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ABSTRACT OF THE DISSERTATION  

Evidence for the influence of irrigation on precipitation intensity and totals in the Midwestern 

United States:  observational and modeling perspectives  

By 

ROSS EVAN ALTER  

 

Dissertation Director: 

Ying Fan Reinfelder  

 

 

Significant increases in summer precipitation occurred in the Midwestern United 

States over the last century for reasons that remain unclear.  It is postulated that the 

expansion of irrigation and cropland in the central US over the past sixty years has been a 

major contributor to these observed increases in precipitation.  As a first step toward 

attribution of these regional precipitation changes, a detailed analysis of observed daily 

summer precipitation frequency and intensity is conducted for the contiguous United 

States over multiple spatial scales and time periods from 1895 to 2011.  Robust increases 

in precipitation frequency, total precipitation, and moderate to heavy precipitation 

intensity are identified during July and August in the Midwestern US.  Analysis of 

changes in mean monthly precipitation from the early- to late-20
th

 century initially points 

to increasing frequency as the source of increasing monthly precipitation in the 

Midwestern US during the summer, especially during August; however, comparable 

increases in precipitation frequency occur during other times of the year.  On the other 

hand, changes in precipitation intensity and total precipitation are both greatest during 
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July and August and coincide spatially in the Midwestern US.  Additionally, the greatest 

intensity change occurs downwind of the most heavily irrigated regions, especially for 

the period between 1950 and 1980 when irrigation rapidly intensified.  A 15-day 

simulation using the WRF regional climate model with a simplified irrigation scheme 

over Nebraska confirmed the postulated increase in moisture, decrease in temperature, 

and subsequent increases in both convective inhibition and convective available potential 

energy over Nebraska, which led to weakened convection over the irrigated areas.  Wind 

anomalies produced by irrigation seem to be instrumental in enhancing precipitation 

intensity and totals downwind of Nebraska in general, and in the eastern Midwest region 

for one particular heavy precipitation event.  The increases in Midwestern precipitation in 

both analyses – one based on observation and rooted in reality and one based on model 

experiments and controlled for irrigation – support the hypothesis that irrigation in 

Nebraska has led to an increase in the intensity and total of precipitation downwind of the 

irrigated regions.   
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1. INTRODUCTION 

 

 

 

1.1  Motivation and Summary 

 

 Over the last few centuries, humans have greatly modified the physical landscape 

of the Earth, resulting in widespread yet often unintentional consequences for the Earth’s 

weather, climate, and biogeophysical processes.  Understanding the causes and 

consequences of this land use and land cover change (LULCC) is critical to advancing 

our understanding of climate change and projecting its future impacts on society.  The 

importance of LULCC to local and regional (and even global) climate has become 

apparent over the last decade with a bevy of modeling and observational studies taking 

place around the world (e.g., Boucher et al. 2004, Sacks et al. 2009, Puma and Cook 

2010).  However, the breadth, causes, mechanisms, and impacts of some aspects of 

LULCC are still not well understood.  Because of this lack of definitive knowledge of the 

processes governing the intersection of LULCC and climate, attribution of past changes 

in climate also remains incomplete.  To fill this attribution gap, LULCC processes have 

been gradually incorporated into global (e.g., IPCC 2013) and regional climate models 

(e.g., Ozdogan et al. 2010) as our understanding of these processes has solidified.  

Thereafter, climate simulations would be able to include these LULCC processes and 

perform sensitivity studies to determine the impact of LULCC on weather and climate.  

Over the past decade, many sensitivity studies to quantify the effects of LULCC on 

climate have been performed (e.g., Segal et al. 1998; Boucher et al. 2004; Diffenbaugh 

2009; Harding and Snyder 2010a,b; Lo and Famiglietti 2013; Huber et al. 2014). 
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One particularly important aspect of LULCC that has had regional and global 

implications is the expansion of agriculture over the last few centuries.  Over the last 

three centuries, cropland has expanded by 12 million km
2
 around the world; in many 

areas of the world, cropland is nearly 100% of the current land cover (Ramankutty and 

Foley 1999). 

Additionally, over the last sixty years, the world has experienced another 

agricultural renaissance:  There has been a substantial, rapid, and global increase in 

irrigated cropland area and in the amount of water used for cropland irrigation.  While 

there were approximately 108.4 million hectares of land equipped for irrigation in 1950, 

this area nearly tripled to 285.8 million hectares by 2007 (Freydank and Siebert 2008).  

This boom in large-scale cropland irrigation has had two main agricultural benefits:  1) it 

has enabled the production of more food in drier areas that would normally not produce 

significant crop yields and 2) it has allowed for the maintenance of consistent crop yields 

in more humid areas.  The immediate economic and nutritional benefits of greater crop 

availability (e.g. in India and China) add to an argument that the worldwide expansion of 

irrigation in the second half of the 20
th

 century has largely benefited society. 

However, the process of irrigation expansion is a double-edged sword.  In order to 

accommodate the expansion in cropland and crop yields, this development has required 

the eradication of native vegetation and/or traditional agricultural practices (Ramankutty 

and Foley 1999) and has added copious amounts of water to the surface in several regions 

that did not previously irrigate cropland.  One unintended consequence of this irrigation-

induced land use/land cover change is the altering of two aspects of the climate system:  

1) the surface energy balance, through changes to albedo and sensible and latent heat 
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ratios, and 2) the amount of water that is available for evapotranspiration (ET) – the 

transfer of water to the atmosphere via evaporation and transpiration from plants.  

Additionally, in areas where groundwater aquifers (reservoirs of water below ground 

level) are the dominant irrigation source, groundwater levels and streamflow patterns 

may also be shifted.  These changes in hydroclimate – the interdependency of climatic 

and hydrologic processes – are large enough to throw off the energy and moisture balance 

in the more intensely irrigated regions.  However, because the irrigation expansion took 

place over the course of several decades and is regionalized in scope, the issue of weather 

and climate modification due to irrigation has only garnered significant scientific 

attention since the peak of irrigation in the 1970s and 1980s.     

Nevertheless, the last 30-40 years has produced an array of studies that illustrate 

potential climate effects resulting from large-scale irrigation.  Mean temperatures (e.g. 

Barnston and Schickedanz 1984; Adegoke et al. 2003), extreme temperatures (Lobell et 

al. 2008), dewpoint temperatures and low-level moisture (e.g. Mahmood et al. 2008), 

mean precipitation (e.g. Barnston and Schickedanz 1984; Sacks et al. 2009), streamflow 

(Kustu et al. 2010, 2011), sensible and latent heat fluxes (e.g. Adegoke et al. 2003; 

Douglas et al. 2009), and other hydroclimate variables have likely changed in and around 

irrigated areas due to the increase in irrigation regionally and globally.  Unfortunately, 

these studies are made more difficult by a lack of continuous historical data (e.g., 

radiative fluxes), too much background noise to sort out a signal (e.g., precipitation 

variability), and a multitude of other environmental factors that could influence 

observations (e.g., El Niño Southern Oscillation, synoptic weather patterns, climate 

change, etc.).  In short, despite evidence that suggests hydroclimate can be significantly 
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altered by large-scale irrigation, it remains a challenge to attribute the noted “irrigation 

effects” to irrigation alone. 

In particular, precipitation changes are difficult to attribute to large-scale 

irrigation development.  Studies involving irrigation-induced precipitation often involve 

multiple statistical tests (e.g. Barnston and Schickedanz 1984), radar estimates of 

precipitation (Moore and Rojstaczer 2002), and/or climate model simulations (e.g. 

Adegoke et al. 2003; Sacks et al. 2009) because analyzing station observations alone 

presents a great deal of weather “noise”, and the result may be influenced by several 

other local and regional factors.  Furthermore, one recent study (e.g. DeAngelis et al. 

2010) suggests that precipitation impacts from irrigation may be felt as far as several 

hundred kilometers downwind of the irrigated areas.  It is for this reason that this 

dissertation research focuses on both observational analysis of irrigation impacts on 

precipitation and on modeling the “irrigation effect” on precipitation both around and 

downwind of intensely irrigated areas.  Because North America holds a bevy of historical 

climate and irrigation data, and since the climate model being utilized has been 

extensively tested over North America, the analyses are conducted with regard to large-

scale irrigation in the Great Plains of the United States. 

The following sections entail two separate aspects of this dissertation research.  In 

Section 2, precipitation observations are analyzed across the United States in an attempt 

to attribute irrigation and agricultural expansion as a primary cause of increasing 

precipitation intensity and totals in the Midwestern US.  In Section 3, a regional climate 

model is used to conduct a sensitivity study for the impact of irrigation in Nebraska on 
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precipitation in the central US during June of 2002.  Section 4 delineates the conclusions 

that can be drawn from these analyses. 

   

2.  OBSERVATIONAL ANALYSIS 

 

2.1 Introduction 

Over the course of the 20
th

 century, statistically significant increases in 

precipitation have occurred in the Midwestern United States (Karl et al. 1996; Angel and 

Huff 1997; Pryor et al. 2009; Groisman et al. 2012; Villarini et al. 2013, Melillo et al. 

2014), especially during the summer (June-July-August) (Changnon and Kunkel 1995; 

Karl and Knight 1998; Groisman et al. 2004; DeAngelis et al. 2010; Higgins and Kousky 

2013).  Several potential drivers of such increases have been proposed, including large-

scale atmospheric circulations and teleconnections, e.g., the El Niño Southern Oscillation 

(Groisman et al. 2012), shifts in the nocturnal Great Plains low-level jet (Weaver and 

Nigam 2008), and increases in temperature as a result of greenhouse gas emissions 

(Groisman et al. 2004; Villarini et al. 2013).  Land use and land cover changes (LULCC) 

over the last century, such as dam and reservoir construction (Hossain et al. 2009), 

conversion of forest and grassland to cropland (Baidya Roy et al. 2003), increasing crop 

acreage and yield (Groisman et al. 2012), and the development of large-scale cropland 

irrigation (Barnston and Schickedanz 1984; DeAngelis et al. 2010), have also been 

hypothesized as potential drivers of precipitation change.  However, uncertainty remains 

in the relative importance of each driver in explaining the observed changes in total 

precipitation.   
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In the present study, we analyze observed changes in regional precipitation 

characteristics in the Midwestern US and consider how these may relate to the historical 

intensification of irrigation and expansion of cropland in the central US, especially 

Nebraska.  Irrigation in the US Great Plains began rapidly developing in Texas in the 

1930s and across the rest of the Great Plains in the 1940s and 1950s.  In Nebraska – the 

most densely irrigated of the Great Plains states – the abundance of water from the 

Ogallala Aquifer combined with lower energy costs and improved technology (Guru and 

Horne 2000) facilitated expansion of irrigated acreage from approximately 876,000 acres 

in 1949 to 5,700,000 acres in 1978, and further to 8,559,000 acres in 2007 – almost twice 

the area of the state of New Jersey (NASS 2013).  Groundwater withdrawal for irrigation 

experienced similar rapid development from about 600,000 acre-feet in 1950 to about 

6,500,000 acre-feet in 1980 (USGS 2013).  In 2013, total irrigation-related groundwater 

withdrawal for Nebraska counties over the Ogallala Aquifer was estimated at 7,960,000 

acre-feet, or 13 times larger than estimated amount in 1950 (NRCS 2013). 

As a result of the expansion of irrigation, irrigated cropland became the dominant 

type of warm-season agriculture in Nebraska (see Figure 1):  In 1950, approximately 7% 

of corn and soybean acreage in Nebraska was irrigated; by 2011, approximately 54% of 

the same crop acreage was irrigated (NASS 2013).  A similar change occurred for 

production of these crops:  In 1950, approximately 12% of corn and soybean production 

was irrigated, while in 2011, approximately 64% of that production was irrigated (NASS 

2013).  Generally, the expansion of crops in Nebraska over the last sixty years, in acreage 

by a factor of two and in production by a factor of seven, may be largely attributed to 

enhanced cropland irrigation during this time period.             
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In the 1970s and 1980s, several studies analyzed station observations of 

precipitation to demonstrate a supposed “irrigation effect” on local precipitation, i.e., 

precipitation enhancement in the vicinity of heavily irrigated regions (Stidd et al. 1975; 

Barnston and Schickedanz 1984).  These early studies indicated elevated precipitation 

about 50-100 km downwind of heavily irrigated areas in Washington State during July 

and August, and in the Texas Panhandle during June, respectively.  Later studies focused 

on larger regions of the US (Segal et al. 1998) and analyzed precipitation patterns using 

weather radar (Moore and Rojstaczer 2002) and water vapor tracking (DeAngelis et al. 

2010; Harding and Snyder 2012a) to demonstrate the plausibility of irrigation effects on 

precipitation.  Recent numerical modeling experiments for the US (Ozdogan et al. 2010; 

Lo and Famiglietti 2013; Qian et al. 2013) and other areas globally (e.g., De Ridder and 

Gallée 1998; Douglas et al. 2009; Sacks et al. 2009; Jódar et al. 2010; Puma and Cook 

2010; Lee et al. 2011; Wei et al. 2013) provide additional support for irrigation-related 

influences on precipitation patterns, both locally and remotely.   

In the current study, we perform a comprehensive analysis of station observations 

of summer precipitation and attempt to identify signals in precipitation frequency, 

intensity, and totals that are indicative of an irrigation-induced enhancement of 

precipitation.  While the analyses cover the entire contiguous US (CONUS), we 

emphasize two target regions – the Upper Midwest (Minnesota, Wisconsin, Michigan, 

and Iowa) and the Midwest (Missouri, Illinois, Indiana, Ohio, Kentucky) – which, 

together, form the Midwestern US.  The Midwestern US is downwind of Nebraska, 

which contains more irrigated acres than any state in the US; thus, this is the area where 

the largest irrigation-induced enhancement in precipitation is expected to occur.  In 
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Section 2, we describe potential mechanisms for how irrigation affects precipitation as 

well as related hypotheses, while in Sections 3 and 4, we describe our methodology and 

results.  As a first step toward attribution, we discuss in Section 5 how the results 

compare with expectations based on the mechanisms outlined in Section 2. 

 

2.2 Potential mechanisms for LULCC enhancement of precipitation 

2.2.1 Irrigation 

Figure 2 illustrates several potential influences of irrigation on atmospheric 

thermodynamics and associated precipitation processes.  The basic premise of an 

irrigation effect on precipitation is that irrigation increases soil moisture, thereby 

lowering surface albedo (Eltahir 1998; Pielke 2001) and repartitioning the surface energy 

budget toward larger latent heat flux, smaller sensible heat flux, and consequently, a 

lower Bowen ratio (Eltahir 1998; Adegoke et al. 2003; Betts 2004; Mahmood et al. 

2004).  Both the lower albedo and repartitioned energy budget may increase net radiation 

at the surface:  Reduced albedo increases the absorption of incident solar radiation, while 

the repartitioning of sensible and latent heat fluxes results in decreased outgoing surface 

longwave emission, both through lower surface temperatures as well as an amplified 

water vapor greenhouse effect (Eltahir 1998).  Since increasing net radiation at the 

surface necessitates an increase in total outgoing surface heat fluxes (Betts et al. 1996; 

Eltahir 1998), the flux of moist static energy (MSE) into the atmospheric boundary layer 

(ABL) should increase (Eltahir 1998; Pal and Eltahir 2001).  However, the dense crop 

cover during the summer may prevent a noticeable change in soil albedo even under 

irrigated conditions.  In fact, other studies suggest that net radiation is rather insensitive 
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to soil moisture (Betts 2004; Jones and Brunsell 2009), so the hypothesized enhanced 

flux of MSE into the ABL may be overemphasized.  The historical increase of (irrigated) 

crop acreage, density, and greenness as a result of irrigation further strengthen the 

magnitude of these moisture and energy fluxes into the ABL (Wang et al. 2003).   

In contrast, the effects of the repartitioned radiative budget have rather direct 

implications for ABL structure and thermodynamics.  The smaller sensible heat flux and 

the associated decrease in temperature (Adegoke et al. 2003, 2007; Mahmood et al. 2004, 

2006; Lobell et al. 2008) lower ABL height, which simultaneously reduces entrainment 

of low-MSE air at the top of the ABL (Betts et al. 1996) and increases the MSE per unit 

mass of ABL air (Eltahir 1998), both of which are expected to encourage atmospheric 

convection.  Additionally, the greater latent heat flux is indicative of increased 

evapotranspiration (ET) from the surface (Pielke 2001; Ozdogan et al. 2010), which 

moistens the ABL.  This moistening of the ABL over irrigated areas, which has been 

documented in studies of changes in dewpoint temperature (Mahmood et al. 2006, 2008) 

and specific and relative humidity (Brown and DeGaetano 2013; Qian et al. 2013), 

lowers the lifting condensation level (LCL - cloud base) (Betts 2004; Sun et al. 2007), 

allowing rising air parcels to more readily form clouds and potentially reach their level of 

free convection (LFC).  Increased moisture in the ABL also enhances convective 

available potential energy (CAPE) (Pielke and Zeng 1989; Pielke 2001; Qian et al. 2013; 

Huber et al. 2014), which represents the conduciveness of the upper-air environment for 

convective development.   

However, it is also possible that irrigation-induced radiative changes may reduce 

the potential for convection over the irrigated areas.  In particular, the expected decreases 
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in the LCL over the irrigated areas are likely to be greater than those of the LFC because 

the LCL is closer to the surface and therefore would likely respond more readily to 

increased irrigation.  The greater decrease of the LCL is evident in the irrigation-induced 

changes to the atmospheric vertical profile depicted in Huber et al. (2014).  If the LCL of 

a parcel is lowered more than its LFC, then the vertical distance over which a saturated 

air parcel must rise to reach its LFC, attain positive buoyancy, and utilize CAPE would 

increase.  The increasing distance between the LCL and LFC would likely increase 

convective inhibition (CIN), i.e., the energy needed for a saturated parcel to overcome 

negative buoyancy and reach its LFC, thus reducing the likelihood of deep, moist 

convective development and precipitation (Huber et al. 2014; Im et al. 2014).  

Additionally, since the height of the LCL may be lowered more than the height of the 

ABL, it is possible that shallow convective clouds would preferentially develop (Qian et 

al. 2013).  Since enhanced CIN hinders the development of convective precipitation, 

these shallow, non-precipitating clouds may block incoming solar radiation, thereby 

reducing net surface radiation and creating a negative feedback on the initial flux 

perturbations caused by irrigation (Qian et al. 2013).  Such mechanisms may account for 

the results of some studies showing reduced frequency of summer precipitation events 

over irrigated areas (Harding and Snyder 2012b; Huber et al. 2014; Im et al. 2014).        

The aforementioned mechanisms are effectively local responses to irrigation.  

However, the advection of air with additional moisture and moist static energy from 

irrigated areas to more convectively favorable areas downwind, e.g., where CIN is not 

enhanced, could increase the frequency and/or intensity of storms in downwind regions 

(DeAngelis et al. 2010).  This is especially true during the summer, when the 
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characteristics of the ABL can be important in determining the probability of rainfall 

occurrence (Findell and Eltahir 2003a,b).  The downwind enhancement of irrigation on 

precipitation has already been demonstrated on local scales (see above) and remotely 

(e.g., DeAngelis et al. 2010; Harding and Snyder 2012a; Lo and Famiglietti 2013; Wei et 

al. 2013; Huber et al. 2014), but uncertainty remains in the degree and location of 

irrigation impacts on more regional scales.  Average winds during July and August at the 

850 hPa pressure level, which is often used to diagnose moisture transport (Harding and 

Snyder 2012b; Huber et al. 2014), are generally southwesterly over eastern Nebraska, 

where extensive cropland irrigation occurs.  Thus, if irrigation in Nebraska were to cause 

downwind enhancement of precipitation via an increase in moisture (convergence), it 

would likely be in the Upper Midwest states of Iowa, Minnesota, Wisconsin, and 

Michigan, assuming enough vertical transport of the air parcels to reach the 850 hPa 

pressure level; otherwise, winds at the surface are generally more southerly and would 

likely lead to precipitation enhancement in the Dakotas and Minnesota.  Note that the 

scale of irrigation in the states downwind of Nebraska is much less than that of Nebraska 

itself due to the more humid climate; thus, irrigation in these downwind regions are not 

expected to significantly add to the rainfall effects expected from irrigation in Nebraska.  

The contrasts in phenology between irrigated crops, rain-fed crops, and potential 

vegetation are important for determining the most appropriate timing for an irrigation 

effect.  Most irrigation occurs during July and August in Nebraska, when ET is highest 

and crop water demand is maximized (Suyker and Verma 2008; Ozdogan et al. 2010; see 

Fig. 1c in DeAngelis et al. 2010 for a depiction of monthly crop water use in the Great 

Plains).  For both semi-arid and sub-humid climates within Nebraska, irrigated corn has 
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been demonstrated to have a longer growing season than rain-fed corn and grass, which 

results in higher values of ET lasting into August (Mahmood and Hubbard 2002).  While 

peak ET from irrigated corn is in July, the largest difference between ET from irrigated 

corn fields and that of rain-fed corn and grass is in August; this is also reflected in a 

modeling study done by Ozdogan et al. (2010).  Hence, if more irrigation-induced 

moisture is available in August, then the largest, most expansive irrigation effect on 

precipitation would be expected in August, a more moderate irrigation effect in July, and 

not much effect at all in June.  

2.2.2 Other potential mechanisms 

A similar mechanism may apply to the expansion of non-irrigated cropland in the 

Corn Belt of the US, which extends eastward from Nebraska to Ohio and northward to 

Minnesota and the eastern Dakotas.  Instead of a soil moisture-precipitation feedback, 

plant transpiration would increase as a result of increasing crop acreage, density, and 

greenness.  From 1940 to 2011, the acreage of corn and soybeans roughly doubled in 

Iowa and Illinois, and production of corn and soybeans increased in the two states by a 

factor of five (NASS 2013).  However, the degree to which this increase in non-irrigated 

crop acreage and production affects precipitation is unclear.  Latent heat flux, and thus 

ET, has been shown to increase when converting from grassland to rain-fed cropland 

(Wang et al. 2003), and specific humidity (Bonan 1997) and precipitation (Bonan 1997; 

Raddatz 2007) have also exhibited increases as a result of land cover conversion to 

cropland.  However, Adegoke et al. (2003) demonstrate that increases in latent heat flux 

in Nebraska are stronger for conversion from rain-fed to irrigated agriculture than for 

conversion from natural vegetation to rain-fed agriculture.  Additionally, Baidya Roy et 
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al. (2003) show no significant change in July precipitation in the Midwestern US between 

1910 and 1990 when accounting solely for changes in historical land cover fractions 

(without irrigation).  Therefore, while the potential contribution of non-irrigated cropland 

expansion and greater crop production to changes in precipitation patterns cannot be 

ruled out, it may be secondary to the forcing caused by irrigation development. 

Other studies have demonstrated potential impacts of irrigation on the dynamical 

forcings of summer precipitation, e.g., the Great Plains low-level jet (Weaver and Nigam 

2008; Huber et al. 2014) and monsoonal circulations (Douglas et al. 2009; Lee et al. 

2011, Im et al. 2014).  Moisture convergence may be enhanced in certain areas if 

monsoonal winds are changed or if additional moisture around irrigated croplands 

enhances moisture gradients.  However, further attribution of long-term precipitation 

changes to these phenomena would require the long-term (>60 years) determination of 

observational or modeled changes to the Great Plains low-level jet and/or to wind speed 

and direction over time, both of which are not readily available.  Though the limited 

observational nature of the present study precludes diagnosis of potential circulation 

changes, they are likely important links between irrigation and its effects on precipitation 

patterns.    

Finally, climate change (CC) from greenhouse gas emissions may be a potential 

mechanism.  For CC, enhancements in ET and saturation vapor pressure from rising 

temperatures (Clausius-Clapeyron relation) may cause distinct changes in precipitation 

patterns that, along with those caused by irrigation, may be ascertained from analysis of 

the observational record.  Therefore, our hypotheses, outlined in the next subsection, 

describe the expected precipitation effects from both CC and irrigation (or more 



14 

 

generally, LULCC) to determine which one has been more important in influencing 

observed changes in summer precipitation patterns.   

2.2.3 Hypotheses  

While the aforementioned mechanisms are each plausible, it is difficult to 

establish direct causal linkages, especially with observations.  Some of this difficulty may 

be the result of not separating changes in precipitation frequency from those of 

precipitation intensity; the relative contributions of frequency and intensity change may 

provide insight into mechanisms.  Moreover, it is possible that distinct mechanisms 

account for changes in different portions of the precipitation distribution, e.g., the 

controls on light precipitation events may differ from those on heavy events.  Therefore, 

our hypotheses incorporate both of these dichotomies – frequency and intensity, and 

lighter and heavier precipitation – to better attribute the observed changes in 

precipitation.   

We hypothesize that CC and LULCC (specifically, irrigation and non-irrigated 

crop expansion) have distinct signatures in changes of the precipitation distribution.  If 

CC is the main driver, warmer temperatures would increase ET, saturation vapor 

pressure, and atmospheric water vapor, thus stimulating more intense and more frequent 

heavy precipitation events (Trenberth et al. 2003).  However, the overall frequency of 

precipitation events – especially those of light and moderate intensity – would likely stay 

roughly the same or decrease (Hennessy et al. 1997; Sun et al. 2007).  This expected 

decrease in overall precipitation frequency would largely cancel out the effects on total 

precipitation of general increases in precipitation intensity (due to the extra water vapor).  

Indeed, an ensemble of global climate model simulations using the RCP8.5 scenario 
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(business as usual greenhouse gas emissions) indicates that total summer precipitation is 

projected to either remain roughly constant or increase slightly (less than 10%) in the 

Midwestern US by the years 2081-2100, even though annual average surface temperature 

in the same region is projected to be 5-7 K greater than present (IPCC, 2013).  Thus, it is 

expected that increases in surface temperature due to CC would likely result in only a 

small (if any) net change in total precipitation.   

On the other hand, if LULCC is the main driver, the combination of enhanced 

MSE from greater net radiation and enhanced atmospheric water vapor from greater ET 

could destabilize the ABL and create more frequent convective precipitation events over 

the entire precipitation distribution (Findell and Eltahir 2003a).  However, LULCC likely 

does not have as much of an effect on precipitation frequency compared with 

precipitation intensity since 1) the increase in net radiation, and therefore, in MSE, is less 

prominent than the repartitioning of heat fluxes and consequent increase in water vapor, 

and 2) non-local (synoptic and mesoscale) forcings likely determine the periods during 

which convective precipitation is most favorable (Allard and Carleton 2010; Huber et al. 

2014).  On the other hand, the added moisture in the ABL and increased moisture 

convergence downwind would very likely enhance precipitation intensity.  Therefore, we 

expect that LULCC would have a stronger effect on precipitation intensity than on 

precipitation frequency in the Midwestern US.  The increase in precipitation intensity 

(combined with potentially greater precipitation frequency) would likely enhance total 

precipitation if LULCC is the main driver.  It is expected that the largest increases in total 

precipitation would occur downwind of the irrigated regions due to the offsetting effects 

of greater CIN and greater shallow cloud cover directly over the irrigated areas.  
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In summary, if CC is the main driver, the precipitation distribution would shift 

toward more frequent and intense heavy events, less frequent lighter events, and small 

changes in total amounts.  If LULCC is the main driver, the precipitation signal would be 

weak over the irrigated areas but more pronounced downwind, especially in the Upper 

Midwest spatially and in August temporally.  In this region, we would expect to see 

enhancements in intensity and perhaps frequency, giving higher total precipitation 

amounts.  These are the signals that we attempt to detect in the following data analyses. 

 

2.3 Data and Methods 

Daily precipitation data were obtained from the Global Historical Climatology 

Network - Daily (GHCND) archive of the National Climatic Data Center (NCDC).  The 

GHCND dataset and its predecessor, the Global Daily Climatology Network, have been 

utilized by several previous works to analyze extreme precipitation patterns, determine 

historical precipitation frequencies, and calculate long-term trends in precipitation (e.g., 

Groisman et al. 2005; Alexander et al. 2006; Sun et al. 2006; Degu et al. 2011; Utsumi et 

al. 2011; Peterson et al. 2013).  Another advantage of GHCND is that in 2011, it became 

the official archive of all US daily climate data, including the U.S. National Weather 

Service Cooperative Observer Network, which has been previously used in long-term 

precipitation studies (e.g., Karl and Knight 1998, Kunkel et al. 2003, Groisman et al. 

2004, Groisman et al. 2012).  With these updates, GHCND now features unparalleled 

spatial coverage and hundreds of long-term precipitation stations throughout the 

contiguous US.  Additionally, the GHCND dataset is regularly subjected to a suite of 19 

quality control tests, as well as format testing and record integrity checks (Menne et al. 
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2012).  The main caveat with GHCND is that it is not adjusted for systematic biases 

resulting from instrument and/or reporting changes that may have occurred over the 

period of record for a particular station.  A more systematic and extensive quality control 

effort, e.g., removal of statistical biases resulting from the above issues, is beyond the 

scope of this paper; thus, it is worth noting that the results may be affected by 

inconsistencies in data homogeneity.  However, given the pros and cons of the dataset, 

we believe that inclusion of multiple overlapping temporal and spatial scales (described 

below), precedent in other peer-reviewed literature, and unparalleled spatiotemporal 

coverage of daily data permit the use of GHCND in determining long-term, observed 

changes in precipitation. 

To further enhance the robustness of the following analyses of long-term 

precipitation changes, only those stations containing at least 90 years of data over 1895-

2011 were considered for this study.  Data flagged for potential quality concerns were not 

included in the analysis, and missing values were removed.  A total of 1736 stations were 

retained for analysis, with the highest station densities in the central US, Texas, and 

California [Fig. 3a]. 

Our choice of spatial aggregates (climate divisions and regions) is motivated by 

NCDC practice.  While the former match the standards used by the NCDC, the latter are 

defined by the authors and differ slightly from the NCDC definitions (not shown) (Karl 

and Koss 1984).  Among the principal differences are:  1) redistribution of climate 

regions in the southeastern United States to isolate potential impacts of shifts in tropical 

storm activity; 2) partitioning of the “Northern Rockies and Plains” region into “Northern 

Rockies” and “Northern Plains”, to isolate the Plains from the more topographically 
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diverse Northern Rockies; and 3) redistribution of states within the Midwest and 

Northeast regions to even out the areal coverage of the climate regions.  

To reduce the sensitivity to temporal period, precipitation was compared across 

different temporal segments [Fig. 3b, vertical axis].  The precipitation data were first 

sorted into ten bins of different intensity, ranging from 0.25-2.5 mm (0.01-0.1 in) to 152+ 

mm (6+ in) [Fig. 3b, horizontal axis].  A time-series of 117 data points – one for each 

year from 1895 to 2011 – was compiled for each intensity bin for frequency, intensity, 

and total precipitation, with each datum representing a per-station average for each 

climate region or division.  Segments of different temporal length (e.g., 36 values each 

for 1895-1930 and 1976-2011) were then compared using a two-sample t-test to 

determine the significance of any changes between the means of the distributions.  The 

results were concatenated into “time period-intensity” plots [Fig. 3b]. 

Similar to the methodology of Groisman et al. (2012), use of irregularly-spaced 

widths of precipitation intensity bins reflects the nature of the original precipitation 

measurements (reported in inches, rather than mm).  The first two bins are termed “light 

precipitation” (0.25-6.4 mm [0.01-0.25 in] per day); the third and fourth bins, “moderate 

precipitation” (6.4-25 mm [0.25-1 in] per day); the fifth and sixth bins, “heavy 

precipitation” (25-76 mm [1-3 in] per day); and the remaining four bins, “very heavy 

precipitation” (>76 mm [3 in] per day).  
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2.4 Results    

2.4.1 Statistically significant changes in precipitation 

2.4.1.1  PRECIPITATION FREQUENCY 

The middle row of Figure 4 summarizes changes in the frequency of precipitation 

events in June, July, and August.  The Midwest and the Upper Midwest clearly stand out, 

with significant increases (p ≤ 0.05) over the second half of the 20
th

 century during July 

and August [Figs. 4e-f].  In the Upper Midwest, almost all precipitation bins exhibit 

significant increases in precipitation frequency during these two months, especially 

during August, when nearly every temporal period experiences significant increases.  In 

the Midwest during July, significant increases in precipitation frequency are evident for 

the heavier precipitation bins when evaluated over longer temporal periods, but almost no 

significant increases occurred in August.  Overall, the magnitude and robustness of these 

increases far exceed those elsewhere in the CONUS domain:  aside from a few significant 

increases in moderate precipitation frequency in the Northwest and West, no other region 

exhibits consistent, significant frequency increases outside of the lightest two bins [Figs. 

4d-f]. 

Figure 5 summarizes changes in June, July, and August precipitation frequency 

across the 344 climate divisions, giving a finer spatial view of the changes in 

precipitation frequency.  In the top row, total counts of significant increases (p ≤ 0.05) 

over all precipitation intensity bins and comparison periods are indicated for each climate 

division, e.g., a total of seven significant increases, colored darker green, and are counted 

in Fig. 3b.  Again, the Midwest and Upper Midwest regions stand out.  Most of Iowa, 

southern Minnesota, Wisconsin, and Michigan experienced widespread significant 
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increases in precipitation frequency over the observational record in both July and August 

and to a lesser degree in June, while eastern Illinois and Indiana experienced many 

significant increases in precipitation frequency in July only.  These results correlate 

reasonably well with the expected areas of a LULCC impact on precipitation frequency, 

as discussed in Section 2.  

The lower two rows of Figure 5 depict the results of similar climate division 

analyses but for the lightest four bins (≤25 mm or 1 in) [middle row] and for the heaviest 

six bins (>25 mm) [bottom row].  Partitioning the analysis into these bins is useful for 

distinguishing between the CC (i.e., heavy precipitation) and LULCC (i.e., light and 

heavy precipitation) hypotheses.  In general, the results from the lighter bins are nearly 

identical to that of all precipitation bins (top row).  However, the heavier bins only show 

isolated significant increases in Iowa, Illinois, and Indiana in July and in Iowa and some 

climate divisions in the Upper Midwest in August.  We note that differences in station 

density are likely not an issue:  e.g., central Indiana and eastern Indiana have 11 and 2 

stations, respectively, yet both show widespread significant increases in July.   

2.4.1.2  PRECIPITATION EVENT INTENSITY 

The bottom row of Figure 4 summarizes the changes in precipitation event 

intensity by climate region.  The Midwest and Upper Midwest show significant increases 

in event intensity for the moderate and heavy precipitation bins during each summer 

month.  However, several other regions also show significant increases.  Changes in 

event intensity by climate division [Fig. 6] are more scattered and generally less robust, 

though climate divisions in the north-central United States – especially near Nebraska 

and Iowa – reflect more significant changes than elsewhere.  Overall, since the pattern of 
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significant increases in precipitation intensity is not unique to the Midwestern US, an 

LULCC signal on precipitation intensity is not readily apparent in these figures.  

2.4.1.3  TOTAL MONTHLY PRECIPITATION 

Spatially, changes in total monthly precipitation [top row in Fig. 4] correlate well 

with changes in precipitation frequency [middle row in Fig. 4].  For a more quantitative 

comparison, Figure 7 depicts the mean monthly changes in frequency, intensity, and total 

precipitation for each climate region.  From 1895-1933 to 1973-2011 (row 6 on the time 

period-intensity plots), the average June, July, and August precipitation in the Upper 

Midwest increased by 12.5, 13.4 and 20.7 mm, respectively, while July precipitation in 

the Midwest increased by 11.3 mm [Figure 7a].  These increases exceed those of the 

other regions in all three months (except the Southern Plains in June), usually by a factor 

of two or greater, mirroring the large increases in precipitation frequency [Fig. 7b]. 

At first glance, the results in Figure 7 point to daily frequency change as the 

principal determinant of total precipitation change.  However, while changes in frequency 

dominate the magnitude of total monthly precipitation changes in the Midwestern United 

States, changes in intensity exert a notable secondary influence.  For frequency change, 

the differences between June, July, and August are relatively small in both the Midwest 

and Upper Midwest [Fig. 7b].  However, intensity changes are much less negative in the 

Midwest during July and in the Upper Midwest during August [Fig. 7c], and total 

precipitation changes are likewise amplified in the Midwest and Upper Midwest during 

July and August, respectively, when compared to the other summer months [Fig. 7a].  

Further evidence of this influence is seen in the Southern Plains, which experiences 

intensity increases in June but intensity decreases in July and August.  Thus, anomalous 
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intensity changes do exert some influence on month-to-month patterns of total 

precipitation change. 

2.4.2 Absolute and percent changes 

Figure 8 depicts the absolute changes in mean monthly total precipitation, 

frequency, and intensity from pre- to full-irrigation.  We analyze absolute changes 

because more distinct patterns may emerge using mean changes rather than only 

analyzing statistically significant changes, especially for precipitation intensity, which 

displays weak spatial patterns in Figure 6.  Additionally, whereas the previous figures 

sum the significant changes over all ten temporal pairings, Figure 8 specifically illustrates 

changes that occurred from pre- to post-irrigation.  In particular, we focus on 

precipitation changes between 1895-1933 and 1973-2011, i.e., row 6 on the temporal axis 

of the time period-intensity plots [Fig. 3b], for a few reasons:  1) It is one of the rows that 

compares a pre-irrigation to full-irrigation period; 2) it avoids the Dust Bowl drought of 

the mid-1930s, unlike rows 1-4; and 3) it utilizes more years than rows 8 and 9, thereby 

improving the robustness of any potential conclusions. 

In summary, Figure 8 displays mixed correlations between absolute changes in 

precipitation frequency and total precipitation in the Midwestern US.  In August, absolute 

frequency changes [Fig. 8f] match up well with the pattern of changes in total 

precipitation [Fig. 8c], though they are displaced a bit farther north than the total 

precipitation swath.  Intensity increases [Fig. 8i] only slightly overlap with the southern 

edge of the total precipitation swath [Fig. 8c].  In this way, it seems that frequency 

changes dominate the changes in August total precipitation, while intensity changes exert 

a small secondary influence.  However, in July, the larger frequency changes lie much 
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farther north than those of total precipitation; intensity changes, on the other hand, 

spatially coincide with the total precipitation changes.  Maps of percent changes (not 

shown) are almost exactly the same east of the Rocky Mountains; the main difference is 

larger increases in frequency and total precipitation in the West Coast states, where 

summer season rainfall is sparse.  Hence, frequency changes do not always dictate the 

patterns of total precipitation change during the summer months in the Midwestern US, 

and intensity changes may actually exert a notable influence.  

2.4.3 Monthly ranks of absolute and percent changes 

Since the patterns of absolute frequency change are inconsistent with those of 

total precipitation change, the rank of each variable is computed relative to the other 

months of the year in Figure 9 to provide an additional means of determining the seasonal 

intercorrelation and uniqueness of these frequency, intensity, and total precipitation 

changes.  Climate divisions with a monthly value that ranks as one of the three highest of 

the year (out of 12) are illustrated in darker green; the three lowest values of the year are 

shaded in darker brown. 

Ranking the absolute changes highlights a distinct relationship between the three 

variables:  Intensity patterns, rather than those of frequency, coincide better with total 

precipitation patterns (in terms of both magnitude and location) in all three summer 

months [Fig. 9 – top and bottom rows].  On the other hand, it seems as though the large 

absolute changes in frequency [Figs. 8d-f] are not as unique in the Midwestern US during 

the summer months.  The spatial distribution of top-three August frequency changes in 

the Upper Midwest is disjointed and, unlike those of intensity and total precipitation, 

does not extend into northern New England.  In July, top-three frequency rankings only 
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overlap with those of total precipitation for six climate divisions in Iowa and Indiana; in 

contrast, top-three intensity rankings overlap those of total precipitation in at least 18 

climate divisions throughout the Midwestern US.  Additionally, the total precipitation 

rankings for percent change show an even stronger correlation with those of intensity and 

even weaker correlation with those of frequency (not shown).  In summary, the rankings 

suggest that changes in both intensity and total precipitation in the Midwestern US are 

greatest during the summer, especially during July and August. 

 

2.5 Discussion 

We now interpret the above results in the context of the CC and LULCC 

hypotheses.  The argument that CC is the main driver of the observed precipitation 

changes is supported by the significant increase in the frequency of heavy and very heavy 

precipitation events in the Midwestern US, with no other region showing changes of 

similar magnitude.  The increases in precipitation intensity for moderate and heavy 

precipitation bins are also consistent with a CC signal.  Combined with observed 

increases in growing season temperature over the Midwestern US over the last century 

(Villarini et al. 2013) and large increases in specific humidity since 1947 (Brown and 

DeGaetano 2013), one might conclude that CC has been a major factor in influencing 

precipitation changes over this region. 

However, total monthly precipitation increased significantly throughout the 

Midwestern US during July and August, sometimes by more than 25 mm (1 in) [Figs. 

8b,c], which is counter to changes expected from CC.  The frequency of light and 

moderate precipitation events also significantly increased [Figs. 4 and 5 – middle rows], 
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which is not accounted for by changes outlined in the CC hypothesis.  Temporally, the 

most robust increases in precipitation frequency and total precipitation are evident when 

comparing pre-1950 time periods with post-1975 time periods [Fig. 4 – top and middle 

rows]:  The timing here is consistent with the rapid development of cropland and 

irrigation between 1950 and 1980 in the central US.  Spatially, the location of the 

strongest increases in precipitation, i.e., downwind of a major irrigated region in the 

Great Plains, is consistent with the argument of a LULCC influence on precipitation 

patterns.  Together, these results suggest that LULCC, or a driver with similar spatial and 

temporal characteristics, may have exerted a significant impact on precipitation changes 

over the Midwestern US.  While CC may still have influenced precipitation changes in 

the Midwestern US, especially those of precipitation frequency, the patterns of 

spatiotemporal changes in total precipitation and precipitation intensity seem to favor a 

stronger influence from LULCC.  

Furthermore, our analyses of absolute and percent changes in mean frequency, 

intensity, and total precipitation from pre- to full-irrigation shed light on how changes in 

frequency and intensity may have affected the observed changes in total precipitation.  

While the analysis of absolute (and percent) changes seems to indicate that frequency is 

the main determinant of total precipitation patterns [Fig. 8], a comparison of the monthly 

rankings for each variable [Fig. 9] reveals that changes in intensity and total precipitation 

are both greatest during July and August in the Midwestern US and are spatially 

coincident.  Meanwhile, the large increases in frequency evident during July and August 

are not unique to the summer, as large increases in frequency also occur in other months 

of the year.  In other words, because these large increases in frequency are not isolated to 
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the summer, they are not necessarily responsible for large increases in Midwestern 

precipitation during the summer; the anomalously high changes in precipitation intensity, 

on the other hand, may be more closely linked to changes in total precipitation than 

originally implied by Figure 8.   

The unique correlation of summer intensity rankings with summer monthly 

precipitation rankings is consistent with the hypothesis that increased moisture from 

irrigation and/or cropland expansion, and thus increased moisture convergence, is 

responsible for a non-negligible portion of total precipitation change during July and 

August in the Midwestern US.  This is even more apparent when comparing the intensity 

changes of the Midwest and Upper Midwest to those of other regions.  Since summer 

frequency increases have generally exceeded those of total precipitation across the US 

[Fig. 7], decreases in intensity would appear to be favored; indeed, most climate regions 

across the US have exhibited decreases in intensity during the summer.  One potential 

explanation for this intensity decrease is that with CC, increasing temperatures around the 

US would cause more atmospheric instability near the surface, increasing the frequency 

of precipitation events; however, intensity would decrease if water vapor does not 

increase sufficiently to compensate for the greater incidence of precipitation events.  The 

changes of intensity in the Midwest during July and in the Upper Midwest during August 

are much less negative than the strongly negative mean established by the other climate 

regions in the summer and are thus anomalously high.  Therefore, even though most of 

the intensity changes in the US have been negative and seemingly antithetical to 

increasing total precipitation, the anomalously high intensity changes in the Midwestern 

US are likely indicative of an increase in moisture and/or moisture convergence in this 
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region.  This is consistent with observational evidence of increased moisture across the 

Corn Belt during the second half of the 20
th

 century (Mahmood et al. 2004; Brown and 

DeGaetano 2013) and with the numerical model simulation of Huber et al. (2014) that 

shows large increases in precipitation intensity (though not in precipitation frequency) 

because of irrigation development.   

Two other mechanisms that may factor into the observed increases in 

precipitation intensity and frequency are non-classical mesoscale circulations (NCMCs) 

and precipitation recycling.  Similar in concept to the dynamics of classical mesoscale 

circulations like land-sea breezes, NCMCs may form at the boundary between two land 

types with different radiative and/or roughness characteristics, such as cropland and 

forest (Segal et al. 1988; Carleton et al. 2001; Weaver 2004; Allard and Carleton 2010).  

The horizontal gradients of temperature and moisture between irrigated and non-irrigated 

regions may induce ascent and moisture convergence on the non-irrigated, warmer side 

[see Fig. 2], which can potentially enhance convective rainfall under relatively weak 

synoptic conditions (Carleton et al. 2008).  Because enhanced precipitation from NCMCs 

tends to occur within 100 km of the boundary (see Carleton et al. 2008), one might 

anticipate enhanced uplift and rainfall over western Iowa, the non-irrigated region 

immediately adjacent to the heavily irrigated areas in eastern Nebraska.  Incidentally, a 

regional simulation of irrigation-induced radiative changes during the summer by Qian et 

al. (2013) depicts an area in western Iowa with higher LCL and ABL heights 

immediately adjacent to a wide swath of (irrigation-induced) lower LCL and ABL 

heights, which is indicative of greater sensible heat flux on the Iowa side and potentially 

an irrigation-induced NCMC.  Our analyses show that frequency, intensity, and total 



28 

 

precipitation have increased in western (and often, most of) Iowa in the figures with 

climate division analyses, especially during July for frequency and total precipitation 

[e.g., Fig. 8].  Though the mechanism posited here would need to be validated using a 

climate model, the coincident location of the observed precipitation increases adds 

evidence to the notion that an NCMC has influenced local precipitation patterns.   

Another potential mechanism for expanding the swath of enhanced precipitation 

is precipitation recycling.  Precipitation recycling occurs when soil moisture from rainfall 

in a particular area is evaporated into the ABL and cycled back into precipitation 

downwind of its source (Eltahir and Bras 1996; Zangvil et al. 2004; Dominguez et al. 

2006).  This mechanism may be a secondary transport of moisture downwind of Iowa, 

where total precipitation in July increased by at least 20% (~12.7 mm) from pre- to full-

irrigation.  Wind vectors at the 850 hPa level illustrate that the areas in August with the 

largest increases in total precipitation (Great Lakes and northern New England) are 

downwind of Iowa, so this mechanism has some physical plausibility.  However, 

numerical modeling experiments are necessary to diagnose the degree to which 

precipitation recycling may have contributed to the observed increases in precipitation 

downwind of Iowa.  

Other potential forcings, such as changes to the Great Plains low-level jet 

(GPLLJ), urban heat island effects, and large-scale atmospheric circulations may also be 

important in causing the observed changes in precipitation.  For example, Weaver and 

Nigam (2008) indicate that the GPLLJ index and Great Plains precipitation index (which 

includes eastern Nebraska and Iowa) have a correlation of 0.71 during July, and the first 

principal component of GPLLJ variability explains up to 1.6 mm/day (~50 mm/month) of 
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July precipitation in Iowa.  Additionally, while the indices of various circulation patterns 

(e.g., ENSO, NAO, AMO) are not strongly correlated with monthly precipitation during 

July and August in the Midwestern US (with the exception of August PDO) [Fig. 10], 

there is slightly better correlation between the Niño 3.4 index and July and August 

precipitation when the Niño 3.4 index leads by 1-3 months (e.g. June Niño 3.4 vs. July 

precipitation) (not shown).  It is also possible that the large increases in Texas 

precipitation during June could be linked via precipitation recycling or the GPLLJ to the 

increases in the Midwestern US during July and August.  The accumulation of aerosols in 

the US over the last century also has the potential to alter precipitation patterns, 

especially those of heavy precipitation (Tao et al. 2012).  Connecting the observed 

increases in rainfall with all of these potential factors requires a more comprehensive 

investigation that is beyond the scope of this paper.             

We point out a few caveats on these interpretations.  First, observations of 

dynamic variables such as vertical wind are not readily available, precluding further 

attribution of these changes.  Second, the location and strength of irrigation-induced 

impacts may vary depending on mesoscale or synoptic conditions, so the overall 

signature in precipitation may be weakened with averaging over long temporal or coarse 

spatial scales.  Third, while LULCC is hypothesized as an important contributor to the 

observed changes in precipitation, quantification of its contribution to precipitation (and 

those of other factors) requires further research.  We anticipate that future sensitivity 

studies using regional model simulations may reduce these uncertainties. 

In conclusion, this study sheds new light on the possible causes of the observed 

increase in summer precipitation in the Midwestern US.  The balance of evidence 
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suggests that while changes in frequency appear to exert a strong control on the 

magnitude of changes in total precipitation, the moderate to strong correlations of 

intensity changes with total precipitation changes (especially when ranked against other 

non-summer months) implies an increase in atmospheric moisture and/or moisture 

convergence.  We speculate that the rapid development of irrigation and expansion of 

cropland in the central US may have contributed to this increase in atmospheric moisture 

and moisture convergence.  In combination with previous studies, these analyses 

strengthen the argument that historical, large-scale LULCC was a key factor in enhancing 

summer precipitation in the Midwestern US over the late 20
th

 century.  Understanding the 

drivers of such precipitation changes is essential for sound management and adaptation 

strategies in a changing climate. 
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3. MODELING ANALYSIS 

 

 

 

3.1 Previous studies 

 In recent years, many modeling studies have been conducted regarding the effects 

of irrigation on hydroclimate.  To start, initial models were one-dimensional, column 

models that only simulated the effects of irrigation over one particular grid cell.  As an 

example, DeRidder and Gallée (1998) used one of these models to simulate the effect of 

irrigation on precipitation over southern Israel, and they determined that convective 

activity was enhanced by irrigation. 

 Many other modeling studies since then have been two-dimensional, i.e., 

simulations were performed over horizontal areas.  Over the United States, Segal et al. 

(1998) conducted a nationwide modeling simulation that concluded irrigation only 

influences the intensity of rainfall and not the location of the precipitation.  Adegoke et 

al. (2003) simulated weather over Nebraska for 15 days and determined that there was a 

36% increase in the surface latent heat flux and a 2.6 K increase in dewpoint temperature 

as a result of irrigation.  Diffenbaugh (2009) also conducted a nationwide simulation of 

the United States and found increases in precipitation from both irrigation and other land 

use change in the Northern Plains of the US.  DeAngelis et al. (2010) showed 

observationally that the precipitation increases in the Midwestern US in July correlated 

with the development of irrigation; a water vapor tracking model based on NARR 

reanalysis products showed strong sensitivity of downwind precipitation to upwind ET 

from the High Plains.  Ozdogan et al. (2010) demonstrated strong increases in ET in 

Nebraska and in other irrigated areas when irrigation was included in their land surface 
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model.  Harding and Snyder (2010a,b) ran nine years of growing-season simulations with 

the WRF model and determined that irrigation results in enhanced rainfall over and 

immediately downwind of Nebraska.  Guimbertau et al. (2011) showed precipitation 

increases over and to the northwest of Nebraska but precipitation decreases southeast of 

Nebraska due to irrigation.  Lo and Famiglietti (2010) discovered a remote enhancement 

of precipitation in the US Southwest due to irrigation in California.  Qian et al. (2013) 

simulated the effects of irrigation in the Great Plains and determined that shallow 

cumulus convection is more likely in the irrigated areas since the LCL drops more than 

the height of the planetary boundary layer.  Huber et al. (2014) showed in a WRF 

simulation that precipitation intensity increases in select areas downwind of the irrigated 

areas of the Great Plains when irrigation saturates soil moisture.  The main conclusion to 

be derived from the above modeling studies is that precipitation, and relevant surface and 

atmospheric variables, are indeed affected by irrigation in the United States, and further 

investigation into irrigation effects is warranted. 

 Elsewhere around the world, other modeling studies have come to similar 

conclusions.  Douglas et al. (2009) found that irrigation in India caused latent heat flux to 

increase and sensible heat flux to decrease, and precipitation exhibited both increases and 

decreases as a result. 

Most of the above modeling studies have been on monthly, seasonal, or annual 

time scales.  Since irrigation impacts on precipitation may vary widely on shorter 

timescales with changing synoptic and mesoscale conditions, a modeling analysis of the 

daily and sub-daily impacts of irrigation is warranted.  As in the observational study, the 
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modeling analyses attempt to determine these daily and sub-daily changes in precipitation 

from irrigation in the Great Plains. 

 

3.2 Experimental setup 

The model being utilized in this study is the Weather Research and Forecasting 

(WRF) – Advanced Research WRF regional climate model, version 3.3.1.  The WRF 

model is fully compressible, Eulerian, and nonhydrostatic with a run-time hydrostatic 

option (NCAR 2011).  The model uses a terrain-following, hydrostatic-pressure vertical 

coordinate with the top of the model being a constant pressure surface.  WRF is a 

versatile model:  It has been used to simulate weather and climate on time scales of hours 

to decades, spatial scales of meters to hundreds of kilometers, and has a multitude of 

available physics options. 

The impacts of irrigation on precipitation are analyzed during June of 2002.  The 

original intent was to simulate June, July, and August for the proposed model 

experiments, but due to time limitations, the simulation was stopped after a 15-day 

simulation beginning on June 1.  The year 2002 was chosen for a few reasons.  First, the 

Great Plains region was under drought conditions during the summer of that year, with 

above-average temperatures and low precipitation (low Palmer Drought Severity Index).  

This would increase the crop water demand during these months and lead to more 

irrigation water being used.  Second, much more precipitation fell in the Upper Midwest 

than in Nebraska during the summer of 2002; the difference in precipitation between the 

two regions was actually the largest such difference in the 21
st
 century (NCDC 2013).  

Third, the above precipitation difference matches what one might expect from an 
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irrigation effect on precipitation, i.e., that is enhanced rainfall downwind of the irrigated 

areas, and reduced rainfall over the irrigated areas. During the summer of 2002, an El 

Niño was present, so this bears consideration when interpreting the final results.  It is also 

important to note that because of the short simulation, spin-up time was not accounted for 

or removed from the analysis.  This may cause some artifacts in the model results for the 

first several days as the model reaches more of a realistic equilibrium.    

The model is run at 10 km spatial resolution, which is fine enough to capture the 

effects of larger convective systems yet coarse enough that it did not use too much of the 

limited computational resources.  The experiment uses 28 vertical levels and a model top 

of 100 hPa, both standard configurations for WRF.  The model time step is set at 60 

seconds, following the WRF guideline of six times the spatial resolution.  The Kain-

Fritsch cumulus parameterization is utilized in the model run, and the microphysics 

option used is the Morrison 2-moment scheme.  The radiative longwave scheme used is 

the RRTM (Rapid Radiative Transfer Model), and the radiative shortwave scheme used is 

the Dudhia scheme.  All of the above are standard recommendations for climate 

simulations using the WRF model.  The domain covers the northern Great Plains from 

Kansas north to the Dakotas, and from central Colorado to Indiana [Figure 11].  This 

domain is large enough to encompass most of the irrigation impacts, even those that are 

non-local, and is small enough to have run in a reasonable amount of time given the 

limited computational resources.   

The land surface model being used in conjunction with WRF is the Noah land 

surface model (LSM).  Noah is the standard LSM used with the WRF model.  There are 

four soil layers in the Noah LSM, which are 10, 30, 60, and 100 cm thick, respectively.  
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Thus, all soil layers in Noah combined reach a depth of two meters below the ground; 

any additional water that filters through the bottom of the deepest soil layer is returned to 

the surface as runoff.     

The irrigation scheme implemented in WRF focuses exclusively on a subdomain 

of the model that is placed roughly over Nebraska.  If any of the four soil layers at a 

particular grid cell within the Nebraska subdomain are at less than half of field capacity 

(i.e., the level of soil moisture after excess water has drained away), then all four soil 

layers are filled up to field capacity.  Raising the soil moisture within a grid cell once it 

reaches a certain soil moisture threshold has some precedent in previous works (Ozdogan 

et al. 2010; Qian et al. 2013), though this scheme is much simpler.  Actual irrigation 

practice would involve watering the surface, either through sprinkler or flood irrigation.  

It would also be more prudent to use root zone soil moisture as the variable to test for a 

soil moisture threshold.  However, time limitations prevented the usage of more 

complicated irrigation schemes.  The simple one used here is deemed appropriate for an 

exploratory study on the effects of irrigation in Nebraska on precipitation. 

Land use categories were those used by the United States Geological Survey.  

There are 24 categories in this dataset, which is the default configuration for the Noah 

LSM.  Much of the Great Plains and the Midwestern US are cropland or in a cropland 

mosaic.  While the irrigated land in Nebraska would normally be grassland or cropland, 

this model run was set to irrigate any type of land as long as it was in the Nebraska 

subdomain.  This is due to the simplicity of the irrigation scheme. 

The WRF model was initialized with the North American Regional Reanalysis 

product, which has 32-km horizontal and 3-hour temporal resolution.  Simulations were 
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initialized on June 1 at 00Z and ended on June 15 at 21Z, updating with new lateral 

NARR boundary conditions every 3 hours.  A buffer of five grid cells transitioned from 

the NARR background to the experimental domain.  No spectral or analysis nudging was 

performed, and nested domains were not used so that computation resources could be 

conserved.  Additionally, leaf area index was initialized at summer values (only summer 

and winter values are available for standard Noah configurations), and soil moisture was 

initialized at values specified by NARR on June 1 at 00Z.  Note that the irrigation scheme 

takes effect by the second time step.  Because of the short duration of the model runs, any 

grid cells that were irrigated in the model run usually retained anomalously high soil 

moisture values during the entire run and did not necessitate further irrigation during the 

15-day period. 

Validation of the precipitation model run was performed by comparing the 

precipitation output from the WRF model to that of cli-MATE, an online precipitation 

repository from the Midwestern Regional Climate Center [Figure 12].  Values of total 

precipitation were obtained from the cli-MATE gridded precipitation observations.  In 

comparing the WRF model precipitation to the cli-MATE precipitation, it is apparent that 

while there are regional variations in the spatial distribution of precipitation, it seems that 

the overall pattern of precipitation is preserved.  The major precipitation maxima near the 

intersection of Iowa-Wisconsin-Illinois and in northern Minnesota are reproduced fairly 

well by the WRF model, and the local maximum near the Kansas-Oklahoma border in 

cli-MATE is reproduced in WRF but shifted to the northeast.  Meanwhile, the dry patch 

in Nebraska and South Dakota is also captured in the WRF model.  Some of the more 

noticeable errors in the WRF representation of precipitation are anomalous dry patches in 
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southern Minnesota and northern North Dakota and anomalous wet patches in Indiana 

and around the southern and eastern edges of the model domain.  The actual values of 

WRF precipitation also seem to be roughly in line (plus or minus one inch) with what is 

shown in the cli-MATE precipitation. In general, WRF precipitation seems to be close 

enough to cli-MATE precipitation that sensitivity studies to an irrigation forcing in the 

model can be conducted with reasonable correspondence to reality. 

The WRF model was run two separate times:  once with the irrigation scheme 

being implemented and once without the irrigation scheme.  All absolute and percent 

changes in the upcoming sections are the irrigation run minus the non-irrigation run, 

unless otherwise noted.  To better isolate changes in precipitation between different 

regions of the central US, the domain is split into nine regions [Figure 11]:  Nebraska 

(NE), Kansas (KS), Colorado Rockies (CR), east and west Northern Plains (NPE and 

NPW), east and west Upper Midwest (UME and UMW), and east and west Midwest 

(MWE and MWW).  The NE region is the only one that was subject to irrigation; all 

other regions are considered to be downwind and are non-irrigated.  In particular, we 

focus on the subregions of the Midwest and Upper Midwest, since these are the regions in 

which the observational analysis suggests that there may be precipitation increases due to 

irrigation in the Great Plains.   

 

3.3 Results 

The spatial distribution of total precipitation for the simulated 15-day period is 

very similar between the irrigated and non-irrigated model runs [Figure 13].  As is 

suggested in other studies of irrigation impacts on precipitation (e.g., Segal et al. 1998; 
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Huber et al. 2014), irrigation does not seem to create any new areas of precipitation.  

Rather, if there is an irrigation effect on precipitation, it seems to be in intensifying the 

precipitation already falling at a particular location.  Some areas where precipitation 

seems to intensify are at the border between Illinois and Wisconsin, the border between 

Illinois and Indiana, and the border between Kansas and Missouri.  However, simple 

comparison of these two plots does not seem to indicate any widespread changes in 

precipitation.  Initially, this seems to contradict the main findings of the observational 

study, where widespread increases in total precipitation are evident across the 

northeastern quadrant of the US during the summer.  Furthermore, there is also a 

comparable number of areas where precipitation seems to decrease across the domain.  

Thus, initially the effect of irrigation on precipitation in the Midwestern US seems to be 

muted. 

However, the absolute difference map between the two model runs depicts a 

slightly different picture, with seemingly more areas with precipitation increases (warmer 

colors) than with precipitation decreases (cooler colors) [Figure 14].  In particular, it 

seems that the eastern part of the model domain, i.e. the Midwest and Upper Midwest 

subregions, exhibit more precipitation increases than decreases, which corresponds with 

the increases in total precipitation found in the observational study.  Masking all 

differences less than 12.5 mm depicts a much more scattered precipitation change 

distribution, yet still there seem to be more increases than decreases east of Nebraska 

[Figure 14].  Masking all differences less than 25 mm (1 inch) shows that even though 

some isolated pockets of both increases and decreases remain, there are still larger areas 

of precipitation increases in Illinois and Indiana, along with one area of major 
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precipitation decrease [not shown].  Thus, while precipitation increases are not a strong 

majority in the modeled domain, there are still more (and stronger) increases in 

precipitation in general than there are precipitation decreases. 

The percent difference between irrigated and non-irrigated model runs is shown in 

Figure 15.  The pattern depicted here is very similar to that of Figure 14, but the main 

variation is in the intensity of the changes.  It seems that in general, the percent increases 

in precipitation are of a higher magnitude than those of the precipitation decreases.  In 

particular, southern Minnesota, northern Michigan, eastern Illinois, the northern part of 

South Dakota, western Nebraska, and eastern Colorado all have much larger magnitudes 

of percent increases in precipitation than is indicated by the absolute increases.  

Meanwhile, central Lake Michigan, southern South Dakota, and much of Nebraska all 

exhibit stronger magnitudes of percent decrease in precipitation than is indicated by the 

absolute changes.  The large number of “intensified” magnitudes of percent changes 

versus absolute changes is due mainly to the lower overall precipitation recorded in the 

aforementioned areas.  In general, most of the areas with the elevated magnitudes 

recorded less than 25 mm (1 inch) of precipitation during the 15 day period, and many 

areas recorded less than 12.5 mm (0.5 inch) of precipitation.  For reference, more than 

half of the eastern part of the domain (east of Nebraska) received at least 50 mm of 

precipitation during the 15-day period. 

Masking percent changes that have a magnitude of less than 25% defines the 

precipitation patterns very clearly [Figure 15].  While large percent increases in 

precipitation seem to be occurring downwind of Nebraska, the major areas of percent 

decreases in precipitation occur over or slightly to the north of Nebraska.  Masking the 
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percent changes with a magnitude of less than 75% depicts an even starker pattern:  

While there are a few larger areas and many isolated areas of greater than 75% increase 

in precipitation, there are virtually no areas with greater than 75% decrease in 

precipitation [not shown].  In other words, the largest percentage changes in total 

precipitation are increases rather than decreases. 

Changes in precipitation intensity are now examined across the whole domain and 

within each subregion.  Total precipitation over the 15 simulated days for the irrigation 

and non-irrigation runs and the absolute and percent differences between them are listed 

in Table 1.  Averaged across the whole domain for the whole 15-day period, total 

precipitation increases by 0.13 mm, or 0.26%.  Thus, irrigation leads to a net increase in 

precipitation over the whole domain during the 15-day period, though the increase is very 

small.  Regionally, there exists a west-east precipitation gradient, where more rain falls in 

the humid east and less rain falls in the semi-arid west; this is expected climatologically.  

As for the absolute changes, the MWE and UMW subregions have the top two absolute 

increases in precipitation due to irrigation, and the NE subregion exhibits the greatest 

absolute decrease.  This is consistent with what would be expected from the observational 

analyses, though the UME subregion (which exhibited long-term significant increases in 

precipitation in the observational analysis) exhibits a decrease in precipitation in this 

modeling experiment.  The magnitude of the NE decrease in precipitation is almost equal 

to the combined magnitude of the MWE and UMW increases; in other words, its absolute 

changes are highly anomalous compared to the other subregions.  Comparing percent 

changes in precipitation due to irrigation depicts an even starker contrast between NE and 

the other subregions:  While MWE and UMW exhibits increases in precipitation of 
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2.46% and 4.07%, respectively, the NE region exhibits a decrease of 19.42%.  Overall, 

only the two Midwest subregions and the UMW subregion experience increases in 

precipitation over the 15 days; the other six subregions experience precipitation decreases 

due to irrigation.   

The timelines for daily precipitation intensity for the irrigated and non-irrigated 

model runs are shown for all subregions (except for CR) in Figure 16.  When comparing 

these timelines of daily precipitation intensity, it is apparent that while a few larger 

changes exist on a daily basis, the majority of irrigation-induced changes in daily 

precipitation seem to be relatively minor [Figure 16].  Only for a select few events is 

there a sizeable gap between the two model runs.  Some larger increases occurred in the 

MWE subregion on June 12, UME on June 14, UMW on June 3 and 13, and NPE on 

June 8.  Some larger decreases occurred in the NPE subregion on June 2, NPW on June 9, 

KS on June 4, and NE on June 2-3 and 10-12.    The absolute decreases in NE on June 

10-12 seem to be the largest of any daily change in the combined subregions.  Following 

the pattern described above, it seems that large increases are more likely to occur in the 

eastern part of the domain, while large decreases are more likely in the western part of 

the domain, especially over Nebraska.  Additionally, examination of these timelines 

imply that precipitation frequency is unaffected by irrigation; only the intensity of 

individual precipitation events changes on any given day. 

These relatively minor changes in precipitation intensity are further elucidated 

when comparing absolute differences between the irrigated and non-irrigated runs in each 

subregion [Figure 17].  Typical daily changes in precipitation between the two model 

runs are less than 0.25 mm (0.01 inch) per day.  Absolute changes in precipitation are 
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seldom greater than 0.5 mm (0.02 inch) per day in the western part of the domain, and 

precipitation changes greater than 1 mm (0.04 inch) occur only five times among all of 

the subregions combined.  The MWE region contains the most drastic changes in 

precipitation:  three increases of at least 0.5 mm per day (two of which are greater than 1 

mm per day) and one decrease of at least 0.5 mm per day.  The CR region contains the 

least drastic changes in daily precipitation:  Its largest change is 0.38 mm per day [not 

shown].  This generally follows the climatological west-east precipitation gradient where 

less precipitation falls in the semi-arid west and more in the humid east.  

However, Figure 18 illustrates that percent decreases in daily precipitation paint a 

very different picture than that indicated by the absolute differences.  While the majority 

of precipitation changes have a magnitude of less than 10%, there are several daily events 

that exceed a 25% change in almost every subregion.  There are even nine instances of 

greater than 50% precipitation change within the subregions.  One caveat with the larger 

percent changes is that oftentimes the large percent change is caused by a small absolute 

increase from very small initial precipitation values, e.g., a change from 0.01 to 0.02 mm 

would yield a 100% change.  While this situation occurs for roughly half of the 

anomalously high percent changes, there also exist many instances of greater percent 

changes that correspond to anomalously high absolute changes.  This situation is less 

likely to occur in the eastern part of the domain, where precipitation is generally higher.    

Robust changes in hourly precipitation intensity are much more difficult to parse 

out.  The main subregions where there seem to be consistent precipitation changes in one 

direction more than another are the MWE region (increases on June 10-14) and the NE 

region (decreases on June 11-13) [not shown].  Otherwise, precipitation changes flip-flop 
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between positive and negative too frequently to determine any real robust trends.  Thus, 

the main focus of the upcoming analyses will be on 6-hourly and daily precipitation 

values.    

To delve more deeply into the mechanisms that may be causing an irrigation 

effect on precipitation, the focus is narrowed to individual precipitation events.  Because 

of the brevity of the time period that is simulated, there are not many events that can be 

discussed in detail where irrigation seems to have had a significant effect.  One 

precipitation event stands out – the precipitation on June 12 in the MWE subregion – 

where irrigation may have had a robust effect on the precipitation intensity and totals.  

Thus, we focus on this event in the upcoming analysis.  In the upcoming analysis, the 

times of analysis are from June 11 at 0Z until June 14 at 0Z unless otherwise noted. 

3.3.1 Precipitation comparison 

First, it is instructive to compare precipitation characteristics and changes over the 

domain for the event to be studied.  For the period June 11 at 0Z to June 14 at 0Z, the 

average precipitation change over the whole domain is -0.08 mm, or -0.44%.  However, 

on June 12 specifically, precipitation over the whole domain increased by 0.09 mm, 

which is close to the averaged increase over the domain for the entire 15-day period.  The 

percent increase of 1.48% for June 12 dwarfs that of the 15-day period (0.26%).  Thus, 

even for the whole domain, June 12 represents a day with anomalously strong, irrigation-

induced rain.  In the subregion of note – MWE – average precipitation increased by 

nearly 2 mm (0.08 in) [Figure 17], or ~11% [Figure 18] on June 12.  This absolute 

increase is the largest among all precipitation days in all subregions, thus it represents 

one of the largest irrigation-induced precipitation increases in the 15-day record.   
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Precipitation is compared for both irrigated and non-irrigated model runs for 6-

hour periods on June 12 in Figure 19.  Each of the panels represents the precipitation that 

began falling at the specified time for six hours; e.g., the precipitation panels for June 12 

at 0Z represent precipitation that fell from 0Z to 6Z on June 12.  The changes that stick 

out most are increases in precipitation intensity in one of the stronger storms in the MWE 

region.  Specifically, the storm that moves across Illinois and Indiana shows stronger 

precipitation intensities in the irrigated run than in the non-irrigated run, especially in the 

heavier intensity categories.  The largest increases are evident in the 0Z and 6Z panels.  

Conversely, the storm that traverses Kansas and Missouri shows stronger intensities in 

the non-irrigated run, especially at 6Z.  Overall at first glance, there seems to be 

indication of heavy precipitation enhancement in the MWE region on June 12. 

Absolute and percent changes in the same 6-hourly precipitation are shown in 

Figure 20.  For absolute changes, it is evident that precipitation at 0Z and 6Z exhibits the 

larger and more distinct increases of all four panels.  At 0Z, there is a widespread swath 

of greater than 5 mm (0.2 in) increase in precipitation, with many areas exhibiting 

increases of greater than 12.5 mm (0.5 in).  At 6Z, the overall increases seem to be 

smaller than for 0Z, but there are isolated, very large increases in precipitation of 12.5 

mm or more.  At 12Z and 18Z, there are also areas of strong precipitation increase, but 

they are more balanced by decreases in precipitation than the first two panels. 

For percent changes, the majority of the aforementioned strong absolute increases 

at 0Z generally correspond to increases of 10-50%, though some isolated areas exhibit 

increases of >100% [Figure 20].  At 6Z, more of the larger absolute increases represent 

larger percent increases of greater than 100%.  At 12Z and 18Z, similar patterns are also 
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present.  Overall, on June 12, there are large absolute and percent increases in 

precipitation in the MWE region, especially earlier in the model day, which warrant 

further investigation.  The mechanisms that may have led to these increases are now 

investigated by examining different surface and atmospheric variables in the following 

section.         

3.3.2 Surface Variables 

 First, soil moisture is compared between the irrigated and non-irrigated runs, 

since this is the initial effect of irrigation on the land surface [Figure 21].  As expected, 

the irrigation scheme over Nebraska results in much higher soil moisture values for the 

irrigated model run, especially in the western part of Nebraska.  Physically, the higher 

soil moisture differences in the western part of Nebraska are feasible; since western 

Nebraska is semi-arid (as compared to the humid eastern part), it has a greater 

atmospheric demand for water vapor, which would normally lower the ambient soil 

moisture.  Irrigation to field capacity across Nebraska would thus result in a larger 

difference in western Nebraska.  Indeed, at most grid cells in western Nebraska, the soil 

moisture in the irrigated run is twice the value of the non-irrigated run (not shown).  

Elsewhere across the model domain, soil moisture does not experience increases at the 

same scale as in Nebraska.  Isolated increases occur in several places due to prolonged 

rainfall that may be influenced by irrigation. 

 The large increase in soil moisture results in a similarly large increase in latent 

heat flux, and thus, ET [Figure 22].  Since ET (represented by upward moisture flux) is 

the hydrological component of the surface change and latent heat flux is the radiative 

component, it is intuitive that the spatial patterns for both of these variables are nearly 
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identical.  It is evident, especially during the afternoon and early evening hours, that both 

latent heat flux and upward moisture flux are much higher during the irrigation run over 

Nebraska.  Interestingly, though, comparable increases in both variables occur downwind 

of the irrigated regions in the Upper Midwest and Midwest subregions at 18Z on the 

given days [Figure 22].  It is possible that these increases downwind of Nebraska are due 

to irrigation-induced rainfall in these areas, though the extra rain that usually falls is 

relatively light (< 5 mm in 6 hours).  Regardless, the large increase in both latent heat 

flux and upward moisture flux means that there is an influx of moisture to the 

atmosphere, both over Nebraska and downwind where rain has recently fallen. 

  This extra atmospheric moisture can be measured in either absolute or relative 

terms.  When measuring by absolute terms, e.g., by changes in dewpoint temperature, 

Nebraska again is at the epicenter of the increase in surface moisture, with increases in 

dewpoint temperature of greater than 5 K in the western part [Figure 22].  Dewpoint 

temperature also increases downwind at similar scales, again usually following rain, but 

is often accompanied by complementary decreases.  This implies that the difference in 

dewpoint temperature is not necessarily due to irrigation-induced moisture transport but 

perhaps due instead to a slight change in storm track.  The two lobes of complementary 

increases and decreases would cancel if averaged over a large enough subdomain.  

Regardless, it seems that dewpoint temperature does not exhibit a large increase in the 

MWE region until June 13, which would make sense if it had rained the previous day and 

the ground contained a greater amount of soil moisture.  However, surface dewpoint 

temperature differences do not seem to impact precipitation in the MWE subregion on the 

day of the precipitation (June 12). 
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 Relative humidity also exhibits increases of greater than 15 percentage points 

over western Nebraska and eastern Colorado [Figure 22], mimicking the locations of the 

major increases in dewpoint temperature.  Increases of this magnitude downwind are 

infrequent during the 3-day period.  One reason for this behavior could be that a given 

absolute increase in dewpoint temperature in the semi-arid west would likely raise 

relative humidity by more percentage points than if it were in the humid east, since the 

east is likely already closer to saturation and thus has fewer percentage points to give.  

On the other hand, decreases of a similar magnitude do occur downwind, especially in 

southern Nebraska and southern South Dakota.  Over the MWE region, no major 

increases in relative humidity occur until June 14 [not shown].  Thus, it seems that 

changes in surface relative humidity in the MWE region have little bearing on the 

increase in rainfall in the region on June 12. 

 It is also instrumental to compare changes in temperature, for which we use the 

potential temperature (which is conserved for dry adiabatic processes) [Figure 23, top 

row].  Strong decreases in potential temperature at the surface (often exceeding 2 K) are 

evident over Nebraska for the whole 3-day period, while equally strong increases in 

temperature occur downwind in the Midwest and Upper Midwest regions.  By June 12 at 

18Z, strong temperature increases are evident across the MWE subregion, potentially 

destabilizing the lower atmosphere and thus contributing to an increase in convection 

over the area [Figure 23]. 

 With the aforementioned changes in temperature, surface pressure is likely to 

change as well.  Consistent with expected physical processes, there is an area of higher 

pressure in the vicinity of the temperature decreases over Nebraska [Figure 23, bottom 
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row].  Colder air is more stable and denser than warmer air, so it would be anticipated 

that this would result in sinking air and thus higher pressure.  Conversely, over the MWE 

region by 12Z on June 12, the increases in temperature form an area of lower pressure, 

which lasts until 0Z on the next day.  The warmer surface temperatures may have caused 

atmospheric instability and thus rising air, which lowers the surface pressure and may 

have enhanced precipitation on June 12.  Of note is that the other major area of lower 

pressure in southwestern Minnesota is also associated with increased precipitation at 18Z 

on June 12.   

 3.3.3 Environment Aloft and Downwind 

 The atmospheric environment above the surface is also affected by the 

introduction of irrigation into the WRF model.  The changes in surface variables due to 

irrigation cause reactions in the troposphere that could have important impacts on 

precipitation. 

 As mentioned in the observational analysis, some atmospheric indices that could 

be affected by irrigation are lifting condensation level (LCL), level of free convection 

(LFC), convective available potential energy (CAPE) and convective inhibition (CIN).  A 

rising air parcel encounters the LCL when it reaches saturation, and it rises further to the 

LFC if it can overcome CIN.  CAPE is then available to the rising parcel if it passes the 

LFC.  Greater values of CIN could prevent convection from occurring or greatly reduce 

its severity, whereas greater values of CAPE could intensify convection and increase 

rainfall totals.  If the LCL drops more than the LFC, then CIN would likely increase and 

hinder convection, and convection would be more likely if the LFC drops more than the 

LCL.  It is expected that CIN and CAPE would be enhanced over the irrigated areas, 
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while only CAPE would be enhanced over the downwind areas; the lack of temperature 

decrease downwind would allow CIN to remain the same.   

 The LCL generally experiences large decreases in western Nebraska and isolated 

large changes elsewhere [Figure 24].  In the northern part of the MWE region, major 

LCL increases tend to occur, though they are still rather isolated.  By June 13, major LCL 

increases are present in eastern Nebraska and western Iowa, which are likely indicative of 

warming at the surface [Figure 23].  Meanwhile, neither LFC nor the difference between 

LFC and LCL (LFC-LCL) exhibits a definitive direction of change anywhere in the 

domain for the three chosen days [Figure 24].  Because of the heterogeneity in these 

individual values, it is hard to determine if LFC and LFC-LCL have any impact on the 

processes governing irrigation-precipitation interactions. 

Changes in CIN and CAPE are depicted in Figure 25.  Areas of major CIN change 

are scattered, though it seems that decreases in CIN are more likely downwind of 

Nebraska than are increases.  Adding to the increased potential for convection in the 

MWE region is a broad area of large increases in CAPE on June 12 [Figure 25].  Large 

changes in CAPE seem to be confined mainly to the eastern part of the domain. 

 Not surprisingly, changes in surface moisture likely fuel the increases in CAPE 

and decreases in CIN.  As evidenced by the water vapor mixing ratio, the atmosphere 

near the surface of Nebraska is moister because of irrigation, while the rises in 

temperature immediately east of Nebraska correspond to decreases in water vapor mixing 

ratio [Figure 26].  The water vapor at 850 mb, however, exhibits both increases and 

decreases over Nebraska during the three given days [Figure 26].  Downwind the patterns 
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are also heterogeneous.  Thus, while surface moisture seems to uniformly increase over 

Nebraska, higher levels of the atmosphere exhibit patterns that vary daily. 

Figure 27 displays the inter-level variability of water vapor mixing ratio 

differences in a time series of cross-sections at latitude 40.5 degrees North and from 

longitude 107 degrees West to 85 degrees West (line drawn in Figure 26, bottom left 

panel).  While increases in the boundary layer moisture are apparent in Nebraska in most 

of the panels, changes at level 9 (~800 mb) and higher are either constant or decreasing 

over Nebraska.  This time series of cross-sectional plots also shows the apparent 

advection of positive, lower-level anomalies in water vapor toward the east.  These 

positive anomalies end up over the MWE subregion by June 12 at 12Z, at the end of the 

peak increase in precipitation.  By 12 hours later, the anomalies over MWE are negative, 

perhaps due to most of the moisture being rained out in the irrigation run.  Thus, it is 

possible that the positive moisture anomaly that ended up over the MWE region and 

contributed to excess precipitation on June 12 may have originated from Nebraska a day 

or two earlier.         

 Finally, the wind patterns likely play an important role in both the transport of 

water vapor from Nebraska to regions with irrigation-induced precipitation and also in 

convergence in the same areas.  We diagnose in Figure 28 the winds at 850 mb, since this 

is a standard height at which moisture transport is determined.  The winds at 850 mb are 

generally southwesterly over the MWE subregion; thus, moisture transport would seem to 

come from south of the Nebraska region.  Indeed, this pattern is typical of that seen from 

the Great Plains low-level jet (GPLLJ), which derives its moisture from the Gulf of 

Mexico.  As the hours progress from June 11 into June 12, the winds over the MWE 
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subregion shift eastward, especially after 18Z on June 11, and the moisture source seems 

to emanate from farther and farther south of Nebraska.  Thus, moisture transport from 

Nebraska may not be a direct cause of the increases in precipitation in the MWE 

subregion.   

 To better determine the mechanisms behind the increase in precipitation in the 

MWE subregion, the differences in water vapor mixing ratio and wind vectors at 850 mb, 

along with the absolute and percent differences in precipitation, are plotted together in 

Figure 29.  A striking pattern emerges:  The areas of strongest wind differences at 850 

mb largely coincide with the precipitation differences, especially the percent differences.  

The areas just downwind of the strongest wind vector differences are in areas of 

increased wind convergence at 850 mb, which can lead to more frequent storms and 

stronger convection.  Even though moisture transport does not generally seem to 

originate from Nebraska during this period, the wind convergence seems to be effective 

in building water vapor anomalies in the area and causing storms to be more intense.  

Although there is no water vapor anomaly in the MWE region on June 11, there is a 

larger positive anomaly in the region on June 12, when much of the increased 

precipitation occurs.  Since this new area of enhanced water vapor is ahead of the more 

prominent arc of water vapor increases progressing southeast from the Upper Midwest, it 

can be estimated that this anomaly originates more from the wind convergence in the 

MWE subregion than from distant moisture transport.   

Finally, to get a better idea of the progression of the wind anomalies over time, a 

vertical cross-section of the differences in horizontal wind vectors is illustrated in Figure 

30.  In this figure, the large vertical extent of these wind anomalies (at almost every level 
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of the troposphere) is evident on June 11.  Here, the eastward movement of the wind 

anomalies is also apparent in the panels for June 11.  On June 12, the anomalies in the 

lower levels of the troposphere remain on the eastern fringe of the MWE subregion, 

likely contributing to the increased precipitation in the area on that day.  So even though 

moisture transport from Nebraska may not have played a major role in the enhancement 

of precipitation in the MWE subregion, the wind anomalies may have originated from the 

irrigated region of Nebraska.  

  

3.4 Discussion 

In summary, this modeling experiment performed over 15 days in June of 2002 

simulated increases in precipitation in both Midwest subregions and the UMW subregion 

due to irrigation in Nebraska.  In the NE subregion, on the other hand, strong 

precipitation decreases (~20% decrease, on average) occurred over the 15 day period.  

Some absolute increases eclipsed 12.5 mm (0.5 in) in the MWE region, and many percent 

increases eclipsed 50%.   

When the focus is shifted to one particular event – June 12 in the MWE region – 

it becomes evident that strong increases in surface moisture and decrease in temperature 

occur over western Nebraska.  This forms an area of high pressure over Nebraska and a 

subsequent moisture gradient between Nebraska and other states.  While moisture is 

seemingly transported in different directions, wind anomalies in all levels of the 

atmosphere are advected downwind, i.e., toward the east, where they may create wind 

and moisture convergence in the lower atmosphere and enhance already existing rainfall.  

Areas of higher temperature elsewhere (e.g., southern Minnesota at 18Z on June 12) lead 
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to higher values of upward moisture flux and lower pressure, which also subsequently 

lead to enhanced precipitation (albeit, lighter than that of the MWE subregion).  While 

these mechanisms seem to be physically sound, more work is needed to verify them with 

longer simulations and more realistic irrigation schemes. 

 

3.5 Future Work 

To create a comprehensive picture of the effects that irrigation exerts on 

precipitation, more detailed simulations need to be performed.  The following subsections 

detail additional model experiments to run, variables to analyze, and adjustments to be 

made in future work. 

3.5.1 Additional model experiments 

The first and most important limitation on the above model experiments was a 

shortage of time to complete more and longer simulations.  Given more time, several 

aspects of the simulations would have been changed.  To start, at least three ensemble 

runs of the irrigation sensitivity studies would have been performed, where the start date 

and initial conditions of the model vary by a day or two.  Performing ensemble runs can 

better isolate any potential signal of irrigation on precipitation from the noise of the 

precipitation patterns themselves.  The danger in relying on only one model run is that it 

is difficult to determine if the patterns seen are manifestations of, e.g., the irrigation effect 

on precipitation, or from a particular setup of initial conditions that led to coincident 

effects.  In the future, running at least three simulations will allow for more robust 

characterization of the causes of precipitation change seen in the above analyses. 
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Secondly, future work will also need to focus on running the simulations for 

longer periods of time.  The above analyses were limited to 15 days because of 

constraints on timing, but simulations of at least one growing season (roughly May-

September) would be necessary to determine the monthly variability of the irrigation 

effect on precipitation, especially during the most heavily irrigated months of July and 

August.  Ensemble runs of one growing season would provide a secondary measure of 

significance to the monthly variability that would be present in the model runs.  If time 

allows, simulations of multiple growing seasons would yield even more robust changes in 

precipitation that would be due to irrigation in the Great Plains since they would not be 

limited to the meteorological conditions of one particular year.     

Conducting a parameter sensitivity analysis would also be helpful for determining 

the robustness of the changes outlined in the above experiments.  For example, while the 

above experiments were run at 10-km horizontal resolution with a Kain-Fritsch cumulus 

parameterization, it would be instructive to choose a finer spatial resolution that would 

not require a convective parameterization or to remove the cumulus parameterization 

from the 10-km resolution domain and compare the irrigation effects on precipitation.  

Removing the cumulus parameterization could result in significantly different 

precipitation patterns, with or without irrigation, since convection may be more 

realistically simulated, so this would be a critical future experiment.  Along a similar line, 

while this study used a single unnested domain, using one or two nested domains in these 

modeling experiments would facilitate determination of local vs. short-distance vs. 

remote effects of irrigation on precipitation.  Conducting these experiments with different 

radiation and microphysics options, different vertical resolutions (e.g., fewer or more 
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model levels, or more model levels concentrated in the PBL) or model tops (e.g., 200 vs 

50 hPa), and different boundary conditions with and without spectral nudging could be 

helpful in determining the sensitivity of the irrigation effect on precipitation to these 

parameters and whether the changes induced by these different parameters would 

outweigh the changes in precipitation induced by irrigation itself.   Finally, enlarging or 

shrinking the domain and moving it to a different location (even in different irrigated 

areas) could indicate if the above changes were unique to the chosen domain or if they 

could be duplicated elsewhere.  For example, enlarging the domain to include the 

Northeast US could yield interesting results because there may even be influences of 

irrigation on precipitation in that region (e.g., August changes in total precipitation in the 

observational study).  Finally, irrigating a smaller or larger area could drastically affect 

the precipitation distribution and degree of changes locally and downwind and will be 

investigated in future work. 

It would also be instructive to conduct a climate change experiment to 

complement the irrigation study performed above and more completely verify the 

hypothesis set forth in the observational study regarding the effects of irrigation and 

climate change on summer precipitation.  One option is to artificially raise the 

temperature of the boundary conditions so as to induce warming in the actual domain 

during the model run.  Another option is to increase incoming solar radiation by a certain 

percentage for the duration of the model such that temperature would increase in the 

experimental domain (while also accounting for spin-up time so surface temperature can 

reach equilibrium); however, this would require a very lengthy model run, so it is not as 

feasible as simply altering the boundary conditions.  Other options will be explored in the 
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future with regard to creating a warmer environment in the experimental domain for 

testing the climate change hypothesis.   

3.5.2 Additional analyses within model experiments 

An important aspect of the climate system that was not analyzed in the above 

model experiments was vertical velocity.  Vertical velocity is critical to determining the 

mechanisms by which irrigation would change precipitation patterns because of its 

importance in connecting surface changes with the lower atmosphere and in determining 

the favorability of the lower atmosphere for convection.  In future studies, vertical 

velocity at different levels of the atmosphere, especially at 700 mb (a common level for 

diagnosing vertical motion for convective purposes), will be analyzed for the whole time 

period and for individual storms to see how irrigation affects upward motion.  Connecting 

the vertical motion fields with other atmospheric variables such as convergence, CAPE, 

CIN, LCL, and others will be important for connecting the processes together in a 

cohesive, mechanistic argument.  This will also be helpful for determining any 

anomalous NCMCs in the vicinity in the irrigated regions, as this would be evident in the 

vertical velocity fields. 

To better ascertain the transport of water vapor in the vicinity of the irrigated 

region, it is also imperative to conduct a back-trajectory water vapor analysis.  Similar 

analyses have already been conducted in DeAngelis et al. (2010), Wei et al. (2013), and 

other studies regarding the effects of irrigation on precipitation.  The objective would be 

to determine two things: 1) how much irrigation-induced water vapor from the Great 

Plains contributes to increased rainfall over and downwind of the irrigated areas, and 2) 

how much of the rain that falls in the areas downwind originates as water vapor from the 



57 

 

irrigated regions.  These water vapor tracking analyses can be done using wind, 

temperature, and moisture information already produced by the WRF model simulations.  

It may also be necessary to directly quantify atmospheric quantities like LCL, 

LFC, CAPE, etc. to verify the authenticity of the results calculated by WRF.  For 

example, LFC may not even exist on a given day if the vertical profile of atmospheric 

temperature and moisture is not conducive for convection, and it is possible that WRF’s 

pre-processed values for LFC do not correctly account for the missing data on those days 

when LFC is not present.  Therefore, independent confirmation of these values is 

necessary to determine the precise mechanisms by which irrigation may influence rainfall 

via these variables. 
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4. CONCLUSIONS 

 

This study investigates the causes of the observed increases in summer 

precipitation in the Midwestern US and attempts to attribute, through observational 

analysis and model simulations, these changes to irrigation development in the Great 

Plains of the United States.  Attribution of these observed increases in summer 

precipitation is important to better understand the causes of climate change; if irrigation 

development is part of the mechanistic linkages leading to these changes, then this adds a 

new issue to address in terms of our physical understanding of anthropogenic influence 

on the climate system.  The main hypothesis postulated in the observational study is that 

climate change (CC) and land use and land cover change (LULCC) would cause different 

shifts to the precipitation distribution in the Midwestern US and that the changes in 

precipitation evident in the Midwestern US observational record would more closely 

match those predicted by LULCC – or more specifically, irrigation development.  The 

irrigation portion of this hypothesis is further explored by conducting a brief sensitivity 

study of the effects of irrigation on precipitation in the central US.   

The effects of irrigation on precipitation were first investigated through analysis 

of long-term, daily precipitation observations.  Time segments of precipitation were 

compared for statistically significant changes using the Student t-test over multiple 

precipitation intensities and over two spatial scales – climate regions and climate 

divisions.  It was found that large increases in precipitation frequency, total precipitation, 

and moderate to heavy precipitation intensity have occurred over the last half-decade.  

While increases in precipitation frequency are the most significant during JJA, the 
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increases in intensity are most unique to the summer and seem to exert the most influence 

on the month-to-month variations in total precipitation differences.  Also, the largest 

increases in frequency, intensity, and total precipitation are between pre- and full-

irrigation periods in the Great Plains (i.e., pre-1950 versus post-1975).  Furthermore, the 

spatial distribution of precipitation increases is consistent with a downwind effect of 

irrigation on precipitation.  It is postulated that increases in CIN over Nebraska due to 

irrigation prevent convection from occurring as frequently and dampen precipitation 

amounts, while the increase in CAPE and moisture downwind allow for increases in 

convection to occur.  These mechanisms postulated in the observational analyses seem to 

be physically feasible given the results of that analysis.  Finally, the increases in total 

precipitation and anomalous increases in precipitation intensity when ranked against 

other months counter the notion that CC is a major factor in influencing these 

precipitation increases. Thus, the main conclusion from the observational study is that the 

hypothesized changes in precipitation due to irrigation development display a greater 

agreement with the observed increases in summer precipitation than those of CC and may 

be indicative of a causal link.  

A modeling experiment was then performed with the WRF regional climate 

model to verify the feasibility of the mechanisms postulated in the observational section 

and to attempt to duplicate the results derived from the observational analysis.  The 

model was run at 10-km spatial resolution with a convective parameterization for 15 days 

in June of 2002.  Additionally, the model run was initialized with the 32-km, 3-hourly 

NARR reanalysis product and coupled to the Noah LSM.  A subdomain over Nebraska 
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was subjected to a simplified irrigation scheme where soil moisture was filled to field 

capacity if any of the four soil moisture layers fell below half of field capacity. 

  Overall, convective precipitation seemed to increase north and east of Nebraska 

(and decrease over Nebraska) due to irrigation.  The increases in moisture, decrease in 

temperature, and subsequent increases in both CIN and CAPE over Nebraska predicted in 

the observational section were also verified.  It was initially hypothesized that moisture 

transport to the Midwestern US from Nebraska would be the major cause of 

enhancements in rainfall.  However, analyzing one particular event shows that 

intensification of rainfall in the Midwest coincides with anomalous wind convergence 

created by the inclusion of irrigation into WRF.  Thus wind and circulation anomalies 

seem to be more important than previously realized in enhancing the precipitation over 

the downwind areas, especially in the MWE subregion on June 12. 

The modeling analysis also determined that while precipitation intensity exhibited 

increases in some downwind regions, the frequency of precipitation was largely 

unaffected by irrigation.  This supports the observational evidence of anomalously high 

changes in intensity during the summer, despite a lack of actual increases, and also seems 

to discourage the notion that irrigation is primarily responsible for the significant 

increases in precipitation frequency that are evident in the observation study.  Thus, it is 

possible that some other forcing – perhaps climate change – is responsible for the 

frequency changes while irrigation is more responsible for the changes in intensity.  

Naturally, further modeling studies will have to be completed to verify this postulation.  

However, the spatial pattern of increases in total precipitation and intensity downwind of 

Nebraska in the model simulation seems to support the hypothesis that the intensity 
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increases (and maybe even part of the total precipitation increases) implied by the 

observational analysis are more a result of irrigation development than from climate 

change. 

Admittedly, due to time and computing constraints, this initial modeling 

experiment only scratches the surface of what would need to be done to more 

comprehensively verify the existence of an irrigation enhancement of precipitation.  

Future work in this regard would involve several ensemble runs of at least one growing 

season and sensitivity analyses to parameters such as convective parameterizations, 

microphysics options, and size and location of the model domain.  Adding nested grids 

could help to isolate local, short-range, and remote effects of irrigation on precipitation. 

Additionally, the vertical wind field needs to be analyzed, as this is extremely important 

in piecing together the mechanisms that would result in irrigation enhancement of 

precipitation.  Water vapor tracking analyses would also be critical for identifying the 

directionality and contribution of moisture transport to downwind regions so that the 

impact of irrigation on precipitation can be quantitatively assessed.  Many atmospheric 

variables associated with the vertical profile, such as LFC, LCL, CAPE, and CIN, should 

also be explicitly calculated to verify the accuracy of the pre-processed values given by 

WRF.  Additional experiments will also further analyze specific storm events and 

determine changes to the overall precipitation distribution given more model runs and 

longer simulations.  Finally winds, convergence, and additional diagnostic atmospheric 

variables will be analyzed in more detail in these future experiments to better determine 

the pathway from irrigation to the enhancement of precipitation in these downwind areas. 
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A few caveats remain in these analyses.  Though both observations and modeling 

simulations support the hypothesis that precipitation intensity and totals downwind of 

Nebraska have likely been enhanced by irrigation in Nebraska, the simulations found a 

decrease in precipitation due to irrigation over western Nebraska that is not 

unambiguously supported by observations; future work should be done to verify this 

simulated result in the observational record.  Also, the amount of precipitation 

enhancement is highly dependent on location and timing.  In other words, the scale of 

enhancement is localized, and the effects may be in different places depending on where 

the ambient precipitation is located.  Future research in this subject will be conducted to 

better determine and predict the location and degree effects of irrigation on precipitation.  

Also, a complete dynamical assessment of other potentially confounding factors is 

beyond the scope of this paper but should be conducted in the future to rule out other 

large-scale climate factors such as ENSO and the Great Plains low-level jet.   

Overall, this work attempts to fill a gap in our current mechanistic understanding 

of the causes behind the observed increase in summer rainfall in the Midwestern US.  

Implicating irrigation as a potential cause of these changes in precipitation opens up a 

relatively new nexus between anthropogenic activities and climate change that could 

have societal and economic consequences.  If these linkages are verified in the near 

future, the irrigation effect on precipitation intensity and totals may warrant consideration 

for climate change planning and adaptation measures on local and regional scales in the 

Midwestern United States.  
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TABLES 

 

 

 

 Precipitation - 

irrigated run (mm) 

Precipitation - 

non-irrigated 

run (mm) 

Absolute 

difference 

(mm) 

Percent 

difference (%) 

   MWE  104.85 102.33 2.52 2.46 

MWW 85.76 85.14 0.62 0.73 

UME 45.13 45.51 -0.38 -0.84 

UMW 50.77 48.79 1.98 4.07 

NPE 28.94 29.59 -0.64 -2.17 

NPW 22.39 22.66 -0.26 -1.16 

NE 18.15 22.52 -4.37 -19.42 

KS 41.97 42.17 -0.19 -0.46 

CR 19.19 19.23 -0.05 -0.26 

     

Whole 

Domain 

49.68 49.55 0.13 0.26 

 

 

Table 1 – Average values of total precipitation and their differences between the irrigated 

and non-irrigated WRF model runs for the whole 15-day simulation period, June 1-15.  

Note that because the regions are different sizes and don’t encompass the whole domain, 

the 9 values listed above do not add up to the values for the whole domain. 
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ILLUSTRATIONS 

 

 

 

Figure 1:  Timelines of harvested acreage [top] and production [bottom] of major crops 

in Nebraska since 1866.  Note that the data for irrigated crops only begins in 1947.  
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Figure 2:  An idealized schematic depicting the local and non-local effects of irrigation 

on atmospheric thermodynamics and precipitation processes.  Rnet = net surface radiation, 

LH = latent heat flux, SH = sensible heat flux, Td = dewpoint temperature, T = 

temperature, CIN = convective inhibition, CAPE = convective available potential energy, 

LCL = lifting condensation level (cloud base), and LFC = level of free convection.  The 

linear depictions of Td and T show the changes in mixing ratio and dry adiabatic lapse 

rate, respectively, given near-surface Td and T from pre-irrigation (dotted lines) to full-

irrigation (solid lines).  The intersection of these lines gives the approximate height of the 

LCL.  Note that the downwind area on the right can be considered to be in a "pre-

irrigation" condition, with either non-irrigated crops or grass. 
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Figure 3:  (a) Map of station density by climate division.  (b) Example of a “time period-

intensity” plot from south-central Georgia (climate division 8).  The precipitation bins are 

specified by their lower bounds, e.g., the lightest bin is 0.25-2.5 mm (0.01-0.1 inches), 

followed by 2.5-6.4 mm (0.1-0.25 inches), etc.  Information from this plot is used in 

Figure 5 (and similarly in Figure 6, for intensity):  e.g., south-central Georgia has a total 

of seven significant increases across the entire intensity distribution in July (see Figure 

5b).

(a) 

(b) 
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Figure 4:  Regional maps of changes in total precipitation [top row], precipitation frequency [middle row], and precipitation event 

intensity [bottom row] during June [left column], July [middle column], and August [right column].  The time period-intensity plots 

within each region have the same axis labels as in Figure 3b. 
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Figure 5:  The sum of significant increases (p ≤ 0.05) in precipitation frequency over all precipitation intensity bins [top row], over 

the lightest four bins (0.25-25 mm) [middle row], and over the heaviest six bins (>25 mm) [bottom row] for each climate division 

during June [left column], July [middle column], and August [right column]. 
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Figure 6:  The sum of significant increases (p ≤ 0.05) in precipitation event intensity over all precipitation bins for each climate 

division during (a) June, (b) July, and (c) August. 
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Figure 7:  Regional changes in mean monthly total precipitation [top], precipitation 

frequency [middle], and precipitation intensity [bottom] during June [blue], July [red], 

and August [green] between 1895-1933 and 1973-2011, corresponding to row 6 of the 

time period-intensity plots. 
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Figure 8:  Absolute changes in total precipitation [top row], precipitation frequency [middle row], and precipitation intensity [bottom 

row] during June [left column], July [middle column], and August [right column] between 1895-1933 and 1973-2011, corresponding 

to row 6 of the time period-intensity plots. 
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Figure 9:  Monthly ranks (out of 12 months) of absolute changes in total precipitation [top row], precipitation frequency [middle 

row], and precipitation intensity [bottom row] for June [left column], July [middle column], and August [right column] between 1895-

1933 and 1973-2011, corresponding to row 6 of the time period-intensity plots. 
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Figure 10:  Correlations of monthly mean precipitation during July [left column] and 

August [right column] with monthly indices of various large-scale atmospheric 

circulations (averaged over 1948-2012).  Niño 3.4 measures sea surface temperature 

anomalies in the tropical Pacific Ocean and corresponds to the state of the El Niño 

Southern Oscillation, NAO = North Atlantic Oscillation, AMO = Atlantic Multidecadal 

Oscillation, PNA = Pacific/North American teleconnection, and PDO = Pacific Decadal 

Oscillation.  Absolute increases in July and August total precipitation from Figure 8 are 

included on the bottom for reference.  Correlations are calculated from the US Climate 

Division Dataset Seasonal Correlation Page 

(http://www.esrl.noaa.gov/psd/data/usclimdivs/correlation/). 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 – A map of the WRF model domain (in purple) and of the nine subregions 

used to more closely determine regional changes in precipitation.  MWE and MWW are 

eastern and western Midwest, respectively; UME and UMW are eastern and western 

Upper Midwest, respectively; NPE and NPW are eastern and western Northern Plains, 

respectively; NE is Nebraska; KS is Kansas; CR is Colorado Rockies. 
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Figure 12 – [top] June 1-15 precipitation from cli-MATE (inches), which is obtained 

from the Midwestern Regional Climate Center.  [bottom] Total simulated precipitation 

(mm) from the non-irrigated WRF model run, spanning June 1 at 00Z to June 15 at 21Z.   
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Figure 13 – [top] Total simulated precipitation (mm) from the irrigated WRF model run, 

spanning June 1 at 00Z to June 15 at 21Z.  [bottom] Same as above, but for the non-

irrigated WRF model run.  
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Figure 14 – [top] Absolute difference in total convective precipitation (mm) between the 

irrigated and non-irrigated WRF model runs for the whole 15-day period.  [bottom] Same 

as top, but with all values less than 12.5 mm masked out.  
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Figure 15 - [top] Percent difference in total convective precipitation (%) between the 

irrigated and non-irrigated WRF model runs for the whole 15-day period.  [bottom] Same 

as top, but with all values less than 25% masked out. 
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Figure 16 – Time series of daily precipitation intensities (mm) averaged over each given 

subregion for the irrigated (green) and non-irrigated (white) model runs.  Note that the 

precipitation on a given date represents the precipitation that fell for the 24 hours after 

the initial time.  For example, precipitation listed for June 12 would represent the 

precipitation that fell from 00Z on June 12 to 00Z on June 13.  Subregion abbreviations 

are defined in Figure 1. 
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Figure 17 – Absolute changes in daily precipitation intensity (mm) averaged over each 

subregion.  The white circle in the MWE subregion is the data point for the event that is 

examined in detail in the text.  Subregion abbreviations are defined in Figure 1. 
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Figure 18 – Same as for Figure 7, but for percent changes in daily precipitation intensity 

(%) averaged over each subregion. 
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Figure 19 – [left] 6-hour convective precipitation (mm) for the irrigated model run 

beginning at the time specified in each panel.  [right] 6-hour convective precipitation 

(mm) for the non-irrigated model run beginning at the time specified in each panel. 
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Figure 20 – [left] Absolute difference (mm) in 6-hour convective precipitation (mm) 

between the irrigated and non-irrigated model runs beginning at the time specified in 

each panel.  [right] Percent difference (%) in 6-hour convective precipitation (mm) 

between the irrigated and non-irrigated model runs beginning at the time specified in 

each panel. 
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Figure 21 – Absolute difference (m
3
 m

-3
) in soil moisture between the irrigated and non-

irrigated model runs on June 11 at 00Z.  This plot is representative of the soil moisture 

anomaly for the entire 15-day simulation period. 
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Figure 22 – [first row] Absolute difference in latent heat flux (W m
-2

) between the 

irrigated and non-irrigated model runs at 18Z on June 11 and 12.  [second row] Same as 

first row, but for upward moisture flux (W m
-2

).  [third row] Same as first row but for 

dewpoint temperature (K).  [fourth row] Same as first row, but for relative humidity 

(percentage points). 
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Figure 23 – Same as Figure 12, but for [top] potential temperature (K), and for [bottom] 

surface pressure (hPa). 
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Figure 24 – [top row] Absolute difference in lifting condensation level (LCL) (m) between the irrigated and non-irrigated model runs 

at 00Z on June 11, 12, and 13.  [middle row] Same as top row, but for level of free convection (LFC) (m).  [bottom row] Same as top 

row, but for the difference between the LFC and LCL (m).  
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Figure 25 – [top] Same as in Figure 14, but for convective available potential energy (CAPE) (J kg
-1

).  [bottom] Same as in Figure 14, 

but for convective inhibition (CIN) (J kg
-1

).   
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Figure 26 – Same as Figure 14, but for water vapor mixing ratio (kg kg
-1

) [top] at the surface, and [bottom] at the 850 mb pressure 

level.  Note that the white horizontal line drawn in the bottom left panel is the line through which the cross-section in the next figure 

(and for all other cross-sections) is derived. 
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Figure 27 – Time series of cross-sections for the absolute difference of water vapor 

mixing ratio (kg kg
-1

) between the irrigated and non-irrigated model runs in 12-hour 

increments between 00Z on June 11 and 12Z on June 13.  Time increases going down the 

columns.  
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Figure 28 – A timeseries of wind vectors (m s
-1

) for the non-irrigated model run at the 

850 mb pressure level from 15Z on June 11 to 12Z on June 12 in 3-hour increments.  

Time increases going down the columns.  
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Figure 29 – Same as Figure 19, but for [left] absolute difference in water vapor mixing 

ratio at the 850 mb pressure level (kg kg
-1

), [second from left] absolute difference in wind 

vectors at the 850 mb pressure level (m s
-1

), [second from right] percent difference in 6-

hour convective precipitation (%) beginning at the specified time, and [right] absolute 

difference in 6-hour convective precipitation (mm) beginning at the specified time. 
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Figure 30 – A time series of cross-sections for the absolute difference in wind vectors (m 

s
-1

) between the irrigated and non-irrigated model runs between 15Z on June 11 and 12Z 

on June 12.  Time increases going down the columns.        
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