) and absence (q) 

equal to 0.5. We also assume the actual detections (present or absent, Z) follow a 

Bernoulli distribution, with a probability equal to the probability of detection. Our model 

has this form, following McCarthy (2007): 

Tp ~ Bern(r) 

P = pd * Tp 

pd = (0.1 to 0.9) 

Z[i] ~ Bern(P) 

Z is informed by the actual across-years data for each population; years (i) with positive 

abundance values reported are taken as years in which the species was present, while 

years with abundance reports of 0 are taken as years in which the species was absent. 

This model produces P for each population across a variety of detection probabilities, 

given the observed data. If we calculate a species as likely ‘present’ for at least 10 years 

of their period of record and across all possible detection probabilities, then we determine 

that it meets our criteria for persistence.  
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With these requirements met, we can apply the components of our method that seek 

to quantify the level of uncertainty about the maximum estimated abundance and the 

length of time of a population’s decline. 

 

Uncertainty about collapse magnitude 

The first step of our method involves calculating the uncertainty about the observed 

maximum abundance (μ). Our goal is to obtain the estimated variance about μ as a way to 

set the likely upper and lower limits for a collapse, given the variance in counts across all 

years of observation. To account for this uncertainty we perform a separate Bayesian 

analysis, also in OpenBUGS v. 3.2.1 (Lunn et al., 2009), to estimate the error of the 

observed maximum abundance for all species (Aagaard & Lockwood, 2014). Essentially, 

we are accounting for the fact that the observed value of interest (in this case, maximum 

abundance) represents an estimate of some ‘true’ unobservable value (whatever the 

maximum actually is), and therefore has associated error. Unfortunately, we have no way 

to know what this error is since the ‘true’ value is unobservable. However, we can 

estimate this error using the variance in abundance calculated across the entire period of 

record. If this variance is large, then we should be cautious about placing too much 

statistical belief in the observed maximum value, and we should be correspondingly 

cautious about classifying a decline from this value as a ‘collapse’. Alternatively, small 

variance suggests that the observed maximum is a better estimate of the true maximum 

and we can more confidently declare a population as collapsed if it declined by 90% or 

more from this value.  
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To estimate the error of the observed maximum abundance estimate, we first 

determine the variance present in each population’s entire time series, using the following 

model, adapted from Aagaard & Lockwood (2014):  

Y[i] ~ N(μ[i], σ2), 

μ[i+1] = μ[i] * λ[i], 

λ[i] ~ N(λ, τ), 

τ ~ Unif(0, 10), 

σ2 ~ Unif(0, 100), 

where Y is the time series for each target population, with i representing each year’s count 

within the time series, μ is the estimated maximum abundance for each population 

(assuming year to year exponential growth, with the mean growth rate = λ and variance 

τ), and σ2 is the variance about the annual estimates, at first unknown and therefore given 

an uninformative prior. We allow this model to run for 10,000 iterations, with a burn-in 

of 1,000 to allow for convergence. It is relevant to note that the data we use in our case 

study are derived from count data, but have been standardized using information on the 

number of observers and length of time spent observing. Therefore these data are 

continuous and not discrete, making the use of a normal rather than Poisson prior 

distribution appropriate. We caution that this may not hold for other count data and such 

data should be parameterized appropriately within our model framework (i.e. using a 

Poisson).  

With the estimated variance in hand, we then determine the 95% credible interval 

(CI) for the variance around the observed maximum abundance. The upper bound of the 

95% CI represents the highest estimate of the true maximum abundance for the 
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population, while the lower bound represents the lowest estimate. Therefore, the 95% CI 

itself represents the range in which we have the most belief that the true maximum 

abundance resides (in fact, we are 95% confident of this). In accordance with our 

definition of a collapse (i.e. having declined by 90%), we reduce these upper and lower 

CI values by 90% to establish upper and lower thresholds of collapse. We call the area 

within these upper and lower thresholds as the zone of probable collapse (Figure 1). 

Thus, if a population declines into the zone of probable collapse we are 95% confident 

that it has declined by >90% of the highest estimate (the upper bound of the 95% CI) of 

its maximum abundance. If abundance records decline through this zone (below the 

lower bound of the 95% CI) we are then 95% confident that this species has collapsed 

below the most conservative estimate of its maximum abundance. We term such declines 

as true collapses. Thus, populations that have a large variance (wide CI) around the 

observed maximum abundance value have a correspondingly wide zone of probable 

collapse, and vice versa. This action allows us to fully incorporate our statistical belief 

about the true value of the maximum abundance into our classification of populations as 

‘collapsed’.  

 

Uncertainty about collapse duration 

The second step of our method involves definitively determining the year in which a 

population has passed into the zone of probable collapse. To reduce ambiguity, we apply 

a model-fitting approach to identify the intersection of the predicted population trend 

with the zone of probable collapse (Figure 1). We apply three functions to each time 

series from the year of the maximum observed abundance to the final year on record: a 
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negative exponential, a linear, or a LOESS model. We fit the models directly to the count 

data, without transformation, using least squares linear regression for the negative 

exponential and linear functions, and the LOESS curve using the built-in LOESS 

function in R v. 3.0.2 (R Development Core Team, 2012). We used an exponential 

decline of the form Nt = N0 * e -( r * t), and a linear model of the form Nt = r*t + N0 ; where 

Nt is the population size at a given time (with N0 being the initial population), e is the 

natural logarithm, r is the rate of population growth, and t is time. The LOESS curve fits 

the best polynomial to the function using local fitting. We selected from among these 

models using Akaike’s an information criterion, corrected for small sample size (AICc), 

which penalizes for extra parameters (Burnham & Anderson, 2002), and report the 

coefficient of determination (R2) as a goodness-of-fit metric. We use this modeling 

approach to establish a consistent, repeatable procedure for determining in what year a 

population passes into the zone of probably collapse.  

 

RESULTS 

After omitting any native species that did not exhibit a population decline at any point 

within their time series (n = 16), and those that had fewer than 10 years worth of annual 

abundance data (n = 6), we were left 12 populations to which to apply our method (Table 

1). Each of these 12 populations passed our persistence test; whether we assumed a 

detection probability of 0.1 or 0.9 they were all deemed likely present for the duration of 

their time series (P > 0.99).  

Our method estimated uncertainty about the observed maximum abundance for each 

population to range between CI widths of two to over 30 (see Supporting Information, 
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Figures S1-S12). This range resulted from different scales of abundance for each 

population, in addition to the difference in variation within each population’s time 

series—the primary metric our method is aimed at inferring. One population, the Oahu 

‘elepaio (Chasiempis ibidis), had a large estimated variance leading to a wide zone of 

probable collapse (Figure S9). The data for this species also does not exhibit a clear 

trend, thus the function fit to the data is correspondingly uninformative (R2 = 0.35). 

Similarly, some species, like the Hawaii creeper (Oreomystis mana), Hawaii ‘elepaio 

(Chasiempis sandwichensis), and Hawaiian hawk (Buteo solitaries; Figures S3-S5), 

exhibited seemingly anomalous single-year spikes in abundance. The upper bounds on 

the zones of probable collapse for these three species, however represented 12%, 13%, 

and 13% of their maximum abundance estimate, respectively. That is, despite the 

potentially aberrant maxima for these species, estimates of uncertainty about their 

observed values were low enough to produce quite narrow ranges for their zones of 

probable collapse. 

We found evidence for probable and true collapses in one and three populations 

respectively (Figure 2). It took an average of 5.0 (+2.2) years for populations to collapse 

from their maximum abundance into the zone of probable collapse. The longest collapse 

we found was for the Hawaii hawk, which took eight years, while the shortest—the 

Hawaii ‘elepaio—took three years. The LOESS curve function was selected as the best 

model for 11 of 12 populations, with the Oahu ‘elepaio best fit by a negative exponential 

function. Populations exhibiting a collapse declined by an average of 97% from their 

observed maximum abundances. The average decline from the lower bounds of the 

maximum abundance CI was 95%, and the average decline from the upper bounds was 
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98%. While eight populations were not found to have collapsed by our definition, they 

did still experience pronounced population declines relative to their observed maximum 

abundance. Overall, the average decline for all 12 populations was 87%, with average 

declines from the lower and upper bounds of their maximum abundance CI of 82% and 

91%, respectively. In fact, all of the 12 species ultimately declined by at least 60% from 

their observed maximum abundance.  

 

DISCUSSION 

Population collapses are of critical concern in conservation management settings, 

with implications extending to emerging infectious diseases, excessive exploitation of 

populations, variable global climate trends, and rampant habitat loss (World Conservation 

Union, 2001). In these and other more enigmatic situations, ecologists have been ill 

prepared to identify and describe patterns of collapse in standardized ways. To optimize 

management strategies and allocate resources, we require methods that can be readily and 

systematically applied to a wide range of taxa without sacrificing the necessary flexibility 

of a definition. We provide a rigorous and robust way to calculate uncertainty about the 

magnitude and duration of a population decline, while also allowing the precise value of 

these two metrics to be set according to whatever definition of collapse that is deemed 

appropriate by a governing group.  

For our case study, we defined a collapse as a >90% reduction in abundance 

occurring within the shorter of 10 years or three generations in keeping with the IUCN 

designation of a critically endangered species (World Conservation Union, 2001). We 

found all 12 populations of Hawaiian birds we evaluated showed 66% or larger 



79 
 

 

proportional declines in abundance from an observed maximum, thus indicating that each 

could be considered worthy of rapid conservation action. However, because of the 

uncertainty around the true value of the observed maximum, the width of the zone of 

collapse varied by an order of magnitude across populations. This variation translated 

into uncertainty as to how long it took for a population to decline into this zone as well. 

When these two sources of variation are made explicit, eight of the 12 populations could 

not be clearly designated as collapsed. Importantly, given the need to identify collapses 

of conservation concern, we demonstrated that our method is easily applied to rare as 

well as more common species. We detected collapses in species with maximum 

abundance estimates ranging from less than 0.4 to more than 45 individuals per party 

hour. Whether the six populations that we show did collapse (according to our definition 

and methods) are worthy of rapid conservation actions is not for us to decide; however, 

our results certainly can inform such decisions.  

Our method highlights two additional uncertainties about declaring population 

collapses, and our results for Hawaiian birds illustrate these issues well. First, existing 

definitions of collapses measure only a proportional and not the absolute value of a 

decline in abundance. Thus, it does not matter whether the drop begins with a population 

at high or low abundance, or ends with high or low abundance, merely that it goes from 

higher to lower abundance. Our method will calculate the uncertainty associated with 

identifying when and how fast any given proportional drop occurs, but it is agnostic 

about how large or fast this drop must be to warrant conservation action. We chose to 

evaluate a stringent definition of collapse, however if we had chosen to be less restrictive 

in either the time frame or the proportional drop more of the populations we considered 
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would have qualified as ‘collapsed’. The decision about where to draw the defining lines 

is not straight forward and should be made by those seeking to identify and act on 

collapses. We suggest this decision should be informed by the target species’ biology, 

suspected mechanism of collapse, and perhaps the monetary or political costs and 

benefits associated with declaring collapses. 

Second, our method takes a simplistic but standard approach to identifying the 

maximum observed abundance within a time series. Whatever the value of the observed 

maximum is, that is the value used as the benchmark for calculating proportional drops. 

This aspect of our method mirrors many other definitions of, and methods for identifying, 

collapses (e.g., Mullon et al., 2005; Conrad et al., 2006; Pinsky et al., 2011; Caruso & 

Lips, 2013). However, it is clear from the Hawaiian bird populations that some of these 

maximum values represent temporary jumps in abundance, and thus the return to more 

‘normal’ abundance values will be classified as a collapse. Our approach helps to identify 

those jumps that are within the variation seen across all survey years, and appropriately 

places less emphasis on those that are clearly within the ballpark of this variance. But if 

those jumps are well outside of expectations based on the entire period of record, they 

will be given relatively high weight (low variance) in our approach. This level of 

statistical certainty in the observed maximum is well warranted; the value is high enough 

that we would not consider it a sampling anomaly for example. However, it is not clear 

how much conservation weight this maximum abundance should receive. We see this 

within three of the six populations that we consider to have collapsed (Hawaii creeper, 

Hawaii ‘elepaio, and Hawaiian hawk; see Supporting Information). Here again the degree 

to which conservation action should be based on these drops is up to those seeking to 
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identify and act on collapses. This decision can be guided by the absolute value of 

abundance that is realized after these drops, the regularity with which similarly sized 

drops occur across the period of record, and the suspected drivers of such drops.  

When populations suddenly decline in abundance, they warrant attention no matter 

their cause. Perhaps the more relevant question is one of deciding what response these 

declines merit, especially given that some responses carry substantial economic and 

political costs (e.g., harvest moratoriums, trade restrictions, and land use restrictions). 

Our methods seek to inform these response decisions by making two inter-related sources 

of uncertainty in quantifying severe declines transparent to decision-makers. We also 

highlight two other issues associated with evaluating population declines that are worthy 

of continued investigation, and there may be many more. Such investigations seem 

central to furthering the goal of biodiversity and managing biological resources in a 

sustainable manner. 
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TABLES AND FIGURES 

Table 1. Characteristics and results of variation analysis for each species (common and 

Latin names). ‘Collapse’ indicates whether the species exhibited a true, probable, or no 

collapse. ‘L’ lists the length of time each species occurred in the Christmas Bird Count 

record. ‘Max’ is the year in each species record in which the maximum abundance was 

observed—shown in the ‘Observed Max’ column. The highest and lowest estimated 

values for the true abundance are reported in the ‘Upper’ and ‘Lower’ columns, 

respectively. 

Species Collapse L Max Upper Observed 

Max 

Lower 

Oahu ‘elepaio 

Chasiempis ibidis 

None 39 1 0.48 0.3387 0.2 

Oahu ‘amakihi 

Hemignathus flavus 

None 37 19 2.02 1.5128 1 

Hawaii ‘elepaio 

Chasiempis 

sandwichensis 

Probable 38 25 15.54 11.6923 7.84 

Hawaii ‘akepa 

Loxops coccineus 

None 38 5 1.95 1.5625 1.18 

Hawaii creeper 

Oreomystis mana 

True 38 25 1.81 1.5385 1.26 

Hawaiian hawk 

Buteo solitaries 

True 38 25 1.18 0.9231 0.67 



85 
 

 

‘I‘iwi on Hawaii 

Vestiaria coccinea 

True 38 25 39.13 28 16.87 

‘Ōma‘o 

Myadestes obscurus 

None 38 25 27.31 23.0769 18.84 

‘I‘iwi on Kauai 

Vestiaria coccinea 

None 27 16 2.9 2.0351 1.17 

Kauai ‘amakihi 

Hemignathus 

kauaiensis 

None 26 14 6.05 5.0943 4.14 

Kauai ‘elepaio 

Chasiempis sclarteri 

None 27 14 7.5 6.0674 4.63 

‘Apapane 

Himatione sanguinea 

None 58 24 56.43 45.862 35.29 
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Figure 1. Here we show the process for incorporating uncertainty into determinations of 

collapses. (A) We fit an uninformative, normal prior distribution to the maximum 

abundance estimate and calculated the 95% credible interval (CI) of the resulting 

posterior distribution (informed by the variance in the whole time series; dashed lines). 

We calculated 10% of the 95% CI limits, with bounds defining the zone of probable 

collapse (solid lines). (B) We next fit the best model (chosen by AICc) to the declining 

portion of the data (black curve). We can see that the example population declined into 

and through the zone of probable collapse (circles mark the intersections), thus exhibiting 

a pattern of a true collapse.   
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Figure 2. (A) Length of collapse (from maximum to > 10%). Only populations that 

decline into the zone of probable collapse or lower are included. Gray bars represent the 

time between maximum observed abundance and decline below the 90% threshold. Gray 

and black bars represent the time to 90% reduction and then to true collapse. For 

example, the Hawaii creeper took four years to decline into the zone of probable collapse 

(gray bar), and four more years to decline below this zone (black bar).  

(B) Results in terms of the percent decline from maximum observed abundance. Bar 

colors correspond to the collapse classification (white = no collapse, gray = probable 

collapse, black = true collapse). The dashed line marks the 90% threshold marking a 

collapsed population. Whiskers represent the upper bounds for the maximum abundances 

estimated from our methods to approximate uncertainty in the observed value. Species 

codes: 1—‘apapane; 2—Hawaii ‘akepa; 3— Hawaii creeper; 4— Hawaii ‘elepaio; 5— 

Hawaiian hawk; 6—‘i‘iwi on Hawaii; 7—’i‘iwi on Kauai; 8— Kauai ‘amakihi; 9— 

Kauai ‘elepaio; 10—Oahu ‘amakihi; 11—oahu elepaio; 12—‘ōma‘o.  
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SUPPORTING INFORMATION 

Table S1. Corrected Akaike’s an information criterion (AICc) for each model as applied 

to each species. The lowest scoring AICc is in bold.  

Species Model AICc 

Linear Exponential LOESS 

Oahu Elepaio -79.571 -81.433 -3.71632 

Oahu Amakihi 19.3307 22.0766 -0.05097 

Hawaii Elepaio 75.6794 68.934 5.334665 

Hawaii Akepa 28.4295 25.2595 -0.80557 

Hawaii Creeper 19.9316 6.0508 0.826338 

Hawaiian Hawk 3.65509 -8.3019 0.479696 

Iiwi on Hawaii 98.5807 86.0925 6.899577 

Omao 88.4989 68.2285 5.995836 

Iiwi on Kauai 21.8895 9.7546 2.639876 

Kauai Amakihi 46.7302 47.5136 5.636754 

Kauai Elepaio 46.1588 37.4741 3.745369 

Apapane 241.288 259.607 4.828842 
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Figure S1. Time series of apapane with its fitted LOESS curve declining into the zone of 

probable collapse. The ‘10% Upper’ reported refers to the value on the y-axis 

corresponding to 10% of the upper bound of the 95% confidence interval (CI) about 

estimate of the maximum observed abundance (top solid line; see Figure 2 in paper). The 

‘10% Lower’ is similarly the y-axis value corresponding to 10% of the lower bound of 

the 95% CI about the estimate of the maximum observed abundance (bottom solid line). 

The ‘Minimum value’ is the lowest value estimated from the applied function. The ‘R2’ is 

the coefficient of determination of the function applied to the time series, to serve as a 

goodness of fit measure (greater values represent better fit). 

 

 

  



90 
 

 

Figure S2. Hawaii akepa 
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Figure S3. Hawaii creeper 
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Figure S4. Hawaii elepaio 
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Figure S5. Hawaiian hawk 
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Figure S6. Kauai amakihi 
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Figure S7. Kauai elepaio 

 

  



96 
 

 

Figure S8. Oahu amakihi 
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Figure S9. Oahu elepaio 
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Figure S10. Omao 
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Figure S11. Volcano (Hawaii) iiwi 
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Figure S12. Waimea (Kauai) iiwi 
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ABSTRACT 

Exotic species have had undeniably profound effects both ecologically and 

economically, yet we lack fundamental knowledge about their population dynamics. A 

particularly vexing phenomenon is spontaneous collapses among populations of 

established exotic species. Based on criteria used by the IUCN to classify species as 

threatened with extinction, we consider a population to have collapsed if it has 

experienced a ≥90% reduction in abundance within 10 years or three generations, 

whichever metric is greater. We use a recently developed method to identify population 

collapses and apply it to the exotic birds of Hawaii. We show that 14 of 54 established 

exotic bird species on Hawaii experienced probable collapses, three leading to near 

extinction. Declines from maximum abundances (ranging from 135.47 to 0.11 individuals 

per party hour) into a zone of probable collapse took on average 4.6 (+1.9) years, with 

minima between 9.87 and 0. Collapse of exotic populations has been under-studied 

empirically and theoretically, yet its implications for invasion ecology are profound. We 

show that collapses may be more common among exotic species than previously 

expected. Applying these methods to other taxa and locations is crucial for improving our 

understanding of exotic species population dynamics and management of invasive 

species.  

 

KEY WORDS: Audubon Christmas Bird Counts, biological invasions, collapses, exotic 

species, Hawaiian Islands, population, birds  
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INTRODUCTION 

Unexpected population declines of exotic populations, commonly referred to as 

collapses, have been a persistently discussed but understudied topic within biological 

invasions (McDonald and Wells 2010, Burnaford et al. 2011, Cooling et al. 2012, Moore 

et al. 2012). Population collapses within exotic species occur for no obvious reason, that 

is, not through hunting, fishing, or management (Simberloff and Gibbons 2004). Such 

collapses have profound implications for how we view the process of species invasion, 

and subsequently manage those exotic species that cause ecological or economic harm 

(Simberloff and Gibbons 2004, Cooling et al. 2012). However, because there is no 

accepted quantitative definition for population collapses, there is no way to assess their 

prevalence within or across taxa, much less predict when and where they will occur 

(Simberloff and Gibbons 2004). Building on several definitions of population collapse 

(also termed ‘crashes’) within the conservation biology literature, we derive a 

quantitative definition of exotic species collapse. We then survey for collapses within a 

taxonomic group that has many exotic species (birds), illustrating their prevalence and 

providing a protocol for surveying for collapses in other taxa and ecosystems.  

Classic population growth models (e.g., exponential, logistic) are often employed to 

approximate the population dynamics of exotic species (Sakai et al. 2001, Forsyth et al. 

2013). For example, most models of geographic range expansion assume logistic or 

exponential growth (Lockwood et al. 2013). Also, management recommendations tend to 

place a high premium on enacting eradication efforts quickly after a species has been 

introduced in part because there is the assumption that the population will experience 

exponential (or logistic) growth (Ricciardi et al. 2013). While it is appealing to use long-
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accepted population growth models in this context, it is becoming clear that exotic 

species’ population trajectories are often more complex than these models allow, 

regularly including long lag phases or boom-and-bust events (Crooks and Soulé 1999, 

Strayer et al. 2006, Williamson 1996, Crooks and Soulé 1999, Aikio et al. 2010, Aagaard 

and Lockwood 2014a). Collapses provide further evidence of the complexity of 

population growth of exotic species. If collapses are common, and we can predict which 

populations will exhibit collapses, perhaps managers will have the opportunity to 

successfully eliminate harmful exotic species at their lowest abundance, when they are at 

their most easily eradicated, long after initial establishment has occurred (McDonald and 

Wells 2010, Cooling et al. 2012). Collapses also suggest that currently abundant exotic 

species may not remain abundant into the future, which can greatly modify perceptions of 

their long-term potential for imposing ecological or economic harm (Strayer et al. 2003).  

As with native species (Aagaard and Lockwood 2014b), an inherent issue in detecting 

population collapses is determining the timing and magnitude required to classify a 

species as ‘collapsed’. Conservation biologists (including those in fisheries) have derived 

several ways to identify populations that have declined by such a magnitude and rate that 

they warrant special concern (e.g., Mullon et al. 2005, World Conservation Union 2001, 

Green 2003). Although nearly all these definitions consider large drops that occur over 

short time periods as being of concern, no standard quantitative definition has emerged 

from this literature. We adopt the IUCN criterion for classifying a (native) species as 

threatened with extinction as our definition here. This definition requires that a 

population experience a ≥90% reduction in abundance within 10 years or three 

generations, whichever metric is greater. We choose this definition in part because 
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Simberloff and Gibbons (2004) used a similar definition in their seminal survey for 

exotic species collapses. However, this definition also requires a population to experience 

a very sharp rate of decline, which means that exotic species that exhibit moderate drops 

in abundance will not qualify as ‘collapsed’. Having a conservative definition is this 

regard seems prudent, at least initially, since we do not want to over interpret population 

fluctuations.  

Even with a robust definition, there is one remaining issue that crops up when 

applying it to exotic species. We must determine whether or not an exotic species has 

successfully established a persistent population. Exotic populations, by definition, are 

founded from only a few individuals (Lockwood et al. 2013). It is possible that these 

founders do not represent a viable population, and thus they will eventually all die (i.e., 

they have consistently low survival and/or virtually no reproduction leading to no 

population growth). This scenario will lead to a (likely rapid) decline in number of 

individuals counted over time, eventually to extinction, but it is not a collapse. Thus, we 

assert that only after an exotic population has become established can it experience a 

collapse, requiring that we must first develop and apply a consistent criterion for 

determining exotic population establishment and evaluate collapses only within this 

group.  

Using a quantitative definition of collapse and establishment, we evaluate the 

prevalence of collapses within the exotic birds of Hawaii. Islands are hotspots for exotic 

bird invasions, and Hawaii in particular ranks as one of the top 10 most invaded locations 

worldwide in terms of number of exotic birds established (Blackburn et al. 2009, 

Moulton et al. 2001). We take advantage of an uncommonly complete database 
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containing >70 years of abundance data to evaluate which exotic birds have established 

self-sustaining populations on one or more of the Hawaiian Islands, and then whether or 

not any of these show evidence of a population collapse.  

 

METHODS 

Since the 1800s over 100 exotic bird species have been released onto Hawaii for 

various reasons, including for aesthetic appeal, as biocontrol agents, or as cage-escapees 

(Moulton et al. 2001, Pyle and Pyle 2009). Residents of Hawaii have participated in 

Christmas Bird Counts (CBC) since 1938, yielding an exceptionally long record of 

annual abundance data for 54 of these exotic bird species (National Audubon Society 

2010). Many of these species were initially introduced to Hawaii after the CBC began, 

thus providing us with a nearly complete account of these species’ population trajectories 

(Table 1; Pyle and Pyle 2009). We use the full CBC record of these 54 species to evaluate 

whether each species successfully established a self-sustaining population on the islands, 

and of these, which experienced population collapses (Table 1). Note that all species 

evaluated here have short enough generation times that our collapse definition 

functionally becomes an evaluation of a <90% decline over 10 years.   

There are seven to nine CBC circles visited by observers across the archipelago each 

year, depending on participation and expert availability. Counts involve searches for all 

species seen within a fixed location of known size (15 mile diameter circle) during one 

day, with the number of individuals observed per species recorded. These counts are 

standardized (by time of year and location) and are reported in terms of effort per party 

hour (e.g., one person counting for 10 hours equates to five people counting for two), 
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although there is associated error that must be accounted for. Many fundamental 

sampling biases are accounted for within CBC records by temporally and spatially 

standardized methodology and by scaling count estimates by survey effort (party hours). 

Despite this, it was crucial for us to account for variation among count circles when 

estimating the threshold for declaring a ‘collapse’. For inter-count circle differences, we 

followed the approach of Link et al. (2006), which requires scaling the abundance 

estimates based on effort variation of all of the count circles, such that they can be 

compared to one another. These corrections remove the influence of the varying use of 

count circles from year to year, and allow for archipelago-wide abundance inferences. 

We follow the methods detailed by Aagaard and Lockwood (2014a) to statistically 

evaluate population persistence and identify collapsed populations. We initially applied 

two filters to the CBC data to derive a set of species that were clearly established, but that 

also showed a decline during their period of record. In the first filter, we removed any 

species that never showed evidence of a decline in abundance over any 10-year period in 

its record (n = 21). Second, of the remaining 33 species, we removed any species that was 

not likely present for the duration of its record. Many species will show zero-counts in a 

CBC abundance record, with such counts being more likely if the species is rare. 

Superficially, zero-counts indicate that a species was truly absent from the count area. 

However, a species with a zero-count (even several zero-counts) may have simply been 

missed by observers even though it was actually present (i.e. it has a low detection 

probability). Thus, our task was to determine which species persisted within Hawaii for at 

least 10 years, recognizing that some sampling events would show zeroes because of low 

probabilities of detection.  
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Because the CBC, like many long-term population data sources, does not provide a 

mechanism to calculate detection probability directly, we used a Bayesian approach to 

assess species presence during their record (P) while varying detection probabilities 

within a range of values. We varied the detection probability (pd, the probability of an 

observer detecting an individual given that the individual is actually present) such that 0.1 

< pd < 0.9. We incremented pd by 0.1 within this range for each of our model iterations 

(see below for more details on these). We assumed that both the theoretical presence or 

absence of individuals (Tp), and the actual detections (present/absent, Z) followed a 

Bernoulli distribution, where the probability of presence (r) and absence (q) equal to 0.5, 

and with Z = P: 

Tp ~ Bern(r) 

P = pd * Tp 

pd = (0.1 to 0.9) 

Z[i] ~ Bern(P) 

Z was informed by the actual across-years CBC data for each species; years (i) with 

positive abundance values reported were taken as years in which the species was present 

while years with abundance reports of 0 were taken as years in which the species was 

absent. This model produced P for each population across a variety of detection 

probabilities, given the observed data. If we calculated a species as likely ‘present’ for at 

least 10 years of their period of record and across all possible detection probabilities, we 

included it in our survey for collapses. Species that were present for at most nine or fewer 

years of their CBC record under any probability of detection are considered not 

established, and excluded from further consideration.  
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After applying these filters, we next accounted for uncertainty in the maximum 

abundance estimate for each species we evaluated. Our definition of a collapse, as well as 

all others so far published, require the calculation of the percentage decline from a 

maximum abundance. In our definition, a population collapsed when it declines by 90% 

or more away from this maximum. However, the observed maximum abundance is one 

point estimate within a long string of annual abundance estimates. By setting a strict 

definition of a collapse as a decline from this single value, we are ignoring any 

uncertainty about that point (e.g., perhaps this maximum was a result of observer bias, or 

an unusual year).  

To estimate the error of the observed maximum abundance estimate, we first 

determine the variance present in each population’s entire time series, using the following 

model, adapted from Aagaard & Lockwood (2014):  

Y[i] ~ N(μ[i], σ2), 

μ[i+1] = μ[i] * λ[i], 

λ[i] ~ N(λ, τ), 

τ ~ Unif(0, 10), 

σ2 ~ Unif(0, 100), 

where Y is the time series for each target population, with i representing each year’s count 

within the time series, μ is the estimated maximum abundance for each population 

(assuming year to year exponential growth, with the mean growth rate = λ and variance 

τ), and σ2 is the variance about the annual estimates, at first unknown and therefore given 

an uninformative prior. Because our data are derived from count data, having been 

standardized using information on the number of observers and length of time spent 
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observing, they are continuous and not discrete, making the use of a normal rather than 

Poisson prior distribution appropriate. For each population we are applying an 

uninformative prior to the variance estimate about the maximum abundance, not 

assuming anything about the cross-species distribution of maximum abundance estimates. 

We ran this model for 10,000 iterations, with a burn-in of 1,000 to allow for convergence.  

Using these estimated variance distributions, we derive the 95% Credible Intervals 

(CI) around each species’ observed maximum abundance and employ this to establish a 

‘zone of probable collapse’. We set this zone by reducing the upper and lower CI by 

90%, following our definition of collapse (i.e. a reduction in abundance of >90%, see 

above). For example, an observed maximum abundance of 100 with a lower CI of 50 and 

an upper CI of 150 would have a zone of probable collapse defined by the values 5 and 

15. To determine whether a species’ abundance had declined into this zone within the 

defined time frame (i.e. within 10 years, see above), we fit the best of three models 

(linear, exponential, and polynomial) to the series of abundance estimates starting with 

the maximum and ending with the most recent surveys (2010). We selected the best-fit 

model of this set using a corrected form of Akaike’s information criterion’ (AICc) to 

account for small sample sizes (Burnham and Anderson 2002). Using the generated best-

fit line, we calculated the number of years between when the maximum abundance was 

attained to when estimated abundance dropped into the zone of probably collapse. 

Although one could identify when a population declined into the zone of collapse 

visually, fitting a statistical model to the series of abundance estimates helped greatly in 

identifying when a species’ entered into the collapse zone by ‘smoothing’ the abundance 
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trend. All Bayesian analyses were performed in OpenBUGS v. 3.2.3 (Lunn et al. 2009), 

and all model fitting was done in R v. 3.1.0 (R Development Core Team 2014). 

 

RESULTS 

We found that all 33 populations were present for a sufficient length of time to be 

considered established, regardless of the theoretical detection probability (pd) used. That 

is, the probability of presence, P, > 0.99 for every population whether pd = 0.1 or 0.9. 

Even populations with a considerable number of years of abundances reported as ‘0’ 

(e.g., the lavender waxbill; Supporting Information, Figure S15) were estimated to be 

present for the duration for their time series and are thus considered established (although 

clearly uncommon).  

We show that populations varied substantially in the uncertainty about their observed 

maximum abundance, which we expected for two reasons. First, the scale for abundance 

estimates varied by several orders of magnitude across populations, from hundreds of 

counted individuals per party hour for some, to fractions of individuals for others (Table 

1). Second, the variation within each time series differed greatly. Some populations had 

aberrant observed maximum abundances (chestnut mannikin; Figure S3), while others 

had maximum abundances that were far more consistent with abundance estimates across 

their record (house finch; Figure S7). Similarly, some populations had very similar 

credible interval (CI) widths but widely divergent maximum abundance estimates. For 

example, the cattle egret and common myna each yielded CI widths of about four, but the 

reported maximum abundance estimates differed by an order of magnitude (29.7 and 

135.5, respectively; Figures S2 and S4).  
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Of the 33 established exotic birds on Hawaii, 19 showed reductions of >90% at some 

point in their period of record. Because we constrained the definition of a collapse to 

occur within the span of 10 years, some of the populations that declined by >90% did not 

constitute collapses (n = five). Thus, 14 of these 19 populations fit our definition of 

collapse (Figure 1, Supporting Information). Of those 14 collapses, 10 were rapid enough 

and of sufficient magnitude that the populations were found to have declined below the 

lower bounds of the zone of probable collapse. For these species, observed declines 

exceeded even the most conservative estimate of what magnitude and rate of a decline 

would constitute a collapse. The average number of years between maximum abundance 

and the upper threshold of the collapse zone was 4.6 + 1.9 SD (Figure 1).  

For species exhibiting a collapse, maximum abundance ranged from low (ring-necked 

pheasant, 0.4 individuals/party hour, or i/ph) to high (cattle egret, 30 i/ph). Similarly, 

among those populations not exhibiting collapses, maximum abundance estimates ranged 

from low (kalij pheasant, 0.34 i/ph) to high (zebra dove, 57 i/ph). While the sample size 

is small, this suggests that factors influencing collapses go beyond populations simply 

existing at low or high abundances for extended periods.  

  

DISCUSSION 

Researchers have recognized the possibility of population collapses in exotic species 

for decades (Williamson 1996), but there have been only a few examples and case studies 

provided in the recent literature (McDonald and Wells 2010, Burnaford et al. 2011, 

Cooling et al. 2012, Moore et al. 2012). The issues associated with quantitatively 

defining a collapse certainly have stymied more systematic searches. Our collective 
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ignorance about the prevalence of collapses has led to their exclusion from general 

models of exotic species population dynamics, and policy formation and management 

efforts directed at invasive exotic species (Simberloff and Gibbons 2004). Our results 

indicate that collapses likely occurred in a quarter (14) of the 54 exotic birds established 

in Hawaii, suggesting such complex population dynamics may be more common than 

previously suspected.  

The common occurrence of collapses in exotic species’ affects our broader ecological 

understanding of biological invasions in three main ways; by (1) refining our 

expectations for ‘typical’ population growth and thus improving our approach to 

management, (2) informing mechanisms that influence population growth patterns, and 

(3) modifying how we may view the longevity of exotic species’ impacts. What follows 

is an exploration of each of these three points. 

First, population collapses present vexing complications for the formation of 

eradication or control decisions related to invasive exotic species. The existence of 

collapses seems to advocate for ‘do-nothing’ management schemes for such species. The 

argument for this approach is that currently abundant exotic populations may not remain 

at high population levels indefinitely (Cooling et al. 2012). If such species are targeted 

for control or eradication, both of which require investments of capital that scales with 

abundance, it may be more cost-effective to delay action until the population has 

collapsed. Why waste resources driving population size down when ‘nature’ will do some 

of this work for you if given enough time? It is certainly far more efficient to invest in 

eradicating or controlling only the exotic populations that are likely not to collapse than 

to invest in managing all problematic exotic species. If our results are indicative of the 
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prevalence of population collapses across many other exotic taxa, then there is large 

premium on finding ways to predict whether or not invasive exotic species will collapse. 

Our methodology is central to progress on that front since it is impossible to test for 

predictors without a consistent and easily applied way of classifying a species as 

collapsed.  

Second, the biological mechanisms behind exotic species’ population collapses are 

not well explored in part because there has been no accepted quantitative definition of 

collapse. We suggest that our method can fill this gap, and furthermore can be applied 

across a wide variety of taxa, across species with widely divergent population sizes, and 

across multiple exotic populations of the same species. This flexibility allows robust 

assessments of the various mechanisms proposed for exotic species collapses including, 

among many others, the acquisition of novel enemies in the introduced range (e.g., 

parasite spillback; Kelly et al. 2009), density-dependent population growth (Sakai et al. 

2001), or changes in abiotic conditions (Strayer et al. 2006, McDonald and Wells 2010). 

Particular mechanisms behind population collapses may be more likely to occur within 

species with specific life history traits, populations that exceed certain threshold 

abundance levels, or within certain ecosystems. In this regard, our finding of collapses 

being common among exotic birds on Hawaii could be a product of the traits of birds, the 

ecological conditions on oceanic islands, or the range of maximum abundances they 

attain. Without a broader survey for collapses across more species and locations, 

however, we cannot assess the uniqueness of our results. 

Third, and finally, the occurrence of collapses has important implications for 

assessing exotic species’ impacts. There is good evidence that the degree of ecological or 
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economic impact an exotic species imposes increases with its abundance (Ricciardi et al. 

2013). Thus, when an exotic species’ population collapses, we should expect to see a 

marked reduction in that species’ impact (Strayer et al. 2003). This rule of thumb, 

however, is tempered by the dearth of knowledge surrounding how exotic species’ 

abundance scales to ecological and economic impacts (Yokomizo et al. 2009, Thiele et al. 

2010). For example, our definition of collapse need not result in a population decreasing 

to low abundance, but rather to drastically lower abundance. Thus, even after a collapse 

has occurred, some species will remain at high enough abundance that they will still 

impart substantial ecological or economic impacts if their per capita effects on valuable 

assets are sufficiently large. Presently, ecologists do not have a sufficient mechanistic 

understanding of how impacts relate to abundance to make this distinction between 

species without investigation (Lockwood et al. 2013). We therefore advocate for future 

research focused on improving our understanding of this relationship, as well as our 

understanding of atypical population dynamics of exotic species and methods to predict 

them. 
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TABLES AND FIGURES 

Table 1. We report the year of introduction (I), the length of the Christmas Bird Count 

record (L), and the results of the collapse analysis. Amax, maximum abundance; Max10%, 

10% of the upper bound of the estimated observed abundance; Min10%, 10% of lower 

bound of the estimated observed abundance; Amin, the minimum abundance as estimated 

from the most parsimonious function; ΔT10%, the time (in years) between the maximum 

abundance and Max10% (populations with true collapses have both the time to decline 

below Max10% and Min10%, with the latter in parentheses). Only 90% reductions in < 10 

years are considered collapses (i.e., the common myna, for example did not collapse). 

Common Name I Amax ΔT10% 

California Quail (Callipepla californica) 1818 0.20 4 

Cattle Egret (Bubulcus ibis) 1959 29.68 6 (7) 

Chestnut Mannikin (Lonchura atricapilla) 1959 20.84 5 (6) 

Common Myna (Acridotheres tristis) 1866 135.47 N/A 

Gray Francolin (Francolinus pondiceranus) 1958 0.48 N/A 

Greater Necklaced Laughingthrush (Garrulax pectoralis) 1919 0.13 4 

House Finch (Haemorhous mexicanus) 1859 6.54 N/A 

House Sparrow (Passer domesticus) 1871 38.30 N/A 

Hwamei (Melodious Laughingthrush) (Garrulax canorus) 1900 0.89 N/A 

Indian Silverbill (Lonchura malabarica) 1965 1.88 4 (4) 
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Japanese Bush Warbler (Cettia diphone) 1929 1.41 N/A 

Japanese White-eye (Zosterops japonicas) 1929 12.19 N/A 

Java Sparrow (Padda oryzivora) 1865 10.44 N/A 

Kalij Pheasant (Lophura leucomelanos) 1962 0.34 N/A 

Lavender Waxbill (Estrilda caerulescens) 1965 0.77 3 (3) 

Northern Cardinal (Cardinalis cardinalis) 1929 3.20 N/A 

Northern Mockingbird (Mimus polyglottos) 1928 0.46 N/A 

Nutmeg Mannikin (Lonchura punctulata) 1866 67.4 8 (9) 

Orange-cheeked Waxbill (Estrilda melpoda) 1965 0.61 3 (4) 

Red-billed Leiothrix (Leiothrix lutea) 1917 7.76 N/A 

Red-crested Cardinal (Paroaria coronata) 1928 5.72 N/A 

Red-vented Bulbul (Pycnonotus cafer) 1965 5.98 N/A 

Red-whiskered Bulbul (Pycnonotus jocosus) 1965 0.87 N/A 

Red Avadavat (Amandava amandava) 1900 2.75 3 (3) 

Ring-necked Pheasant (Phasianus colchicus) 1866 0.78 5 

Saffron Finch (Sicalis flaveola) 1965 3.81 3 (4) 

Skylark (Alauda arvensis) 1865 1.07 9 (10) 

Spotted Dove (Spilopelia chinensis) 1855 11.09 N/A 

Western Meadowlark (Sturnella neglecta) 1928 1.06 21 
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White-rumped Shama (Copsychus malabaricus) 1931 1.32 N/A 

Yellow-faced Grassquit (Tiaris olivaceus) 1974 0.11 4 

Yellow-fronted Canary (Serinus mozambicus) 1964 4.68 3 (4) 

Zebra Dove (Geopelia striata) 1922 57.13 N/A 
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FIGURE LEGENDS 

Figure 1. (A) Results in terms of the percent decline from maximum observed abundance. 

Bar colors correspond to the collapse classification (white = no collapse, gray = probable 

collapse, black = true collapse). The dashed line marks the 90% threshold marking a 

collapsed population. Whiskers represent the upper bounds for the maximum abundances 

estimated from our methods to approximate uncertainty in the observed value (see 

Aagaard and Lockwood, in prep Figure 1). (B) Length of collapse (from maximum to > 

10%). Only populations that decline into the zone of probable collapse or lower are 

included. Gray bars represent the time between maximum observed abundance and 

decline below the 90% threshold. Gray and black bars represent the time to 90% 

reduction and then to true collapse. For example, the chestnut mannikin took 4 years to 

decline into the zone of probable collapse (gray bar), and 12 more years to decline below 

this zone (black bar). 

Species codes: 1—California quail; 2—cattle egret; 3—chestnut mannikin; 4—common 

myna; 5—gray francolin; 6—greater-necklaced laughingthrush; 7—house finch; 8—

house sparrow; 9—hwamei; 10—Indian silverbill; 11—Japanese bush warbler; 12—

Japanese white-eye; 13—Java sparrow; 14—kalij pheasant; 15—lavender waxbill; 16—

northern cardinal; 17—northern mockingbird; 18—nutmeg mannikin; 19—orange-

checked waxbill; 20—red-billed leiothrix; 21—red-crested cardinal; 22—red-vented 

bulbul; 23—red-whiskered bulbul; 24—red avadavat; 25—ring-necked pheasant; 26—

saffron finch; 27—skylark; 28—spotted dove; 29—western meadowlark; 30—white-

rumped shama; 31—yellow-faced grassquit; 32—yellow-fronted canary; 33—zebra dove. 
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Figure 1.  
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APPENDICES 

Table S1. Corrected Akaike’s an information criterion (AICc) for each model as applied 

to each species. The lowest scoring AICc is in bold.  

Species 

Model AICc 

Linear Exponential LOESS Curve 

California Quail -193.6368365 -216.2893032 -5.423001901 

Cattle Egret 163.2277081 113.6757628 4.441602486 

Chestnut Mannikin 129.246556 97.72198377 4.436342462 

Common Myna 384.3751016 318.0456379 6.523524567 

Gray Francolin -6.098093166 -8.970088998 16.53458522 

Greater Necklaced Laughingthrush -138.4995886 -146.0520022 -5.177673517 

House Finch 102.0210239 97.69417497 2.034891655 

House Sparrow 300.5359209 276.2493188 4.661385582 

Hwamei -29.37056378 -43.47250514 -2.549582339 

Indian Silverbill 33.98982657 28.13728021 1.22675829 

Japanese Bush-Warbler -6.811249207 -17.68020951 -0.764117483 

Japanese White-eye 212.2802495 210.0505314 2.944624081 

Java Sparrow 82.00683137 75.12540274 3.502912788 

Kalij Pheasant -7.286244612 -12.03379604 10.45876064 

Lavender Waxbill -32.67894625 -54.23155889 -2.499554779 

Northern Cardinal 37.34833956 56.60492911 -0.323252334 

Northern Mockingbird -80.54365415 -82.98277113 -3.300099234 

Nutmeg Mannikin 288.0326671 193.9778925 5.604039219 
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Orange-cheeked Waxbill -72.94490217 -96.79232058 -3.695617153 

Red-billed Leiothrix 172.3628712 141.5401123 0.200197877 

Red-crested Cardinal 117.3515164 82.48558419 0.832036597 

Red-vented Bulbul 76.29861966 78.16142324 1.673354406 

Red-whiskered Bulbul -12.58861723 -20.58243895 -1.720823219 

Red Avadavat 33.32195181 0.606438517 0.713155724 

Ring-necked Pheasant -30.38691509 -62.54538276 -2.568570435 

Saffron Finch 50.92717815 33.51066923 2.152694333 

Sky Lark -3.580435913 -0.071327405 2.878619672 

Spotted Dove 174.4421598 172.1305088 2.39834412 

Western Meadowlark -8.666648502 -1.381150248 -2.375709449 

White-rumped Shama -5.30422339 6.189977302 -1.859019788 

Yellow-faced Grassquit -134.7911759 -148.6859477 -5.905582001 

Yellow-fronted Canary 57.63965253 28.99604567 1.97210287 

Zebra Dove 325.673958 309.2567708 5.353991729 
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Figure S1. Time series of California quail with its fitted negative exponential declining 

into the zone of probable collapse. The ‘10% Upper’ reported refers to the value on the y-

axis corresponding to 10% of the upper bound of the 95% confidence interval (CI) about 

estimate of the maximum observed abundance (top solid line; see Figure 2 in paper). The 

‘10% Lower’ is similarly the y-axis value corresponding to 10% of the lower bound of 

the 95% CI about the estimate of the maximum observed abundance (bottom solid line). 

The ‘Minimum value’ is the lowest value estimated from the applied function. The ‘R2’ is 

the coefficient of determination of the function applied to the time series, to serve as a 

goodness of fit measure (greater values represent better fit). 
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Figure S2.  
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Figure S3.  
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Figure S4.  
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Figure S5.  
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Figure S6.  
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Figure S7.  
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Figure S8.  
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Figure S9.  
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Figure S10.  
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Figure S11.  
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Figure S12.  
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Figure S13.  
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Figure S14.  
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Figure S15.  
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Figure S16.  
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Figure S17.  
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Figure S18.  
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Figure S19.  
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Figure S20.  
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Figure S21.  
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Figure S22.  
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Figure S23.  
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Figure S24.  
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Figure S25.  
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Figure S26.  
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Figure S27.  
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Figure S28.  
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Figure S29. 
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Figure S30.  
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Figure S31.  
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Figure S32. 
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Figure S33.  
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Conclusion 

Advancing our knowledge regarding the prediction of population dynamics and those 

exotic populations that may become invasive or those native populations that may 

collapses is an important goal to improve conservation and management efforts. Greater 

understanding of species’ population biology will better prepare us to deal with very rare 

populations when they are detectable but before they are so common that management is 

intractable, and will help manage increasingly rare native species as they collapse. My 

work advances the fields of conservation and invasion ecology in terms of both theory 

and application of population biology by exploring complex population dynamics. I rely 

on time series of abundance data extensively, a proxy for population impacts. The impact 

in each of these traditional density-impact curves is in terms of economic cost, but can 

convert to ecological impacts.  

My results provide insight regarding the extent and degree of these impacts; e.g., long 

lag phases will lead to delays in impact. Additionally, population collapses may result in 

such rapid and dramatic decline that the population has almost no impact. My dissertation 

has directly addressed the questions and provides important and novel results on these 

fronts. 

Because there is no agreed upon definition for lag phases, it is difficult to assess their 

prevalence and underlying mechanisms. Based on recent research, I overcome this issue 

and define a lag as a discrete stage in population growth with a clear end point after 

which the population transitions into a phase of faster growth. Thus, I set a single stage 

process against two stage processes for objective quantification of lag phases. I 

determined that 15 out of 17 exotic avian populations on the Hawaiian Islands considered 
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experienced lag phases. This suggests that management officials cannot afford to delay 

management actions for exotic species that have existed in low numbers for a long time, 

as their rarity may not continue indefinitely. 

After assessing lag phases, I investigated their inverse, population collapses. 

Collapses are similarly poorly defined both empirically and quantitatively. I used IUCN 

criteria for endangered species as my quantitative definition: a decline in abundance of 

≥90% within the longer of 10 years or three generations. I use Bayesian hierarchical 

models to determine the 90% reduction and to identify the appropriate ‘previous 

abundance’ with which to establish the lower-bound threshold. I found collapses in six of 

12 endemic Hawaiian birds and 16 of 33 established exotic populations with enough data 

to which to apply our method. I have shown the utility of these methods for the 

identification and description of collapses, which may be a more common feature of 

exotic species’ population dynamics than previously thought, and also clearly occurs in 

native species’ population growth patterns as well. 

 


