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Everything has an edge. However trivial, this phrase has dominated theoretical condensed

matter in the past half a decade. Prior to that, questions involving the edge considered

to be more of an engineering problem rather than a one of fundamental science: it seemed

self-evident that every edge is different. However, recent advances proved that many surface

properties enjoy a certain universality, and moreover, are ’topologically’ protected. In this

thesis I discuss a selected range of problems that bring together topological properties of

surface states and strong interactions. Strong interactions alone can lead to a wide spec-

trum of emergent phenomena: from high temperature superconductivity to unconventional

magnetic ordering; interactions can change the properties of particles, from heavy electrons

to fractional charges. It is a unique challenge to bring these two topics together.

The thesis begins by describing a family of methods and models with interactions so high

that electrons effectively disappear as particles and new bound states arise. By invoking

the AdS/CFT correspondence we can mimic the physical systems of interest as living on

the surface of a higher dimensional universe with a black hole. In a specific example we

investigate the properties of the surface states and find helical spin structure of emerged

particles.

The thesis proceeds from helical particles on the surface of black hole to a surface of
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samarium hexaboride: an f -electron material with localized magnetic moments at every

site. Interactions between electrons in the bulk lead to insulating behavior, but the surfaces

found to be conducting. This observation motivated an extensive research: weather the

origin of conduction is of a topological nature. Among our main results, we confirm theo-

retically the topological properties of SmB6; introduce a new framework to address similar

questions for this type of insulators, called Kondo insulators. Most notably we introduce

the idea of Kondo band banding (KBB): a modification of edges and their properties due to

interactions. We study (chapter 5) a simplified 1D Kondo model, showing that the topology

of its ground state is unstable to KBB. Chapter 6 expands the study to 3D: we argue that

not only KBB preserves the topology but it could also explain the experimentally observed

anomalously high Fermi velocity at the surface as the case of large KBB effect.
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Chapter 1

Motivation: Challenge of many body physics

In this chapter I will give a brief overview of my research field. The aim is for an

incoming graduate student to create a general impression. A sophisticated reader can

skip this section and go straight to the next chapter.

1.1 Challenge of many body physics

The purpose of condensed matter theory is to provide a predictive model for the behavior of

realistic materials. On the fundamental level the problem is well understood to astonishing

level of precision: all the interactions are of charged objects with spin and ar described by

quantum electrodynamics. The challenge is however in the number of interacting parts of

the system. Solving such a many-body problem posed a formidable challenge for the most

of 20-th century and even with ever-growing computing powers will likely to remain so for

a long time.

This statement can actually be made quantitative: The Hilbert space of a quantum

system grows exponentially, leading to the ’Van Vleck’ catastrophe. One should not seek

an exact solution of systems larger than several hundred electrons can not be solved exactly.

For example, 150 electrons would require the total number of variables to define the wave-

function to be more than all the particles in the universe. ”Such a wavefunction therefore

is not a sensible scientific concept” (see Walter Kohns analysis of this problem, in his Nobel

lecture Reviews of Modern Physics [1]). It should be noted that there are many theoretical

models (especially in one spatial dimension) that can be solved exactly for infinitely large

systems.

There are however many successes. In particular the theory of metals delivers many
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predictions. With the exception of magnetic properties we can describe even ”dirty” ma-

terials. In a successful theory a small number of degrees of freedom (d.o.f.) should emerge

from a vast number of individual characteristics. ”Emergence” became a ’buzz’ word for

the field of theoretical condensed matter due to a celebrated Anderson’s paper [2]1.

I would like to touch on some of this advances in the next section, it will also be our first

example of the Mean Field (MF) approximation methods which will be used extensively

in the main part of this thesis.

1.2 Advances of non-interacting physics

What are the methods to approach realistic systems? What can we describe and what we

can not?

We first limit our discussion to the periodic arrangements of nuclei (forming a crystal)

for which we would like to add electrons. And the first question is what are the properties

of the ground state (state that could be measured at low temperature)?

By non-interacting we do not actually mean that particle must not feel each other pres-

ence; rather, the main effect of interaction can be described by an effective Hamiltonian,

which is bilinear in elementary fields (no scattering). In addition, due to the Pauli Exclusion

Principle the systems that involve fermions (nuclei, electrons) are strongly interacting to be-

gin with. Moreover, Coulomb interactions between electrons and nuclei are the largest scale

in the problem but they can be thought as a constant external potential for free electrons

(due to small electron mass as compared to proton mass). Such ’non-interacting’ media can

be solved with arbitrary precision, however there is no electron-electron interaction, unless

there is an approach to construct an effective an effective non-interacting system.

1”More is different” (1972)
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One such approach, density functional theory (DFT), is so successful that some might

wonder why we need to invest in new techniques. In fact, DFT and its various extensions

have proven extraordinarily successful in computing, on an ”ab initio” basis, many key

properties of more weakly interacting materials, such as, the band structure (energy of

electrons as a function of their momentum), crystal structure and its distortions, elastic

properties including pressure dependencies and Young’s moduli, optical and even magnetic

properties. It is easy to understand, how, given this success, the immense importance of

DFT to condensed matter physics continues to grow.

The main idea of DFT is to replace the many body wavefunction with an electronic

density n(~r), which is a real valued function of only three coordinates [3]. The next step

is to treat every electron as a single particle problem with a potential that depends only

on the density n(~r) of all surrounding electrons. The corresponding Schrodinger equation

and the expression for density n(~r) must be solved self consistently : the electron densities

computed from the occupied states must be consistent with the input density. This is our

first example of Mean Field (MF) approximation. The ’mean field’ in DFT is the density

of electrons.

The critical steps in development of DFT were taken by Hohenberg, Kohn, and Sham

in 1960’s. Hohenberg and Kohn [3] proved several non-trivial theorems showing that in

interacting systems the energy is a unique functional of the electron densities, independently

of any microscopic knowledge of the many body wavefunction; for any observable, the

expectation values can in principle be computed without even knowing the many-body

wave function, only the density. In the next step Kohn and Sham[4] narrowed the problem

by separating out the classical contributions (Coulomb and Hartree2 energy) and more

importantly, they introduced the notion of an effective one-particle wave function, used to

parameterize the density n(r) =
∑

j |ψj(r)|2 and formulated the density functional as an

effective one particle problem. Strictly, the Kohn Sham eigenstates are unrelated to the

quasiparticles excitations of the system, though in practice, they have often proved to be a

good semi empirical description of Landau quasiparticles.

2The Hartree energy is the self-interaction of electron gas with density n(r): VHartree(r) =
∫
dr′ n(r

′)
|r−r′|
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The Kohn Sham formulation is exact with one unknown: the exchange correlation po-

tential. Once we know the potential that can imitate the correlations between electrons we

can find the exact properties of ground state by working with densities alone. The good

news is that this potential is only several % of all the energy in the system. The bad news

is in many materials it is what makes all the difference and the problem to find V (n) is no

simpler than the original one. However working with densities is much handier and many

approximations can be made. Some types of approximation for the exchange correlation

potential turns out to work very well, such as Local Density Approximation (LDA), Gen-

eralized Gradient Approximations (GGA) and others. The later methods and many more

are what now differentiates different techniques in the density functional approaches.

1.3 Beyond the non-interacting limit: local physics

Going beyond DFT is the purpose of this thesis. DFT works well when the systen is weakly

correlated and the many-body ground state is well approximated by Slater determinant.

When the ground state requires the sum of several such determinants, the one particle states

become heavily entangled and a new description is required. One situation in which DFT

becomes unreliable is when the key low energy electronic states are localized in the vicinity

of the atomic nuclei3, as for example f -electrons in rare earth and actinide compounds.

The bulk of this thesis is motivated by or directly related to representatives of f -electron

physics, and in particular, several chapters devoted to rare earth compound, samarium

hexaboride SmB6.

3DFT would still work very well for all delocalized electrons in the material.



5

Brief Introduction

Quantum Critical Topological Insulators

Topical Introduction

Historical Remarks

Kondo Physics

Chapter 3:
Holographic methods

New Methods New Experiments

The triumph of DFT

Chapter 4:
Cubic Kondo top. 

Insulators

Chapter 5:
Edge states of 1 

Dimensional Kondo 
Topological Insulator

Chapter 6:
s-p

model

1.4 Outline of the thesis

This thesis is organized as follows
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Chapter 2

Introduction and methods

In this chapter I present some of the key details needed to understand my research. It

also includes discussions and snapshots of some recent experiments and guidelines from

current theoretical works. The chapter consists of three parts: Topological Insulators,

Kondo Insulators and Quantum Critical Kondo Metals.

In the first part the basics of topological insulators are discussed, from the definition

to experimental data. The second part is devoted to a specific subfield of strongly

interacting media - the Kondo lattice (where almost free conduction electrons interact

with an array of local moments). The chapter ends with a discussion of quantum

criticality in general and Kondo systems in particular.

There are many reviews of these topics. For Kondo insulators see [5]. To learn more

on the subject of topological insulators refer to review papers [6, 7]. Note, there are

many related recent developments which I did not cover here, for example the periodic

table of topological states of matter which describe all possible topological indices for a

given global symmetry. Another topic not covered here is that of ’topological crystalline’

insulators introduced by Fu [8]. In addition there are a growing number of works that

try to extend the classification to a wider class of correlated materials, where momentum

is no longer a good quantum number and the topological index has to be defined in a

different way. See for example the recent Science paper [9].

2.1 Topological Insulators

First, let us briefly recap the idea of band theory. For free electrons the energy as a function

of momenta is the dispersion E(k) = k2

2m . In the crystalline environment energy becomes

a periodic function E(k) = E(k + G) defined in the Brillouin zone, where G is reciprocal
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vector. In the ground state all one particle states of lower energies are occupied. The locus

of occupied k points with highest energy is then called a Fermi surface. If the empty and

occupied bands are separated by a gap (Fig. 2.1) the material will be insulating, forming a

“band insulator”.

a1a2

chemical potential (i)

chemical potential (ii)
Topological Ins.

Insulator

Metal

Figure 2.1: Reproduced from [10]. The energy dispersion of a one dimensional chain is
shows. Black dashed lines are the band’s boundaries. The bands evolve as the lattice spacing
a (distance between nuclei) decreases. The insulting/conducting character is indicated for
a specific choice of lattice spacing a (1 and 2) and chemical potentials (i) and (ii). One
point is topological insulator and it is likely to be the first band structure calculation for a
topological insulator, the paper was published in 1939.

So what is topological insulator? Topological insulators are band insulators with gapless

(conducting) surface states. The surface states are protected by time reversal symmetry and

they are quite different from a normal two-dimensional electron gas1. One of the defining

characteristics of topological surface states is their helical spin structure, in which the spin is

always locked to the momentum. Moreover when a one dimensional topological edge (wire)

is brought into contact with a superconductor the wire develops two Majorana fermions at

its ends.

What is a topological about these insulators? Topology is a basic mathematical concept

that classifies objects in the same class if they can be smoothly deformed into each other.

Surprisingly, one can understand the appearance of surface states using topology of band

structure. The logic outlined below is often referred to as the bulk-boundary correspondence.

Gapped quantum ground states with different topologies can not be adiabatically deformed

into each other unles gapless conducting interface is formed. When two materials with dif-

ferent windings of their bands come into contact with each other, then, at the interface, the

1in case of a 3D topological insulator the surface is 2-dimensional
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band structure (which was gapped in both materials) has to interpolate smoothly between

them. If the gap does not close along the way, the topological index that counts the winding

will be a well defined integer at every point along the interface. This is a clear ontrudiction

to the assumption of different topologies, so the gap must close. Indeed, in the absence of

gap the occupied bands are discontinues lines interrupted by a Fermi surface, allowing for

the winding number to take any value.

Winding numbers have been used before in condensed matter to study Chern insulators

(integer quantum Hall effect). They are very close in spirit to topological insulators and

below some I highlight some of the aspects. The Chern number can be computed as follows

n =
1

2π

∫
BZ

d2k F(k) (2.1)

where the integral is over the whole Brillouin zone and F(k) is a berry curvature F = ∇×A

defined through Berry connection

A = i
∑
n∈occ

〈un|∂k|un〉 (2.2)

where the summation is over all occupied bands, Bloch states of the electrons un are func-

tions of k and x and are cell periodic parts of wavefunction of the corresponding band,

indexed with n.

The Chern number is by construction an integer and is responsible for the extremely

precise quantization in quantum Hall experiments. To show it we consider a single occupied

band (n=1) and use the Stokes’ theorem

n =
1

2π

∮
∂BZ

dk · A(k) (2.3)

where the integral is over the boundary of the Brillouin zone. As a consequence of local

gauge invariance for the cell periodic functions u→ ueiφ we can twist the gauge field A so

that

Aj = i〈un|∂j |un〉 → i〈0|u∗e−iφ∂jueiφ|0〉 = i〈0|u∂ju|0〉 − ∂jφ〈0|u∗u|0〉,

Aj = −∂jφ,

hence

n =
1

2π

∮
∂BZ

dkj∂jφ,



9

n =
1

2π

∮
∂BZ

φdφ.

The last equation is clearly an integer.

The integer quantum Hall effect is however only observed in high magnetic fields. It is

then essential to break time reversal symmetry. In the absence of a strong magnetic field

(which is rare to begin with) many materials preserve time reversal symmetry. In case of

topological insulators this symmetry actually protects surface states against perturbations,

except ones that violate the symmetry, such as magnetic impurities.

Time reversal symmetry, however, means that the Chern number for topological in-

sulator is identically zero. At the first sight such a material would lose any topological

protection. It turns out that even if the Chern number is equal to zero time reversal guar-

antees that one can split the system into two time reversal subsystems, for example, such

that spin ’up’ part has the Chern number +n↑ while spin ’down’ has n↓ = −n↑ then odd

n↑ = 1, 3, 5, ... is a topologically non-trivial insulator. All that is left is Z2 index

ν = n↑ mod 2 (2.4)

It can be quite tricky to calculate the topological index using the Chern number of a

realistic system with multiple bands, it will never be as easy to as spin up and down. There

are well defined procedures of how to split the system in half, it would take another chapter

to introduce these methods. Luckily, a significant simplification was made by Fu and Kane

[17], who noted that if the systems is inversion symmetric (parity invariant) the topological

Z2 index can be found as

(−1)ν =
4∏

i=1,occ

δ(Γi), (2.5)

according to this formula Z2 index is defined by the parities δ at time reversal invariant

points (TRIP’s) Γi. Every TRIP is invariant under the flip of momentum. T k = −k. On

the lattice it means

Γi = −Γi +G (2.6)

To appreciate how much of a simplification Fu-Kane formula brings to the table, note that

to proceed along the above methods with the Chern number we need to solve for the wave
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function everywhere. Importantly, one have to make sure it is smooth throughout the

Brillouin zone. This however can be an issue, as non-trivial Chern number (and topological

Z2 index for that matter) is an obstacle in defining a smooth wavefunction. Especially as

in numerics the resolution can be so not enough to distinguish between smooth and non-

smooth transitions from one k point to another. On the other hand, the Fu-Kane formula

offers to use the additional inversion symmetry to limit the calculation to just 4 points

(8 points in three dimensions). At high symmetry points any Hamiltonian with Inversion

symmetry can be written as

H(k ∼ Γi) = a(k)Î + d(k)P̂ (2.7)

where P̂ is parity operator that generates inversions. Then

δi = sgn(Γi) (2.8)

In three dimensions a very non-trivial step was done by Moore and Balents [12]2 where

there is no analog of the Chern number and thus time reversal topological state. Instead,

three different Z2 indices can be defined, roughly speaking νx, νy and νz. Together they

differentiate between trivial, weak and strong topological insulator. The later must have

all indices equal to 1. The weak topological insulator (defined only in 3D) is probably best

thought as a stuck of layers of a two dimensional topological insulator. The term ’weak’

was originally referring to its sensitivity to disorder, it is however not always the case[18].

The most significant difference is that weak topological insulators would only have surface

states along fixed cuts.

Before turning to experimental evidence it is worth highlighting a little bit of history.

Quite unusually, topological insulators were first predicted and then confirmed experimen-

tally. First two papers by Kane and Mele [14] first suggested topological surface states

in graphene and then introduced the Z2 parameter [11]: pointing also to spin-orbit cou-

pling as the tuning parameter. In 2006 Bernevig at al [15] suggested an experiment where

spin-orbit interaction is much more stronger. And finally in 2007 Konig at al found the

signatures of topological state in suggested CdTe/HgTe two dimensional setup. [Note: To

2within two weeks there were a second paper by Fu, Kane and Mele [13]
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Figure 2.2: Reproduced from [16]. Dirac cone and spin-momentum locking in Bi2Se3 (left)
and Bi2Te3 (right). For Bi2Se3 it has to be doped to restore stoichiometric pattern due to Se
vacancies. Top: Fermi surface of Dirac fermions with arrows depicting the polarization of
spin as measured with spin-resolved ARPES at E=-20 meV. Bottom: Dirac-like dispersion,
the hallmark of topological insulators.

date no group were able to reproduce this experiment!]. Jumping ahead, the first Kondo

topological insulator was also first predicted theoretically.

Experimentally one of the signatures of a topological insulator is a robust Dirac cone,

protected by Kramer’s degeneracy. One of the most direct techniques to measure electronic

band structure of the solids and to see the Dirac cone is photoemission spectroscopy with

angle resolved detection (ARPES). In experiment a strong photon source is used to pluck

electrons out of the samples and measure its direction and momentum. Several original

pictures for three dimensional topological insulator (BixSB1−x was suggested in 2007 [17]

and experiment was done in 2008 by Hsieh at al [19]). I reproduce a more clear results by

the same group with slightly different compounds [16] Bi2Te3 and Bi2Se3 in Fig. 2.2

To date, first generation of topological insulators ( Bi2Se3/ Bi2Te3) have all been suffered
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from a residual bulk conductivity [20], the chemical potential is always in the conduction

band and all growth methods generate enough vacancies or impurities so that the bulk is

metallic. As a result the surface effect is overshadowed by the bulk. However there are now

more experiments coming on-line. The ’second generation’ material Bi2Te2Se appears to

have the chemical potential inside the gap an resistivity does grow at lower temperatures up

to 6 Ω · cm [21]. Such resistivity is comparable with the resistivity of a strongly correlated

material SmB6, which will be discussed in the next section.

In conclusion, (i) for uncorrelated systems there is a great deal of agreement between

experiment and theory, to the extent that all the first materials were first predicted theo-

retically; (ii) there is a clear picture of topology linked to a winding of the wave function

on a Brillouin zone.

2.2 Kondo Insulators

Correlated materials can exhibit many interesting phenomena and understanding some sub-

class of models can shed a light onto the whole field. We consider here one of the specific

type of interactions: the Kondo interaction[22, 23], which describes the interaction of lo-

calized spins with itinerant electrons. A cartoon picture of a Kondo compound is a lattice

of localized magnetic moments submerged into the sea of almost free conduction electrons.

Local moments are most commonly associated with open d-shells in transition metals and

open f -shells in compounds with rare earth and actinide elements.

The band structure would consist of a flat band of f -electrons (with very slow dispersion,

indicating effective local nature) and an almost free quadratic band. At high temperature

the two bands only weakly interact. At low temperature they start talking through Kondo

effect: a crossover to a state where mobile electrons spend more and more time in a singlet

bound state with local f -electron.

Two cases can happen: chemical potential is somewhere outside the gap or it is in the

gap. The first case gives a hybridized band structure of a heavy fermion metal. Pictorially

equivalent to a dressed electron with masses up to 1000 times larger than bare electron

mass. The first material was discovered in 1975 [24]. These metallic materials are the
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majority of the cases and often called heavy fermion compounds. In the second case the

Kondo insulator is formed. As the gap is quite small (10-100 meV) – orders of magnitude

smaller than in semiconducting materials, it is quite unlikely that the chemical potential is

in the gap, however there is a handful of compounds that appears to have it in the gap.

The list of Kondo insulators includes such materials as

SmB6. Ce3Bi4Pt3, CeRu4Sn3, CeRhAs, SmS, TmTe, TmSe, FeSi, and etc.

All of the Kondo insulators discovered to date have cubic crystal structure. This fact by

itself is still unexplained and even seems counter-intuitive, because in such a high symmetry

environment f -electron wavefunction would have many nodal planes and axes. In this case,

if the symmetry of conduction electron (for example s-wave) does not match the symmetry

of f -electron the gap will never open in the nodal directions, making it much harder to

engineer any direct insulating gap.

Samarium hexaboride SmB6, the first Kondo insulator, was discovered in the late 1960’s

[25]. SmB6 is also one of the first correlated compounds studied. Now it again earned the

title of the first among Kondo topological insulators.

One of the signatures of all Kondo materials is the fact that antiferromagnetic inter-

action with strength J get renormalized to a large value [31]. As can be clearly seen in

experiments, the susceptibility shows quenching of magnetic moment at lower temperature.

In the extreme limit of large J the singlet bonds are formed between local and mobile

electrons. Kondo insulator is then best understood as having perfectly screened magnetic

moments with an energy gap, see also Fig. 2.7(b).

2.2.1 Theory of Kondo insulator

In order to put together a theory of Kondo (topological) insulator we start form non-

correlated conduction electrons with dispersion ξk = εk − µc where εk is some periodic

function of momenta. In second quantized language we can write

H0 =
∑
k,σ

ξk c
†
kσckσ (2.9)
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and the energy of interacting f -electrons is given by

Hf =
∑
r

εfnfr +
1

2
U
∑
r

nfr (nfr − 1) (2.10)

the first term defines the position of the flat f -band (infinitely flat in this case) and the

second term specifies the penalty for having double occupancy, with the notations for nfr =

f †r,αfr,α. c† and f † are creation operators, for example f †rα creates an f -electron at coordinate

r, α runs over all multiplets for f -electron, which have strong spin orbit coupling and spin is

not a good quantum number. For rare earth and actinide ions, spin-orbit coupling is larger

than crystal field splitting and instead of spin multiplet they combine to a total angular

momentum multiplets ~J = ~S+~L. For instance, a Ce3+ ion has one f -electron (alternatively,

Sm3+ has one f -hole). The state has l = 3 and s = 1/2 and the lowest in energy states

have J = 3− 1/2 = 5/2 (index α runs from 1 to 6, the degeneracy of 5/2 state).

The hybridization is given by

HV = V0

∑
rα

f †rαcrα + h.c. (2.11)

where cα denotes the c-electron in the basis of f -electron multiplets. This can be done via

a matrix of Clebsch-Gordan coefficients, called a form factor. The bare hybridization is

denoted by V0 as we will see this can be orders of magnitude larger than the one measured

in the experiment.

crα =
∑
k

Φασ(k̂)e−ik·rckσ (2.12)

The above model is a generalization of the model that was introduced for a single impurity

(to treat a dilute concentration of magnetic atoms) by Anderson, thus the Kondo lattice

model sometimes is referred to as Anderson lattice model or Periodic Anderson model

(PAM). The interactions are maximized when they are forced to occupy the same orbital.

In the limit of infinitely large U we can project out doubly occupancies out and in the

special case, when the system is half filled (one f -electron per unit cell) we can enforce the

constraint for every site r: ∑
α

f †α,rfα,r = 1 (2.13)

with this constrain one can do standard Schrieffer-Wolff transformation to obtain effective



15

Kondo Hamiltonian, where interaction is between spins only.

HK = H0 + J
∑
r

Sr · sr (2.14)

where the spin of conduction f -electrons is sr = c†rσσσσ′crσ′ and similar for f -electron spin

S. The effective coupling J turns out to be

J =
V 2

0 U

εf (εf + U)
. (2.15)

2.2.2 Solving the Kondo Lattice

We would like to treat it with some kind of mean field theory treatment especially as

we are hoping to apply the methods from a topological insulators section (like Fu-Kane

prescription). The starting point in mean field is to decompose into a simpler interaction

of MF’s. The only problematic term in the Anderson model above is the density-density

interaction in Hf .

We will motivate the choice of mean field parameter by first considering large U limit

and use the large N to control the approximation [26, 27]. This techniques give rise to what

is now called slave boson (or slave particle) approach. Where slave boson refers to a bosonic

order parameter that must satisfy a constraint. One can start from Kondo Hamiltonian

(2.14) where we can expanded definition of spins into a product of two creation-annihilation

operators and incorporated the constraint with λ as Lagrange multiplier

H(U →∞) = H0 −
J

N

∑
r,αβ

(c†rαfrα)(f †rβcrβ) + λ(nfr −Q) (2.16)

Now the (large) number N appears in two places: in the Kondo coupling J and in enforced

f -filling factor q = Q/N . This is a generalization of case q = 1/2 and nf = 1 for spin 1/2

electrons. Otherwise not all terms in Hamiltonian scales with N and will become irrelevant

for large N limit.

It is quite clear now that if one chooses the mean field parameter to be V = −J/N〈c†rαfrα〉,

not to be confused with the bare hybridization V0 above, then the Hamiltonian can be

rewritten as

H(V, λ) = H0 +
∑
r,α

(
V ∗r (c†rαfrα) + (c†rαfrα)Vr + λ(nfr −Q) +

N

J
VrV

∗
r

)
. (2.17)
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This is the mean field Hamiltonian that can be solved with arbitrary precision as the size

of the Hilbert space is of order of the system size. It is equally easy to put any boundary

conditions and even impurities. However, it ignores all the zero-point fluctuations (for large

spin s : 〈δsδs〉/〈s〉2 � 1), and in general should only be true for a system far from phase

transitions and short-range order. It must be noted, that we can understand this particular

type of decoupling as semi-classical approximation of a path integral formalism, where such

a Hamiltonian can be found after doing Hubbard Stratonovich transformation.

Topological Kondo insulators

After self consistently solving Hamiltonian (2.17) one obtains the functions λ(r) and V (r).

This simply renormalizes chemical potential εf → εf + λ and introduces a effective hy-

bridization between f and conduction electrons, opening the gap. As shown schematically

on Fig. 2.3 every time conduction electron band crosses the flat f -electron band there will

be a gap opening as the bands always repel each other for any non-zero |V |. We can

f

c c

f
   shift

Figure 2.3: Schematic picture of the effect of interaction on the mean field level: at high
temperature (left) the bands are not interacting, at lower temperature (right) energy of f
level shifts (up or down) and bands start hybridizing, and can open a gap

diagonalize this Hamiltonian and solve for the wave function in case when hybridization is

momentum independent (constant in space) V (r) = V . For example, the energy dispersion

will take the form

E±(k) =
εk + λ

2
±

√(
εk − λ

2

)2

+ V V ∗ (2.18)

where we for simplicity assumed the energy of original f -electron εf = 0. This basic

hybridization picture of Kondo inulators were first proposed by Neville Mott in the seventies

[145]. The mean field approach was used in eighties [26].
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Recently, before our work had started some Kondo insulators were proposed to be also

topological insulators [96]. However, the predictions were made with an assumption of a

tetragonal instead of cubic crystal structure. Here I would like to point out several important

and pedagogical details of the previous works.

First, the solution was considered to be homogeneous in space, which would previously

work well, when no surface properties were discussed. With the current view towards

topology we have to admit that this approach seems to fail.

Secondly, one has to think carefully how to represent the results. There are several

parameters one can tune, mainly the original f -level position εf (or equivalently chemical

potential for conduction electrons ”−µc”) and the bare hybridization. V0, which was present

in the initial Anderson lattice model (2.11). Maxim Dzero explored this parameter space

and calculated the topological index while varying bare hybridization [28], the final result

is reproduced in Fig. 2.4.

Figure 2.4: Reproduced from [28]. Phase diagram found from the solution of the mean-field
equations. Kondo liquid state corresponds to the metallic state with heavy particles. WTI
corresponds to weak topological insulator, STI corresponds to Strong topological insulator.
BI corresponds to Band insulator. Color added for better visualization. Parameters of the
model that are kept fixed are the original f -band dispersion and location εf = −1.05t+0.1εk.

These results can be misleading, as it appears that the whole range of possibilities exists.

However, this is not true. What we decided to do (for example in Chapter 4) is replot the

same results as a function of Valence, by calculating the valence of Sm atoms (valence is
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the charge of Sm, and can be varied from 2+ to 3+, can be measured in experiment). The

same result now looks drastically different. For example, if in the WTI phase the valence

is not in the physical range, a weak topological insulator phase will not be present. For

zero temperature reevaluating of Fig. 2.4 is given in Fig. 2.5. Even more dramatic effect

Figure 2.5: Results from Fig. 2.4 are re-plotted with valence along x-axes. The phase
diagram is for zero temperature and tetragonal symmetry.

occurs when we considered a realistic cubic crystal structure (see Fig. 4.1 in Chapter 4).

2.2.3 SmB6: The First Kondo insulator

The first Kondo insulator was discovered more than 45 years ago by Menth at al [25]. It

is also one of the first correlated insulators that have been studied. The authors encounter

a mystery that only recently has been understood. Menth at al measured the resistivity

and saw a very convincing exponential activation, see fig. 2.6. In the paper they did not

presented the data below 4K but mention in the text that below that temperature the

exponential behavior breaks down. Many works that followed showed that the resistivity

consistently saturates below 4K (see for example Fig. 2.8 with a more clear data). This

puzzle endowed for over 40 years.

The debate on the nature of SmB6 continued into 70s. First the metal was ruled out.

Allen at al measured Hall effect to get carrier density [29]. Knowing carrier density and

resistivity one can estimate the mean free path, and it turns out that it is 3× 10−4Åwhich

is obviously impossible.

Another suggestion was that the extra conducting channels are due to impurities. This

however was almost certainly ruled out by significant improvement of sample quality. More-

over, the effect still remained even when the Mott’s resistance maximum criterion [30] has
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Figure 2.6: Reproduced from [25]. Resistivity as a function of temperature is measured for
a bulk sample of SmB6. Below ∼ 50K the resistivity grows exponentially.

been reached [32]. In a pristine SmB6 the resistivity is extremely pressure dependent arguing

in favor of an ’intrinsic’ explanation of resistivity [32].

What do we know about SmB6? We know that at high temperature it has unquenched

magnetic moments because it exhibits Curie-Weiss-like magnetic susceptibility

(a) (b) (c)

Figure 2.7: (a) Crystal structure of SmB6 in one unit cell. Blue colored spheres denote
Boron, red denotes Sm atoms, the photograph of the material is taken from [33] (b) The
schematics of temperature dependence of susceptibility where insets show a decoupled mag-
netic moments for T � TK and fully formed Kondo Singlets at T � TK , (c) shows a possible
orientation of last five occupied levels at Γ point, the order might be reverse. Γ7 and Γ8 are
symmetry notations

χ(T ) =
µ2

eff
3kB(T − θCW )

(2.19)

For SmB6 χ(T ) quickly drops once the spins start to quench and this signals the beginning

of an bulk insulating regime. We also know its crystal structure: Sm atoms form a simple
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cubic lattice separated by clusters of Boron octahedra. In case of band structure, it is close

to impossible to resolve several the dispersion in f bands (meV scale), we are pretty sure

what it is near Γ point (k = 0). Static magnetic measurements show a moment that is

consistent with J = 5/2.

We also know that the insulating gap is quite small (5-20 meV, equivalent to 50-200K)

but quite robust to mechanical and electrical manipulations. Moving chemical potential by

gating only had a significant effect around several volts. Under pressure, one has to reach

10 GPa to observe metal to insulator transition.

Some of these facts are summarized in the Fig. 2.7, showing a single unit cell in which

the blue and red spheres denote Boron and Samarium atoms correspondingly; in (b) the

schematics of temperature dependence of susceptibility is shown, with insets displaying a

decoupled magnetic moments for T � TK and fully formed Kondo Singlets at T � TK ; (c)

illustrates a possible crystal field level formed by J = 5/2 multiplet of Sm3+ ion at Γ point

(k = 0) in the cubic environment.

Recent experiments

To date over 20 experiments have been carried out that verify the surface conductivity in

SmB6, providing the appeal for the topological characteristic of the bulk insulator. More-

over, several see a hallmark feature of a topological insulators, such as the Dirac cone

dispersion. In addition, at least one group observed spin polarization of the electrons –

another unique property of topologically protected surface states. Below a selected few are

chosen to summarize the experimental effort of 2013-2014 years.

One of the most naive experiments is to vary bulk contribution, by for example varying

thickness of the sample. For the pure surface conductance one should expect that as the

thickness goes down the ratio of R(T )/R(300K) should go down as R(T )/R(300K) = A·d/ξ

where A is a constant ratio of resistivities at high and low temperature, ξ is the penetration

length (thickness of the conduction layer) and d is the thickness of the sample. assuming

that ξ � d. This is exactly what is seen on Fig. 2.8, where the experiment from Paglione’s

group [34] is reproduced.

In the very first experiments the similar idea was used, but Walgast at al [35] used 8
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Figure 2.8: Reproduced from [34]. Dependence of SmB6 resistivity as a function of thickness.
For thinner samples the saturation happens at lower relative resistance.

Figure 2.9: Reproduced from [35]. Setup of the Wolgast at al experiment. A cross-section
of the sample along the electrical contacts. Arrows indicate current direction, green lines
indicate equipotentials.

contact transport measurements on a several mm sized crystal see Fig. 2.9. For surface

conduction one expects RLat < RV ert and for the bulk dominating conductance one expects

the opposite relation RLat < RV ert. Many more experiments follow, among them, magne-

toresistance becomes surface like (two fold symmetric) as temperature lowered, Fig. 2.10a;

effect of weak anti-localization (which should be present for spin locked particles) showing

a topological structure Fig. 2.10b. The most direct observations of surface states are of

course done by ARPES, and the first one is presented later in Fig. 5.2. Recently a more

sophisticated spin resolved ARPES was done to show that spin is locked to momentum Fig.

2.10c.

Overall, there is overwhelming evidence that SmB6 has topologically protected states

and while standard methods (like DFT) fail to describe the correct band structure we

will explore other possibilities to generalize and explain the topological properties of this

material and hopefully pave the way to understand more materials from Kondo family and

in a more broad sense - from strongly correlated family.
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(a) (b) (c)

Figure 2.10: (a) Reproduced from [36]. The angular-dependent c-axis MR oscillations in
13 T at different temperature ranging from 15 K to 2.3 K. (b) Reproduced from [37]. Tem-
perature evolution of weak Anti-localization effect. (c) Reproduced from [38]. Schematic
of the spin-polarized surface state dispersion in the TKI SmB6. The blue and green curved
surfaces centered at the Γ and X points represent surface bands. The plane sitting below
represents the bulk f states.

2.3 Quantum Critical Kondo metal

Quantum criticality refers to the state of matter at a zero temperature second-order phase

transition. Such phase transitions are driven by quantum zero-point motion. In contrast

to a classical critical point, in which the statistical physics is determined by spatial config-

urations of the order parameter, that of a quantum critical point involves configurations in

space-time with a diverging correlation length and a diverging correlation time[39, 40, 41].

There is particular interest in the quantum criticality that develops in metals, where dra-

matic departures from conventional metallic behavior, described by Landau Fermi liquid

theory[42, 43], are found to develop. Metals close to quantum criticality are found to develop

a marked pre-disposition to the development of anisotropic superconductivity and other

novel phases of matter[44, 45]. The strange metal phase of the optimally doped cuprate

superconductors is thought by many to be a dramatic example of such phenomena[45].

Most of rare earth compounds are actually not insulators, instead they develop a heavy

(slow) quasi-particles at lower temperature. Heavy fermions provide a very good playground

for studying quantum criticality. On the Fig. 2.11 the generic phase diagram is shown and

a very clean experiment is reproduced from ref. [46]. Superconductivity is often seen do

develop in the vicinity of quantum critical points.

In quantum mechanics, the partition function can be rewritten as a Feynman path
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Figure 2.11: (left) Schematic phase diagram of a quantum critical point often believed
to be hidden inside low energy ordered state, in this case it is superconducting dome.
(Right) Reproduced form [46]. Resistivity color plot of heavy fermion rare earth compound
YRh2Si2. The strong deviation from ρ ∼ T 2 is observed as if it spreads from a point at zero
temperature. (Quantum critical point)

integral over imaginary time.

Z = Tr
[
e−βH

]
=

∫
D[O] exp

[
−
∫ ~

kBT

0
dτL(O, τ)

]
(2.20)

where L is the Lagrangian describing the interacting system and τ the imaginary time,

runs from 0 to ~/(kBT ). Inside the path integral, the physical fields O are periodic or

anti-periodic over this interval. The path integral formulation indicates a new role for

temperature: whereas temperature is a tuning parameter at a classical critical point, at a

quantum critical point it plays the role of a boundary condition: a boundary condition in

time[42]. When a classical critical system is placed in a box of finite extent, it acquires the

finite correlation length set by the size of the box. In a similar fashion, one expects that

when a quantum critical system with infinite correlation time is warmed to a small finite

temperature, the characteristic correlation time becomes the “Planck time”

τT ∼
~

kBT
(2.21)

set by the periodic boundary conditions. This “naive scaling” predicts that dynamic cor-

relation functions will scale as a function of E/kBT . Neutron scattering measurements

of the quantum critical spin correlations in the heavy fermion systems CeCu6−xAux and

UCu5−xPdx[47, 48] do actually show E/T scaling. The marginal Fermi liquid behavior of

the cuprate metals that develops at optimal doping is also associated with such scaling. The
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most direct approach to quantum criticality, pioneered by Hertz[40, 41], in which a Landau

Ginzburg action is studied, adding in the damping effects of the metal. Unfortunately, the

Hertz approach predicts that naive scaling would develop in antiferromagnets below two

spatial dimensions. Today, the origin of E/T scaling in the cuprates and heavy fermion

systems, and the many other anomalies that develop at quantum criticality constitutes an

unsolved problem. A variety of novel schemes have been proposed to solve this problem,

mostly based on the idea that some kind of local quantum criticality emerges [49, 50], but

at the present time there is not yet an established consensus.

The hope is that there can be new methods that tackle the problem of quantum criti-

cality, in this thesis I will explore one such possibility, called ”holographic methods”.
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Chapter 3

Spin structure in a holographic metal

In this chapter I will present the holographic approach in a much more detailed way.

Reader must note that this only scratches the surface of an enormous field that have

had quickly developed several branches and many new levels of sophistication.

In this chapter we discuss two-dimensional holographic metals from a condensed

matter physics perspective. We examine the spin structure of the Green’s function

of the holographic metal, demonstrating that the excitations of the holographic metal

are “chiral”, lacking the inversion symmetry of a conventional Fermi surface, with

only one spin orientation for each point on the Fermi surface, aligned parallel to the

momentum. While the presence of a Kramer’s degeneracy across the Fermi surface

permits the formation of a singlet superconductor, it also implies that ferromagnetic

spin fluctuations are absent from the holographic metal, leading to a complete absence of

Pauli paramagnetism. In addition, we show how the Green’s function of the holographic

metal can be regarded as a reflection coefficient in anti-de-Sitter space, relating the

ingoing and outgoing waves created by a particle moving on the external surface.

In addition to the unconventional chiral properties at the Fermi Surface (which can

be phenomenologically understood with Rashba type of interaction), holographic metals

are even stranger deep below their chemical potential. We show that for the case of

several Fermi surfaces the dispersion at small momenta does not look like Rashba, or

any Spin-orbit type of interaction.

This chapter is primarily based on the paper with Piers Coleman [51]a.

a“Spin and holographic metals”, published in Phys. Rev. B in 2012, editor’s choice.

Early 2010’s have seen a tremendous growth of interest in the possible application of

“holographic methods”, developed in the context of String theory, to Condensed matter
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physics. Holography refers to the application of the Maldacena conjecture [52], which

posits that the boundary physics of Anti-de-Sitter space describes the physics of strongly

interacting field theories in one lower dimension. The hope is to use holography to shed light

on the universal physics of quantum critical metals[53, 54, 55]. This chapter studies the

spin character of the holographic metal, showing that its excitations are chiral in character,

behaving as strongly spin-orbit coupled excitations with no inversion symmetry and spin

aligned parallel to their momentum (see the end of this section).

Holographic approach

To understand the new approaches, we start with a discussion of the Maldacena conjecture,

which proposes that the partition function of a quantum critical (conformally invariant)

system can be re-written as a path integral for a higher dimensional gravity (or string

theory) problem. In the “physical” system of interest the space-time dimension is d while

in the gravity problem there is an extra coordinate r and the space time dimension is

D = d+ 1.

The Maldacena conjecture can be written as an identity between the generating func-

tional of a d dimensional conformal field theory, and a d+ 1 dimensional gravity problem,

ZCFT[j] = Zgrav[φ]

〈
e−

∫
ddx j(x)O(x)

〉
CFT

=

∫
D[φ] e−

∫
dr

∫
ddxLgrav [φ] (3.1)

Here j(x) is a source term coupled to the physical field O(x), corresponding for instance to

a quasi-particle. The right hand side describes the “Gravity dual”, where the gravity fields

φ(x, r) must satisfy the boundary condition that they are equal to the source terms j(x)

on the boundary limr→∞ φ(x, r) = j(x). This condition establishes the relation between

the variables of the d-dimensional field theory and the d+1 dimensional gravity problem in

(3.1). The lower dimensional theory is conformally invariant, which implies that the state

is critical in space time, i.e quantum critical. From a condensed matter perspective, the

equality of the two sides implies that the physics of the quantum critical system of interest

can be mapped onto the surface modes of a higher dimensional gravity problem (Fig. 3.1).

The notion that condensed matter near a quantum critical point might acquire a simpler
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Figure 3.1: Illustrating the surface excitations “propagating” into the bulk. The vertical
axis is the physical coordinate of the critical theory (CFT), while the horizontal axis is the
AdS coordinate r. A physical picture for r is obtained as follows. Consider the injection
and removal of a particle on the boundary of the AdS space, separated by a distance x,
When the point of injection and removal are nearby, the Feynman paths connecting them
will cluster near the boundary, probing large values of r. By contrast, when the two points
are far apart, the Feynman paths connecting them will pass deep within the gravity well of
the Anti-de-Sitter space, probing small values of r close to the black hole. In this way, the
additional dimension tracks the evolution of the physics from the infra-red to the ultraviolet.

description when rewritten as a gravity dual seems at first surprising, especially considering

that the higher dimensional dual is a “string theory” of quantum gravity. The essential

simplification occurs in the large N limit. Here, most of the understanding derives from

the particular case where the Maldacena conjecture has been most extensively studied

and corroborated – a family of SU(N) supersymmetric QCD models with two expansion

parameters: a gauge coupling constant g and number of gauge fields N2, as summarized in

Fig. 3.2. The corresponding gravity dual, is a string theory with “string coupling constant”

gstr and a characteristic ratio lstr/L between the string length lstr and the characteristic

length of the space-time geometry where the string resides. While gstr controls the amplitude

for strings to sub-divide, changing the genus of the world-sheet, lstr constrains the amplitude

of string fluctuations. The correspondence implies

g ∼ gstr, gN ∼ (L/lstr)
4 (3.2)

Each point of fig. 3.2 has a dual string description. For large N and small g (region

A) the critical theory can be computed in perturbation series but a string description is

extremely complicated. Some have even suggested this might be way of solving string theory

by mapping it onto many body physics [56]. The focus of current interest in holographic

methods is on region B, in the double limit g,N →∞, that corresponds to lstr → 0 or just
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Figure 3.2: Schematic diagrams for the critical (CFT) theory. Region A can be computed
perturbatively on CFT side but is highly non-trivial on the string theory side. This chapter
is about region B where critical theory is strongly correlated but computable with GR. The
real physical models have only N = 1, 2 and g ∼ 1 and thus are in the center of the diagram.

classical gravity. In this sense then, the Maldacena conjecture, if true, provides a new way

to carry out large N expansions for quantum critical systems. Since we don’t yet have a

working large N theory for quantum critical metals, this may be a useful way of proceeding.

A similar philosophy has also been applied in the context of nuclear physics, as a way to

place a theoretical limit on the viscosity of quark gluon plasmas [57].

The field is at an extraordinary juncture. On the one hand, it is still not known whether

the Maldacena conjecture works for a much broader class of models, yet on the other, the

assumption that it does so, has led to an impressive initial set of results. In particular, a

charged black hole in Anti-de Sitter space appears to generate a strange metal [54, 53, 55],

with a Fermi surface at the boundary of the space and novel anomalous exponents in the self-

energy. A fascinating array of results for the strange metals have been obtained, including

the demonstration of singlet pairing[58] and even the development of de Haas van Alphen

oscillations in the magnetization in an applied field[59].

Motivation and results

This chapter describes our efforts to understand the ramifications of these developments.

One of the motivating ideas was to develop a better physical picture of the strange metal.

We were particularly fascinated by the attempt to describe high Tc superconductivity by

Hartnoll at al [60, 61] (see [62] for review): in the presence of a charge condensate in the bulk,

the boundary strange metal develops a singlet s-wave pair condensate [58]. The formation
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of singlet s-wave pairs indicates that the strange fermions carry spin, motivating us to ask

whether there is a paramagnetic spin susceptibility associated with the strange metal. This

led us to examine the matrix spin-structure of fermion propagating in the strange metal.

Spin is a fundamentally three dimensional property of non-relativistic electrons, and

in the absence of spin-orbit coupling it completely decouples from the kinetic degrees of

freedom as an independent degree of freedom, a common situation in condensed matter

physics. By contrast, in the holographic metals studied to date, the particles are intrinsically

two dimensional. For these particles, derived from two component relativistic electron

spinors, there is no spin. One way to see this is to look at two components of the fermion,

which describe the electron and positron fields in two dimensions, leaving no room for spin.

How then is it possible to form a spin-singlet superconductor from these fields, when there

is no spin to form the singlet?

In this chapter, by examining the spin structure of holographic metals we contrast some

important similarities and differences between holographic metals and real electron fluids.

In our work we have two main results:

1. We show that the excitations of the strange metal are chiral1 fermions, with spins

orientated parallel to the particle momenta. Near the FS the Green’s function becomes

Gw→0 =
Z(w)

ω − vFσ · k + Σ(ω)
+Gincoh (3.3)

The strong spin-momentum coupling generated by the term σ · k means that the

Fermi surface preserves time-reversal symmetry, but violates inversion symmetry. In

particular, a simple spin reversal at the Fermi surface costs an energy 2vFkF , so that

the spins are preferentially aligned parallel to the momenta to form chiral fermions. In

this way, spin ceases to exist as an independent degree of freedom in two-dimensional

holographic metals, as opposed to a spin degenerate interpretation (3.47). One of the

immediate consequences of this result is that the most elementary property of metals,

a Pauli susceptibility, is absent.

2. We identify an alternate interpretation of the holographic Green’s functions2 as the

1 Here we use “chirality” in the sense adopted by condensed matter physics, to mean the helicity or
handedness of a particle.

2We only use G to denote the retarded Green’s function.
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reflection coefficient of waves emitted into the interior of the Anti de Sitter space by

the boundary particles, as they reflect off the black hole inside the anti-de Sitter bulk.

Namely

G = MkR(ω,k) (3.4)

where R is the reflection coefficient associated with the black hole and Mk is a known

kinetic coefficient. For bosons Mk = 1 while for fermions Mk = M(ω,k) has more

involved structure (3.42). The reflection R contains the information about the branch

cuts and excitation spectra.

We discuss the full implications of these results in the last section.

3.1 Background Formalism

Our goal is to determine the holographic Green’s functions using linear response theory.

Here, for completeness we provide some of the background formal development3. For details,

we refer the reader to extensive reviews[63, 64, 65, 66].

The main conjecture [52] connecting currents j in lower dimensional CFT and fields of

the bulk gravity (as a limit from string theory)

ZCFT[j] = Zgrav[φ] (3.5)

where φ and j are related by the boundary condition

j(x) = lim
r→∞

φ(r;x)rd−∆ (3.6)

the power of r reflects the scaling dimension of the source dim[j] = ∆ − d. The source is

coupled to the physical field, better thought as quasi particle, denoted by O(x). ∆ is the

conformal dimension of that field dim[O] = ∆, namely

ZCFT[j] =

〈
exp

[∫
ddxj(x)O(x)

]〉
CFT

.

This generating functional determines the physics of the quantum system. The gravity part

can be computed classically

Zgrav = e−Sgrav , (3.7)

3Throughout the chapter all the quantities are dimensionless including e.g. temperature.
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derivatives of the generating functional Z[j] determine the Green’s functions of the fields O

〈O〉 ≡ δZ[j]

δj

∣∣∣∣
j=0

= lim
r→∞

r∆−d δSgrav[φ]

δφ
, (3.8)

The holographic Green’s functions can be obtain from the quadratic components of the

action. The equation of motion then has two independent solutions near the boundary

φ = Ar∆−d

in-going
+ Br−∆

out-going
+ ... , as r →∞ (3.9)

Usually the ingoing component A is referred as the “non-normalizable” mode, while the

outgoing component B is the “normalizable” mode. Note how the exponents of r match

the dimensions of the source and the response O. In the absence of the source term j, the

solution must vanish at infinity and the outgoing component vanishes. Once we turn on the

source j, the Maldacena condition (3.6) that φ(r, x)→ j(x) enables us to identify A as the

source

j ≡ A.

Accordingly, the outgoing mode corresponds to the response4 〈O〉

〈O〉 = const ·B

up to a numerical constant dependent on the particular theory at hand. For a free scalar

const = (2∆− d), for a fermion const = iγt. In a systematic treatment one needs to

regulate the procedure by adding boundary terms, (see sec. 3.3).

Since the Green’s function is the linear response to the source, it follows that up to a

constant of proportionality

G = const ·B/A. (3.10)

The procedure to extract the Green’s function of a holographic metal is then:

1. Select a gravity Lagrangian, generally one allowing an asymptotic AdS solution with

a black hole.

2. Select the bulk field content and Lagrangian.

4indeed, after substituting (3.9) into (3.8) and varying it w.r.t. source A (consequently setting source to
zero) we are left with the term proportional to B.
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3. Select one of the fields with the quantum numbers (spin, charge, etc) of the desired

operator O.

4. Solve the classical field equations in that background, including the backreaction on

the gravity.

5. Find the asymptotics of the fields at the boundary. Find the ∆, outgoing (leading)

and ingoing terms by comparing with (3.9).

6. The ingoing amplitude at the boundary represents the source, the outgoing amplitude

gives the response, the Green’s function is the ratio of the two.

Examples

We now sketch these steps for the scalar and fermion cases. The first step is to choose a

background. One of the well known solutions of Einstein-Maxwell equations is the Reissner-

Nordström (RN) black hole. This background involves a nontrivial electric field (Er =

−∂rA0) and asymptotically AdS metric gµν . In the units where horizon r = 1, the metric,

fields and temperature T are

ds2 = r2(−fdt2 + dx2
i ) + 1

r2f
dr2, (3.11)

f = 1− Q2+1
r3

+ Q2

r4
, (3.12)

T = 3−Q2

4π , A0 = µ
(
1− 1

r

)
. (3.13)

Alternate solutions to the metric differ only in the profile function (”blackening factor”)

f(r), and the horizons are defined by the zeros of f(r) (as one approaches the horizon time

coordinate becomes irrelevant). The solution (3.11) describes a black hole with electric

chargeQ in a space with negative cosmological constant. The negative cosmological constant

causes the space-time to be asymptotically AdS and thus to have a boundary. The scalar

potential A0 at the boundary goes to a constant µ, the chemical potential of the boundary

theory. Indeed, the RN black hole is a result of steps 1-4 for just one extra field in the bulk,

gauge field Aµ, which is conjugate to the charge currant operator J µ. A non-vanishing A0

then corresponds to a finite source for J 0, which is in fact, the chemical potential µJ 0.
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• Bosons. We choose a bulk action

S = SGR + SEM +

∫
d4x
√
g(−|Dµϕ|2 −m2|ϕ|2) (3.14)

and the boundary term for a stable solution

Sbnd = (∆− d)

∫
∂
d3x |ϕ|2, (3.15)

where SGR + SEM is Einstein-Maxwell action. (The term m2 can sometimes be slightly

negative5). The factor
√
g, where g is the determinant of the metric, makes the measure

relativistically covariant. This action implies the Einstein-Maxwell equations, solved by the

RN black hole background (3.11-3.13) and the Klein Gordon equation for the scalar φ in

curved spacetime. For the boundary terms see sec. 3.3. The Klein Gordon equation in

curved space is then

(D2
µ +m2)ϕ = 0, (3.16)

where

D2
µ ≡ DµD

µ = (∇µ − iqAµ)(∇µ − iqAµ) =

= ∇µ∇µ − iq∇µAµ − 2iqAµ∇µ − q2AµAµ. (3.17)

Here, the covariant derivative ∇µ is defined in terms of the metric, for instance ∇µ∇µφ =

1√
g∂µ(
√
g ∂µφ), metric g is given in Equation (3.11). Using a little general relativity and

the Fourier transformed ϕ = φ e−iwt+ikx one can write (3.16) as (m=0)

φ′′ +
(r4f)′

r4f
φ′ +

(ω + qA0)2 − fk2

r4f2
φ = 0. (3.18)

Now we are to solve the equation to find the asymptotics and identify the ingoing and

outgoing modes. Since it is a second order differential equation, the full solution can be

found numerically, but the asymptotics at r → ∞ are easily extracted analytically, using

f(r)→ 1.

φ′′ +
4

r
φ′ = 0 (3.19)

hence

φ = A+Br−3.

5So called BF bound [67] m2 ≥ −9/4 for AdS4 with radius L = 1.
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The leading ingoing term is a constant A, hence ∆ = 3, while the outgoing term should

be r−∆, cf. (3.9). To get the proportionality constant we use (3.8).

〈O〉 = −3B, (3.20)

so the retarded Green’s function is

G = −3B/A (3.21)

which is actually a m = 0 case for G = (2∆− d)B/A.

• Fermions. We can introduce the action

S = SGR + SEM + Sϕ +

∫
d4x
√
g ψi(ΓµDµ −m)ψ (3.22)

with ψ = ψ†Γt, and Dirac gamma matrices Γµ. The boundary action

Sbnd =

∫
∂
d3x ψψ. (3.23)

A fermion in 4 dimensions has four components (e.g. spin up, spin down, electron, positron).

By the nature of the duality, to incorporate the source and response at the boundary the

number of boundary fermionic degrees of freedom is a half that in the bulk [68], and thus

the boundary electrons have two components. In addition to the Einstein-Maxwell equation

this action also implies the Dirac equation

(ΓµDµ −m)ψ = 0 (3.24)

The covariant derivative Dµ has spin connections, which can be conveniently accounted for

by rescaling

ψ =

 ψ+

ψ−

 (grrg)1/4 e−iωt+ikix
i

(3.25)

here gαβ are the components of the metric and ψ± are two upper and two lower components

of ψ. Writing out (3.24) explicitly

(
√
grrΓr∂r − i

√
g00Γ0w + i

√
giiΓiki −m)

ψ+

ψ−


with: w = ω + qA0 (3.26)
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As in the scalar case, to determine Green’s function, we examine the asymptotics boundary

behavior, r →∞. In our basis6m+ r∂r i
γµkµ
r

i
γµkµ
r m− r∂r

(ψ+

ψ−

)
= 0, (3.27)

here kµ = (w,k). This is a 4× 4 matrix equation with the following solution.

ψ → r−
3
2

 ψ+

ψ−

 ;

 ψ+ = Arm +Dr−m−1

ψ− = Br−m + Crm−1
(3.28)

From the four terms we choose in- and out-going modes in an analogous fashion to the

scalar case, the leading term Arm−3/2 is in-going, while the term Ar−m−3/2 is outgoing and

the dimension is

∆ = m+ 3/2. (3.29)

The other terms (C,D) are related to the first two. To determine this dependence we need

to substitute the asymptotics back into the Dirac equation (3.24), which leads to

B =
2m+ 1

iγµkµ
D. (3.30)

As in (3.21) the Green’s function can be expressed in terms of A’s and B’s (note A and B

are spinors):

GA = iγtB. (3.31)

As before, we obtain the coefficient iγt by taking a derivative of the action and γt is a part

of the definition of ψ. Armed with (3.30)

GA = γt
2m+ 1

γµkµ
D ≡MkD. (3.32)

3.2 Reflection Approach

In the previous section we made use of the ingoing/outgoing terminology. In this section

we identify these modes explicitly. Here we show how to redefine the problem in a form

resembling the quantum mechanics of a reflected wave. This can be done by transforming

6 In a special choice of basis, Γr =

(
1 0
0 −1

)
, Γµ =

(
0 γµ

γµ 0

)
, where γ0 = iσ3, γx = σ2, γ2 = −σ1.
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coordinates according to ds = F (r)dr and rescaling the wave function as ψ(r) = Z(r)Ψ(s)

[69]. The original equation then becomes a zero energy scattering problem

(∂2
s − V )Ψ(s) = 0, (3.33)

with a complicated and non-unique function V (s). (The retarded Green’s function must be

derived using an infalling boundary condition at the black hole horizon [70]. An advantage

of this approach is that the infalling wave condition is derived as immediate consequence of

the scattering problem.)

Bosons. Consider again the scalar probe Equation of motion (3.18) in the RN black

hole geometry, defined in (3.11-3.13). The generalization to the full backreacting solution

is straightforward. The rescaling of coordinates and fields ϕ(r)→ φ(s)

ds = Fdr, ϕ = Zφ (3.34)

leads to the following

(∂2
r +D1∂r +D0)ϕ→

(∂2
s +

D1 + F ′

F + 2Z′

Z

F
∂s +

D0 + Z′′

Z +D1
Z′

Z

F 2
)φ = 0.

There are an infinite number of ways to tune equation (3.18) to the form of the Schrodinger

equation by canceling ∂sφ term. We will choose the non-unique combination

F = i/fr, Z = 1/r3/2. (3.35)

This leads to the zero energy scattering problem ∂2
sφ− V (s)φ = 0 with potential given by

V (r) =
w2 − k2f −m2fr2

r2
− f2

(
9

4
+

3f ′

2rf

)
(3.36)

It is useful to write the limiting values of this potential. It turns out that it goes to a

constant on both the horizon and the boundary.

V (r →∞) = −m2 − 9/4, V (r → horizon) = ω2 (3.37)

Finally, we reformulate the Green’s Function as a reflection coefficient. Namely

φ(r →∞) = A
(
eis(∆−3/2) +Re−is(∆−3/2)

)
(3.38)
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Figure 3.3: Typical Schrodinger potential m2 = −2, Q2 = 3, k = 1, 1.6, 2, ω = 0 (from
the top). The incoming wave propagates from the right with zero energy.

leading to

G(ω, k) = R (3.39)

Fermions in this case the reflection coefficient becomes a matrix. We have already

written the Dirac equation in the black hole background (3.27). One can ”square’ the first

order 4 × 4 matrix equation to obtain a second order 2 × 2 equation. After rescaling the

fields in the same fashion as in the scalar case, the potential acquires the same form as in

the scalar case in fig. 3.3, but with the different limits

V (r →∞) = −(m+ 1/2)2, V (r → horiz.) = ω2. (3.40)

As in (3.38) the solution is a superposition of incident and reflected waves:

ψ+ →
(
eis(m+ 1

2
) +Re−is(m+ 1

2
)
)
A, (3.41)

where the reflection coefficient R is now a matrix. The Green’s function is proportional to

R up to a kinematic factor Mk

G = MkR =
2m+ 1

(ω + qµ)− σ · k
R. (3.42)

Here we use equation (3.32). However suggestive the form of Mk is, its poles do not affect

the physical non-analyticities of the Green’s function G: it is R which contains all the

relevant poles and branch cuts.

3.3 Boundary terms

The general idea of holographic renormalization [71] is to add boundary terms to the classical

gravity action. This terms simply make sure that all sensible physical quantities are finite.
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Good examples of such quantities are the total energy of the bulk (mass of a black hole

inside) and the entropy. Those have nothing to do with duality and in some cases were

introduces long before it, for instance by Hawking in 70’s to actually make sense of his

famous black hole temperature calculation. In AdSCFT it is useful to think about stability

of a given AdS solution.

The Dirac action for fermions in the bulk is of the form

S = i

∫
dd+1x

√
g ψ(γµDµ −m)ψ (3.43)

in the bulk ψ+ and ψ− are related through each other momenta, but the conjugate momenta

for ψ+ is zero:

Π+ = −
√

g

grr
ψ− but Π+ = 0 (3.44)

Which is unphysical since we expect both momenta to represent a physical degree of freedom.

The naive way to fix it which turns out to be the correct one is to change the bulk action

by symmetrizing the kinetic term: split the derivative in half. One is acting to the left

(represented by the arrow) and another is to the right.

S → i

2

∫
dd+1x

√
g ψ(γµ

−→
Dµ − γµ

←−
Dµ − 2m)ψ (3.45)

which is different from the original action by a boundary term

δSbound =

∫
∂
ddx

√
g

grr
ψ+ψ− + h.c. (3.46)

And we are back to equation (3.23). We refer to [68] for more details.

3.4 Spin structure

We now return to the question of the spin character of the holographic fermion. In quantum

critical metals, the spin degree of freedom plays an essential role. For example, the appli-

cation of a magnetic field, via the Zeeman coupling, allows one to tune the system through

a quantum critical point. The presence of critical spin fluctuations is thought to play an

important role in break-down of Landau Fermi liquid behavior. This then raises the ques-

tion as to whether the holographic fermions obtained by mapping from four-dimensional

anti-de-Sitter space, carry a spin quantum number. Furthermore, what is the nature of the
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soft modes that drive the quantum criticality, and is it possible to gap these modes, driving

a transition back into a Fermi liquid? The boundary fermions that form about a D = 4

anti-de-Sitter space are Dirac fermions described by a two component spinor. Faulkner at

al [58] have shown that when a condensed Bose field [60] is introduced into the bulk gravity

dual, pairing with s-wave symmetry is induced in the boundary fermions. This establishes

that the boundary fermions do indeed carry spin. However, as we shall now show, this

spin is “chiral”1 and is aligned rigidly with the momentum of the excitation at the Fermi

surface. There is no inversion symmetry, and at each point on the Fermi surface there is a

single spin polarization. However, time reversal is not broken, and reversing the spin also

implies reversing the momentum, so it is still possible to form pairs by combining fermions

with opposite spin on opposite sides of the two dimensional Fermi surface.

It is often tacitly assumed that the excitations of holographic metals are non-relativistic

fermions, with an independent spin degree of freedom. In this case the Green’s function

Gαβ = δαβG would be proportional to the unit operator as in [72]7

Gαβ = δαβ
1

ω − vF (k − kF )− g2Σ
(3.47)

Here we shall argue that this is not the case and the spin-orbit coupling remains very

large in holographic metals despite the formation of a Fermi surface, forcing the spin to

align with the momentum.

First consider the relativistic case without the black hole when the surface excitations are

undoped and form a strongly interacting Dirac cone of excitations with Lorentz invariance.

The corresponding Lorentz invariant correlation function is 〈OŌ〉−1 = C̃kµγ
µ, where Ō =

O†γ0 and C̃ is an arbitrary function of 3-momentum k =
√
ω2 − k2 . For non-relativistic

applications we are interested in 〈OO†〉 and we turn to a Hamiltonian formalism, treating

time and space separately. The Green’s functions takes the form GLor = 〈OO†〉 = −〈OŌ〉γ0

GLor(ω,k) = [C̃(k)(k · σ − ω)]−1. (3.48)

For the case of zero bulk fermion mass C̃(k) = 1/k. Here we have introduced the Pauli

7The effective model of ”Semi-Holographic Fermi liquid” was proposed, with Lagrangian L = i[c†k,α(ω −
εk + µ)ck,α + χ†Σ−1χα + gc†k,aχα + h.c.] leading to the Green’s function (3.47) degenerate in α.
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matrices σi = γiγ0, for i = 1, 2. Eq. (3.48) describes two Dirac cones as depicted on

fig.3.4-a, where upper and lower cones have the opposite chirality. There is only one spin

orientation parallel to the momentum at any given energy.

6Energy(a) (b)

Figure 3.4: Typical dispersion and Fermi surface of Dirac fermion in 2+1 (a); and the
holographic metal from fig.3.6-a (b).

Once we add a charged black-hole, the boundary excitations are “doped”, acquiring a

finite Fermi surface (and Fermi velocity vF ) that breaks the Lorentz invariance down to a

simple rotational invariance. The only rotationally invariant way in which spin can enter,

is in the form of a scalar product with the momentum k · σ. The most general Green’s

function now takes the form

G(ω,k) = [C1(ω, k)k · σ + C2(ω, k)]−1 (3.49)

where C1 and C2 are two arbitrary functions which depend on the frequency ω and the

magnitude of the non-relativistic momentum k = |k|.

The physical properties of the theory depend on the form of the coefficients C1,2. For

example, if C1 = 0, then the Fermi surface would be spin degenerate (σ independent). If

C1 is finite and purely real, the momentum becomes strongly coupled to the spin via k · σ

(spin flip does change the ground state) and we are dealing with chiral excitations. One

can interpret C1 as a wave-function renormalization: C1 = vFZ
−1 and C2 as a self energy:

C2 = Z−1(ω + Σ − µ). However, if C1 has an imaginary part, while the chiral property

remains, spin flips become highly incoherent in nature, so a standard decomposition of the

quasiparticle along the lines of the electron phonon problem is not possible.
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To bring out the chiral (C1 6= 0) properties we introduce the chirality projection opera-

tors

Π± =
1

2

(
1± k · σ

k

)
, (3.50)

which leads to

G = Π+G11 + Π−G22, (3.51)

where G11 and G22 are the eigenvalues of the matrix G and 2kC1 = G−1
11 − G

−1
22 , 2C2 =

G−1
11 +G−1

22 .
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Figure 3.5: Typical behavior of a spectral function πA(ω, k) = ImG11 + ImG22 at fixed
momentum k = kF + 10−2. ImG11 has a spike that sharpens for k → kF and ImG22 is
suppressed. Snapshot for RN black hole with q = 2, m = −1/5.

Fig. 3.5 illustrates a typical numerical solution for the eigenvalues. ImGii is plotted

for fixed k close to the Fermi surface. One eigenvalue has a peak, which we interpret as

the chiral quasiparticle component to the spectral function while the other, corresponding

to the incoherent background created by flipping the spin anti-parallel to the momentum,

lacks any sharp features and goes to zero at the Fermi surface. The spectral function

A(ω,k) = 1
π Im TrG is2

A(ω,k) =
1

π
Im [Gchiral(ω,k) +Gincoh(ω,k)], (3.52)

where Gchiral refers to the coherent part of the resonance and Gincoh is the incoherent

background.

To further emphasize the chiral structure we use an analytic form of the Green’s function.

Near k = kF and ω → 0 this can be obtained [73] by matching the infra-red ’inner’ region
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of the RN black hole to the asymptotic AdS ’outer’ region.

G11 =
z

ω − vF (k − kF ) + c1ω2ν
, (3.53)

where z, vF are real and c1 is a complex constant. The exponent ν ≡
√
m2 + k2

F − q2/2/
√

6

depends on the mass and the charge of the fermion. Armed with (3.51) we arrive to

G =
z

ω − vF (k · σ − kF ) + c1ω2ν
+Gincoh (3.54)

Finally it is interesting to find a dispersion for the quasi-particle: the line where the

real part of the inverse G-function is zero, Re G−1 = 0. Since the imaginary part is zero

only at ω = 0, the Fermi surface is the intersection of the two lines. The results are

illustrated in fig. 3.6. The case of a massless fermion is particularly interesting, we see that

the dispersion relation actually follows a parabolic form
√
p2 + (m∗)2 showing that the

holographic fermion running around the doped black hole has developed a finite effective

mass m∗. The dispersion at the Fermi surface is very similar to the linear dispersion of

chiral fermion.

(a) m = 0

-1

1

(b) m = −1/10

Figure 3.6: Density plot of ReG−1. The zeros of the inverse Green’s function represent the
quasi-particle dispersion and are depicted by the red line (the wavy line indicates disconti-
nuities). Left panel: m = 0. Right panel: m = −0.1. The dispersion crosses through the
Fermi wavevector at zero energy. (The inset: lower energy range is shown. As in fig.3.4-b,
there is a dispersion branch with a different effective mass m∗)

Summarizing the main points:

(a) The Fermi Surface is rotationally invariant and has a single non-degenerate fermionic

excitation at every momenta,
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(b) The spin of the coherent excitations lies parallel to the momentum as shown in figure

3.4, giving rise to chiral quasi-particle interpretation,

(c) The incoherent background is generated by a spin-flip of a coherent chiral quasiparti-

cle.

3.5 Discussion

The possible application of holographic methods to condensed matter physics AdSCMT

is based in part on a dream of a deep universality: the idea that the scale-invariance of

quantum criticality in metals might enjoy the same level of universality seen in statistical

physics.

Nevertheless, there is still a huge gulf to be crossed. From a String theory perspective,

there is still a need to show that semi-classical gravity metric used in the theories emerges as

a consistent truncation[74, 75, 76] of string theory on a certain “brane” configuration. From

a condensed matter perspective, we lack a systematic method to constructing an AdS dual:

one encouraging direction may be to map the renormalization group flows of the quantum

theory onto a higher dimension [77].

Against this backdrop, the field has taken a more pragmatic approach of simply explor-

ing the holographic consequences of anti-de-Sitter space, assuming that all is well. One

can not fail to be impressed by the discovery that a charged black hole nucleates a strange

metal on its surface, with properties that bear remarkable similarities to condensed matter

systems: the emergence of a critical Fermi surface with quantum oscillations, the pres-

ence of E/T scaling, Pomeranchuk instabilities [78] and even the phase diagram of type II

superconductors [79].

Our interest in the field was sparked by a naive impression that progress in hologra-

phy resembles the history of condensed matter physics “running in reverse”! Rather than

starting with the simple Pauli paramagnetic metal and building up to an understanding

of Fermi liquids and ultimately quantum criticality, holography appears to start with the

critical Fermi surface, working backwards to the most basic elements of condensed matter

physics. This led us to ask, whether one calculate the most elementary property of all, the
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Pauli susceptibility in response to a Zeeman splitting.

Our work has provided a interpretation of the holographic Green’s function as a momen-

tum and frequency dependent reflection coefficient of waves emitted by surface particles,

reflected off the horizon of the interior black hole. We have also shown that the excitations

of the strange metal are intrinsically chiral, with spins locked parallel to the momentum by

a strong spin-orbit coupling with no inversion symmetry. The situation is reminiscent to

the surface of 3D topological insulator.

This observation means in fact, that there is no Pauli susceptibility of the two dimen-

sional holographic metal: the Fermi sea is already severely polarized by the relativistic

coupling between momentum and spin. Indeed, from a physical perspective, the strange

metallic behavior seen in these systems would appear to be a consequence of soft charge or

current fluctuations rather than spin fluctuations. In recent work [58], Faulkner et al have

discovered that when a charge gap is introduced by condensing a boson in the AdS bulk, the

holographic metal develops sharp Fermi-liquid-like quasiparticles. This is consistent with

this interpretation.

Spin plays a major role in the quantum criticality of condensed matter. In many systems,

the application of a field, via the Zeeman splitting is the method of choice for tuning through

criticality [46, 80]. Clearly, this part of the physics is inaccessible to the current approach.

The absence of a Zeeman-splitting in holographic metals was first observed by adding a

monopole charge to the black hole [81, 82].

Various authors have explored the possibility of introducing spin as an additional quan-

tum number. The simplest example is the ”magnetically charged” black hole, with an “up”

and a “down” charge to simulate the Zeeman splitting, coupling to the fermions via a “mini-

mal coupling” (a spin-dependent vector potential)[83]. By construction, this procedure does

produce an explicit “Zeeman” splitting of the Fermi surface, however the infra-red character

of the problem, described by the interior geometry of the gravity dual, is unchanged and

the strange metal physics of the “up” and “down” Fermi surfaces are essentially unaffected

by the magnetic field.

An alternative approach might be to introduce the Zeeman term to the holographic

metals by invoking a non-minimal coupling to electromagnetic field, akin to the anomalous
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magnetic coupling of a neutron or proton. A number of recent papers have considered the

effect of such terms in the absence of a magnetic field, where they play the role of anomalous

dipole coupling terms[84, 85]. At strong coupling these terms have been found to inject a

gap into the fermionic spectrum interpreted as a Mott gap[85]. However, when a monopole

charge is added to the black hole to generate a magnetic coupling to these same terms, we

find they do not generate a splitting of the chiral Fermi surface, nor do they change the inte-

rior geometry of the gravity dual. The construction of a holographic metal with non-trivial

spin physics may require considering 3-dimensional holographic metals projected out of 4+1

dimensional gravity dual [86], where the additional dimensionality permits four-component

fermionic fields with both left and right-handed chiralities.

3.6 Evolution of the dispersion curves

Note: Shortly before posting our paper [51], a related work by Hertzog and Ren[87] ap-

peared with results that complement those derived here. These authors concentrate on the

behavior of gravity duals with a large black-hole charge and a non-zero fermion mass, a

limit where the holographic metal contains multiple Fermi surfaces. They find that in this

limit, in addition to a Rashba component σ · (ẑ×k) the dispersion of the holographic metal

also develops a quadratic spin-independent dispersion reminiscent of more weakly spin-orbit

coupled fermions. The Rashba term σ · (ẑ × k) obtained by Herzog and Ren is equivalent

to the helicity term σ · k described in our paper after a rotation of spin axes. In the limit

of small black-hole charge considered here, with a single Fermi surface, the helicity term in

the Hamiltonian entirely dominates the spectrum.

In response to and motivated by the results of Hertzog and Ren [87] we tried to investi-

gate the addition of more Fermi surfaces (by ’doping’ more excitations) and the interaction

between them. So far we established the spin character of the holographic fermion for a

small doping µ.

If the doping µ is increased, we find (in accordance to previous works) multiple co-centric

Fermi surfaces, as schematically plotted on the fig. 3.7. The circles are approximately evenly
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spaced and the spin character alternates. We can assume for concreteness that the largest

Fermi surface is right handed (spin is aligned with momentum).

R

L

E(k)

k

Figure 3.7: Left: Illustrating the multiple Fermi surface Of the holographic metals at high
doping. The horizontal and vertical axes are kx and ky. Right: same picture but dispersion
is shown. Dashed and solid lines are for the left and right handed fermions correspondingly.

It will sufficient to focus only on the two largest Fermi surfaces. We plot numerical

result of dispersion is in fig. 3.8. The dispersion is defined as the zeros of the real part of

the inverse Green’s function. Here we use the same gravity setup of a near-extreme AdS

Reissner-Nordström (RN) black hole. The RN setup is characterized by three parameters:

temperature T , chemical potential µ and mass of the bulk fermionic field m. In fig. 3.8 the

mass is zero, the stress of this section is on the non-zero mass.
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Figure 3.8: The density plot of the real part of G−1 for m=0. The quasi-particle dispersion
curves are depicted by the solid black lines. The two lowest lines are shown separately, with
the notations as in fig. 3.7. The other parameters are: µ/T = 300, bulk fermion charge is
q = 17.5

To construct the dispersion from the density plot of the ReG−1 (see fig. 3.8) we use

the fact that system is time reversal invariant: we can first numerically find the zeros
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(corresponding to the white color in the density plot) with vanishingly small numerical

error. Then reflect the dispersion around the Vertical axis. The black solid curves on the

top fig. 3.9 shows the result of this action for the dispersion. We only focus on the two

largest dispersion curves.

Close to the Fermi energy (ω = 0) the behavior is sometimes possible to extract analyt-

ically [73] . In the RN case it is [51]

G =
z

ω − vF (k · σ − kF ) + hω2ν
+Gincoh (3.55)

where z, vF are real and h is a complex constants defined by numerics, σ = (σx, σy) are the

two Pauli matrices; the exponent ν

ν =
√
m2 + k2

F − q2/2/
√

6 (3.56)

depends on the mass and the charge of the fermion. two comments are in order here:

• The scattering rate is defined as Im [hω2ν2 ], from (3.56) the exponent ν grows linear

in kf for large values of kF . For the usual parameters at large doping, the exponent

is of order 20.

• When the exponent ν crosses 1/2 the quasi particles become unstable, so that all

small Fermi surfaces should not be considered.

Unfortunately to see more than one Fermi surface at low temperature one has to use

high doping and hence all the Fermi surfaces would have very large exponents.

3.6.1 A non-zero mass

Through eq. (3.56) that mass changes the infra-red (IR) exponent of the field theory but

as we show below it actually has a more interesting consequences. In fig. 3.9 we plot the

result for m 6= 0. At any non-zero value of m one can see two curves reach each other on

the midway. Very interestingly, when the mass is large enough the curves look like two

shifted ”parabolas” as it is common for the Rashba term except the spin independent part

in Rashba Hamiltonian is k2.
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Figure 3.9: Only the two lowest dispersion curves are shown for non-zero mass: m =
0.1, 0.2, 0.5. The other parameters are: µ/T = 300, bulk fermion charge is q = 17.5

It was noticed before in the paper by Herzog and Ren [87] where they studied the

spectral function for the same parameters and found multiple sets of the curves like in fig

3.9. They were the first to point out the similarity with Rashba Hamiltonian

3.6.2 Effective model

Each Fermi surface can be thought of a separate species of fermions with different kF and

Consequently exponent ν. for the two largest Fermi-surfaces we can write two copies of

such a Green’s function and corresponding effective Hamiltonian would take the (matrix)

form:

H0 =
∑
k,σ

c†1
[
v(k)k · σ + h1ω

2ν1 − µ1

]
c1 +

∑
k,σ

c†2
[
v(k)k · σ + h2ω

2ν2 − µ2

]
c2 (3.57)

to reproduce the relativistic dispersion we assume that v(k) = 1
k

√
k2 +m2

∗

It follows that from fig. 3.9 that the mass mixes two ”bands” only at the small momenta.

It is natural to propose the effective mixing term proportional to the mass

H = H0 + i
∑
k,σ

[V (k)c†1c2 + h.c.] (3.58)

V (k) = m
µ1 − µ2

2
√
m2 + k2

(3.59)

Where the k2 in the denominator is the consequence of the dispersion in the free Hamiltonian

(3.57). Hybridization V (k) thus has very singular dependence near small mass and small

momenta. Fig. 3.10 shows the dispersion relations after diagonalizing the full Hamiltonian

H = H0 +HV .

E±(k) =
1

2
[2v(k)k − µ1 − µ2 ±

√
(µ1 − µ2)2 − 4V (k)2] (3.60)
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Figure 3.10: The hybridization described by the effective mixing term for m =
(0, 0.1, 0.2, 0.5).

Conclusions

In this additional section an interesting behavior of the hybridization V (k) (simple non-

physical fit of the dispersion) was shown. It paves the way to argue that observation by

Hertzog and Ren[87] is clouded by the choice of their parameters and in fact this band

structure does not look like Rashba coupling (near the bottom of the band) - unless large

value of m is chosen. Conventionally non-zero hybridization V produces avoided crossings

of two intersecting bands, but here we see the opposite. Furthermore, this ”hybridization”

is not smooth in the fermionic mass m, that is one of the parameters of the gravity dual.

We note however, that the features far away from chemical potential should not affect

any physics of the Fermi surface. It would be interesting to analyze the same dispersion

curves for different holographic metals.
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Chapter 4

Cubic Kondo Topological Insulator

Current theories of Kondo insulators employ the interaction of conduction electrons with

localized Kramers doublets originating from a tetragonal crystalline environment, yet

all Kondo insulators are cubic. Here we develop a theory of cubic topological Kondo

insulators involving the interaction of Γ8 spin quartets with a conduction sea. The

spin quartets greatly increase the potential for strong topological insulators, entirely

eliminating the weak-topological phases from the diagram. We show that the relevant

topological behavior in cubic Kondo insulators can only reside at the lower symme-

try X or M points in the Brillouin zone, leading to a three Dirac cones with heavy

quasiparticles.

Another important difference between cubic and tetragonal symmetries is that in the

later case the limit of integer valence was predicted not to support topological property.

On the other hand, cubic symmetry allows for the topological order to ”extend” all the

way to integer valence. Thus providing a good basis for considering various Kondo-like

(integer valent) models to study topology of relevant cubic Kondo insulators. The last

point is the essential link to my work in chapters 5 and 6.

This chapter is based on my paper with Piers Coleman and Maxim Dzero [88]a

a“Cubic Topological Kondo Insulators”, published in Phys. Rev. Letters in 2013

4.1 Review the model with tetragonal crystal symmetry

Earlier in 2010 seminal paper by Maxim Dzero, Kai Sun, Piers Coleman, Victor Galitski

started a stream of activity which turns out quite fruitful for the community. The main

prediction of this paper is that in spite of all the difficulties in correlated materials and some

ambiguities, some of Kondo insulators can be topological and thus can have conducting
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surfaces.

To simplify matters they assumed tetragonal symmetry, so that it is possible to focus

on a doublet for f -electron, that will hybridize in ll direction (L= 1/2).

4.2 Motivation for my study

Our classical understanding of order in matter is built around Landau’s concept of an order

parameter. The past few years have seen a profound growth of interest in topological

phases of matter, epitomized by the quantum Hall effect and topological band insulators,

in which the underlying order derives from the non-trivial connectedness of the quantum

wave-function, often driven by the presence of strong spin-orbit coupling [17, 12, 89, 90, 91,

92, 93, 94, 95].

One of the interesting new entries to the world of topological insulators, is the class of

heavy fermion, or “Kondo insulators” [22, 23, 96, 97, 98, 99, 100]. The strong-spin orbit

coupling and highly renormalized narrow bands in these intermetallic materials inspired

the prediction [96] that a subset of the family of Kondo insulators will be Z2 topological

insulators. In particular, the oldest known Kondo insulator SmB6[25] with marked mixed

valence character, was identified as a particularly promising candidate for a strong topo-

logical insulator (STI): a conclusion that has since also been supported by renormalized

band-theory[97, 100]. Recent experiments [101, 102, 103] on SmB6 have confirmed the

presence of robust conducting surfaces, large bulk resistivity and a chemical potential that

clearly lies in the gap providing strong support for the initial prediction.

However, despite these developments, there are still many aspects of the physics in these

materials that are poorly understood. One of the simplifying assumptions of the original

theory [96] was to treat the f -states as Kramer’s doublets in a tetragonal environment.

In fact, the tetragonal theory predicts that strong topological insulating behavior requires

large deviations from integral valence, while in practice Kondo insulators are much closer

to integral valence [23]. Moreover, all known Kondo insulators have cubic symmetry, and

this higher symmetry appears to play a vital role, for all apparent “Kondo insulators” of

lower symmetry, such as CeNiSn[104] or CeRu4Sn6[105] have proven, on improving sample
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quality, to be semi-metals. One of the important effects of high symmetry is the stabiliza-

tion of magnetic f -quartets. Moreover, Raman[106] experiments and various band-theory

studies[107, 108] that it is the Kondo screening of the magnetic quartets that gives rise to

the emergence of the insulating state.

Figure 4.1: Contrasting the phase diagram of tetragonal [28] and cubic topological Kondo
insulators. Cubic symmetry extends the STI phase into the Kondo limit. For SmB6 v =
3−nf gives the valence of the Sm ion, while nf measures the number of f -holes in the filled
4f6 state, so that nf = 1 corresponds to the 4f5 configuration.

Motivated by this observation, here we formulate a theory of cubic topological Kondo

insulators, based on a lattice of magnetic quartets. We show that the presence of a spin-

quartet greatly increases the possibility of strong topological insulators while eliminating

the weak-topological insulators from the phase diagram, Fig. 4.1. We predict that the

relevant topological behavior in simple cubic Kondo insulators can only reside at the lower

point group symmetry X and M points in the Brillouin zone (BZ), leading to a three heavy

Dirac cones at the surface. One of the additional consequences of the underlying Kondo

physics, is that the coherence length of the surface states is expected to be very small, of

order a lattice spacing.

While we outline our model of cubic Kondo insulators with a particular focus on SmB6,

the methodology generalizes to other cubic Kondo insulators. SmB6 has a simple cubic

structure, with the B6 clusters located at the center of the unit cell, acting as spacers which

mediate electron hopping between Sm sites. Band-theory [108] and XPS studies [109] show

that the 4f orbitals hybridize with d-bands which form electron pockets around the X points.
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In a cubic environment, the J = 5/2 orbitals split into a Γ7 doublet and a Γ8 quartet, while

the fivefold degenerate d-orbitals are split into double degenerate eg and triply degenerate

t2g orbitals. Band theory and Raman spectroscopy studies [106] indicate that the physics

of the 4f orbitals is governed by valence fluctuations involving electrons of the Γ8 quartet

and the conduction eg states, e−+ 4f5(Γ
(α)
8 ) 
 4f6. The Γ

(α)
8 (α = 1, 2) quartet consists of

the following combination of orbitals: |Γ(1)
8 〉 =

√
5
6

∣∣±5
2

〉
+
√

1
6

∣∣∓3
2

〉
, |Γ(2)

8 〉 =
∣∣±1

2

〉
. This

then leads to a simple physical picture in which the Γ8 quartet of f -states hybridizes with

an eg quartet (Kramers plus orbital degeneracy) of d-states to form a Kondo insulator.

To gain insight into how the cubic topological Kondo insulator emerges it is instructive to

consider a simplified one-dimensional model consisting of a quartet of conduction d-bands

hybridized with a quartet of f -bands (Fig. 4.2a). In one dimension there are two high

symmetry points: Γ (k = 0) and X (k = π), where the hybridization vanishes [96, 98, 28]).

Away from the zone center Γ, the f− and d− quartets split into Kramers doublets. The

Z2 topological invariant ν1D is then determined by the product of the parities ν1D = δΓδX

of the occupied states at the Γ and X points. However, the f -quartet at the Γ point is

equivalent to two Kramers doublets, which means that δΓ = (±1)2 is always positive, so

that ν1D = δX and a one-dimensional topological insulator only develops when the f and d

bands invert at the X point.

Generalizing this argument to three dimensions we see that there are now four high

symmetry points Γ, X, M and R. The f -bands are fourfold degenerate at both Γ and R points

which guarantees that δΓ = δR = +1 (Fig. 4.2b). Therefore, we see that the 3D topological

invariant is determined by band inversions at X or M points only, ν3D = (δXδM )3 = δXδM .

If there is a band inversion at the X point, we get ν3D = δXδM = −1. In this way the cubic

character of the Kondo insulator and, specifically, the fourfold degeneracy of the f -orbital

multiplet protects the formation of a strong topological insulator.

4.3 The model

We now formulate our model for cubic topological Kondo insulators. At each site, the quar-

tet of f and d -holes is described by an orbital and spin index, denoted by the combination
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λ ≡ (a, σ) (a = 1, 2, σ = ±1). The fields are then given by the eight component spinor

Ψj =

 dλ(j)

X0λ(j)

 (4.1)

where dλ(j) destroys an d-hole at site j, while X0λ(j) = |4f6〉〈4f5, λ| is the the Hubbard

operator that destroys an f -hole at site j. The tight-binding Hamiltonian describing the

hybridized f -d system is then

H =
∑
i,j

Ψ†λ(i)hλλ′(Ri −Rj)Ψλ′(j) (4.2)

in which the nearest hopping matrix has the structure

h(R) =

hd(R) V (R)

V †(R) hf (R)

 , (4.3)

where the diagonal elements describe hopping within the d- and f - quartets while the off-

diagonal parts describe the hybridization between them, while R ∈ (±x̂,±ŷ,±ẑ) is the

vector linking nearest neighbors. The various matrix elements simplify for hopping along

the z-axis, where they become orbitally and spin diagonal:

hl(z) = tl

1

ηl

 , V (z) = iV

0

σz

 . (4.4)

where l = d, f and ηl is the ratio of orbital hopping elements. In the above, the overlap

between the Γ
(1)
8 orbitals, which extend perpendicular to the z-axis is neglected, since the

hybridization is dominated by the overlap of the the Γ
(2)
8 orbitals, which extend out along the

z-axis. The hopping matrix elements in the x and y directions are then obtained by rotations

in orbital/spin space (see Section 4.4.1). so that h(x) = Uyh(z)U †y and h(y) = U−xh(z)U †−x

where Uy and U−x denote 90◦ rotations about the y and negative x axes, respectively.

The Fourier transformed hopping matrices h(k) =
∑

R h(R)e−ik·R can then be written

in the compact form

hl(k) = tl

φ1(k) + ηlφ2(k) (1− ηl)φ3(k)

(1− ηl)φ3(k) φ2(k) + ηlφ1(k)

+ εl, (4.5)
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Figure 4.2: Schematic band structure illustrating (a) 1D Kondo insulator with local cubic
symmetry and (b) 3D cubic Kondo insulator. Hybridization between a quartet of d-bands
with a quartet of f -bands leads to a Kondo insulator. The fourfold degeneracy of the f -
and d-bands at the high symmetry Γ and R points of the Brillouin zone guaranties that the
3D topological invariant is determined by the band inversions at the X and M points only.

where l = d, f . Here εl are the bare energies of the isolated d and f -quartets, while

φ1(k) = cx + cy + 4cz, φ2(k) = 3(cx + cy) and φ3(k) =
√

3(cx − cy) (cα cos kα, α = x, y, z).

The hybridization is given by

V (k) =
1

6

 3(σ̄x + iσ̄y)
√

3(σ̄x − iσ̄y)
√

3(σ̄x − iσ̄y) σ̄x + iσ̄y + 4σ̄z

 (4.6)

where we denote σ̄α = σα sin kα. Note how the hybridization between the even parity

d-states and odd-parity f -states is an odd parity function of momentum V (k) = −V (−k).

To analyze the properties of the Kondo insulator, we use a slave boson formulation of

the Hubbard operators, writing Xλ0(j) = f †λ(j)bj , where f †λ|0〉 ≡ |4f
5, λ〉 creates an f -hole

in the Γ8 quartet while b†|0〉 ≡ |4f6〉 denotes the singlet filled 4f shell, subject to the

constraint Qj = b†jbj +
∑

λ f
†
jλfjλ = 1 at each site.

We now analyze the properties of the cubic Kondo insulator, using a mean-field treat-

ment of the slave boson field bi, replacing the slave-boson operator b̂i at each site by its

expectation value: 〈b̂i〉 = b so that the f - hopping and hybridization amplitude are renor-

malized: tf → b2tf and Vdf → bVdf . The mean-field theory is carried out, enforcing the

constraint b2 + 〈nf 〉 = 1 on the average. In addition, the chemical potentials εd and εf

for both d-electrons and f -holes are adjusted self-consistently to produce a band insulator,
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Figure 4.3: Temperature dependence of the hybridization gap parameter b and the renor-
malized f -level position (inset) for various values of the bare hybridization (see Section 4.4.2
for more details).

nd + nf = 4. This condition guarantees that four out of eight doubly degenerate bands

will be fully occupied. The details of our mean-field calculation are given in the technical

Section 4.4.2. Here we provide the final results of our calculations.

In Fig. 4.3 we show that the magnitude b reduces with temperature, corresponding

to a gradual rise in the Sm valence, due to the weaker renormalization of the f -electron

level. The degree of mixed valence of Sm+ is given then by v = 3− 〈nf 〉. In our simplified

mean-field calculation, the smooth temperature cross-over from Kondo insulating behavior

to local moment metal at high temperatures is crudely approximated by an abrupt second-

order phase transition.

Fig. 4.4 shows the computed band structure for the cubic Kondo insulator obtained

from mean-field theory, showing the band inversion between the d- and f -bands at the X

points that generates the strong topological insulator. Moreover, as the value of the bare

hybridization increases, there is a maximum value beyond which the bands no longer invert

and the Kondo insulator becomes a conventional band insulator.

One of the interesting questions raised by this work concerns the many body character

of the Dirac electrons on the surface. Like the low-lying excitations in the valence and

conduction band, the surface states of a TKI involve heavy quasiparticles of predominantly

f -character. The characteristic Fermi velocity of these excitations v∗F = ZvF is renormalized
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Figure 4.4: Band structure consistent with PES and LDA studies of SmB6 computed with
the following parameters: nf = 0.48 (or b = 0.73), V = 0.05 eV,td = 2 eV, µd = 0.2 eV ,
η = η′ = −.3, εf = −0.01 eV (εf0 = −0.17 eV), tf = −.05 eV, T = 10−4 eV and the gap
is ∆ = 12 meV. Shaded region denotes filled bands. Inset shows the ground-state energy
computed for a slab of 80 layers to illustrate the three gapless surface Dirac excitations at
the symmetry points Γ̂, X̂ ′andX̂ ′′.

with respect to the conduction electron band group velocities, where Z = m/m∗ is the mass

renormalization of the f -electrons. In a band topological insulator, the penetration depth of

the surface states ξ ∼ vF /∆, where ∆ is the band-gap, scale that is significantly larger than

a unit-cell size. Paradoxically, even though the Fermi velocity of the Dirac cones in a TKI

is very low, we expect the characteristic penetration depth ξ of the heavy wavefunctions

into the bulk to be of order the lattice spacing a. To see this, we note that ξ ∼ v∗F
∆g

, where

the indirect gap of the Kondo insulator ∆g is of order the Kondo temperature ∆g ∼ TK .

But since TK ∼ ZW , where W is the width of the conduction electron band, this implies

that the penetration depth of the surface excitations ξ ∼ vF /W ∼ a is given by the size a

of the unit cell. Physically, we can interpret the surface Dirac cones as a result of broken

Kondo singlets, whose spatial extent is of order a lattice spacing. This feature is likely to

make the surface states rather robust against the purity of the bulk.

Various interesting questions are raised by our study. Conventional Kondo insulators

are most naturally understood as a in the strong-coupling limit of the Kondo lattice, where

local singlets form between a commensurate number of conduction electrons and localized
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moments. What then is the appropriate strong coupling description of topological Kondo

insulators, and can we understand the surface states in terms of broken Kondo singlets?

A second question concerns the temperature dependence of the hybridization gap. Experi-

mentally, the hybridization gap observed in Raman and transport studies [106, 110] is seen

to develop in a fashion strongly reminiscent of the mean-field theory. Could this close re-

semblance to the mean-field theory indicate that fluctuations about mean-field theory are

weaker in a fully gapped Kondo lattice than in its metallic counterpart?

To summarize, we have studied the cubic topological Kondo insulator, incorporating

the effect of a fourfold degenerate f -multiplet. There are two main effects of the quartet

states: first, that the quarter filling of the quartet allows the fractional filling of the band

favorable to strong topological insulating behavior to occur in the almost integral valent

environment of the Kondo insulator. The second effect is to double the degeneracy of the

band-states at the high-symmetry Γ and R points in the Brillouin zone, so that their net

parity is always positive, effectively removing these points from the calculation of the Z2

topological invariant so that the only important crossing must take place at the X or M

points. For the cubic topological Kondo insulators, this immediately leads to a prediction

that three heavy Dirac cones will form on the surfaces [97, 100].
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Note added in proof: After the submission of this paper, several groups [111, 112, 113]

have reported angular-resolved photoemission spectroscopy (ARPES) results that support

the presence of surface states predicted by this, and earlier papers [97, 100]. In addition,

torque magnetometry measurements [114] have observed de-Haas van Alphen oscillations

associated with the surface states of SmB6 that are consistent with a two dimensional Dirac

spectrum. The masses of the excitations seen in both sets of experiments are however,

significantly smaller than expected in the current theory. Lastly, experimental observations

of weak-antilocalization signatures in conductivity [115] as well as induced-localization of
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the metallic surface states with an addition of magnetic impurities [116] provide strong

circumstantial evidence that the the surface quasiparticles are spin-polarized, as expected

in a topological insulator.

4.4 Some additional details on the mean field

• details of the derivation of the tight-binding Hamiltonian for a cubic Kondo insulator.

• derivation of the mean-field theory for the infinite U limit

• derivation of the mean-field equations.

4.4.1 Rotation matrices

To construct the Hamiltonian, we evaluate the hopping matrices along the z-axis, and then

carry out a unitary transformation to evaluate the corresponding quantities for hopping

along the x and y axes.

Consider a general rotation operator

R = RΛ, (4.7)

where R and Λ describe rotations about a principle axis of the crystal in real and spin space

respectively. The Hamiltonian in a cubic environment is invariant under these transforma-

tions: H = RHR†. We now write the directional dependence of the Hamiltonian explicitly.

Consider a tight-binding Hamiltonian of the form

Ĥ =
∑

X,r∈{±x̂,±ŷ,±ẑ}

Ψ†(X + r)h(r)Ψ(X) (4.8)

where X are the positions of atoms and r the relative positions. Under a rotation, the fields

transform as

Ψ†(X)→ Ψ†(Rx)Λ (4.9)

so that the Hamiltonian transforms as follows,

Ĥ →
∑

X,r∈{±x̂,±ŷ,±ẑ}

Ψ†(R(X + r))Λh(r)Λ†Ψ(RX)
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=
∑

X,r∈{±x̂,±ŷ,±ẑ}

Ψ†(X + r)Λh(R−1r)Λ†Ψ(X) = H, (4.10)

from which we deduce that the tight-binding matrix elements satisfy

h(Rr) = Λh(r)Λ†, (4.11)

Now we employ a right-handed rotation R around the (1,1,1) direction through angle 2π/3,

which cyclically rotates the unit vectors as follows: x̂ → ŷ → ẑ → x̂, so that x̂ = Rẑ and

ŷ = R−1ẑ. It follows that the hopping matrix elements along the x̂ and ŷ directions can be

determined as follows

h(x̂) = Λh(ẑ)Λ†, h(ŷ) = Λ†h(ẑ)Λ. (4.12)

In the above expression, the rotation in the counter-clockwise direction R−1 is accomplished

by noting that Λ−1 = Λ†. Provided we are dealing with simply nearest neighbor hopping,

then in momentum space, the 3D tight-binding Hamiltonian must take the following form

H3D(k) ≡ H3D(kx, ky, kz) = H1D(kz) + ΛH1D(kx)Λ† + Λ†H1D(ky)Λ, (4.13)

where

H1D(kz) = h(ẑ)e−ikz + h(−ẑ)eikz (4.14)

is the one-dimensional tight-binding Hamiltonian for hopping along the z-axis. To proceed

further we need an explicit form of Λ,

Λ = e−iαJze−iβJye−iγJz . (4.15)

Here, the rotation operator Λ is written in the ”ZYZ” convention, corresponding to a

rotation around the z-axis, followed by a rotation around the y-axis, and then the new

z-axis. The matrix elements of this operator are given by Wigner D-functions

Dj
m′m = 〈jm′|Λ|jm〉 = e−im

′α−imγd(j,m′,m, β).

d(j,m′,m, β) =
∑

k(−1)k+m′−m
√

(j+m)!(j−m)!(j+m′)!(j−m′)!
(j−m′−k)!(j+m−k)!(k+m′−m)!k!(

cos β2

)2j+m−m′−2k (
sin β

2

)m′−m+2k

For J = 5/2 we obtain Λ(j=5/2) = D
5/2
mm′(0, π/2, π/2), and for d-states (L, s) = (2, 1

2),

Λ(j=2) = D2
mm′ ⊗D

1/2
mm′(0, π/2, π/2). One can now obtain the transformation matrices for
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a given multiplet (eg, t2g,Γ8 etc) by taking inner product Mij = 〈i|Λx|j〉. For example eg

multiplet |j〉 = |eg : m〉 ≡
{
|dx2−y2 ↑〉, |dx2−y2 ↓〉, |dz2 ↑〉, |dz2 ↓〉

}
Md
nm = 〈eg : n|Λ|eg : m〉. (4.16)

Similarly for the Γ8 quartet. In the end of the day the rotation is performed by the same

matrix Mmn. This is due to the similar symmetry of Γ8 and eg,

Md
mn = Mf

mn = e
−iπ
4

1

2
√

2



−1 −i
√

3 i
√

3

1 −i −
√

3 i
√

3

−
√

3 −i
√

3 −1 −i
√

3 −i
√

3 1 −i


. (4.17)

Note that the rotation cyclically exchanges x → y → z → x, thus applying it three times

gives overall ”−1” due to fermionic statistics.

Λ =

Mmn

Mmn

 and Λ3 = −1. (4.18)

Now , we can use (4.18) in (4.13) to derive the Hamiltonian defined in (5) and (6) of the

main paper. The tight-binding matrix element for hopping along the z-axis is given by

H1D(k) =

Hd1D(k) V1D(k)

V1D(k) Hf1D(k)

 (4.19)

Hl1D(k) =

2tl cos k + εl

3

ηl2t
l cos k + εl

3

 , (l = d, f) (4.20)

V1D(k) = V

0

σz

 sin k (4.21)

where the εl are the bare energies of the isolated d and f -quartets, and the factor of 1/3 is

chosen so that when we sum over 1D Hamiltonians in the x, y and z directions we get εl.

Notice also the odd-parity in the hybridization.

Carrying out the Unitary transformations on the hybridization, we obtain where we

have introduced the short-hand σ̄α = σα sin kα, so that σ̄z ≡ σz sin kz The rotation to the x
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and y-axis then gives

M †V1D(kx)M =
V

4

−3σ̄x
√

3σ̄x
√

3σ̄x −σ̄x

 , (4.22)

MV1D(ky)M
† =

V

4

 −3σ̄y −
√

3σ̄y

−
√

3σ̄y −σ̄y

 . (4.23)

so that

V3D(k) = V1D(kz) +M †V1D(kx)M +MV1D(ky)M
† = (4.24)

=
V

4

−3(σ̄y + σ̄x)
√

3(σ̄x − σ̄y)
√

3(σ̄x − σ̄y) −(σ̄y + σ̄x) + 4σ̄z

 (4.25)

and similarly,

Hl3D(k) = Hl1D(kz) +M †Hl1D(kx)M +MHl1D(ky)M
† = (4.26)

=
tl

2

φ1(k) + ηlφ2(k) (1− ηl)φ3(k)

(1− ηl)φ3(k) φ2(k) + ηlφ1(k)

+ εl, (4.27)

with φ1(k) = cx + cy + 4cz, φ2(k) = 3(cx + cy) and φ3(k) =
√

3(cx − cy) (cα = cos kα, α =

x, y, z).

4.4.2 Details of the mean-field theory

The full Hamiltonian for the problem also contains a term describing the local Hubbard

interaction between the f -electrons:

Hf = U
∑
i

4∑
α=1

∑
β 6=α

f †iαfiαf
†
iβfiβ (4.28)

Consider the limit U → ∞. In this limit we can project out all states with occupation

number larger than one by replacing the bare f -electron fields by Hubbard operators, which

we represent using a slave boson representation, as follows:

f †iα → Xα0(i) = f †iαbi, fiα → X0α(i) = b†ifiα, (4.29)

supplemented by a constraint of no more than one f -electron per each site (U =∞):

4∑
α=1

f †iαfiα + b†ibi = 1. (4.30)
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The partition function corresponding to the model Hamiltonian H = Hc+Hf +Hhyb above

and with constraint condition (4.30) reads :

Z =

π/β∫
−π/β

βdλ

π

∫
D(b, b†, f, f †, c, c†) exp

− β∫
0

L(τ)dτ

 , (4.31)

where Lagrangian L(τ) is

L =
∑
i

b†i
d

dτ
bi +

∑
ij

4∑
α,β=1

f †iα

[
δijδαβ

(
d

dτ
+ εf

)
+ bit

(f)
ij,αβb

†
j

]
fjβ

+
∑
kσ

2∑
a,b=1

c†akσ

(
d

dτ
+ ε

(d)
ab (k)

)
cbkσ

+
1

2

∑
〈ij〉

∑
kσ

2∑
a=1

4∑
β=1

(
Viaσ,jβc

†
aiσb

†
ifjα + h.c.

)
+
∑
j

iλj

(
4∑

α=1

f †jαfjα + b†jbj − 1

) (4.32)

Mean-field (saddle-point) approximation corresponds to the following values of the bosonic

fields:

bq(τ) = bδq,0, iλq(τ) = (Ef − εf )δq,0, (4.33)

where both a and εf are τ -independent. In the mean-field theory we choose a “radial”

gauge where the the phase of the b-field has been absorbed into the f -electron fields. Also,

for an insulator, we need a filled quartet of states at each site, so that

nc + nf = 4. (4.34)

Note, the parameter b also renormalizes the f -hopping elements. Indeed, it follows that

when i 6= j, f †iαfjβ → Xα0(i)X0β(j) = f †iαbib
†
jfjβ. However, the on site occupancy is

unrenormalized by the slave boson fields, since in the infinite U limit, the on site occupancy

Xαα(i) = f †iαfiα.

The first three terms together with the last term in the Lagrangian (4.32) can be written

using the new fermionic basis and (4.33). It follows:

L0(τ) = (b2 − 1)(Ef − εf ) +
∑
kα

2∑
n=1

f̃ †nkα

(
d

dτ
+ E

(f)
nk

)
f̃nkα+

+
∑
kσ

2∑
a=1

d†akσ

(
d

dτ
+ E

(d)
ak

)
dakσ

(4.35)
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where the renormalized f -electron dispersion is

E
(f)
nk = Ef + 2tfb

2
(
cx + cy + cz + (−1)n

√
c2
x + c2

y + c2
z − cxcy − cycz − czcx

)
, (4.36)

n = 1, 2.

Correspondingly, the hybridization matrix in the new fermionic basis can be obtained via

unitary transformation with the matrix

Uk =



uk 0 vk 0

0 uk 0 vk

−vk 0 uk 0

0 −vk 0 uk


, U−1

k =



uk 0 −vk 0

0 uk 0 −vk

vk 0 uk 0

0 vk 0 uk


(4.37)

Thus we need to calculate the elements of the matrix

H̃V = iVdf
b

2

∑
k

d̂†kU
−1
k Hhyb(k)Ukf̃k + h.c. (4.38)

We can use the following relations

u2
k − v2

k =
cx + cy − 2cz

2Rk
, ukvk =

√
3

4Rk
(cx − cy). (4.39)

In our subsequent discussion it will be convenient to write H̃V (k) in a more compact form.

To derive the corresponding expression we first recall that Hhyb can be written as follows

Hhyb(k) = iVdf
b

2

[
φ̂x(k)⊗ σ̂x + φ̂y(k)⊗ σ̂y + φ̂z(k)⊗ σ̂z

]
, φ̂α = φα0 τ̂0 + φα1 τ̂z + φα2 τ̂x,

~φ0 =
2

3
(sin kx,− sin ky, sin kz), ~φ1 =

1

3
(sin kx,− sin ky,−2 sin kz),

~φ2 = +
1√
3

(sin kx, sin ky, 0).

(4.40)

Again, note the change from minus sign to plus sign in front of ~φ2 term. This yields the

agreement with the hybridization Hamiltonian obtained from the rotations method. We

also have

Ûk = ukτ̂0 ⊗ σ̂0 + ivkτ̂y ⊗ σ̂0, Û−1
k = ukτ̂0 ⊗ σ̂0 − ivkτ̂y ⊗ σ̂0, (4.41)

After some algebra I find

Û−1
k (τ̂0 ⊗ σ̂x) Ûk = τ̂0 ⊗ σ̂x,

Û−1
k (τ̂z ⊗ σ̂x) Ûk = (u2

k − v2
k)(τ̂z ⊗ σ̂x) + 2ukvk(τ̂x ⊗ σ̂x),

Û−1
k (τ̂x ⊗ σ̂x) Ûk = (u2

k − v2
k)(τ̂x ⊗ σ̂x)− 2ukvk(τ̂z ⊗ σ̂x).

(4.42)
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These results become much more transparent if we express uk and vk in terms of the angle

θk:

uk = cos(θk/2), vk = sin(θk/2). (4.43)

Then we see that

Û−1
k

(
φ̂x(k)⊗ σ̂x

)
Ûk = Φ̂x(k)⊗ σ̂x, (4.44)

where now

Φ̂x = Φx
0 τ̂0 + Φx

1 τ̂z + Φx
2 τ̂x, Φx

0 = φx0 ,

Φx
1

Φx
2

 =

cos θk − sin θk

sin θk cos θk

φx1
φx2

 (4.45)

Similarly, we find

Û−1
k

(
φ̂y(k)⊗ σ̂y

)
Ûk = Φ̂y(k)⊗ σ̂y, Û−1

k

(
φ̂z(k)⊗ σ̂z

)
Ûk = Φ̂z(k)⊗ σ̂z,

Φ̂y = Φy
0 τ̂0 + Φy

1 τ̂z + Φy
2 τ̂x, Φy

0 = φy0,

Φy
1

Φy
2

 =

 cos θk sin θk

− sin θk cos θk

φy1
φy2

 ,

Φ̂z = Φz
0τ̂0 + Φz

1τ̂z + Φz
2τ̂x, Φz

0 = φz0,

Φz
1

Φz
2

 =

cos θk − sin θk

sin θk cos θk

φz1
φz2

 .

(4.46)

Thus, we can re-write (4.38) as follows

H̃V = iVdf
b

2

∑
k

d̂†kα[Φ̂k]αβ f̃kβ + h.c., Φ̂k = Φ̂x(k)⊗ σ̂x + Φ̂y(k)⊗ σ̂y + Φ̂z(k)⊗ σ̂z (4.47)

Next we derive the mean-field equations.

4.4.3 Derivation of the mean-field equations

To derive the mean field equations we first integrate out d-electrons by making the following

change of variables in the path integral:

d̂†k → d̂†k + f̂ †kΦ̂†kĜd(iω,k), d̂k → d̂k + Ĝd(iω,k)Φ̂kf̂k,

Ĝ−1
d (iω,k) =



iω − E(d)
1k 0 0 0

0 iω − E(d)
1k 0 0

0 0 iω − E(d)
2k 0

0 0 0 iω − E(d)
2k


(4.48)
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Then the resulting action is Gaussian and the f -electrons can be integrated out. This yield

the effective action of the form

Seff = (b2 − 1)(Ef − εf )− T
∑
iω

∑
k

log det
[
Ĝ−1
ff (iω,k)

]
, (4.49)

Ĝ−1
ff = Ĝ−1

f (iω,k)− (Vdf
b

2
)2Φ̂†kĜd(iω,k)Φ̂k (4.50)

The renormalized f -electron correlation function Ĝ−1
ff has a block diagonal form:

Ĝ−1
ff =

(Vdfb)
2

4
× (4.51)

G−1
1f (iω,k) 4

(Vdf b)2
0 − ∆1k

iω−E(d)
1k

− ∆2k

iω−E(d)
2k

− ∆̃1k

iω−E(d)
1k

− ∆̃2k

iω−E(d)
2k

0 G−1
1f (iω,k) 4

(Vdf b)2
∆̃∗1k

iω−E(d)
1k

+
∆̃∗2k

iω−E(d)
2k

− ∆∗1k
iω−E(d)

1k

− ∆∗2k
iω−E(d)

2k

− ∆∗1k
iω−E(d)

1k

− ∆∗2k
iω−E(d)

2k

∆̃1k

iω−E(d)
1k

+ ∆̃2k

iω−E(d)
2k

G−1
2f (iω,k) 4

(Vdf b)2
0

− ∆̃∗1k
iω−E(d)

1k

− ∆̃∗2k
iω−E(d)

2k

− ∆1k

iω−E(d)
1k

− ∆2k

iω−E(d)
2k

0 G−1
2f (iω,k) 4

(Vdf b)2


,

where the diagonal elements are given by

G−1
1f (iω,k) = iω − E(f)

1k − (Vdf
b

2
)2

[
Φ

(+)
1k

iω − E(d)
1k

+
Φ2k

iω − E(d)
2k

]
,

G−1
2f (iω,k) = iω − E(f)

2k − (Vdf
b

2
)2

[
Φ2k

iω − E(d)
1k

+
Φ

(−)
1k

iω − E(d)
2k

] (4.52)

and we have introduced the following functions

Φ
(±)
1k = (Φx

0 ± Φx
1)2 + (Φy

0 ± Φy
1)2 + (Φz

0 ± Φz
1)2, Φ2k = (Φx

2)2 + (Φy
2)2 + (Φz

2)2,

∆1k = Φz
2(Φz

0 + Φz
1) + (Φx

2 + iΦy
2)[Φx

0 + Φx
1 − i(Φ

y
0 + Φy

1)],

∆2k = Φz
2(Φz

0 − Φz
1) + (Φx

2 − iΦ
y
2)[Φx

0 − Φx
1 + i(Φy

0 − Φy
1)],

∆̃1k = (Φx
2 − iΦ

y
2)(Φz

0 + Φz
1)− Φz

2[Φx
0 + Φx

1 − i(Φ
y
0 + Φy

1)],

∆̃2k = Φz
2[Φx

0 − Φx
1 − i(Φ

y
0 − Φy

1)]− (Φx
2 − iΦ

y
2)(Φz

0 − Φz
1)

(4.53)

Then the determinant of the matrix Ĝff is

det
[
Ĝ−1
ff (iω,k)

]
=
{
G−1

1f (iω,k)G−1
2f (iω,k)

−(Vdf
b

2
)4

(
∆1k

iω − E(d)
1k

+
∆2k

iω − E(d)
2k

)(
∆∗1k

iω − E(d)
1k

+
∆∗2k

iω − E(d)
2k

)

−(Vdf
b

2
)4

(
∆̃1k

iω − E(d)
1k

+
∆̃2k

iω − E(d)
2k

)(
∆̃∗1k

iω − E(d)
1k

+
∆̃∗2k

iω − E(d)
2k

)}2

.

(4.54)
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Furthermore, we find that

|∆1k|2 + |∆̃1k|2 = Φ
(+)
1k Φ2k, |∆2k|2 + |∆̃2k|2 = Φ

(−)
1k Φ2k (4.55)

so that certain terms in the expression (4.54) will cancel. Therefore, to derive the mean

field equation we will need to find a minimum of the following effective action:

Seff = (b2− 1)(Ef − εf )− 2T
∑
iω

∑
k

log[P4k(iω;Ef , a)], P4k(iω) =
4∏
i=1

(iω− εik). (4.56)

where we have introduced the polynomial:

P4k(iω) = (iω − E(f)
1k )(iω − E(f)

2k )(iω − E(d)
1k )(iω − E(d)

2k ) + (Vdf
b

2
)4γ4

k−

− (Vdf
b

2
)2
{

[Φ2k(iω − E(f)
1k ) + Φ+

1k(iω − E(f)
2k )](iω − E(d)

2k )
}

− (Vdf
b

2
)2
{

[Φ2k(iω − E(f)
2k ) + Φ−1k(iω − E(f)

1k )](iω − E(d)
1k )
}
,

γ4
k = Φ+

1kΦ−1k + Φ2
2k −∆1k∆∗2k −∆∗1k∆2k − ∆̃1k∆̃∗2k − ∆̃∗1k∆̃2k.

(4.57)

Thus, two of the three mean field equations are formally given by

∂Seff
∂Ef

= 0,
∂Seff
∂a

= 0. (4.58)

We have

b2 − 1 + 2

4∑
i=1

∑
k

f(εik)nF (εik)∏
l 6=i

(εik − εlk)
= 0, nF (x) =

1

eβx + 1
, (4.59)

where the function f(ε) is:

f(λ) = 2λ3 − λ2[2(E
(d)
1k + E

(d)
2k ) + E

(f)
1k + E

(f)
2k ]

+ λ[2E
(d)
1k E

(d)
2k + (E

(d)
1k + E

(d)
2k )(E

(f)
1k + E

(f)
2k )− (Vdf

b

2
)2(Φ+

1k + Φ−1k + 2Φ2k)]

+ (Vdf
b

2
)2[(Φ2k + Φ−1k)E

(d)
1k + (Φ2k + Φ+

1k)E
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(4.60)

The derivation of the last mean-field equation can be compactly written as follows:

8(Ef − εf ) + 2
4∑
i=1

∑
k

∂εik
∂Ef

nF (εik) = 0. (4.61)
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Chapter 5

End states of 1D Kondo topological Insulator

In this chapter we will begin the effort to solve one of the mysteries of the first Kondo

topological insulator, SmB6. Recent measurements unambiguously show that the Dirac

(crossing) point is not located in the bulk but buried deep in the valence band. Con-

ventionally the crossing should be in the gap and velocity is controlled by the ratio of

hybridization strength and the conduction electron bandwidth. This ratio is small for

all Kondo materials. Yet experimentally the velocity is very large.

In order to understand SmB6 we studied a much simpler, one dimensional model.

The hope is to find a interacting regime which explains anomalous behavior. Here we

present the phase diagram of the model, where we can clearly see the large enhancement

of surface velocity and penetration depth. Our study is of course limited to large N

approximation and could be very specific for one dimension.

One of the effects to emerge in our treatment is a reconstruction of the Kondo

screening process near the boundary of the material, ”Kondo band bending” (KBB).

This process takes into account the effect of interactions. In the mean field theory ap-

proach KBB is equivalent to inhomogeneities in the renormalized mean field constants:

fluctuations that grow as one approaches the boundary.

This chapter is in part based on my paper with Piers Coleman [117] that is currently

accepted for publication in Phys. Rev. Ba.

aIt can be found online as a preprint: arXiv:1403.6819

5.1 ”Too-fast” surface states

As observed in the laboratory, the velocity of the surface states of SmB6 is that of a conduc-

tion electron. This is going against all the predictions originating from numerical modeling
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and mean field theory approximation.

Conventionally the Dirac (crossing) point of surface states is located inside the gap.

Up to a numerical factor of order unity we can simply estimate the surface state velocity

vss = ∂E(k)/∂k (assuming nearly linear generic dispersion of surface state E(k)) as the

ratio of the gap (∆g) and 2kF , where the Fermi momentum kF is defined before the gap

opens, at for instance higher temperatures. It is safe to approximate kF as a half-Brillouin

zone. The final estimate simply looks like

vss ∼ a∆g/π (5.1)

where a is a lattice constant. For concreteness let us plug in the typical numbers: the gap

is of order 10meV and a is of order 5Å

(for SmB6) vss ∼ 0.05 eV Å (5.2)

Note that units are not m/s, but eV Å, 6 eV Å= 106 m/s is equal to the speed of conduction

electron in most materials.

6 eV Å= 106 m/s

I depict this situation in Fig. 5.1a.

(a) (b)

Figure 5.1: Schematic representation of a valence and conduction bands (in solid green and
blue color) and surface state (solid red color). (a) Usual crossing point and (b) unusual
crossing point outside the gap. In the unusual case (b) yellow color indicates that the states
are not observable as they are mixed with delocalized states of the bulk.

However the only way for the observed velocity to be high is to originate from a Dirac

(crossing) point well below Fermi energy, in the conduction or valence band. This situation
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is depicted in Fig. 5.1b. The solid red color represents a localized surface state. Note

that once the surface state dips into the valence band the localized electron are mixed with

delocalized conduction electrons and one looses the definition of surface state altogether

(depicted with a blurred out yellow color).

5.1.1 Experiments

There are numerous angle resolved photoemission (ARPES) experiments become available

recently. One of the result of the first ARPES [118] is reproduced in Fig. 5.2, in the

experiment the measured velocity is of order 0.3 eVÅ.

Figure 5.2: Reproduced from [118]. (left) A Fermi surface map of bulk insulating SmB6

using a 7 eV laser source at a sample temperature of 6K, which captured all the low energy
states between 0 and 4 meV binding energies. The dashed lines around X and Γ points
are guides to the eye. Inset shows a schematic of Fermi surface. (right) Dispersion of the
low-lying states and the corresponding momentum distribution curves near the Γ pocket

Another experiment was done by analyzing quantum oscillation pattern. Magnetic mea-

surement allow to identify the size of the Fermi pockets and dispersion. I reproduced the

results form the original paper [114] in Fig. 5.3. The results for surface mode velocity were

even more drastically different from predictions. G. Li at al found velocity to be in the

range of 3 to 6 evÅ, another order of magnitude higher than ARPES measurement.

5.2 One dimensional model

To gain further insight into the properties of interacting topological insulators,

we study a one-dimensional model of topological Kondo insulators which can be
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Figure 5.3: The field dependence magnetic torque τ for SmB6. The τ(H) curve is overall
quadratic, reflecting the paramagnetic state of samples. Oscillating patterns are observed
in magnetic field larger than 6T. The inset is the sketch of the measurement setup. The
sample stage is rotated to tilt magnetic field H in the crystalline a c plane. The magnetic
field is applied to the sample with a tilt angle φ relative to the crystalline c axis.

regarded as the strongly interacting limit of the Tamm-Shockley model. Treating

the model in a large N expansion, we find a number of competing ground-

state solutions, including topological insulating and valence bond ground-states.

One of the effects to emerge in our treatment is a reconstruction of the Kondo

screening process near the boundary of the material (“Kondo band bending”).

Near the boundary for localization into a valence bond state, we find that the

conduction character of the edge state grows substantially, leading to states

that extend deeply into the bulk. We speculate that such states are the one-

dimensional analog of the light f -electron surface states which appear to develop

in the putative topological Kondo insulator, SmB6.

5.3 Goals

Topological insulators [119, 11, 14, 120, 17, 121, 6, 7, 12, 122, 123] have attracted great

attention as a new class of band insulator with gapless surface or edge states, robustly

protected by combination of time-reversal symmetry and the non-trivial topological winding

of the occupied one-particle wavefunctions. The surface states of a topological insulator are

“massless” excitations carried by an odd number of Dirac cones in the Brillouin zone.
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Various proposals have been made for strongly correlated electron analogues[124, 96, 125,

126, 127, 128, 129, 9] of topological band insulators. To date the best candidate strongly

correlated topological insulator is SmB6, a local moment metal which transforms into a

Kondo insulator, once the moments are screened at low temperatures (< 70K) [25]. This

material was first predicted to be a topological Kondo insulator [96] and recently shown to

exhibit conducting in-gap surface states, which develop below 4K [101, 102, 103]. While

these results are consistent with a topological Kondo insulator, a definitive observation of

Dirac cone excitations with polarized quasiparticles has not yet been reported. However,

tentative data of the Dirac cone surface states have become available in both quantum oscil-

lation [130] and ARPES measurements[118, 131, 132, 133]. One of the unexpected features

of these measurements is the presence of “light”, high-velocity surface quasiparticles, with

the Dirac point far outside the gap. These tentative results are puzzling, because their

group velocities appear 10 to 100 times larger than that expected in a heavy fermion band

[134, 88].

These results provide motivation for the current chapter. Here we introduce a simple

one dimensional “p-wave Kondo lattice” which gives rise to a topological Kondo insulator

that can be studied by a variety of methods. In this initial study we carry out the simplest

mean-field treatment of our model, an approach which is technically exact in the large N

limit, using it to gain insight into the nature of the edge states and to propose variational

ground-states for the model. This work is also an important warm-up exercise for a three

dimensional model. The model is schematically depicted in Fig. 5.4. It can be regarded as

a strongly interacting limit of the Tamm-Shockley model [135, 10, 136].

A second goal of this work is to gain insight into the impact of the boundary on the

Kondo effect, a phenomenon we refer to as “Kondo band bending”. In the conventional

Kondo insulator model, the hybridization between local moments and conduction electrons

is local and the strong-coupling ground state involves a Kondo singlet at every site, with

minimal boundary effects. In the case of non-trivial topology the Kondo singlets are non-

local objects [137, 138, 139] (Fig. 5.4) which are partially broken at the boundary. We seek

to understand how this influences the Kondo effect and the character of the edge states at

the boundary.
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Figure 5.4: Schematic illustration of the 1D p-wave Kondo insulator Hamiltonian (5.3). The
model contains a chain of Heisenberg spins coupled by an antiferromagnetic nearest neighbor
Heisenberg coupling, plus a tight-binding chain of conduction electrons (c). Each localized
moment is coupled to the conduction sea via a Kondo “cotunneling” term that exchanges
spin between a localized moment at site j and a p-wave combination of conduction electron
states formed between neighboring sites j − 1 and j + 1.

.

5.4 The model

Our model describes a conduction electron fluid interacting with an antiferromagnetic

Heisenberg spin chain via a Kondo co-tunneling term with p-wave character. The Hamil-

tonian is given by

H = Hc +HH +HK , (5.3)

where

Hc = −t
∑
jσ

(c†j+1σcjσ + H.c), (5.4)

HH = JH
∑
i

Sj · Sj+1, (5.5)

HK =
∑
j,αβ

JK(j)

2
Sj ·p†jασαβpjβ. (5.6)

Here the site index runs over the length of the chain, j ∈ [1, L], t is the nearest neighbor

hopping matrix element, JH is a nearest neighbor Heisenberg coupling and JK(j) is the

Kondo coupling at site j. The chemical potential of the conduction electrons has been set

to zero, corresponding to a half-filled conduction band. In contrast to the conventional ’s-

wave’ Kondo model, here the Kondo effect is non-local. In particular, the electron Wannier
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states that couple to the local moment have p-wave symmetry

pjσ ≡ cj+1σ − cj−1σ. (5.7)

The Kondo coupling now permits the process of “co-tunneling” whereby an electron can

hop across a spin as it flips it. The odd-parity co-tunneling terms are a consequence of

the underlying hybridization with localized p-wave orbitals. When this hybridization is

eliminated via a Schrieffer-Wolff transformation, the resulting Kondo interaction contains

an odd-parity form factor.

The boundary spins have a lower connectivity, giving rise to a lower Kondo temperature

which tends to localize them into a magnetic state. To examine these effects in greater

detail, we take the Kondo coupling JK(j) = JK to be uniform in the bulk, but to have

strength αJK at the boundary,

JK(j) =

 αJK endpoints (j = 1 or L),

JK bulk (j ∈ [2, L− 1]).
(5.8)

By allowing the end couplings to be enhanced by a factor α we can crudely compensate for

the localizing effect of the reduced boundary connectivity. In real 3D Kondo insulators, this

surface enhancement effect (“Kondo band-bending”) would occur in response to changes

in the valence of the magnetic ions near the surface. For Sm and Yb Kondo insulators,

the valence of the surface ions is expected to shift to a more mixed valent configuration,

enhancing α, while in Ce Kondo insulators, the opposite effect is expected.

To formulate the model as a canonical field theory, we rewrite the spin Sj using Abrikosov

pseudo-fermions fjσ, as

Sj =
∑
σσ′

f †jσσσσ′fjσ′ , (5.9)

with the associated “Gutzwiller” constraint nf,j = 1 at each site. After applying the

completeness relations for the Pauli matrices in (5.6) we obtain the Coqblin-Schrieffer form

of the Kondo interaction,

HK = −
∑
jαβ

JK(j)
(
f †jαpjα

)(
p†jβfjβ

)
, (5.10)
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where we have imposed the constraint. In an analogous fashion, the local moment interac-

tion (5.5) can be re-written as

HH = −JH
∑
jαβ

(f †j+1αfjα)(f †jβfj+1β). (5.11)

If we now cast the Hamiltonian inside a path integral, we can factorize the Kondo and

Heisenberg interactions using a Hubbard-Stratonovich decoupling,

H → Hc +
∑
jσ

[
V̄j(c

†
j+1σ − c

†
j−1σ)fjσ + H.c.+

|Vj |2

JK(j)

]

+
∑
jσ

[
∆jf

†
j+1σfjσ + H.c. +

|∆j |2

JH

]
+
∑
j

λj(nf,j − 1), (5.12)

with the understanding that auxiliary fields Vi, ∆j and λj are fluctuating variables, in-

tegrated within a path integral. The last term imposes the constraint nf,j = 1 at each

site.

In this formulation of the problem Vi determines the Kondo hybridization on site i and

∆i is the order parameter for resonating valence bond (RVB)-like state formed on the link i

between local moments. In translating our mean-field results back into the physical subspace

of spins and electrons it is important to realize that the f -electron operators (which are

absent in the original spin formulation of the model) represent composite fermions that

result from the binding of spin flips to conduction electrons as part of the Kondo effect. By

comparing (10) with (4), we see that the f -electron represents the following (three-body)

contraction between conduction and spin operators:

Sj · σαβpjβ ≡
(

2V̄

JK

)
fjα,

p†jβσβα · Sj ≡
(

2V

JK

)
f †jα. (5.13)

At low energies, these bound-state objects behave as independent electron states, injected

into the conduction sea to form a filled band and create a Kondo insulator.
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5.4.1 Homogeneous mean field approximation

In the homogeneous mean field treatment of the Hamiltonian (5.12) we assume that the

bulk fields Vj , ∆j and λj are constants. The saddle-point Hamiltonian then becomes a

translationally invariant tight binding model. For periodic boundary conditions, taking

∆j = ∆, Vj = V , we obtain

H = HTB + L

(
|V |2

JK
+
|∆|2

JH
− λ
)
. (5.14)

HTB can be written in momentum space as

HTB =
∑
k

(c†kσ, f
†
kσ)

H(k)︷ ︸︸ ︷−2t cos k −2iV̄ sin k

2iV sin k 2∆ cos k + λ

ckσ
fkσ

 . (5.15)

This model is represented schematically in Fig. 5.5(a).

Figure 5.5: Illustrating the tight-binding model. (a) Real space structure. (b) Dispersion
of quasiparticles, showing band inversion at k = π(5.15)
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5.4.2 Large N limit

The mean-field treatment replaces the hard constraint nf = 1 by an average 〈nf 〉 = 1 at

each site. This replacement becomes asymptotically exact in a large N extension of the

model, in which the fermions have N possible spin flavors, σ ∈ [1, N ]. Provided all terms

in the Hamiltonian grow extensively with N, the path integral can be rewritten with an

effective Planck constant ~eff = 1/N which suppresses quantum fluctuations as N → ∞

and ~eff → 0. To scale the model so that the Hamiltonian grows extensively with N , we

replace

JH → JH/N, JK → JK/N, (5.16)∑
j

λ(nf,j − 1)→
∑
j

λ(nf,j −Q). (5.17)

where the last term imposes nf,j = Q rather than unity at each site. We shall examine the

case where Q = N/2, corresponding to a particle-hole symmetric Kondo lattice. We shall

restrict our attention to solutions where λ = 0, which gives rise to an insulating state in

which both the conduction and f -bands are half-filled.

5.4.3 Topological class D

The mean-field Hamiltonian (5.15) can be classified according to the periodic table of free

fermion topological phases[140, 123, 141]. The particle hole symmetry Ξ : ΞH(k)Ξ† =

−HT (k) is equivalent to the transformation ck → c†π−k, fk → f †π−k. In the two band basis

of Hamiltonian (5.15) Ξ = τz, where τ denotes a Pauli matrix acting in orbital space.

According to the periodic table, symmetric Ξ corresponds to class D.

One way to see the non-trivial topology is to observe the evolution of the Hamiltonian

throughout the Brillouin zone by writing it as a vector in three dimensional space: H(k) =

~h(k) · ~τ + ε0(k) with ε0(k) = (∆− t) cos k. For real V ,

~h(k) =


0

2V sin k

−(∆ + t) cos k

 .

At k = 0 and k = π, the vector ~h(k) aligns along the ẑ axis: if the sign of the scalar product
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~h(0) · ~h(π) of the two vectors is positive, vector ~h(k) traces a simply-connected path on

the 2-sphere that may be contracted to a point, so the phase is topologically trivial. By

contrast, a negative sign corresponds to a topologically non-trivial path that connects the

poles of the sphere, indicating the topological phase. This can be summarized as

(−1)ν = sign(~h(0) · ~h(π)), (5.18)

where ν = 0 for trivial and ν = 1 for topological phases. In our model ~h(0)·~h(π) = −(t+∆)2

and hence ν = 1 for any uniform solution with finite V .

The consequence of the topological invariance can be seen in the non-zero electric po-

larization P . A particle-hole transformation reverses the polarization, and since the Hamil-

tonian is invariant under this transformation it follows that ΞPΞ† = −P , allowing only

two possible values of polarization: P = 0 or P = e/2 since P is defined modulo e. This

is in fact the topological index of the chain. P can be computed via the Berry connection

Ak = i〈uk|∂k|uk〉[142] of the occupied bands, defined via periodic part of the Bloch function,

uk.

P = e

∫ 2π

0

dk

2π
Ak =

 e/2 topological

0 trivial
. (5.19)

The validity of this relation depends on the use of a smooth Berry connection Ak, which

usually requires that we carry out a gauge transformation on the raw eigenstates. For

example, consider the special case where t = ∆ = V . The negative energy eigenstates then

take the form ψk = (cos(k/2),−i sin(k/2))eiφ(k): choosing φ(k) = k/2, the eigenstates then

become continuous. If the orbital basis is centro-symmetric, the Berry phase only depends

on ψk: Ak = i〈uk|∂k|uk〉 = iψ†k∂kψk. Computing the Berry connection, we obtain

Ak = ie−ik/2
(
cos k2 , i sin k

2

)
∂k

 cos(k/2)

−i sin(k/2)

 eik/2

= 1
2(cos2(k/2) + sin2(k/2)) = 1

2

so that

P = e

∫ 2π

0

dk

2π
Ak =

e

2
,

resulting in a non-trivial half integer charge (per spin component) on the edge.
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5.4.4 Edge states

The key property of topological insulators and superconductors is that at the particle-hole

symmetric point, they develop zero energy edge states. A single non-degenerate state at

zero energy can not be shifted up (or down) because particle-hole symmetry would then

require at least two states with opposite energies, developing out of the single zero energy

mode.

Though our ultimate goal is to consider non-uniform mean field solutions, we begin by

examining the form of the topologically protected edge states for the mean-field Kondo

lattice (5.15) with constant bond parameters. There is an interesting relationship with the

topological Kitaev model[143], which we now bring out. The Kitaev model involves the

formation of a “canted” valence-bond solid between nearest neighbor Majorana fermions,

formed from symmetric and antisymmetric combinations of particles and holes, as shown

in Fig. 5.6a. The edge states are then the Majorana fermions that are unable to form

bonds. We shall show that at the special point where the all bond strengths are equal, the

mean-field Kondo model involves the formation of a similar canted valence bond structure

between antisymmetric and symmetric combinations of f and conduction electrons as shown

in Fig. 5.6b.

(a)

c+c††

c-c††
(b)

Figure 5.6: (a) Majorana decomposition of Kitaev model; (b) t = ∆ = V limit of the tight
binding model (5.15)

To demonstrate the edge state wave function we can choose f and c hopping to be

equal t = ∆, keeping the hybridization as a free parameter. The Hamiltonian (5.15) can be

rewritten in the following simple form:

H(∆=t) = (∆ + V )
∑
jσ

(s†j+1σajσ + H.c.)

+ (∆− V )
∑
jσ

(s†j−1σajσ + H.c), (5.20)
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where

ajσ = (fjσ − cjσ)/
√

2, (5.21)

sjσ = (fjσ + cjσ)/
√

2. (5.22)

The two terms in Hamiltonian (18) correspond to “right facing” and “left facing” bonds

between a chain of “a” and “s” sites. In the particular limit that ∆ = V , the Hamiltonian

consists entirely of right-facing bonds, as illustrated in Fig. 3b, with edge on the left

and right composed of symmetric and antisymmetric combinations of conduction and f

electrons. Note that at first glance this model breaks inversion symmetry, but in fact there

is an additional U(1) gauge invariance for f electrons: the phase of f can be rotated,

effectively interchanging between antisymmetric aj and symmetric sj operators.

For all values of V and ∆, the zero-mode ψ0 can be found solving H(∆=t)ψ0 = 0 with

the ansatz

ψ0 =
∑
j

vjs
†
j + uja

†
j . (5.23)

Solving for {uj , vj} in the case of (V∆) > 0 we can find left and right edge solutions. The

left-hand edge state is given by

uj = 0,

vj =


(
V+∆
V−∆

)(j−1)/2
odd

0 even
.

(5.24)

Hence, unless hybridization V or effective hopping ∆ is zero the decay is exponential. The

fact that veven = 0 is due to particle hole symmetry: one can show that the zero-mode of

bipartite lattice is defined only on one sublattice in a one-dimensional finite chain.

5.5 Mean field solution

We now consider a finite slab of material, examining the departures in V and ∆ which de-

velop in the vicinity of the boundaries a phenomenon we refer to as “Kondo band-bending”.

The allowed values of Vj and ∆j are determined by the self-consistency equations

Vj = −JK(j)
〈

(cj+1σ − cj−1σ)†fjσ

〉
,

∆j = −JH
〈
f †jσfj+1σ

〉
.

(5.25)
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These equations derive from the requirement that the acton is stationary with respect to

Vj and ∆j at each site. The phase diagram is determined by the values of JH , JK and the

edge parameter α. To explore the parameter space we carried out a series of a numerical

calculations in which we seeded inhomogeneous order parameters Vj and ∆j , iterating the

self-consistency conditions until a convergent solution was found.

To examine the bulk properties, we began by imposing periodic boundary conditions.

Using this procedure, we identified two bulk phases: a Kondo insulator and a metallic

valence bond solid. The results of mean field calculations with periodic boundary conditions

are presented in Fig. 5.7. The bulk phase diagram is of course independent of the edge

parameter α.

2 f-electrons

form VBS 

state

Kondo Insulator

JK/t

JH/JK

I
IIMetal

f-electrons 

hybridize 

with conduction

electrons

0 2

Figure 5.7: Schematic phase diagram of the bulk ground state contains a metallic phase (I)
and an insulating phase (II). Phase II can be further divided depending on the properties
of its surface states see Fig. 5.10.

We proceed with open boundary conditions and examine the nature of the bound states

solutions that develop at the ends where the mean field parameters depart from the bulk

values.

5.5.1 Phase I: Metallic VBS state

In this phase the RVB order parameter ∆j becomes an alternating function of space, while

Vj is zero. Consequently, the f -electrons form a valence bond solid (VBS) state, co-existing
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with the unperturbed conduction sea. Dispersionless “spinon” bands above and below the

Fermi energy, as shown in Fig. 5.8b. The gap between f -states is provided by the amplitude

of ∆j (justifying the notation) which is in turn equal to JH/4. The metallic VBS phase is

summarized in Fig. 5.8a,b.

The metallic phase does not have surface states and behaves the same way for open and

closed boundary conditions. We found VBS state to be the lowest energy configuration in

the left part of phase diagram as shown in Fig. 5.7.

Since there are two degenerate configurations of the VBS, one of the important classes of

excitation of this state is a domain-wall soliton formed at the interface of the two degenerate

vacua. In an isolated VBS, such as the ground-state of the Majumdar Ghosh model, or

the Su-Schrieffer-Heeger model, such solitons are spin-1/2 excitations. However, in the 1D

Kondo lattice, the Kondo interaction is expected to screen such isolated spins, forming

a p-wave Kondo singlet exciton. In the metallic VBS, these solitonic excitons will be

gapped excitations. However, as the Kondo coupling grows, at some point the excitons

will condense, and at this point the VBS melts, forming a topological Kondo insulator.

5.5.2 Phase II: Kondo insulator

In the Kondo insulating phase the hopping ∆j and Vj are both finite in the bulk and

generally suppressed at the ends of the chain. This gapped heavy Fermi liquid is stabilized

by large Kondo coupling as shown in Fig. 5.8(c,d). We find that the Kondo insulating

phase exhibits two different kinds of boundary behavior. In the mean field theory, we can

characterize these two phases by the fractional conduction electron character nc ∈ [0, 1] of

the edge state. The first is adiabatically connected to the “Kitaev point” (see below) in

which conduction electrons and composite f -electrons hybridize to form the a surface state

with nc > 0. In the second state, the edge state is a purely localized spin, unhybridized

with the conduction electrons (nc = 0).

“Kitaev” point

For general values of {JK , JH , α} there is no analytic solution. However at the point where

{JK , JH , α} = {2, 4, 2} ∆j = Vj = t are constants in space. We now show that at this point
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Figure 5.8: Cartoon representation of two distinct phases in Fig. 5.7. We plot spatial
dependence of Vj and ∆j and density of states (DOS). Phase I (a and b): Metallic states
with suppressed hybridization. It does not support surface states. Phase II (c and d):
Kondo topological insulator that support surface states. Inset in d is the profile of a typical
surface state decaying into the bulk as a function of distance.

each spin component of the mean-field theory corresponds to a two copies of the Kitaev

chain, with a single fermionic zero mode at each boundary, as can be seen from the form of

the wave function in equation (5.24). We refer to this particular point in the phase diagram

as the ’Kitaev point’.

At this point, following (5.20), the mean-field Hamiltonian takes the form

H(∆=t) = 2t

L−1∑
j=1

∑
σ

(s†j+1σajσ + H.c.), (5.26)

where sjσ and ajσ are the symmetric and antisymmetric combination of states 1√
2
(fjσ±cjσ).
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This Hamiltonian commutes with the zero modes

[H, s1σ] = 0, [H, aLσ] = 0 (5.27)

so for each spin, there is one fermionic zero mode per edge, each involving a hybridized

combination of conduction and f -electrons with nc = 1
2 . To see the connection with the

Kitaev model, we divide both sjσ and ajσ into two Majorana fermions as follows,

sjσ =
1√
2

(γ1
jσ + iγ2

jσ), ajσ =
1√
2

(γ3
jσ − iγ4

jσ). (5.28)

Using (5.26), the Hamiltonian now splits into two independent components,

H(∆=t) = −i2t
L−1∑
j=1

∑
σ

(γ1
j+1γ

4
j + γ2

j+1γ
3
j ), (5.29)

corresponding to a pair of Kitaev chains per spin component. This is natural, because each

Kitaev chain has one Majorana zero mode per edge. Since a pair of Majoranas make one

normal fermion, this corresponds to one fermionic zero mode per edge.

t

f

c

Δ

Figure 5.9: Magnetic phase (red color in Fig 5.10).

5.5.3 Magnetic Edge state.

In the magnetic edge state, the boundary spins do not undergo the Kondo effect, form-

ing an unhybridized magnetic edge state. If the boundary parameter α = 1, the Kondo

temperature at the boundary is smaller than in the bulk, because the terminal boundary

spins have only one nearest neighbor. This means on cooling, that the boundary Kondo

interaction is unable to scale to strong coupling before a gap develops in the bulk, leading

to an unquenched boundary spin. When α > 1, the Kondo effect is able to develop at the

boundary, occurs at the boundary, provided JK is not at weak coupling. At smaller values

of JK , the decoupled magnetic phase develops, denoted by the red region in Fig. 7 (a). In

this phase, there is no hybridization of the edge state with the bulk conduction electrons

(nc = 0), and the topological edge state disappears.
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Bulk gap
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Figure 5.10: The surface phase diagram. With the addition of a renormalized Kondo
coupling at the surface α = JboundaryK /JK . (a) Red color represent pure f -states with no
c-electron mixing, nc = 0. Inset is the cut along α = 2. (b) is the bulk gap ∆g in units of t
for α = 2, identifying the “Kitaev point” as the black dot. (c) displays the inferred group
velocity measured in units of at, derived from the numerically measured penetration depth
of the edge states using v = ∆gξ. The mean field calculations were done on a chain of 70
unit cells.

5.6 Results and Discussion

5.6.1 Where are the light surface states?

One of the interesting features of current experiments on the Kondo insulator SmB6, is that

the putative topological surface states seem to involve high-velocity quasiparticles, rather

than the heavy, low-velocity particles predicted by current theories. Our mean-field results

on the one-dimensional p-wave Kondo chain suggest that this may be because the change in

character of the Kondo effect at the boundary leads to edge states with a large conduction

electron component.
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For a relatively high magnetic interaction, JH , the one-dimensional edge states in our

mean-field treatment develop majority conduction electron character, forming “light” edge

states which penetrate deeply into the bulk.

In a non-interacting topological insulator, the transition to a topologically trivial phase

occurs via a quantum phase transition in which the bulk gap closes. In this case, the

penetration depth grows with inverse proportion to the bulk gap ∆g.

ξ = vF /∆g. (5.30)

However, in the p-wave Kondo chain, the transition to a metallic VBS is a first order transi-

tion at which the bulk gap remains finite. In this case, the rapid growth in the penetration

depth of the edge state is associated with an increase in the conduction character, driv-

ing the enhanced group-velocity of the edge-states (5.30). This is a novel and interesting

consequence of the response of the Kondo effect to the boundary - “Kondo band-bending”.

To demonstrate this behavior, we have carefully examined the properties of the edge

states in our model. The phase diagram showing the evolution in the conduction character

of the end states is shown in Fig. 5.10a. Within the bulk topological insulator phase, the

character of the edge states varies dramatically, ranging from equal f - and c- character to

edge states of predominantly conduction electron character near the first order boundary.

Fig. 5.10b shows the dependence of the insulating gap ∆g, showing that it remains finite

at the first order phase boundary to the VBS metal.

We can estimate the effective velocity of the edge states by combining the numerically

measured coherence length of the edge state and the bulk gap, according to

veffective = ∆gξ. (5.31)

This quantity is found to increase dramatically near the first order boundary into the

metallic VB state (see Fig. 5.10c), unlike a non-interacting topological insulator, here the

increase in ξ is due to a rapidly increasing amount of conduction character in the edge-

states, and is not accompanied by a gap closure, so that the effective velocity of the edge

states veffective rises considerably.
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5.6.2 Strong-coupling ground state wave function

An alternative way to understand a Kondo insulator is through the character of its strong-

coupling wavefunction. In an conventional Kondo insulator, the strong coupling ground-

state is an array of Kondo singlets. If we write

A†j =
∑
σ=± 1

2

f †jσc
†
j,−σsign(σ), (5.32)

then the strong coupling ground-state of the s-wave Kondo insulator is simply a valence

bond solid of Kondo singlets:

|KI〉 =
L∏
j=1

A†j |0〉

= , (5.33)

where a line denotes a valence bond between a conduction electron (open circle) and a local

moment (closed circle).

What then is the corresponding ground-state for the topological Kondo insulator? We

can construct variational wavefunctions for the topological Kondo insulator by applying a

Gutzwiller projection to the mean-field ground-state. Unlike the s-wave Kondo chain, to

preserve the topological ground-state, we need to consider large values for both the Kondo

and the Heisenberg coupling. An interesting point to consider is the Kitaev point, where

the singlet structure of the mean-field ground-state becomes highly local. By projecting the

mean-field ground-state we obtain

|TKI〉 = PG
∏
j

Zj |0〉, (5.34)

where

Zj =
∑
σ=± 1

2

a†jσs
†
j+1,−σsignσ (5.35)

with a†jσ = (f †jσ + c†jσ)/
√

2 and s†jσ = (f †jσ − c
†
jσ)/
√

2 as before, whereas PG =
∏
j(nf↑(j)−

nf↓(j))
2. Now the valence bond-creation operator

Z†j =
1

2

∑
σ

(f †jσf
†
j−σ + f †jσc

†
j+1,−σ



88

− c†jσf
†
j+1,−σ − c

†
jσc
†
j+1,−σ)sign(σ) (5.36)

is non-local. The projected wavefunction of the topological Kondo insulator (TKI) now

involves a multitude of configurations forming a one-dimensional resonating valence bond

(RVB) state between the local moments and conduction electrons. Schematically,

|TKI〉 =
∑

, (5.37)

where we associate a minus sign with left-facing Kondo singlets and conduction electron

pairs. In this picture, the edge-states correspond to unpaired spins or conduction electrons

at the boundary.

|edge, σ〉 = PGs
†
1σ

∏
j

Z†j |0〉 (5.38)

=
∑

+
∑

.

At the current time, except in the large N limit, we do not yet know if there is a particular

combination of JK , JH and hopping t for which the short-range RVB wavefunction is an

exact ground-state for the TKI.

5.6.3 Further outlook

One of the interesting unsolved questions is why different methods of growing SmB6 some-

times suppress the topological surface states. On the one hand, when grown in Al flux,

SmB6 has robust surface states with a low temperature plateau conductivity, whereas the

crystals produced with the floating zone method exhibit no plateau conductivity, even

though the samples are thought to be cleaner [144]. Based on our simple one-dimensional

model, we speculate that this may be because the ordered surface supports localized mag-

netic moments which in three dimensions, magnetically order. By contrast, for reasons not

currently clear, the Al flux grown samples appear to sustain non-magnetic surface states,

possibly due to a valence shift at the surface, giving rise to topological surface states. A
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more detailed understanding of the situation awaits an extension of our current results to a

three dimensional model along the lines of [136]. This is work that is currently underway.

Finally, we note that the model we have discussed in this chapter can also be engineered

in a framework of ultracold atoms where a double well lattice potential is populated with

mobile atoms in s and p orbitals[146]. This may provide a setting for a direct examination

of the 1D edge states.
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Chapter 6

Chapter 6: S-P Model

In this final chapter we will investigate some possible solutions for the large Fermi

velocity of the surface states in Kondo insulators. Here our approach will change to

a more phenomenological one and to higher dimensions. Chapter begins with current

explanation (or the lack of thereof) of the mystery, then we study the ”S-P” model

which is as an extension of the model from chapter 5 to 2D and we leave 3D for future

works.

In the one-dimensional model (Chapter 5) we faced with the problem that in the

magnetic phase, where f -electron decoupled from the surface conduction electrons, the

topological state disappeared. We believe now that this is an artifact of low dimen-

sionality. According to our preliminary results, in higher dimensions the surface state

still exists but becomes light. In one dimension it is only protected by particle-hole

symmetry. However in two and three dimensions, the topological insulator isprotected

by time reversal symmetry,

In the following we demonstrate that a highly renormalized chemical potential (ex-

treme case of Kondo band banding – KBB) in the bulk can be physically thought as a

breakdown of the Kondo singlet. It can be characterized as a phase shift in the surface

state wave function. We will present solutions obtained to the (i) energy of the Dirac

point, (ii) decay length of the wave function and (iii) surface state velocity as a function

of the phase shift. We find that as a result of surface Kondo breakdown, the Dirac point

sinks in the valance band along with the exceedingly light surface states in accord with

experiments.

This chapter is based on work in progress with Piers Coleman and Onur Erten and

there is no reference to date.
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6.1 Current explanations of light surface states

Very few suggestions were put to the table to the date of this writing1. We are also aware of

several undergoing ideas. Moreover, some argue that it is simply too complicated and sur-

faces are uniquely contaminated. To this point some still think that SmB6has no protected

surface states.

There are two related numerical studies that address this issue. In the first example,

a similar to Samarium hexaboride compound SmP6 with plutonium instead of boron is

considered. This material have been treated with Dynamical Mean field theory (DMFT),

which takes a good care of the interactions at every single site. The results [147] are

reproduced in the Fig. 6.2a. In that figure it is clear that surface states are actually ”dipped”

into the valence band, so that the Dirac (crossing) point is not reachable experimentally as

it mixes with a continuum.

Figure 6.1: Reproduced from [148]. Schematic pictures showing (left) usual and (right)
unusual band inversions. In SmB6, parity-inverted bands are α and δ, but two more bands
β and γ are located between them.

This idea was embraced in the following paper [148] and can be summarized in the

Fig. 6.1. On the left there is a naive (usual) band inversion that would lead to a Dirac point

in the gap and on the right the unusual inversion allows the Dirac point to sink. Although

the later work is in the non-interacting density functional theory (DFT) approximation the

claim is that interactions act in a very simple way by reducing (renormilizing) the scale by

a factor of 10 which is supported by their DMFT study.

Is the question solved? Most likely not. Firstly, the velocity is still order of magnitude

off from experimental as it gives ∼ 0.06 eVÅ. In the process of deriving the band structure

the authors rescaled the results of DFT by a factor of 10, but even without rescaling the

1To review the experimental observation of light surface states please see the first section of chapter 5.
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(a) (b)

Figure 6.2: (a) Reproduced form [147]. Surface states of PuB6 on (001) surface. The band
structure is calculated with a tight-binding model for a 60-layer slab constructed from the
effective topological Hamiltonian including Pu-d-eg orbitals and Pu-f orbitals. The weight
of surface state (the probability of each state in the first two layers on surface) are indicated
by color, red means more weight on the surface, blue means more weight in the bulk. (b)
Reproduced from [148]. DFT band structures of SmB6 slabs with the B6 -terminated
surface. Note that the energy scales are reduced by 1/10. Blue shaded region represents
the projection of SmB6 bulk bands to the (001) surface BZ. Red dots represent the crossing
(Dirac) points of metallic surface bands. Insets show the DOS (per Sm layer) of each surface
termination.

DFT result would give .6 eVÅwhich still is around 10 times less than experimental (5 eV

Å).

Secondly, following magnetic measurements one concludes that the g-factor of the nearest

to Fermi energy multiplet is so small that it is more likely to have a doublet configuration

in contrast to what density functional theory predicts. Finally, to open a gap in the unusual

band inversion hybridization should be orders of magnitude higher. It is not unusual on

itself but in this material, where the Kondo scale is (TK = 50K ) is quite low, one shouldn’t

expect a very high hybridization matrix element.

I will turn now to a quite simple example of a family of model Hamiltonians that

would phenomenologically account for a faster surface states in a more or less tractable

way. The band structure of SmB6 is such that the band inversion is happening near X =

(0,0,π) point. I will instead consider a more transparent for presentation example of a band

crossings around Γ point, leaving the straightforward modification for the paper in press.
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6.2 2 band model with decoupled f-electron at the edges

We address this question in the context of surface Kondo breakdown where the Kondo effect

shuts off on the surface layer, resulting in a change of valence of Sm on the surface which

has indeed been observed by x-ray absorption spectroscopy experiments [144]. As a result

the surface states are no longer compensated: they have more conduction electron character

than local moment. Related with Luttenger sum rule, the removal of an electron leads to

a large Fermi surface and the dominant conduction electron character gives rise to light

surface states with large penetration depth in agreement with quantum oscillations[130]

and ARPES[112, 118, 132, 113]. Large penetration depth implies that the surface states

penetrate deeper in the bulk, thus much less affected by the surface disorder, providing an

intuitive understanding for the quantum oscillations at large fields. We predict that the

large penetration depth can be measured by thickness dependent transport measurements.

We start with the periodic Anderson model:

H =
∑
k,σ

εkc
†
kσckσ + Ṽ

∑
k

φ(k)σσ′c
†
kσfkσ′ (6.1)

+
∑
k

ε̃fkf
†
kσfkσ + U

∑
i

nif↑nif↓

where c†(f †) are conduction electron (local moment) creation operators. εk are the conduc-

tion electron dispersion, Ṽ and ε̃fk are the bare (non-renormalized) hybridization and local

moment dispersion; φ(k)σσ′ is the form factor, φσσ′ = [σx sin(kxa)+σy sin(kya)+σz sin(kza)]

(From now on we work units of a = 1). U is the onsite Coulomb repulsion on the f sites.

The standard procedure is proceed is to introduce slave-bosons which project out the dou-

ble occupancy on the f sites and do a saddle point approximation which gives rise to the

mean-field equations[149].

That leaves us with a single particle Hamiltonian. In the following we introduce the

phenomenological Hamiltonian to describe Kondo band bending. In two dimensions ”S-P”

Hamiltonian of a topological Kondo insulator can be written in a block diagonal form.

H =
∑
k

Ψ†k

 H↑

H↓

Ψk
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in the four-dimensional basis ΨT = {c↑, f↓, c↓, f↑}. Where

H↑(k) = H↓(−k) =

 εk − µc iV (sin kx + i sin ky)

iV (sin kx − i sin ky) εfk + λ

 (6.2)

and

εk = −2t(cos kx + cos ky) (6.3)

εfk = 2tf (cos kx + cos ky) (6.4)

the Hamiltonian incorporates only the nearest neighbor hopping. µc and λ are relative

chemical potentials of conduction electrons and localized f -electrons correspondingly; V is

renormalized hybridization amplitude.

Figure 6.3: 2D schematic of the model presented on the xy plane. Due to the opposite parity
of the orbitals, onsite hybridization vanishes, then the nearest neighbor local moment and
conduction electron can hybridize with a spin dependent p-wave form factor, φ(k)σσ′ as in
eq. (6.1)

In other words, our topological Kondo insulators is based on spin-orbit coupled p orbital

local moments and s-like conduction electrons. This model captures all the essential physics

of SmB6 where the hybridization is between f local moments and d conduction electrons.
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6.2.1 Analytical consideration

Some typical examples of band structure for both zero and non-zero hybridization are

plotted ofn Fig. 6.4. As was discussed before f -band has negative parity and the system

opens the gap that protects band inversion. Assuming that chemical potential of the system

is in the gap, Fig. 6.4 is an example of a topological insulator with one Dirac cone around

the projected to the surface Γ̄ point.

Figure 6.4: Two band ”S-P” model. Band structure for the case of (left) no hybridization
and (right) non-zero hybridization

Exact solution

It turns out that we can solve the Hamiltonian in the absence of KBB exactly. All the

parameters are constant as functions of space. The key ingredient to find the exact solutions

is to guess the ansatz.

The ”S-P” Hamiltonian (6.2) is 4x4 Hamiltonian but solving only its 2x2 is sufficient.

The new basis reads Ψ′T = {c↑, f↓} and the Hamiltonian (6.20) becomes

H ′(k) =

εk − µc V (k)

V̄ (k) −αεk + λ

 (6.5)

where I have introduced a parameter α as a (small for Kondo systems) ratio t = αtf . I also

absorbed extra imaginary unit into definition of V , and V (k) = V (sin kx + i sin ky). To set

up the ground for the calculations let me introduce notations

cx = cos(kx) c = cos(kx) c̄ = cosh(kx)

sx = cos(kx) s = sin(kx) s̄ = sinh(kx)
(6.6)
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which leads to

H ′(k) =

−2t(cx + c)− µc V (sx + is)

V (sx − is) −α(cx + c) + λ

 (6.7)

We will assume the following solution

Ψ =

√α
1

 eikxx+i(ky+iκ)y (6.8)

the imaginary part of the exponent essentially performs analytically continuation of the

eigenvalues in the complex plane. We will make sure that the energy stays in the real

domain. Note that replacement of ky → ky − iκ means that we will replace

c→ cc̄− iss̄

s→ sc̄+ ics̄
(6.9)

We will now solve the eigenvalue equation H ′(k)Ψ = E(k)Ψ

E(k) = εk − µ+
1√
α
V (k) (6.10)

E(k) = −αεk + λ+
√
αV (k) (6.11)

The reality condition on energy constrains κ. One can write imaginary part of eq. (6.10)

as 2tss̄− V sc̄ = 0, and thus

tanhκ =
V

2t
√
α

(6.12)

Combining both equation (6.10,6.11) one can write

εk(α+ 1)− (µ+ λ) =
V̄ (k)α− V (k)√

α
(6.13)

little manipulation with the use of κ from (6.12) one finds

cos(ky) = c =

√
1− V 2

4αt2(
V 2

αt − 2t
) [µ+ λ

α+ 1
+

V√
α
sx
α− 1

α+ 1
+ 2tcx

]
(6.14)

our final result is the dispersion for the surface state

E(k) = 2
V
√
α

α+ 1
sx +

λ− αµ
α+ 1

(6.15)

We can compare it with the hybridization term V (k) = V (sin(kx)+ i sin(ky)) in the original

Hamiltonian. Up to a factor 2
√
α/(1 + α) the boundary velocity is equal to hybridization
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scale. This is important because exactly the same result can be obtained using small

|k − kF | → 0, see for example Volovik calculation below (Eq. 6.16) or from topological

insulator perspective [150]2.

So far, we have learned that in this model for arbitrary large parameters, hybridization

V in the Hamiltonian (6.2) can be treated perturbatively, as if ratio V/t is vanishingly small.

This is a surprising fact we are not quite sure why is that the case.

Perturbative calculation

We will now turn to a perturbative quantum mechanical calculation. It is convenient to

first write the Hamiltonian up to a second order and introduce mass of the bands. ”Heavy”

band of f electrons (mass m2) will have dispersion proportional to k2

m2
. “Light” conduction

band (mass m1) has dispersion proportional to k2

m1
.

H2nd =
1 + τ3

2

k2 − k2
F

2m1
− 1− τ3

2

k2 − k2
F

2m2
+
V

kF
τ1(kxσx + kyσy) (6.16)

We next expand the Hamiltonian (6.16) near the two point opposite on the Fermi surface:

k1 = (kx, kF − ky) (6.17)

k2 = (kx,−kF + ky) (6.18)

As was pointed out by Volovik [151] due to symmetry scattering between these two point

can be thought as a reflection problem of a hard wall. We thus simply consider just the first

point (6.17) in momentum space and hard boundary conditions. In the linearized version

of Hamiltonian we first make a substitution ky → −i∂y and split the Hamiltonian into

H2nd = H(1) +H(2), (6.19)

where H(2) is a perturbation that is controlled by the smallness of the ratio V/kF . Actually

H(2) has already presented itself as the last term in eq. (6.16).

H(1) = kF

(
1 + τ3

2

i

2m1
− 1− τ3

2

i

2m2

)
∂y − V τ1σy (6.20)

H(2) =
V

kF
τ1σxkx (6.21)

2Most of reviews for topological insulators display similar calculation
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As before we will resort to 2x2 Hamiltonian by choosing a different basis Ψ′T = {c↑, f↓}

and the Hamiltonian (6.20) becomes

H ′(1) = i
kF
m1

1 0

0 −α

 ∂y +

−µ V

V λ

 (6.22)

one can find the eigenfunction and eigenvalue of this Hamiltonian with hard boundary

conditions (reflection of an infinite wall potential) and then calculate the perturbative energy

by projecting H ′(2) onto the ground state of H ′(1)

Ψ =

√α
1

 exp

[
ikxx+

m1

αkF

(
i
λα

1 + α
y −
√
αV y

)]
(6.23)

Comparing with the exact solution in eq. (6.12) one can observe the exact matching of

the decaying part of the wave function (for small V , tanhx ' x), bearing in mind that

kF ' 2tm1. The oscillatory part is not at all close, but as it turns out the energy dispersion

is independent of the oscillatory part: when calculating projection, the oscillating integrals

will vanish.

The result for energy, after projecting is identical to the exact formula (6.15). Namely

E(k) =
〈
ψ1|H ′(2)|ψ1

〉
= 2

V
√
α

α+ 1
kx +

λ− αµ
α+ 1

(6.24)

this is small k expansion of the exact result, but sin kx can be simply restored as if H ′(2)

itself were kept at all orders in kx. Once again I stress, that while it seems important to keep

the small parameter V/kF sufficiently small, the result seems to be independent of it. This

can partially justify consideration of larger kx in the next part, where KBB is introduced

and the exact solution can no longer be obtained.

In conclusion, we are mostly interested in the case where chemical potential for f -

electrons is not a constant in space, but the exact solution will not likely to be available.

However as I showed above, the Volovik solution matches precisely to the exact solution,

so might be able to use Volovik approach for the part where exact solution is not available.

Phase shift and KBB

Physically, we would like to account for the effective valence change of the samarium elec-

trons. Similar to heavy fermion formation of a small Fermi surface, where valence changes



99

by one we would like to see similar valence shift which would push surface states away, move

the Dirac point down and greatly increase the Fermi velocity

Kondo band bending (KBB) can be described by sudden change of chemical potential

for localized f -electrons λ. To model this effect we suggest to introduce a phase shift. So

instead of putting the wave function like (6.8) I will force the bottom part of the spinor

(the f -component) to have a phase shift.√α
1

→
√α
eiφ

 (6.25)

After solving a new eigenvalue problem, the energy will gain a term that is proportional

to k2
x and what is more important the proportionality constant is of order t of conduction

electrons. After some calculations one can get

E′(kx, ky) = E′0 + V
√
αr(φ)k⊥ + αt

e
2κφ
kz − 1

αe
2κφ
kz + 1

k2
⊥ (6.26)

Note that the k2 term, which is canceled in the absence of phase shift, is due to the increase

the conduction electron content of the surface states. The subleading linear term altered

with the function r(φ) of order one r(φ) = 2(cosφ+ κ
kz

sinφ)/(1 + α exp(2κφ
kz

)). This is the

main analytical result of this section that allows to explain the light quisiparticles of SmB6.

6.2.2 Numerical consideration

Slab calculation robustly shows the characteristic difference that was predicted analytically.

Numerical agreement is also excellent. Fig. 6.5 show the original surface state (left) without

alternation of the surface f -electrons and (right) the case with removed last layer of f

electrons (from both sides of the slab).

Figure 2(b) shows a finite-size slab calculation for the topological surface states when

the surface local moment is decoupled from the bulk. This can be achieved by either

removing the surface local moments in the calculation or putting the effective chemical

potential for the local moment λ to be very large. Note that the topological surface states

are quite different compared to the uniform solution [see Fig. 2(a)]: (i) First of all, unlike

the uniform solution, the Fermi surface is significantly larger. This effect is a consequence
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Figure 6.5: Slab calculation for topological Kondo insulator: (Left) for the uniform solution,
(Right) surface Kondo breakdown: surface local moments decouples from the rest of the
system. Notice the large Fermi surface with high velocity quasiparticles in the case of the
surface Kondo breakdown.

of Luttenger’s sum rule. The enclosed Fermi surface volume is equal to the total number

density. Removing (or adding) an f electron leads to a change from a small Fermi surface to

a large Fermi surface. (ii) The Dirac point shifts in the valence band in accord with ARPES

experiments[118, 132, 112, 113]. (iii) Surface states have high velocity vs in agreement with

quantum oscillations [130] and (iv) large penetration depth κ ' vs/V .

Zooming into the first couple of layers, we can show what exactly happens with the

surface wave function. Fig. 6.6 shows the plot of ρ(x) = ψ†ψ. One can see that the

conduction character increases drastically and thus it is not a surprise to see an increase in

the surface state velocity.

Figure 6.6: Corresponding wave functions densities

6.2.3 Discussion for chapter 6

Surface Kondo breakdown: The Kondo temperature of the surface is much smaller than bulk

Kondo temperature due to smaller coordination number on the surface. As a result, the bulk
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forms singlets with conduction electrons, leaving unquenched, decoupled local moments on

the surface. This effect also known as ”Kondo band bending” has been recently explored in

1D [117]. In one dimensions, the decoupled phase is no longer topological [117] . Below, we

extend this idea to higher dimensions where we show that the decoupled phase is topological

and dominated by the conduction electrons.

Penetration depth: An important consequence of the light quasi-particles is the large pene-

tration depth since penetration depth is κ ' vs/V . Given the values of vs and V for SmB6,

we preliminary predict the penetration depth of the surface states to be quite large. The

large penetration depth makes the surface states even more protected against disorder in

the surface in accord with quantum oscillations at high fields. It is possible to observe the

large penetration depth in experiments as a function of film thickness. For film thicknesses

less than κ, the surface states will be gapped since the two surface states overlap. They will

become gapless for thicker films.

Surface magnetism: Decoupled local moments are prone to magnetic order. RKKY in-

teraction between the local moments and the topological surface states produces not only

J , Heisenberg interaction, but also Dzyaloshinskii-Moriya, D and compass anisotropy, A

terms[152]. The phase diagram of such a model is quite rich. For AJ/D2 > 1, ground

state is an in-plane ferromagnet whereas for AJ/D2 < 1, it is a spiral where the pitch

of the spiral is set by D/J [153]. Such a spiral state evolves into a skyrmion crystal in

applied magnetic field[154]. Indeed indications of magnetism has been observed as hystere-

sis in magnetoresistance experiments[155]. The absence of ordered ferromagnetic moment

in XMCD experiments[144] suggests that the ground state might be a spiral with no net

moment.

To conclude, we have addressed an important puzzle, the light surface states of topological

Kondo insulators by employing the simple idea of surface Kondo breakdown. Our results

not only reconcile the light surface states and the peculiar shift of valence in Sm but also

predicts an important experimentally observable quantity, the penetration depth of the

surface states.
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