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ABSTRACT OF THE DISSERTATION

Acoustic and elastic multiple scattering and radiation

from cylindrical structures

by Feruza Abdukadirovna Amirkulova

Dissertation Director: Andrew Norris

Multiple scattering (MS) and radiation of waves by a system of scatterers is of

great theoretical and practical importance and is required in a wide variety of physi-

cal contexts such as the implementation of “invisibility” cloaks, the effective parameter

characterization, and the fabrication of dynamically tunable structures, etc. The disser-

tation develops fast, rapidly convergent iterative techniques to expedite the solution of

MS problems. The formulation of MS problems reduces to a system of linear algebraic

equations using Graf’s theorem and separation of variables. The iterative techniques

are developed using Neumann expansion and Block Toeplitz structure of the linear sys-

tem; they are very general, and suitable for parallel computations and a large number

of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time

to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the

theoretical predictions are compared to computations obtained by COMSOL.

To formulate the MS problem, the transition matrix is obtained by analyzing an

acoustic and an elastic single scattering of incident waves by elastic isotropic and

anisotropic solids. The mathematical model of wave scattering from multilayered cylin-

drical and spherical structures is developed by means of an exact solution of dynamic
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3D elasticity theory. The recursive impedance matrix algorithm is derived for radi-

ally heterogeneous anisotropic solids. An explicit method for finding the impedance in

piecewise uniform, transverse-isotropic material is proposed; the solution is compared

to elasticity theory solutions involving Buchwald potentials.

Furthermore, active exterior cloaking devices are modeled for acoustic and elastic

media using multipole sources. A cloaking device can render an object invisible to some

incident waves as seen by some external observer. The active cloak is generated by a

discrete set of multipole sources that destructively interfere with an incident wave to

produce zero total field over a finite spatial region. The approach precisely determines

the necessary source amplitudes and enables a cloaked region to be determined using

Graf’s theorem. To apply the approach, the infinite series of multipole expansions

are truncated, and the accuracy of cloaking is studied by modifying the truncation

parameter.
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Chapter 1

Introduction

Chapter 1 starts with the discussion of the background and motivation for the topics

considered in this work. Next, this chapter establishes the questions we aim to answer

in this dissertation, specifically it considers current objectives of multiple scattering

problems, and provides an overview and literature review of research on scattering and

cloaking phenomena. At the end of the chapter, the outline of research is presented.

1.1 Background and Motivation

Multiple scattering (MS) by a system of obstacles is an important topic, of great practi-

cal and theoretical interest in a wide variety of physical contexts. A computation of the

wave field scattered by multiple objects that takes into account the interaction between

the obstacles is required in numerous wave propagation problems. These problems

include modeling acoustic devices that precisely control and guide propagating waves

in a defined manner for specific applications, i.e.: the implementation of “invisibility”

cloaks; the fabrication of dynamically tunable structures such as the gradient index

lenses and waveguides; and the characterization of effective parameters of heteroge-

neous media. A broad literature review on single and MS and the concepts of MS are

given in [98].

The development of numerically efficient techniques and algorithms that are appro-

priate for a wide range of problems is one of the main interests of wave propagation

analysis. The expensive costs of direct matrix inversion of a linear system motivates

the development of numerically efficient iterative methods. The use of the method of

separation of variables and Graf’s addition theorem leads a formulation of an MS prob-

lem to the linear system of an infinite number of equations which can be reduced to
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the finite dimensional system of equations of the form:

Xb = d, (1.1)

where X is the known interaction matrix that defines the coupling between each scat-

terer of the configuration, b is the column vector of the unknown scattering coefficients,

and d is the column vector of the known coefficients of the excitation field. The matrix

X is a complex valued dense N × N matrix, and N is proportional to the number of

scatterers M multiplied by 2n + 1 where n is the mode number. For high frequencies

and a large number of scatterers, the system (1.1) becomes an extremely large scaled

linear system. The computational complexity of inversion of matrix X by direct meth-

ods is O(N3), i.e. Gauss-Jordan method requires n3 multiplication operations and n3

addition-subtraction operations, Gauss method using LU decomposition requires n3/3

multiplication and n3/3 addition-subtraction operations. The memory requirements

to solve (1.1) by direct methods grow as O(N2). This is prohibitive for many realis-

tic multiple scattering problems at high frequencies and a large number of scatterers.

For a large N and required number of iterations, the most widely used Krylov Space

methods such as GMRES, BICGSTAB, and etc. can cause excessive run times [127, 3].

If the X matrix has some specific characteristics than the computational complexity

can differ. When the X matrix has a Toeplitz structure, its inversion requires O(N2)

arithmetic operations using Levinson and Trench algorithms [167, 9]. The inverse of

Toeplitz matrix can be decomposed into the sum of two multiplications of triangular

Toeplitz matrices using fast recursive algorithms [15, 185, 65, 74]. These algorithms

have a simple description and use a simple storage; they require O(Nlog2N) arithmetic

operations and the memory of order O(N). There is a correspondence between the

scalar algorithms [15, 65, 74] for Toeplitz matrix and their block analogs [185, 9] ac-

cording to which block multiplications and additions in block algorithms correspond to

multiplications and additions in scalar case. Specifically, for some planar configuration

of cylindrical structures, X matrix has a Block Toeplitz structure which allows us to

use such algorithms and greatly reduce a simulation run time. This question will be

investigated in this work in detail.
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Another subject considered in this work is the cloaking phenomenon which is cur-

rently a very popular research topic in Acoustics. This phenomenon is studied using

different approaches such as transformation acoustics, impedance acoustics, the homog-

enization of layered media, and the multipole expansion method. A cloak can make

objects invisible to some wave as seen by some external observer. There are two quite

distinct types of cloaking models: passive and active. A passive cloak guides the in-

cident waves around an object that is to be cloaked and suppresses scattering from

it. Passive cloaking requires designing a metamaterial that can bend acoustic waves

and guide the wave energy around the object regardless of the incident wave. In re-

cent times a rather different approach to cloaking has been noted as an alternative.

We call it active exterior cloaking in keeping with prior terminology [179]. An active

cloak generated by a set of discrete of active sources cancels out the incoming waves

in cloaked region and produces a negligible far-radiated field. The method proposed

in this work allows us to explicitly calculate the necessary source amplitudes and en-

ables us to identify a cloaked region using Graf’s addition theorem. Cloaking devices

have broad applications, including national defense, healthcare, microelectronics, civil

engineering, and aerospace engineering. These devices can be exploited for biomedical

imaging, earthquake mitigation, and heat protection; to build better insulated back-

grounds for laboratories, concert halls, and soundproofing homes; to conceal objects

from sonar such as stealth warships and submarines; and for other uses that would

benefit society.

1.2 Current objective

We want to develop a methodology that will allow us to study acoustic and elastic

multiple scattering and radiation from cylindrical structures for its future application

to wave propagation problems, i.e. modeling waveguides, lenses [162], resonators, and

cloaking devices.

Despite much fundamental research, as detailed in Section 1.3, there are still many

issues that need to be studied more thoroughly. Specifically, the formation of effective

methods of studying the influence of interaction between the scatterers on MS; the
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creation of efficient iterative techniques that are general and applicable for a large

number of complex scattering problems; the development of advanced techniques for a

solution of MS problems at a high frequency range and large number of obstacles; the

formation of feasible methodology that will improve cloaking and diminish a trade-off

between a cloaking performance and construction difficulty; and the development of

innovative techniques for material characterization.

In this work, the scatterers are cylindrical and spherical structures of circular shape,

such as elastic shells, solids, and multilaminates, as well as rigid bodies and holes.

Therefore, an MS problem is solved by using the MS theory that best fits such config-

urations. The approach is to reduce the MS problem to a family of single scattering

problems. The single scattering solution for an elastic scatterer is utilized to develop

a T-matrix for each scatterer. Then, a global matrix is developed by means of MS

theory that includes the effect of MS between the scatterers, and enables us to find

the scattering coefficients and far-field behavior. This method leads to a linear alge-

braic system; its complexity grows as the number of scatterers and frequency increases,

requiring the development of iterative algorithms for parallel computing. Taking ad-

vantage of the Block-Toeplitz structure of the system, the iterative Krylov subspace

methods are applied, and some iterative approaches are proposed with the use of the

Neumann expansion and bi-orthogonal polynomials to increase the efficiency and reduce

the computational cost.

Although cloaking phenomena have been well researched, there is no precise model

which has a realistic physical implementation. Therefore, we are interested in modeling

wave propagation in general anisotropic solids in order to develop scattering solutions

related to metamaterial devices such as “invisibility” cloaks. Passive acoustic cloaking

devices [117, 111, 143] can be modeled as radially inhomogeneous anisotropic solids.

One of our goals is to produce a stable solution method for such materials which was

proposed in our work [114] for a cylindrically anisotropic medium. We are also interested

in designing active exterior cloaking generated by multipole sources. The aim of active

exterior cloaking is to render the total field zero inside some prescribed domain and

to produce a non-radiating active field in the farfield. The technique introduced in
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our early work [112] on acoustic active exterior cloaking enables us to find a cloaked

region using Graf’s addition theorem and to reduce the integral representations of

Vasquez et al. [181] for the source amplitudes to closed-form explicit formulas. Using

this technique, one can avoid the reduction of the integral equation of Vasquez et

al. [179, 180] to a system of linear equations which require a numerical solution or

evaluation of line integrals, as proposed in [181]. An active exterior cloaking has been

applied to the elastodynamic context for the first time in our succeeding work [108].

The approach enables us to precisely determine the necessary source amplitudes of

nearfield and farfield. The infinite series of multipole expansion of the source is divergent

inside the circle that is centered on the source itself. Therefore the determined source

amplitudes are not valid in the domain in which the active sources are located. This

issue was not considered in active cloak modeling but was noted in [84] in designing an

anti-sound device. To overcome this issue in practice, the infinite series are required to

be truncated, which reduces the accuracy of solution. Thus, by varying the truncation

number, we investigate the accuracy of cloaking which requires only a small number of

multipoles as will be shown in Chapter 6 and Chapter 7.

1.3 Review of elastic and acoustic scattering from cylindrical struc-

tures and cloaking models

A computation of a field that is scattered by multiple objects that takes into account

the interaction between the obstacles is required in numerous problems of acoustic,

electromagnetic, and elastodynamic wave propagation. These problems include the MS

of acoustic waves by obstacles, the scattering of sound in the environment, and elastic

and electromagnetic waves in composites and human bodies. Our interest here is with

examining an acoustic and elastic MS from obstacles.

Two analytic methods extensively employed in the literature on scattering are the

separation of variables [98], and the integral equations formulation [186]. For single ob-

stacles whose geometries conform to separable coordinates, i.e. cylindrical or spherical,

the scattering problem can be solved by the eigenfunction expansion method, which is
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also called the multipole expansion method. For scatterers with geometries that do not

conform to separable coordinates, an integral equation method can be used, such as the

direct numerical solution of integral equations, or the null field method also known as

T-matrix approach [186, 177, 98]. These analytical approaches allow us to reduce an

MS problem for an arbitrary configuration of a finite number of scatterers to a family

of single scattering problems. Hence, the analytical tools used to find the response

of configurations of multiple objects follow from the analysis of scattering by single

scatterers [169, 176, 141, 28]. Below we will give a literature study of single scattering

problems, followed by a literature review of investigations conducted on MS problems

for obstacles of different geometries.

1.3.1 Review of single scattering from cylindrical structures

A good review on acoustics of cylindrical and spherical shells on scattering from cylin-

drical and spherical solids is given by Überall [171]. Both theoretical and experimental

aspects are considered. Gaunaurd [63] gives an extensive and comprehensive bibliog-

raphy and a review of topic on scattering from cylindrical and spherical shells and

solids. More recent studies address cylinder scattering with relation to fiber scattering

in composites, piezoelectrics, anisotropic solids, and inhomogeneous solids and take into

account multiple scattering in a scatterer.

Elastic and acoustic wave scattering from a solid cylinder

An investigation of acoustic scattering of normal incident plane acoustic waves by

isotropic elastic cylinders and spheres was initiated by Faran in 1951 [55]. Faran ex-

tended the theory of the scattering of plane sound waves to include SH waves. The

scattering field was given as a function of specular reflection and circumferentially trav-

eling geometric waves and elastic circumferential waves. Computed scattering patterns

were in a good agreement with experimental measurements. The normal scattering of

incident plane waves by cylinders and plates immersed in water was studied by Maze

et al.[99]. Backscattered spectrum was calculated using the Resonance Isolation and

Identification Method; supplementary resonances were obtained for aluminum. It was
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shown that resonances correspond to natural modes of vibration. Experimentally de-

tected resonances were considered as normal modes of the target. The solution of the

problem of scattering of an obliquely incident plane wave from an isotropic elastic cylin-

der was obtained and compared with experimental measurements by Li et al. [92]. The

solution was given in terms of phase angles. The excitation of supplementary reso-

nances was noticed for small incidence angles. A theoretical model of the scattering

of an obliquely incident plane wave from an infinite aluminum cylinder was developed

by Flax et al. [57] to study the influence of axial coupling on the geometric diffraction

from a cylinder of infinite length and resonance behavior. In the limiting case of taking

the angle of incidence as zero, the solutions given in [92] and [57] correspond to the

previously given scattering description of Faran [55].

Honanvar et al. [78] provides the first complete theory applicable to a uniform

transversely isotropic cylinder in 1996. The displacement field was decomposed into

scalar and vector potentials using the displacement decomposition proposed by Morse

and Feshbach [105] that will be discussed in Section 2.2. Potentials were expanded

in series of normal modes. In this model the influence of each element of the stiff-

ness matrix on the various vibration resonant modes was shown. In the case of weak

anisotropy the solution reduces to a simple model for an isotropic cylinder. Numerical

calculations were performed first for an isotropic aluminum cylinder. Then the effect of

perturbation of the elastic constants of an aluminum cylinder on the form function was

evaluated. Ahmad et al. [5] also studied the scattering of acoustic waves from a trans-

versely isotropic cylinder immersed in a fluid. The solution was obtained by employing

Buchwald’s potentials [26] and a normal mode expansion. The existence of two distinct

types of transversely isotropic materials, namely type I and type II, was shown. The

expected behavior of the form functions of such materials was described. Critical angles

of the incidence were shown, away from these angles an angular pattern of scattering

field alters significantly. Honarvar et al. [77] showed the physical differences between

two types of transversely isotropic materials classified by Ahmad et al. [5]. Rahman

et al. [132] and Ahmad et al. [5] showed that the displacement decomposition [105]

used by Honanvar et al. [78] results in 5th order PDEs, lengthy coupled equations for
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potential functions, whereas Buchwald’s representation yields much simpler equations,

in the form of compact second order PDEs. They also noted that these representations

lead to identical characteristic equations and the same final result. Buchwald’s poten-

tial yields simpler expressions; it is less laborious and much more efficient in application

for an isotropy, transverse isotropy [107], [4], [32] and general anisotropy [116].

Scattering from cylindrical shells consisting of one layer

Scattering from an infinite isotropic elastic hollow cylindrical shell by an obliquely in-

cident plane acoustic wave was investigated by Maze et al. [89]. The far-field form

function was calculated for an aluminum hollow cylindrical shell in water by the direct

summation of the Rayleigh series. The theoretical results are compared with the experi-

mental results showing a good agreement between them. Veksler et al. [183] presents an

analytical solution to the scattering problem of a plane compressional wave by a circular

cylindrical shell embedded in an elastic matrix. The resonances were computed from

the dispersion relations. The behavior of different scattered waves were studied, and

the resonance contribution of these waves were shown for a thick walled shell. When

the inner radius of the shell b tended to the outer radius, the scattering by an empty

cavity was considered. When the inner radius b tended to 0 another limiting situation

was obtained: the scattering by an elastic cylinder in an elastic matrix. In [109] an

asymptotic solution of the problem of acoustic wave scattering from heavily fluid loaded

thin isotropic cylindrical and spherical shells is derived by Norris et al. from combined

outer and inner fields using matched asymptotic expansions. The proposed method is

developed on the basis of thin shell theory and is effective in the midfrequency range,

and it describes the total acoustic response as the sum of background response and

resonant contribution.

1.3.2 Scattering from multi-layered cylindrical shells and solids

Scattering by single multilayered scatterers has been conducted extensively. Most scat-

terers have simple geometry, such as a cylindrical or spherical shape. Below we will

consider these works in detail. At the end of this section we will consider some works on
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multiple scattering (MS) in a single scatterer. The effect of MS between the scatterers

will be considered in Section 1.3.4.

Acoustic scattering from multi-layered cylindrical shells and solids

The scattering field of an oblique plane wave of incidence from a circular clad rod of

infinite length was calculated by Honarvar et al. [79]. Using Resonance Scattering

Theory (RST) the effect of various resonance frequencies on the variation of cladding

thickness was evaluated, where high frequency resonances were shown to be more sensi-

tive than low frequency resonances. Form functions of a copper-clad aluminum rod were

evaluated for different incident angles of a plane wave. The comparison of numerical

calculations with experimental measurements show good agreement. Orthotropic cylin-

drical shells submerged in and filled with compressible ideal fluids were considered by

Hasheminejad et al. [72] using a state space formulation for the sequentially laminated

piecewise homogeneous configuration. The method of wavefunction expansion is used

to study the effects of inner fluid loading along with the shell thickness on the frequency

response of the shell. The correlation between the perturbation in elastic constants of

loaded shell material and the sensitivity of resonances associated with various modes

appearing in the backscattered field is obtained.

The methods developed in [72] are generalized in [73] for an axially polarized piezo-

electric material. Hasheminejad et al. [73] examined 3D acoustic scattering of a plane

incident sound wave from thick bilaminated circular cylindrical shells consisting of an

axially polarized piezoelectric cylindrically orthotropic inner layer and orthotropic outer

layer. Shells are submerged in and filled with compressible ideal fluids. Numerical calcu-

lations for the total form function amplitude including the associated global scattering,

the far-field inherent background and the resonance scattering coefficients of the n th

normal mode are performed based on acoustical RST for different electrical boundary

conditions. Jamali et al. [82] studied a scattering by functionally graded cylindrical

shells and calculated an acoustic radiation force in shell caused by a plane harmonic

wave incidence using the eigenfunction expansion method. They employed a laminate

approximate model and T-matrix approach to present an analytical solution based on
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2D elasticity. Numerical results are presented for a form function and radiation force.

Elastic scattering from multi-layered cylindrical shells and solids

Beattie et al. [17] both theoretically and experimentally studied backscattering of inci-

dent compressional and shear SH waves from an isotropic elastic cylinder embedded in

an elastic matrix. Scattering from a fiber-matrix interphase in a four-phase composed

system, consisting of a matrix and a three-phase fiber, was studied by Huang et al. [81]

for incident longitudinal and transverse waves using a standard normal-mode expansion

method. Different simplified approximate models were considered to show the effect of

the fiber-matrix interphase on scattering. Sinclair et al. [152] proposed a mathemat-

ical model for the scattering of elastic waves from a reinforcing fiber, consisting of a

graphite core and surrounded by a vapor-deposited SiC layer embedded in a titanium

alloy matrix. A normal mode technique was used to derive the scattering spectrum.

Numerical calculations were compared with experimental data for a form function.

The original formulation of scattering from a transversely isotropic cylinder sub-

merged in an acoustic medium given in [78] was generalized by Fan et al. in [54]

to the case of a cylinder embedded in an elastic matrix. The formulation of scatter-

ing problem was provided for incident plane longitudinal, axially polarized shear and

transversely polarized modes. The solution was obtained using normal mode expan-

sions. Obtained results point to the sensitivity of several resonances to the perturbation

of elastic constants of the cylinder for each type of scattered waves. Niklasson et al.

[107] provided an alternative but similar formulation of the scattering problem for the

solid-solid case. The problem is solved by employing the method of separation of vari-

ables and Buchwald’s potentials [26] for the displacement field. It was noted that in

the case when there is a cavity in a transversely isotropic medium, the reflected shear

waves are much stronger than in the case with a solid cylinder. Fan et al. [53] discuss

physical characteristics displayed by the original general solution of Honarvar et al.

[78]. The circumferential resonance modes of a submerged cylinder were studied over a

large range of incidence angles using RST. The shift of resonance frequencies to higher

frequencies was noticed with the growth of incidence angle.
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Piezoelectric hollow cylinders have been considered in [130]. Qian et al. [130] studied

the scattering of incident elastic P-waves from a transversely isotropic piezoelectric

cylinder embedded in an infinite polymer matrix. The solution was obtained using the

method of wavefunction expansion. The stress distribution, mechanical displacements

and electrical potential around the piezoelectric cylinder were calculated. The effects of

incident angles over a range of normalized frequency along with the change in radius of

the cylinder on the mechanical stress field and electric field concentrations were studied

in detail, and the physical explanations were given for such effects. The results of this

paper can be used in modeling piezoelectric composites, particularly, when piezoelectric

cylinders are aligned sparsely in a matrix medium.

Cai [30] presented an analytical solution for the scattering of antiplane elastic waves

by a layered circular elastic cylinder embedded in an elastic medium of infinite extent.

Numerical calculations are performed for a ceramic-fiber reinforced metal-matrix com-

posite system. The effects of the geometrical and physical properties of the interphase

were investigated. When the outer cylindrical layer is more compliant and the inner

core undergoes a rigid body motion, a resonance mode was noticed. This approach was

generalized by Cai, in [27], to study scattering by a multilayered scatterer using MS pro-

cess, which is based on the observation that elastic MS occurs in a single scatterer which

has an inner structure. The proposed approach can be extended for studying multi-core

structures, i.e. multiconductor cable, and can be used for analyzing scatterers of more

complicated geometrical and physical compositions.

1.3.3 Scattering from spherical shells and solids

Acoustic scattering from spherical shells and solids

Acoustic scattering by elastic spherical shells and solids submerged in water has been

investigated widely [135], [75], [55], [109], [171], [76]. Early work was conducted almost

one and a half centuries ago by Rayleigh [135] on the scattering of sound-waves by small

elastic discontinuities, e.i. perfectly rigid and fluid spheres of small size, considering

scatterers in which ka << 1 (where k is wave number and a is radius). This case of
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scattering is referred to as Rayleigh scattering. Herzfeld [75] modified and extended

Rayleigh’s approach to a solid sphere with finite elastic constants. Herzfeld studied the

scattering of longitudinal waves by an elastic sphere submerged in a viscous fluid, but

he did not include the scattered shear wave. The scattering field was obtained in the

form of a progressing series of zonal harmonics where each harmonic depends on the

radius vector and is multiplied by an unknown coefficient. Therefore, the unknowns

were determined from the surface conditions at the interface by taking the factors of

each zonal harmonic separately.

Epstein et al. [51] conducted research on sound absorption in fogs and considered

the longitudinal wave scattering problem for fluid spheres in a fluid medium incorporat-

ing both thermal conductivity and viscosity. Explicit expressions for the attenuation to

water particles in air were derived from general results, considering the particular case of

liquid droplets suspended in gases. The comparison of calculated and experimental data

was shown for an attenuation. Hickling [76] both theoretically and experimentally stud-

ied the scattering of shear and compressional waves from a homogeneous solid sphere

submerged in an acoustic medium; numerical calculations of backscattering spectrum

and pulse forms of echoes were presented.

An approach that describes the acoustical background of a submerged elastic isotropic

spherical shell for a suitable thickness over an entire frequency range was developed by

Werby [187]. It was shown that a background at a higher frequencies and thicker shells

is equivalent to a rigid background, whereas low frequencies with a thin shell approxi-

mation it tended toward a soft background. Dacol et al. [42] presented the numerical

solution of the secular equation obtained by Fikioris and Waterman for the effective

wave number of an acoustic field propagating in a medium with a random distribution

of identical spherical scatterers. This method was further generalized to the case of an

arbitrary two-point correlation function in the positions of any two scatterers. Martin

[97] studied the problem of acoustic scattering from a sphere, specifically scattering by

an inhomogeneous sphere submerged in a homogeneous fluid, and scattering by a ho-

mogeneous sphere with a concentric inhomogeneous coating. It was assumed that the
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material parameters are spherically symmetric functions of the position vector. The ra-

dial parts of the solutions were given in terms of Coulomb wave functions or Whittaker

functions.

Elastic scattering from spherical shells and solids

The idea of acoustic scattering from a sphere was generalized to model elastic scattering

problems from a sphere embedded in an elastic matrix [190], [86], [50], [56], [147].

Ying et al. [190] generalized Herzfeld’s [75] formulation of scattering by a solid sphere

of an incident acoustic compressional wave to include elastic properties of incident

and scattered waves. The scattered field was obtained using continuity conditions

for displacements and stresses at the interface. Calculations were performed for the

problem of scattering of a longitudinal wave by an isotropic elastic sphere and a rigid

sphere embedded in an elastic medium, and a spherical cavity surrounded by an elastic

medium. Mechanical properties of scatterers differed from those of the surrounding

matrix material. Rayleigh scattering and some other limiting cases were discussed in

detail. Expressions for the scattering cross section were derived for an elastic sphere, a

fluid sphere and a spherical cavity.

Knopoff [86] studied the scattering of incident plane shear waves by a perfectly

rigid, infinitely dense sphere situated in an elastic medium. The scattered field includes

both longitudinal P and transverse S modes. One S modes corresponded to the SH

mode and the other to the SV mode. Numerical calculations were shown for a group

of obstacles with radii very small compared with wave length and radii equivalent to

the wave length. Einspruch et al. [50] and [49] employed the method of Ying et al.

[190] to study the scattering of delitational [49] and distortional [50] elastic waves by

spherical obstacles. For incident longitudinal waves, the scatterer was considered as a

fluid-filled cavity embedded in an isotropic elastic matrix and the scattering coefficients

were obtained from the 3 by 3 system of linear equations. For incident transverse waves

the scattering problem was considered as 3D and the obstacle was taken as a fluid-

filled cavity, an empty cavity, a rigid sphere, and an elastic sphere embedded in an

elastic medium with different physical parameters. In the last case, an elastic sphere
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embedded in a matrix, the boundary conditions yielded the 6 by 6 system of linear

equations from which the scattering coefficients were obtained. The scattering cross

section for a transverse wave was calculated and the Rayleigh limit was considered.

Flax et al. [56] studied the resonance effects in the elastic scattering of shear waves

from solid spherical inclusions. Numerical results are presented for resonances and

a backscattered form function of the solid inclusions surrounded by a Lucite or iron

sphere embedded in an elastic matrix. Sessarego [147] studied the scattering by an

elastic sphere embedded in sediment. A physical interpretation of scattered circum-

ferential waves was given in terms of monostatic and bistatic scattering cross sections.

The resonance behavior of the target was determined numerically in the individual nor-

mal mode amplitudes. Numerical computations were in agreement with experimental

measurements for an aluminum sphere embedded in Plexiglas.

1.3.4 Review of acoustic and elastic MS from solids and shells

Here, we will review an acoustic and elastic MS from scatterers of different geometries.

The extended bibliographical overview and concept of MS from obstacles are given

by Martin [98]. There are several analytical methods to solve MS problems. An MS

solution can follow from the analysis of wave scattering by single obstacles. For obstacles

with variable-separable geometries, the solution of an MS problem can be obtained by

the multipole expansion method [141, 169, 98, 177]. The multipole expansion method

for variable-separable geometries can be applied in two ways. The first one allows us to

find the total multiple scattered field of the configuration in terms of the scattered waves

from each obstacle using a Fourier series expansion and combining separable solutions

for each obstacle with Graf’s addition theorem. The method is exact, and leads to an

infinite system of algebraic equations; in the system, the infinite sums are truncated

to use in practice. The approach was first used by Závǐska [191] to solve 2D electro-

magnetic scattering problem for circular cylinders, and was broadly applied to tackle MS

problems due its conceptual simplicity and numerical effectivity [98, 177, 175, 176, 7].

This approach will be used in the analysis to follow.

The “Ordered scattering” is another technique in the multipole method used by
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Twersky [169] for acoustic and electromagnetic MS problems. This iterative procedure

can be described as follows. The first-order scattering results from the excitation of

scatterers by primary incident wave. The field scattered by each scatterer is found by

translating the primary incident wave to the origin of local coordinate system and using

single scattering analysis. The second order scattering from one of the scatterers results

from the excitation by the first order of scattering from the remaining scatterers, and

so on to higher order of scattering. The calculation of higher orders of scattering is

continued until the convergence of results is reached.

For scatterers with geometries that do not conform to separable coordinates, MS

solutions can be calculated using the integral equation methods [58], [186], [177]. The

T-matrix formulation introduced by Waterman [186] for acoustic scattering from a

single scatterer was applied by Peterson and Ström [123] to study acoustic MS from

elastic scatterers including the full interaction between the scatterer. The method was

generalized in [124] to investigate an acoustic MS from elastic multilayered scatterers,

and further by Peterson et al. [126] to study an elastic MS of in-plane(P/SV) waves

from fluid inclusions in elastic medium. Varadan and Varadan employed T-matrix

formulation using the multipole expansions to examine an elastic MS of both SH waves

[175] and P/SV waves [173, 176] from elastic scatterers embedded in elastic medium.

Review of acoustic MS from solids and shells

Radlinski and Meyers [131] have investigated the scattering of waves radiated by an

oscillating cylinder surrounded by a circular cage of rigid cylinders. They have shown

a good agreement between a 2D analysis and experimental measurements of a farfield

radiation for cages consisting of 6 and 12 cylinders. Klyukin [85] has investigated both

theoretically and experimentally the problem of an acoustic MS of plane waves by a 2D

grating of rigid cylinders; a comparison of results for reflection characteristics shows a

good agreement with the experimental data.

Three different solutions for an MS problem for 2 cylinders are presented and com-

pared with experimental data by Gustafson and Stepanishen [69]. Their theoretical



16

solutions are based on the eigenfunction expansion method or thin cylinder approxima-

tion, including either the effects of all orders of MS or the effects of only zeroth order

scattering, or excluding all effects of scattering and interactions between the cylinders.

An acoustic MS of plane waves by an array of rigid cylinders moving in an ideal inviscid

fluid has been examined by Lin and Raptis [93]. Their technique involves formulating

analytical expressions of scattering functions, and determining the effects of MS and

vibration of cylinders on the scattering pattern; calculations are performed for a cluster

of carbon and brass cylinders submerged in water, having different geometrical configu-

rations of one, two, three, and seven circular cylinders. The scattering matrix S and its

relationship with the scattering resonances and the cross sections have been explicitly

obtained by Gaspard and Rice [62] for the scattering of a point particle from three hard

discs fixed on a plane using Green’s theorem. They have also reported a comparison of

results for the semiclassical and quantum dynamics of the point particle-three hard disc

system giving hints for more complex dynamical systems. Kubenko, V.D [88] has pre-

sented an analytical solution to the problem of MS of acoustic waves by two nonparallel

circular cylinders based on successive application of Graf’s addition theorem; the soft

cylinders are considered specifically. Scharstein [144] researched the effects of coupling

between two parallel soft cylinders of different radii via a comparison of far scattered

fields computed by his proposed method and a superposition of non-interacting far

fields of the isolated cylinders.

The effect of incident waves on circular arrays of identical circular cylinders has

been considered by Evans and Porter [52]; resultant forces versus wavenumber are

calculated for symmetric and asymmetric arrangement of four, five and six cylinders;

real parts and magnitudes of velocity potentials have been shown for a ring of four, five

and six cylinders. Wirzba [188] has studied 2D convergence problems of periodic orbit

expansions of the non-overlapping disconnected n-disk repellers, and derived the T-

matrix of the n-disk scattering systems by the methods of stationary scattering theory.

Decanini et al. [44] have proposed an exact formalism to obtain an S matrix for an

N -disk system under different boundary conditions; explicit formulas for an S matrix,

form function and scattering resonances are derived for C2ν , C3ν and C4ν symmetry
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configurations. In the second part of paper [44], Decanini et al. [45] have determined

the resonances of the two- and three-disk systems with C2ν and C3ν systems; numerical

results are presented for various boundary conditions. Grote and Kirsch [67] have

derived a Dirichlet-to-Neumann (DtN) boundary condition for the numerical solution

of MS problems for the obstacle consisting of several disjointed components; being a

natural boundary condition, the DtN condition fits into a variational formulation of

BVP allowing easy use of FEM, and yields an exact formula for the far-field form

function. Decanini et al. [43] have investigated MS by two identical cylinders with

respect to the symmetry of configuration; positions of scatterer resonances and their

physical interpretation are given for soft, hard, and elastic cylinders.

Hasheminejad and Alibakhshi [70] have studied MS effects of 2-D acoustic scattering

in fiber suspensions considering the interactions of a plane compressional sound wave

with a cluster of two flexible fibers submerged in a boundless viscous fluid medium;

comparisons of angular distribution of the form function are presented for polymeric,

elastic, and rigid cylinders at selected distances and frequencies. Sherer [149] studied

acoustic MS generated by two types of axisymmetric sources by a grating of arbitrary

parallel multiple rigid circular cylinders of varying radii; the incident field is determined

from a cylindrical line source and a spatially distributed acoustic source.

Lethuillier et al. [91] studied both theoretically and experimentally MS by a finite

linear grating of elastic cylindrical shells. Analytical solutions for MS problem were

obtained using the multipole method in conjunction with the concept of T-matrix. Nu-

merical and experimental results are given for grating of 2 to 5 shells to study the

resonant interaction between close shells. This approach also was employed by Bas

et al. [13] to study MS of acoustic plane harmonic incident waves from an arbitrary

configuration of cylinders (aligned or not). The S (scattering) matrix of an N-shell

cluster was defined and a resonance spectrum was investigated. Numerical results for

aligned cylinders were in agreement with previously published results [91]. The multi-

pole method via T-matrix formulation was further employed by Cai et al. [31] to study

MS of acoustic waves by arrays of penetrable circular steel cylinders in waveguides.

They showed that the evanescent modes are important and could become dominant at
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some frequency range. An isovelocity examples were given for waveguide with uniform

physical properties and constant waveguide depth. MS in the waveguide is compared

with the corresponding 2D case for the cluster of 20 by 40 identical cylinders. Along this

line Antoine et al. [7] investigated acoustic high-frequency MS from realistic complex

configurations consisting of numerous circular cylinders; calculations were performed

for a single-row configuration, a centered uniform square lattice, a triangular lattice,

and an unstructured geometrical configuration. Iterative Krylov space methods were

applied taking the advantage of the structure of algebraic linear system.

Sodagar et al. [153] studied MS of an oblique incident plane wave from a grating of

cylindrical shells submerged in an acoustic medium. For shells, the general solutions of

governing equations of 3D elasticity are found using the Helmholtz decomposition. MS

solutions are obtained iteratively using Twersky’s [169] “Ordered scattering” technique.

A detailed study of resonances of the shells and the effect of the center-to-center distance

of the shells on these resonances is conducted. Numerical results are compared with

experimental data for a grating of 2-3 aligned cylinders.

Schwartz et al. [146] proposed a multiple-scattering theory of longitudinal coherent

wave propagation in composite structures consisting of spherical solid grains submerged

in an ideal fluid. It was shown that for primitive ordered cubic suspensions, governing

equations reduced to a system of coupled equations which had a solution of the form

predicted by Biot; for disordered suspensions the Biot formula did not hold. Illustrative

numerical calculations for the case of densely packed composites were presented.

Review of elastic MS from solids and shells

An extensive bibliography and a wide variety of problems that have been solved using

the T-matrix approach was given in [177, 174]. Waterman’s [186] T-matrix formulation

was employed by Varadan and Varadan [175] to study MS of SH waves from elastic

cylinders of arbitrary cross section using the multipole expansion method. The T-

matrix approach was further elaborated by Varadan and Varadan [177, 176] to study

MS of P and SV waves from an elastic scatterer in an elastic medium. The formulation

includes a full interaction between the scatterers and involves only the T-matrix of a
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single obstacle. This method conceptually differs from the integral equation formulation

used by Peterson and Ström [123], Boström [21], and Peterson et al. [126, 125] that

deals with a total transition matrix resulting from all scatterers together.

Twersky’s [169] “Ordered scattering” technique was applied to investigate elastic

MS from grating of scatterers in the following works [37, 141, 28]. Cheng [37] provided

a formal solution of MS of incident elastic P waves from a grating of rigid cylinders

embedded in an elastic medium. Distributions of normalized stress and maximum

normalized stress were shown for 2 identical circular cylinders. Sancar and Pao [141]

derived a power spectral function of pulses backscattered from two cylindrical cavities

in a solid. The MS of waves from two cylindrical cavities in a solid was investigated.

Luppe et al. [96] generalized Twersky’s theory [169] of MS by a uniform random

distribution of cylinders in an inhomogeneous medium. Biot’s theory was employed

for a high frequency regime. The dispersion relations of coherent fast longitudinal

and slow longitudinal waves as well as shear waves were calculated. The shear wave

decouples and propagates independently. The coupling effects of the longitudinal waves

are noticed when forward scattering by a single cylinder of the slow wave into the fast

is larger than forward scattering with no conversion.

Combining Twersky’s [169] “Ordered scattering” method and Varadan’s [175] T-

matrix approach, Cai[29] provided a solution for a elastic MS of P/SV waves from an

arbitrary configuration of scatterers having arbitrary cross section, similar or dissimilar,

provided that the corresponding single-scatterer T-matrices are known. Following the

same idea, Cai and Williams [28] studied MS of SH waves from an arbitrary grating of

scatterers and proposed a “scatterer polymerization” technique to construct abstract

scatterers and handle a large-scale deterministic analysis.

Yang and Mal [189] analyzed an elastic MS of both SH waves and P/SV waves

in composites containing randomly distributed parallel fibers to predict the overall

elastodynamic constants. They employed MS theory and statistical averaging procedure

via the Generalized Self Consistent Model. This approach was employed by Lonne [95]

to predict attenuation of a unidirectional layer of Carbon fibers in an epoxy matrix,

including the coupling between MS by fibers and viscoelastic losses phenomena. The
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results were experimentally verified and applied to arbitrary two-phase fiber reinforced

composites for different values of fiber volume fraction.

Sato and Shindo [142] examined MS of elastic P and SV waves from randomly

distributed parallel fibers with graded interfacial layers embedded in a metal matrix

composite containing randomly distributed parallel fibers with graded interfacial lay-

ers. They obtained an analytical solution based on the multipole expansion method.

The effect of an imperfect layer on phase velocity versus frequency was shown for both

P and SV waves. Biwa et al. [18] studied MS of elastic SV waves in unidirectional com-

posites by the multiple expansion method and T-matrix. The scattering coefficients are

found numerically using a collocation method. This idea was generalized by Sumiya

et al. [155] to study MS of P and SV waves from an arbitrary number of cylinders.

Sheikhhassani and Dravinski [148] investigated MS of SH wave by an arbitrary num-

ber of multilayered inclusions in half space using a direct boundary integral equation

method. They analyzed the effects of MS, geometry, and impedance contrast of the

layers on the surface motion. Conoir and Norris [40] employed the multipole expan-

sion method to study MS of P/SV waves in an elastic medium containing randomly

distributed cylindrical inclusions in a half-space and to obtain the explicit formulas for

the effective wavenumbers and reflection coefficients of the medium.

Norris [110] studied MS of of P/SV waves by spherical inclusions via the multipole

method to apply to a low frequency wave propagation in composites. The effective

wave speed and attenuation were given in explicit form when inclusions were voids.

Liu and Cai [94] incorporated the multipole expansion method and T-matrix approach

and extended the “scatterer polymerization” methodology to study 3D MS of elastic

waves by spherical inclusions. The method allows them to reduce the number of actual

scatterers to a lesser number of abstract scatterers.

1.3.5 Review of cloaking models

The main purpose of a cloaking device is to render an object invisible to some inci-

dent wave as seen by some external observer. Over the past decade, a great deal of

effort has been focused on passive cloaking, using metamaterials to guide waves around
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specific regions of space, see i.e. the highly cited works [90, 122, 41]. Within transfor-

mation acoustics, scholars such as Cummer et al. [41], Chen and Chan [33, 34], and

Norris [111] have all focused on metamaterials that may have either spatially varying

anisotropic density (inertial cloak IC) or stiffness (pentamode PM) or both (PM+IC).

A perfect cloak has either an infinite mass (IC) or zero stiffness (PM) which is unreal-

istic. Norris and Nagy [113] adopted a discrete layered approach to achieve IC made

from three acoustic fluids; meanwhile, Urzhumov et al. [172] included the effect of shear

in IC. Torrent and Sanchez-Dehesa [165, 166] used a homogenization technique on an

acoustic cloak based upon multilayered structures. They showed a trade-off between

cloaking performance and construction difficulty. To overcome this drawback, Norris

[111] showed that perfect cloaking can be achieved with finite mass through the use

of PM. However, the manufacturing difficulty remains because the cell size of the PM

material has to be the same order as the wave length. Within impedance acoustic cloak-

ing, scholars such as Chen et al. [35] and Bobrovnitskii [20] developed a cloak for low

frequencies. On the other hand, active cloaking has the advantage of being broadband

[179, 181, 112].

Despite the main interest in modeling passive cloaking devices, active exterior cloak-

ing has been investigated broadly, and interest has focused on the Helmholtz equation

in two dimensions [101, 179, 180, 182, 181, 112]. Miller [101] created a cloak based on

wave measurement and showed how the necessary surface sources should be calculated.

He provided a formula for source amplitudes which depends on the measurements at

all sensing points in the near-field, but could not derive a unique relationship between

the source amplitudes and the incident field. Vasquez et al. [179, 180] proposed a so-

lution to this problem. Using Green’s formula and Graf’s addition theorems for Bessel

functions, Vasquez et al. formulated an integral equation, which was converted to a lin-

ear system of equations for the unknown source amplitudes. Importantly, this integral

equation yields a linear relation between the source amplitudes and the incident wave

field. A more explicit form of the linear relation for the source amplitudes as a function

of the incident field was developed in [181] where it was shown, by construction, that
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active cloaking can be realized using as few as three active sources in 2D. In the pro-

ceeding work [181], the linear relation was given in more explicit form using multipole

sources and numerical results were compared with SVD solutions of the linearized sys-

tem [179, 180]. The approach was further generalized and extended to a 3D case in [182]

to handle the three-dimensional Helmholtz equation and seek non-resonant frequencies

of the cloaked object.

Active exterior cloaking is linked to the concept of “anti-sound”, also known as active

noise control, e.g., the cancellation of a sound field. Paul Lueg first formulated the basic

ideas of anti-sound in his U.S. patent in 1936, see e.g. [68]. In an elastodynamic context,

the concept is known as “anti-vibration”. The idea is to produce negligible radiated

field or to generate “quiet zones” in some domains, i.e. aircraft cabins using a discrete

set of sources. Nelson and Elliott [106] described the idea of completely suppressing

the sound field in a finite volume inside an unbounded domain using the Kirchhoff-

Helmholtz integral formula and continuous distribution of monopoles and dipoles. The

principles and practical application of anti-vibration techniques have been developed in

[100, 61]. The main function of anti-sound is to reduce the sound radiated from a sound

source or to create a silence zone using sources but this active field is not required to

be non-radiating.

1.4 Research Outline

The dissertation is presented in eight chapters. Chapter 2 formulates the mathematical

model of the problem of scattering of incident waves from solids, and gives definitions of

the impedance and matricant matrices and preliminaries on acoustics and elasticity the-

ory. Impedance matrices are defined for both spherically and cylindrically anisotropic

media. Chapter 3 analyzes the mathematical models described in Chapter 2 in detail,

and presents a global impedance matrix method for a multilaminate general anisotropic

medium and an explicit method for finding the impedance in piecewise uniform, trans-

versely isotropic materials. It also describes the Global Matrix Methods for scattering

from a multilaminate isotropic solid. Acoustic and elastic scattering from a single

scatterer is considered and a T-matrix is developed for the scatterer. An emphasis is
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placed on the special case of acoustic and elastic waves. Numerical results represent

the form function, total scattering cross section, and total fields. Chapter 4 generalizes

ideas given in Chapter 3 to study an MS and radiation from cylindrical structures, and

includes a full interaction between the scatterers in both acoustic and elastic media. Nu-

merical results for MS represent total fields and form functions in near and far-radiated

fields for different configurations such as waveguides, Helmholtz resonators, slabs, and

rings of cylinders. Chapter 5 details the iterative methods suitable with parallel com-

puting for solving the MS problems considered in Chapter 4. Iterative approaches by

means of Neumann series expansions are given for a fixed value of frequency and gener-

alized for a band of frequencies. Taking advantage of the Block Toeplitz structure of the

linear system, another iterative technique is presented. Chapters 6 and 7 describe the

modeling of active cloaking devices generated by active multipole sources that render

an object invisible to incident waves in the acoustic and elastic media. Finally, Chapter

8 gives conclusions and discusses future work.
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Chapter 2

Preliminaries

In this chapter, we formulate the mathematical model of the problem of scattering

of incident waves from solids. In Section 2.1, the governing equations of 3D elastic-

ity theory are given for a general anisotropic, cylindrically anisotropic, and spherically

anisotropic medium. The impedance and matricant matrices are defined in Section

2.1.3. In Section 2.2, three different types of displacement decompositions are con-

sidered. Scattering from homogeneous isotropic cylinders is considered in Section 2.3.

In Section 2.3.1, acoustical preliminaries are reviewed and the expressions for incident

wave coefficients are given. P/SV in-plane wave propagation is studied in Section 2.3.2;

here the general solutions are given for solid, hollow, and rigid cylinders.

2.1 The governing equations of elasticity theory

In the absence of body forces the governing equations for an anisotropic elastic solid

are:

Ia) the equations of motion of three-dimensional elasticity

∇ · σ = ρü+ f , (2.1)

Ib) the general Hooke’s law (the stress-strain relations)

σij = Cijklεkl
(
= (ti)j

)
, (2.2)

Ic) the Cauchy relations (the linear strain-displacement relations)

εij =
1

2
(ui,j + uj,i). (2.3)

Here ui are the components of displacement vector u, f is the forcing, σ = [σij ] is the

stress tensor, ti = eTi σ are the traction vectors, ei are the unit vectors, εij are the
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deformation tensor components, ρ is the density, the elastic stiffness tensor elements

Cijkl have the usual symmetries: Cijkl = Cjikl = Cklij , Einstein notation with the sum-

mation over repeated indices is used, and a comma suffix denotes partial differentiation.

We may use Voigt’s notation to simplify the indices of elastic stiffness tensor elements

Cijkl:

CIJ = Cijkl, (2.4)

where we equate

ij =

⇓

α =

11 22 33 23, 32 13, 31 12, 21

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

1 2 3 4 5 6

. (2.5)

2.1.1 Cylindrically anisotropic media

In cylindrical coordinates (r, θ, z) with the basis er, eθ, ez, in the absence of body forces,

the equilibrium equations of linear elastodynamics can be written in the form [150, 116,

161]

(rtr), r + tθ, θ +Ktθ + tz, z = r ρü, (2.6)

where u =
(
ur uθ uz

)T
is the displacement vector, ′T ′ denotes transpose, and the

traction vectors and K matrix have the form

tr =




σrr

σrθ

σrz



, tθ =




σθr

σθθ

σθz



, tz =




σzr

σzθ

σzz



, K =




0 −1 0

1 0 0

0 0 0



. (2.7)

See [160] for a static derivation.

The Cauchy relations in cylindrical coordinates can be written as

εrr = ur,r, εθθ = r−1(uθ,θ + ur), εzz = uz,z,

εθz =
1

2
r−1(uz,θ + ruθ,z), εrz =

1

2
(uz,r + ur,z),

εrθ =
1

2
r−1(ur,θ + ruθ,r − uθ).

(2.8)

Using the Cauchy relations (2.8), a relationship between the traction vectors and dis-

placement vector can be made where (ti)j = σij . For instance the jth component of tz
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is [160]

(tz)j = C3j11εrr + C3j22εθθ + C3j33εzz + 2C3j12εrθ + 2C3j13εrz + 2C3j23εθz. (2.9)

Employing Voigt’s notation (2.5) to simplify the analysis and combining eqs. (2.2),

(2.7), (2.8), the traction vectors are [116]




tr

tθ

tz




=




Q̂ R̂ P̂

R̂T T̂ Ŝ

P̂T ŜT M̂







u,r

r−1(u,θ +Ku)

u,z



, (2.10)

where

Q̂ik = Cirkr = Q̂ki, T̂ik = Ciθkθ = T̂ki, M̂ik = Cizkz = M̂ki,

R̂ik = Cirkθ, P̂ik = Cirkz, Ŝik = Ciθkz, i, k = r, θ, z.

(2.11)

Because of the symmetry, the relations between matrices (2.11) are of the form

Q̂iθ = R̂ir, Q̂iz = P̂ir, T̂ir = R̂θi, T̂iz = Ŝiθ, M̂iz = P̂zi, M̂iθ = Ŝzi. (2.12)

From [150] we have the following forms for the matrices

Q̂ =




C11 C16 C15

C16 C66 C56

C15 C56 C55



, R̂ =




C16 C12 C14

C66 C26 C46

C56 C25 C45



, P̂ =




C15 C14 C13

C56 C46 C36

C55 C45 C35



,

(2.13)

M̂ =




C55 C45 C35

C45 C44 C34

C35 C34 C33



, T̂ =




C66 C26 C46

C26 C22 C24

C46 C24 C44



, Ŝ =




C56 C46 C36

C25 C24 C23

C45 C44 C34



.

(2.14)

General solution

Consider time harmonic wave motion in a radially inhomogeneous cylindrically anisotropic

medium illustrated in Figure 2.1, for which the density, ρ, and elasticity tensor, C, only

depend on the radial coordinate r, i.e. ρ = ρ(r) and Cijkl = Cijkl(r) for ∀ i, j, k, l ∈

r, θ, z. Here the time dependence e−iωt is omitted but understood. We seek solutions
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Figure 2.1: A cylindrically anisotropic multilayered medium is considered in the system

of cylindrical coordinates. The medium consists of n anisotropic layers with different

densities and elasticity tensors in general.

of eqs. (2.6) and (2.10) in the form of time-harmonic cylindrical waves where the dis-

placement and radial traction vectors are of the form [150]

u = CUn(r)e
i(nθ+kzz) tr = CΥn(r)e

i(nθ+kzz), (2.15)

where C is a disposable normalization constant, n = 0, 1, 2, ... is the circumferential

number,

Un(r) =




urn(r)

uθn(r)

uzn(r)



, Υn(r) =




σrrn(r)

σrθn(r)

σrzn(r)



. (2.16)

We define ηn(r) as:

ηn(r) =


Un(r)

Vn(r)


 =


 Un(r)

irΥn(r)


 . (2.17)

Premultiplying tr in (2.15) by r and substituting it into (2.6) and (2.10) the following

relation is derived in [150]

 −Q̂ 0̂

−κ̂R̂T − ikzrP̂T −I


 r

d

dr


 u

rtr


 =


 R̂κ+ ikzrP̂ −I

κ̂T̂κ̂+ ikzr(κ̂Ŝ+ ŜT κ̂) + (ikzr)2(M̂− ρω
2

k2z
I) 0̂





 u

rtr


 ,

(2.18)

where κ̂ = K + inI = −κ̂+, the superscript ’+’ means the adjoint of matrix, and 0

and I are the 3× 3 zero and unity matrices. It is indicated in [150] that eq. (2.18) may
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be further expressed in the form

(
i

r
Ĝ(r)− d

dr

)
ηn(r) = 0, (2.19)

where ηn(r) defined by eq. (2.17), the system matrix, Ĝ, provided in [150] contains the

symmetry

Ĝ = TĜ+T, with T =


0 I

I 0


 . (2.20)

Orthotropic cylinder

There are nine independent elastic constants Cij for cylindrically orthotropic material

and the stress-strain law is



σrr

σθθ

σzz

σθz

σrz

σrθ




=




C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66







εrr

εθθ

εzz

2εθz

2εrz

2εrθ




. (2.21)

Therefore the matrices Q̂, R̂, P̂, T̂, Ŝ, M̂ in equations for the system matrix, Ĝ [150],

have a much more simplified form with three nonzero elements at most.

A transversely isotropic material is characterized by five non-trivial stiffnesses Cij .

The stress-strain law for the transversely isotropic material is a particular case of eq.

(2.21) with stiffnesses C11 = C22, C13 = C23, C44 = C55, and C66 = (C11 − C22)/2.

2.1.2 Spherically anisotropic media

In a spherical coordinate system (r, θ, ϕ), a dynamic equilibrium vector equation for a

linearly elastic anisotropic medium has the form [118]:

r−2(r2tr), r + (r sin θ)−1
[
(sin θtθ), θ + tϕ,ϕ + sin θKtθ +Htϕ

]
= ρü, (2.22)
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where u =
(
ur uθ uϕ

)T
is the displacement vector, ti = eTi σ are the traction vectors,

and

H =




0 0 − sin θ

0 0 − cos θ

sin θ cos θ 0



. (2.23)

The Cauchy relations in spherical coordinates are

εrr = ur,r, εθθ = r−1(uθ,θ + ur), εrθ =
1

2
r−1(ur,θ + ruθ,r − uθ),

εθϕ =
1

2
r−1
[
(sin θ)−1uθ,ϕ + uϕ,θ − uϕ cot θ

]
; εrϕ =

1

2
r−1
[
(sin θ)−1ur,ϕ + ruϕ,r − uϕ

]
,

εϕϕ = (r sin θ)−1(uϕϕ + ur sin θ + uθ cos θ).

(2.24)

Using the Cauchy relations (2.24), a relationship between the traction vectors and

displacement vector can be made




tr

tθ

tz




=




Q̂ R̂ P̂

R̂T T̂ Ŝ

P̂T ŜT M̂







u,r

r−1(u,θ +Ku)

(r sin θ)−1
(
u,ϕ +Hu

)



, (2.25)

where matrices Q̂, R̂, P̂, T̂, Ŝ, M̂ are defined by eqs. (2.13) - (2.14) with material

constants CIJ defined by (2.5) using Voigt’s notation (2.4)

The spherical harmonics

The vector spherical harmonics P, B and C are defined as [105]

Pmnσ(r̂) = r̂Y mσ
n (r̂),

Bmnσ(r̂) = ζnDY
mσ
n (r̂), (2.26)

Cmnσ(r̂) = −ζnr̂×DY mσ
n (r̂) = ζn

( θ̂

sin θ

∂

∂φ
− φ̂ ∂

∂θ

)
Y mσ
n (r̂),

where

ζn = [n(n+ 1)]−1/2, (2.27)

D = θ̂ ∂
∂θ + φ̂

sin θ
∂
∂φ is the angular differential operator; the indices m,n are for the

spherical harmonics (n azimuthal, n polar) and σ = e, o is the even-or-odd index [105];
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the functions Y mσ
n (r̂) are the normalized spherical harmonics [98, p. 64]

Y m
n ≡ Y me

n + iY mo
n = Qmn P

m
n (cos θ)eimφ, Qmn = (−1)m

√
(2n+ 1)

4π

(n−m)!

(n+m)!
. (2.28)

The vector spherical harmonics Pmnσ,Bmnσ,Cmnσ were applied in [118] to develop

separation of variables vector solutions and provide a complete basis for representing

vector functions of the spherical angles.

General solutions

We consider time harmonic wave motion in a radially inhomogeneous spherically anisotropic

medium. The density and the elasticity tensor of a radially inhomogeneous anisotropic

cylinder depend on the coordinate r only. The dynamic equilibrium equation (2.22)

can be written in the form

(r2tr), r + rτ = −r2ρω2u, (2.29)

with

τ ≡ (sin θ)−1
[
(sin θtθ), θ + tϕ,ϕ + sin θKtθ +Htϕ

]
. (2.30)

Let us drop the subindices in Pmnσ,Bmnσ,Cmnσ and denote A(er) = A(θ, ϕ) ≡

P, B, C. We seek solutions of eq. (2.29) in the form

u =
∑

A

UA(r)A(θ, ϕ), tr =
∑

A

ΥA(r)A(θ, ϕ), τ =
∑

A

ΓA(r)A(θ, ϕ), (2.31)

where

U(r) =
(
UP, UB, UC

)T
, Υ(r) =

(
ΥP, ΥB, ΥC

)T
, Γ(r) =

(
ΓP, ΓB, ΓC

)T
,

(2.32)

and the vector spherical harmonics P,B,C are defined by eq. (2.26). Define η(r) as

η(r) =


U(r)

V(r)


 =


 U(r)

ir2Υ(r)


 , (2.33)

where U(r) and Υ(r) are defined by (2.32). It was shown in [118] that the separable

solution of the form (2.31) is valid for a radially inhomogeneous spherically anisotropic
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medium if the material is transversely isotropic about er. Introducing the assumed

form of solution (2.31) in eq. (2.29) yields the Stroh-like ODS [118]

d

dr
η(r) =

i

r2
Ĝ(r)η(r) (2.34)

where η(r) defined by eq. (2.33), the system matrix, Ĝ, given in [118] has the symmetry

property: Ĝ = TĜ+T where ’+’ means Hermitian conjugation, and T is defined in eq.

(2.20).

Elastic waves in a radially inhomogeneous multilayered sphere

Let us investigate a spherically anisotropic medium as a radially inhomogeneous multi-

layered sphere consisting of J isotropic spherical layers. We consider an infinite plane

elastic wave of circular frequency ω incident at angle α on an isotropic spherical layer

with inner (rj−1) and outer (rj) radii a in spherical coordinate system (r, θ, ϕ). We de-

fine the elastic longitudinal (P ) and shear (SV ) wavenumbers for an isotropic medium,

respectively as

k = ω/cp and K = ω/cs (2.35)

where ω is the frequency, cp, cs are the wave speeds:

c2p = (λ+ 2µ)/ρ, c2s = µ/ρ, (2.36)

the indices p and s stand for P and SV waves correspondingly, λ and µ are Lamé

coefficients. We also define, for later use,

κ̃ ≡ k/K, or equivalently κ̃2 = 2(1− ν)/(1− 2ν), (2.37)

where ν is Poisson’s ratio.

Based on vector spherical harmonic functions (2.26), the displacement in the solid

shell region(s) can be written in the form

u =

l=1,3∑

mnσ

{RlmnσLlmnσ + SlmnσM
l
mnσ + T lmnσN

l
mnσ}, (2.38)

where L, M and N are vector spherical wavefunctions [98, p. 106] related to the vector

spherical harmonics P, B and C by

(
LlmnσN

l
mnσM

l
mnσ

)
=
(
Pmnσ(r̂) Bmnσ(r̂) Cmnσ(r̂)

)
Ul
n(r), (2.39)
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where Ul
n(r) is the 3×3 matrix:

Ul
n(r) =




gln
′
(kr) (η2nKr)

−1gln(Kr) 0

(ηnkr)−1gln(kr) (ηn)−1
(
gln

′
(Kr) + (Kr)−1gln(Kr)

)
0

0 0 η−1
n gln(Kr)



, (2.40)

the index l distinguishes regular (l = 1) from outgoing (l = 3) solutions. The associated

spherical wavefunctions are

g ln(x) =





jn(x), l = 1,

yn(x), l = 2,

h
(1)
n (x), l = 3,

h
(2)
n (x), l = 4,

(2.41)

where h
(1)
n (x) and h

(2)
n (x) are the spherical Hankel functions of order n of type-1 and

type-2 respectively, and jn(x) and yn(x) are the spherical Bessel and Neumann functions

of order n.

Thus, incorporating equations (2.38)-(2.28) the displacement, u, and the traction

vector, t, [105, eq. 13.3.78], [110], have the general form

u(r) =
(
Pmnσ(r̂) Bmnσ(r̂) Cmnσ(r̂)

)(
U1
n(r) U3

n(r)

)

w1

mnσ

w3
mnσ


 , (2.42)

r t(r) =
(
Pmnσ(r̂) Bmnσ(r̂) Cmnσ(r̂)

)(
Υ1
n(r) Υ3

n(r)

)

w1

mnσ

w3
mnσ


 , (2.43)

where Ul
n(r), (l = 1, 3) are defined by equation (2.40),

Υl
n(r) = Kµ ×




t11 t12 0

t21 t22 0

0 0 t33




, wl
mnσ =




Rlmnσ

T lmnσ

Slmnσ



, (2.44)
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t11 = κ̃

[
2gln

′′
(kr)−

(
K2

k2
− 2

)
gln(kr)

]
; t33 = η−1

n

(
gln

′
(Kr)− gln(Kr)

Kr

)
;

t12 = 2(η2nKr)
−1

(
gln

′
(Kr)− gln(Kr)

Kr

)
; t21 = 2(ηnKr)

−1

(
gln

′
(kr)− gln(kr)

kr

)
;

t22 = η−1
n

(
gln

′′
(Kr) + (n2 + n− 2)

gln(Kr)

(Kr)2

)
. (2.45)

2.1.3 Impedance and matricant matrices

The Stroh like ODS (2.19) for a cylindrically anisotropic medium, and ODS (2.34)

for spherically anisotropic medium are analogous and can be written in the form of a

system of 2m linear ordinary differential equations [116]

dη

d r
= Qη with η(r) =


U

V


 , Q(r) =


Q1 Q2

Q3 Q4


 , (2.46)

where Q(r) = i
rĜ(r) for cylindrical anisotropy and Q(r) = i

r2
Ĝ(r) in the spherical

case, Ĝ(r) is the system matrix defined in [116] and [118] for cylindrical and spherical

cases correspondingly. The vector function η(r) is defined in terms of vectors U(r)

and V(r) associated with displacement and traction, respectively, and given by eqs.

(2.32) and (2.33) for spherical, and by eq. (2.16) and (2.17) for cylindrical anisotropy;

we omit the subscript n for simplicity. The relations derived hereinafter are valid for

both cylindrically and spherically anisotropic media.

In this section, we study the relation between vectorsU(r) andV(r). The dimension

of each vector is taken as m, where m is either 3, 2 or 1; m = 3 in general, m = 2

if z - dependence is not considered, and m = 1 for pure out-of-plane shear horizontal

(SH) motion. For the moment we may consider m as general. Let us define the m×m

conditional impedance matrix z for a solid such that

V(r) = −iz(r)U(r). (2.47)

It follows from eqs. (2.46) and (2.47) that z(r) satisfies a differential Riccati equation

[116]

d z

d r
+ zQ1 −Q4z− izQ2z− iQ3 = 0, (2.48)
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with assumed initial condition z(r0) at some specified r = r0, hence the name condi-

tional impedance. One approach to solving for the conditional impedance matrix, z, is

to first solve for the 2m× 2m matricant M(r, r0) which is defined as the solution of the

initial value problem

dM

d r
(r, r0) = Q(r)M(r, r0), M(r0, r0) = I(2m), M =


M1 M2

M3 M4


 . (2.49)

Hence

η(r) = M(r, r0)η(r0). (2.50)

Using the relations

U (r) = (M1 − iM2z(r0))U (r0) , V (r) = (M3 − iM4z(r0))U (r0) , (2.51)

which follow from (2.47), the conditional impedance can be expressed in terms of the

matricant as

z(r) = i
(
M3 − iM4z(r0)

)(
M1 − iM2z(r0)

)−1
. (2.52)

The propagator nature of the matricant is apparent from eq. (2.50) and from the prop-

erty M(r, r1) M(r1, r0) = M(r, r0), and in particular M(r, r0) = M(r0, r)
−1. Also, the

symmetry of the system matrix Ĝ, eq. (2.20) implies M(r, r0) = TM+(r0, r)T. Hence,

M−1(r, r0) = TM+(r, r0)T, that is, M is T-unitary [121].

An alternative approach to finding z uses the two point impedance matrix, which

by definition relates the traction and displacement vectors at two values of r according

to [116] 
V(r0)

−V(r)


 = −iZ(r, r0)


U(r0)

U(r)


 , Z =


Z1 Z2

Z3 Z4


 . (2.53)

The two point impedance matrix has the important property that it is Hermitian,

Z = Z+ [116]. The relations between the matricant of (2.49) and the impedance

matrix of (2.53) evaluated at cylindrical surfaces r, r0 are easily deduced [116]

M(r, r0) =


 −Z−1

2 Z1 iZ−1
2

iZ3 − iZ4Z
−1
2 Z1 −Z4Z

−1
2


 ,

Z(r, r0) =


 −iM−1

2 M1 iM−1
2

iM4M
−1
2 M1 −M3 −iM4M

−1
2


 .

(2.54)



35

Introducing (2.54) into (2.52), we can relate the conditional impedance z(r) to the two

point impedance matrix Z(r, r0) according to

z(r) = Z3

(
Z1 − z(r0)

)−1
Z2 − Z4. (2.55)

2.2 Displacement potentials

In this section, we consider 3 different types of displacement decompositions, namely

using the Helmholtz potentials [26], Buchwald potentials [26] and one proposed by

Morse and Feshbach [105, p. 1764 -1767].

2.2.1 The Helmholtz potentials

The displacement vector u in terms of the Helmholtz potentials has the form [2]

u = ∇ϕ+∇×ψ, (2.56)

where φ is a scalar potential function and ψ is a vector potential function. In cylindrical

coordinates the components of the displacement vector u = (ur, uθ, uz) can be expressed

as:

ur =
∂ϕ

∂r
+

1

r

∂ψz
∂θ

− ∂ψθ
∂z

, (2.57a)

uθ =
1

r

∂ϕ

∂θ
+
∂ψr
∂z

− ∂ψz
∂r

, (2.57b)

uz =
∂ϕ

∂z
+

1

r

∂(ψθr)

∂r
− 1

r

∂ψr
∂θ

. (2.57c)

2.2.2 Displacement potentials using Buchwald decomposition

The displacement vector u decomposed in terms of scalar wave functions ϕ, χ and ψ

[26] has the form

u = ∇ϕ+∇× (χez) +

(
∂ψ

∂z
− ∂ϕ

∂z

)
ez (2.58)

or in component form in cylindrical coordinates as

ur =
∂ϕ

∂r
+

1

r

∂χ

∂θ
, uθ =

1

r

∂ϕ

∂θ
− ∂χ

∂r
, uz =

∂ψ

∂z
. (2.59)

The wave function representation (2.58) was introduced into the theory of wave prop-

agation by Buchwald [26].
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2.2.3 Alternative decomposition

Alternative representation of a displacement vector through scalar potentials is intro-

duced by Morse and Feshbach [105, p. 1764 -1767]

u = ∇ϕ+∇× (χez) + a∇×∇× (ψez), (2.60)

where a is the radius of the cylinder which is constant with dimensions of length. In

component form in cylindrical coordinates it has form

ur =
∂ϕ

∂r
+

1

r

∂χ

∂θ
+ a

∂2ψ

∂r∂z
, (2.61a)

uθ =
1

r

∂ϕ

∂θ
− ∂χ

∂r
+ a

∂2ψ

∂θ∂z
, (2.61b)

uz =
∂ϕ

∂z
− a

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
ψ. (2.61c)

This approach was applied by Honarvar and Sinclair [78] in the analysis of a wave

scattering problem for transversely isotropic material. Comparing Eqs. (2.59) and

(2.61) we can notice that Eqs. (2.61) have extraneous terms. Therefore, the dis-

placement decomposition (2.61) results in cumbersome coupled equations for ϕ and

ψ, which are 5th order PDEs, whereas Buchwald’s representation (2.59) yields much

simpler equations, compact second order PDEs [132]. Ahmad and Rahman [5],[4], [132]

showed that the above mentioned two representations lead to identical characteristic

equations and the same final result. However, in [80], the response to [132], authors

noted that their solution has a stronger physical basis. The authors mentioned that the

potentials ϕ, χ, ψ in eq. (2.60) have a physical meaning, representing P, SH, and SV

waves respectively that allows them to study the effect of each wave type separately;

they noted that Buchwald potentials lack this physical meaning. Nonetheless, in this

dissertation, we use the Buchwald potentials approach for the purpose of mathematical

simplicity. Buchwald’s potentials yield simpler expressions, and are less laborious.

2.3 Scattering from homogeneous isotropic cylinders

In a cylindrical coordinate system (r, θ, z) a wave of circular frequency ω incident on an

infinite cylinder of outer radius a is considered, see Fig. 2.2. We will refer to obstacles
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Figure 2.2: An oblique wave incidence at an angle α on cylindrical layer of inner b

and outer a radii is considered in the cylindrical coordinate system. k vector denotes

the wave front direction. A cylindrical layer is an elastic solid; the medium inside the

cylinder is either fluid, gas, or elastic core; the outer region is either acoustic medium

or elastic matrix.

as cylinders but may consider solid cylinders of outer radius a, as well as thin and

thick cylindrical shells of outer a and inner b radii. A cylinder in 0 < b ≤ r ≤ a is

an elastic solid; the medium inside the cylinder is either fluid, gas, or elastic core; the

outer region is either acoustic medium or elastic matrix. The material of the cylinder

in 0 < b ≤ r ≤ a is assumed to be homogeneous and isotropic. Note that the equations

given in Section 2.3.1 for acoustic medium are independent of physical properties of

cylinder.

In this section, we formulate the wave scattering problem, find the general solutions

of governing equations and derive the formulas for pressure, displacements and stresses

in acoustic and elastic media. The scattering coefficients will be calculated using the

Impedance method and Global matrix method and verified with COMSOL results in

the next chapter.
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2.3.1 Acoustical preliminaries

The governing equation for the (time harmonic) pressure p(x) is the acoustic Helmholtz

wave equation

∇2p+ k2p = ps, (2.62)

where ∇2 is the Laplace operator, the term ps represents sources, k = ω/c is the

wavenumber, c =
√
κ/ρf is the acoustic compressional wave speed in the liquid medium

outside the cylinder, and κ is the bulk modulus. The particle velocity in the fluid v is

related to the pressure by the momentum equation

−iωρfv = −∇p, (2.63)

where ρf is the mass density of fluid. Both c and ρf are constants.

In a cylindrical coordinate system (r, θ, z), consider an acoustic wave of circular

frequency ω obliquely incident at an angle α on infinitely long cylinder immersed in

acoustic medium (see Fig. 2.2). Let x = (x, y, z) be a position vector of a typical point

in Cartesian coordinates with origin at O, and let us define plane polar coordinates

(r1, θ1, z1) at the center O1. Since we consider only one cylinder S1, we may assume

that |lll1| = 0 for simplicity (see Fig. 2.3), i.e. O1 and O coincide, and write the position

of point P at the multipole O1 as P = P (x1) = P (x) = P (r, θ, z).

Figure 2.3: The planar position of cylinder S1 with the center located at the pole O1

with the local coordinates (r1, θ1).
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Total pressure field

The total pressure p(x) = pin(x) in inner acoustic medium satisfies the acoustic Helmholtz

wave equation (2.62) and momentum balance equation (2.63) and is given by

pin(x) =

∞∑

n=−∞
Ainn U

+
n (k⊥x)e

ikzz (2.64)

where x is a position vector of point P (r, θ, z) inside the cylinder (r < b), and

k⊥ = k cosα, kz = k sinα. (2.65)

The function U ±
n (x) is defined by

U ±
n (x) = Jn(|x|)e±in argx, (2.66)

where argx ∈ [0, 2π) and arg (−x) =
(
argx ± π

)
mod 2π, and Jn(x) is the Bessel

function of the first kind of order n.

The total pressure p(x) at point P (r, θ, z) in outer acoustic medium can be expressed

as a sum of incident pinc and scattered psc pressure fields

p = pinc + psc. (2.67)

The obliquely incident field at point P (r, θ, z) is given as

pinc =
∞∑

n=−∞
AnU

+
n (k⊥x)e

ikzz (2.68)

where x is a position vector of point P . The scattered field psc at point P (r, θ, z) can

be expanded in the form:

psc =
∞∑

n=−∞
BnV

+
n (k⊥x)e

ikzz, (2.69)

where Bn are the unknown coefficients, and the function V ±
n (x) is defined by

V ±
n (x) = H(1)

n (|x|)e±in argx, (2.70)

where H
(1)
n is the Hankel function of the first kind of order n. The functions U ±

n (x)

and V ±
n (x) possess the properties

U ±
n (−x) = (−1)nU ±

n (x), V ±
n (−x) = (−1)nV ±

n (x), V ±
−n(x) = (−1)nV ∓

n (x), (2.71)
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and obey the generalized Graf’s addition theorem [1, eq. (9.1.79)]:

V +
l (x− y) =

∞∑

n=−∞





V +
n (x)U −

n−l(y), |x| > |y|,

U +
n (x)V −

n−l(y), |x| < |y|.
(2.72)

Incident field: plane wave, cylindrical line source

Figure 2.4: A point source impinging on an isotropic multilaminate cylinder submerged

in a fluid medium or embedded in an elastic matrix.

In eq. (2.68), the unknown coefficients An for a plane wave incidence are derived

assuming no source term: ps = 0, and that the incident wave is the plane wave of

amplitude Ainc in direction ψ, obliquely incident on cylinder at an angle α:

pinc = Ainceikeψ ·xeikzz ⇒ An = Aincin. (2.73)

For a cylindrical line source, An can be derived considering a source at point S with a

position vector x′ with respect to origin, and assuming that [103]

ps =
δ(r′)
2πr′

eikzz ⇒ pinc =
1

4i
H

(1)
0 (k⊥r

′)eikzz, (2.74)

where δ(r′) is the Dirac delta function, (r′, θ′) is the polar coordinate system placed at

the center of source S (see Figure 2.4). A point source normalized by its amplitude at
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the origin is

pinc = A0H
(1)
0 (k⊥r

′)eikzz where A0 =
1

H
(1)
0 (k⊥|x′|)

, (2.75)

and r′ = |x− x′|. Thus, in the neighborhood of cylinder S1, we have

pinc = A0

∞∑

n=−∞
U +
n (k⊥x)V

−
n (k⊥x

′)eikzz ⇒ An = A0V
−
n (k⊥x

′), (2.76)

for n ∈ Z, where the Graf’s addition theorem (2.72) is used for |x| < |x′|.

Response of cylinder

The response of cylinder S1 to the incident waves pinc can be defined by the transition

matrix T. In general, for obstacles with no rotational symmetry, the T matrix is non-

diagonal. For cylinders with a rotational symmetry, T is diagonal. Applying boundary

conditions and evaluating the pressure field around a circular cylinder S1 yields Tnq,

the components of transition matrix T of cylinder S1, such that

Bn =
∞∑

q=−∞
TnqAq, (2.77)

where the components of transition matrix T =
[
Tnq
]
will be defined in the succeeding

chapter.

2.3.2 P/SV in-plane wave propagation

Solid isotropic cylinder

Consider an isotropic homogeneous elastic cylinder S(1) (0 < b ≤ r ≤ a) illustrated in

Figures 2.3 and 2.5 with the density ρ, Lamé parameters λ and µ, and total displacement

field u. The equation of motion of the elasticity theory is given by eq. (2.1). The general

Hooke’s law for an isotropic material follows from eq. (2.21) taking C11 = C22 = C33 =

λ + 2µ, C12 = C13 = C23 = λ, C44 = C55 = C66 = µ. Incorporating eqs. (2.1),

(2.21), and (2.3), yields the equilibrium equations of linear elastodynamics or Navier’s

equations for a displacement vector u:

(λ+ µ)∇∇ · u+ µ∇2u = ρü + f , (2.78)
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Figure 2.5: Schematics of a cylindrical layer of inner b and outer a radii in polar

coordinates (r, θ). A cylindrical layer is an elastic solid; the medium inside the cylinder

is either fluid, gas, or elastic core; the outer region is either acoustic medium or elastic

matrix.

where ∇2 is the Laplace operator, and f represents the forcing. We seek the total wave

field u in the form of an incident wave, uinc, plus the scattered field, usc, such that

u(x) = uinc + usc ⇒ ϕ(x) = ϕinc + ϕsc, ψ(x) = ψinc + ψsc. (2.79)

General solutions. We consider in-plane time harmonic solutions of Navier’s equa-

tions (2.78). For a planar motion, in the absence of forcing f introducing the Helmholtz

decomposition of a vector field u, eq. (2.56), into eq. (2.78) yields the following uncou-

pled Helmholtz equations

∇2ϕ+ k2ϕ = 0, ∇2ψ +K2ψ = 0, (2.80)

where k, K are the longitudinal (P ) and shear (SV) wavenumbers, respectively: k2 =

ω2ρ/(λ + 2µ), K2 = ω2ρ/µ, ω is the frequency, the indices p and s stand for P and

SV waves correspondingly. We also define, for later use, κ ≡ k/K, or equivalently

κ2 = 2(1− ν)/(1− 2ν) where ν is Poisson’s ratio.

We expand any functions f of r and θ in Fourier series in θ as

f(r, θ) =
∞∑

n=−∞
fn(r)e

inθ, (2.81)

and seek solution of wave equations (2.80) in this form. Thus, the potentials can be

written as

ϕn =
1

k
C l
nf

l
n(kr), ψn =

1

K
D l
nf

l
n(Kr), (2.82)
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where C l
n and D l

n are the unknowns, and f ln(x) is associated with cylindrical wavefunc-

tions and defined as

f ln(x) =





Jn(x), l = 1,

Yn(x), l = 2,

H
(1)
n (x), l = 3,

H
(1)
n (x), l = 4,

(2.83)

where f 1
n (x) = Jn(x) for solutions that are regular at r = 0, f 2

n (x) = Yn(x) for real

valued irregular solutions at r = 0, f 3
n (x) = H

(1)
n (x) for outgoing (radiating) solutions,

f 4
n (x) = H

(2)
n (x) for ingoing solutions, where Yn(x) is the Bessel function of the second

kind; H
(2)
n (x) is the Hankel functions of the second kind.

The stress-displacement relations for an isotropic elastic cylider follow from the

Hooke’s law (2.21), incorporating Cauchy relations (2.3) and Fourier expansion (2.81):

σrrn = (λ+ 2µ)
∂urn
∂r

+ λ

[
urn
r

+
1

r

∂uθn
∂θ

]
, σrθn = µ

[
∂uθn
∂r

− uθn
r

+
1

r

∂urn
∂θ

]
. (2.84)

where σrrn, σrθn and urn, uθn are the radial traction and displacement vector compo-

nents of the cylinder S(1) corresponding to circumferential mode n = 0, 1, 2, ...

Incorporating eqs. (2.82) and (2.57), and neglecting z dependence yields the dis-

placements in the form

urn =
∑

l=1, 3

{
C l
nf

l
n
′
(kr) +D l

n

in

Kr
f ln(Kr)

}
, (2.85a)

uθn =
∑

l=1, 3

{
C l
n

in

kr
f ln(kr)−D l

nf
l
n
′
(Kr)

}
. (2.85b)

The nth mode of stresses are found incorporating eqs. (2.84) and (2.85)

σrrn = µ
∑

l=1, 3

{

C
l
nk

[

2f ln
′′
(kr)−

(K2

k2
− 2

)

f
l
n(kr)

]

+D
l
n

2in

r

[

f
l
n

′
(Kr)−

1

Kr
f
l
n(Kr)

]}

, (2.86a)

σrθn = µ
∑

l=1, 3

{

C
l
n

2in
r

[

f
l
n

′
(kr)−

1

kr
f
l
n(kr)

]

+D
l
n

[K2r2 − 2n2

Kr2
f
l
n(Kr) +

2

r
f
l
n

′
(Kr)

]}

. (2.86b)

Let us define matrices such that

X l
n(r) = X l

n(r, k, K) =


a

l
n(kr) b ln(Kr)

c ln(kr) d ln(Kr)


 =


 f ln

′
(kr) in

Krf
l
n(Kr)

in
krf

l
n(kr) −f ln

′
(Kr)


 , (2.87a)

Y l
n(r) = Y l

n(r, k, K) =


α

l
n(r, k, µ) β ln(r,K, µ)

γ ln(r, k, µ) δ ln(r,K, µ)


 , (2.87b)
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where

α ln(r, k, µ) = α ln(rk) = µk
[
2f ln

′′
(kr)−

(K2

k2
− 2
)
f ln(kr)

]
, (2.88a)

β ln(r,K, µ) = β ln(rk) = µ
2in

r

[
f ln

′
(Kr)− 1

Kr
f ln(Kr)

]
, (2.88b)

γ ln(r, k, µ) = γ ln(rk) = µ
2in

r

[
f ln

′
(kr)− 1

kr
f ln(kr)

]
, (2.88c)

δ ln(r,K, µ) = δ ln(rk) = µ
[K2r2 − 2n2

Kr2
f ln(Kr) +

2

r
f ln

′
(Kr)

]
. (2.88d)

Then the displacements and traction in the cylinder can be written in the matrix form

as:


Un

Υn


 =




urn(r)

uθn(r)

σrrn(r)

σrθn(r)




=


X

1
n(r) X 3

n(r)

Y 1
n (r) Y 3

n (r)







C 1
n

D 1
n

C 3
n

D 3
n




. (2.89)

Green’s tensor. Consider now a particular solution of Navier’s equations (2.78)

for displacements u due to a point force applied at x = x′:

f = Fδ(x− x′). (2.90)

Let us define a Green’s tensor such that

u = G · F or ui = GikFk, (2.91)

where G = [Gik] is the Green’s tensor. Introducing eqs. (2.90) and (2.91) into (2.78)

yields [108]

Σijk,j + ρω2Gik = δikδ(x− x′), (2.92)

where

Σijk = CijpqGpk,q, (2.93)

and the solution of eq. (2.92) has the form

Gik =
(
ρω2

)−1
[
δikK

2Gs + ∂i∂k(Gs −Gp)
]
, (2.94)

or in vector-tensor notation as

−(ρω2)G(x− x′) = ∇∇Gp + (I∇2 −∇∇)Gs = ∇∇Gp + (∇×k)(∇×k)Gs for x 6= x′,

(2.95)
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where (∇×k)i = eij3∂j , (i, j = 1, 2), ∂j denotes partial derivatives, and Gs and Gp

satisfy the identities

(∇2 +K2)Gs = δ(x− x′) and (∇2 + k2)Gp = δ(x− x′), (2.96)

respectively and have the form

Gs =
1

4i
V0(K(x− x′)), Gp =

1

4i
V0(k(x− x′)), (2.97)

where V0(x) is defined by eq. (2.70) where n = 0. Introducing (2.95) into (2.91) and

incorporating with the Helmholtz decomposition (2.56) gives

∇ϕ+ (∇×k)ψ =
(
− ρω2

)−1 [∇∇Gp · F+ (∇×k)(∇×k)Gs · F
]
, x 6= x′. (2.98)

Thus, a comparison of terms on the right hand of eq. (2.98) with ones on the left hand

side produces

−ρω2ϕ = F · ∇Gp = F1∂1Gp + F2∂2Gp,

−ρω2ψ = F · (∇×k)Gs = F1∂2Gs − F2∂1Gs,

x 6= x′. (2.99)

This makes it clear that for a standard point source, regardless of the choice of F, both

compressional and shear waves propagate away from the point source.

Inner region

Acoustic medium. In the interior fluid (r < b) (see Figure 2.5), the displacements

and stresses are found allowing all shear terms to tend to zero, i.e. in eq. (2.87)

γln(r, k, µ) → 0, and αln(r, k, µ) → α̂ ln(r, kin, κin) ≡ −κinkinf ln(kinr), (2.100)

where fn
l(kinr) is given by (2.83). Thus, the n-th mode of the displacements and

traction in the interior fluid is of the form



uinrn

uinθn

σinrrn




=




a1n(kinr)

c1n(kinr)

α̂ 1
n(r, kin, κin)



C1, in
n , (2.101)
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where C1, in
n is the unknown coefficient, and

a 1
n(kinr) = Jn

′(kinr), c 1n(kinr) =
i n

kinr
Jn(kinr). (2.102)

Elastic core. Since the radius of the solid core is allowed to go to zero, we only use

the regular solutions of wave equations, and the displacements and tractions reduce to

the form


Uin

n

Υin
n


 =




uinrn

uinθn

σinrrn

σinrθn




=


X1

n(r)

Y1
n(r)




C

1, in
n

D1, in
n


 =




a1n(kinr) b1n(Kinr)

c1n(kinr) d1n(Kinr)

α 1
n(r, kin, µin) β 1

n (r,Kin, µin)

γ 1
n (r, kin, µin) δ 1n (r,Kin, µin)





C

1, in
n

D1, in
n


 ,

(2.103)

where a1n, b
1
n, c

1
n and d1n are defined by (2.87) and α 1

n , β
1
n , γ

1
n and δ1n by (2.88).

Rigid core and hollow region. A rigid inner core does not displace, and therefore

Uin
n = 0, (zinn )−1 = 0, (2.104)

where zinn (r) is the impedance matrix on inner surface of cylinder. A hollow inner region

is traction free, thus

Υin
n = 0, zinn = 0. (2.105)

Outer medium

Displacement and stress in acoustic medium. For an acoustic medium allowing

all shear terms to tend to zero, only the first columns of the matrices Xl
n and Yl

n remain

in eq. (2.87) with

γln(r, k, µ) → 0 (2.106)

and

αln(r, k, µ) → α̂ ln(r, k0, κ0) ≡ −κ0k0f ln(k0r), for the exterior fluid, (2.107)

where fn
e(k0r) is defined by (2.83).
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Thus, the nth mode of the displacements and traction in the exterior fluid is of the

form



u0rn

u0θn

σ0rrn




=




a1n(k0r) a3n(k0r)

c1n(k0r) c3n(k0r)

α̂ 1
n(r, k0, κ0) α̂ 3

n(r, k0, κ0)





An
Bn


 , (2.108)

where α̂ ln(r, k0, κ0) is given by (2.107)

a ln(k0r) = f ln
′
(k0r), c ln(k0r) =

in

k0r
f ln(k0r), (2.109)

with fn
l(k0r) given by (2.83). Here An is the incident wave coefficient and defined in

Section 2.3.1 for both plane wave and cylindrical line sources. The scattering coefficient

Bn is to be determined.

Elastic matrix. In a solid elastic matrix, we consider a longitudinal (P) and

transversal (SV) incidence separately. Then, for incident P waves, the displacement

and the traction in exterior solid elastic matrix are defined in matrix form as


U0

n

Υ0
n


 =




u0rn

u0θn

σ0rrn

σ0rθn




=




a1n(k0r)

c1n(k0r)

α 1
n(r, k0, µ0)

γ 1
n (r, k0, µ0)




Ap,n +


X3

n(r)

Y3
n(r)




Bp,n
Bs,n


 , (2.110)

where X3
n(r) and Y3

n(r) are defined by (2.87), the Bp,n and Bs,n are the unknown

scattering coefficients to be found from boundary conditions, Ap,n is the incident P

wave coefficient derived at the end of this section for a plane wave and point force.

For incident SV waves, the displacement and the traction in an exterior solid

elastic matrix are of the form


U0

n

Υ0
n


 =




u0rn

u0θn

σ0rrn

σ0rθn




=




b1n(K0r)

d1n(K0r)

β 1
n (r,K0, µ0)

δ 1n (r,K0, µ0)




As,n +


X3

n(r)

Y3
n(r)




Bp,n
Bs,n


 , (2.111)

where X3
n(r) and Y3

n(r) are defined by (2.87). Here, the scattering coefficients Bp,n

and Bs,n can be determined from the boundary conditions. The incident P/SV wave

coefficients Ap,n and As,n are derived next.
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Incident elastic wave coefficients. For a plane P/SV wave incidence, the incident

wave coefficients Ap,n and As,n in eqs. (2.110) and (2.111) are derived assuming no

forcing term ( f = 0), and that the incident wave is the plane wave of amplitude A inc
ς

in direction Ψ and perpendicularly incident on cylinder (α = 0), where ς = p for P

wave incidence and ς = s for SV wave incidence:


φ

inc(x)

ψinc(x)


 =


A inc

p eikeψ ·x

A inc
s eiKeψ ·x


 =


A inc

p eikx

A inc
s eiKx


 ⇒


Ap,n
As,n


 =


A

inc
p in

A inc
s in


 . (2.112)

For a point force f = Fδ(x − x′) applied at point S with a position vector x′ with

respect to the origin, the Ap,n and As,n can be derived from a particular solution of

elasticity theory given by eqs. (2.91), (2.99):

u inc = G ·F ⇒ −ρω2


φ

inc(x)

ψ inc(x)


 =


F1∂1Gp + F2∂2Gp,

F1∂2Gs − F2∂1Gs,


 , x 6= x′. (2.113)

Introducing (2.97) into (2.113) leads to

ρω2|x− x′|


φ

inc(x)

ψ inc(x)


 =


 k

[
F1(x− x′) + F2(y − y′)

]
V +
1 (k(x− x′)) e−i arg(x−x′)

K
[
F1(y − y′)− F2(x− x′)

]
V +
1 (K(x− x′))e−i arg(x−x′)


 .

(2.114)

Using the Graf’s addition theorem (2.72) for |x| < |x′|, in the neighborhood of cylinder

S1, we have


φ

inc(x)

ψ inc(x)


 =

e−i arg(x−x′)

ρω2|x− x′|

∞∑

n=−∞


 k

[
F1(x− x′) + F2(y − y′)

]
U +
n (kx)V −

n−1(kx
′)

K
[
F1(y − y′)− F2(x− x′)

]
U +
n (Kx)V −

n−1(Kx′)


 .

(2.115)

Thus, a comparison of eqs. , (2.110), and (2.111) yields


Ap,n
As,n


 =

e−i arg(x−x′)

ρω2|x− x′|


 k

[
F1(x− x′) + F2(y − y′)

]
V −
n−1(kx

′)

K
[
F1(y − y′)− F2(x− x′)

]
V −
n−1(Kx′)


 for n ∈ Z.

(2.116)
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Chapter 3

Scattering from multilayered cylindrical and spherical

structures

In this chapter, the mathematical model of acoustic and elastic wave scattering from

multilayered cylindrical and spherical structures is developed. It begins with the

impedance matrix method proposed in Section 3.1 for radially inhomogeneous anisotropic

solids. Section 3.1.2 provides an explicit method for finding the impedance in piece-

wise uniform, transversely isotropic materials. The method described in this section

also serves as a tool to compare with more general solution methods based on the

Riccati matrix differential equation for the impedance matrix [114] for a cylindrically

anisotropic medium. In section 3.2, acoustic and elastic wave scattering of incident

waves from transversely-isotropic cylinder is investigated. Transformation from elas-

tic to acoustic matricant is shown in Section 3.2.4 for acoustic SH wave propagation.

A Global matrix method is described in Section 3.3 for isotropic multilayered elastic

cylindrical structures. Section 3.3.1 considers acoustic scattering from a multilaminate

cylinder immersed in fluid, and Section 3.3.2 describes elastic scattering of P/SV waves

from a multilayered cylinder embedded in an elastic matrix.

3.1 Impedance matrix method

Wave propagation in layered elastic media has been widely studied resulting in a vari-

ety of solution approaches. These include the use of scalar and vector potentials [104],

the transfer matrix method [23, 81, 152, 79], and the delta matrix method [159, 48].

Alternatively, computationally stable methods have also been developed, e.g. the stiff-

ness matrix [137, 138], the global matrix [145], and the reflectivity method [136]. Such

approaches are limited to isotropic or transversely-isotropic materials whereas we are
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interested in general anisotropic solids in order to develop scattering solutions related

to metamaterial devices such as acoustic cloaks [117, 111, 143] which can be modeled

as radially inhomogeneous anisotropic solids. The goal of this Section is to provide a

methodology for modeling such materials.

Consider a time harmonic wave motion in radially inhomogeneous anisotropic solids.

The method proposed in this section is applicable for both cylindrically anisotropic and

spherically anisotropic media. The associated equilibrium equations for linear elasto-

dynamics in cylindrical coordinates are summarized in Section 2.1.1 and in spherical

coordinates in Section 2.1.2. We seek solutions of equilibrium equations (2.19) in cylin-

drical coordinates in the form of time-harmonic cylindrical waves given by eqs. (2.15)

(which includes the superscript n that is here omitted for simplicity), and solutions

of equilibrium equations (2.29) in spherical coordinates in the form of eq. (2.31), in

terms of the vector spherical harmonics Pmnσ,Bmnσ,Cmnσ given by eqs. (2.26). The

m × m conditional impedance matrix z defined by (2.47) relates the m dimensional

vectors U(r) and V(r) associated with displacement and traction, respectively, where

m is either 3, 2 or 1.

We develop an approach suitable for radially inhomogeneous piecewise uniform

anisotropic medium by explicit calculation of the global impedance matrix Z of (2.53),

from which the conditional impedance can be found using (2.55). In particular, this

method can be applied for piecewise uniform transversely isotropic (TI) cylinders for

which the explicit formulas are available for the conditional impedance z [116] and the

two point impedance matrix Z of a given TI layer that will be derived in Section 3.1.2.

The approach is also suitable in spherical coordinates for a radially inhomogeneous

sphere for which the material is piecewise uniform TI about er vector. However, the

explicit formulas for impedance matrices z and Z for TI material in spherical coordinates

are not available; we consider spherically anisotropic medium as radially inhomogeneous

multilayered medium consisting of N isotropic layers, and derive the explicit formular

for Z of a given isotropic layer in Section 3.1.4.

The approach is based on a recursive algorithm proposed by Rokhlin et al. [137]
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called the stiffness matrix method. The analysis in [137] was restricted to multilay-

ered media in Cartesian coordinates, whereas the present method is applicable to both

cylindrically and spherically layered anisotropic medium. We will refer to Rokhlin and

Wang [137] several times in this section to note the similarities and differences of the

approaches.

Results of this section are published in [114] for a cylindrically anisotropic medium.

3.1.1 Calculating the global impedance matrix

Consider J > 1 layers of uniform anisotropic materials with the k-th layer rk−1 < r <

rk, k ∈ 1, J , see Figure 2.1. The local two point impedance matrix of the k-th layer is

denoted by Zk(rk, rk−1):


Vk−1(rk−1)

−Vk(rk)


 = −iZk(rk, rk−1)


U(rk−1)

U(rk)


 , Zk(rk, rk−1) =


Zk

1 Zk
2

Zk
3 Zk

4


 . (3.1)

The explicit form of Zk(rk, rk−1) of the k-th cylindrical layer of TI material is defined

by eq. (3.24) and derived in Section 3.1.2. The explicit form of Zk(rk, rk−1) of the k-th

spherical layer of isotropic material is given by (3.37) in Section 3.1.4. Denote the global

two point impedance matrix for the layer between r0 and rk by ZK = ZK(rk, r0). Our

objective is the global two point impedance matrix for the entire medium, Z(rJ , r0) ≡

ZJ(rJ , r0).

Consider first the two bordering layers between r = r0 and r = r2 and sharing the

r = r1 surface. Continuity of displacements and traction on the interface implies


 V0

−V1


 = −i


Za1 Za2

Za3 Za4




U0

U1


 , (3.2a)


 V1

−V2


 = −i


Zb1 Zb2

Zb3 Zb4




U1

U2


 , (3.2b)

where Za ≡ Z1(r1, r0), Z
b ≡ Z2(r2, r1). From the second row of eq. (3.2a) and the first

row of eq. (3.2b), we have

U1 = −
(
Za4 + Zb1

)−1(
Za3 U0 + Zb2U2

)
. (3.3)
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Introducing eq. (3.3) into eqs. (3.2a) and (3.2b), we define the impedance matrix

Z2(r2, r0) that relates the traction vector to the displacement vector on the inner

(r = r0) and outer (r = r2) surfaces of the bilayer,

 V0

−V2


 = −iZ2(r2, r0)


U0

U2


 , (3.4)

where

Z2(r2, r0) =


Za1 − Za2

(
Za4 + Zb1

)−1
Za3 −Za2

(
Za4 + Zb1

)−1
Zb2

−Zb3
(
Za4 + Zb1

)−1
Za3 Zb4 − Zb3

(
Za4 + Zb1

)−1
Zb2


 , (3.5)

Zai = Z1
i , Z

b
i = Z2

i and Zki (k = 1, 2, i = 1, 4) are given by eqs. (3.1). Note that eqs.

(3.2a) and (3.2b) are similar, apart from a sign change, to eqs. (19) and (20) in [137].

Employing (3.4) recursively, the global impedance matrix ZK(rk, r0) for the medium

layer between r0 and rk is obtained with 3× 3 components

ZK =


ZK-1

1 − ZK-1
2

(
Zk1 + ZK-1

4

)−1
ZK-1
3 −ZK-1

2

(
Zk1 + ZK-1

4

)−1
Zk2

−Zk3
(
Zk1 + ZK-1

4

)−1
ZK-1
3 Zk4 − Zk3

(
Zk1 + ZK-1

4

)−1
Zk2


 , (3.6)

where ZK-1
i , (i = 1, 4) are the 3× 3 sub-matrices of the matrix ZK-1(rk−1, r0) for k− 1

layers, Zki , (i = 1, 4) are the 3× 3 sub-matrices of the matrix Zk(rk, rk−1) for the k-th

layer, defined by eq. (3.1). The global impedance matrix for the N -layered medium is

obtained by using eq. (3.6) (N − 1) times.

The main differences between the present results and those of [137] are, first that by

construction the local Zk and global ZK two point impedance matrices are Hermitian

matrices. Secondly, the present results are valid for cylindrically and spherically layered

structures, as compared with those of [137] which are for multilayered structures in

Cartesian coordinates. Despite the differences, we note that the two point impedance

matrix Zk of eq. (3.1) and the global two point impedance matrix ZK(rk, r0) are, apart

from some sign differences, similar to the stiffness matrixKm and global stiffness matrix

KM of Rokhlin and Wang [137].

3.1.2 Impedance for uniform transversely isotropic cylinders

We consider transversely isotropic (TI) solids with the symmetry axis in the z-direction.

The general Hooke’s law for an orthotropic material is given by eq. (2.21). A transversal
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isotropy is a particular case of orthotropy. The general Hooke’s law for a TI material

follows from eq. (2.21) taking C11 = C22, C13 = C23, C44 = C55, and C66 = (C11 −
C22)/2. Incorporating Cauchy relations (2.8) and Hooke’s law for TI material, the

equilibrium equations (2.1) can be written in terms of displacements [78]

C44

(

∂2uz

∂z∂r
+
∂2ur

∂z2

)

+ C11

(

∂2ur

∂r2
+

1

r

∂ur

∂r
−

3

2r2
∂uθ

∂θ
+

1

2r2
∂2ur

∂θ2
−
ur

r2
+

1

2r

∂2uθ

∂r∂θ

)

+
1

2r
C12

[

∂

∂θ

(

∂uθ

∂r
−

1

r

∂ur

∂θ
+
uθ

r

)]

+ C13
∂2uz

∂z∂r
= ρ

∂2ur

∂t2

(3.7a)

C44

[

∂

∂z

(

∂uθ

∂z
+

1

r

∂uz

∂θ

)]

+ C12

(

−
1

2r

∂uθ

∂r
+

1

2

uθ

r2
−

1

2

∂2uθ

∂r2
−

1

2r2
∂ur

∂θ
+

1

2r

∂2ur

∂θ∂r

)

+C11

(

1

r2
∂2uθ

∂θ2
+

1

2r

∂uθ

∂r
+

1

2

∂2uθ

∂r2
+

3

2r2
∂ur

∂θ
+

1

2r

∂2ur

∂r∂θ
−

1

2

uθ

r2

)

+
C13

r

∂2uz

∂z∂θ
= ρ

∂2uθ

∂t2
,

(3.7b)

C44

(

1

r2
∂2uz

∂θ2
+
∂2uz

∂r2
+

1

r

∂2uθ

∂z∂θ
+

1

r

∂uz

∂r
+

1

r

∂ur

∂z
+
∂2ur

∂z∂r

)

+ C33
∂2uz

∂z2

+C13

[

∂

∂z

(

ur

r
+

1

r

∂uθ

∂θ
+
∂ur

∂r

)]

= ρ
∂2uz

∂t2
.

(3.7c)

General solutions for transverse isotropy

We seek solutions of equilibrium equations for transverse isotropy in the form of time-

harmonic cylindrical waves. The displacement vector may be decomposed using Buch-

wald’s scalar potentials [26], the functions ϕ, χ and ψ, given by eq. (2.58). Inserting eq.

(2.58) into equations of motion in displacements (3.7) and modifying obtained equa-

tions, yields [32], [4]:

C11∇2
1ϕ+ C44

∂2ϕ

∂z2
+ (C13 + C44)

∂2ψ

∂z2
− ρ

∂2ϕ

∂t2
=0, (3.8a)

(C13 + C44)∇2
1ϕ+ C44∇2

1ψ + C33
∂2ψ

∂z2
− ρ

∂2ψ

∂t2
=0, (3.8b)

C66∇2
1χ+ C44

∂2χ

∂z2
− ρ

∂2χ

∂t2
=0, (3.8c)

where

C66 =
1

2
(C11 − C12), ∇2

1 = ∇2 − ∂2

∂z2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (3.9)
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We assume solutions of the form:

ϕ = R l
on

1

k
f ln(kr) e

i(nθ+kzz−ωt), (3.10a)

ψ = S l
on

1

k
f ln(kr) e

i(nθ+kzz−ωt), (3.10b)

χ = T l
on

1

k3
f ln(k3r) e

i(nθ+kzz−ωt), (3.10c)

where n = ..., −2, −1, 0, 1, 2, ... is the circumferential number, kz is the wavenumber,

and ω is the frequency, and f ln(x) is associated with cylindrical wavefunctions and

defined by (2.83). Introducing solutions (3.10) into eqs. (3.8), we obtain

[
C11k

2 − (ρω2 − C44k
2
z

]
R l
on +

[
(C13 + C44)k

2
z

]
S l
on =0, (3.11a)

[
(C13 + C44)k

2
]
R l
on +

[
C44k

2 − (ρω2 − C33k
2
z)
]
S l
on =0, (3.11b)

[
C66k

2
3 −

(
ρω2 − C44k

2
z

)]
T l
on =0. (3.11c)

Thus, for potential function χ eq. (3.11c) yields

k23 =
(ρω2 − C44k

2
z)

C66
. (3.12)

Equating the determinant of coefficients of R l
on and T l

on to zero in eqs. (3.11a)-(3.11b)

for potentials ϕ and ψ, we obtain the following characteristic equation:

C11C44 k
4 + k2A+B = 0, (3.13)

where

A =
(
C13 + C44

)
k2z + C11

(
ρω2 − C33k

2
z

)
+ C44

(
ρω2 − C44k

2
z

)
, (3.14a)

B = ρω4 − ω2
(
C33 + C44

)
k2z + C33C44k

4
z . (3.14b)

The roots of characteristic equation (3.13) are

k21, 2 =
−A∓

√
A2 − 4C11C44B

2C11C44
. (3.15)

Thus, the general solution of the equilibrium equations for transverse isotropy are of

the form

{ϕ, χ, ψ} = {ϕ̄, χ̄, ψ̄}ei(nθ+kzz−ωt) (3.16)
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where

ϕ̄ = R l
on

1

k1
f l
n(k1r) +

1

k2
S l
on f

l
n(k2r),

ψ̄ =
κ1
k1
R l

on f
l
n(k1r) + S l

on

κ2
k2
f l
n(k2r),

χ̄ = −T l
on

1

k3
f ln(k3r), (3.17)

and R l
on, S

l
on, T

l
on are unknown coefficients, f ln(x) are cylindrical functions defined by

eq. (2.83). The displacement field can be represented as a linear combination of any

two of the four types of cylindrical functions f ln(x), (l = 1, 4). The non-dimensional

numbers κ1, κ2 are given by

κi =
C66 k

2
3 − C11 k

2
i(

C13 + C44

)
kz
, (i = 1, 2). (3.18)

For isotropic material wavenumbers ki, κi reduce to k
2
1 = ω2ρ/(λ+ 2µ)−k2z , k22 = k23 =

ω2ρ/µ− k2z , κ1 = 1, κ2 = −k22/k2z .

The displacement and traction vectors U and V are obtained in matrix form for

each n as

U(r) =
∑

l

Xl(r)wl, V(r) =
∑

l

Yl(r)wl, wl =




R l
on

S l
on

T l
on


 , (3.19)

where the summation on l is over any two of the possible l = 1, 4, and

Xl(r) =




f ln
′
(k1r) f ln

′
(k2r) − in

k3r
f ln(k3r)

in
k1r
f ln(k1r)

in
k2r
f ln(k2r) f ln

′
(k3r)

iκ1
k1
f ln(k1r)

iκ2
k2
f ln(k2r) 0



, (3.20)

Yl(r) = −izl(r)Xl(r), (3.21)

and zl, l = 1, 4, follows from [116]:

zl(r) =




2C66 in2C66 ikzrC44

−in2C66 2C66 0

−ikzrC44 0 Zz




+ c0




ξ3(y1 − y2) in(y1 − y2) iξ3(ξ1 − ξ2)

−in(y1 − y2) ξ2y1 − ξ1y2 n(ξ1 − ξ2)

−iξ3(ξ1 − ξ2) n(ξ1 − ξ2) 0


 ,

(3.22)
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Zz = C44

(
n2(ξ1y1 − ξ2y2)− ξ1ξ2ξ3(y1 − y2)

ξ3(ξ2y1 − ξ1y2)− n2(y1 − y2)

)
, yi = κir (i = 1, 2),

c0 =
C66k

2
3r

2

ξ3(ξ2y1 − ξ1y2)− n2(y1 − y2)
, ξj = kjr

f ln
′
(kjr)

f ln(kjr)
(j = 1, 2, 3),

(3.23)

where the cylindrical functions f ln(x) are defined by eq. (2.83). The formula for Xl

follows by substituting the potentials (3.17) into Eq. (2.58). The derivation of the

matrix zl(r) can be found in [116]. Note that z1(r) (l ≡ 1) is the exact form of the

conditional impedance of a solid cylinder, i.e. with material at r = 0 and hence bounded

displacements there [116].

The explicit form of the two point impedance matrix (see eq. (3.1)) of a given

transversely isotropic cylindrical layer is

Zk(rk, rk−1) =


Zk

1 Zk
2

Zk
3 Zk

4


 =


−Y1(rk−1) −Y3(rk−1)

Y1(rk) Y3(rk)




X

1(rk−1) X3(rk−1)

X1(rk) X3(rk)



−1

.

(3.24)

Eq. (3.24), which defines the impedance matrix Z, is similar to eq. (7) of [137] (for the

stiffness matrix K), and the first and the second matrices on the right hand side of eq.

(3.24) are similar to the matrices Eσm and (Eum)
−1 in [137, eqs. (5) and (3)]. One reason

why we prefer to use the impedance matrix Z rather than the stiffness matrix as in

[137] is that the impedance is always Hermitian: Z = Z+.

3.1.3 Example: Acoustic scattering from an elastic cylinder in water

In this section, we explore the use of the impedance matrix by considering acoustic

scattering from a fluid filled elastic cylinder immersed in water. Assume that the

cylinder consists of J layers. Let the first innermost layer bordering with inner fluid be

located between r = r0 = b and r = r1 and the last outermost layer between r = rJ−1

and r = rJ = a, see Figure 3.1.

Consider a perpendicular wave incidence, i.e. kz = 0, in a uniform exterior fluid.

The total pressure p is defined as a sum of incident pinc and scattered psc pressure fields,

and satisfies the Helmholtz equation (2.62), and momentum balance equation (2.63).

The incident field pinc is given by (2.68), and the scattered field psc by (2.69). The total

radial stress and displacement fields in the surrounding fluid are defined by (2.108) and
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Figure 3.1: Schematic of elastic multilaminate cylinder of inner radius r0 = b and outer

radius rJ = a in polar coordinates (r, θ). The medium inside the multilaminate is either

fluid, gas, or elastic core; the outer region is either acoustic medium or elastic matrix.

in the inner fluid region by (2.101). We assume a perfect interface between each layer

of a multilayered cylinder which requires continuity of stresses and displacements at

the interface. Thus, the boundary conditions at the interfaces of the solid and acoustic

media are given on the inner surface of the cylinder at r = r0 = b:

σinrr(b) = σ1rr(b), σinrθ(b) = σ1rθ(b), (3.25)

and on the outer surface at r = rJ = a:

σJrr(a) = σ0rr(a), σJrθ(a) = σ0rθ(a). (3.26)

We use the definition of the conditional impedance matrix, noted in eq. (2.47), and write

this statement for the innermost radial coordinate at r = r0 = b, for which we find the

initial impedance matrix from eq. (3.22), and for the outer surface at r = rJ = a

V(b) = −iz1U(b), V(a) = −iz2U(a). (3.27)

Recall that the conditional impedance matrix z(r) satisfies a differential Riccati equa-

tion (2.48) with assumed initial condition z(r0) at some specified r = r0. The condi-

tional impedance matrix, z1 = z(b), can be used as the initial impedance matrix on the

inner surface of the cylinder to obtain the total impedance matrix z. The conditional

impedance matrix, z2 = z(a), can be obtained from the integration technique outlined

in [114]. Considering acoustic fluid in the interior, we write eq. (3.27) for r = b in detail
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for which the shear stress, σinrθ, must be zero:

r


σ

in
rr

0


 = −z1


u

in
r

uinθ


 = −zin


u

in
r

uinθ


 = −


Z

in 0

0 0




u

in
r

uinθ


 . (3.28)

Incorporating eqs. (3.43)-(3.46), and (3.47) yields scalar impedance in the form

Zin = −rσ
in
rr

uinr
= r

κinkinJn(kinr)

J ′
n(kinr)

. (3.29)

Similarly, for acoustic fluid in the exterior, the shear stress, σ0rθ, is zero and evaluating

eq. (3.27) at r = a yields:

−a


σ

0
rr

0


 = z2


u

0
r

u0θ


 =


z11 z12

z21 z22




u

0
r

u0θ


 . (3.30)

Eliminating uθ using the second row of eq. (3.30) implies

aσ0rr = z0u
0
r , with z0 =

z12z21 − z22z11
z22

, (3.31)

where z0 is called the acoustical impedance. The stresses and displacements for the

outer acoustic medium are given by (2.108). Incorporating eqs. (2.108) and (3.31)

yields

−κ0 k0a Jn(k0a)An − κ0 k0aH
(1)
n (k0a)Bn = z0

{
J ′
n(k0a)An +H(1)

n

′
(k0a)Bn

}
. (3.32)

Thus, the scattering coefficients are found as

Bn = −An
(
κ0k0aJn(k0a) + z0J

′

n(k0a)
)

κ0k0aH
(1)
n (k0a) + z0H

(1)′
n (k0a)

, (3.33)

where the incident wave coefficient An is defined by eq. (2.73) for a plane wave incidence

and (2.76) for a point source. We will compare the result for Bn obtained in this section

with the one that follows from the application of the Global matrix method to the

solution of scattering of a multilayered cylindrical structure in the succeeding section.

For the ”gas-solid-fluid” case, i.e. a gas-filled cylinder submerged in water, the inner

surface of the cylinder is assumed to be traction-free. The stresses and displacements for

the inner acoustic region are given by (2.101). The traction-free boundary conditions
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are given by eq. (2.105), and at the interfaces of solid and acoustic media are given on

the inner surface of cylinder at r = b:

σinrr(b) = 0 = σ1rr(b), σinrθ(b) = 0 = σ1rθ(b), (3.34)

and on the outer surface at r = a:

σJrr(a) = σ0rr(a), σJrθ(a) = σ0rθ(a), (3.35)

Then (3.27) and (3.34) yield:

zin(b) = 0 (3.36)

that can be used as initial impedance matrix to find the total conditional impedance

matrix z.

3.1.4 Impedance for multilayered radially inhomogeneous sphere

In this section, we consider a radially inhomogeneous multilayered sphere consisting of

J isotropic spherical layers. We derive an explicit formula for the impedance Z of a

given isotropic layer, and find scattering coefficients using an acoustic impedance. We

assume that each spherical layer satisfies the eqs. (2.40) - (2.44).

The two point impedance matrix

The two point impedance matrix Zk(rk, rk−1) relates the traction and displacement

vectors on the inner, (rk−1), and outer, (r = rk), surfaces of a given layer and can be

defined as:

Zk(rk, rk−1) = −Υ̃(rk−1, rk)Ũ
−1(rk−1, rk), (3.37)

where Υ̃ and Ũ are given by

Ũ(rk−1, rk) =


U

1(rk−1) U3(rk−1)

U1(rk) U3(rk)


 , Υ̃(rk−1, rk) =


Υ

1(rk−1) Υ3(rk−1)

−Υ1(rk) −Υ3(rk)


 ,

(3.38)

where Ul(r) and Υl(r), (l = 1, 3) correspondingly are given by eqs. (2.40) and (2.44),

and evaluated at r = rk−1 and r = rk where k = 1, J , and index the n is dropped to

simplify notation.
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Transformation from elastic to acoustic impedance matrix

Consider scattering of an infinite normal plane acoustic incident wave from a fluid

filled anisotropic layered elastic sphere immersed in an ideal fluid and comprised of

J isotropic layers (see Figure 3.1). Assume a perfect interface between each layer in

the multilayered sphere which requires continuity of stresses and displacements at the

interface.

Outer acoustic region. The total pressure p(x) is a sum of incident pinc and

scattered psc pressure fields, and satisfies the acoustic Helmholtz wave equation (2.62),

and momentum equation (2.63). The incident pressure is taken as an obliquely traveling

plane wave of unit amplitude and written in terms of regular solutions of eq. (2.62).

The outgoing scattered wave pressure psc is taken in terms of irregular solutions of

eq. (2.62) and unknown scattering coefficients R3
0n. The displacement and the traction

vectors in the outer acoustic medium (r ≥ a) can be found using momentum balance

equations (2.63) and are given by

u(r) =
(
P0n B0n

)

a

1
n(k0r) a3n(k0r)

c1n(k0r) c3n(k0r)




R

1,0
0n

R3,0
0n


 , (3.39)

t(r) = P0n

(
ᾱ1
n(r, k0, κ0) ᾱ3

n(r, k0, κ0)

)

R

1,0
0n

R3,0
0n


 , (3.40)

where

aln(k0r) = gln
′
(k0r), cln(k0r) = (ηnk0r)

−1gln(k0r), (l = 1, 3) (3.41)

ᾱln(r, k0, κ0) = −κ0k0gln(k0r), (l = 1, 3) (3.42)

and the spherical wavefunctions gln are defined by eq. (2.41).

Inner acoustic region. In the inner fluid region (r < b) the displacement vector

is given by

uuu(r) = P0n


a

1
n(kinr)

c1n(kinr)


 R1,in

0n , (3.43)

where

a1n(kinr) = j
′

n(kinr), c1n(kinr) =
jn(kinr)

ηnkinr
, (3.44)
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and the stresses are given as

t(r) = P0n ᾱ
1
n(r, kin, κin)R

1,in
0n , (3.45)

where

ᾱ1
n(r, kin, κin) = −κinkinjn(kinr). (3.46)

Acoustic impedance. Continuity of displacements and traction on the interface

implies the boundary conditions (3.25) on the inner surface of sphere at r = r0 = b,

and (3.26) on the outer surface at r = rJ = a. Equation (2.47) yields

r


σ

in
rr

0


 = −zin


u

in
r

uinθ


 = −


Z

in 0

0 0




u

in
r

uinθ


 , (3.47)

where we dropped index k for convenience. Incorporating eqs. (3.43)-(3.46), and (3.47)

yields scalar impedance in the form

Zin = −rσ
in
rr

uinr
= r

κinkinjn(kinr)

j′n(kinr)
. (3.48)

Equation (3.48) evaluated at r = b can be used as the initial impedance matrix on the

inner surface of the sphere to obtain the total impedance matrix z:

z1(b) = zin(b). (3.49)

Equation (2.47) for an acoustic medium yields

a


σ

0
rr

0


 = −z


u

0
r

u0θ


 . (3.50)

Equation (3.50) can be written as

zzz11u
0
r + zzz12u

0
θ = −aσ0rr, (3.51)

zzz21u
0
r + zzz22u

0
θ = 0. (3.52)

Eliminating uθ from equations (3.51) - (3.52), we obtain

a σ0rr = z0u
0
r , (3.53)

where Z0 is the acoustic scalar impedance found as

z0 =
z12z21 − z11z22

z22
. (3.54)
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The stresses and displacements for the outer acoustic medium are given by (3.39)-

(3.40). Using (3.39)-(3.40) and equating with (3.53) yields

−κ0 k0a jn(k0a)R1,0
0n − κ0 k0a h

(1)
n (k0a)R

3,0
0n = z0

{
j′n(k0a)R

1,0
0n + h(1)n

′
(k0a)R

3,0
0n

}
,

(3.55)

where the incident plane wave coefficient R1,0
0n = in. Thus scattering wave coefficient

R3,0
0n found as

R3,0
0n = − i

n
[
κ0 k0a jn(k0a) + z0 j

′
n(k0a)

]

z0 h
(1)
n

′
(k0a) + κ0 k0a h

(1)
n (k0a)

. (3.56)

3.2 Elastic and acoustic scattering from TI cylinders

Although the solution for acoustic scattering from isotropic elastic cylinders has been

known for more than half a century [55], it was not until 1996 that [78] provided the first

complete theory applicable to a uniform TI-cylinder. Their original formulation was for

a cylinder submerged in an acoustic, compressible, inviscid fluid, and was was general-

ized in [54] to the case of a cylinder embedded in an elastic matrix. [107] provides an

alternative but similar formulation for the solid-solid case. [53] discuss physical charac-

teristics displayed by the original general solution of [78]. Orthotropic cylindrical shells

submerged in and filled with compressible ideal fluids were considered by [73] using a

a state space formulation for the sequentially laminated piecewise homogeneous config-

uration. Piezoelectric hollow cylinders have been considered recently in two separate

papers [130, 73].

In this section, the mathematical model of acoustic and elastic wave scattering from

a submerged TI cylinder is developed. Both solid and hollow (shell) configurations

are considered by combining an integral solution based on the Shuvalov formulation

for a shell of non-zero interior radius with the impedance operator of a uniform core

region. The impedance is expressed using the exact solution for a solid cylinder. The

impedance is zero for a hollow cylinder.

In a cylindrical coordinate system (r, θ, z), consider an infinite perpendicular plane

wave of circular frequency ω and kz = 0 incident on submerged infinite cylinder of

outer radius a shown in Figure 2.2. The material of the cylinder in 0 < b ≤ r ≤ a is
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assumed to be TI. The general Hooke’s law for a TI material follows from eq. (2.21)

taking C11 = C22, C13 = C23, C44 = C55, and C66 = (C11 − C22)/2. The equilibrium

equations written in terms of displacements are given by eqs. (3.7). Substituting

Cauchy’s geometric relations (2.8) into Hooke’s law (2.2) for TI material yields the

following stress-displacement relations for in-plane displacements

σrr = C11
∂ur
∂r

+ C12

[
ur
r

+
1

r

∂uθ
∂θ

]
, σrθ =

C11 − C12

2

[
∂uθ
∂r

− uθ
r

+
1

r

∂ur
∂θ

]
. (3.57)

We expand any functions f of r and θ in Fourier series in θ in the form of eq. (2.81). We

seek an in-plane time harmonic solution of on equation of motion in the form (2.15) with

no z dependence (m = 2) where Un(r) and Υn(r) are 2 dimensional vectors defined by

eq. (2.16).

3.2.1 Elastic incident and scattered waves

Consider a plane harmonic elastic wave propagation impending on an infinite cylinder

of outer radius a and inner radius b. At the outer surface of the cylinder r ≥ a the

displacement field consists of 4 parts:

u = uincp + uincs + uscp + uscs , (3.58)

where the incident longitudinal uincp and transversal uincs displacements, and the scat-

tered longitudinal uscp and transversal uscs displacements will be found in the subsequent

sections below. Similarly, η(r) defined by eq. (2.17) also consists of 4 parts:

η(r) = ηincp (r) + ηincs (r) + ηscp (r) + η
sc
s (r). (3.59)

The form of ηincp (r), ηincs (r), ηscp (r) and η
sc
s (r) will be defined in the succeeding sections.

The incident displacement field for P waves is of the form

uincp = uincp ex + 0 ey + 0 ez, uincp = A inc
p eikr cos θ, (3.60)

where ex, ey, ez are unit vectors in Cartesian coordinates and x = r cos θ. We decom-

pose the displacement vector uincp using Helmholtz potentials (2.56)

uinc
p = ∇ϕ, where ϕ =

1

ik
A inc

p eikr cos θ =
1

ik

∞∑

n=−∞

inA inc
p Jn(kr)e

inθ. (3.61)
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Incorporating expressions for stresses and displacements for each circumferential mode

n, we define ηincp as

η
inc
p =





U
inc
p (r)

V
inc
p (r)



 = i
n
A
inc
p ηpJ(r), ηpJ =





UpJ

VpJ



 =
[

ηpf

]

f=Jn(kr)
, (3.62)

where

ηpf =




−if ′(kr)
n
kr
f(kr)

C11kprf ′′(kr) + C12

(
f ′(kr)− n2

kpr
f(kr)

)

in
[
C11 − C12

][
f ′(kr)− 1

kpr
f(kr)

]




. (3.63)

Incident displacement field for SV waves has the form

uincs = (0, uincs , 0), uincs = A inc
s eiKr cos θ. (3.64)

Let us define uincs = −∇× ψ ez via Helmholtz decomposition (2.56), then

ψ =
1

iK
A inc
s eiKr cos θ =

1

iK

∞∑

n=−∞
inA inc

s Jn(Kr)e
inθ. (3.65)

Incorporating eqs. (3.65), and (3.57), we define ηincs as

η
inc
s =





U
inc
s (r)

V
inc
s (r)



 = i
n
A
inc
s ηsJ(r), with ηsJ =





UsJ

VsJ



 =
[

ηsf

]

f=Jn(Kr)
, (3.66)

where

ηsf =




− n
Kr

f(Kr)

−if ′

(Kr)

in
[
C11 − C12

][
1
rK

f(Kr)− f
′

(Kr)
]

[
C11 − C12

][
2n2−K2r2

rK
f(Kr)− f

′

(Kr)

]




. (3.67)

The scattered displacement vector uscp for scattered P waves is decomposed using

Helmholtz potentials (2.56)

uscp = ∇ϕ, where ϕ =
1

ik

∞∑

n=−∞
Bp,nH

(1)
n (kr)einθ. (3.68)

Substituting Helmholtz decomposition (3.68) into eqs. (3.57), we define ηscp as

η
sc
p =





U
sc
p (r)

V
sc
p (r)



 = Bp,nηpH(r), with ηpH =





UpH

VpH



 =
[

ηpf

]

f=H
(1)
n (kr)

, (3.69)

where ηpf is defined by (3.63).
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The scattered displacement for transversal SV waves is represented via Helmholtz

potential ψ:

usc
s = −∇× ψez = −1

r

∂ψT

∂θ
er +

∂ψ

∂r
eθ, ψ =

1

iK

∞∑

n=−∞

Bs,nH
(1)
n (Kr)einθ. (3.70)

Introducing (3.70) into (3.57) allows us to define ηscs as

η
sc
s =





U
sc
s (r)

V
sc
s (r)



 = Bs,nηsH , with ηsH =





UsH

VsH



 =
[

ηsf

]

f=H
(1)
n (kr)

, (3.71)

where ηsf is defined by (3.67).

3.2.2 Boundary Conditions

Recall that η is defined as:

η(r) = η
inc
p (r) + η

inc
s (r) + η

sc
p (r) + η

sc
s (r) = i

n
A
inc
p ηpJ + i

n
A
inc
s ηsJ +Bp,nηpH +Bs,nηsH , (3.72)

where ηpJ , ηsJ , ηpH , and ηsH are defined by eqs. (3.62), (3.66), (3.69), and (3.71)

correspondingly, and Bp,n and Bs,n are the unknown scattering coefficients.

Rigid inner surface. If the inner surface of cylinder is rigid, i.e. u(b) = 0, the

boundary conditions at r = b will be

η(b) =
(
0 0 η3(b) η4(b)

)T
. (3.73)

At the interface, the outer surface of cylinder, r = a:

η(a) = Mη(b) ⇔ η
inc
p (a) + η

inc
s (a) +Bp,nηpH(a) +Bs,nηsH(a) = M

(

0 0 η3(b) η4(b)
)T

,

(3.74)

where M is a 4× 4 matricant given in Section 2.1.3 which can be obtained from ODE,

eq. (2.49), when b → a. In eq. (3.74), taking all unknown components to one side and

all known components to other side, we obtain



M13 M14 −ηpH1(a) −ηsH1(a)

M23 M24 −ηpH2(a) −ηsH2(a)

M33 M34 −ηpH3(a) −ηsH3(a)

M43 M44 −ηpH4(a) −ηsH4(a)







η3(b)

η4(b)

Bp,n

Bs,n




=
[
ηpH ηsH

]

i

nA inc
p

inA inc
s


 . (3.75)

Traction free inner surface. If the inner surface of cylinder is traction free, i.e.

tr(b) = 0, the boundary conditions at r = b will be

η(b) =
(
η1(b) η2(b) 0 0

)T
. (3.76)
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At the interface r = a:

η(a) = η
inc
p (a) + η

inc
s (a) +Bp,nηpH(a) +Bs,nηsH(a) = M

(

η1(b) η2(b) 0 0

)T

, (3.77)

which can be written as:



M11 M12 −ηpH1(a) −ηsH1(a)

M21 M22 −ηpH2(a) −ηsH2(a)

M31 M32 −ηpH3(a) −ηsH3(a)

M41 M42 −ηpH4(a) −ηsH4(a)







η1(b)

η2(b)

Bp,n

Bs,n




=
[
ηLH ηTH

]

i

nA inc
p

inA inc
s


 . (3.78)

3.2.3 Impedance matrix

We can relate the vectors Un(r) and Vn(r) associated with displacement and traction

using the conditional impedance matrix z(r) defined by eqs. (2.47). From eq. (2.47) we

find conditions at inner surface r = b:

Vn(b) = −iz1Un(b), (3.79)

and outer surface at r = a:

Vn(a) = −iz2Un(a), (3.80)

where z1 and z2 are known quantities, and Un(r) and Vn(r) are defined by eqs. (2.16)

and (2.17) correspondingly. At the outer surface of cylinder r = a, taking into account

(2.47), the interface condition (3.80) requires that

z2 = z(a). (3.81)

At inner surface of cylinder r = b:

Un(r)

Vn(r)


 =


 M1 M2

M3 M4




Un(b)

Vn(b)


 , (3.82)

where M, a 4 × 4 matricant, follows from the solution of elasticity equation (2.49) in

the cylinder 0 < b ≤ r ≤ a given in Section 2.1.3.

Suppose z1 = z(b) is given conditional impedance at r = b, then using eq. (3.79) we

obtain

Un(r) = (M1 − iM2z1)Un(b), (3.83)

Vn(r) = (M3 − iM4z1)Un(b). (3.84)



67

Incorporating eqs. (2.47) and (3.83)-(3.84), we obtain

−iz(r) = (M3 − iM4z1)(M1 − iM2z1)
−1. (3.85)

Total fields at the inner and outer surface of the cylinder are related by the interface

condition (3.74), based on the solution of the elasticity equations in the cylinder 0 <

b ≤ r ≤ a. Let us rearrange eq. (3.74) in the following form


Uinc

p (a)

Vinc
p (a)


+


Uinc

s (a)

Vinc
s (a)


 = −


 Usc

p (a)

Vsc
p (a)


−


 Usc

s (a)

Vsc
s (a)


+


 M1 M2

M3 M4




 UUUn(b)

VVV n(b)


 .

(3.86)

Using eqs. (3.83)-(3.84) and the definition of the Uinc
j , Vinc

j , Usc
j and Vsc

j functions

(j = p, s), we obtain

in

[
UpJ (a)

VpJ (a)


A inc

p +


UsJ (a)

VsJ (a)


A inc

s

]
(3.87)

=−


 UpH(a)

VpH(a)


Bp,n −


 UsH(a)

VsH(a)


Bs,na+


 M1 − iM2z1

M3 − iM4z1


 Un(b),

whereUpJ(a), VpJ(a) are defined by (3.62), UsJ(a), VsJ(a) by (3.66), UpH(a), VpH(a)

by (3.69) , UsH(a), VsH(a) by (3.71). Introducing 2×1 vectors: Wn =
(
Bp,n Bs,n

)T

into eq. (3.87), we obtain


−Ms1(a) (M1 − iM2z1)

−Ms2(a) (M3 − iM4z1)




 Wn

Un(b)


 =


Mi1(a)

Mi2(a)




i

nA inc
p

inA inc
s


 , (3.88)

where

Ms1(a) =
[
ULH(a) UTH(a)

]
, Ms2(a) =

[
VLH(a) VTH(a)

]
, (3.89)

Mi1(a) =
[
ULJ(a) UTJ(a)

]
, Mi2(a) =

[
VLJ(a) VTJ(a)

]
. (3.90)

The second equation in system (3.88) yields

Un(b) = (M3 − iM4z1)
−1
[
Ms2(a)Wn +VpJ(a)i

nA inc
p +VsJ(a)i

nA inc
s

]
. (3.91)

Substituting eq. (3.91) into the first equation of the system (3.88), and incorporating

eqs. (3.85) and (3.81), produce

Wn =
[
Ms2(a) + iz2Ms1(a)

]−1[−Mi2(a)− izzz2Mi1(a)
]

i

nA inc
p

inA inc
s


 , (3.92)
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or it can be written as


Bp,n
Bs,n


 =

[
VpH(a) + iz2UpH(a), VsH(a) + iz2UsH(a)

]−1

·
[
−VpJ(a)− iz2UpJ(a), −VsJ(a)− iz2UsJ(a)

]

i

nA inc
p

inA inc
s


 . (3.93)

3.2.4 Acoustic SH wave

In cylindrical coordinate system (r, θ, z), an infinite plane acoustic wave of circular

frequency ω incident at an angle α on submerged infinite TI cylinder of outer radius a

illustrated in Figure 2.2 is considered. The total pressure field p(x) is defined by eq.

(2.67) as a sum of incident pinc and scattered psc pressure fields, and satisfies the acoustic

Helmholtz wave equation (2.62) and momentum balance equation (2.63). Subindex p is

dropped hereunder for acoustic medium to simplify a notation. The incident pressure

pinc is taken as an obliquely traveling plane wave, with value at a point P (r, θ, z) of

the form of eq. (2.68). The outgoing scattered wave pressure psc at point P has form

(2.69). The scattering coefficients Bn are derived next.

The scattered field

Let

pinc =
∞∑

n=−∞
p incn (r)ei (nθ+kzz), psc =

∞∑

n=−∞
p scn (r)ei (nθ+kzz), (3.94)

where the coefficients p incn (r) and p scn (r) follow from eqs. (2.68) and (2.69). The

radial velocity components of the incident and scattered fields in the fluid, which follow

from (2.63) as v inc = (iωρf )
−1∂pinc/∂r and v sc = (iωρf )

−1∂psc/∂r, can similarly be

expanded as

v inc =
∞∑

n=−∞
v incn (r)ei (nθ+kzz), v sc =

∞∑

n=−∞
v scn (r)ei (nθ+kzz), (3.95)

According to the assumed forms of the incident and scattered fields, eqs. (2.68) and

(2.69), we have

v scn (a) = v incn (a)Bn
H

(1)
n

′
(k⊥a)

AincinJ ′
n(k⊥a)

. (3.96)
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The scattering coefficients Bn can therefore be determined if we can find a separate

relation between v scn (a) and v incn (a). Such a relation follows from the continuity condi-

tions.

Before considering the interface conditions it is useful to define some impedances

for the surface r = a. The pressure and velocity coefficients for circumferential mode n

at r = a are related by

p incn (a) = Z inc
n v incn (a), p scn (a) = Z sc

n v scn (a), (3.97)

where the impedance Z inc
n follows from eqs. (2.63) and (2.68), and Z sc

n follows from

eqs. (2.63) and (2.69), as

Z inc
n =

iωρf
k⊥

Jn(k⊥a)
J ′
n(k⊥a)

, Z sc
n =

iωρf
k⊥

H
(1)
n (k⊥a)

H
(1)
n

′
(k⊥a)

. (3.98)

The continuity conditions at the outer surface r = a require that the normal components

of the traction and the velocity are continuous. Let v0n(b) and p0n(b) be the radial

velocity and pressure at the inner surface of the cylinder for circumferential mode n.

We assume that the inner surface at r = b has zero shear traction and that the pressure

and radial velocity are related by an impedance Z0n,

p0n(b) = Z0nv0n(b). (3.99)

For example: Z0n = 0 if the inner boundary is traction free.

Based on the solution of the elasticity equations in the cylinder 0 < b ≤ r ≤ a, we

can then relate the total fields at the inner and outer surface of the cylinder:

v

inc
n (a) + v scn (a)

p incn (a) + p scn (a)


 =


M̃11 M̃12

M̃21 M̃22




v0n(b)

p0n(b)


 , (3.100)

where M̃ is 2 × 2 matrix is derived in the subsequent section. Expressing the system

as a pair of equations for unknowns vsn(a) and v0n(b) gives

 −1 M̃11 + Z0nM̃12

−Z sc
n M̃21 + Z0nM̃22




v

sc
n (a)

v0n(b)


 = v incn (a)


 1

Z inc
n


 , (3.101)

and hence,

v scn (a) = −v incn (a)

{
M̃21 + Z0nM̃22 − Z inc

n (M̃11 + Z0nM̃12)

M̃21 + Z0nM̃22 − Z sc
n (M̃11 + Z0nM̃12)

}
. (3.102)
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Therefore, comparison of eqs. (3.96) and (3.102) implies the scattering coefficient for

circumferential mode n,

Bn = −
(
Zn − Z inc

n

Zn − Z sc
n

)
AincinJ ′

n(k⊥a)

H
(1)
n

′
(k⊥a)

, (3.103)

where Zn depends only on the properties of the cylinder,

Zn =
M̃21 + Z0nM̃22

M̃11 + Z0nM̃12

. (3.104)

It remains to find the elements of the 2×2 matrix M̃ which is derived next.

Transformation from elastic to acoustic matricant

Recall the interface condition (3.74), on the outer surface of cylinder

η(a) = Mη(b), (3.105)

where η(r) is defined by (2.17), the elements of 4× 4 matricant M(r, r0)

M(r, r0) =


M1 M2

M3 M4


 (3.106)

follow from analysis in Section 2.1.3. Consider a two point impedance matrix Z(r, r0)

defined by eq. (2.53) and evaluate it at inner and outer surfaces of cylinder


 Vn(a)

−Vn(b)


 = −iZ(b, a)


Un(a)

Un(b)


 , (3.107)

where Z and M are related to each other by relations given in eqs. (2.54):

Z(r, r0) =


Z1 Z2

Z3 Z4


 = i


 −M−1

2 M1 M−1
2

M4M
−1
2 M1 −M3 −M4M

−1
2


 , (3.108)

Zj = Zj(r, r0), Mj = Mj(r, r0), Un(r) and Vn(r) vectors are defined by (2.16) and

(2.17) correspondingly, for acoustic medium V2n(r) = σrθn(r) = 0.

Introducing matrix K such that

K = K−1 = KT =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




, (3.109)
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and applying (3.109) to both sides of eq. (3.107) yields




V1(a)

−V1(b)

0

0




= i Z̃




U1(a)

U1(b)

U2(a)

U2(b)




, (3.110)

where

Z̃ = KZK−1 =


z̃1 z̃2

z̃3 z̃4


 , (3.111)

z̃j (j = 1, 4) are 2× 2 block matrices.

Define vector η̃(r) as

η̃(r) =


U1n

V1n


 . (3.112)

The system of eqs. (3.110) enables us to find relation between η̃ηη(a) and η̃ηη(b) in the form

η̃(a) = M̃ η̃(b), (3.113)

where

M̃ =


M̃11 M̃12

M̃21 M̃22


 =


 −ẑ−1

3 ẑ4 iẑ−1
3

iẑ2 − iẑ1ẑ
−1
3 ẑ4 −ẑ1ẑ−1

3


 , (3.114)


ẑ1 ẑ2

ẑ3 ẑ4


 = z̃1 − z̃2z̃

−1
4 z̃3. (3.115)
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3.3 Global matrix method for an isotropic multilayered elastic cylin-

der

(a) A Source impinging on 2D Multilayer Sm,

outer region: fluid or elastic

(b) Multilayer Sm, 3D

view

Figure 3.2: A point source impinging on an isotropic multilaminate cylinder submerged

in a fluid medium or embedded in an elastic matrix.

Consider the scattering from sources impinging on a multilaminate cylinder in cylin-

drical coordinates (r, θ, z) illustrated in Figure 3.2. A point source located at point

S has position vector x′. Our goal is to find a field (pressure, velocity, displacement,

stress) at an arbitrary point P(x), and investigate a far field response of cylinder to an

excitation.

A scattering of plane incident waves (α = 0) from a multilayered cylinder can be

tackled analogously and will be considered in parallel. The material of the cylinder in

0 ≤ b ≤ r ≤ a is assumed to be radially inhomogeneous and isotropic. We consider

a planar motion and neglect z dependence, and assume that cylinder Sm is comprised

of J isotropic layers; each layer in general may have different material properties: the

density ρj , Lamé parameters λj and µj , and total displacement field uj where the
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subindex denotes the jth layer of cylinder Sm and j = 1, J , see Figures 3.1 and Figure

3.2.

First, we study the scattering of acoustic waves from an isotropic multilayered cylin-

der by considering a clad-rod consisting of an elastic isotropic core cladded with other

isotropic materials, and a fluid filled cylinder submerged in water. Then, we investigate

an elastic wave scattering from an infinite multilayered cylinder embedded in an elastic

medium, considering the incidence of longitudinal and transverse waves seperately. A

fluid-filled multilayered cylinder embedded in an elastic matrix will be studied as a par-

ticular case. We obtain the scattering coefficients for both acoustic and elastic waves,

and relate them to the transition matrix T(m) that is also called the T-matrix. We

will use T-matrix T(m) of cylinder Sm in isolation to study MS of acoustic and elastic

waves from the cluster of cylinders in the proceeding chapters. In this section, we only

investigate a scattering from a single scatterer, and drop super-index m for simplicity

of notation hereinafter. We will validate our approach by comparing our results with

finding available in literature and with COMSOL simulations.

3.3.1 Acoustic scattering from an isotropic multilayered cylinder

Acoustic scattering from a multilayered clad-rod

Consider scattering of acoustic incident waves from an elastic isotropic multilayered

cylindrical clad-rod immersed in an ideal fluid as illustrated in Figure 3.1. For perpen-

dicular acoustic incidence, i.e. kz = 0, the axial dependence vanishes. The displace-

ments and stress are defined by eq. (2.103) for an inner solid region, (2.89) for solid

cladded regions, and (2.108) for an outer fluid region. Rod and claddings have cor-

respondingly the densities ρ in, ρ 1, ρ 2, · · · , ρJ , Lamé parameters λ in, µ in, λ1, µ1, · · · ,

λJ , µJ , and total displacement fields uin, u1, · · ·uJ (see Figure 3.1). The outer acous-

tic medium has the density ρ0 and acoustic speed c0. The total outer acoustic pressure

p(x) is a sum of incident pinc and scattered psc pressure fields defined by (2.68) and

(2.69). The outer pressure fields satisfies the acoustic Helmholtz equation (2.62) and

the momentum balance equation (2.62). We assume that the metamaterial cladding
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consists of J isotropic layers, and is perfectly attached to the rod. The configuration is

solid core inside, J ≥ 1 layers of solid, and water outside:

inner solid, ρ in, λ in, µ in 0 ≤ r < b, (3.116)

solid ”1”, ρ1, λ1, µ1 b ≤< r1, (3.117)

...
...

solid ”J”, ρJ , λJ , µJ rJ−1 ≤ r < rJ ≡ a, (3.118)

liquid, ρo, κo = ρoc
2
o a ≤ r <∞. (3.119)

A perfect interface condition between the rod and each layer of cladding as well as the

outer fluid yields 3 boundary conditions at fluid-solid interfaces: the outermost r = a

surfaces, and 4 conditions at each of the J solid-solid interfaces. The complete set of

3 + 4 J interface conditions yield the following linear system:




a 3
n(k0a) x̂ 1

n(a, k1, K1) x̂ 3
n(a, k1, K1) · · · 01×2

ŷ3
n(a, k0, κ0) Y 1

n (a, k1, K1) Y 3
n (a, k1, K1) · · · 02×2

02×1

.

.

. 4(J − 1) conditions

.

.

.

.

.

.

.

.

. 02×2

02×1 · · · X 1
n(b, kJ , KJ ) X 3

n(b, kJ , KJ ) X 1
n(b, ki, Ki)

02×1 · · · Y 1
n (b, kJ , KJ ) Y 3

n (b, kJ , KJ ) Y 1
n (b, ki, Ki)







−Bn

C 1, 1
n

D 1, 1
n

C 3, 1
n

D 3, 1
n

.

.

.

C 1, J
n

D 1, J
n

C 3, J
n

D 3, J
n

−C 1, in
n

−D 1, in
n




= An




a1n(k0a)

ŷ1
n(a, k0, κ0)

02×1

.

.

.

.

.

.

02×1




, (3.120)

where An is given by (2.73) for a plane wave incidence and (2.76) for a point source,

X l
n(r, kj , Kj) is defined by eq. (2.87a) and Y l

n(r, kj , Kj) by eq. (2.87b), and

x̂ ln(a, k1, K1) =
(
a ln(k1a) b ln(K1a)

)
, (3.121)

ŷ ln(am, k0, κ0) =
(
α̂ ln(a, k0, κ0) 0

)T
, (3.122)

02×2 =


0 0

0 0


 , 02×1 =


0

0


 , 01×2 =

(
0 0

)
(3.123)
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aln, b
l
n are given by (2.87), and α̂ln by (2.100) with (l = 1, 3).

Solving the system (3.120) for Bn yields

Bn =
∞∑

q=−∞
TnqAqδnq, (3.124)

where δnq is the Kronecker delta, the desired T = [Tnn] is a diagonal matrix, and its

elements Tnn = Tnqδnq are obtained by Cramer’s rule:

Tnn = −∆n

∆n
, (3.125)

where ∆n and ∆n are determinants of matrices defined as:

∆n =
∣∣∣∣∣∣∣∣∣∣∣∣

a 3
n(k0a) x̂ 1

n(a, k1, K1) x̂ 3
n(a, k1, K1) · · · 01×2

ŷ3
n(a, k0, κ0) Y 1

n (a, k1, K1) Y 3
n (a, k1, K1) · · · 02×2

02×1

.

.

. 4(J − 1) conditions

.

.

.

.

.

.

.

.

. 02×2

02×1 · · · X 1
n(b, kJ , KJ ) X 3

n(b, kJ , KJ ) X 1
n(b, ki, Ki)

02×1 · · · Y 1
n (b, kJ , KJ ) Y 3

n (b, kJ , KJ ) Y 1
n (b, ki, Ki)

∣∣∣∣∣∣∣∣∣∣∣∣

, (3.126)

∆n =
∣∣∣∣∣∣∣∣∣∣∣∣

a 1
n(k0a) x̂ 1

n(a, k1, K1) x̂ 3
n(a, k1, K1) · · · 01×2

ŷ1
n(a, k0, κ0) Y 1

n (a, k1, K1) Y 3
n (a, k1, K1) · · · 02×2

02×1

.

.

. 4(J − 1) conditions

.

.

.

.

.

.

.

.

. 02×2

02×1 · · · X 1
n(b, kJ , KJ ) X 3

n(b, kJ , KJ ) X 1
n(b, ki, Ki)

02×1 · · · Y 1
n (b, kJ , KJ ) Y 3

n (b, kJ , KJ ) Y 1
n (b, ki, Ki)

∣∣∣∣∣∣∣∣∣∣∣∣

. (3.127)

Equivalently, Tnn can be modified as

Tnn = − ηnJn
′(k0a) + Jn(k0a)

ηnH
(1)
n

′
(k0a) +H

(1)
n (k0a)

, (3.128)

where

ηn =
∆1
n

k0κ0∆2
n

, (3.129)
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and

∆1
n =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1
n(a, k1, µ1) β1

n(a,K1, µ1) α3
n(a, k1, µ1) β3

n(a,K1, µ1) · · · 0 0

γ1n(a, k1, µ1) δ1n(a,K1, µ1) γ3n(a, k1, µ1) δ3n(a,K1, µ1) · · · 0 0

.

.

. 4(J − 1) Conditions

.

.

.

.

.

.

.

.

.

· · · a1n(kJb) b1n(KJb) a3n(kJb) b3n(KJb) a1n(kinb) b1n(Kinb)

· · · c1n(kJb) d1n(KJb) c3n(kJb) d3n(KJb) c1n(kinb) d1n(Kinb)

· · · α1
n(b, kJ , µJ ) β1

n(KJb) α3
n(b, kJ , µJ ) β3

n(b,KJ , µJ ) α1
n(b, kin, µin) β1

n(b,Kin, µin)

· · · γ1n(b, kJ , µJ ) δ1n(b,KJ , µJ ) γ3n(b, kJ , µJ ) δ3n(b,KJ , µJ ) γ1n(b, kin, µin) δ1n(b,Kin, µin)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(3.130)

∆2
n =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 1
n(k1a) b 1

n(K1a) a 3
n(k1a) b 3

n(K1a) · · · 0 0

γ1n(a, k1, µ1) δ1n(a,K1, µ1) γ3n(a, k1, µ1) δ3n(a,K1, µ1) · · · 0 0

.

.

. 4(J − 1) Conditions

.

.

.

.

.

.

.

.

.

· · · a1n(kJb) b1n(KJb) a3n(kJb) b3n(KJb) a1n(kinb) b1n(Kinb)

· · · c1n(kJb) d1n(KJb) c3n(kJb) d3n(KJb) c1n(kinb) d1n(Kinb)

· · · α1
n(b, kJ , µJ ) β1

n(KJb) α3
n(b, kJ , µJ ) β3

n(b,KJ , µJ ) α1
n(b, kin, µin) β1

n(b,Kin, µin)

· · · γ1n(b, kJ , µJ ) δ1n(b,KJ , µJ ) γ3n(b, kJ , µJ ) δ3n(b,KJ , µJ ) γ1n(b, kin, µin) δ1n(b,Kin, µin)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(3.131)

where aln, b
l
n, c

l
n and dln are given by (2.87), αln, β

l
n, γ

l
n and δln by (2.88), and α̂ln is given

by (2.107) for inner fluid and (2.100) for outer fluid. For an acoustic single scattering,

a diagonal matrix T has the form

T =




T−N,−N 0 0 · · · 0

0 T−N+1,−N+1 0 · · · 0

0 0 T−N+2,−N+2 · · · 0

...
...

...
. . .

...

0 0 0 · · · TN,N




, (m = 1,M).

(3.132)

For an isotropic elastic rod cladded with one isotropic elastic layer, the system of

equations (3.120) reduces to the system of 7 algebraic equations. For a solid elastic

cylinder with no cladding, the scalar potentials, eq. (2.82), must be taken in the form

of regular solutions of wave equation: f 1
n (kr) = Jn(kr), because the irregular solution,

f 3
n (x) = H

(1)
n (x), has singularity at x = 0: H

(1)
n (x) → ∞. The boundary conditions
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reduce to 3 conditions at its outer surface leading to the system of 3 algebraic equations.

For a solid elastic cylinder, the T-matrix components have simplified form, and eqs.

(3.130)- (3.131) reduce to:

∆1
n =

∣∣∣∣∣
α 1
n(k1a) β 1

n (K1a)

γ 1
n (k1a) δ 1

n (K1a)

∣∣∣∣∣ , ∆2
n =

∣∣∣∣∣
a 1
n(k1a) b 1n(K1a)

γ 1
n (k1a) δ 1

n (K1a)

∣∣∣∣∣ .

For rigid and hollow cylinders immersed in an acoustic medium, the boundary con-

ditions are given correspondingly by eqs. (2.104) and (2.105). The density of rigid

cylinder ρ1 with respect to the density of outer acoustic medium ρ0 tends to infinity:

ρ1 → ∞. Consequently, both the impedance z1 defined by (2.47) and ηn given by

(3.129) tend to infinity. Hence, for a rigid cylinder, eq. (3.128) reduces to the form

Tnn = − Jn
′(k0a)

H
(1)
n

′
(k0a)

. (3.133)

As opposed to the rigid case, the density of hollow cylinder ρ1 in relation to outer

acoustic medium ρ0 vanishes: ρ1 → 0, and the impedance z1 and ηn approach zero.

Thus, for a hollow cylinder, the T-matrix components reduce to the form:

Tnn = − Jn(k0a)

H
(1)
n (k0a)

. (3.134)

These relations show the equivalence between the impedance z1 and ηn.

Acoustic scattering from a fluid filled cylinder

Consider scattering of acoustic incident waves from an anisotropic layered elastic cylin-

der immersed in an ideal fluid illustrated in Figure 2.2. For perpendicular acoustic

incidence, i.e. kz = 0, the axial dependence vanishes. The inner and outer pressure

fields satisfy the acoustic Helmholtz equation (2.62) and the momentum balance equa-

tion (2.62). The total outer acoustic pressure p(x) is a sum of incident pinc and scattered

psc pressure fields defined by (2.68) and (2.69). The displacements and stress are de-

fined by eq. (2.101) for inner fluid region, (2.89) for solid region, and (2.108) for outer

fluid region. The configuration is a gas or liquid inside, J ≥ 1 layers of solid, and water
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outside:

gas or liquid, ρin, κin = ρinc
2
in 0 ≤ r < b, (3.135)

solid ”1”, ρ1, λ1, µ1 b ≤ r < r1, (3.136)

...
...

solid ”J”, ρJ , λJ , µJ rJ−1 ≤ r < rJ ≡ a, (3.137)

liquid, ρ0, κ0 = ρ0c
2
0 a ≤ r <∞. (3.138)

The boundary conditions are continuity of traction and continuity of normal displace-

ments at the interface. For a fluid-filled isotropic cylinder submerged in water, there are

6 boundary conditions at fluid-solid interfaces: the innermost r = b and the outermost

r = a surfaces, and 4 conditions at each of the J−1 solid-solid interfaces. The complete

set of 2 + 4 J interface conditions yields a system of linear algebraic equations which

follows from the system (3.120) by removing its last column and third to last row, and

changing in the second to last row α 1
n(kinb) → α̂ 1

n(kinb) where α̂
l
n is defined by (2.100),

and in the last row γ 1
n (kinb) → γ̂ 1

n (kinb) ≡ 0 where kin is the wave number in an inner

fluid medium. The determinants in eqs. (3.126)-(3.127) will change accordingly, and

simplify the T-matrix components given by (3.125).

Far-field radiated response

Consider now the far-field response, the scattered pressure field psc , when kr becomes

very large: kr >> 1. For large values of argument kr, the asymptotic expansion of the

Hankel function is

H(1)
n (kr) =

√
2

πkr
e−i(n

π
2
+π

4
)eikr

[
1 +O

( 1

kr

)]
. (3.139)

The scattered field psc is defined by eq. (2.69) as an infinite sum of multipoles. The far

scattered field psc can be split into two parts, g(k|x|) and f(θ):

psc = g(k|x|) f(θ)
[
1 +O

( 1

k|x|
)]
, k|x| >> 1 (3.140)
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Material ρ λ µ cp cs E ν

[ kg
m3 ] [GPa] [GPa] [ms ] [ms ] [GPa]

Al, [57] 2711.8 6370 3136

Water, [57] 998 1482

Air, [89] 1.2 330

Al, [89] 2790 6300 3100

Water, [89] 1000 1470

Al, [133] 2706 57.09 26.69 6389.4 3140.6 71.567 0.3407

Steel (St), [133] 7850 110.79 80.23 5878.1 3196.8 206.99 0.29

Zirconia(ZrO2),[133] 5700 129 94.8 7476.3 4078.2 244.24 0.2882

Water, [133] 1000 1480

Air, [133] 1.2 344

Copper, [79] 8900 4600 2160

Al, [79] 2694 6427 3112

Table 3.1: Material properties used for comparison with literature

where the function g(k|x|) and the farfield amplitude function f(θ), θ = arg(x), can be

derived using the asymptotic form of the Hankel functions, eq. (3.139):

g(k|x|) =
√

1

k|x|e
ik|x|, |x| → ∞, (3.141)

f(θ) =
∞∑

n=−∞
fne

inθ, fn =

√
2

π
e−i
(
π
4
+nπ

2

)
Bn. (3.142)

The normalized far-field scattering form function f∞ is defined as

∣∣f∞(ka, θ)
∣∣ = lim

|x|→∞

√
|x|/a

∣∣psc(r, θ)/Ainc
∣∣ = |f(θ)|

Ainc
√
ka
, (3.143)

where Ainc is the amplitude of an incident plane wave. We evaluate eq. (3.143) at

θ = π and multiply it by
√
2 to find a backscattering form function f∞(ka) and keep a

notation used in the literature [57, 89] for verification. Thus, for a plane wave of unit
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amplitude, the backscattering form function has the form

|f∞(ka)| =
√
2
∣∣f∞(ka, θ = π)

∣∣ =
√

2

ka
|f(π)| = 2√

πka

∣∣∣∣∣

∞∑

n=−∞
Bne

inπ/2

∣∣∣∣∣ . (3.144)

The total power radiated by the multilayered shell is measured by the non-negative

far-field flux parameter

σr =

∫ 2π

0
|f(θ)|2 d θ =

∫ 2π

0

∣∣∣∣∣

√
2

π

∞∑

n=−∞
Bne

in(θ−π/2)
∣∣∣∣∣

2

d θ = 4
∞∑

n=−∞
|Bn|2. (3.145)

The non-dimensional total scattering cross section(TSCS) is then given by:

Q =

∫ 2π

0
|f∞(ka, θ)|2 d θ =

∫ 2π

0

∣∣∣∣∣

√
2

πka

∞∑

n=−∞
Bne

in(θ−π/2)
∣∣∣∣∣

2

d θ =
4

ka

∞∑

n=−∞
|Bn|2,

(3.146)

where Q is normalized by a, the outer radius of the cylinder.

Numerical results

(a) Calculation performed by Flax et al. [57]

0 5 10 15
0

0.5

1

1.5

ka

(b) 2D Elasticity solution, MATLAB computation

Figure 3.3: The variation of modulus of backscattering form function |f∞| with dimen-

sionless frequency ka for an isotropic cylinder submerged in fluid.

We computed the scattering coefficients as well as T-matrix components for perpen-

dicular incidence α = 0 to calculate the modulus of backscattered form function |f∞|,
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(a) Theoretical and experimental backscattered form function modulus [89].
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(b) |f∞(ka)| vs. ka
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(c) Q vs. ka.

Figure 3.4: Variation of modulus of backscattering form function |f∞| and TSCS with

non-dimensional frequency ka for air filled thin shell submerged in water

total scattering cross section (TSCS) Q, as well as pressure field. We performed calcula-

tions on MATLAB and COMSOL to validate and compare our results with the existing

literature. We created a MATLAB code to construct the global matrix and compute

the scattering coefficients and transfer matrix. Properties of materials considered in

this section are given Table 3.1.

Figure 3.3 shows the back-scattered form function modulus |f∞(ka)| defined by eq.

(3.144) with α = 0 for an Aluminum (Al) solid cylinder submerged in fluid. In Figure

3.3, the graph on the top figure was obtained by Flax et al. [57] theoretically, and

the bottom picture displays our MATLAB results using the Global matrix method for

Al solid cylinder, which is in agreement with the top picture [57]. Figure 3.4 shows
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(a) Thin bi-laminate, h/a =

0.04, h1 = h2 = 0.5h

(b) Thick bi-laminate, h/a =

0.8, h1 = h2 = 0.5h

(c) Tri-laminate, h/a = 0.25,

h1 = 0.2h, h2 = h3 = 0.4h

(d) h/a = 0.25, h3 = 0.5h,

h1=h5 = 0.05h, h2=h4 = 0.2h

(e) h/a = 0.25, h3 = 0.4h,

h1=h5 = 0.1h, h2=h4 = 0.2h,

(f) h/a = 0.25, h1 = 0.1h,

h1 = h2 = h3 = h4 = h5

Figure 3.5: Configurations of air-filled multilayered shells submerged in fluid used in

MATLAB and COMSOL simulations.

the dependance of |f∞(ka)| and Q on non-dimensional frequency ka for an air filled Al

cylindrical thin shell of thickness h = 0.04cm and outer radius a = 0.25cm submerged in

water. The graphs in Figure a were obtained by Leon et al. [89] both theoretically, and

experimentally. Figure a on the left shows a theoretical backscattered form function

modulus |f∞(ka)|, and on the right illustrates experimental backscattered spectrum for

air filled shell submerged in water. Figures b and c display our results obtained on

MATLAB and COMSOL. Variation of modulus |f∞(ka)| with ka is shown in Figure b,

and TSCS, Q versus ka, is given in Figure c, where Q is defined by eq. (3.146). The

properties of shell taken from [89] are given in Table 3.1 for a comparison with findings

of Leon et al. [89], Figure a. MATLAB computations are based on our Global matrix

method, which uses a 2D Elasticity solution. COMSOL computations are performed

with nfreq = 207 and kamax = 15 and MATLAB results are given for nfreq = 2000
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and kamax = 20, where kamax, the maximum value of ka, is divided into nfreq intervals

(nfreq is the total number of frequency intervals). COMSOL results are shown for a

lesser number of nfreq because of prohibitively long computation time. Figures b- c

show a consistency between MATLAB and COMSOL simulation for both |f∞(ka)| and

Q except missed resonance picks caused by reduction of nfreq almost 10 times.

Variation of modulus of backscattering form function and TSCS with normalized

frequency ka for air-filled multilayers submerged in water is depicted in Figures 3.6-3.9

to compare our results with findings in [133]. Computations are performed in MATLAB

and COMSOL with material properties given in Table 3.1 for different multilaminate

configurations shown in Figure 3.5 where a is the outer radius of the shell, h is the total

thickness of the multilayered shell and hj is the thickness of jth layer. The following

cases are considered: Figure a: Steel−Al or Al−Al thin bilaminate shell with h/a =

0.04, h1 = h2 = 0.5h; Figure b: Steel − Al or Al − Al thick bilaminate shell with

h/a = 0.8, h1 = h2 = 0.5h; Figure c: ZrO2 − Steel − Al tri-laminate shell with

h/a = 0.25, h1 = 0.2h, h2 = h3 = 0.4h; Figures d - f: ZrO2−Steel−Al−Steel−ZrO2

pento-laminate shell of total thickness h = 0.25a with h1 = h5 = 0.05h, h2 = h4 =

0.2h, h3 = 0.5h in Figure d, with h1 = h5 = 0.1h, h2 = h4 = 0.2h, h3 = 0.4h in Figure

e, and with h1 = h2 = h3 = h4 = h5 = 0.2h in Figure f.

Figure 3.6 shows the variations of |f∞| with non-dimensional frequency ka for Al

shell and Al bi-laminate shell depicted in Figure b. Figure a was given in [133]; Figure

b shows our MATLAB calculations for a single Al shell of thickness h = 0.4a (blue solid

line) and Al bilayer with h = 0.8a (red dash line) depicted in Figure b with properties

given in Table 3.1. Graphs in Figure b show a full agreement with findings in [133]

depicted in Figure a. Figure 3.7 displays the dependance of |f∞| and Q on ka for a thin

single and bi-laminate shell configuration shown in Figure a. Figure a shows calculations

performed in [133]. Figures b - c illustrate correspondingly our MATLAB computation

of |f∞| and Q for a thin Al bilaminate shell of thickness h = 0.04a (blue solid line) and

single Al shell of thickness h = 0.02a (red dash line). Graphs in Figures a - b are

consistent. Figures d - e show comparison of MATLAB and COMSOL computations

of |f∞| and Q for single and bilaminate Al shells, and a bilaminate Al − Steel shell of
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total thickness h = 0.04a submerged in fluid.

(a) Calculations of |f∞| performed in [133] (Figure 6).
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(b) MATLAB computation of amplitudes of |f∞|
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(c) MATLAB computation of amplitudes of Q

Figure 3.6: Variation of modulus of backscattering form function |f∞| and TSCS with

normalized frequency ka for an air filled Al thick shell and bi-layer submerged in fluid.
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(a) Calculations of |f∞| performed in [133] (Figure 2).
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(b) MATLAB computation of |f∞| for Al shell
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(c) MATLAB computation of Q for Al shell
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(d) MATLAB and COMSOL comparisons for

|f∞|
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(e) MATLAB and COMSOL comparisons for Q

Figure 3.7: Variation of backscattering form function |f∞| and TSCS Q with normalized

frequency ka for bilaminate shell.
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MATLAB computations are based on the Global matrix method using a 2D elasticity

solution. COMSOL computations are performed with nfreq = 100 and MATLAB

results are given for nfreq = 1000. Figures d - e show an agreement between MATLAB

and COMSOL simulation for single and bilaminar shells.
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Figure 3.8: Variation of |f∞| and Q with normalized frequency ka. Figures (a) and (b)

show correspondingly our MATLAB and COMSOL computations of |f∞| and Q for an

isotropic trilaminate (Al − Steel − ZrO2) shell with h/a = 0.25.

Figure 3.8 illustrates |f∞| and Q as a function of ka for an air filled isotropic trilami-

nate (Al−Steel−ZrO2) shell submerged in fluid; the innermost layer is made of Al. The

total shell thickness is h = 0.25a, the trilaminate configuration is depicted in Figure c.

Figures a - b show correspondingly our MATLAB and COMSOL computations of |f∞|

and Q, where nfreq = 2000 in MATLAB computations and nfreq = 200 in COMSOL

simulation. The graphs display consistency between MATLAB and COMSOL simula-

tions. Figure 3.9 exhibits MATLAB and COMSOL computations of amplitudes of |f∞|

and Q versus ka for the pentolaminate shell (ZrO2 − Steel−Al− Steel−ZrO2) with

h/a = 0.25 and a = 0.01m with configurations depicted in Figures d, e, and f. MAT-

LAB and COMSOL simulations are performed correspondingly with nfreq = 2000 (blue

solid line) in the former case and nfreq = 200 (maroon dash-dot line) in the latter case.

MATLAB and COMSOL results are consistent for all 3 pentolaminate configurations.
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(a) |f∞| vs. ka for pentolaminate in Fig. 3.5d.
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(b) Q vs. ka for pentolaminate in Fig. 3.5d.
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(c) |f∞| vs. ka for pentolaminate in Fig. 3.5e.
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(d) Q vs. ka for pentolaminate in Fig. 3.5e.
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(e) |f∞| vs. ka for pentolaminate in Fig. 3.5f.
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(f) Q vs. ka for pentolaminate in Fig. 3.5f.

Figure 3.9: Variation of |f∞| and Q with normalized frequency ka for pento-laminate

(ZrO2 − Steel −Al − Steel − ZrO2) shell (h = 0.25a) depicted in Figures 3.5d- 3.5f.



88

The amplitudes of |f∞| and Q of 3 different configurations with different sublayer

thicknesses are coincide for small values of ka (approximately ka < 3.5) and diverge

with increase of ka. Figure 3.10 displays calculations performed in [133] for the pento-

Figure 3.10: Variation of modulus of backscattering form function with normalized

frequency for an pento-laminate (Al−Steel−ZrO2−Steel−Al) shell with h/a = 0.25.

Figure displays calculations performed in [133] .

layered shell shown in Figure d. Figure a illustrates our MATLAB and COMSOL

computation of |f∞| versus ka for the same configuration. Comparison of Figures

a and 3.10 show that the Global matrix method used in MATLAB (blue solid line)

matches with the COMSOL result (maroon dash-dot line) for all values of ka shown in

the picture whereas the graph (solid line) in Figure 3.10 coincides with the COMSOL

result (maroon dash-dot line in Figure a) only for small values of ka (approximately

ka < 2).

Figure 3.11 displays variation of modulus of normal mode components of backscat-

tering form function |fn(θ = π, ka)| with ka for different values of mode number n = 0, 7

for the pentolaminate shell (ZrO2 − Steel − Al − Steel − ZrO2 ) in water, the config-

urations are depicted in Figure d. Figure a shows calculations performed in Figure 8

[133]. Figures b - e display our computations for comparison. In [133], the coefficients

fn were obtained via Fourier sine and cosine series expansion, whereas here the form

function coefficients fn are defined by eq. (3.142) in exponential form.
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(a) The coefficients |fn| vs. dimensionless frequency K1aq+1 for n = 0, 7, from Figure 8 in [133]
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|fn + f−n| vs. ka for n = 4, 5

0 5 10 15
0

0.2

0.4

0.6

0.8

ka
 

 

n = 6
n = 7

(e)
√

2
ka
|fn + f−n| vs. ka for n = 6, 7

Figure 3.11: Variation of modulus of normal mode coefficients of form function
√

2
ka |fn+

f−n| with dimensionless frequency for a pento-laminate (ZrO2 − Steel − Al − Steel −

ZrO2) shell submerged in fluid for different values of n = 0, 7
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(a) Total field at ka = 1.05, zoomed out (b) Total field at ka = 1.05, zoomed in

(c) Total field at ka = 5.025, zoomed out (d) Total field at ka = 5.025, zoomed in

(e) Total field at ka = 15, zoomed out (f) Total field at ka = 15, zoomed in

Figure 3.12: Total acoustic pressure field and total displacement at fixed normalized

frequency ka for an isotropic pentolaminate shell depicted in Figure 3.5d. Figures on

the left display the total field zoomed out. Figures on the right show enlarged view of

total field zoomed in.
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Hence, we calculated
√

2
ka |fn + f−n| to do comparison with |fn| in Figure a. As we

can see, the graphs in Figures a, b, and c coincide for n = 0, 1, 2, 3, 4. For n ≥ 4,

results start deviating, the changes in graphs for higher modes (n ≥ 4) contribute to

differences in Figures 3.10 and a for approximately ka ≥ 2.

Figure 3.12 illustrates the total acoustic pressure field and total displacement at fixed

values of normalized frequency ka, ka = 1.05, 5.025, 15, for an isotropic pentolaminate

shell depicted in Figure 3.5d. Figures on the left display a total field zoomed out.

Figures on the right show an enlarged view, a total field zoomed in. Left color bars

correspond to total displacement of the shell and right color bars correspond to total

outer acoustic pressure field. In Figures a, c, e, a large circle of radius rfar = 11a

denotes a path over which integration was performed on COMSOL to calculate built-in

function pfar - the pressure in the far-field depicted in Figure a.

(a) |f∞| vs. ka, calculations performed in [79]

0 5 10 15 20
0

0.5

1

1.5

ka

(b) our MATLAB computation of |f∞| vs. ka

Figure 3.13: Variation of modulus of backscattering form function |f∞| with normalized

frequency ka for an isotropic clad-rod submerged in fluid.

Figure 3.13 displays a backscattered form function modulus |f∞| with α = 0 for

a copper-clad aluminum rod submerged in fluid. The graph in Figure a was given

by Honanvar and Sinclair [79], while Figure b illustrates our MATLAB calculation

for comparison, the graphs are in a good agreement. The computation of |f∞| was

performed on MATLAB for an aluminum rod with copper-cladding with properties

from [79] given in Table 3.1. The outer radius of the clad-rod is a = 29.571mm and its

core radius is b = 29.35mm. Graphs in Figures a-b exhibit a full agreement between
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the theories.
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Figure 3.14: Angular distribution of far-field amplitude function |f(θ)| with fixed values

of ka for a rigid cylinder submerged in fluid

Figure 3.14 illustrates the angular distribution of the far-field amplitude function

|f(θ)| defined by (3.142) for fixed vales of ka: ka = 1.7, 3.4, 5. Polar plots coincide

with findings in [55]: Figures 5, 9, and 13 respectively.
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3.3.2 Elastic scattering of P/SV waves from a multilayered cylinder

embedded in elastic medium

In this section, we investigate an elastic scattering of in-plane P/SV waves from a mul-

tilayered clad-rod embedded in an elastic medium taking into account mode conversion

of P and SV waves and obtain the transition matrix T of cylinder Sm in isolation to

examine MS of elastic P/SV waves from the cluster of cylinders in the proceeding chap-

ters. A scattering from a fluid-filled multilayered cylinder can be analyzed analogously

and will be discussed in parallel. We consider perpendicular incidence of P/SV waves,

i.e. kz = 0. The displacements and stress are defined by eq. (2.103) for the inner elastic

rod, eq. (2.89) for the cladding region, and eqs. (2.110) and (2.111) correspondingly for

P and SV wave incidences in the outer elastic matrix. An anisotropic clad-rod consists

of an elastic isotropic core cladded with anisotropic multilayered metamaterial. We

assume that metamaterial cladding is comprised of J isotropic layers, and is perfectly

attached to the rod (core), see Figure 3.1. The configuration is a solid core inside, J ≥ 1

layers of solid, and an elastic matrix outside:

inner solid, ρin, λin, µin 0 ≤ r < b, (3.147a)

solid ”1”, ρ1, λ1, µ1 b ≤ r < r1, (3.147b)

...
... (3.147c)

solid ”J”, ρJ , λJ , µJ rJ−1 ≤ r < rJ ≡ a, (3.147d)

elastic matrix, ρ0, λ0, µ0 a ≤ r <∞. (3.147e)

For a fluid-filled multilayered cylinder configuration, the inner solid defined by eq.

(3.147a) will be replaced with the properties of an inner fluid:

gas or liquid, ρin, κin = ρinc
2
in 0 ≤ r < b. (3.148)

Applying boundary conditions and evaluating the displacement and stress field

around cylinder Sm yields a solution for the scattering coefficients via the transition

matrix T of cylinder Sm in isolation, such that

Bp, n
Bs, n


 =

∞∑

q=−∞


T

pp
nq T psnq

T spnq T ssnq




Ap, q
As, q


 , (3.149)
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where the submatrices of transition matrix Tςξ = [T ςξnq] (ς, ξ ≡ p, s), are obtained

considering P and SV wave incidences separately as follows.

Scattering of incident P waves from a multilayered clad-rod

A perfect interface condition between a rod and cladding as well as each layer of cladding

requires 4 conditions of continuity of stresses and displacements at each of the J + 1

solid-solid interfaces. The complete set of 4 J+4 interface conditions yields the following

system of linear algebraic equations for incident P waves:

Gb = ãp (3.150)

where G is a Global matrix, b is the vector of unknown coefficients, and the right hand

side vector ãp is known:

G =




X 3
n(a, k0, K0) X 1

n(a, k1, K1) X 3
n(a, k1, K1) · · · 02×2

Y 3
n (a, k0, K0) Y 1

n (a, k1, K1) Y 3
n (a, k1, K1) · · · 02×2

02×2

.

.

.
4(J−1)

Conditions

.

.

.

.

.

.

.

.

. 02×2

02×2 · · · X 1
n(b, kJ , KJ ) X 3

n(b, kJ , KJ ) X 1
n(b, kin, Kin)

02×2 · · · Y 1
n (b, kJ , KJ ) Y 3

n (b, kJ , KJ ) Y 1
n (b, kin, Kin)



, (3.151)

b =




−Bp n

−Bs n

C 1, 1
n

D 1, 1
n

C 3, 1
n

D 3, 1
n

.

.

.

C 1, J
n

D 1, J
n

C 3, J
n

D 3, J
n

−C 1, i
n

−D 1, i
n




, ãp = Ap,n ap, with ap =




a1n(k0a)

c1n(k0a)

α 1
n(a, k0, µ0)

γ 1
n (a, k0, µ0)

0

0

.

.

.

.

.

.

.

.

.

0

0




, (3.152)

where Ap,n is the incident P wave coefficient defined by (2.112) for an incident plane

wave and by (2.116) for a point force, the matrices X l
n(r) and Y l

n(r) are given by (2.87),

aln, b
l
n, c

l
n and dln are given by (2.87), αln, β

l
n, γ

l
n and δln by (2.88), and α̂ln by (2.100).

Employing Cramer’s rule in the system (3.150) allows us to find the scattering

coefficients Bp, n and Bs, n as well as components of block matrices of desired T-matrix

T, i.e. Tpp = [T ppnq ] and Tsp = [T spnq ] which have diagonal form in this case:

T ppnq δnq = −|Gpp|
|G| , T spnqδnq = −|Gsp|

|G| , (3.153)
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where Gpp is constructed from matrix G by replacing its first column by vector ap and

Gsp by replacing the second column of G by vector ap.

Scattering of incident SV waves from a multilayered clad-rod

For incident SV waves, a perfect interface condition at the J+1 solid-solid interfaces of

a multilayered clad-rod yields a complete set of 4 J + 4 interface conditions that yields

the following system of linear algebraic equations

Gb = ãs (3.154)

where G is a Global matrix defined by eq. (3.151), b is the vector of unknown coefficients

given by (3.152), and the right hand side vector ãs is known and has the form:

ãs = As,n as, (3.155)

with

as =
(
b1n(K0a) d1n(K0a) β 1

n (a, k0, µ0) δ 1
n (a, k0, µ0) 0 · · · 0

)T
, (3.156)

where As,n is the incident SV wave coefficient given by (2.112) for an incident plane

wave and by (2.116) for a point force. The block matrices Tps = [T psnq ] and Tss = [T ssnq ]

of the desired T-matrix are obtained from the system (3.150) using Cramer’s rule

T psnqδnq = −|Gps|
|G| , T ssnqδnq = −|Gss|

|G| , (3.157)

where Gps is constructed from matrix G by replacing its first column by vector as and

Gss by replacing the second column of G by vector as.

For a fluid-filled multilayered cylinder imbedded in elastic matrix, the complete

set of 3 + 4 J interface conditions yields a system of linear algebraic equations which

follows from the system (3.150) for incident P waves and (3.154) for incident SV waves

by removing the last column and third to last row of Global matrix G, and changing

its second to last row: α 1
n(kinb) → α̂ 1

n(kinb), where α̂
l
n is defined by (2.100), and in the

last row γ 1
n (kinb) → γ̂ 1

n (kinb) ≡ 0.
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Far-field elastic radiated response

A far-field elastic radiated response can be evaluated analogously to an acoustic case.

The far scattered field amplitude function follows the asymptotic form of the Hankel

function for large values of argument (see eq. (3.139)). For k|x| >> 1 and K|x| >>

1, the far scattered field can be split as:


ϕ

sc(x)

ψ sc(x)


 =




1
k g(k|x|)fp(θ)

[
1 +O

(
1
k|x|

)]

1
K g(K|x|)fs(θ)

[
1 +O

(
1

K|x|

)]


 , (3.158)

where the function g(x) is given by (3.141) and the farfield amplitude function fζ(θ), (ζ =

p, s) is defined as

fζ(θ) =

√
2

π
e−i

π
4

∞∑

n=−∞
e−i

nπ
2 Bζ,ne

inθ, (ζ = p, s). (3.159)

The far scattered field form functions fζ,∞(ka, θ) with ζ = p for compressional wave

incidence and ζ = s for shear wave incidence are defined as follows:


fp,∞(ka, θ)

fs,∞(ka, θ)


 = lim

|x|→∞

√
2|x|/a




1
k g(k|x|)fp(θ)/Aincp
1
K g(K|x|)fs(θ)/Aincs


 , (3.160)

where fζ,∞ is normalized by factor
√
2

aAinc
ζ

, (ζ = p, s). Thus, for a plane wave of a unit

amplitude, we have


fp,∞(ka, θ)

fs,∞(ka, θ)


 =




2√
k3aπ

∣∣∣∣
∞∑

n=−∞
Bp,ne

in(θ−π/2)
∣∣∣∣

2√
K3aπ

∣∣∣∣
∞∑

n=−∞
Bs,ne

in(θ−π/2)
∣∣∣∣


 . (3.161)

The total displacement u is the sum of incident uinc and scattered usc fields, and

the total stress tensor is σ = σinc+σsc. In the far-field, the scattered field usc in terms

of the Helmholtz potentials has the form

usc =


 ∇ϕ sc(x̂)

∇× (ezψ
sc(x̂))


 = lim

|x|→∞



√

2
iπ g(k|x|)f̃p(θ)

−
√

2
iπ g(K|x|)f̃s(θ)


 , (3.162)

with

f̃ζ(θ) =

∞∑

n=−∞
Bζ,n e

inθ i−(n−1) =

√
πi3

2
fζ(θ), (ζ = p, s), (3.163)
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where fζ(θ) is defined by (3.159), x̂ = x
|x| = er is the unit vector that defines the

scattering direction, the angle θ is determined as the angle between the scattering

direction x̂ and the incidence direction, with θ = 0 associated with the direction of

incidence.

The far-field stress tensor σ defined in terms of far-field amplitudes has the form

σsc(x) = lim
|x|→∞

[
i k
(
λ I+ 2µ erer

)
√

2

iπ
g(k|x|)f̃p(θ)

− iK µ
(
ereθ + eθer

)
√

2

iπ
g(k|x|)f̃s(θ)

]
. (3.164)

The total power radiated by the cylinder is:

Σ = Σp +Σs (3.165)

where Σp and Σs are the compresional and shear far-field averaged radial flux vector

components defined as

Σζ =

∫ 2π

0
|fζ(θ)|2 d θ = 4

∞∑

n=−∞
|Bζ,n|2, (ζ = p, s). (3.166)

The average power radiated across the closed surface S′ is zero due to the conservation

of energy in an elastic solid [178]:

< Σ >=
ω

2
Im

(∫

S′

u(x) · σ∗(x) · n(x)dS
)

= 0, (3.167)

where n is the unit normal of position vector x. For a plane wave:
∫

S′

uinc(x) · σinc ∗(x) · x̂ dS = 0. (3.168)

Hence, eq. (3.167) yields

ω

2
Im

(∫

S′

usc(x) · σsc ∗(x) · x̂ dS
)

= −ω
2
Im

(∫

S′

(uinc(x) · σsc ∗(x) + usc(x) · σinc ∗(x)) · x̂ dS
)
, (3.169)

where ”Im” denotes the imaginary part of the variable. The right-hand side of eq.

(3.169) normalized with respect to the incident power P0 is defined as the scattering

cross-section of the scatterer Q [178], i.e.

Q =
ω

2P0
Im

(∫

S′

usc · σsc ∗ · x dS
)

= − ω

2P0
Im

(∫

S′

(uinc · σsc ∗ + usc · σinc ∗) · x̂ dS
)
. (3.170)
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The non-dimensional total scattering cross sections are

Qp = Qpp +Qsp, for P wave incidence, (3.171)

Qs = Qps +Qss, for SV wave incidence, (3.172)

where Qζ χ (ζ, χ = p, s) are given by [81]:

Qζp =
4

ka

∞∑

n=−∞
|Bζ,n|2, Qζs =

4

Ka

∞∑

n=−∞
|Bζ,n|2, (ζ = p, s). (3.173)

Hereinafter the double sub-index ζ χ (ζ, χ = p, s) means the following: the first sub-

index ζ (ζ = p, s) denotes the polarization of scattered a P or SV wave, and the second

sub-index χ (χ = p, s) denotes the polarization ofan incident P or SV wave.

”The forward scattering theorem”, also called ”Optical theorem”, derived in [178] for

elastic P and SV waves states that the total rate of energy transmitted through a closed

surface by both scattered P and SV waves is proportional (in 2D) to the imaginary part

of the amplitude of the scattered wave in the forward direction alone. This implies the

following identities for the total scattering cross-sections Qp and Qs[178]:

Qp =
2(λ+ 2µ)kpω

P0
Im[f̃pp(θ = 0)], for P wave incidence, (3.174)

Qs =
2µksω

P0
û · θ̂K Im[f̃ss(θ = 0)], for SV wave incidence, (3.175)

where û = k̂× êz is the direction of polarization of the incident SV wave, θ̂k is a vector

perpendicular to k̂, k̂ is a unit vector along the direction of propagation, and f̃ζζ(θ),

(ζ = p, s) is defined by (3.163). In notation f̃ζζ(θ), the second sub-index ζ is included

to indicate the direction of polarization of the incident wave, and θ = 0 corresponds to

the forward direction k̂ of both incident and scattered waves.

Numerical results

Numerical computations are performed for the scattering of P-waves for two types of

scatterer: (a) a solid steel cylinder embedded in an Epoxy matrix, and (b) an empty

Aluminum cylindrical shell embedded in an elastic polyethylene medium. The results

are presented in Figures 3.15 - 3.16 for materials with properties given in Table 3.2.

Figure 3.15 illustrates the variation of modulus of longitudinal backscattering form
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Material ρ cp cs

[kg/m3] [m/s] [m/s]

Steel (St) [17] 7800 5960 3235

Epoxy [17] 1129 2640 1339

Aluminum (Al)[183] 2800 6380 3100

Polyethylene [183] 1050 1950 540

Table 3.2: Material properties used for comparison with results in [17] and [183]

function |fp,∞(ka, π)| with normalized frequency ka for an isotropic steel wire imbedded

in an Epoxy matrix. The Figure on the left displays calculations performed in [17], both

theoretically and experimentally. the Figure on the right represents our MATLAB

computation of |fp,∞(ka, π)| for a steel solid cylinder of radius a = 0.37mm. The

graphs are in good agreement.

(a) |fp,∞(ka, π)| vs ka [17]

3 4 5 6 7 8 9
0

0.5

1

1.5

ka

(b) |fp,∞(ka, π)| vs ka, MATLAB computation

Figure 3.15: Variation of modulus of longitudinal backscattering form function

|fp,∞(ka, π)| with normalized frequency ka for isotropic wire embedded in Epoxy ma-

trix. Figure (a) on the left displays calculations performed in [17]. Figure (b) on

the right shows our MATLAB computation of |fp,∞(ka, π)| for a steel wire of radius

a = 0.37mm in Epoxy matrix
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(a) h=0.2a, [183]
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(b) h=0.2a, MATLAB

Figure 3.16: Variation of modulus of longitudinal backscattered form function

|fp,∞(ka, π)| with normalized frequency ka for empty Al Shell embedded in polyethy-

lene matrix.

Figures 3.16 exhibits the dependence of form function on non-dimensional frequency

ka for an empty Al shell of thickness h = 0.2a embedded in polyethylene matrix. Figure

a on the right displays calculations performed in [183]. Figure b on the left shows our

MATLAB computation of backscattered form function amplitudes.
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Chapter 4

Acoustic and elastic multiple scattering and radiation

from planar configuration of parallel cylindrical shells

In this chapter, we study multiple scattering and radiation from a cluster of cylinders

situated in acoustic and elastic media including a full interaction between the cylinders.

In Section 4.1.1, we review an acoustic multiple scattering theory (MST) and derive a

linear system of equations to be solved. In Section 4.1.2, we present numerical results for

angular distribution of form function, and absolute total and scattered pressure fields

at small M and k; the results include the application of MST in designing waveguides

and resonators using different configurations of active and empty shells. In Section

4.2, generalize the idea of acoustic MS to include the elastodynamical properties of

media. In Section 4.2.1, we formulate the problem of elastic MS of SV/P waves from a

configuration of parallel cylindrical shells, including the effect of a mode conversion in an

MS. In Section 4.2.2, we illustrate some numerical simulations for a total displacement

field.

4.1 Acoustic multiple scattering and radiation from planar configura-

tion of parallel cylindrical shells

4.1.1 Multiple scattering theory

Formulation of problem

Consider an acoustic multiple scattering by an arbitrary grating ofM obstacles Sm, (m =

1,M) of cylindrical shape. In general, each obstacle may have no rotational symme-

try. We will refer to obstacles simply as cylinders but may consider elastic solid, rigid,
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or hollow cylinders of outer radii am, as well as thin, thick and multi-laminate cylin-

drical shells of outer am and inner bm radii with and without attachments inside the

shells. We consider a perpendicular incidence (α = 0) on a planar configuration of

cylinders and neglect z dependence, hence eq. (2.65) yields: k⊥ = k, kz = 0, where k

is an acoustic wavenumber. Let x = (x, y) be a position vector of a typical point in

two-dimensional Cartesian coordinates with origin at O, and let us define plane polar

coordinates (rm, θm) at the centers Om. An arbitrary planar configuration of shells is

given in Fig. 4.1. Assume that the Sm, (m = 1,M) cylinders have different physical

properties and are located at the centers Om, at x = lllm, the distance |lllm| from the

origin O (see Fig. 4.1). Time harmonic dependence e−iωt is assumed but omitted in

the following.

Figure 4.1: An arbitrary planar configuration of M cylindrical shells Sm with outer

radius am and inner radius bm, m = 1,M .

The total pressure field p(x) is defined by (2.67) as the sum of incident pinc and

scattered psc pressure fields, and satisfies the acoustic Helmholtz wave equation (2.62)

and the momentum equation(2.63). The incident field is scattered by cylinders, and in

the neighborhood of cylinder Sm is given as

p
(m)
inc =

∞∑

n=−∞
A(m)
n U +

n (kxm), (4.1)

where the function U ±
n (x) is defined by eq. (2.66); xm is a position vector of point P
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with respect to the centers of multipoles at Om (see Figure 4.1) and defined as:

xm = x− lllm, (4.2)

where argx ∈ [0, 2π) and arg (−x) =
(
argx± π

)
mod 2π.

The total scattered field psc can be considered as a superposition of the scattered

fields by all the cylinders in the configuration, and expanded as a sum of multipoles in

the form:

psc =
M∑

m=1

p(m)
sc =

M∑

m=1

∞∑

n=−∞
B(m)
n V +

n (k xm), (4.3)

where B
(m)
n - the scattering coefficients, p

(m)
sc is the wave scattered by cylinder Sm:

p(m)
sc =

∞∑

n=−∞
B(m)
n V +

n (k xm), (4.4)

The scattered field psc can be expressed as the sum of multipoles at the origin using

the generalized Graf’s addition theorem (2.72).

Figure 4.2: A point source impinging on an isotropic multilaminate cylinder submerged

in a fluid medium or embedded in an elastic matrix

In eq. (4.1), the unknown coefficients A
(m)
n for a plane wave incidence are derived

assuming no source term: pS = 0, and that the incident wave is the plane wave of unit

amplitude in direction ψ:

pinc = eikeψ ·x ⇒ A(m)
n = eikê(ψ)·lllmein(

π
2
−ψ) = eik(xm cosψ+ym sinψ)ein(

π
2
−ψ). (4.5)
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A point source normalized by its amplitude at the origin is defined by (2.75). For a

source at point S depicted in Figure 4.2, the coefficients A
(m)
n follow from eq. (2.75)

noting that in the local coordinates of multipole centered at Om:

r′ = |x− x′| = |xm − x′
m|,

where x′ is the position vector of source at point S with respect to origin O, xm and x′
m

are correspondingly the position vectors of an arbitrary point P and a source S with

respect to Om. Thus, in the neighborhood of cylinders Sm, A
(m)
n can be derived as

pinc = A0

∞∑

n=−∞
U +
n (kxm)V

−
n (kx′

m) ⇒ A(m)
n = A0V

−
n (kx′

m), (4.6)

for m = 1,M, n ∈ Z, where the Graf’s addition theorem (2.72) is used for |xm| < |x′
m|

(see Fig. 4.2).

Considering a scattering from a single cylinder in Section 2.3, the response of cylin-

der S1 to the incident waves pinc was defined by eq. (2.77) via transition matrix T.

Following this procedure and applying the boundary conditions around each cylinder

Sm, (m = 1,M) yield T
(m)
nq , the components of transition matrix T(m) of cylinder Sm

in isolation such that

B (m)
n =

∞∑

q=−∞
T (m)
nq A (m)

q , (4.7)

with T
(m)
nq defined in Section 3.3.1 by eqs. (3.128)-(3.129), (3.128) - (3.133), (3.133),

and (3.134) for an elastic multilaminate cylindrical shell and solid cylinder, as well as

rigid and hollow cylinders correspondingly. Below, we will consider MS from a grating

of cylinders by taking into account the full interaction between the obstacles. We shall

consider a grating of M obstacles, and in a particular case, MS from two cylinders.

MS by M cylinders

Consider now an arbitrary planar configuration of M cylinders as shown in Fig. 4.1.

In order to use boundary conditions on the surface of each cylinder Sm, we will express

the total field in terms of rm and θm using Graf’s theorem (2.72). Let lllmj = lllm− lllj be

a position vector of multipole Om with respect to multipole Oj . Since x = lllm + xm =
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lllj + xj → xm = xj + (lllj − lllm), the total field p in the neighborhood of cylinder Sj can

be written as

p =
∞∑

n=−∞

{
A(j)
n U +

n (kxj) +B(j)
n V +

n (kxj) +
M∑

m=1
m 6=j

B(m)
n V +

n

(
k(xj + llljm)

)
}
, (4.8)

where llljm = lllj − lllm = −lllmj . Then noting the properties of V +
n (x), eq. (2.71), and

using Graf’s theorem (2.72), we obtain for |xj | < lj , where lj = min |llljm|:

p =
∞∑

n=−∞

[
A(j)
n U +

n (kxj) +B(j)
n V +

n (kxj) +
M∑

m=1
m 6=j

B(m)
n

∞∑

l=−∞
U +
l (kxj)V

−
l−n(klllmj)

]

=

∞∑

n=−∞

[
A(j)
n U +

n (kxj) +B(j)
n V +

n (kxj) + U +
n (kxj)

M∑

m=1
m 6=j

∞∑

l=−∞
B

(m)
l V −

n−l
(
klllmj

)]

=
∞∑

n=−∞

[
A(j)
n U +

n (kxj) +B(j)
n V +

n (kxj) + U +
n (kxj)

M∑

m=1
m 6=j

∞∑

l=−∞
B

(m)
l (−1)n−lV −

n−l(kllljm)

]

=
∞∑

n=−∞

[
A(j)
n U +

n (kxj) +B(j)
n V +

n (kxj) + U +
n (kxj)

M∑

m=1
m 6=j

∞∑

l=−∞
B

(m)
l V +

l−n(kllljm)

]

=
∞∑

n=−∞

[
B(j)
n V +

n (kxj) +A(j)
n U +

n (kxj) + U +
n (kxj)

M∑

m=1
m 6=j

∞∑

l=−∞
Pnl(kllljm)B

(m)
l

]
, (4.9)

where

Pnl(x) ≡ V +
l−n(x). (4.10)

Here the matrix P = [Pnl] is equal to the transpose of Martin’s S = [Snl] matrix [98],

P = ST . The total incident field impinging on the cylinder Sj is a sum of the last two

terms on the right hand side of eq. (4.9), i.e.

p
(j)
inc +

M∑

m=1
m 6=j

p(m)
sc =

∞∑

n=−∞

[
A(j)
n +

M∑

m=1
m 6=j

∞∑

l=−∞
Pnl(kllljm)B

(m)
l

]
U +
n (kxj). (4.11)

The response of shell Sj to the incident field (4.11) can be obtained by incorporating

the boundary conditions at the interface and the transition matrix elements T
(j)
nq of

cylinder Sj [177]:

p(j)sc =
∞∑

n=−∞

∞∑

q=−∞
T (j)
nq

[
A(j)
q +

M∑

m=1
m 6=j

∞∑

l=−∞
Pql(kllljm)B

(m)
l

]
V +
n (kxj). (4.12)
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Thus, eqs. (4.4) and (4.12) yield a linear system of equations

B(j)
n −

∞∑

q=−∞
T (j)
nq

M∑

m=1
m 6=j

∞∑

l=−∞
Pql(kllljm)B

(m)
l =

∞∑

q=−∞
T (j)
nq A

(j)
q , n ∈ Z, (4.13)

where T
(j)
nq is the component of the transition matrix of cylinder Sj in isolation defined

in Section 3.3.1.

Equivalently,

M∑

m=1

∞∑

l=−∞
XjnmlB

(m)
l =

∞∑

q=−∞
T (j)
nq A

(j)
q , j = 1,M, n ∈ Z, (4.14a)

Xjnml =





δnl, m = j,

−
∞∑

q=−∞
T
(j)
nq Pql(kllljm), m 6= j.

(4.14b)

Consider now a truncated version of the infinite sum in equation (4.14a) that yields

an algebraic system of equations with finite dimensions :

M∑

m=1

N∑

l=−N
XjnmlB

(m)
l =

N∑

q=−N
T (j)
nq A

(j)
q , j = 1,M, n ∈ Z, (4.15)

or in a matrix form

Xb = d, (4.16)

where

X =




I −T(1)P1,2 −T(1)P1,3 · · · −T(1)P1,M

−T(2)P2,1 I −T(2)P2,3 · · · −T(2)P2,M

...
...

...
. . .

...

−T(M)PM,1 −T(M)PM,2 −T(M)PM,3 · · · I




, (4.17)
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and b is a vector of unknown coefficients:

b =




b(1)

b(2)

...

b(M)




, b(j) =




B
(j)
−N

B
(j)
−N+1

...

B
(j)
N




, (j = 1,M) (4.18)

d =




d(1)

d(2)

...

d(M)




=




T(1)a(1)

T(2)a(2)

...

T(M)a(M)




, a(j) =




A
(j)
−N

A
(j)
−N+1

...

A
(j)
N




, (j = 1,M) (4.19)

where T(j) is defined in Section 3.3.1. In eq. (4.17), Pj,m =
[
Pj,m
ql

]
, (q, l ∈ Z) where

Pj,m
ql = V +

l−q(kllljm), (q = −Nj , Nj , l = −Nm, Nm), (j,m = 1,M, j 6= m).

Example: MS from two cylinders

Consider two arbitrarily located cylinders S1 and S2, in this case M = 2. Using Graf’s

theorem (2.72) and the components of transition matrix T(m) of cylinder Sm, (m = 1, 2)

in isolation, we find the response of each cylinder to incident field:

p(1)sc =
∞∑

n=−∞

∞∑

q=−∞
T (1)
nq

[
A(1)
q +

∞∑

l=−∞
Pql(k lll12)B

(2)
l

]
V +
n (kx1), (4.20a)

p(2)sc =
∞∑

n=−∞

∞∑

q=−∞
T (2)
nq

[
A(2)
q +

∞∑

l=−∞
Pql(k lll21)B

(1)
l

]
V +
n (kx2), (4.20b)

where lll12 = lll1 − lll2 = −lll21 is the position vector of multipole O1 with respect to O2,

and Pql(r) is defined by eq. (4.10). Thus, the system of equations (4.13) now reduces

to:

B(1)
n =

∞∑

q=−∞
T (1)
nq

[
A(1)
q +

∞∑

l=−∞
Pql(k lll12)B

(2)
l

]
, (4.21a)

B(2)
n =

∞∑

q=−∞
T (2)
nq

[
A(2)
q +

∞∑

l=−∞
Pql(k lll21)B

(1)
l

]
. (4.21b)

where T
(m)
nq , (m = 1, 2) is defined in Section 3.3.1 for different cylindrical structures.
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Far-field radiated response

Consider now farfield response, the scattered pressure field psc , when kr becomes very

large: kr >> 1. The scattered field psc is defined by eq. (4.3) as an infinite sum at

the center of multipoles, xm. To find far-field behavior of psc, we will write it in terms

of position vector x. Introducing eqs. (4.2), (2.70) and (3.139) into eq. (4.3) and

incorporating the Graf’s theorem (2.72) for |x| >> |lllm| yields

psc =
M∑

m=1

∞∑

n=−∞
B(m)
n V +

n

(
k(x− lllm)

)
=

M∑

m=1

∞∑

n=−∞
B(m)
n

∞∑

l=−∞
V +
l (kx)U −

l−n(klllm), or

(4.22)

psc =
M∑

m=1

∞∑

n=−∞
B(m)
n V +

n

(
k(x− lllm)

)
=

∞∑

n=−∞
FnV

+
n (kx), (4.23)

where

Fn =
M∑

m=1

∞∑

l=−∞
B

(m)
l U −

n−l(klllm). (4.24)

Using the asymptotic expansion of the Hankel function for large values of argument,

eq. (3.139), the far scattered field psc can be split into two parts, g(k|x|) and fM (θ):

psc = g(k|x|)fM (θ)
[
1 +O

( 1

k|x|
)]
, (4.25)

where the function g(k|x|) is defined by eq. (3.141) and the far-field amplitude function

fM (θ), has the form :

fM (θ) =

√
2

π
e−i

π
4

∞∑

n=−∞

M∑

m=1

B(m)
n

∞∑

l=−∞
Jl−n(k|lllm|)eil

(
θ−arg lllm−π

2

)
ein arg lllm , or (4.26)

fM (θ) =
∞∑

n=−∞
fne

inθ, fn =

√
2

π
e−i
(
π
4
+nπ

2

)
Fn, (4.27)

with θ = arg(x).

The total power radiated by the grating of cylinders is measured by the non-negative

far-field flux parameter

σr =

∫ 2π

0
|fM (θ)|2 d θ = 4

∞∑

n=−∞
|Fn|2. (4.28)
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Then, for a configuration of cylinders with the radii am = a, the non-dimensional total

scattering cross section is given by:

Q =
4

k a

∞∑

n=−∞
|Fn|2. (4.29)

4.1.2 Numerical results: small M and k

In this section, we illustrate our numerical results based on MST. The computations are

performed on Matlab for different configurations depicted in Figures 4.3 and 4.7 at small

M and k. In Figure 4.3, d denotes the distance between the centers of two cylinders,

which we also call the cylinder center-to-center spacing. The far-field amplitude function

fM (θ) is defined by eq. (4.27). Figure 4.4 illustrates the angular distribution of form

function for 2 soft cylinders in water at the angle of wave incidence ψ = −90 ◦; the

configuration is depicted in Figure a. Figure a represents Scharstein’s results [144].

Figure b is our Matlab result based on the MST and given for comparison with findings

in [144]. Plots in Figures a and b show a full correspondence and confirm our theoretical

prediction.
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(a) a2 = 2a1, d = 10a1 [144]
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(b) a1 = a2, d = 4a1 [71]

Figure 4.3: Configuration of 2 cylinders on the ring. The left-hand side and the right-

hand side pictures illustrate configurations considered in [144] and [71] correspondingly.

Here d is the distance between the centers of the two cylinders.
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(a) solid line-accurate, dashed

line-uncoupled, results provided

in [144]
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(b) Our result, 2D Elasticity solution

Figure 4.4: The angular distribution of the form function for 2 soft cylinders, ka1 =

1, ka2 = 2, kd = 10
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(a) ka = 0.1, ψ = 0o
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(b) ka = 1, ψ = 0o
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(c) ka = 10, ψ = 0o
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(d) ka = 0.1, ψ = 90o
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(e) ka = 1, ψ = 90o
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(f) ka = 10, ψ = 90o

Figure 4.5: The angular distribution of the far-field amplitude function |f(θ)| at fixed

values of ka for a rigid cylinder submerged in fluid

Figures 4.5 and 4.6 display the angular distribution of the far-field form function

|f(θ)|at fixed values of ka = 0.1, 1, 10 for the configuration of two rigid cylinders

immersed in water (see Figure b). The polar plots show a good agreement between

our theoretical predictions depicted in Figure 4.5 and findings given in [71], shown in
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Figure 4.6.

Figure 4.6: The angular distribution of the form function amplitude for end-on and

broadside incidence upon a pair of cylinders with d = 4a1 at selected non-dimensional

frequencies given in [71].

Material ρ cp

[kg/m3] [m/s]

Aluminum (Al) 2700 6420

Table 4.1: Material properties used for comparison.

Now let us consider some applications of MST. Specifically, we design waveguides

and resonators as an arrangement of empty thin aluminum shells and active tuned shells

[162, 163]. Shells have mechanical properties depicted in Table 4.1 In our calculations,

an active shell is a thin shell with 16 springs and a mass attached inside. Figure 4.8
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depicts an active thin shell with 2 springs and mass attached. It can be tuned by select-

ing the shell thickness, spring stiffness and added mass, and matching its impedance

to the impedance of water. The T matrix for an active shell is derived in [163]. Fig-

ures 4.9 and 4.10 illustrate the absolute pressure field for a planar configuration of

cylinders at selected values of nondimensional frequency ka = 0.2, 0.3, 0.4, 0.5. White

colored cylinders correspond to empty thin aluminum shells of thickness h = 0.025a,

and pink colored cylinders correspond to the impedance matched shells of the same

thickness with 16 springs and a mass attached inside. Figures a, b, a and b correspond

to case M = 104, when devices are inactive, Figures c, d, c and d show active devices

(M = 104), and Figures e, f, e and f show the total field for a waveguide (M = 80).

Analyzing the total field around the configuration, we can notice that active shells act

as water. Pictures for a total field around a waveguide and a configuration with active

shells are almost identical. Thus, by switching “ON” certain shells in the slab, the

configuration becomes effectively open and acts as a waveguide.
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(a) M=80
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(c) M=360 (d) Sublayers

Figure 4.7: The configurations of cylinders: a waveguide slab and Helmholtz resonator.

Figure 4.8: A schematic of a shell-spring-mass configuration S1 with 2 springs and mass

attached inside the thin shell.



113

(a) Device OFF, M = 104, ka = 0.2 (b) Device OFF, M = 104, ka = 0.3

(c) Device ON, M = 104, ka = 0.2 (d) Device ON, M = 104, ka = 0.3

(e) Waveguide, M = 80, ka = 0.2 (f) Waveguide, M = 80, ka = 0.3

Figure 4.9: The absolute value of the pressure field for N = 3 at selected values of

ka = 0.2, 0.3 when devices are inactive (a) and (b), and active (c) and (d), and for

waveguide (e) and (f). White colored cylinders correspond to empty thin aluminum

shells of thickness h = 0.025a, and pink colored cylinders correspond to tuned active

shells
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(a) Device OFF, M = 104
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(b) Device OFF, M = 104
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(c) Device ON, M = 104
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(d) Device ON, M = 104
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(e) Waveguide, M = 80
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(f) Waveguide, M = 80

Figure 4.10: The absolute value of the pressure field for N = 3 for selected values of

ka = 0.4, 0.5 when devices are inactive (a) and (b), and active (c) and (d), and for

waveguide (e) and (f). White colored cylinders correspond to empty thin aluminum

shells of thickness h = 0.025a, and pink colored cylinders correspond to tuned active

shells.

Consider now another planar configuration of shells arranged in a closed rectangular

frame shown in Figures b-c. The individual shells of these arrangements can be hidden

in water by optimizing the spring-mass parameters. By switching “ON” certain shells

in a rectangular frame, the frame can be effectively open and produce an effect of

the Helmholtz resonator. Figures 4.11 and 4.12 illustrate the absolute total pressure

field for a such configuration at ka = 0.2. The pressure field is excited by the source

located at (Xp, Yp) = (−500, 500). White colored cylinders correspond to empty thin



115

aluminum shells of thickness h = 0.025a, and pink colored cylinders correspond to the

impedance matched shells of the same thickness with 16 springs and a mass attached

inside. Figures a and b illustrate correspondingly a resonator implemented withM = 96

thin shells and a resonator-like device constructed with M = 104 shells.

Figures a and b show identical behavior, similarly Figures a and b are alike and have

a full correspondence. An arrangement of active and passive (empty) shells produces

equal total field amplitudes. When all shells are active, i.e. the device is switched “ON”

(see Figure c), the scattering amplitude is very low and equivalent to the amplitude of

the incident field excited by the source ps. When the switch is “OFF” (see Figure c),

the amplitude is high.
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(a) Resonator, M = 96
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(d) Device: all OFF, M = 104

Figure 4.11: The absolute value of the normalized total pressure field amplitude
∣∣∣ p(x)ps(0)

∣∣∣

at ka = 0.2 with N = 2, for a planar configuration of M = 96 and M = 104 shells

excited by the source located at (Xp, Yp) = (−500, 500). White colored cylinders

correspond to empty thin aluminum shells of thickness h = 0.025a, and pink colored

cylinders correspond to tuned active shells.
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(d) Device OFF, M = 104

Figure 4.12: The absolute value of the normalized total pressure field amplitude
∣∣∣ p(x)ps(0)

∣∣∣

at ka = 0.2 with N = 2, for a planar configuration of M = 96 and M = 104 shells

excited by the source located at (Xp, Yp) = (−1, 500). White colored cylinders corre-

spond to empty thin aluminum shells of thickness h = 0.025a, and pink colored cylinders

correspond to tuned active shells.

The total pressure field around the configurations given in Figures a - b

(a) ka = 0.2, M = 192 (b) ka = 0.3, M = 192 (c) ka = 0.4, M = 192

Figure 4.13: The absolute value of the normalized total pressure field amplitude
∣∣∣ p(x)ps(0)

∣∣∣

for N = 3 and at selected nondimensional frequencies ka = 0.2, 0.3, 0.4, for a resonator,

an arrangement of empty and active shells (M = 192).
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Figure 4.13 illustrates the absolute value of the normalized total pressure field am-

plitude
∣∣∣ p(x)ps(0)

∣∣∣ for a configuration of M = 192 shells at selected frequencies ka =

0.2, 0.3, 0.4 with N = 3. At ka = 0.4, the total field amplitude inside the frame is

much higher than the field outside the frame.

To find the resonance frequencies at which the arrangement acts as resonator, the

variation of the backscattering form function and the total scattering cross-section with

wavenumber ka is evaluated for an arrangement of active and empty shells (M =

360, N = 3) and shown in Figure 4.14. Calculations are performed for the configuration,

shown in Figure c, with M = 360, N = 3. The field around and inside the frame is

excited by the source ps located at the point (−1000a, 1000a).

Figure 4.15 represents the absolute value and real part of the normalized scattered

pressure field psc(x)
ps(0)

for an arrangement shown in Figure c at selected resonance fre-

quencies depicted in Figure 4.12. In Figure 4.15, the gray color corresponds to the

field amplitude greater than 1, and the black color to the amplitude smaller than −1.

Figures show that at resonance frequencies, the frame acts as a resonator resembling

the dynamical behavior of two interacting dipoles.

(a) Form function vs. ka (b) TSCS vs. ka

Figure 4.14: The backscattering form function and the total scattering cross-section

versus wavenumber ka for a planar configuration of M = 360 aluminum cylinders of

radius a, excited by the source ps located at (Xp, Yp) = (−1000a, 1000a).
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(a) ka = 0.0055 (b) ka = 0.008 (c) ka = 0.009 (d) ka = 0.013

(e) ka = 0.0055 (f) ka = 0.008 (g) ka = 0.009 (h) ka = 0.013

Figure 4.15: The absolute value and real part of the normalized scattered pressure field

amplitudes at selected resonance frequencies with N = 3 for a resonator, a planar con-

figuration ofM = 360 shells excited by the source located at (Xp, Yp) = (−1000, 1000).

The top row figures represent Re
(
psc(x)
ps(0)

)
, and the bottom row figures depict

∣∣∣psc(x)ps(0)

∣∣∣.
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Figure 4.16: The absolute value of the normalized total pressure field amplitude
∣∣∣ p(x)ps(0)

∣∣∣

for N = 2 and at the resonance frequency ka = 0.007, for a planar configuration of 4

rows and 5 columns of shells (M = 20).

Figure 4.16 illustrates the absolute value of the normalized total pressure field ampli-

tude
∣∣∣ p(x)ps(0)

∣∣∣ at the resonance frequency ka = 0.007 and N = 2, for a planar configuration

of 4 rows and 5 columns of shells (M = 20). The dipole behavior of the structure is

noticed again. The structure acts as a dipole oscillating in the direction of the source

(45◦ from the origin).
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4.2 Elastic Multiple Scattering and Radiation from Planar Configu-

ration of Parallel Cylindrical Shells

In this section, we study elastic multiple scattering and radiation from a cluster of

cylinders situated in elastic media, including wave mode conversion and a full interaction

between the cylinders.

4.2.1 Elastic multiple scattering theory

Formulation of problem: P/SV in-plane wave propagation

Consider an elastic multiple scattering by an arbitrary grating ofM obstacles Sm, (m =

1,M) of cylindrical shape. In general, each obstacle may have no rotational symmetry.

We will refer to obstacles simply as cylinders, but this may include hollow, rigid, and

elastic solid cylinders of outer radii am, as well as thin and thick cylindrical shells of

outer am and inner bm radii with and without attachments inside the shells. Let x =

(x, y) be a position vector of a typical point in two-dimensional Cartesian coordinates

with origin at O, and let us define plane polar coordinates (rm, θm) at the centers

Om. An arbitrary planar configuration of shells is given in Fig. 4.1. Assume that

the Sm, (m = 1,M) cylinders have different physical properties and are located at the

centers Om, at x = lllm, the distance |lllm| from the origin O (see Fig. 4.1).

The governing equations are Navier’s equations (2.78) in two dimensions for the

displacement u = (u1, u2), uj = uj(x1, x2). The Helmholtz decomposition (2.56) for the

displacement u leads to separate Helmholtz equations (2.80) for the scalar potentials

ϕ and ψ. We decompose the total displacement field u as a sum of incident field

uinc and scattered field usc such that eq. (2.79) holds. We assume the general form

of incident field potentials φinc, ψinc in the regular basis. The total scattered field

potentials φsc, ψsc can be found as a superposition of the scattered fields by all obstacles
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in the configuration, and hence, in the neighbourhood of each cylinder, we have


φ

inc

ψinc


 =

∞∑

n=−∞


A

(m)
p, nU +

n (kxm)

A
(m)
s, nU +

n (Kxm)


 , (4.30a)


φ

sc

ψsc


 =

M∑

m=1


Φ

(m)
sc

Ψ
(m)
sc


 =

M∑

m=1

∞∑

n=−∞


B

(m)
p, n V +

n (kxm)

B
(m)
s, n V +

n (Kxm)


 , (4.30b)

where xm is a position vector of point P with respect to the centers of multipoles at

Om (see Figure 4.1) and given by eq. (4.2); the functions U ±
n (z) and V ±

n (z) are defined

by eqs. (2.66) and (2.70) respectively. The scattered field potentials Φsc and Ψsc can be

expressed as the sum of multipoles at the origin using the generalized Graf’s addition

theorem given by eq. (2.66).

The response of each cylinder Sm to incident elastic waves can be defined by its

transition matrix T(m). Applying boundary conditions and evaluating the displacement

and stress field around cylinder Sm yields the transition matrix T(m) of cylinder Sm in

isolation, such that


B

(m)
p, n

B
(m)
s, n


 =

∞∑

q=−∞


T

pp
nq

(m)
T psnq

(m)

T spnq
(m)

T ssnq
(m)




A

(m)
p, q

A
(m)
s, q


 , (4.31)

where the submatrices of the transition matrix, T ςξnq
(m)

(ς, ξ ≡ p, s), are obtained con-

sidering P and SV wave incidences separately and given in Section 3.3.2 for cylindrical

multilaminate structure, and can be reduced to use for a solid cylinder, or thin or

thick shell. In general, for obstacles with no rotational symmetry, the blocks T ςξnq
(m)

(ς, ξ ≡ p, s) are nondiagonal; for cylinders with a rotational symmetry, T ςξnq
(m)

are diag-

onal.

MS by M cylinders

Consider now an arbitrary planar configuration of M cylinders as shown in Fig. 4.1.

In order to use boundary conditions on the surface of each cylinder Sm, we will express

the total field in terms of rm and θm using Graf’s theorem (2.72). Let lllmj = lllm− lllj be

a position vector of multipole Om with respect to multipole Oj . Since x = lllm + xm =
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lllj + xj → xm = xj + (lllj − lllm), in the neighborhood of cylinder Sj the total field

potentials φ and ψ can be written as
(
φ

ψ

)
=

∞∑

n=−∞

{(
A

(j)
p, nU

+
n (kxj)δip + B

(j)
p, nV

+
n (kxj)

A
(j)
s, nU

+
n (Kxj)δis +B

(j)
s, nV

+
n (Kxj)

)
+

M∑

m=1
m 6=j

(
B

(m)
p, n V

+
n (k(xj + llljm))

B
(m)
s, nV

+
n (K(xj + llljm))

)}
,

(4.32)

where δip and δis are the Kronecker deltas, with i = p for P wave incidence and i = s

for SV wave incidence, and llljm = lllj−lllm = −lllmj . Then noting the properties of V +
n (x),

eq. (2.71), and using Graf’s theorem, we obtain for |xj | < lj , where lj = min |llljm|:
(
φ

ψ

)
=

∞∑

n=−∞

{(
A

(j)
p, nU

+
n (kxj)δip + B

(j)
p, nV

+
n (kxj)

A
(j)
s, nU

+
n (Kxj)δis +B

(j)
s, nV

+
n (Kxj)

)

+
M∑

m=1
m 6=j



B

(m)
p, n

∞
∑

l=−∞

U +
l (k xj)V

−
l−n(k llljm))

B
(m)
s, n

∞
∑

l=−∞

U +
l (K xj)V

−
l−n(Kllljm))



}

=
∞∑

n=−∞

{(
A

(j)
p, nU

+
n (kxj)δip + B

(j)
p, nV

+
n (kxj)

A
(j)
s, nU

+
n (Kxj)δis +B

(j)
s, nV

+
n (Kxj)

)

+




U +
n (kxj)

∑M
m=1
m 6=j

∞
∑

l=−∞

B
(m)
p, l V

−
n−l(k lllmj)

U +
n (Kxj)

∑M
m=1
m 6=j

∞
∑

l=−∞

B
(m)
s, l V

−
n−l(K lllmj)



}

=
∞∑

n=−∞

{(
B

(j)
p, nV

+
n (kxj)

B
(j)
s, nV

+
n (Kxj)

)

+




A
(j)
p, nU

+
n (kxj)δip + U +

n (kxj)
∑M

m=1
m 6=j

∞
∑

l=−∞

Pnl(kllljm)B
(m)
p,l

A
(j)
s, nU

+
n (Kxj)δis + U +

n (Kxj)
∑M

m=1
m 6=j

∞
∑

l=−∞

Pnl(Kllljm)B
(m)
s,l



}
, (4.33)

where

Pnl(x) ≡ V +
l−n(x). (4.34)

Here the matrix P = [Pnl] is equal to the transpose of Martin’s S = [Snl] matrix [98],

P = ST . The total incident field impinging on cylinder Sj is a sum of the last two terms

on the right hand side of eq. (4.32), i.e.



φ
(j)
inc +

∑M
m=1
m 6=j

φ
(m)
sc

ψ
(j)
inc +

∑M
m=1
m 6=j

ψ
(m)
sc


 =

∞∑

n=−∞




[

A
(j)
p, nδip +

∑M
m=1
m 6=j

∞
∑

l=−∞

Pnl(kllljm)B
(m)
p,l

]

U +
n (kxj)

[

A
(j)
s, nδis +

∑M
m=1
m 6=j

∞
∑

l=−∞

Pnl(Kllljm)B
(m)
s,l

]

U +
n (Kxj)


 . (4.35)

The response of shell Sj to the incident field (4.35) can be obtained by incorporating

the boundary conditions at the interface and the transition matrix T(j) of cylinder Sj
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in isolation [177]:

(
φ
(j)
sc

ψ
(j)
sc

)
=

∞∑

n=−∞

(
T ppnq

(j) T psnq
(j)

T spnq
(j) T ssnq

(j)

)
(4.36)

×




[

A
(j)
p, nδip +

∑M
m=1
m 6=j

∞
∑

l=−∞

Pnl(kllljm)B
(m)
p,l

]

V +
n (kxj)

[

A
(j)
s, nδis +

∑M
m=1
m 6=j

∞
∑

l=−∞

Pnl(Kllljm)B
(m)
s,l

]

V +
n (Kxj)


 . (4.37)

Thus, eqs. (4.30b) and (4.36) yield a linear system of equations

(
B

(j)
p, n

B
(j)
s, n

)
−

∞∑

q=−∞

(
T ppnq

(j) T psnq
(j)

T spnq
(j) T ssnq

(j)

)
M∑

m=1
m 6=j

∞∑

l=−∞

(
Pql(kllljm)B

(m)
p, l

Pql(Kllljm)B
(m)
s, l

)

=
∞∑

q=−∞

(
T ppnq

(j) T psnq
(j)

T spnq
(j) T ssnq

(j)

)(
A

(j)
p, nδip

A
(j)
s, nδis

)
, n ∈ Z. (4.38)

Equivalently,

M∑

m=1

∞∑

l=−∞
Xjnml

(
B

(m)
p, l

B
(m)
s, l

)
=

∞∑

q=−∞

(
T ppnq

(j) T psnq
(j)

T spnq
(j) T ssnq

(j)

)(
A

(j)
p, nδip

A
(j)
s, nδis

)
, j = 1,M, n ∈ Z

(4.39a)

Xjnml =





δnl, m = j,

−
∞∑

q=−∞


T

pp
nq

(j) T psnq
(j)

T spnq
(j) T ssnq

(j)




Pql(kllljm)

Pql(Kllljm)


, m 6= j.

(4.39b)

Truncating the infinite sums in eq. (4.39) yields an algebraic system of equations

with finite dimensions:

M∑

m=1

N∑

l=−N
Xjnml

(
B

(m)
p, l

B
(m)
s, l

)
=

N∑

q=−N

(
T ppnq

(j) T psnq
(j)

T spnq
(j) T ssnq

(j)

)(
A

(j)
p, nδip

A
(j)
s, nδis

)
, j = 1,M, n ∈ Z (4.40)

or in matrix form

Xb = d, (4.41)

where

X =




I −T(1)P1,2 −T(1)P1,3 · · · −T(1)P1,M

−T(2)P2,1 I −T(2)P2,3 · · · −T(2)P2,M

...
...

...
. . .

...

−T(M)PM,1 −T(M)PM,2 −T(M)PM,3 · · · I




, (4.42)
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b is a vector of unknown coefficients:

b =


Bp

Bs


 , Bǫ =




b
(1)
ǫ

b
(2)
ǫ

...

b
(M)
ǫ




, b(j)
ǫ =




B
(j)
ǫ,−N

B
(j)
ǫ,−N+1

...

B
(j)
ǫ,N




, ǫ = p, s, j = 1,M, (4.43)

d =





(
dp 0

)T
, forP wave incidence,

(
0 ds

)T
, forSV wave incidence,

dǫ =




d
(1)
ǫ

d
(2)
ǫ

...

d
(M)
ǫ




=




T
(1)
ǫ a

(1)
ǫ

T
(2)
ǫ a

(2)
ǫ

...

T
(M)
ǫ a

(M)
ǫ




, ǫ = p, s,

(4.44)

a(j)ǫ =




A
(j)
ǫ,−N

A
(j)
ǫ,−N+1

...

A
(j)
ǫ,N




, Pj,m =


Pj,m

ql (kllljm)

Pj,m
ql (Kllljm)


 , ǫ = p, s, j,m = 1,M, j 6= m, (4.45)

where index p stands for P waves and s for SV waves, T
(j)
ǫ is defined by eq. (3.149), and

its components T ǫǫnq
(j), ǫ = p, s are given in Section 3.3.2. In eq. (4.45) Pj,m

ql (κ̃ llljm) =

V +
l−q(κ̃ llljm), (κ̃ = k,K, q = −Nj , Nj , l = −Nm, Nm, j,m = 1,M, j 6= m).

4.2.2 Numerical results

In this section, we present the implementation of COMSOL simulations for a planar

configuration of two aluminum cylinders of radii a embedded in a titanium matrix.

The cylinders are positioned at points O1(0, 1.5a) and O2(0,−1.5a). Properties of

considered material are given in Table 4.2. The field around the cylinders is excited

by the point force fp = (0, 100) applied at (Xp, Yp) = (−10a, 0). Figure 4.17 depicts a

total displacement field, and Figure 4.18 illustrates the distribution of the stress tensor

components at ka = 2.5 and ka = 5. Since the force applied is in the vertical upward

direction, the normal stresses σxx and σyy are the reflections of one another across the

x-axis. The shear stress σxy is symmetric around the x axis.



124

Material Density, ρ Young’s modulus, E Poisson’s ratio, ν

[kg/m3] [GPa]

Aluminum 3003-H18, (Al) 2730 69 0.33

Titanium beta-21S, (Ti) 4940 105 0.33

Table 4.2: Material properties used for computation in COMSOL.

(a) ka = 2.5, M = 2 (b) ka = 5, M = 2

Figure 4.17: The total displacement field amplitude u at ka = 2.5 and ka = 5, for a

planar configuration of two aluminum cylinders of radius a, excited by the point force

fp = (0, 100) located at (Xp, Yp) = (−10a, 0).
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(a) σxx at ka = 2.5 (b) σxx at ka = 5

(c) σxy at ka = 2.5 (d) σxy at ka = 5

(e) σyy at ka = 2.5 (f) σyy at ka = 5

Figure 4.18: The amplitudes of components of stress tensor σ at ka = 2.5 and ka = 5,

for a planar configuration of two aluminum cylinders of radius a, excited by the point

force fp = (0, 100) located at (Xp, Yp) = (−10a, 0).
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Chapter 5

Iterative methods for solution of multiple scattering

problems

The multiple scattering and radiation problems studied in Chapter 4 lead to the system

of linear algebraic equations given by (4.16). The complexity of the system grows with

the number of scatterers and frequency. A direct solution of the system leads to an

excessive simulation run time. Therefore, in this chapter, we develop and provide iter-

ative approaches suitable for a parallel computation of linear systems and applicable in

many different areas of science and engineering. For example, these iterative techniques

can be used in acoustics, elastodynamics, electrodynamics, probability and mathemat-

ical statistics, algebra, numerical solution of integral equations, random walk, theory

of stationary time series and signals, etc. [185, 9, 66, 6, 184, 154, 46, 38, 134, 22].

We start in Section 5.1 with a definition of Toeplitz matrices, and categorize some

matrix types. Specifically, we study the structure of multilevel matrices and consider

some examples. In Section 5.2.2, we review biorthogonal and orthogonal polynomials,

and investigate their properties and applications in a matrix inversion. The iterative

methods for a solution of linear systems are described in Section 5.3. For an arbitrary

planar configuration of scatterers, one of the iterative approaches uses a Neumann series

expansion to invert the matrix X and solve a linear system. This approach is presented

in Section 5.3.1 for a fixed value of frequency. The generalization of this iterative

approach for a band of frequencies is provided in Section 5.3.2. Section 5.3.3 studies

the fast preconditioned iterative methods. Particularly, the application of the matrix

vector product method and Fast Fourier Transform is presented. Another iterative

approach is proposed for an evenly distributed cluster of scatterers using the Block

Toeplitz structure of the system. The iterative methods for Block Toeplitz matrices of
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level 1 and 2 are described in Section 5.3.4. Numerical results are illustrated in Section

5.4. They include the Neumann expansion study given in Section 5.4.1, and the results

obtained using the iterative method for Block Toeplitz matrix of level 1 illustrated

in Section 5.4.2. The theoretical predictions implemented in Matlab and FORTRAN

are compared to those obtained by COMSOL Multiphysics software. The spectral

radius of the matrix is investigated as a function of wavenumber and the validity of

the Neumann series solution is shown by modifying the number of scatterers M and

the distance between the cylinders d. Numerical results are also presented for the CPU

time taken to solve the linear system by varying values of M and d.

5.1 Matrix types

5.1.1 Toeplitz matrices

Toeplitz matrices or Toeplitz forms are named after O. Toeplitz [164], honoring his early

work from 1911 on bilinear L-forms in relation to Laurent series. A Toeplitz matrix

has a specific structure such that its each descending diagonal from the left to the right

is constant. In the early 1920s, Szegö [66] studied the distribution of eigenvalues of

Toeplitz forms and introduced a new class of polynomials that are closely related to

these forms. As we will see further, the special features of the Toeplitz matrix will allow

us to apply the Krylov subspace methods [140] that are nowadays considered among

the most powerful iterative techniques available for large scale linear systems.

Toeplitz and Circulant matrices

The Toeplitz matrix Pj,m =
[
Pj,m
ql

]
=
[
P j,mq−l

]
has such a structure that each of its

subdiagonals, which are parallel to the main diagonal, is constant:

P =
[
Pq−l

]
=




P0 P−1 P−2 . . . P−2N

P1 P0 P−1 . . . P−2N+1

P2 P1 P0 . . . P−2N+2

. . . . . . . . .
. . . . . .

P2N P2N−1 P2N−2 . . . P0




, (5.1)
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where 1 ≤ q, l ≤ 2N + 1, N = Nj = Nm. Here we dropped upper indices j and m of

matrix Pj,m for simplicity of notation. Matrix P of order 2N +1 with elements Pql will

have Toeplitz structure if and only if [185]:

Pq1l1 = Pq2l2 , with q1 − l1 = q2 − l2. (5.2)

A special form of Toeplitz matrix where each column vector is rotated one ele-

ment upward relative to the preceding column vector is called a Circulant matrix. In

particular, if [185]

Pq1l1 = Pq2l2 , with q1 − l1 =
(
q2 − l2

)
mod (2N + 1), (5.3)

then such a matrix will have Circulant structure, and will be called a Circulant matrix

of order 2N + 1 and denoted by C:

C =




P0 P−1 P−2
. . . P−2N

P−2N P0 P−1
. . . P−2N+1

P−2N+1 P−2N P0
. . . P−2N+2

. . .
. . .

. . .
. . .

. . .

P−1 P−2 P−3
. . . P0




. (5.4)

The Circulant matrices that have upper triangular or lower triangular form are called

semicirculant matrices. For example, the elements of upper triangular semicirculant

matrix CU can be formed from elements of matrix P of order 2N + 1:

CUq l =





Pq−l, q ≤ l,

0, q > l,

for 1 ≤ q , l ≤ 2N + 1. (5.5)

If [129]

Pq1l1 = −Pq2l2 , with q1 − l1 =
(
q2 − l2 + (2N + 1)

)
, (5.6)

then such a matrix will be called a Skewcirculant matrix S of order 2N +1. A Skewcir-

culant matrix S differs from Circulant matrix C by a sign change in all elements below
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the main diagonal and has the form:

S =




P0 P−1 P−2
. . . P−2N

−P−2N P0 P−1
. . . P−2N+1

−P−2N+1 −P−2N P0
. . . P−2N+2

. . .
. . .

. . .
. . .

. . .

−P−1 −P−2 −P−3
. . . P0




. (5.7)

The Toeplitz matrix P of order 2N + 1 can be defined by its first row and first

column and can be generated by the root vector

p =
(
P−2N , P−2N+1, . . . , P−1, P0, P1, . . . , P2N−1, P2N

)T
, (5.8)

whereas the Circulant matrix C of order 2N + 1 can be generated by its first column:

c =
(
P0, P−2N , P−2N+1, . . . , P−1

)T
, (5.9)

or its first row:

c′ =
(
P0, P−1, . . . , P−2N+1, P−2N

)
. (5.10)

As we can see, the Circulant matrix C requires fewer elements to store than the Toeplitz

matrix does.

The Toeplitz matrix P =
[
Pql
]
=
[
Pq−l

]
of order 2N +1 can be split into Circulant

C and Skewcirculant S parts [129]:

P = C+ S, (5.11)

where the top row elements of Circulant matrix C = [Cq l] of order 2N + 1 can be

defined as:

C1 1 = P11, C1 l =
1

2
(P1 l + P2N+2−l, 1) for l = 2, . . . , 2N + 1, (5.12)

and the top row elements of Skewcirculant matrix S = [Sq l] of order 2N + 1 have the

form:

S1 1 = 0, S1 l =
1

2
(P1 l − P2N+2−l, 1) for l = 2, . . . , 2N + 1, (5.13)
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In some cases Pi elements of Toeplitz matrix P, eq. (5.1), can be treated as square

matrices that can have a Toeplitz structure. These block matrices can also consist of

blocks of Toeplitz structure leading to the construction of multilevel block matrices that

will be addressed further.

Toeplitz matrices generated by the Laurent series

In his early work [164] from 1911, Toeplitz studied infinite Toeplitz matrices in relation

to Laurent series:

f(z) =
∞∑

k=−∞
P k z

k, (5.14)

where P k are elements of an infinite Toeplitz matrix F =
[
Pq−l

] ∞
q, l=−∞:

F =




· · · · · ·

· P0 P−1 P−2 P−3 ·

· P1 P0 P−1 P−2 ·

· P2 P1 P0 P−1 ·

· P3 P2 P1 P0 ·

· · · · · ·




. (5.15)

Toeplitz [164] showed that the spectrum of matrix F overlaps with the set of values of

f(z) at |z| = 1, if f(z) is convergent in the ring that includes a unit circle |z| = 1. The

inverse of an infinite Toeplitz matrix has also infinite Toeplitz structure. Any infinite

Toeplitz matrix F and its inverse F−1 can be decomposed as multiplication of two

infinite upper and lower triangular Toeplitz matrices [170]:

F = F−F+ = F+F−, F−1 = F−1
− F−1

+ = F−1
+ F−1

− . (5.16)

The Laurent series (5.14) can also be associated with semi-infinite Toeplitz matrix

F0,∞ =
[
Pq−l

]∞
q, l=0

:

F0,∞ =




P0 P−1 P−2 ·

P1 P0 P−1 ·

P2 P1 P0 ·

· · · ·




. (5.17)
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The semi-infinite Toeplitz matrix F0,∞ may consist of some families of matrices of the

form:

Pn =
[
Pq−l

] n
q, l=0

, n = 0, 1, 2, ... 2N, (5.18)

where N = Nj = Nm is the truncation number and

[
Pq−l

] n
q, l=0

=




P0 P−1 P−2 · · · P−n

P1 P0 P−1 · · · P−n+1

· · · · · · · · · · · · · · ·

Pn−1 Pn−2 Pn−3 · · · P−1

Pn Pn−1 Pn−2 · · · P0




. (5.19)

Multilevel block matrices will be addressed next.

5.1.2 Multilevel matrices

The idea of multilevel matrix was proposed by Voevodin and Tyrtyshnikov [185]. Con-

sidering different classes of matrices, it is assumed that one class contains matrices

of the same size that form a linear manifold in the space of matrices of the same

size. Such a class of matrices can be given by fixing some values of α
(q)
ij and γ(q)

(1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ q ≤ Q) and requiring that it contains only matrices of size

m× n with elements aij that satisfy the condition [185]:

∑

i, j

α
(q)
ij aij = γ(q), 1 ≤ q ≤ Q. (5.20)

If K is one of such matrix classes and A ∈ K then the matrix A = [aij ] is called K type.

We will denote a general type of matrices by symbol G, Toeplitz matrices by T, and

Circulant matrices by C. The general type of matrices G can be defined by eq. (5.20)

only when α
(q)
ij and γ(q) take zero values.

Let matrices of K type be defined by eq.(5.20). If the matrix of size mp × nr is

partitioned into blocks aij of size m× n that satisfy the relation

∑

i, j

α
(q)
ij aij = γ(q)E, (5.21)
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then the mp×nr matrix has a block type K, or more precisely a composite type KG that

we will discuss further; here E is m× n matrix with all entries equal to 1:

E =




1 1 1 . . . 1

1 1 1 . . . 1

1 1 1 . . . 1

...
...

...
. . .

...

1 1 1 . . . 1




. (5.22)

The block matrix of size mp × nr can be defined as the Kronecker product of two

matrices: m× n matrix A and p× r matrix B

A⊗B =




a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB




. (5.23)

Equation (5.20) is a linear system with respect to the elements of matrix A = [aij ].

This system can be written in a matrix form as:

α vec
(
A
)
= γ, (5.24)

where

α =




vec
(
α(1)

)T

vec
(
α(2)

)T
...

vec
(
α(Q)

)T




, γ =




γ(1)

γ(2)

...

γ(Q)




, (5.25)

where α(q) = [α
(q)
ij ] is m × n matrix, and γ(q) is m × 1 vector (1 ≤ i ≤ m, 1 ≤ j ≤

n, 1 ≤ q ≤ Q); vec
(
A
)
defines the vectorization of matrix A that is constructed by

packing consecutively the columns of matrix A into a single column vector:

vec
(
A
)
= [a11 . . . am1a12 . . . am2a13 . . . . . . amn−1a1n . . . amn]

T . (5.26)

Similarly, vec
(
α(q)

)
is formed by stacking the columns of matrix α(q). Let K type

satisfy the system (5.21), then the block type KGkl is defined by the following system:

(
I l ⊗α⊗ I k

)
vec

(
A
)
= g l ⊗ γ ⊗ g k, (5.27)
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where I is the identity matrix, g is the vector with all entries equal to 1, the subindices

denote the order of matrix or vector, and ⊗ symbolizes the Kronecker product that is

a special case of the tensor product and defined by eq. (5.23); the Kronecker product

is associative.

Let K1, . . . , Ks be different classes of matrices admitting such classification. We can

construct new composite types based on these types, e.g. K1 · · · Ks. The matrices of

composite types are called multilevel matrices and characterized by block partitioning

of different levels. We will denote blocks as follows. The matrix A itself is a single

block of level 0. If the matrix A has a composite type K1 . . . Ks and class Kk consists

of matrices of sizes mk × nk (1 ≤ k ≤ s) then the matrix A comprises m1 × n1 blocks

ai1j1 of size m2 · · ·mk × n2 · · ·nk that form the level 1 (1 ≤ i1 ≤ m1, 1 ≤ j1 ≤ n1).

Next, ∀ai1j1 blocks consist of m2 × n2 blocks ai1j1, i2j2 that construct the level 2. For

1 ≤ k < s, each of ai1j1,... ikjk blocks of level k consists of mk × nk blocks of level k + 1.

The last level s is formed by the elements that cannot be partitioned, and assumed to

contain only complex numbers. In general, if the matrix is the s level block matrix, it

has a composite type Gm1n1 · · · Gmsns . When each block is square, we can use one index:

Gm1 · · · Gms . Multilevel partitioning is of interest if the level blocks have some structure.

In the proceeding section, we will consider the matrices of composite types Tm1Gm2 and

Tm1,m2Gm3 . The former defines a two-level block matrix, i.e. a block Toeplitz (BT)

matrix of level 1 with general type subblocks of order m2 embedded in Toeplitz blocks

of order m1; the latter type characterizes a three-level block matrix with level orders

m1, m2 and m3 that is a BT matrix of level 2 with general type subblocks, here the

general type subblocks of order m3 are embedded in Toeplitz blocks of order m2 that

are nested inside of another Toeplitz block of order m1.

Examples of multilevel matrices

Consider a planar configuration consisting ofMy rows andMx columns of cylinders with

a total number of cylinders: M = MxMy. Let each cylinder have the same physical

properties and radius and satisfy the condition of continuity of normal stresses and

displacements at the interfaces. This will yield the same T-matrix for each cylinder,
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i.e. T(j) = T̃, (j = 1,M). Then for a configuration with My rows and Mx columns of

cylinders, the matrix X defined by eq. (4.17) has a BT structure. Figure 5.1 illustrates

some examples of such configurations.

(a) X is a Block Toeplitz matrix of level 1 (b) X is a Block Toeplitz matrix of level 2

Figure 5.1: Examples of configurations that lead to Block Toeplitz matrices of level 1,

X ∈ TMG2N+1, and level 2, X ∈ TMy ,MxG2N+1, where Mx ·My = M . On the right

picture, d is the distance between the centers of two cylinders.

Example of BT matrix of level 1. For a configuration with one row (My = 1) or

one column (Mx = 1) of cylinders, the matrix X ∈ TMG2N+1 becomes a BT matrix of

level 1 with M =Mx for one row of cylinders and M =My for one column of cylinders

(see Figure a). The matrix X has order M(2N + 1), where N is the mode number. As

a two-level block matrix, the BT matrix X has order M and consists of square blocks

XXX1
ij = XXX1

i−j where 1 ≤ i, j ≤ M , and in general, every block can be a non-symmetric

complex valued matrix of order (2N + 1):

X =




XXX1
0 XXX1

−1 XXX1
−2

. . . XXX1
−M+1

XXX1
1 XXX1

0 XXX1
−1

. . . XXX1
−M+2

XXX1
2 XXX1

1 XXX1
0

. . . XXX1
−M+3

. . .
. . .

. . .
. . .

. . .

XXX1
M−1 XXX1

M−2 XXX1
M−3

. . . XXX1
0




, (5.28)



135

Here XXX1
0 is the block identity matrix of order 2N + 1.

Example of BT matrix of level 2. Consider a planar configuration shown in

Figure b with My rows and Mx columns of cylinders that have identical mechanical

properties and transition matrices T(j) = T̃, (j = 1,M). In this case, the matrix X

is the three-level block matrix, i.e. X ∈ TMy ,MxG2N+1, and has a BT structure of

level 2. Again, the matrix X is of order M(2N + 1). At the same time, as a BT

matrix, the matrix X has order My (see eq. (5.29)). Each block XXX1
i−j has order

Mx(2N +1) and appears in the matrix X again in a BT form (5.30). The block entries

XXX1
i−j ∈ TMxG2N+1, (1 ≤ i, j ≤ My) are the BT matrices of order Mx with individual

entries XXX2
i−j ∈ G2N+1, (1 ≤ i, j ≤ Mx). Each block XXX2

i−j is of general type and has

order 2N+1. In other words, a general type matrixXXX2
i−j of order (2N+1) is embedded

in a Toeplitz block XXX1
i−j of order Mx that is nested inside of another Toeplitz block of

order My, i.e. the matrix X:

X =




XXX1
0 XXX1

−1 XXX1
−2

. . . XXX1
−My+1

XXX1
1 XXX1

0 XXX1
−1

. . . XXX1
−My+2

XXX1
2 XXX1

1 XXX1
0

. . . XXX1
−My+3

. . .
. . .

. . .
. . .

. . .

XXX1
My−1 XXX1

My−2 XXX1
My−3

. . . XXX1
0




, (5.29)

where

XXX1
ij =XXX1

i−j =




XXX2
0 XXX2

−1 XXX2
−2

. . . XXX2
−Mx+1

XXX2
1 XXX2

0 XXX2
−1

. . . XXX2
−Mx+2

XXX2
2 XXX2

1 XXX2
0

. . . XXX2
−Mx+3

. . .
. . .

. . .
. . .

. . .

XXX2
Mx−1 XXX2

Mx−2 XXX2
Mx−3

. . . XXX2
0




, (5.30)

with XXX2
i−j ∈ G2N+1; here XXX

2
0 is the block identity matrix of order 2N + 1.

5.2 Biorthogonal polynomials

A sequence of orthogonal polynomials in one variable is defined such that any two dif-

ferent polynomials in the sequence are orthogonal to each other under the particular
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version of the L2 inner product. Biorthogonal polynomials are a generalization of or-

thogonal polynomials and defined as polynomials that are orthogonal to several different

measures. Biorthogonal polynomials share some properties of orthogonal polynomials.

The basics of the theory of orthogonal polynomials were established by Chebyshev

[158], and further developed by A.A. Markov and T.J. Stieltjes. The properties of

classical orthogonal polynomials such as Chebyshev, Jacobi, Legendre, Hermite, La-

guerre and others were fully described by Szegö in his monograph [157] where he has

contributed significantly to the further development of the general theory and devel-

oped a fundamentally new approach. In the 1920s, Szegö [156], [66], [157] studied the

spectrum of Hermitian Toeplitz matrices of the form (5.18), introduced the theory of

orthogonal polynomials on a unit circle, and found asymptotic formulae for these poly-

nomials using precise considerations of functional analysis. Hermitian Toeplitz matrices

and operators and associated orthogonal polynomials on a unit circle were also studied

by Geronimus [64], Krein [87], and others [151], [128], [59]. The idea of orthogonality

can be extended to the notion of biorthogonality [10]. Generalizations to biorthogonal

polynomials that correspond to non-Hermitian Toeplitz matrices and operators were

investigated by Baxter [14],[15], [16], Trench [167], Gohberg and Semencul [65], Kailath

et al. [83], Voevodin and Tyrtyshnikov [185], Tyrtyshnikov [170], Brezinski [24], Heinig

and Rost [74], Freund et al. [60], etc.

5.2.1 Orthogonal polynomials

Following Szegö [157], consider polynomials of the form:

g(ς) = c0 + c1ς + · · ·+ cmς
m, (5.31)

where c0, c1, · · · , cm are complex coefficients and ς a complex variable. If cm 6= 0, m is

called the precise degree of g(ς). We will denote an arbitrary polynomial of degree m

by πm. Every πm can be represented as a linear combination of arbitrary polynomials

g0(ς), g1(ς), · · · , gm(ς) with uniquely defined coefficients. The reciprocal or reverse

Szegö polynomial is defined as:

g∗(ς) = cm + cm−1ς + · · ·+ c 0 ς
m = ςmg(ς−1). (5.32)
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If ς1, ς2, . . . , ςm are zeros of g(ς), then ς∗1, ς
∗
2, . . . , ς

∗
m are zeros of g∗(ς) with ς∗k = ς

−1
k .

Let f(θ) ≥ 0 be a function of period 2π, integrable in [−π, π], and
∫ +π

−π
f(θ)dθ > 0. (5.33)

Consider the Fourier coefficients

Pn =
1

2π

∫ +π

−π
f(θ)e−i nθdθ, n = 0, ±1, ±2, . . . . (5.34)

where P−n = Pn are elements of Hermitian Toeplitz matrix Pn =
[
Pq−l

] n
q, l=0

. Let the

polynomials ϕn(ς) satisfy the conditions:

ϕn(ς) =ϕ0n + ϕ1nς + · · ·+ ϕnnς
n, ϕnn > 0, ϕnn ∈ ℜ; (5.35)

1

2π

∫ +π

−π
ϕn(ς)ϕm(ς)f(θ)dθ = δnm, ς = ei θ. (5.36)

As stated by Szegö [157], such defined system of polynomials {ϕn(ς)} is orthogonal with

respect to f(θ) on interval [−π, π], i.e. on unit circle |ς| = 1, and uniquely determined.

The orthogonality condition (5.36) yields

m∑

q=0

ϕqm

n∑

l=0

Pq−lϕln = δnm, (5.37)

that is equivalent to the inverse form of Cholesky decomposition of Hermitian positive

definite Toeplitz matrix [170]




ϕ00

ϕ01 ϕ11 0

ϕ02 ϕ12 ϕ22

...
...

...
. . .

ϕ0n ϕ1n ϕ2n · · · ϕnn




Pn




ϕ00 ϕ01 ϕ02 · · · ϕ0n

ϕ11 ϕ12 · · · ϕ1n

ϕ22 · · · ϕ2n

0
. . .

...

ϕnn




= I. (5.38)

The last column of the upper triangular matrix multiplied by ϕnn is the last column of

P−1
n . The polynomials ϕn(ς) can be written explicitly as the determinant of Toeplitz
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matrix [66]:

ϕn(ς) = κn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P0 P−1 P−2 · · · P−n

P1 P0 P−1 · · · P−n+1

· · · · · · · · · · · · · · ·

Pn−1 Pn−2 Pn−3 · · · P−1

1 ς ς2 · · · ςn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ϕ0(ς) = D
− 1

2
0 = P

− 1
2

0 , (5.39)

where

κn =
(
Dn−1Dn

)− 1
2 , (5.40)

Dn = det(Pq−l)n0 is the determinant of Toeplitz matrix Pn =
[
Pq−l

] n
q, l=0

.

Consider the following important polynomials of ς and w [83]:

sn(ς,w) =
[
1 ς ς2 . . . ςn

]
P−1
n




1

w

...

w n




, (5.41)

The polynomials sn(ς,w) are called kernel polynomials, which reproduce the inverse of

matrices Pn. More importantly, using eq. (5.38), the kernel polynomials sn(ς,w) can

be written as the Cholesky decomposition

sn(ς,w) =
n∑

k=0

ϕk(ς)ϕk(w). (5.42)

The following identity holds for any polynomial g(ς) of degree not greater than n, i.e.

when g(ς) is an arbitrary πn [83]:

1

2πi

∫

|ς|=1
sn(ς,w)g(ς)f(ς)

dς

ς
= g(w). (5.43)

If we represent g(ς) in the form:

g(ς) = v0ϕ0(ς) + v1ϕ1(ς) + · · ·+ vnϕn(ς), (5.44)

where v0, v1, . . . , vn are complex variables, then eq. (5.43) will be

n∑

k=0

vkϕk(w) = g(w). (5.45)
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Thus, sn(ς,w) is the only polynomial of degree n in ς that satisfies eq. (5.43).

Let us assume that ϕ∗
n(0) = ϕnn = κn where κn is defined by eq. (5.40). The

polynomials ϕn(ς), orthogonal on unit circle, satisfy the relations:

κnςϕn(ς) = κn+1ϕn+1(ς)− ϕn+1(0)ϕ
∗
n+1(ς), (5.46a)

κnϕn+1(ς) = κn+1 ς ϕn(ς) + ϕn+1(0)ϕ
∗
n(ς), (5.46b)

where ϕn+1(0) = ϕ0n+1, and Christoffel-Darboux formulae:

sn(ς,w) =
ϕ∗
n+1(ς)ϕ

∗
n+1(w)− ϕn+1(ς)ϕn+1(w)

1− ςw , (5.47a)

sn(ς,w) =
ϕ∗
n(ς)ϕ

∗
n(w)− ςwϕn(ς)ϕn(w)

1− ςw . (5.47b)

Szegö [157] gave the proof of eq. (5.46) and (5.47) using the orthogonality conditions

and Geronimus [64] showed the proof by induction; we will show both of them below.

To distiguish between eqs. (5.42) and (5.47a), let s̃n(ς,w) denote a formula given by

eq. (5.47a):

s̃n(ς,w) =
ϕ∗
n+1(ς)ϕ

∗
n+1(w)− ϕn+1(ς)ϕn+1(w)

1− ςw , (5.48)

We want to show that eqs. (5.42) and (5.48) are equal. Introducing eq. (5.48) into eq.

(5.43) yields

1

2πi

∫

|ς|=1
s̃n(ς,w)g(ς)f(ς)

dς

ς
(5.49)

=
1

2πi

∫

|ς|=1

ϕ∗
n+1(ς)ϕ

∗
n+1(w)− ϕn+1(ς)ϕn+1(w)

1− ςw g(ς)f(ς)
dς

ς

=g(w)
1

2πi

∫

|ς|=1

ϕ∗
n+1(ς)ϕ

∗
n+1(w)− ϕn+1(z)ϕn+1(w)

1− ςw f(ς)
dς

ς
(5.50)

+
1

2πi

∫

|ς|=1
{ϕ∗

n+1(ς)ϕ
∗
n+1(w)− ϕn+1(ς)ϕn+1(w)}g(ς)− g(w)

1− ςw f(ς)
dς

ς
.



140

Assume that g(ς) − g(w) = (z − w)r(ς), where r(ς) is a polynomial of degree n − 1.

Then

g(ς)− g(w)

1− ςw =
r(ς)(ς −w)

ς (ς −w)
= ς r(ς). (5.51)

Taking into account eq. (5.51) and the orthogonality condition, eq. (5.74), the last

integral in eq. (5.49) vanishes, since

1

2πi

∫

|ς|=1
ϕ∗
n+1(ς)ς r(ς)f(ς)

dς

ς
=

1

2π

∫ +π

−π
ϕ∗
n+1(ς)ς r(ς)f(θ)dθ = 0, ς = ei θ, (5.52)

1

2πi

∫

|ς|=1
ϕn+1(ς)ς r(ς)f(ς)

dς

ς
=

1

2π

∫ +π

−π
ϕn+1(ς)ς r(ς)f(θ)dθ = 0, ς = ei θ. (5.53)

Thus,

1

2πi

∫

|ς|=1
s̃n(ς,w)g(ς)f(ς)

dς

ς
= g(w)c(w) (5.54)

where c(w) is independent of ς:

c(w) =
1

2πi

∫

|ς|=1

ϕ∗
n+1(w)ϕ∗

n+1(ς)− ϕn+1(ς)ϕn+1(w)

1− ςw f(ς)
dς

ς
. (5.55)

Comparison of eq. (5.43) and (5.54) yields

s(ς,w) =
s̃(ς,w)

c(w)
, (5.56)

or

s̃(ς,w) = c(w)s(ς,w). (5.57)

Swapping the variables ς and w, and taking the conjugate-complex values of both sides

of eq. (5.57) yields

s̃(w, ς) = c(ς) s(w, ς), (5.58)

or

ϕ∗
n+1(w)ϕ∗

n+1(ς)− ϕn+1(w)ϕn+1(ς)

1−wς
= c(ς)

n∑

k=0

ϕk(w)ϕk(ς). (5.59)
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Since we already know that c is independent of ς, c does not depend on ς; therefore, c

defined by eq. (5.55) is independent of w too. Moreover, if we take ς = w = 0 in eq.

(5.57), we have

RHS : ϕ∗
n+1(0)ϕ

∗
n+1(0)− ϕn+1(0)ϕn+1(0) = κ2n+1 − |ϕn+1(0)|2 = κ2n (5.60a)

LHS : c

n∑

k=0

ϕk(0)ϕk(0) = c

n∑

k=0

|ϕk(0)|2 = c κ2n (5.60b)

RHS = LHS : if c = 1, (5.60c)

In eq. (5.60c), the right hand side (RHS) is equal to the left hand side (LHS) only if

c = 1. Thus,

s̃(ς,w) = s(ς,w). (5.61)

Let us now give Geronimus’ [64] proof of the Christoffel-Darboux formulae (5.47a)-

(5.47b) by induction. To show the proof, let us find the sum

sn+1(ς,w) =
n+1∑

k=0

ϕk(ς)ϕk(w) = sn(ς,w) + ϕn+1(ς)ϕn+1(w). (5.62)

Introducing one of Christoffel-Darboux formulas, eq. (5.47b) into (5.62) yields

sn+1(ς,w)
(
1− ςw

)
= ϕ∗

n(ς)ϕ
∗
n(w)− ςwϕn(ς)ϕn(w) +

(
1− ςw

)
ϕn+1(ς)ϕn+1(w).

(5.63)

The recursive relations (5.46a) and (5.46b) yield

ςϕn(ς) =
κn+1

κn
ϕn+1(ς)−

ϕn+1(0)

κn
ϕ∗
n+1(ς), (5.64a)

ϕ∗
n(ς) =

κn
ϕn+1(0)

ϕn+1(ς)−
κn+1

ϕn+1(0)
ς ϕn(ς), (5.64b)

where ϕn+1(0) = ϕ0n+1. Plugging eq. (5.64a) into eq. (5.64b), and taking into account

the last equality in eq. (5.60a) lead to

ϕ∗
n(ς) =

ϕn+1(0)

κn
ϕn+1(ς)−

κn+1

κn
ς ϕn(ς). (5.65)

Introducing eqs. (5.64a) and (5.65) into (5.63), and incorporating again the last equality
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in eq. (5.60a), complete the proof by induction:

sn+1(ς,w)
(
1− ςw

)
=
(
1− ςw

)
ϕn+1(ς)ϕn+1(w)

+
[ϕn+1(0)

κn
ϕn+1(ς)−

κn+1

κn
ς ϕn(ς)

][ϕn+1(0)

κn
ϕn+1(w)− κn+1

κn
wϕn(w)

]

+
[κn+1

κn
ϕn+1(ς)−

ϕn+1(0)

κn
ϕ∗
n+1(ς)

][κn+1

κn
ϕn+1(w)− ϕn+1(0)

κn
ϕ∗
n+1(w)

]

=
(
1− ςw

)
ϕn+1(ς)ϕn+1(w) + ϕ∗

n+1(ς)ϕ
∗
n+1(w)− ϕn+1(ς)ϕn+1(w)

= ϕ∗
n+1(ς)ϕ

∗
n+1(w)− ςwϕn+1(ς)ϕn+1(w), (5.66)

or

sn+1(ς,w) =
ϕ∗
n+1(ς)ϕ

∗
n+1(w)− ςwϕn+1(ς)ϕn+1(w)

1− ςw . (5.67)

The equivalence of Christoffel-Darboux formulas (5.47a) and (5.47b) can be shown

incorporating eqs. (5.62) and (5.67) :

sn(ς,w) =
ϕ∗
n(ς)ϕ

∗
n(w)− ςwϕn(ς)ϕn(w)

1− ςw
= sn+1(ς,w)− ϕn+1(ς)ϕn+1(w)

=
ϕ∗
n+1(ς)ϕ

∗
n+1(w)− ςwϕn+1(z)ϕn+1(w)− (1− ςw)ϕn+1(ς)ϕn+1(w)

1− ςw

=
ϕ∗
n+1(ς)ϕ

∗
n+1(w)− ϕn+1(ς)ϕn+1(w)

1− ςw . (5.68)

Let us write the Christoffel-Darboux formula (5.47a) as

sn(ς,w) =
n−1∑

k=0

ϕk(ς)ϕk(w) + ϕn(ς)ϕnnw
n (5.69)

=
ϕ∗
n+1(ς)ϕ0n+1w

n+1 − ϕn+1(ς)ϕn+1n+1w
n+1

(w − ς)w . (5.70)

A comparison of coefficients of wn yields

−ς ϕnnϕn(ς) = ϕ0n+1ϕ
∗
n+1(ς) − ϕn+1n+1 ϕn+1(ς) (5.71)

or since ϕnn = ϕnn = κn = κn

ς κnϕn(ς) = κn+1 ϕn+1(ς)− ϕ0n+1ϕ
∗
n+1(ς), (5.72)

which is the same as eq. (5.46a).
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5.2.2 Biorthogonal polynomials

Baxter [14] generalized the findings for orthogonal polynomials and introduced biorthog-

onal Szegö polynomials. Let the function f(ς) be expanded into series (5.14) that ab-

solutely converges at |ς| = 1. Note that ς = 1
ς
at |ς| = 1. Two polynomial sequences

ϕn(ς) = ϕ0n + ϕ1nς + · · ·+ ϕnnς
n, (5.73a)

ψm(ς) = ψ0m + ψ1mς + · · ·+ ψmmς
m, ϕnn = ψnn = cn, (5.73b)

are called biorthogonal and define a biorthogonal system of Szegö on a unit circle with

respect to the function f(ς), if they satisfy the relation [14]

1

2π

∫

|ς|=1
ϕn(ς)ψm(ς)f(ς)

dς

i ς
= δnm, (5.74)

or equivalently,[170]

m∑

q=0

ψqm

n∑

l=0

Pq−lϕln = δnm, (5.75)

or




ψ00

ψ01 ψ11 0

ψ02 ψ12 ψ22

...
...

...
. . .

ψ0n ψ1n ψ2n · · · ψnn




Pn




ϕ00 ϕ01 ϕ02 · · · ϕ0n

ϕ11 ϕ12 · · · ϕ1n

ϕ22 · · · ϕ2n

0
. . .

...

ϕnn




= I. (5.76)

Here the ϕnn multiplied by the last row of the lower triangular matrix defines the last

row of inverse matrixP−1
n , and the last column of the upper triangular matrix multiplied

by ψnn is the last column of P−1
n . Note the equality of coefficients ϕnn = ψnn = cn in

eq. (5.73) that is required to uniquely determine (to within a plus or minus sign) ϕn(ς)

and ψn(ς) [14].

Using eq. (5.76), the kernel polynomials sn(ς,w) can be decomposed as

sn(ς,w) =
n∑

k=0

ϕk(ς)ψk(w) (5.77)
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by analogy to Cholesky decomposition. In a biorthogonal system of Szegö, the biorthog-

onal polynomials satisfy the following three term recurrence relations [170]:

cn+1




ϕn+1(ς)

ψ∗
n+1(ς)



= cn




ς ϕ0n+1

ςψ0n+1 1







ϕn(ς)

ψ∗
n(ς)




(5.78)

and Christoffel-Darboux formulae:

sn(ς,w) =
ϕ∗
n+1(w)ψ∗

n+1(ς)− ϕn+1(ς)ψn+1(w)

1− ςw , (5.79a)

sn(ς,w) =
ϕ∗
n(w)ψ∗

n(ς)− ςwϕn(ς)ψn(w)

1− ςw , (5.79b)

where

ϕ∗
n(w) = ϕnn + ϕn−1nw + · · ·+ ϕ0nw

n = ςnϕn(w
−1). (5.80a)

ψ∗
n (ς) = ψnn + ψn−1n ς + · · ·+ ψ0n ς

n = ς nψn(ς
−1). (5.80b)

If the leading principal minors of matrix Pn are nonzero then, the inverse matrix

P−1
n can be reproduced using Christoffel-Darboux formulae. For example, introducing

eq. (5.41) into eq. (5.79b) leads to:

(1− ςw)sn(ς,w) = (1− ςw)
[
1 ς ς2 . . . ςn

]
P−1
n




1

w

...

w n




=
[
1 ς ς2 . . . ςn+1

]{

P

−1
n 0

0 0


−


0 0

0 P−1
n



}




1

w

...

w n+1



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=
[
1 ς ς2 . . . ςn+1

]{




ψnn

ψn−1n

...

ψ0n

0




[
ϕnn ϕn−1n . . . ϕ0n 0

]

−




0

ϕ0n

ϕ1n

...

ϕnn




[
0 ψ0n ψ1n . . . ψnn

]}




1

w

...

w n+1




. (5.81)

Thus, the elements of inverse matrix [P−1
n ] have the form

[P−1
n ]ql = [P−1

n ]q−1 l−1 + ψn−q nϕn−l n − ϕq−1nψl−1n, (0 ≤ q, l ≤ n). (5.82)

This formula is analogous to Trench’s [167] inversion formula forPn matrix, the Levinson-

type recursion algorithm. Summing up the increments [P−1
n ]ql−[P−1

n ]q−1 l−1, the inverse

matrix [P−1
n ] can be written explicitly in the matrix form:

P−1
n =




ϕnnψnn ϕn−1nψnn · · · ϕ1nψnn ϕ0nψnn

ϕnnψn−1n · · · · · · · · · ϕ1nψnn
... · · · · · · · · · ...

ϕnnψ1n · · · · · · · · · ϕn−1nψnn

ϕnnψ0n ϕnnψ1n · · · ϕnnψn−1n ϕnnψnn



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=




ψnn 0

ψn−1n ψnn
...

...
. . .

ψ0n ψ1n · · · ψnn







ϕnn ϕn−1n · · · ϕ0n

ϕnn · · · ϕ1n

. . .
...

0 ϕnn




−




0 0

ϕ0n 0

...
. . .

. . .

ϕn−1n · · · ϕ0n 0







0 ψ0n · · · ψn−1n

. . .
. . .

...

0 ψ0n

0 0




. (5.83)

Here, the inverse of Toeplitz matrix P−1
n is represented as the difference of multipli-

cations of two semicurculant matrices, i.e. the lower and upper triangular Toeplitz

matrices. Alternative derivation of matrix inverse was given by Baxter and Hirschman

[16], they showed that the inverse of Pn can be uniquely defined by the solutions of the

system [65]

n∑

l=0

Pq−l xl = δ q 0,
n∑

l=0

Pq−l yl−n = δ q n, (q = 0, 1, ... n) (5.84)

if the polynomials

χ(ς) =
n∑

q=0

xq ς
q, γ(ς) =

n∑

q=0

y−q ς
q (5.85)

are not zero in |ς| ≤ 1. For x0 6= 0, Gohberg and Semencul [65] showed that if the

system (5.84) has solutions then the matrix Pn is nondegenerate, and derived an explicit

formula for its inverse:

P−1
n =x−1

0

{




x0 0 · · · 0

x1 x0 · · · 0

· · · · · · · · · 0

xn xn−1 · · · x0







y0 y−1 · · · y−n

0 y0 · · · y−n+1

· · · · · · · · · · · ·

0 0 · · · y0




−




0 0 0 · · · 0 0

y−n 0 0 · · · 0 0

y−n+1 y−n 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·

y−1 y−2 y−3 · · · y−n 0







0 xn xn−1 · · · x1

0 0 xn · · · x2

· · · · · · · · · · · · · · ·

0 0 0 · · · xn

0 0 0 · · · 0




}
. (5.86)
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If the matrix Pn has a block Toeplitz structure, its inverse P−1
n can be formed anal-

ogously by elements of its first and last block columns, and first and last block rows

[185]. See Section 5.3.4 for more details.

5.3 Iterative methods for solution of a linear system of equations

In this section, we deal with the numerical resolution of a complex-valued linear system

of equations (4.16). In eq. (4.16), the matrix X has some interesting features. Its block

diagonals are identity matrices, and off-diagonal blocks are obtained by multiplying the

matrix T(j) by Pj,m, which allows us to solve eq. (4.16) using direct linear solvers.

Nonetheless, for a large number of scatterers, especially for high frequencies, eq. (4.16)

becomes a large-scale complex-valued linear system. Its complexity grows as the number

of scatterers and frequency increase, and its solution by direct method requires excessive

computational time and memory to store the system, requiring the development of

iterative algorithms. To solve this system, we consider next some iterative approaches

suitable for parallel computing.

5.3.1 A Neumann series expansion at a fixed value of frequency

The matrix X can be decomposed into two parts:

X = I− TP, (5.87)

where

T =




T(1) 0 0 · · · 0

0 T(2) 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · T(M)




, I =




I 0 0 · · · 0

0 I 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · I




, (5.88)

P =




0 P1,2 P1,3 · · · P1,M

P2,1 0 P2,3 · · · P2,M

...
...

...
. . .

...

PM,1 PM,2 PM,3 · · · 0




. (5.89)
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In eq. (4.17), the purely geometrical part P depends on the position vector llljm and

takes into account the interaction between the scatterers, whereas the purely physical

part T depends on the shape and the physical properties of the shell material, as

well as the boundary conditions on the interfaces. Moreover, the matrix P has an

interesting structure, each of its off diagonal block elements Pj,m is a Toeplitz matrix.

The advantage of this structure will be studied and taken into account in the subsequent

sections.

Plugging eq. (5.87) into eq. (4.16) yields

[
I− TP

]
b = Ta, (5.90)

where

a =




a(1)

a(2)

...

a(M)




, (5.91)

where a(j), (j = 1,M) vectors are defined by eq. (4.19). Solving eq. (5.90) for b, and

using Neumann expansion, we obtain, formally at least,

b =
∞∑

i=0

b̃bb
( i)

=
[
I− TP

]−1
Ta =

[
I+ TP+ TPTP+ · · ·

]
Ta

=
[
T+ TPT+ TPTPT+ · · ·

]
a

= T
[
T−1 + P+ PTP+ PTPTP+ · · ·

]
Ta

= T
[
I+ PT+ PTPT+ · · ·

]
a, (5.92)

where the b̃bb
( i)

terms can be defined iteratively

b̃bb
( 0)

= Ta (5.93)

and

b̃bb
(i)

= TP b̃bb
(i−1)

, for i ≥ 1. (5.94)

Note that this solution is convergent if the norm of matrix TP is less than one: ||TP|| =

|λTPmax| < 1, where |λTPmax| is the absolute value of the maximum eigenvalue of matrix

TP.



149

We truncate the Neumann series (5.92) solution

bbb
(I)

=
I∑

i=0

b̃bb
( i)
, (5.95)

and calculate the error

∆(I)
err = max|b− bbb

(I)|, (5.96)

to study a validity of solution and a convergence rate of series.

5.3.2 An iterative approach for a band of frequencies

The approximation (5.92) is only valid for a fixed value of frequency ω. Considering

some frequency band, we need to use an iterative approach as follows. We may start

with some initial value of frequency ω = ω0 and calculate the inverse of matrix X at

this fixed value of frequency to find b

X(ω0)b = d ⇒ b = X−1(ω0)d. (5.97)

Now we change the frequency by small amount ∆ω and define matrix Y such that

X(ω0 +∆ω) = X(ω0)− Y = X(ω0)[I− X−1(ω0)Y], (5.98)

where

Y = X(ω0)− X(ω0 +∆ω). (5.99)

The inverse of matrix X(ω0+∆ω) can be obtained by means of Neumann series expan-

sion

X−1(ω0 +∆ω) = [I− X−1(ω0)Y]
−1X−1(ω0)

= [I+W+W2 +W3 + · · · ]X−1(ω0), (5.100)

where

W(ω0) = X−1(ω0)Y. (5.101)

In eq. (5.100), the series expansion will converge if the norm of matrix W is less than

one: ||W|| = |λWmax| < 1, where |λWmax| is the absolute maximum eigenvalue of matrix

W. Continuing these steps iteratively allows us to find the inverse of matrix X at

frequencies ω = ω0 + n ·∆ω (n = 1, 2, ...N).
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5.3.3 Fast preconditioned iterative methods

Background

Antoine et al. [7] studied an acoustic multiple scattering by circular obstacles at high

frequencies and large number of obstacles and proposed fast iterative numerical meth-

ods for solving a large complex-valued dense linear system using its Toeplitz block

structure. These methods yield a large memory saving; the efficiency of methods is

shown for several general configurations by studying the convergence rate with respect

to different geometrical parameters. They performed calculations considering GMRES

and BICGSTAB iterative solvers and GMRES(η) with a restart parameter η.

Antoine et al. [8] studied numerically the solution of integral equations of multiple

scattering by circular cylinders for a large band of frequencies and large number of

obstacles. They proposed a method of robust and efficient solution of integral equations

obtained via projection method on the base of Fourier series using an iterative solver

(GMRES) with preconditioners, and presented examples of numerical simulation for

multiple scattering at high frequency for a random configuration of cylinders. They took

advantage of the Toeplitz structure of off-diagonal blocks of the linear system and stored

a compressed version of the system using a root vector for the Toeplitz matrix. Two

preconditioners were proposed to increase the convergence. The first preconditioner

consists of diagonal terms including effects of single scattering, and leads to a matrix

of the form: L̂ = I + F̂, where I is an identity matrix, and F̂ contains off-diagonal

blocks of system L̂ with single scattering effects. This matrix representation is similar

to our matrix X given by eq. (5.87). The second preconditioner is obtained by two

successive approximations: first, keeping two terms in Neumann series expansion, and

second, storing the blocks corresponding to interactions. A dependence of CPU time

that was necessary for a construction of the system versus a number of cylinders M

and wavenumber k, and a comparison of number of stored coefficients as function of

M and k were presented for a full storage, and compressed storage with and without

preconditioners.

Authors of [7] and [8] studied sound hard and sound soft cylinders considering
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Dirichlet and Neumann boundary conditions. We will extend this approach presenting

results for a different planar configuration of elastic cylinders and shells, and thin shells

with internal structures.

Matrix vector product method

Consider a planar configuration with a large number of cylinders at high frequencies

leading to a large scale complex valued linear system, eq. (4.16), where X is a complex

valued, full, non-symmetric matrix of order (2N + 1) ·M with N = Nj = Nm. Here,

each cylinder may have different physical properties and radii, i.e. the transition ma-

trices T(j), (j = 1,M) can be different and non-symmetric. We can take advantage of

structure of matrix X, defining it by eq. (5.87). As noted in Section 5.3.1, each of the

block elements Pj,m of matrix P is a Toeplitz matrix. Using root vector pj,m given by

eq. (5.7) and the fast algorithm given in [36] for an MVP involving Toeplitz matrices,

we can optimize a matrix vector product: Pj,mb(m), (j,m = 1, 2, ...,M, j 6= m). This

can be done by constructing circulant matrices [185] and applying a Fast Fourier Trans-

form (FFT)-based MVP algorithm [36]. For example, it can be performed on Matlab

with further use of iterative solvers such as GMRES or BICGStab [139].

The main cost of the GMRES algorithm is due to one matrix vector multiplication

at each iteration.The multiplication (or MVP) Xb can be computed directly, according

to the block structure of X and b given correspondingly by eq. (4.17) and (4.18), as

follows:

Xb =




b(1) −T(1)
M∑
m=2

P1,mb(m)

...

b(j) −T(j)
M∑

m=1,m 6=j
Pj,mb(m)

...

b(M) −T(M)
M−1∑
m=1

PM,mb(m)




, (j = 1,M). (5.102)
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FFT tricks

To accelerate the computation of MVP, eq. (5.102), we evaluate its components, i.e.

the Toeplitz MVP: Pj,mb(m), using the root vector pj,m. The multiplication Pj,mb(m)

cannot be directly computed by FFT; therefore, we associated a Toeplitz matrix with

a Circulant matrix. A fast algorithm of computation of Circulant MVP, f = Ci ·g, can

be implemented using Matlab FFT and IFFT functions [36]

f = IFFT [FFT (ci). ∗ FFT (g)], (5.103)

where ci the first column of Ci, generates the Circulant matrix Ci of order i.

The Circulant matrix associated with Toeplitz MVP can be constructed by embed-

ding the Toeplitz matrix Pj,m of order ñ = 2N + 1 into a larger Circulant matrix Ci

of twice the order: i = 2ñ. On Matlab, the first column ci of the Circulant matrix Ci

can be obtained from the root vector pj,m defined by eq. (5.100):

p = [P(1, ñ : −1 : 1) transpose(P(2 : ñ, 1))], (5.104)

ci = [transpose([p(ñ : 2 ∗ ñ− 1) 0 p(1 : ñ− 1)])], (5.105)

where P = Pj,m
lq , p = pj,m vector is of dimensions (2ñ− 1)× 1.

To compute f = Pj,m
ql · b(j) , we introduce a new vector b̂ = [b(j) 0ñ]

T of length 2ñ

to match with the dimensions of the Ci matrix. Thus,

f̃ = Cib̂ =


P P1

P1 P




b(j)

0n


 =


 f

P1b
(j)




= IFFT [FFT (cq). ∗ FFT (b̂)], (5.106)

where b(j) defined by eq. (4.18).

5.3.4 Iterative methods for a Block Toeplitz systems

Iterative method for BT matrix of level 1

For a configuration of one row or column of cylinders, the matrix X given by eq. (5.28)

is a BT matrix of level one, i.e. X ∈ TMG2N+1. Finding the inverse of a matrix that
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has a specific structure does not always require finding of all elements of the inverse

matrix. Instead it requires the development of algorithms that ensure the compact form

of the inverse matrix and allow its fast multiplication on an arbitrary vector. Such an

approach was proposed by Voevodin and Tyrtyshnikov [185] for BT matrix of level 1.

We will use this method to find the inverse of X and solve the system (4.16) by adapting

their notation.

For 0 ≤ m ≤M − 1, let us denote by Xm the leading submatrix consisting of blocks

XXX1
i−j where 1 ≤ i, j ≤ m + 1; particularly XM−1 = X and X−1 = X−1

M−1. If all leading

submatrices are nondegenerate, then according to Theorem 5.7 given in [185], for ∀m,

the matrix X−1
m can be restored using its first and last block columns, and first and

last block rows. We will denote these block column and row vectors correspondingly by

xxx
(m)
i , yyy

(m)
i , zzz

(m)
i , www

(m)
i (0 ≤ i ≤ m). Importantly, these block vectors can be calculated

recursively, changing the index m from 0 to M − 1.

Let X be a nondegenerate complex valued BT matrix of orderM with blocks of order

2N+1. Assume that the block vectors xxx = [xxx0xxx1 · · · xxxM−1]
T and yyy = [yyy0 yyy1 · · · yyyM−1]

T

satisfy equations:

Xxxx = eee, Xyyy = Jeee, (5.107)

and correspond to the first and the last block columns of inverse matrix X−1, and

zzz = [zzz0 zzz1 · · · zzzM−1] and www = [www0www1 · · · wwwM−1] satisfy equations:

zzzX = eeeT , wwwX =
(
Jeee
)T
, (5.108)

and correspond to the first and the last block rows of inverse matrix X−1, where eee is

the unit block vector, and J is the permutation matrix:

eee =




I

0

...

0

0




, J =




0 0 · · · 0 I

0 0 · · · I 0

...
...

...
...
...

...
...

0 I · · · 0 0

I 0 · · · 0 0




, (5.109)

where I is the block identity matrix of order 2N+1. Then, if the blocks xxx0 and yyyM−1 are

nondegenerate, and xxx0 = zzz0, yyyM−1 = wwwM−1, the inverse of matrix X can be obtained
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by:

X−1 = X−1
M−1 =




xxx0 0

xxx1 xxx0

. . . . . . . . .

xxxM−1 xxxM−2 . . . . . . xxx0




Dxxx−1
0




zzz0 zzz1 · · · zzzM−1

zzz0 zzz1 zzzM−2

. . . . . .

0 zzz0




−




000 0

yyy0

. . . . . . . . .

yyyM−2 yyyM−3 . . . 000




Dyyy−1
M−1




000 www0 · · · wwwM−2

. . . . . .

000 www0

0 000




(5.110)

or

X−1 =




yyyM−1 yyyM−2 · · · · · · yyy0

yyyM−1 yyyM−2 · · · yyy1

· · · · · · · · ·

0 yyyM−1




Dyyy−1
M−1




wwwM−1 0

wwwM−2 wwwM−1

· · ·

www0 www1 · · · wwwM−1




−




000 xxxM−1 · · · xxx1

· · · · · ·

000 xxxM−1

0 000




Dxxx−1
0




000 0

zzzM−1 000

· · · · · · · · ·

zzz1 zzz2 · · · 000




, (5.111)

where

Dxxx−1
0

=




xxx−1
0 0

xxx−1
0

. . .

0 xxx−1
0




, Dyyy−1
M−1

=




yyy−1
M−1 0

yyy−1
M−1

. . .

0 yyy−1
M−1




. (5.112)

Here the upper indices of blocks are dropped for convenience: xxxi = xxxM−1
i , yyyi =

yyyM−1
i , zzzi = zzzM−1

i , wwwi = wwwM−1
i for i = 0, 1 , ..., M − 1. Thus, the inverse of BT matrix,

X−1, is presented as the difference of multiplication of semi-circulant matrices.

We will compute the block vectors recursively using the recurrent block algorithms

given in [185] for calculation of block vectors xxx
(m)
i , yyy

(m)
i and zzz

(m)
i , www

(m)
i and changing
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the index m from 0 to M − 1. To reduce the number of operations used, instead of

computing these blocks directly each block was normalized such that:

xxx
(m)
i = x̃xx

(m)
i pppm, yyy

(m)
i = ỹyy

(m)
i qqqm, 0 ≤ i ≤ m, (5.113)

for column blocks, or

zzz
(m)
i = p̂ppmz̃zz

(m)
i , www

(m)
i = w̃ww

(m)
i q̂qqm, 0 ≤ i ≤ m (5.114)

for row blocks. Here x̃xx
(m)
i , ỹyy

(m)
i , z̃zz

(m)
i and w̃ww

(m)
i are normalized blocks, and pppm, qqqm, p̂ppm

and q̂qqm are non-degenerate blocks acting as normalizing multipliers.

The recurrent algorithm for normalized column blocks x̃xx
(m)
i , ỹyy

(m)
i is formulated as

follows [185]:

m = 0 : ppp0, qqq0 − any non-degenerate blocks

x̃xx
(0)
0 =XXX−1

0 ppp−1
0 , ỹyy

(0)
0 =XXX−1

0 qqq−1
0 ; (5.115)

m = 1, ...,M − 1 :

F̃FFm =XXXm x̃xx
(m−1)
0 +XXXm−1 x̃xx

(m−1)
1 + . . .+XXX1 x̃xx

(m−1)
m−1 ,

G̃GGm =XXX−m ỹyy
(m−1)
0 +XXX−2 ỹyy

(m−1)
1 + . . .+XXX−m ỹyy

(m−1)
m−1 ,

sssm = −qqqm−1F̃FFm, tttm = −pppm−1G̃GGm, (5.116)

pppm =
(
III − tttmsssm

)−1
pppm−1, qqqm =

(
III − sssmtttm

)−1
qqqm−1,

[
x̃xx
(m)
0 x̃xx

(m)
1 · · · x̃xx(m)

m

]T
=
[
x̃xx
(m−1)
0 x̃xx

(m−1)
1 · · · x̃xx(m−1)

m−1 0
]T

+
[
0 ỹyy

(m−1)
0 ỹyy

(m−1)
1 · · · ỹyy(m−1)

m−1

]T
sssm,

[
ỹyy
(m)
0 ỹyy

(m)
1 · · · ỹyy(m)

m

]T
=
[
x̃xx
(m−1)
0 x̃xx

(m−1)
1 · · · x̃xx(m−1)

m−1 0
]T
tttm

+
[
0 ỹyy

(m−1)
0 ỹyy

(m−1)
1 · · · ỹyy(m−1)

m−1

]T
.
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The algorithm for normalized row blocks z̃zz
(m)
i , w̃ww

(m)
i is of the following form [185]:

m = 0 : p̂pp0, q̂qq0 − any nondegenarate blocks

z̃zz
(0)
0 =XXX−1

0 p̂pp−1
0 , w̃ww

(0)
0 =XXX−1

0 q̂qq−1
0 ; (5.117)

m = 1, ...,M − 1 :

˜̂
FFFm = z̃zz

(m−1)
0 XXX−m + z̃zz

(m−1)
1 XXX−k+1 + . . .+ z̃zz

(m−1)
m−1 XXX−1,

˜̂
GGGm = w̃ww

(m−1)
0 XXX1 + w̃ww

(m−1)
1 XXX2 + . . .+ x̃xx

(m−1)
m−1 XXXm,

ŝssm = − ˜̂FFFm q̂qqm−1, t̂ttm = − ˜̂GGGm p̂ppm−1,

p̂ppm = p̂ppm−1

(
III − ŝssmt̂ttm

)−1
, q̂qqm = q̂qqm−1

(
III − t̂ttmŝssm

)−1
, (5.118)

[
z̃zz
(m)
0 z̃zz

(m)
1 · · · z̃zz(m)

m

]
=
[
z̃zz
(m−1)
0 z̃zz

(m−1)
1 · · · z̃zz(m−1)

m−1 0
]

+ ŝssm
[
0 w̃ww

(m−1)
0 w̃ww

(m−1)
1 · · · w̃ww(m−1)

m−1

]
,

[
w̃ww

(m)
0 w̃ww

(m)
1 · · · w̃ww(m)

m

]
= t̂ttm

[
z̃zz
(m−1)
0 z̃zz

(m−1)
1 · · · z̃zz(m−1)

m−1 0
]

+
[
0 w̃ww

(m−1)
0 w̃ww

(m−1)
1 · · · w̃ww(m−1)

m−1

]
.

Each of the algorithms require 2(2N + 1)3M2 operations of multiplication and the

same number of operations of addition and subtraction.

Iterative method for BT matrix of level 2

We cannot directly apply eq. (5.111) to BT matrices of level 2, X ∈ TMy ,MxG2N+1.

However, block matrix X ∈ TMy ,MxG2N+1 can also be written as BT matrix of level

1: X ∈ TMyGMx(2N+1), i.e. the block matrix X can be written in the form of eq.

(5.29) with XXX1
ij = XXX1

i−j ∈ GMx(2N+1) and XXX1
0 - identity matrix of order Mx(2N + 1).

Therefore, we can still use eq. (5.111) to solve a linear system with X ∈ TMyGMx(2N+1)

for configuration of Mx rows and My columns of cylinders.

Another possibility to solve a linear system (4.16) with X ∈ TMy ,MxG2N+1 - BT

matrix of level 2, is to use GMRES solver with a fast algorithm for MVP proposed by

Barrowes et al. [12], [11] for multilevel BT matrices. The method is based on a Fast

Fourier Transform and expedites MVP involving multilevel BT matrices with minimal

memory requirements and computational cost. The method was applied to solve an
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electromagnetic 3D scattering problem [12]. A fast algorithm for MVP: Xb, can be

applied as follows [12]: For a large number number of obstacles and high frequencies, a

full matrix X may become too large to store. Taking advantage of the Block Toeplitz

structure, we assign nonreduntant entries of X to an associate vector χu by assigning

only the left column and top row of each block in analogy to a root vector (5.7) defined

earlier for the Toeplitz matrix. The final blocks XXX2
i ∈ G2N+1, (i = 0, 2N) are of a

general type, and will be assigned from left to right and from bottom to top. In the

next step, we insert zeros at appropriate locations into b to obtain a vector bz = ζp(b)

suitable for convolution with χu. The vector bz has to be zero padded such that its

entries coincide with proper terms in χu during convolution in the Fourier domain to

obtain β̃z = χ̃u · b̃z. In the last step, Xb is reconstructed from βz = IFFT (χ̃u · b̃z).

Denoting the last operation by ζ−1
a , the fast MVP can be obtained as [12]:

Xb = β = ζ−1
a

[
IFFT

(
χ̃u · ζ̃p(β)

)]
. (5.119)

5.4 Numerical results

5.4.1 Neumann expansion study

In this section, we present numerical results for the Neumann series expansion method.

Computations are performed on MATLAB for a configuration of rigid cylinders and

empty thin elastic aluminum cylindrical shells of thickness h = 0.025a with mechanical

properties: ρ = 2700kg/m3, cp = 6420m/s, where a is the outer radius of a shell.

The pressure field is excited by the source located at point Ps(−1000a, 1000a). The

configuration consists of one column of uniformly distributed cylinders and depicted in

Figure 5.1a for M = 6 case. The distance between two cylinders is d which we also call

the cylinder center to center spacing (see Figure 5.1a). The scattering coefficients can

be obtained using the truncated Neumann expansion given by eq. (5.95).

To investigate the validity of this method, we measure the spectral radius of matrix

TP, where the matrices T and P are defined by eqs. (5.88) and (5.89) correspondingly.

As it was noted earlier, the method works if the spectral radius of matrix TP is less

than one: ρ(PT) = ||TP|| < 1. Therefore, we evaluate the spectral radii of matrices
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2a = 1.5, enlarged view
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(e) ρ(PT) vs. ka for d
2a = 2
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(f) d
2a = 2, enlarged view

Figure 5.2: Variation of spectral radius of matrix ρ(PT) with a nondimensional fre-

quency ka for a selected number M of rigid cylinders and distance between cylinder

centers d.
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(b) ρ(P) vs. ka for d
2a = 1.01

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

ka

ρ(T)

 

 

d/2a = 1.01
d/2a = 1.5
d/2a = 2
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Figure 5.3: Variation of spectral radii of matrices ρ(P) and ρ(T) with a nondimensional

frequency ka for a fixed number M of rigid cylinders varying the distances between the

centers of cylinders d
2a = 1.01, 1.15, 2.

ρ(TP), ρ(P), and ρ(T) as functions of nondimensional frequency ka varying the

number of scatterers M and the distance between two cylinders d. Our goal here is

to find ”the magic numbers” M , d, and ka for which the Neumann expansion method

works, i.e. ρ(TP) < 1. The plots in Figures 5.2 - 5.5 are obtained keeping 4 terms in

the Neumann expansion (5.95).
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Figure 5.4: Variation of spectral radii of matrices ρ(PT) with ka for M = 2: two empty

thin elastic shells, modifying the values of the normalized distance d/2a = 1.01, 3.
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2a = 1.01
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(c) ρ(PT) vs. ka for d
2a = 1.125
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(d) d
2a = 1.125, enlarged view
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(e) ρ(PT) vs. ka for d
2a = 1.5
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(f) d
2a = 1.5, enlarged view

Figure 5.5: Variation of spectral radii of matrices ρ(PT) with a nondimensional fre-

quency ka for a selected number M of empty thin elastic shells and distances between

the centers of shells d
2a = 1.01, 1.125, 1.5.
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Figure 5.2 illustrates a variation of spectral radius of matrix ρ(PT) with a non-

dimensional frequency ka for a selected number M of rigid cylinders submerged in

a fluid medium with the normalized distances between the centers of cylinders d
2a =

1.01, 1.15, 2, where a is the outer radius of a cylinder. Interestingly, the graphs in each

subplot do not cross or overlap. The results show that the Neumann expansion method

gives satisfactory results for a configuration of 2 rigid cylinders, M = 2, and works well

for any considered values of d
2a = 1.01, 1.15, 2. For M = 2, ρ(TP) < 1 is satisfied for

∀ ka ∈ 0, 50. For larger values of M , results differ and depend on values of d and ka.

For low frequencies, i.e. ka ≤ 0.7, the method works well for any considered values of

M and d. The increase of d decreases the spectral radius ρ(TP) whereas the growth of

M enlarges it as expected. Particularly for d
2a = 2, the condition ρ(TP) < 1 is valid

at M = 2, 3 and ∀ ka ∈ 0, 50. As expected, for closely located cylinders, the influence

of interaction between each cylinder is high, and the increase in number of scatterers

leads to more complex coupling, which consequently leads to an increase of the spectral

radius.

The spectral radius of matrix ρ(TP) as a function of nondimensional frequency ka is

illustrated in Figures 5.4 and 5.5 for a configuration of aluminum thin cylindrical shells

of thickness h = 0.025a. Figure 5.4 depicts a variation of spectral radius of matrix

ρ(TP) with a nondimensional frequency ka for two thin shells, M = 2, modifying the

distance between the centers of shells, d. Unlike the rigid case, for a configuration of

very closely located thin elastic shells, i.e. d
2a = 1.01, the graph of ρ(PT) has sharp

peaks and changes abruptly. The graphs in Figure 5.4 identify ”the magic number” d

to be d
2a = 1.125 and show that the approach is valid, i.e. ρ(TP) < 1, for two thin shells

located at the distance d
2a ≥ 1.125 and ∀ ka ∈ 0, 50. Figure 5.5 illustrates a variation

of spectral radius of matrix ρ(PT) with ka for a selected number M of shells located at

distances d
2a = 1.01, 1.125, 1.5. Again as in rigid case, the spectral radius ρ(PT) grows

with the rise of M and the decrease of d. At low frequencies we can notice that with

the increase of distance d the first pick of the graphs shifts from the right to the left.

Graphs at M = 6 show that for d
2a = 1.01, 1.125, ρ(TP) < 1 is satisfied for ka ≤ 1; for

d
2a = 1.5, it is valid at ka ≤ 0.8.
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(e) M = 2, d
2a = 2
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(f) M = 6, d
2a = 2

Figure 5.6: The error ∆
(I)
err versus the iteration number at selected numbers of ka, M ,

and d
2a for empty thin elastic shells submerged in fluid.
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Figure 5.6 illustrates the convergence rate of Neumann series solution (5.95) for a

column of empty thin shells (see Figure a). Here the error ∆
(I)
err defined by (5.96) is

evaluated with respect to the number of iterations I. A rapid convergence is observed

with the increase of the distance d
2a and the decrease of the number of scatterersM and

the wave number ka. For closely located scatterers, i.e. d
2a = 1.01, and for configuration

of large number of scatterers at high frequencies, a larger number of terms in the

summation (5.95) is required.

5.4.2 Numerical results using an iterative method for Block Toeplitz

matrix of level 1

In this section, we present the results produced using the iterative method for BT

matrix of level 1 described in Section 5.3.4. This iterative technique is included in the

TOEPLITZ package, a library which implements Toeplitz matrix system solver. The

TOEPLITZ package solves a variety of Toeplitz and Circulant linear systems, their

block analogs, and some other more complicated forms. The TOEPLITZ package was

written in Fortran77 by a joint working group of American and Soviet mathematicians

in the early 1980’s [9]. The original version TOEPLITZ library is available in the

TOEPLITZ subdirectory of the NETLIB web site:

http://www.netlib.org/.

The modified version of the TOEPLITZ package, converted to Fortran90, is provided

at:

http://people.sc.fsu.edu/~jburkardt/f_src/toeplitz/toeplitz.html.
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Figure 5.7: Variation of CPU time taken to calculate the scattering coefficients B
(m)
n

with a number of cylinders M for selected values of ka for a cluster of rigid cylin-

ders submerged in fluid medium using two solvers: LAPACK and iterative algorithm

described in Section 5.3.4.

We use the TOEPLITZ package [9] to solve our MS problem. Here, we consider

an acoustic MS but the approach can be applied to both elastodynamic and electro-

magnetic MS problems. For verification and comparison, we compare the results for

the iterative method with the direct method solutions which are implemented on Intel

Fortran using LAPACK (Intel MKL) library. The computations are performed in Intel

FORTRAN on SOE HPC Cluster of Rutgers University. The cluster hardware is based

on Intel Sandy Bridge 2670 CPUs, 16 cores and 128 GB of RAM per node.

We calculated the CPU time taken to calculate the scattering coefficients B
(m)
n for

a cluster of rigid cylinders submerged in fluid medium using two solvers: LAPACK

and TOEPLITZ libraries. The graphs in Figure 5.7 and Figure 5.8 are computed in

a sequence in one core (thread). Figure 5.7 illustrates a variation of CPU time taken

to calculate the B
(m)
n coefficients with a number of cylinders M for selected values of

ka = 0.5, 1, 5. The graphs show the efficiency of the iterative approach over the direct

method. The iterative technique took less time to find the coefficients.
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Figure 5.8: Variation of CPU time taken to calculate the scattering coefficients B
(m)
n

with a nondimensional frequency ka for a cluster of rigid cylinders submerged in a fluid

medium using two solvers: direct LAPACK and iterative TOEPLITZ solvers.

Figure 5.8 illustrates a variation of CPU time taken to calculate the B
(m)
n coefficients

with a nondimensional frequency ka. Computations are performed for nfreq = 200

frequency nodes at fixed values of numbers of scatterers, M = 200 :Mx = 10,My = 20

and M = 1000 : Mx = 10,My = 100. For M = 1000 at fixed value of ka = 10,

it took approximately 18000/3600 = 5hours to evaluate the B
(m)
n coefficients using

LAPACK library and 61 minutes and 39.007 seconds using TOEPLITZ package. We

can notice from graphs the advantage of iterative approach with the rise of M and ka.

The iterative solver works faster and is more efficient than direct method.

To further expedite the simulation run time, the Fortran codes are parallelized using

OpenMP. OpenMP is an implementation of multithreading; it runs the section of the

code in parallel by dividing a task among available threads. We performed parallel

computations over the frequency intervals using “OMP dynamic scheduling”, “OMP

static scheduling”, and “OMP” without scheduling by varying the chunk size and the

number of threads used. The increase of number of threads reduced a total elapsed

time to solve a linear system using TOEPLITZ package. Tables 5.1 and 5.2 evaluate

the efficiency of parallelization using TOEPLITZ package and OpenMP compilers, for a
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configuration of Mx = 10 columns and My = 20 row of rigid cylinders at nfreq = 200

(frequency intervals). For a configuration of M = 200 cylinders the computation time

reduced from 2 hours 9 minutes 11.4394 seconds using 1 thread to 14 minutes 57.2535

seconds using 16 threads with dynamic scheduling and chunck size= 2. Table 5.3

illustrates the comparison of total elapsed time to find the unknown coefficients using

TOEPLITZ and LAPACK libraries on 16 threads with dynamic scheduling and chunck

size= 2 varying the number of scaterers. As we can see for smaller number scatterers,

M = 200 LAPACK library works faster but at larger value of scatterers, M = 500

TOEPLITZ solver is more effective and takes less run time and shows its advantage

with increase of M and ka.

Number of Threads Total Elapsed Time

1 2 hours 9 min 11.4394 sec

5 1hour 14 min 15.7641 sec

10 43 min 54.6001 sec

15 31 min 33.1283 sec

16 28 min 46.3367 sec

Table 5.1: Total elapsed time to find the unknown coefficients using TOEPLITZ library

for a configuration of M = 200 rigid cylinders with nfreq = 200 (frequency intervals),

and OMP without scheduling.
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Chunck Size Number Total Elapsed Time, Total Elapsed Time,

of Threads Dynamic Schedule Static Schedule

2 5 28 min 38.3972 sec 28 min 35.7127 sec

2 10 17 min 43.8765 sec 19 min 36.9096 sec

2 15 15 min 55.0149 sec 19 min 21.3139 sec

2 16 14 min 57.2535 sec 19 min 24 sec

3 5 29 min 42.991 sec 29 min 0.9738 sec

3 10 19 min 3.5561 sec 20 min 40.601 sec

3 15 16 min 17.4695 sec 19 min 33.3069 sec

3 16 16 min 31.0644 sec 22 min 32.1263 sec

5 5 31 min 53.6569 sec 31 min 35.1488 sec

5 10 21 min 39.332 sec 21 min 38.2482 sec

5 15 18 min 45.4848 sec 18 min 45.002 sec

5 16 17 min 6.667 sec 18 min 34.0762 sec

Table 5.2: Total elapsed time to find the unknown coefficients using TOEPLITZ library

using Dynamic and Static Schedules for a configuration ofM = 200 rigid cylinders with

nfreq = 200 (frequency intervals).

Chunck Size Number Number Total Elapsed Time, Solver

of Threads of Scatterer Dynamic Schedule

2 16 M = 200 14 min 57.2535 sec TOEPLITZ

2 16 M = 500 2 hours 28.794 min TOEPLITZ

2 16 M = 200 13 min 45.08 sec LAPACK

2 16 M = 500 3 hours 27.5358 min LAPACK

Table 5.3: Total elapsed time to find the unknown coefficients using TOEPLITZ and

LAPACK libraries with Dynamic Schedule for a configuration ofM = 200 andM = 500

rigid cylinders with nfreq = 200 (frequency intervals).
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Chapter 6

Acoustic active exterior cloaking

6.1 Introduction

Cloaking is intended to make an object undetectable to incident waves. The approaches

proposed consist mainly of two quite distinct types of cloaking, namely passive and

active. Passive cloaking requires devising a metamaterial that can steer the wave energy

around the object regardless of the incident wave. Our interest here is with active

cloaking, specifically in situations where the active sources lie in the exterior of the

region containing the cloaked object. We call this configuration active exterior cloaking

in keeping with prior terminology [179]. The field generated by the active sources is

zero in the infinite region outside a set of circles defined by the relative positions of the

sources. In this capter, we demonstrate that the integral representation of Vasquez et

al. [181] for the source amplitudes can be reduced to closed-form explicit formulas. We

provide analytical expressions for the source amplitude coefficients for general incidence

as well as plane wave incidence. The expressions involve no more than sums of cylinder

functions which can be truncated to achieve any desired accuracy. We also prove that

the field generated by the active sources vanishes in the infinite region exterior to a

set of circles defined by the relative positions of the sources. The active source field,

by construction, cancels the incident field in the cloaked region, which is defined by

the region interior to the same circular areas. The analytical results are verified by

calculation of the farfield and the nearfield amplitudes, which are shown to vanish

when the summation is accurately evaluated. The non-radiating nature of the active

field has relevance to the inverse source problem [168]. Although for this problem,

some uniqueness results are available for restricted forms of sources, e.g. “minimum

energy sources” [47], in general the solution to this problem is know to be non-unique
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[19]. Here we develop the solution of the active cloaking problem as a new family of

non-radiating sources, with the property that they cancel a given incident field over a

finite region.

We begin in 6.2 with a statement of the problem, a review of the governing equations,

and a summary of the main results. The basic integral relation of Vasquez et al. [181]

is derived in 6.2.2, from which the main results are shown to follow. Some example

applications of the new formulas are presented in 6.5. Some implications of the general

results are discussed in 6.6.

6.2 Source amplitudes for active exterior cloaking

6.2.1 Problem overview

Figure 6.1: Insonification of the actively cloaked region C generated by M active point

multipole sources at xm, m = 1,M . The region R is defined as the interior of the

union of the dashed circular arcs, that is, the combined area comprising C and the M

circular domains. The incident field in this case is a plane wave with wave vector k in

the direction ψ.

The active cloaking devices considered here operate in two dimensions, and consist

of arrays of point multipole sources located at positions xm ∈ R2, m = 1,M (see Figure
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6.1). The active sources lie in the exterior region with respect to the cloaked region

C and this type of cloaking may therefore be called “active exterior cloaking” [179].

Objects are undetectable in the cloaked region by virtue of the destructive interference

of the sources and the incident field with the result that the total wave amplitude

vanishes in the cloaked region C. The advantages of this type of cloaking device are:

(i) the cloaked region is not completely surrounded by a single cloaking device; (ii) only

a small number of active sources are needed; (iii) the procedure works for broadband

input sources; (iv) the cloaking effect is independent of the location of the scatterer in

the cloaking region. A disadvantage of the active cloaking approach is that the fields

near the ideal sources may become uncontrollably large. Realistically these would be

replaced by regions of finite extent and thus their magnitude is reduced. A further

disadvantage of the method is that the incident field must be known. However we note

that with the approach proposed in this paper, the new expressions require only the

expansion of the incident field into entire cylindrical waves, as compared with the line

integrals derived in [182] which require knowledge of the incident field and its normal

derivative.

The shaded region in Figure 6.1 denotes the cloaked zone C generated by M active

point multipole sources. The boundary of C is the closed concave union of the circular

arcs m = 1,M , {am, φ(m)
1 , φ

(m)
2 } associated with the source at xm. In the general case

{am, φ(m)
1 , φ

(m)
2 } are distinct for different values of m. Note that the wave incidence

shown in Figure 6.1 is a plane wave although the solution derived below is for arbitrary

incidence. The inverse problem to be solved is to find the amplitudes of the active

sources as a function of the incident wave, and to prove that the cloaked region is

indeed the closed region C.

We assume time harmonic dependence e−iωt, which is omitted hereafter, and con-

sider the scalar Helmholtz equation in two dimensions. Thus the method proposed here

is applicable to any physical situation described as such. For ease of discussion, how-

ever, let us consider the case of acoustics, so that the governing equation for the (time

harmonic) pressure p(x) is given by eq. (2.62). For a given incident wave, we assume

there is an additional field resulting from the active sources which exactly cancels the
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incident wave in some bounded region C. This additional wave field is caused by the

M multipole sources located at xm, m = 1,M . The assumed form of the total field p,

the incident wave p in, and the active source field p d are, respectively

p = p in + p d, (6.1a)

p d =
M∑

m=1

∞∑

n=−∞
bm,nV

+
n

(
k(x− xm)

)
, (6.1b)

where p in is defined in the form of eq. (2.68) with k⊥ = k and kz = 0: here we consider

a perpendicular incidence (α = 0), no z dependence. The wave functions U ±
n (x) and

V ±
n (x) are defined by eqs. (2.66) and (2.70). Define the derivative functions U ±

n
′
(x) as

U ±
n

′
(x) = J ′

n(|x|)e±in argx. (6.2)

In the following we write U0 and V0, with obvious meaning. Note that the functions

U ±
n (x) and V ±

n (x) possess the properties given by eq. (2.71) and obey the generalized

Grafs addition theorem (2.72).

The active source field p d in (6.1b) is of the same form as considered by Vasquez

et al. [180, eq. (5)]. The three dimensional analog is given in [182, eq. (40)]. The

coefficients An, which define the incident field, include as a special case plane wave

incidence in the direction ψ (An = ine−inψ). The active cloaking problem is now to

find (i) the coefficients bm,n such that the total field p vanishes inside some compact

region C, and (ii) to define the region C.

The principal results can be summarized in two theorems. The first provides neces-

sary and sufficient conditions on the source amplitudes bm,n in order to ensure cloaking

in the region C and a non-radiating source field p d. The second provides the explicit

expressions for the active source amplitudes.

Theorem 1 Necessary and sufficient conditions on the active source coefficients bm,l

in order to ensure zero total field (p in+p d = 0) inside C and no radiated field (p d → 0
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in the far field) are

∀n ∈ Z :
M∑

m=1

∞∑

l=−∞
bm,l ×





U−
n−l
(
kxm

)
= 0,

V −
n−l
(
kxm

)
= −An.

(6.3)

These identities provide a useful means to quantify error in active cloaking as will

be seen later on. We now state the explicit form for the source amplitudes, together

with the shape of the cloaked region C and the region in which the source field vanishes.

Theorem 2 Given M active sources located at xm, m = 1,M , the required active

source amplitude coefficients for the general incidence (2.68) are

bm,l =
∞∑

n=−∞
bm,lnAn, where (6.4a)

bm,ln =
kam
4

∞∑

p=−∞
U +
n+p

(
kxm)

(−1)p

l + p

[
Jp(kam)J

′
l (kam)− J ′

p(kam)Jl(kam)
]

×
[
e−i(l+p)φ

(m)
2 − e−i(l+p)φ

(m)
1
]
. (6.4b)

This ensures cloaking (zero total field) in the region C which is the closed and bounded

domain formed by taking its boundary as the closed concave union of the circular arcs

defined by {am, φ(m)
1 , φ

(m)
2 } and denoted as ∂Cm, see Figure 6.1. These coefficients also

ensure that the radiated field from p d is identically zero in the region exterior to all of

the circles centered at the source points:

p d(x) = 0 for x ∈ R2/R, R ≡ C ∪
M⋃

m=1

{x : |x− xm| ≤ am}. (6.5)

This is the exterior to the union of the dashed circular arcs in Figure 6.1.

An alternative and more concise formulation of eq. (6.4b) is obtained using the

notation of eqs. (2.66) and (2.70) with a
(m)
i ≡ amê(φ

m
i ), (i = 1, 2),

bm,ln =
1

4
kam

∞∑

p=−∞
U +
n+p(kxm)

(−1)p

l + p

[
U−
p (ka)U−

l
′
(ka)− U−

p
′
(ka)U−

l (ka)
]∣∣∣

a
(m)
2

a
(m)
1

(6.6)

where ê(φmi ) is a unit vector subtended at angle φmi , as illustrated in Figure 6.1.
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An important case for which the summation in (6.4a) can be simplified is plane

wave incidence. Assuming the incident field is a unit amplitude plane wave in direction

ψ, p in = pψ defined by An = ine−inψ, results in

bm,l = pψ(xm)
kam
4

∞∑

p=−∞

ipeipψ

l + p

[
U−
p (ka)U−

l
′
(ka)− U−

p
′
(ka)U−

l (ka)
]∣∣∣

a
(m)
2

a
(m)
1

,
plane wave

incidence.

(6.7)

The form of the coefficients bm,l is discussed further below. Note that the term in (6.4b),

(6.6) and in (6.7), corresponding to p+ l = 0 is zero, which follows from l’Hôpital’s rule.

Theorems 1 and 2 are proved in the next section.

6.2.2 Proofs of Theorems 1 and 2

Theorem 1: Necessary and sufficient conditions on the source amplitudes

We first prove the constraints on the source coefficients bm,l given by Theorem 1, and

at the same time show that they may be interpreted in terms of the near- and far-

field of the active sources. To this end, we express p d in two different forms using

the generalized Graf addition theorem (2.72), Let us first consider the radiated field,

assuming that p d does not radiate energy into the far field. The first of (2.72), for

|x| > |y|, allows us to rewrite p d as a sum of multipoles at the origin:

p d =
∞∑

n=−∞
FnV

+
n (kx) for |x| > max(|xm|+ am), (6.8)

where

Fn =
M∑

m=1

∞∑

l=−∞
bm,lU

−
n−l(kxm). (6.9)

Define the farfield amplitude function f(θ), θ = arg x̂, such that

p d(x) = f(θ)
eik|x|

(k|x|)1/2 +O
(
(k|x|)−3/2

)
, |x| → ∞. (6.10)

The farfield amplitude function follows from the asymptotic form of the Hankel func-

tions as

f(θ) =
∞∑

n=−∞
fne

inθ, fn =
( 2
π

)1/2
i−(n+ 1

2
) Fn. (6.11)
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A measure of the nondimensional total power radiated by the sources is given by the

non-negative far-field flux parameter

σr =

∫ 2π

0
d θ|f(θ)|2 = 4

∞∑

n=−∞
|Fn|2. (6.12)

Since p d does not radiate energy into the far field, the active sources must vanish, so

that Fn = 0 ∀n. Imposing this in (6.9) ensures the necessity of (6.3)1. The sufficiency

of (6.3)1 is seen immediately by substituting (6.3)1 into (6.9) and (6.8) which gives

p d = 0 for |x| > max(|xm|+ am).

Now let us consider the near-field inside the cloaked region C where we assume that

the cloaked region contains the origin and the total field is zero inside C, i.e. p in+p d = 0.

Using the second identity in (2.72), the active source field p d can be expressed in a form

that is valid in the neighborhood of the origin (assuming |xm| > am ∀m),

p d =
∞∑

n=−∞
EnU

+
n (kx) for |x| < min(|xm| − am), (6.13)

where

En =
M∑

m=1

∞∑

l=−∞
bm,lV

−
n−l(kxm). (6.14)

The total field vanishing in some neighbourhood of the origin thus implies that En +

An vanishes for every value of n. This gives rise to the necessary condition (6.3)2.

Sufficiency is once again immediate by assuming the form (6.3)2 and back-substituting

into the forms of p d and p in above.

Further implications of this result are explored after we complete the proof of The-

orem 2.

Theorem 2: Explicit forms for the active source amplitudes

The Green’s function g(x,x′) is defined as the solution of eq. (2.62) for source ps =

δ(x − x′), i.e. g(x,x′) = − i
4V0(x − x′). Consider a region D such as that depicted

in Figure 6.2, chosen so that it does not contain any sources. We will determine the

explicit form for the active source amplitudes together with the form of D that ensures

cloaking. The latter, already introduced as C, is the region depicted in Figure 6.1.
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Figure 6.2: A configuration of M = 4 sources, and a region D in which the integral

identity (6.15) holds.

By assumption, both p in and p d satisfy the homogeneous Helmholtz equation in D

(eq. (2.62) with Ps = 0 ∀x ∈ D), and therefore

∫

∂D
dS(y)

[
v(y)∂ng(y,x)− g(y,x)∂nv(y)

]
= v(x), v = {p in, p d}, x ∈ D. (6.15)

where ∂D is the boundary ofD depicted in Figure 6.2 as the union of the arcs ∂Dm,m =

1,M and it is traversed counter-clockwise. We wish to determine the cloaked region

C ⊂ D which is defined by its property that the total field p in + p d vanishes inside C,

so that

p d(x) = −p in(x) = i

4

∫

∂C
dS(y)

[
p in(y)∂nV0

(
k(y−x)

)
−V0

(
k(y−x)

)
∂np

in(y)
]
, x ∈ C.

(6.16)

Given that the boundary of C is split up, as for D into segments ∂Cm,m = 1,M , we

can use (2.72)1, in order to write, for some x0

V0(y − x) = V0(x− x0 − (y − x0)) =
∞∑

n=−∞
V +
n (x− x0)U

−
n (y − x0) (6.17)

which holds for |x− x0| > |y− x0|. Do this for each of the contours choosing x0 = xm

on each ∂Cm, so that

p d(x) =− i

4

M∑

m=1

∞∑

n=−∞
V +
n

(
k(x− xm))

×
∫

∂Cm

dSm
(
p in(y)∂nU

−
n

(
k(y − xm)

)
− U−

n

(
k(y − xm)∂np

in(y)
)

(6.18)

where we require |x − xm| > |y − xm| on each contour ∂Cm (recall that the integral

is being considered for x ∈ C). The minus sign in (6.18) arises since upon expanding
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about the point xm, the counter-clockwise orientation with respect to the centre xm is

opposite to the counter-clockwise traversal of ∂C with respect to some origin inside C.

Note that for this to hold simultaneously for all m the contours ∂Cm must be circular

arcs as depicted in Figure 6.3. Therefore we have proved that C is the region with

boundary as the closed concave union of the circular arcs defined by {am, φ(m)
1 , φ

(m)
2 }

and denoted as ∂Cm (see Figure 6.1). Finally, using the form for p d given in (6.1b), we

find that

bm,n = − i

4

∫

∂Cm

dSm

[
p in(y)∂nU

−
n

(
k(y − xm)

)
− U−

n

(
k(y − xm)

)
∂np

in(y)
]
. (6.19)

Figure 6.3: The integration curve ∂C split into M = 3 portions ∂Cm appropriate for

the integral representation (6.18) of the active source field. The cloaked central (black)

region, is bounded by ∂Cm, m = 1, 2, 3.

This agrees with [181, Eq. (8)] apart from a factor i/4 missing there. Equation

(6.19) provides a direct method for calculating the multipole source amplitudes, as

has been demonstrated numerically for different source configurations [181]. The re-

sult is not optimal, however, as it requires evaluation of a line integral, which can be

computationally time consuming.

The explicit formula for the source amplitudes follows from eq. (6.19) by introducing

the forms for the functions U−
n as follows

bm,l = − i

4
kam

∫ φ
(m)
2

φ
(m)
1

dφ e−ilφ
[
p in(y)J ′

l (kam)− Jl(kam)k
−1∂np

in(y)
]
. (6.20)

We see that the cloaked region C is indeed the subdomain of D in which Graf’s theorem

can be simultaneously invoked for all of the M active sources.
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Consider plane wave incidence in the direction of the unit vector ê(ψ), p in = pψ(x)

where

pψ(x) = eikê(ψ)·x (An = ine−inψ)). (6.21)

Then (6.20) becomes, with αm ≡ kam,

bm,l =
αm
4i
pψ(xm)

∫ φ
(m)
2

φ
(m)
1

dφ e−ilφ
[
J ′
l (αm)− in(φ) · ê(ψ)Jl(αm)

]
pψ(y − xm)

=
αm
4i
pψ(xm)

∫ φ
(m)
2

φ
(m)
1

dφ
[
J ′
l (αm)− i cos(φ− ψ)Jl(αm)

]
ei[αj cos(φ−ψ)−lφ]

=
αm
4i
pψ(xm) e

−ilψ[J ′
l (αm)G(αm)− Jl(αm)G

′(αm)
]
, (6.22)

where the function G is defined as

G(α) =

∫ φ
(m)
2 −ψ

φ
(m)
1 −ψ

dφ ei(α cosφ−lφ) =
∞∑

n=−∞
Jn(α) i

n

∫ φ
(m)
2 −ψ

φ
(m)
1 −ψ

dφ e−i(n+l)φ. (6.23)

The identity eix sin θ =
∑∞

n=−∞ Jn(x)e
inθ has been used in simplifying the form of

G(α). Performing the integration in (6.23), we arrive at an explicit expression for the

amplitude coefficients

bm,l = uψ(xm)
αm
4

∞∑

p=−∞

[
Jp(αm)J

′
l (αm)− J ′

p(αm)Jl(αm)
] ipeipψ
p+ l

[
e−i(p+l)φ

(m)
2 − e−i(p+l)φ

(m)
1
]
.

(6.24)

Now consider the incident field

i−n

2π

∫ 2π

0
dψ pψ(x)e

inψ = U +
n

(
kx
)

(Ap = δnp). (6.25)

It follows from integration of (6.24) that the general form of the amplitude coefficients

for the general incidence (2.68) is given by (6.4b).

Finally, we turn to the question of where the active source field vanishes, noting

that the integral (6.16) vanishes identically for field positions outside C [39]

i

4

∫

∂C
dS(y)

[
p in(y)∂nV0

(
k(y − x)

)
− V0

(
k(y − x)

)
∂np

in(y)
]
= 0, x ∈ R2/C. (6.26)

How does this relate to the source field p d(x)? In the course of the derivation of the

coefficients bm,n the field p d(x) was expressed in the form (6.18) for x ∈ C. The latter

restriction on x can be removed since it is clear that eq. (6.18) defines p d(x) for all x.
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This is evident from the definition (6.1b) and from the identity (6.19) for bm,n. Equation

(6.26) therefore implies that p d(x) vanishes at all positions outside the cloaked region

for which the representation (6.18) holds, i.e. {x 6∈ C : |x − xm| > |y − xm|, y ∈

∂Cm, m = 1,M}. This is precisely the region R defined in (6.5), equal to, for instance,

the exterior to the colored regions in Figure 6.3.

This completes the proof of Theorem 2.

6.3 Velocity field in an acoustic cloaked region

Let us consider a cloaked zone C generated by M active point multipole sources and

calculate a total velocity field for acoustic cloaking. We assume time harmonic depen-

dence e−iωt. Let the total pressure p in an acoustic medium be defined by eq. (6.1a)

as the sum of the incident wave p in and the active source field p d, where p in and p d

are given respectively by eq. (2.68) and (6.1b).

We now want to find the velocity field v given the pressure; to do this we use the

momentum balance equation (2.63) that yields

v = − i

ρck
∇p, (6.27)

where ρ is the density, c is the acoustic wave speed and k = ω/c is the wave number.

Hence, the rectangular components of the velocity field are

(
vx, vy

)
= − i

ρck

(∂p
∂x
,
∂p

∂y

)
. (6.28)

We consider a plane wave incidence in the direction of the unit vector ê(ψ), and the

incident pressure field p in in the form (6.21). Introducing eq. (6.1a) into (6.28) along

with eqs. (6.1b), and (6.21) yields:

vx =− i

ρkc

{
ik cosψeik

(
x cosψ+y sinψ

)
+

M∑

m=1

∞∑

n=−∞
bm,ne

in arg(x−xm)

×
[k(x− xm)

|x− xm|
H(1)′

n (k|x− xm|)−
in(y − ym)

|x− xm|2
H(1)
n (k|x− xm|)

]}
, (6.29a)

vy =− i

ρkc

{
ik sinψeik

(
x cosψ+y sinψ

)
+

M∑

m=1

∞∑

n=−∞
bm,ne

in arg(x−xm)

×
[k(y − ym)

|x− xm|
H(1)′

n (k|x− xm|) +
in(x− xm)

|x− xm|2
H(1)
n (k|x− xm|)

]}
, (6.29b)
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where prime in H
(1)′

n (|z|) denotes derivative with respect to argument |z|. Using the

notation θm(x) = arg(x− xm), equation (6.29) can be simplified as:

vx =
1

ρc

[
cosψ p in −

M∑

m=1

∞∑

n=−∞
bm,n

(
i cos θmV

+
n

′(
k(x− xm)

)
+ n sin θm

V +
n

(
k(x− xm)

)

k|x− xm|
)]
,

(6.30a)

vy =
1

ρc

[
sinψ p in −

M∑

m=1

∞∑

n=−∞
bm,n

(
i sin θmV

+
n

′(
k(x− xm)

)
− n cos θm

V +
n

(
k(x− xm)

)

k|x− xm|
)]
.

(6.30b)

6.4 Acoustic Scattering from a Cylinder in a Cloaked Region

In this section we investigate the use of active exterior cloaking sources by considering

acoustic scattering from rigid and soft cylinders of radius a immersed in water.

6.4.1 Scattering from cylinder

Let us first assume that active multiple sources are not included. Then total pressure

field p is defined by (2.67) as the sum of incident p in and scattered p sc fields given

by eqs. (2.68) and (2.69). The coefficients Bn are the desired scattering coefficients.

The coefficients An define the incident field, as special case An includes a plane wave

incidence in the direction ψ given by eq. (6.21). The outgoing scattered wave satisfies

the corresponding boundary conditions at r = a, the Sommerfeld radiation condition

at r → ∞, and the Helmholtz equation outside the surface of a cylinder at r > a. For

acoustically hard cylinder (rigid cylinder) the velocity of a fluid on the boundary r = a

is zero. This implies that the normal derivative of the total pressure field has to vanish

on boundary r = a:

∂p sc(a)

∂r
= −∂p

in(a)

∂r
. (6.31)

For an acoustically soft cylinder, the total pressure field has to vanish on boundary

r = a:

p = 0 or p sc = −p in. (6.32)
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Application of the boundary conditions (6.31) and (6.32) along with equations (6.21)

and (2.69) leads to the following coefficient relations

Bn = Tnni
neinψ, (6.33)

where Tnn is defined by eq. (3.133) for an acoustically hard cylinder (rigid cylinder)

and eq. (3.134) for an acoustically soft (hollow) cylinder.

6.4.2 Cylinder in a cloaked region

Let’s now assume that a cylinder is situated in some bounded cloaked region C generated

by active cloaking devices. For simplicity, let us consider a cylinder surrounded by

active sources having the symmetric configuration given in Figure 6.4. The center of

the cylinder is at the origin that is located in the center of configuration.

The total field p is again defined as the sum of incident P in and scattered P sc fields:

p = P in + P sc, (6.34)

But unlike in the previous case, now the incident field P in on the cylinder consists of

two parts p in and p d

P in = p in + p d =

∞∑

n=−∞
(An + En)U

+
n

(
kx
)
, (6.35)

where An is given by (6.21) and En, the near field coefficient, is defined by (6.14) .

The boundary conditions (6.31) and (6.32) yield correspondingly the following scat-

tered field

P sc = −
∞∑

n=−∞
Tnq(Aq + Eq)δqnV

+
n

(
kx
)
, (6.36)

where Tnn is defined by eq. (3.133) for an acoustically hard cylinder and eq. (3.134)

for an acoustically soft cylinder. When the cloaking device is not active, i.e. En = 0,

results coincide with ones given the in previous section, 6.4.1.
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Figure 6.4: Plane wave insonification of the cloaking region C generated by M = 8

active sources.

6.5 Numerical examples

6.5.1 Active source configuration

We illustrate the results for plane wave incidence on configurations of the type shown

in Fig. 6.4. The M sources are symmetrically located on a circle, with

am = a, |xm| = b, θm = (m− 1)θ0 m = 1,M, where θ0 = 2π/M, (6.37)

and by necessity, a ≥ b sin π
M . The circular arcs, which all have the same angular extent,

are then defined by

φ
(m)
1,2 = π + θm ∓

∣∣∣∣ sin
−1

(
b

a
sin

π

M

)
− π

M

∣∣∣∣, m = 1,M. (6.38)

We take a = b sin π
M in all examples considered. Note that the cloaked region C can be

formed by a minimum of 3 sources. A configuration with M = 8 sources is shown in

Figure 6.4. All calculations were performed for plane wave incidence on configurations

of the type shown in Figure 6.4 with varying numbers of sources, M ≥ 3.
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Figure 6.5: The farfield radiation amplitudes |F (app)
n | of eq. (6.39) for different orders

of Bessel functions n = −10, 10, wavenumbers k = 1, 5 and truncation values N = 10

and 15. The configuration is M = 3 multipole sources located at the distance b = 1

from the origin, with angle of incidence ψ = 7◦.
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Figure 6.6: Dependence of the farfield amplitudes |F (app)
n | on the order n of Bessel

functions for different values of N in (6.39) (N = 5, 10, 15) and for different numbers

of active sources: (a) M = 3, and (b) M = 8. The incident wavenumber is k = 1.

6.5.2 Near and farfield amplitudes

The efficiency of the cloaked region is assessed by examining the farfield and nearfield

as functions of various parameters. If all terms in the infinite sums in eqs. (6.9) and
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(6.14) are available then the farfield is identically zero and the nearfield exactly cancels

the incident wave by Theorems 1 and 2. We therefore consider truncated versions of

the infinite sums so that the farfield and nearfield coefficients, Fn and En of eqs. (6.9)

and (6.14) respectively, are approximated as

F
(app)
n

E
(app)
n



 =

M∑

m=1

N∑

l=−N
bm,l ×





V −
n−l(xm),

U −
n−l(xm),

∀n ∈ Z. (6.39)
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Figure 6.7: Variation of the nearfield amplitude coefficients |An + E
(app)
n | for different

values of the truncation size N in eq. (6.39), generated by M = 6 active sources in (a)

and M = 8 sources in (b). In all cases k = 5.

In the limit of N → ∞, exact cloaking is achieved. Restricting the summation to

finite values of N is equivalent to limiting the order of the active multipole sources.

The behavior of the approximate coefficients F
(app)
n and E

(app)
n has implications for

the accuracy of the cloak, regardless of the type of object to be cloaked. Thus, the

farfield coefficients determine the radiated field everywhere outside the cloak, and must

necessarily be small regardless of whether or not an object is being cloaked. Similarly,

the total field in the cloaked region C must be small in order to achieve cloaking. The

two conditions correspond to F
(app)
n and E

(app)
n +An having small values. The examples

in this subsection examine the sensitivity of these quantities. The sources are located

at b = 1 with plane waves incident at ψ = 17◦.
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Figure 6.8: Dependence of the nearfield amplitude |An + E
(app)
n | on the number of

multipole sources M (M = 3, 4, 5, 6) at wavenumber k = 1 in (a) and k = 5 in (b).

The farfield amplitude coefficients |F (app)
n |, n = −10, 10 are depicted in Figures 6.5

and 6.6 for different values of the wavenumber k, the number of sources M , and the

number of terms in summation (6.39), N . It is clear from these two figures that the

error in the farfield coefficients decreases (i) as N increases, (ii) asM increases, and (iii)

as k decreases. The convergence is particularly fast as a function of N . For instance,

at k = 1 the farfield coefficients are uniformly less than 10−6 for all M ≥ 3 if N ≥ 5.

Much smaller values (10−15 or less) for |F (app)
n | are easily achieved for moderate values

of N , i.e. N = 10.

The nearfield amplitude coefficients |An + E
(app)
n | are shown in Figures 6.7 to 6.9.

In contrast with the farfield case, relatively large values of the truncation size N are

required to obtain small nearfield coefficients. Figure 6.7 shows that N on the order

of 100 or more is required to achieve accuracy comparable to the farfield coefficients.

However, unlike the farfield amplitudes, it is found that the nearfield coefficients gen-

erally increase in magnitude with |n|, the order of the Bessel functions. The relatively

large values of |An + E
(app)
n | and their increase with the order |n| does not necessarily

mean that the total field in the nearfield is divergent. For instance, the top curve in

Figure 6.7(a) indicates |A10 + E
(app)
10 | =O(102), but this value multiplies J10(kr), and,

for instance, |J10(kr)| < 2 × 10−3 within C. In other words, the increasing values of
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Figure 6.9: Variation of the nearfield amplitude coefficients with number of active

sources (M = 4, 6, 8, 10) and with wavenumber (k = 1, 5). In all cases N = 130.

|An +E
(app)
n | with n can be balanced by the fact that Jn(kr) =

1
n!(

kr
2 )

n + . . . for small

kr.

Figure 6.8 shows the dependence of the nearfield coefficients on the number of

sources. The case of the minimum number of sources, M = 3, appears to be strikingly

different from others (M ≥ 4). As Figure 6.8 indicates, adding one more source and

taking M = 4 reduces the error from 100 to 10−10 for k = 1, n = ±5 and from 10−2

to 10−14 for k = 5, n = ±5. Generally, as with the farfield coefficients, increasing the

number of sources improves the accuracy of the nearfield amplitudes |An + E
(app)
n |.

Finally, Figure 6.9 shows the nearfield dependence on the wavenumber, k = 1, 5.

The accuracy actually improves with increasing k, unlike the farfield case. However,

it should be borne in mind that the nearfield coefficients multiply the terms Jn(kr),

which increase in magnitude with k for fixed r.

The numerical results in Figures 6.5 through 6.9 show that greater accuracy is

achieved using more sources, which is not unexpected. For the case of M = 3, the min-

imum number required, the nearfield coefficients could be large enough to significantly

diminish the cloaking effect. This suggests taking M = 4 might be preferable.
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(a) 3D view (b) 2D view

Figure 6.10: Absolute value of total pressure field with 4 active sources, b = 1, angle of

incidence ψ = 17◦, wave number k = 2, and N = 60. Values above 2 in magnitude are

clipped to make the plots visible

(a) 3D view (b) 2D view

Figure 6.11: Real part of total pressure field with 4 active sources, b = 1, ψ = 17◦,

wave number k = 10, and N = 60.
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6.5.3 Total field

The total field for unit amplitude plane wave incidence on configurations of active

sources of the type defined in Section 6.5.1 is illustrated through several examples. In

all cases b = 1 and ψ = 17◦. Figure 6.10 shows the absolute value of the field for four

active sources: the subplots provide different perspectives, indicating that the field is

indeed essentially zero in the cloaked region C, and that the radiated field ud is zero

outside the region R. The major variation in the source field is within the circular

regions centered on the active sources. It is found that the field in these regions can

take very large values, and therefore, for the sake of visibility we truncate the plot at

an arbitrary value (here = 2). Note also that the cloaked region spills over slightly into

the circular regions. This effect is perhaps easier to see in the subsequent examples.

(a) 3D view (b) 2D view

Figure 6.12: Real part of total pressure field with 4 active sources, ψ = 17◦, k = 10.

The number of modes used in the truncated sum is here limited by N = 10.
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(a) 3D view (b) 2D view

Figure 6.13: The same as in Figure 6.12 except now N = 5.

(a) 3D view (b) 2D view

Figure 6.14: The same as in Figure 6.13 except now M = 7.

Figure 6.11 considers the same M = 4 configuration of active sources at a higher

frequency k = 10. The plots in this case show the real part of the total field, clearly

illustrating the plane wave field in the exterior of R. The subplot on the right clearly
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shows that the cloaked region is somewhat larger than C, extending partly into the

circular regions. The number of modes used in Figure 6.11 (N = 60) is more than

adequate to ensure convergence and accurate cloaking. It is more instructive to consider

the effect of fewer modes, as in Figures 6.12 to 6.14. In Figure 6.12 the number of modes

used is on the order of the frequency, and good accuracy is still observed. Notice the

smaller footprints of the active sources, as compared with Figure 6.11, indicating that

the higher modes “fill out” the regions where ud is highly variable. Only N = 5 modes

are used in Figure 6.13, and one can see the deterioration of the cloaking effect expected

with an inadequate number of multipoles. The plane wave is clearly evident inside the

cloaked region C, as are some scattering effects in the “shadow” zone. It is interesting

to note that the active source footprints are reduced in size as compared with Figure

6.12. Finally, in Figure 6.14, we consider the effect of a larger number of active sources

combined with a small number of modes. Comparison of Figures 6.13 and 6.14 indicates

the tendency observed from the results of 6.5.2 that more active sources improves the

cloaking effect. This is also to be expected from the discussion below in 6.6 which shows

that for large numbers of sources only the lowest order multipoles play a significant role.

6.5.4 Scattering examples

Finally, we illustrate the effect of active exterior cloaking on plane wave scattering from

rigid and soft cylinders (Neumann and Dirichlet boundary conditions, respectively). In

each case, the cylinder is circular of radius a0 = 1 centered at the origin, five active

sources with b = 4 are used, the frequency is k = 5, and the incident wave strikes

at angle ψ = 17◦. Figures 6.15 and 6.16 compare the response from a rigid cylinder

with the active cloaking turned on and turned off. The absolute value is shown in

Figure 6.15 while Figure 6.16 considers only the real part of the complex field, which

clearly indicates the plane wave propagating undisturbed when the cloak is active. The

comparison for a soft cylinder is shown in Figures 6.17 and 6.18.
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(b) Cloaking devise ON

Figure 6.15: Absolute value of total pressure field when cloaking devices are inactive

(left) and active (right) for scattering from the hard cylinder. Calculations are per-

formed for a hard cylinder with M = 5 active sources, angle of incidence ψ = 17◦, and

wave number ka = 5.

 

 

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

−1.5

−1

−0.5

0

0.5

1

1.5

(a) Cloak inactive

 

 

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(b) Cloak active

Figure 6.16: Real value of total pressure field when cloaking devices are inactive (left)

and active (right) for scattering from a hard cylinder.
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(b) Cloak active

Figure 6.17: Absolute value of total pressure field with cloaking devices are inactive

(left) and active (right) for scattering from a soft cylinder: k = 5, ψ = 17◦.
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(b) Cloak active

Figure 6.18: Real part of total pressure field is displayed for a soft cyliner when cloaking

devices are inactive (left) and active (right): k = 5, ψ = 17◦.

6.6 Discussions and Conclusions

The numerical results of 6.5.2 indicate better convergence properties for fewer multi-

poles if more active sources are used. This is consistent with the finding of Du et al.

[10] that the order N of the multipoles required decreases as the number of sources M
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increases. It is therefore of interest to consider the limit in which many sources are

available: the large M limit. Staying with the configuration of 6.5.1, the appropriate

limit to consider is (am =)a ≈ bπ/M so that ka ≪ 1 and the small argument approxi-

mation can be used for the Bessel functions Jn(kam) (note kb is not necessarily small).

This implies that to leading order in ka the coefficients in (6.4b) reduce to

bm,ln =
i

4
ka ×





(−2)U+
n

′
(xm), l = 0,

le−ilθm U+
n (xm), l = ±1,

0, l 6= 0,±1.

(6.40)

The identity Jn−1(x) − Jn+1(x) = 2J ′
n(x) has been used to simplify the l = 0 term in

(6.40). The source field follows from eq. (6.1b) and the identity V +
−1(x) = −V −

1 (xm) as

ud =
i

2
ka

∞∑

n=−∞
An

M∑

m=1

× (6.41)

[
U+
n (xm)H

(1)
1 (|x− xm|) cos

(
arg(x− xm)− θm

)
− U+

n
′
(xm)H

(1)
0 (|x− xm|)

]
.

(6.42)

The field of the active sources is therefore composed of monopoles and dipoles only,

with no contribution from higher multipoles. This agrees with what one might expect

from the continuous limit of M → ∞, i.e. a closed contour of monopoles and dipoles,

but here it is obtained from the discrete solution. In fact, eq. (6.41) is

ud =
i

2
a

M∑

m=1

[
ui(xm)∂nV0(x− xm)− V0(x− xm)∂nui(xm)

]
, (6.43)

which can be seen to be the discretized version of the fundamental integral identity eq.

(6.16) with the correspondence
∫
dS → 2a

∑
m. While eq. (6.40) is thus the natural

first approximation for ud based on the integral equation (6.16), it should be realized

that it was obtained here as a first order approximation of the exact expression (6.4b).

The latter therefore provides the basis for a multipole expansion of the exact source

field obtained by including higher powers of ka than considered in eq. (6.40). This

possibility goes beyond our present interests but will be examined in a separate study

dealing with approximations to the exact results of Theorem 2.
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The exact source field ud(x) of eq. (6.1b) exhibits some interesting features. This

field is, by design, equal to the negative of the incident field in the cloaking region C,

and it also vanishes identically outside the concave region R defined in (6.5) The non-

radiating property of ud is as important as the fact that it exactly cancels the incident

wave in C. Let us examine this more closely. Define the infinite matrix S with elements

Spq such that

Fp =
∞∑

q=−∞
SpqAq ⇒ Spq =

M∑

m=1

∞∑

l=−∞
bm,lqU

−
p−l(xm), (6.44)

or, using (6.6),

Spq =
M∑

m=1

kam
4

∞∑

l,n=−∞
U −
p−l(xm)U

+
n+q(xm)

(−1)n

l + n

[
U−
n (a)U−

l
′
(a)− U−

n
′
(a)U−

l (a)
]∣∣∣

a
(m)
2

a
(m)
1

.

(6.45)

The matrix S is, formally at least, like a scattering matrix. For instance, by inspection,

S is hermitian (Spq = S∗
qp). However, by design and based on Theorem 1, S ≡ 0, and

as such it could be called a zero-scattering matrix. Alternatively, it can be viewed as

a formula for generating non-radiating fields. This has relevance to the inverse source

problem [168]. It is known that solutions to the inverse source problem are non-unique

[19], although some uniqueness results are available for restricted forms of sources,

e.g. “minimum energy sources” [47]. The solution of the active cloaking problem as

developed here has generated a new family of non-radiating sources, with the property

that they cancel a given incident field over a finite region.

By definition, an active source cloaking strategy requires solution of an inverse

problem: find the active source amplitudes associated with a given incident field in

order to exactly cancel the latter in some finite region. The results given in Theorem

2 provide closed-form solutions for the inverse problem for an arbitrary time harmonic

incident wave field. These new expressions require only the expansion of the incident

field into entire cylindrical waves and can be evaluated to any degree of accuracy by

increasing the truncation parameter N associated with the number of modes of the

active source. Simultaneously the fact that the active source field has been shown to

vanish identically outside the region R defined in (6.5) means that the active field is
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non-radiating. This latter property is just as important as its ability to nullify the

incident wave in the region C.

The necessary and sufficient conditions on the active source coefficients, given in

Theorem 1 provide a means to quantify the error in active cloaking when the number

of modes is finite. These errors have been analyzed here in some specific scenarios. It

has been shown that the error in the far-field amplitude decreases as N increases, M

increases and k decreases. In particular, there is a great sensitivity to the increase in

N ; relatively small errors can be attained in the far-field amplitudes for moderate N ,

say N ∼ 10. On the other hand for small errors in the near-field amplitudes, relatively

large values of N are required. Furthermore, there is a striking reduction in error when

moving from the case of M = 3 to M = 4, motivating the latter as a preference. In

contrast to the far-field case, errors decrease for increasing k.

Numerical results were given which illustrate the cloaking effect in various instances,

including the presence of a sound-soft and sound-hard circular cylinder. In the appropri-

ate limits, perfect theoretical active cloaking is achieved. The availability of closed-form

active source amplitudes opens the door for possible studies on practical realization of

active cloaking devices.

The case of many sources, where the active field degenerates to one involving a sum

of monopole and dipole sources, is worthy of further, separate study relating to the

multipole expansion associated with the active field. Finally, the non-radiating nature

of the active source field is especially noteworthy. The associated scattering matrix,

defined in (6.45) (which is zero by design), is therefore associated with a new family of

non-radiating source solutions which would appear to be useful in the so-called inverse

source problem.
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Chapter 7

Elastic active exterior cloaking

The main function of a cloaking device is to render an object invisible to some incident

wave as seen by some external observer. The aim of active exterior cloaking is to render

the total field zero inside some prescribed domain (the cloak or zone of silence), whilst

ensuring that the active field itself is non-radiating. The technique introduced in the

early active exterior cloaking work [112] and described in Chapter 6 enables a cloaked

region to be identified clearly by the use of Graf’s addition theorem. This approach

allows precise determination of the necessary source amplitudes. In this Chapter, we will

generalize the idea of active acoustic exterior cloaking [112] to include the elastodynamic

properties of medium. An active elastodynamic cloak destructively interferes with an

incident time harmonic in-plane (coupled compressional/shear) elastic wave to produce

zero total elastic field over a finite spatial region. A cloaking of a finite region in two

dimensions from time harmonic elastic waves is achieved using a discrete set of point

multipole forces. The amplitudes of the sources are uniquely determined by the incident

wave through a set of explicit expressions.

As yet, it does not appear that active exterior cloaking has been applied to the

elastodynamic context. This Chapter will focus on the relevant two-dimensional active

elastodynamic cloaking problem. In general, elastodynamic cloaking problems are more

difficult to study than their acoustic or electromagnetic counterparts. Indeed, in the

case of passive elastodynamic cloaking, this is due to the lack of invariance of Navier’s

equations under coordinate transformations [102] unless we relax the minor symmetry

property of the required elastic modulus tensor. The latter can be achieved by us-

ing Cosserat materials [25, 117] or by employing nonlinear pre-stress of hyperelastic

materials [119, 120, 115]. Here we show how the active approach to cloaking can be
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employed in the elastodynamic case for the fully coupled two-dimensional (in-plane)

compressional/shear wave problem. As in the approach of [112], we write down the

relevant integral equation by employing the isotropic Green’s tensor in this case. The

required source amplitudes for arbitrary wave incidence can be determined explicitly

by using Graf’s addition theorem.

Results presented in this Chapter were published in [108]. We shall begin in Section

7.1 with a statement of the problem, a review of the governing equations, and a summary

of the main results. The relevant integral relation is derived in Section 7.2, from which

the main results regarding the explicit form of the source amplitudes are shown to

follow. We consider both compressional and transverse (shear) wave incidence. We also

describe the form of the active source field and the issues associated with divergence

described above. Numerical results follow in Section 7.3.

7.1 Problem formulation and main results

7.1.1 Problem overview

Let us consider the two-dimensional configuration where the active cloaking devices

consist of arrays of point multipole sources located at positions xm ∈ R2, m = 1,M

as depicted in Figure 7.1. These sources can give rise to both shear and compressional

elastic waves. The active sources lie in the exterior region with respect to the cloaked

region C and for this reason, this type of cloaking is called active exterior cloaking [179].

Objects are undetectable in the cloaked region by virtue of the destructive interference

of the sources and the incident field with the result that the total wave amplitude

vanishes in the cloaked region C. As described in [112], this gives rise to three significant

advantages over passive cloaking: (i) the cloaked region is not completely surrounded

by a single cloaking device; (ii) only a small number of active sources are needed; (iii)

the procedure works for broadband input sources. The principal disadvantage of the

method is, of course, that the incident field must be known.

The M active sources give rise to a cloaked zone C is indicated in Figure 7.1 by

the shaded region whose boundary C is the closed concave union of the circular arcs
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∂Cm m = 1,M , {am, θ(m)
1 , θ

(m)
2 } associated with the source at xm. In the general case

{am, θ(m)
1 , θ

(m)
2 } are distinct for different values of m. Note that the wave incidence

shown in Figure 7.1 is a plane wave although the solution derived below is for arbitrary

incidence. We therefore have to determine the amplitudes of the active sources as a

function of the incident wave, and then prove that the cloaked region is indeed the

closed region C as indicated in Figure 7.1. Let us also define the notation Am as the

circular domain of radius am that contains the mth active source at its centre. We also

define the union of these domains A = ∪Mm=1Am.

Figure 7.1: Insonification of the actively cloaked region C generated by M active point

multipole sources at xm, and active source regions Am, m = 1,M . The incident field

in this case is a plane wave with wave vector k in the direction ψ.

The governing equations for P/SV in-plane wave propagation are given in Section

2.3.2. Navier’s equations in two dimensions for the displacement u = (u1, u2), uj =

uj(x1, x2), are given by eq. (2.78). Substitution of Helmholtz decomposition (2.56) for

the displacement into Navier’s equations leads to separate Helmholtz equations (2.80)

for the scalar potentials Φ and Ψ.

We seek the total wave field in the form of an incident wave, ui, plus the active
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source field, ud, such that

u(x) = ui + ud ⇒ Φ(x) = Φi +Φd, Ψ(x) = Ψi +Ψd. (7.1)

We assume the general form of an incident field in the regular basis, and hence


Φi

Ψi


 =

∞∑

n=−∞


A

(p)
n U +

n (kx)

A
(s)
n U +

n (Kx)


 , (7.2a)


Φd

Ψd


 =

M∑

m=1

∞∑

n=−∞


B

(p)
m,nV +

n (k(x− xm))

B
(s)
m,nV +

n (K(x− xm))


 , (7.2b)

where the functions U ±
n (zzz) and V ±

n (zzz) are defined by equations (2.66) and (2.70). In

the following we write U0 and V0, with obvious meaning.

7.1.2 Summary of the main results

Here we shall state the main results and the required source amplitudes to enable perfect

active cloaking together with necessary and sufficient conditions on these amplitudes.

The latter ensures we can compare accuracy of the cloaking technique. We shall prove

these results in Section 7.2. Let {am, θ(m)
1 , θ

(m)
2 } define the circular arc ∂Cm of the

closed boundary of the cloaked region associated with the source at xm. The active
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source amplitude coefficients for the general form of an incident field (7.2a) are




B
(p)
m, l

B
(s)
m, l




=
∞∑

n=−∞




B
(p)
m, lnA

(p)
n

B
(s)
m, lnA

(s)
n



, where (7.3a)




B
(p)
m, ln

B
(s)
m, ln




=
1

4(kam)
2

∞∑

q=−∞
(−1)q

[
e−i(q+l)θ

(m)
2 − e−i(q+l)θ

(m)
1
]

·
{
U +
n+q(kxm)


v1(kam, Kam)

v2(kam, Kam)


+ U +

n+q(kxm)


−v2(Kam, kam)

v1(Kam, kam)



}
,

(7.3b)

v(α, β) =


v1
v2


 =




[
α
(m)
s

2

q+l − 2q
]
αJ ′

l (α) i
[
α
(m)
s

2

q+l − 2l
]
αJl(α)

−i
[
α
(m)
s

2
− 2lq

]
Jl(β) −2α

(m)
p α

(m)
s Jl

′(β)







Jq(α)

iJ ′
q(α)



.

(7.3c)

The derivation of eq. (7.3) is given in Section 7.2.5. Alternatively defining a vector

a
(m)
i ≡ amê(θ

(m)
i )(i = 1, 2), and incorporating eqs. (2.66) and (6.2), eq. (7.3b) reduces

to the form



B
(p)
m, ln

B
(s)
m, ln




=
1

4α
(m)
s

2

∞∑

q=−∞
(−1)q

{
U +
n+q(kxm)


V1(ka, Ka)

V2(ka, Ka)




+ U +
n+q(Kxm)


−V2(Ka, ka)

V1(Ka, ka)



}∣∣∣∣

a
(m)
2

a
(m)
1

, where

(7.4a)

V(α,β) =


V1
V2


 =




[
α
(m)
s

2

q+l − 2q
]
αU−

l
′
(α) i

[
α
(m)
s

2

q+l − 2l
]
αU−

l (α)

−i
[
α
(m)
s

2
− 2lq

]
U−
l (β) −2α

(m)
p α

(m)
s U−

l
′
(β)







U−
q (α)

iU−
q

′
(α)



.

(7.4b)
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The active source coefficients B
(p)
m, l and B

(s)
m, l must satisfy the necessary conditions:

∀n ∈ Z :
M∑

m=1

∞∑

l=−∞
×





B
(p)
m, lU

−
n−l(kxm) = 0,

B
(s)
m, lU

−
n−l(Kxm) = 0,

B
(p)
m, lV

−
n−l(kxm) = −A(p)

n ,

B
(s)
m, lV

−
n−l(Kxm) = −A(s)

n .

(7.5)

Note that in eq. (7.5), for an incident longitudinal wave, A
(s)
n = 0 and so the term on

the right hand side of the fourth identity vanishes, whereas for a transverse incident

wave, A
(p)
n = 0, and as a result the right hand side of the third equation reduces to

zero. The constraints on B
(p)
m, l and B

(s)
m, l will be used to estimate an error in the active

cloaking region in the following sections by truncating an infinite sum in (7.5).

7.2 Solution for the source amplitudes

We begin the derivation by formulating the problem as an integral equation.

7.2.1 Integral equation

With knowledge of the Green’s tensor G = [Gik] defined by (2.94) we can now develop

an integral equation for the displacement. Indeed, if u is a solution of the homogeneous

equations in an infinite domain containing a finite region D and σ is the associated

stress, then by definition of the Green’s tensor,

∫

∂D
dSni

[
uj(y)Σijk(y − x)− σij(y)Gjk(y − x)

]
=





uk(x), x ∈ D,

0, x /∈ D.

(7.6)

Equation (7.6) holds for both ui and ud separately inside the cloaked region, since both

are assumed to be regular there (this is a definition of exterior cloaking). Also, by
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its definition the total field is zero inside the cloaked region with boundary ∂C, and

therefore

ud(x) = −
∫

∂C
dSn ·

[
ui(y) ·ΣΣΣ(y − x)− σσσi(y) ·G(y − x)

]
, x ∈ C. (7.7)

This is the fundamental relation used to find the source amplitudes.

7.2.2 General expressions for the source amplitudes

Following the procedure for the acoustic problem we first substitute the assumed form

of ud into the left member of (7.7). Then we partition the integral in the right member

into M segments over {∂Cm,m = 1,M} and identify each line integral with the mth

component of ud, i.e. the part of the source field from the multipoles at xm. Thus,

0 =

M∑

m=1

{∫

∂Cm

dSn ·
[
ui(y) ·ΣΣΣ(y − x)− σσσi(y) ·G(y − x)

]

+

∞∑

n=−∞

(
B(p)
m,n∇V +

n (k(x− xm)) +B(s)
m,n∇×kV +

n (K(x− xm))

)}
, x ∈ C. (7.8)

We now use the generalized Graf addition theorem (2.72). The idea is to write

Σ(y − x) and G(y − x) in (7.8) in terms of sources at xm. This suggests using (2.72)

for y− x → (y− xm)− (x− xm) subject to |y− xm| < |x− xm|. Hence, using (2.95),

G(y − x) =
i

4ρω2

∞∑

n=−∞

{
∇∇U−

n

(
k(y − xm)

)
V +
n

(
k(x− xm)

)

+ (∇×k)(∇×k)U−
n

(
K(y − xm)

)
V +
n

(
K(x− xm)

)}
. (7.9)

By virtue of the dependence of the Green’s function on y−x, the derivatives ∇∇ can be

understood as ∇y∇y or ∇x∇x or −∇y∇x, with the same equivalence for (∇×k)(∇×k).

Inspection of (7.8) suggests that the forms−∇y∇x and−(∇y×k)(∇x×k) are appropriate.

Taking into account the negative sign in ∇∇ → −∇y∇x, the Green’s function can be

written in the form

G(y − x) =
−i
4ρω2

∞∑

n=−∞

{
∇yU

−
n

(
k(y − xm)

)
∇xV

+
n

(
k(x− xm)

)

+ (∇y×k)U−
n

(
K(y − xm)

)
(∇x×k)V +

n

(
K(x− xm)

)}
. (7.10)
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Substituting from (7.10) into (7.8), and identifying the coefficients of ∇V +
n (k(x −

xm)) and ∇×kV +
n (K(x− xm)), yields

B(p)
m,n =

−i
4ρω2

∫

∂Cm

dSn ·
[
σσσi(y) · ∇U−

n

(
k(y − xm)

)
− ui(y) · σσσ(p)

(
k(y − xm)

)]
,

(7.11a)

B(s)
m,n =

−i
4ρω2

∫

∂Cm

dSn ·
[
σσσi(y) · (∇×k)U−

n

(
K(y − xm)

)
− ui(y) · σσσ(s)

(
K(y − xm)

)]
,

(7.11b)

where

σ
(p)
ij

(
k(y − xm)

)
= CijpqU

−
n,pq

(
k(yyy − xm)

)
, (7.11c)

σ
(s)
ij

(
K(y − xm)

)
= Cijpqepr3U

−
n,rq

(
K(y − xm)

)
. (7.11d)

7.2.3 Integral expressions for arbitrary incidence

The integrals in (7.11) can be reduced by using the fact that ∂Cm is the arc of the circle

of radius am centered at xm, which is the origin of the shifted coordinates y−xm. The

integration is therefore simplified using polar coordinates centered at xm, combined

with the expressions for the displacements and traction components in polar coordinates

given in terms of the potentials,

ur = Φ,r +
1

r
Ψ,θ, uθ =

1

r
Φ,θ −Ψ,r, (7.12a)

σrr = −λk2Φ+ 2µ
(
Φ,rr +

1

r
Ψ,rθ −

1

r2
Ψ,θ

)
, (7.12b)

σrθ = 2µ
(1
r
Φ,rθ −

1

r2
Φ,θ
)
+ µ

( 1
r2

Ψ,θθ −Ψ,rr +
1

r
Ψ,r

)
. (7.12c)

The four distinct terms in the integrals of (7.11), such as dSn ·σi(y) · ∇U−
n

(
k(y−

xm)
)
, then follow by identifying Φ → U−

n

(
ka), Ψ → U−

n

(
Ka), where a(θ) ≡ y − xm is

the radial vector of constant magnitude am. Thus,

dSn · σi · ∇U−
n = dS

[
σirr

∂

∂r
U−
n

(
ka
)
+ σirθ

1

r

∂

∂θ
U−
n

(
ka
)]

= d θ
(
σirrkamU

−
n

′
(ka)− inσirθU

−
n (ka)

)
, (7.13a)
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dSn · σ(p) · ui = dS
[
uirσ

(p)
rr + uiθσ

(p)
rθ

]

= d θ
µ

am

(
uir

[(
2n2 −K2a2m

)
U−
n (ka)− 2kamUn

−′
(ka)

]

+ uiθ 2in
[
U−
n (ka)− kamUn

−′
(ka)

])
, (7.13b)

dSn · σi · (∇×k)U−
n = dS

[
σirr

1

r

∂

∂θ
U−
n

(
Ka
)
− σirθ

∂

∂r
U−
n

(
Ka
)]

= − d θ
(
inσirrU

−
n (Ka) +KamσirθU

−
n

′
(Ka)

)
, (7.13c)

dSn · σ(s) · ui = dS
[
uirσ

(s)
rr + uiθσ

(s)
rθ

]

= d θ
µ

am

(
uir 2in

[
U−
n (Ka)−KamU

−
n

′
(Ka)

]

+ uiθ
[(
(Kam)

2 − 2n2
)
U−
n (Ka) + 2KamU

−
n

′
(Ka)

))
.

(7.13d)

Noting the reversal of the sense of the integral in equation (7.11) and incorporating

equation (7.13a) leads to

B
(p)
m, l =

1

4K2

∫ θ
(m)
2

θ
(m)
1

d θ e−i l θ
{
iα(m)
p Jl

′(α(m)
p )

σirr
µ

+ l Jl(α
(m)
p )

σirθ
µ

+ i
[(
α(m)
s

2 − 2 l2
)
Jl(α

(m)
p ) + 2α(m)

p Jl
′(α(m)

p )
]uir
am

+ 2 l
[
Jl(α

(m)
p )− α(m)

p Jl
′(α(m)

p )
]uiθ
am

}
,

(7.14a)

B
(s)
m, l =

1

4K2

∫ θ
(m)
2

θ
(m)
1

d θ e−i l θ
{
− iα(m)

s Jl
′(α(m)

s )
σirθ
µ

+ lJl(α
(m)
s )

σirr
µ

− i
[(
α(m)
s

2 − 2 l2
)
Jl(α

(m)
s ) + 2α(m)

s Jl
′(α(m)

s )
]uiθ
am

+ 2 l
[
Jl(α

(m)
s )− α(m)

s Jl
′(α(m)

s )
]uir
am

}
,

(7.14b)

where α
(m)
p = k am, α

(m)
s = K am, θ

(m)
1 and θ

(m)
2 are the angular positions of the vectors

a
(m)
i ≡ amê(θ

(m)
i ), i = 1, 2, which describe the initial and final positions of segment

∂Cm (see Figure 7.1). Equations (7.14) provide expressions for the source amplitudes

for any time harmonic incident field.

Let us now specialize the result to the specific case of plane wave incidence. This is

important in its own right but also allows us to derive the general incident wave case

by integration as we shall show.
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7.2.4 Plane wave incidence

Let us define

uψp(x) = eikê(ψp)·x, uψs(x) = eiksê(ψs)·x, (7.15)

where ê(ψα) = (cosψα, sinψα) such that uψα correspond to compressional (α = p) and

shear (α = s) plane waves of unit amplitude.

Longitudinal incident plane wave

Consider now longitudinal plane wave incidence

Φi(x) = Apuψp(x) (7.16)

where Ap ≡ const is a known wave amplitude. Then using the relation Φi(y) =

Φi(xm)uψp(a) with a = amê(θ), and eq. (7.12) with Φ = Φi, Ψ = 0, reduces equation

(7.14) to the form:

B
(p)
m, l =

Φi(xm)

4κα
(m)
s

∫ θ
(m)
2

θ
(m)
1

d θ e−i l θuψp(a)

{
iα(m)
p

2
Jl

′(α(m)
p )

[
2 sin2(θ − ψp)− κ2

]

+ lα(m)
p Jl(α

(m)
p ) sin 2(θ − ψp)− i2l sin(θ − ψp)

[
Jl(α

(m)
p )− α(m)

p Jl
′(α(m)

p )
]

− cos(θ − ψp)
[(
α(m)
s

2 − 2 l2
)
Jl(α

(m)
p ) + 2α(m)

p Jl
′(α(m)

p )
]}
, (7.17a)

B
(s)
m, l =

Φi(xm)

4κα
(m)
s

∫ θ
(m)
2

θ
(m)
1

d θ e−i l θuψp(a) ·
{[

2 sin2(θ − ψp)− κ2
]
l α(m)

p Jl(α
(m)
s )

− i sin 2(θ − ψp)α
(m)
p α(m)

s Jl
′(α(m)

s ) + i2 l cos(θ − ψp)

[
Jl(α

(m)
s )− α(m)

s Jl
′(α(m)

s )

]

− sin(θ − ψp)
[(
α(m)
s

2 − 2 l2
)
Jl(α

(m)
s ) + 2α(m)

s Jl
′(α(m)

s )
]}
, (7.17b)

where κ = K/k. Then noting that uψp(a) = eikam cos(θ−ψp) = eiα
(m)
p cos(θ−ψp), equation

(7.17) can be written



206

B
(p)
m, l =

iΦi(xm)

4κα
(m)
s

e−i l ψp ·
{
α(m)
p

2
Jl

′(α(m)
p )

[
2L′′

0(α
(m)
p )−

(
κ2 − 2

)
L0(α

(m)
p )

]

− 2 lα(m)
p Jl(α

(m)
p )L′

1(α
(m)
p )− 2lL1(α

(m)
p )

[
Jl(α

(m)
p )− α(m)

p Jl
′(α(m)

p )
]

+ L0
′(α(m)

p )
[(
α(m)
s

2 − 2 l2
)
Jl(α

(m)
p ) + 2α(m)

p Jl
′(α(m)

p )
]}
, (7.18a)

B
(s)
m, l =

Φi(xm)

4κα
(m)
s

e−i l ψp ·
{
lα(m)
p Jl(α

(m)
s )

[
2L0

′′(α(m)
p )−

(
κ2 − 2

)
L0(α

(m)
p )

]

− 2α(m)
p α(m)

s Jl
′(α(m)

s )L′
1(α

(m)
p ) + 2 l L′

0(α
(m)
p )

[
Jl(α

(m)
s )− α(m)

s Jl
′(α(m)

s )
]

− L1(α
(m)
p )

[(
α(m)
s

2 − 2 l2
)
Jl(α

(m)
s ) + 2α(m)

s Jl
′(α(m)

s )
]}
, (7.18b)

where the functions L0(α) and L1(α) are defined by

Lj(α) =

∫ θ
(m)
2 −ψp

θ
(m)
1 −ψp

d θ (sin θ)j ei(α cos θ−lθ), j = 0, 1. (7.19)

L0(α) can be evaluated by using the Jacobi-Anger identity eix sin θ =
∑∞

n=−∞ Jn(x)e
inθ,

L0(α) =
∞∑

n=−∞
Jn(α) i

n

∫ θ
(m)
2 −ψp

θ
(m)
1 −ψp

d θ e−i(n+l)θ

=
∞∑

n=−∞
Jn(α) i

n+1 e
i(n+l)ψp

n+ l

[
e−i(n+l)θ

(m)
2 − e−i(n+l)θ

(m)
1
]
. (7.20)

Integration by parts yields L1(α) in the form

L1(α) = − l

α
L0(α)−

1

iα
ei(α cos θ−lθ)

∣∣∣
θ
(m)
2 −ψp

θ
(m)
1 −ψp

. (7.21)

Taking into account the Jacobi-Anger identity and equation (7.20), the function L1(α)

and its derivative L′
1(α) can be expressed

L1(α) =
1

α

∞∑

n=−∞
Jn(α)n i

n+1 e
i(n+l)ψp

n+ l
·
[
e−i(n+l)θ

(m)
2 − e−i(n+l)θ

(m)
1
]
, (7.22a)

L′
1(α) =

1

α2

∞∑

n=−∞
n in+1

[
αJn

′(α)− Jn(α)
] ei(n+l)ψp

n+ l
·
[
e−i(n+l)θ

(m)
2 − e−i(n+l)θ

(m)
1
]
.

(7.22b)
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Introducing the explicit results for the functions L0(α) and L1(α) into (7.18) yields

expressions for the amplitude coefficients in the form:

B
(p)
m, l =

Φi(xm)

4κ2

∞∑

q=−∞

iq+2eiqψp

q + l
·
{
α(m)
p Jl

′(α(m)
p )

[
2Jq

′′(α(m)
p )−

(
κ2 − 2

)
Jq(α

(m)
p )

]

− 2 l q

α
(m)
p

Jl(α
(m)
p )

[
Jq

′(α(m)
p )− 1

α
(m)
p

Jq(α
(m)
p )

]
+ J ′

q(α
(m)
p )

[
2Jl

′(α(m)
p )

+
α
(m)
s

2
− 2l2

α
(m)
p

Jl(α
(m)
p )

]
− 2l q

α
(m)
p

Jq(α
(m)
p )

[ 1

α
(m)
p

Jl(α
(m)
p )− Jl

′(α(m)
p )

]}

·
[
e−i(q+l)θ

(m)
2 − e−i(q+l)θ

(m)
1
]
, (7.23a)

B
(s)
m, l =

Φi(xm)

4κ

∞∑

q=−∞

iq+1eiqψp

q + l
·
{
l

κ
Jl(α

(m)
s )

[
2Jq

′′(α(m)
p )−

(
κ2 − 2

)
Jq(α

(m)
p )

]

− 2 q Jl
′(α(m)

s )

[
Jq

′(α(m)
p )− 1

α
(m)
p

Jq(α
(m)
p )

]
+ 2lJq

′(α(m)
p )

[
1

α
(m)
s

Jl(α
(m)
s )

− Jl
′(α(m)

s )

]
− q

α
(m)
p

Jq(α
(m)
p )

[α(m)
s

2
− 2 l2

α
(m)
s

Jl(α
(m)
s ) + 2Jl

′(α(m)
s )

]}

·
[
e−i(q+l)θ

(m)
2 − e−i(q+l)θ

(m)
1
]
. (7.23b)

After some simplification eq. (7.23) can be written as




B
(p)
m, l

B
(s)
m, l




=
Φi(xm)

4α
(m)
s

2

∞∑

q=−∞
iqeiqψp ·

[
e−i(q+l)θ

(m)
2 − e−i(q+l)θ

(m)
1
]

·




[
α
(m)
s

2

q+l − 2q
]
α
(m)
p J ′

l (α
(m)
p ) i

[
α
(m)
s

2

q+l − 2l
]
α
(m)
p Jl(α

(m)
p )

−i
[
α
(m)
s

2
− 2lq

]
Jl(α

(m)
s ) −2α

(m)
p α

(m)
s Jl

′(α(m)
s )







Jq(α
(m)
p )

iJ ′
q(α

(m)
p )



.

(7.24)

Transverse plane wave incidence

Consider now an incident transverse plane wave

Ψi = Ase
iKê(ψs)·x, (7.25)
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where As ≡ const is a known transverse wave amplitude. Then equation (7.14) will

have the form:

B
(p)
m, l =

Ψi(xm)

4α
(m)
s

∫ θ
(m)
2

θ
(m)
1

d θ e−i l θΨi(a)

{
iα(m)
p α(m)

s Jl
′(α(m)

p ) sin 2(θ − ψ)

+ l α(m)
s Jl(α

(m)
p ) cos 2(θ − ψ) + sin(θ − ψ)

[(
α(m)
s

2 − 2l2
)
Jl(α

(m)
p ) + 2α(m)

p Jl
′(α(m)

p )
]

− 2il cos(θ − ψ)
[
Jl(α

(m)
p )− α(m)

p Jl
′(α(m)

p )
]}
, (7.26a)

B
(s)
m, l =

Ψi(xm)

4α
(m)
s

∫ θ
(m)
2

θ
(m)
1

d θ e−i l θΨi(a) ·
{
lα(m)
s Jl(α

(m)
s ) sin 2(θ − ψ)

− i cos 2(θ − ψ)α(m)
s

2
Jl

′(α(m)
s )− i2 l sin(θ − ψ)

[
Jl(α

(m)
s )− α(m)

s Jl
′(α(m)

s )
]

− cos(θ − ψ)

[(
α(m)
s

2 − 2l2
)
Jl(α

(m)
s ) + 2α(m)

s Jl
′(α(m)

s )

]}
. (7.26b)

As before, note that Ψi(a) = eiα
(m)
s cos(θ−ψs). Introducing the functions L0(α) and L1(α)

given by (7.19), reduces equation (7.26) to

B
(p)
m, l =

1

4κ
Ψi(xm)e

−i l ψs
{
2α(m)

s Jl
′(α(m)

p )L′
1(α

(m)
s )− l κJl(α

(m)
p )

[
2L′′

0(α
(m)
s )

+ L0(α
(m)
s )

]
− 2l

[ 1

α
(m)
p

Jl(α
(m)
p )− Jl

′(α(m)
p )

]
L′
0(α

(m)
s ) + L1(α

(m)
s )

·
[α(m)

s

2
− 2l2

α
(m)
p

Jl(α
(m)
p ) + 2Jl

′(α(m)
p )

]}
, (7.27a)

B
(s)
m, l =

i

4
Ψi(xm)e

−i l ψs ·
{
− 2 lJl(α

(m)
s )L′

1(α
(m)
s ) + α(m)

s Jl
′(α(m)

s )
[
2L′′

0(α
(m)
s ) + L0(α

(m)
s )

]

− 2 l
[ 1

α
(m)
s

Jl(α
(m)
s )− Jl

′(α(m)
s )

]
L1(α

(m)
s ) + L′

0(α
(m)
s )

·
[
α
(m)
s

2
− 2l2

α
(m)
s

Jl(α
(m)
s ) + 2Jl

′(α(m)
s )

]}
. (7.27b)

Incorporating equations (7.20) and (7.22), the amplitudes will have the form

B
(p)
m, l =

Ψi(xm)

4α
(m)
s

2

∞∑

q=−∞
iq+1eiqψs ·

[
e−i(q+l)θ

(m)
2 − e−i(q+l)θ

(m)
1
]

·
{
2α(m)

p α(m)
s Jl

′(α(m)
p )Jq

′(α(m)
s ) +

[
α(m)
s

2 − 2lq
]
Jl(α

(m)
p ) Jq(α

(m)
s )

}
, (7.28a)

B
(s)
m, l =

Ψi(xm)

4α
(m)
s

∞∑

q=−∞

iqeiqψs

q + l
·
[
e−i(q+l)θ

(m)
2 − e−i(q+l)θ

(m)
1
]

·
{
−
[
α(m)
s

2 − 2l(q + l)
]
Jl(α

(m)
s )Jq

′(α(m)
s ) +

[
α(m)
s

2 − 2q(q + l)
]
Jl

′(α(m)
s )Jq(α

(m)
s )

}
.

(7.28b)
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Alternatively, the source amplitudes can be written as



B
(s)
m, l

−B(p)
m, l




=
Ψi(xm)

4α
(m)
s

2

∞∑

q=−∞
iqeiqψs

[
e−i(q+l)θ

(m)
2 − e−i(q+l)θ

(m)
1
]

·




[
α
(m)
s

2

q+l − 2q
]
α
(m)
s J ′

l (α
(m)
s ) i

[
α
(m)
s

2

q+l − 2l
]
α
(m)
s Jl(α

(m)
s )

−i
[
α
(m)
s

2
− 2lq

]
Jl(α

(m)
p ) −2α

(m)
p α

(m)
s Jl

′(α(m)
p )







Jq(α
(m)
s )

iJ ′
q(α

(m)
s )



.

(7.29)

Plane wave incidence summarized

Adding the separate results of eqs. (7.24) and (7.29) gives for combined incidence

Φi = Ape
ikê(ψp)·x, Ψi = Ase

iksê(ψs)·x, (7.30)

the source amplitudes



B
(p)
m, l

B
(s)
m, l




=
1

4α
(m)
s

2

∞∑

q=−∞
iq
[
e−i(q+l)θ

(m)
2 − e−i(q+l)θ

(m)
1
]

·
{
Φi(xm)e

iqψp


v1(α

(m)
p , α

(m)
s )

v2(α
(m)
p , α

(m)
s )


+Ψi(xm)e

iqψs


−v2(α(m)

s , α
(m)
p )

v1(α
(m)
s , α

(m)
p )



}

(7.31)

where the vector v(α, β) = (v1, v2)
T is defined in (7.3c).

7.2.5 Arbitrary incident field as superposition of plane incident waves

The general form of the incident field given by equation (7.2a) can be constructed as

a superposition of plane incident waves of the form (7.30). This will enable us to find

the general form of the amplitude coefficients for incident waves of general form as a

superposition of solutions for plane waves given by (7.31). Recall the incident field for

a combined incident plane wave having the form:

Φi(x)

Ψi(x)


 =


Ape

ikê(ψp)·x

Ase
iKê(ψs)·x


 =

∞∑

q=−∞


 iqe−iqψpU +

q (kx)

iqe−iqψsU +
q (Kx)


 . (7.32)
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Multiplying the first row of equation (7.32) by (i−(n+q)/2π)ei(n+q)ψp and the second

row by (i−(n+q)/2π)ei(n+q)ψs , integrating with respect to ψp and ψs respectively between

0 and 2π and then evaluating at x = xm we find

i−(n+q)

2π

∫ 2π

0
dψpΦi(xm)e

i(n+q)ψp = U +
n+q(kxm), (7.33a)

i−(n+q)

2π

∫ 2π

0
dψsΨi(xm)e

i(n+q)ψs = U +
n+q(Kxm). (7.33b)

To obtain the form of the amplitude coefficients given by eq. (7.3) for the general inci-

dence (7.2a), we multiply the first and second of equations of (7.31) by A
(p)
n γn(ψp, ψs)

and A
(s)
n γn(ψp, ψs) respectively, where γn(ψp, ψs) = i−2n/(2π)2einψpeinψs , carry out the

double integration with respect to ψp and ψs between 0 and 2π, incorporate (7.33) and

sum over all n ∈ Z.

7.2.6 Necessary and sufficient conditions on the source amplitudes

In this section, we will define the constraints on the active source coefficients B
(p)
m,n and

B
(s)
m,n by expressing the active source field ud in terms of near-field and far-field source

amplitudes and using Graf’s theorem (2.72). When |x| > |y|, the components of ud

can be defined as a sum of multipoles at the origin using the first identity in (2.72)

Φd =
∞∑

n=−∞
F

(p)
n V +

n (kx),

Ψd =
∞∑

n=−∞
F

(s)
n V +

n (Kx),





for |x| > max(|xm|+ am), (7.34)

where

F (p)
n =

M∑

m=1

∞∑

l=−∞
B

(p)
m, lU

−
n−l(kxm), F (s)

n =
M∑

m=1

∞∑

l=−∞
B

(s)
m, lU

−
n−l(Kxm). (7.35)

If the active field Φd and Ψd does not radiate into the far-field, then we must have

F
(p)
n = 0, F

(s)
n = 0, ∀n ensuring the necessity of (7.5)1,2. Sufficiency is guaranteed by

substituting the expressions (7.5)1,2 into an assumed far-field of the form (7.34).

Next we consider the near-field. Assuming |xm| > am ∀m and using the general form
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of an incident field given by (7.2a), the near-field source amplitudes can be obtained as

Φd =
∞∑

n=−∞
E

(p)
n U +

n (kx),

Ψd =
∞∑

n=−∞
E

(s)
n U +

n (Kx),





for |x| > max(|xm| − am), (7.36)

where

E(p)
n =

M∑

m=1

∞∑

l=−∞
B

(p)
m, lV

−
n−l(kxm), E(s)

n =
M∑

m=1

∞∑

l=−∞
B

(s)
m, lV

−
n−l(Kxm). (7.37)

If the total field is zero in the near-field, then we must have E
(p)
n + A

(p)
n and E

(s)
n +

A
(s)
n ensuring the necessity of (7.5)3,4. Sufficiency is guaranteed by substituting the

expressions (7.5)3,4 into an assumed near-field of the form (7.36).

7.2.7 Divergence of the active field summation

The infinite sum expression for the active source fields defined by (7.2b) with source

amplitudes (7.3a)-(7.3c) is formally valid only in |x−xm| > am. That is, the expression

is not itself valid in the domain A in which the sources reside! A valid form could be

obtained by using the alternative version of Graf’s addition theorem in the domain Am

associated with the arc ∂Cm, but the usual form of Graf’s in the domain Am associated

with all other ∂Cn, n 6= m. We would then be assured that the active field is zero

everywhere outside C. However if we were to do this, the mth source would not be

present in the domain Am since the active field would be bounded by construction.

Active cloaking therefore requires that we use the expression (7.2b) with source am-

plitudes (7.3a)-(7.3c) for the active field everywhere, but we must take a finite number

of terms in the multipole expansion. That is, we use the source amplitudes that appear

in the infinite sum as motivation for the choice of source amplitudes that should be

chosen in an active field that contains only a finite number of multipoles. This ensures

a finite (but large) field inside A. We should note that this type of difficulty and the fact

that it may be used to our advantage in the anti-sound context was noted by Kempton

[84].
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With a finite sum for the active field therefore, the integral equation (7.6) is not

perfectly satisfied but instead

u(x) ≈





0, x ∈ C,

ui(x), x /∈ C ∪ A,
(7.38)

and the field is large (but finite) inside A. Finally we note that a straightforward

truncation of the active field may not be optimal in terms of cloaking and ensuring a

non-radiating field. This issue will be considered elsewhere.

7.3 Numerical examples

ᴪ	

k

Figure 7.2: Plane wave insonification of the cloaking region C generated by four (M = 4)

active sources placed at the corners of a square.

The numerical calculations for active source configurations of the type shown in

Fig. 7.2 are performed for plane longitudinal and transverse incident waves of a unit

amplitude, (Ap = 1, As = 0) and (Ap = 0, As = 1), for angles of incidence ψp = ψs =

7o. Variable values are taken for the wavenumbers kp and ks, the number of sources

M , and the number of terms N in summations (7.35) and (7.37) (the truncation size).

The M active sources are symmetrically located on a circle of radius b, with

am = a, |xm| = b, βm = (m− 1)β0, β0 = 2π
(m− 1

M

)
, m = 1,M, (7.39)

where βm is the argument of vector xm, and a ≥ b sin π
M . The circular arcs are defined

by

θ
(m)
1,2 = π + βm ∓

∣∣∣∣ sin
−1

(
b

a
sin

π

M

)
− π

M

∣∣∣∣, m = 1,M. (7.40)
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In all examples, we take a = b sin π
M and consider an elastic medium having a property

of aluminum with cp = 6427m/s, cs = 3112m/s, ρ = 2694 kg/m3 [79].

7.3.1 The scattering amplitudes
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Figure 7.3: Variation of the far-field amplitude coefficients with number of active sources

(M = 3, 14) for transverse incident waves. In all cases N = 100, ψs = 7o.

Consider the truncated versions of the infinite sums in eq. (7.37) for the farfield

amplitudes F
(p)
n and F

(s)
n , and eq. (7.35) for the nearfield amplitudes E

(p)
n and E

(s)
n :

F
(p)app
n

E
(p)app
n



 =

M∑

m=1

N∑

l=−N
B

(p)
m,l ×





U −
n−l(xm),

V −
n−l(xm),

∀n ∈ Z, (7.41a)

F
(s)app
n

E
(s)app
n



 =

M∑

m=1

N∑

l=−N
B

(s)
m,l ×





U −
n−l(xm),

V −
n−l(xm),

∀n ∈ Z. (7.41b)
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Figure 7.4: Variation of the far-field amplitude coefficients with number of active sources

(M = 3, 14) for longitudinal incident waves. In all cases N = 100, ψs = 7o.
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Figure 7.5: Dependence of the near-field amplitude coefficients on n, the order of Bessel

function, varying the number of active sources (M = 5, 14) for transverse wave inci-

dence. In all cases N = 100, ψs = 7o.
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Figure 7.6: Variation of the near-field amplitude coefficients with number of active

sources (M = 5, 14) for longitudinal incident waves. In all cases N = 100, ψs = 7o.
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(b) Nearfield, M=5
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Figure 7.7: The near-field amplitude coefficients as a function of n, the order of Bessel

function for different values of the truncation size N in (7.41) generated by different

numbers of active sources: (a) M = 5 and (b) M = 8, for longitudinal incident waves.

The approximate near-field E
(p)app
n , E

(s)app
n and far-field F

(p)app
n , F

(s)app
n amplitudes

are calculated at the incident shear wavenumber K = 5 by varying the number of

active sourcesM and the truncation size N . The dependence of the far-field coefficients

|F (p)app
n |, |F (s)app

n | is illustrated in Fig. 7.3 for transverse and in Fig. 7.4 for longitudinal

wave incidences. As M increases, the far-field coefficients fluctuate at small |n|, and
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decrease at larger values of |n| for both compressional and shear incident waves.
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(a) Q(p) and Q(s) vs. ka
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(b) Q(p) and Q(s) vs. Ka

Figure 7.8: The total scattering cross sections Q(p) and Q(s) versus (a) the normalized

wave number ka for a longitudinal wave incidence with M = 3, and (b) Ka for a

transverse wave incidence with M = 3.

The variation of the near-field coefficients |A(p)
n +E

(p)app
n |, |A(s)

n +E
(s)app
n | with the

number of sourcesM is depicted in Fig. 7.5 for transverse and in Fig. 7.6 for longitudinal

incident waves. For longitudinal wave incidence, the near-field |A(p)
n + E

(p)app
n | is less

than 10−4 and |A(s)
n + E

(s)app
n | is less than 10−7. On the contrary, the results are less

accurate for transverse waves, as the near-field |A(p)
n +E

(p)app
n | approaches the order of

10−1 and |A(s)
n + E

(s)app
n | reaches a value 10−4.

Figure 7.7 displays the near-field amplitude coefficients |A(p)
n +E

(p)app
n | and |A(s)

n +

E
(s)app
n | as functions of n, the order of the Bessel function, for different values of N

and M . The accuracy of the near-field coefficients improves as N and M increase.

Increasing the number of sources M allows a decrease in the truncation size N and the

order of error.

7.3.2 Farfield response

The radiated farfield when x → ∞ is given by eq. (7.34). Using the asymptotic

expansion of the Hankel function for large argument yields the farfield behavior of ud
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(a) Longitudinal incidence, k = 2, ψp = 7o
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(b) Transverse incidence, K = 2, ψs = 7o
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(c) Longitudinal incidence, k = 5, ψp = 7o
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(d) Transverse incidence, K = 5, ψs = 7o

Figure 7.9: The total scattering cross sections Q(p) and Q(s) versus number of active

sources for longitudinal ((a) and (c))and transverse ((b) and (d)) wave incidence for

k = 2 and k = 5 with K = κ k and κ = cp/cs when cloaking devices are ON.

Φd = f (p)(θ)
eik|x|√
k|x|

[
1 +O

( 1

k|x|
)]
, Ψd = f (s)(θ)

eiK|x|
√
K|x|

[
1 +O

( 1

K|x|
)]
, (7.42)

where f (p) and f (s) are the farfield amplitude functions defined such that

f (α)(θ) =
∞∑

n=−∞
f (α)n einθ, f (α)n =

√
2

π
e−i(n

π
2
+π

4
)F (α)
n , α = p, s. (7.43)
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The total power radiated by the sources is Σ(θ) = Σ(p)(θ) + Σ(s)(θ) where the non-

negative compressional and shear far-field averaged flux vector components are:

Σ(α)(θ) =

∫ 2π

0
dθ|f (α)n |2 = 4

∞∑

n=−∞
|F (α)
n |2, α = p, s. (7.44)
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(b) N = 10
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(c) N = 20
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(d) N = 50

Figure 7.10: Absolute value of displacement vector component |ux|/k for N = 5 (a),

N = 10 (b), N = 20 (c) and N = 50 (d) when cloaking devices are active with

M = 3, k = 2 for longitudinal wave incidence.

The non-dimensional total scattering cross sections are then

Q = Q(p) +Q(p), where Q(α) =
4

k̃a

∞∑

n=−∞
|F (α)
n |2, α = p, s (7.45)

where k̃ = k for compressional incident waves and k̃ = K for shear incident waves. The

Q(p) and Q(s) are normalized by a = a1, the radius of multipole source A1, see Figure

7.1.
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Results for the total scattering cross sections Q(p) and Q(s) for longitudinal and

transversal wave incidence are depicted in Figure 7.8 versus the normalized wave number

k̃a, and in Figure 7.9 against the number of active sources M , where k̃ = k for P wave

incidence and k̃ = K for SV wave incidence. These show that the error increases with

the rise of wave number k̃, but can be reduced by increasing M and N . Increase of N

reduces the error sharply in all cases.

7.3.3 Total displacement field

Longitudinal plane wave incidence
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(a) N = 5
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(b) N = 10
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(c) N = 20
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(d) N = 30

Figure 7.11: Absolute value of displacement vector component |uy|/k for N = 5 (a),

N = 10 (b), N = 20 (c) and N = 30 (d) when cloaking devices are active with

M = 3, k = 2 for longitudinal wave incidence.
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(a) k = 5,M = 3
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(b) k = 10,M = 3
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(c) k = 5,M = 7
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(d) k = 10,M = 7

Figure 7.12: Absolute value of displacement vector component |uy|/k for k = 10,M = 3

(a), k = 10,M = 3 (b), k = 5,M = 7 (c) and k = 10,M = 7 (d). Cloaking devices are

active, N = 5, for longitudinal wave incidence.

First, consider longitudinal plane wave incidence of the form (7.16). The total displace-

ment vector components in Cartesian coordinates are

(
ux, uy

)
=
(∂Φi
∂x

+
∂Φd
∂x

+
∂Ψd

∂y
,
∂Φi
∂y

+
∂Φd
∂y

− ∂Ψd

∂x

)
. (7.46)

Introducing eq. (7.16) and (7.2b) into (7.46) yields

ux
k

=
M∑

m=1

∞∑

n=−∞

[
B(p)
m,n

(
cos θmV

+
n

′(
k(x− xm)

)
− in sin θm

V +
n

(
k(x− xm)

)

k|x− xm|

)

+B(s)
m,n

(
κ sin θmV

+
n

′(
K(x− xm)

)
+ in cos θm

V +
n

(
K(x− xm)

)

k|x− xm|

)]
+ i cosψpΦi,

(7.47)
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uy
k

=
M∑

m=1

∞∑

n=−∞

[
B(p)
m,n

(
sin θmV

+
n

′(
k(x− xm)

)
+ in cos θm

V +
n

(
k(x− xm)

)

k|x− xm|

)

+B(s)
m,n

(
− κ cos θmV

+
n

′(
K(x− xm)

)
+ in sin θm

V +
n

(
K(x− xm)

)

k|x− xm|

)]
+ i sinψpΦi,

(7.48)

where

θm(x) = arg(x− xm). (7.49)

Transverse plane wave incidence

Transverse incident plane waves are of the form (7.25). The total displacement vector

components in Cartesian coordinates are

(
ux, uy

)
=
(∂Φd
∂x

+
∂Ψi

∂y
+
∂Ψd

∂y
,
∂Φd
∂y

− ∂Ψi

∂x
− ∂Ψd

∂x

)
. (7.50)

Introducing eq. (7.25) and (7.2b) into (7.50) yields

ux
K

=
M∑

m=1

∞∑

n=−∞

[
B(p)
m,n

(
κ−1 cos θmV

+
n

′(
k(x− xm)

)
− in sin θm

V +
n

(
k(x− xm)

)

K|x− xm|

)

+B(s)
m,n

(
sin θmV

+
n

′(
K(x− xm)

)
+ in cos θm

V +
n

(
K(x− xm)

)

K|x− xm|

)]
+ i sinψsΨi,

(7.51)

uy
K

=
M∑

m=1

∞∑

n=−∞

[
B(p)
m,n

(
κ−1 sin θmV

+
n

′(
k(x− xm)

)
+ in cos θm

V +
n

(
k(x− xm)

)

K|x− xm|

)

+B(s)
m,n

(
− cos θmV

+
n

′(
K(x− xm)

)
+ in sin θm

V +
n

(
K(x− xm)

)

K|x− xm|

)]
− i cosψsΨi,

(7.52)

where θm is defined by (7.49).

Results

The magnitude of the displacement vector components ux and uy are evaluated for

ψp = 7◦ for various values of the truncation size N , the number of sources M , and

the compressional wavenumber k. Greater accuracy is observed, as expected, with
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increased N and M . However, large N and M require longer computation time, and

some numerical experimentation is necessary to find the smallest values for which the

displacement field vanishes to the desired degree in the cloaked region.
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(a) N = 5,M = 3
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(b) N = 50,M = 3
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(c) N = 5,M = 6
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(d) N = 50,M = 6

Figure 7.13: Absolute value of displacement vector component |ux|/K forN = 5,M = 3

(a), N = 50,M = 3 (b), N = 5,M = 6 (c) and N = 50,M = 6 (d) when cloaking

devices are active with k = 2,K = 4.1305 for transverse wave incidence.

The magnitudes of |ux|/k and |uy|/k are depicted in Fig. 7.10 and Fig. 7.11 for

longitudinal incidence at different values of N when cloaking devices are active with

M = 3, k = 2. As expected, the increase of N is accompanied by the reduction of

magnitudes |ux|/k and |uy|/k in the cloaked region.
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(a) N = 5, k = 2
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(b) N = 5, k = 5
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(c) N = 20, k = 2
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(d) N = 20, k = 5
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(e) N = 50, k = 2
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(f) N = 50, k = 5

Figure 7.14: Absolute value of displacement vector components |uy|/K for N = 5, k = 2

(a), N = 5, k = 5 (b), N = 20, k = 2 (c), N = 20, k = 5 (d), N = 50, k = 2 (e), and

N = 50, k = 5 (f) with M = 3 active sources for transverse wave incidence when

cloaking devices are active.

Figure 7.12 illustrates |uy|/k for longitudinal incidence with N = 5 changing the



224

values of k and M whilst Fig. 7.13 and Fig. 7.14 show corresponding values of |ux|/K

and |uy|/K for shear incidence, varying N and M with k = 2 for the former, and

altering the values of N and k with M = 3 for the latter. Comparison of these results

shows that at higher frequencies, e.g., larger values of k, greater accuracy is achieved by

increasing the number of sources M , whereas at lower frequencies the smallest number

of sources required, M = 3, produces reasonable cloaking, although enhanced with

increased values of N .
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(c) k = 5,M = 7
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(d) k = 10,M = 7

Figure 7.15: The magnitude of the total displacement field with its maximum absolute

amplitude in a cloaked region generated by M = 3 active sources with k = 5 (a) and

k = 10 (b), and by M = 7 active sources with k = 5 (c) and k = 10 (d) for a

longitudinal wave incidence with ψp = 7◦, N = 5 while cloaking devices are active.

The magnitude of the total displacement field and its absolute maximum amplitude
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inside the cloaked region is depicted in Fig. 7.15 with parameters used in Fig. 7.12.

Comparison of these results shows that at higher frequencies, i.e., larger values of kp,

greater accuracy is achieved by increasing the number of sources M , whereas at lower

frequencies the smallest number of sources required, i.e. M = 3, produces reasonable

cloaking, although this is enhanced with increased values of N .
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Chapter 8

Concluding remarks and future work

In this chapter, we summarize the main ideas and important results of this dissertation

and point out the future work that must be considered.

8.1 Conclusions

Theoretical predictions and numerical results associated with the propagation, and

multiple scattering of acoustic and elastic waves in layered cylindrical structures and

heterogeneous anisotropic solids are presented in this dissertation. The main impor-

tance and novelty of this work is in the development of a series of fast, robust, rapidly

convergent iterative techniques that we provided to expedite the solution of MS prob-

lems. The iterative methods are developed using Neumann series expansion and taking

advantage of the Block Toeplitz structure of the linear system. The techniques are very

general, and suitable for parallel computations and for a large number of MS problems

in complex media, i.e. acoustic, elastic, electromagnetic, etc.

An acoustic and elastic single scattering by elastic isotropic multilaminate cylinders

is studied using the Global matrix method. The oblique single scattering of incident

waves inclined at an arbitrary angle to a transverse-isotropic solid is considered. The

recursive impedance matrix is developed for radially heterogeneous anisotropic solids,

and specifically, cylindrically and spherically anisotropic solids are examined. An ex-

plicit method is introduced for finding the impedance in piecewise uniform, transverse-

isotropic material. Numerical results, performed in Matlab and COMSOL, represent

total and scattered fields around the scatterer and a far-radiated field for a time har-

monic incident plane wave and point source.

Active exterior cloaking devices are designed for acoustic and elastic media using
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multipole sources. The approach is based on representing the incident field in terms

of Bessel functions at each source position, which leads to a linear system of equations

for the source amplitudes that can be solved in closed form. The numerical simulations

presented here indicate that a small number of multipoles provide adequate cancellation

at low frequencies. This suggests a natural way to extend ideas based on monopoles

to more elaborate source distributions composed of finite numbers of multipoles of low

order. The present results provide a means to establish realistic strategies for practical

application.

8.2 Future work

The concept employed in this work to develop rapidly convergent iterative techniques

can be extended to model three-dimensional scattering problems. The proposed tech-

niques can be applied to model 3D MS problems in complex media such as acous-

tic, elastodynamic, electromagnetic, and porous and viscoelastic heterogeneous media.

Specifically, these techniques can be applied to the trabecular bone, acoustic metamate-

rial absorbers, gradient index devices, dynamically tunable structures, cloaking, remote

fish classification, and effective parameters of heterogeneous media. Preliminary work

along these lines has been provided in [12] for electromagnetic scattering by 3D spheres.

The results presented here for active cloaking models provide a first step in the

direction of realistic active control of acoustic and elastic waves. Applications to struc-

ture borne waves, surface waves, and even geophysical waves, are possible. However,

as a control problem, many issues remain to be addressed. One of the issues is how

to achieve at the time the silencing one region of space and reducing the unavoidable

source noise that must be generated in another, larger, region. In practice, it is not

possible to achieve an exact field cancellation. It requires the truncation of the series

and balance the decrease in cloaking accuracy with whatever amplitude level is deemed

acceptable in the source region. This is obviously a crucial aspect and one that remains

to be studied in detail. We have pointed out some similarities with parallel issues in

active noise control. Future studies will examine analogies in these topics, and will

consider the low frequency end of the spectrum.
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[191] F. Závǐska. Über die beugung elektromagnetischer wellen an parallelen, unendlich
langen kreiszylindern. Annalen der Physik, 4 Folge, 40:10231056, 1913.


