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ABSTRACT OF THE THESIS
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TOOLS BASED ON AMARKOV MODEL

BY XIAO BO

Thesis Director:

Professor Ivan Marsic

Trace alignment of event logs is used to understand and improve business processes.

A key missing component of current approaches for performing trace alignment is a

methodology to measure the quality of alignment. We propose a novel approach for

generating random event logs that can be used for testing and evaluating trace

alignment tools. We first extracted a statistical model from 437 real-world traces from

Children’s National Medical Center in Washington DC (CNMC). We then created a

guide tree and prune it to a minimum spanning tree based on user defined trace

number in output event log. The final step is to fill this tree. Each node in this tree

contains a trace. Each leaf node represents a trace in output event log. The root node

is filled by a user-defined sequence and each child node is mutate from parent node

based on the statistical model. To validate our approach, we used a concept of replay

fitness score. Replay fitness score is used to quantify the extent to which a model can

reproduce the traces recorded in an event log. It’s between 0 and 1. The value 1 means

that the model can perfectly replay the event log and 0 means that the model cannot

reply the log. Comparing with process model (Petri-Net) extracted from 437

real-world traces, the output event log of our system can constantly get a score of 0.8.
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Therefore, our results are relevant not for only validation of trace alignment tools but

also for other process mining tools.
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CHAPTER 1 : INTRODUCTION

1.1 Background and Motivation

In many processes, events can be recorded in an event log in which the events within

a particular process execution (“trace”) and their time of execution (“timestamp”)

are recorded. The event log can then be used to determine the pattern of sequences in

which a process is executed. Determining these sequences is particularly challenging

for complex processes for which the steps of the process are not well-known or when

real-world uncertainties introduce a large amount of variability in process execution.

Mining complex event logs for execution patterns and non-standard activities,

however, may be important for understanding workflow and improving process

quality and productivity.

Process mining approaches have been developed for identifying successful and

unsuccessful patterns of process execution and identifying deviations within these

processes that may be associated with adverse events [19]. A recent process mining

approach for performing this type of analysis is “trace alignment,” where the traces

of events are aligned to identify the flow of events corresponding to the standard

practice (known as “consensus sequence” ) [3]. Because patient-evaluation tasks

during trauma resuscitation are standardized and prioritized, it appropriate to apply

trace alignment on resuscitation event logs. Medical experts could use trace alignment

techniques to visualize the event traces and discover the consensus sequence to

understand the “average” case. Trace alignment is widely used for studying genetic
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sequences and there are well-established techniques for evaluating the quality of trace

alignment algorithms [22]. However, trace alignment of business process logs is new

and such techniques do not yet exist. This thesis focuses on developing a quality

measure for trace alignment algorithms.

Our problem domain is trauma resuscitation— the initial care of severely injured

patients in the emergency department. In trauma resuscitation, the ordering of tasks

for evaluating the patient is essential to appropriate identification and management of

potentially life-threatening injuries. It has been observed that critically-injured

patients have up to a four-fold higher risk of death from errors than general hospital

patients [17], with nearly half of these preventable deaths related to errors that occur

during the initial resuscitation phase of treatment [7][12]. To standardize the

resuscitation process and reduce variability, trauma centers around the world have

adopted a protocol (the Advanced Trauma Life Support protocol [ATLS]), which

prioritizes evaluation and management tasks [9]. The key components of the first

phase of ATLS (the primary survey) can be followed using the acronym “ABCDE”,

represent the steps of airway evaluation (airway or “A” ), evaluating respiratory

mechanics (breathing or“B”), assessing and managing circulatory status (circulation

of “C”), evaluating neurological status (disability of “D”) and ensuring the patient

is properly exposed (exposure or“E”). Given the potential benefits of ensuring ATLS

protocol compliance, our long-term goal is to build an automatic decision-support

system that will help reduce human errors during trauma resuscitation.
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1.2 Problem Statement

Trace alignment strategies have been developed for business process mining but these

strategies can yield diverse results. No established methods no exist for evaluating the

quality of these alignment results. As an example, an alignment of 268 ATLS traces

was performed for a set of ATLS tasks using two different trace alignment strategies

using a plugin in ProM 6.31 (Figure 1). Despite using the same initial data set,

different results were obtained when a block-shift alignment algorithm (right of

Figure 1) or regular alignment algorithm [3] that does not use block-shift alignment

(left of Figure 1) was used. For example, in these two alignments the trace numbered

“110531”has different length and position of gaps (“-”). These differences will also

make their consensus sequence different as well. These two alignments are very

different and their consensus sequence are different as well.

1 ProM 6.3 website: http://www.promtools.org/prom6/

Figure 1: Example trace alignments for the same event log using two different
algorithms available in ProM 6.3. The left chart was produced using a regular
alignment algorithm and the right chart additionally used the block shift

algorithm. The letters stand for: c = airway assessment, d = breath sounds, a =
palpation of central pulses, e = palpation of distal pulses, b = Glasgow Coma

Score (GCS) assessment, f = pupil exam.
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Given the results of trace alignment may differ based on the method used, it is

necessary to have a benchmark that can measure the quality of output of each trace

alignment algorithm. We propose that this type of a benchmark should address the

following two issues:

● Generating Artificial Event Logs: The tool should be able to generate random

event logs based on the process model. During a business process execution (in our

case, trauma resuscitation), the workers may not follow the standard ordering of tasks

because of errors or other reasons. The tool should be able to reproduce the kind of

variability present in real executions of the process.

● Consensus Sequence Evaluation: The tool should be able to evaluate the quality of

the computed consensus sequence by comparing it with each trace in the input event

log.

1.3 Related Work

In the area of process mining, the main approach to creating benchmark datasets is

based on a generative framework for representing well-understood processes (e.g.,

PLG Framework [5]). The approach is based on a context-free grammar of commonly

observed patterns of event sequences, such as “sequence,” “split and merge,” or

“ loop ” . Each production of this grammar is associated with a probability of

occurrence of a pattern in the current step. This approach may be suitable for

describing well-understood existing processes or newly designed processes. However,

it may not be suitable for complex and poorly understood processes such as trauma

resuscitation. Because process patterns and corresponding probability distributions are
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unknown, the generated event log may not be a realistic representation of actual

process executions.

In a related area, previous work has been developed for generating test datasets for

DNA, RNA, and protein sequence alignment (e.g., ROSE [18]). This approach is

based on a phylogenetic evolution tree and a substitution model (e.g., HKY85[25])

derived from known statistics of evolution process at the molecular sequence level. It

also considered insert-delete (INDEL) operations and “sequence motifs”[26] which

represent regions of functional importance, where mutation is less likely to happen.

The knowledge of these facts is critical to simulating the evolution process. A

limitation of this approach is that it mainly focuses on evolution of each position in a

given sequence but overlooks the dependencies between adjacent positions. Each

position is mutated independently of the adjacent positions, reflecting the nature of

genetic mutations. On the other hand, in business process the next task often depends

on the current task. Therefore, we need to consider the task in the current position

when selecting the “mutation” for the next position (the next task).

Sequence motif is another major factor related to the first issue. In the area of

computational biology, MEME (Multiple EM for Motif Elicitation) is a widely used

tool for searching repeated and un-gapped sequence patterns in a set of DNA/Protein

sequences[27]. It chooses each motifs by minimizing the probability of finding an

equally well-conserved pattern in random sequences. This approach may be suitable
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for well-understood DNA/Protein sequences. But it may not be suitable for

poorly-understood and complex process traces such as ATLS traces.

Related to the second issue of consensus sequence evaluation, two main groups of

string or sequence metrics can be used [16]. The first group includes the Hamming

distance metric[24], which is computationally very fast and has a low memory

requirement, but they may not reflect the actual similarity between two sequences.

The second group includes the edit distance (based on Levenshtein distance), which

can precisely measure the similarity between two sequences but these metrics are less

efficient in terms of processing speed and memory requirements.

This thesis addresses the two key issues identified earlier. First, we propose a novel

methodology to generate artificial event logs of the trauma resuscitation process that

can serve as test event logs for trace alignment tools. Our method is based on an

equivalent of evolution tree in genetics. We can think of the“ideal” execution of the

resuscitation process that is prescribed by ATLS as equivalent of the “ ancestor

sequence” . Any variations observed in actual resuscitations can be thought of as

“mutations of the ancestor sequence” The statistical parameters of our method are

derived from real resuscitations logs. Second, we propose a methodology to measure

the quality of consensus sequence based on Phred-quality score [10] and edit

distance[23].
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CHAPTER 2 : PROCESS MODEL AND DATA SOURCE

2.1 Data Source

Our input event log is generated from video recordings at the trauma center of the

Children’s National Medical Center (CNMC) in Washington, DC. The data were

collected over from events that occurred over eight months. The resulting log contains

ATLS event traces from 437 trauma resuscitations as well as a timestamp allowing

assessment of the order of event performance [8]. The approach that was used for

obtaining this event log has been previously described [13][14].

2.2 Declarative Model and Statistical Model

A declarative model of the process for which the traces were collected was developed

by medical experts based on the knowledge of the ATLS process [2] performed by the

bedside evaluator (Figure 2). It included six primary ATLS survey tasks. This model

represents the best practice for ordering and inclusion of these tasks. For example,

“breath sounds” should not happen before “airway assessment” is accomplished

and“GCS assessment”should not occur unless either the“central pulse”or“distal

pulses”are measured. Although this is a best-practice model, actual process execution

may not follow this model. First, the provider may go back to previous steps to

reevaluate an observed change. Second, the process may be performed out of order

because of situational variables such as the availability of needed evaluation tools or

personnel.
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We can state the above description in a more formal way by representing a real-world

business process using a first-order Markov model. Given a trace with M events, the

ith event (1(i(M) depends on the (i(1)st event, for i>1. The parameters of the proposed

model are as follows:

● Event frequencies PREFIX_FREQ(f1, f2, ..., fn) satisfying 11  
n
i if are used for

creating the first event in a trace.

● Mutation matrix T1 represents the transition probability from the first to the

second event.

● Mutation matrix T2 represents the transition probability from event i to event i(1

(i(2).

● Length frequencies L(ℓE1, ℓE2 , ..., ℓEn), represent the possible lengths of traces

that start with different events E1, E2, ..., En. Given a first event of type Ei in a trace,

different possible lengths k of the trace occur with different frequencies fk. Therefore,

ℓ Ei(f1, f2, ..., fn) represents the probability distribution of different trace lengths,

given the first event = Ei and the distribution satisfies 11  
n
k kf . Let us assume that

Figure 2: Declarative model of six key tasks of the ATLS primary survey.
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an event trace could start with these first events: E1=“airway assessment” or E2=

“ breath sounds. ” Then we need to specify L = { ℓ airway-assessment, ℓ

breath-bounds}. For example, traces that start with “airway assessment” and be up

to five events long, but only trace lengths 2 and 5 occur, and they occur equally likely.

Then, the probability distribution for ℓ airway-assessment =

{f1 = 0, f2 = 0.5, f3 = 0, f4 = 0, f5 = 0.5}.

The model parameters (PREFIX_FREQ, T1, T2, L) are extracted from a given event

log as follows:

Function get_prefix_freq(log) return PREFIX_FREQ:

PREFIX_PREQ = {} // PREFIX_FREQ is a Python-like

// dictionary. It could also be implemented by a hash-table.

Counter = 0

For trace in log:

First_event = trace[0]

If first_event not in PREFIX_PREQ:

PREFIX_FREQ[first_event] = 0

End if

PREFIX_FREQ[first_event]++

Counter++

End for

For event in PREFIX_FREQ:
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PREFIX_FREQ[event] = PREFIX_FREQ[event] / Counter

End for

Return PREFIX_FREQ

Other parameters of the model are extracted similarly. Table 1 and Table 2 show the

extracted contents of T1 and T2. The letter encoding is as defined in Figure 1.

NEXT

PREVIOUS
c d a e b f

c 0 0.01 0.06 0.52 0.16
0.1
6

d
0.00
3

0 0.09 0.79 0.07
0.0
5

a 0.02 0.04 0 0.18 0.41
0.4
3

e 0.04
0.00
2

0.1 0 0.41
0.4
3

b
0.00
4

0.03 0.05 0.07 0
0.8
5

f 0.02 0 0.07 0.06 0.85 0

Table 2: Contents of T2, where the letter codes are as defined in Figure 1. T2[c,d]

means the probability of thi event = “d=breath sounds” if th）（ 1-i event

“c=airway assessment,” where 1<i<trace-length.
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The motivation to partition the mutation matrix into T1 and T2 is to avoid the

possibility that noise present in T2 affects T1. For example, based on the declarative

model (Figure 2), “pupil exam” and “GCS assessment” are not acceptable in the

first two steps, but are highly coupled. Based on the event log of 437 observed traces,

their mutual transition probabilities after the first two steps (“ pupil exam ( GCS

assessment” and “GCS assessment ( pupil exam”) are (0.85. However, some real

traces started with “pupil exam” (not adhering to the model in Figure 2), which was

invariably followed by “airway assessment” (see that T1[f, c] = 1 in Table 1). In

such cases, if we combined all transition probabilities into a single mutation matrix,

the system could generate a trace like “ pupil exam ( GCS assessment ( pupil

exam ( GCS assessment ” , which is unacceptable because no such traces were

observed. In other words, statistics from the “normal” cases (represented by the

model) could distort the transition probabilities.

NEXT

PREVIOUS
c d a e b f

c 0 0.95 0.01 0.02 0.02 0
d 0.6 0 0.03 0.3 0.03 0.03
a 0 0 0 0 0 0
e 0 0 0 0 0 0
b 0.7 0.3 0 0 0 0
f 1 0 0 0 0 0

Table 1: Contents of T1, where the letter codes are as defined in Figure 1. T1[c,d]
means the probability of position 1 being “d=breath sounds” if position 0 was

“c=airway assessment.”
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2.3 Sequence Motif Mining

In the area of process mining, sequence motif is considered as common patterns of

invocations of activities in traces[28]. It’s key to reflect the real execution of process

model. Currently, several patterns are defined in [28]. In this paper, we utilize

maximal repeats as an example. The followings are its definition[28][29]:

It captures the common sequence of activities among traces and might be evidence of

common functionality[29]. It can be efficiently mined by suffix tree within linear

time[30][31].

We also introduced the concept of Conservedness to measure the confidentiality of

each motif. It measures the degree to which the individual activities involved in the

pattern alphabet manifest as the patterns defined by the alphabet[29]. The followings

are its definition[29]:

%100*)1(*
NOAC

 essConservedn




 , where NOAC is Non-Overlapping

Alphabet Count,  and  are the mean and standard deviation of frequencies of

activities.
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In actuality, we used “Pattern Abstraction” plugin to calculate sequence motifs set M

from 437 actual traces. When calculating NOAC, we prefer shorter patterns. All

duplicate traces are also ignored. All patterns whose length == 1 or conserved-ness

score is less than 50% are also pruned. Table 3 are discovered sequence motifs and

their conserved-ness score:

Table 3: Contents of M, where “Pattern Sequence Set” Column represents each

discovered sequence motifs.
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CHAPTER 3 : ALGORITHM

3.1 Overview

Our system consists of two components:

1. Trace Generator creates a random event log used in trace alignment

2. Consensus Evaluator evaluates the generated consensus sequence.

3.2 Trace Generator

The trace generator produces a random event log simulating real-world variability of

the business process. It is common to represent this process by a guide tree, where

each node contains a trace (Figure 3). The root node (Node 0) contains an “ideal”

trace of standard ordering of tasks, and the other nodes contain variations. When

executing the process in a standard way, errors may occur in the actual execution

would“mutate” from Node 0 to Node 1. For instance, suppose the trace in Node 0 is

“airway assessment -> breath sounds -> central pulse -> GCS assessment”.“Breath

sounds”may have been skipped in the trace in Node 1 and Node 1 become“airway

assessment -> central pulse -> GCS assessment”. As more mistakes occur, the actual

execution may further “mutate” from Node 1 to Node 4.
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In addition to (PREFIX_FREQ, T1, T2, L, M ), the generator requires the following

input:

● An Ancestor Trace S: This trace is the standard trace used to generate variations.

This trace should be user-defined. If the user does provide the standard trace (e.g.,

because of a poorly specified process), a random trace of length ℓ will be generated

based on the model parameters (PREFIX_FREQ, T1, T2 and L).

● Edge Distance D: This number represents the frequencies of mutation from parent

node to its children nodes. In Figure 3, if D = 8 Node 1 mutates eight times before

reaching Node 4. The edge distance is used to create a mutation guide tree which acts

as a mapping for generating a random event log [18].

● Revival Probability R: This number represents the probability to generate a child

trace without considering the parent trace. For instance, Node 4 may be created as a

Figure 3: An example guide tree used for simulating real-world variability of

trauma resuscitation. The letter encoding for example traces in the parentheses is

as defined in Figure 1.
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random trace rather than a mutation of Node 1. The main motivation for this feature is

to increase the randomness of output datasets.

● Trace Number N: This number determines the number of traces in the output event

log E (defined below).

● Tree Depth d: This number represents the depth of the guide tree, i.e., how many

generations the tree will evolve away from the root trace. For example, in Figure 3,

d = 2.

The output of the trace generator is:

● Event Log E: The event log contains all random traces that are generated by the

trace generator.

The following is the pseudocode of the algorithm:

Function trace_generator(S, D, d, N, R, PREFIX_FREQ, T1, T2, L, M) return E

If S is undefined

S = create_sub_trace(null, 0, n, PREFIX_FREQ, T1, T2, L)

End if

T = create_guide_tree(D, d)

prune_tree(T, N)

T.root = S
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fill_tree(T.root, M)

Traces = get_traces(T)

Return Traces

Function fill_tree() is implemented as a recursion:

Function fill_tree(T.root, M)

For children of T.root do

Children.seq = mutate(T.root)

Define_motif_positions(Children, M)

fill_tree(Children)

End for

The remaining functions are defined in the following subsections.

3.2.1 Generating the Sub Traces

The function create_sub_trace(E, P, ℓ , PREFIX_FREQ, T1, T2, L) is the core

function for generating event logs. It returns a trace of length ℓ . In addition to

(PREFIX_FREQ, T1, T2, L), it also requires the following inputs:

● Seed Event E: The first event in the trace or sub-trace that will be generated.

Figure 4: Generation of a sample sub trace.
In this case, seed event E = airway assessment, start position P = 0, and trace length ℓ = 4.
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● Start Position P: The position of the seed event in the original trace. This number

will determines what the transition model (T1, T2) will be used for generating a

sub-trace.

● Trace Length ℓ: The length of the target (output) sub-trace.

Figure 4 shows an example creation of a sub-trace. Because the seed event is also the

first event in the parent-node trace, the second event in a sub-trace is determined by E

and T1 based on the model (Figure 2). The third event is based on T2 and the second

event, and so is the fourth event. If the input seed event is null, the seed event will be

generated from PREFIX_FREQ.

3.2.2 Generating the Mutation Guide Tree

Creation of the mutation guide tree is done in the function create_guide_tree(). After

the tree is created, N nodes are randomly marked as “selected,” because the user

requested N traces in the output event log E. To reduce the computational complexity,

we compute the minimum spanning tree and prune the tree. For example, in Figure 3,

when Nodes 3 and 4 are selected, Nodes 2, 5, and 6 will be removed because they are

not relevant to reaching Nodes 3 and 4 from the root node. After the minimum

spanning tree is generated, the system generates the output event log E from the root

node by fill_tree() and get_traces().
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3.2.3 Generating Children Traces

The core function for children trace creation is the function mutate(). The followings

are its main steps:

1. Generate trace of length ℓ based on the type Ei of the first event in the trace:

ℓ = getLength(Ei, L)

2. Determine the mutation start position STARTPOS (0≤STARTPOS<ℓ)

3. Create sub-trace based on oldT [STARTPOS]:

subT = create_sub_trace( oldT [STARTPOS], STARTPOS,

ℓ - STARTPOS, PREFIX_FREQ, T1, T2, L)

4. Create child trace by removing the old sub-trace starting at position STARTPOS

and appending instead it the created sub-trace:

oldT .RemoveAll(STARTPOS, Told.length);

newT = Told.append( subT )

By above steps, the INDEL operations are realized since L contains all possible trace

lengths. The sequence motif information is also represented in T1, T2. These steps are

repeated for edge distance D times in order to maintain the randomness of child

traces.

3.2.4 Creation of Sequence Motif

Creation of sequence motif is implemented by define_motif_positions(). When

defining sequence motifs in children trace, we search each pattern in M and mark
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corresponding positions as “important”. These “important” positions will determines

the penalty score in consensus sequence evaluation.

3.3 Consensus Sequence Evaluator

The quality of consensus sequence is evaluated from two aspects: confidence about

the element in each position and similarity between traces in event log and consensus

sequence. Phred-quality score is used to measure the confidence for each position:

Q = -10*log10(P), where Q represents Phread-quality score and P represents

base-calling error probability [10][11].

Q, however, only estimates the confidence of the element in each position in the

consensus sequence, independently of other positions. For this reason, we use regular

edit distance to measure similarity between the consensus sequence and individual

traces in test event logs instead of Q. “Sequence motifs” which represent critical

positions in the root trace that are subject to lower mutation rates compared to other

positions. Therefore, we add a “penalty” in the quality score formula, to penalize

mutations in the corresponding positions. The followings are formula to compare

consensus sequence and each trace:

2Q =Edit_Distance + X * difN , where X is a user-defined coefficient and difN

represents number of mutated critical positions contains in consensus sequence.
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CHAPTER 4 : RESULTS AND DISCUSSION

To test our trace generator, we used the concept of Replay Fitness Score [4][19]. This

score is used to quantify the extent to which a model can reproduce the traces

recorded in an event log. The score is computed as [4]:

where Qrf is between 0 and 1. The value 1 means that the model can perfectly replay

the event log and 0 means that the model cannot reply the log.

To explore the properties of our trace generator, we generated 10 event logs with 10 to

100 traces each. The ancestor trace S is“airway assessment -> breath sounds -> pupil

exam -> GCS assessment -> pupil exam -> GCS assessment” and the guide tree is

created with the parameters d = 10, D = 1 and R = 0.5 (Section 3.2). We also

computed an approximate model (Petri Net) of 437 traces by using the ProM plugin

named“Mine a Petri net using ILP” [21]. Next, we computed the fitness score using

Figure 5: Replay Fitness Score of artificial event logs generated by our tool,
compared to the Petri-net model created by ProM from 437 actual event traces.
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the ProM plugin named “Replay a log on Petri Net for conformance checking.” The

fitness score determines how well our artificially generated event log fits the Petri Net

model of the actual event log [1][20]. The core algorithm is a cost-based A* algorithm

[1]. The fitness score Qrf for our event log generator is around 0.8 (Figure 5). Based

on the definition of Qrf, it should be equal to 1 for all artificial event logs that

perfectly simulate the real-world process execution. A potential reason that event logs

generated by our tool generally have lower fitness score (Figure 5) is that the Integer

Linear Programming (ILP) approach performs well in terms of speed but lacks in

precision [21].

To further understand the characteristics of our trace generator, we used one of event

logs from Figure 5. This event log had 100 artificial traces and its fitness score is

circled by green in Figure 5. We computed its consensus sequence C1 using the trace

alignment plugin of ProM as C1 = “airway assessment -> breath sounds -> GCS

assessment -> pupil exam.” The plugin uses the Euclidean distance [8] as part of the

alignment process. We also computed the consensus sequence C2 of the 437 actual

traces using same algorithm and obtained C2 = “ airway assessment -> breath

sounds -> distal pulse -> GCS assessment -> Pupil Exam. ” When these two

consensus sequences are compared, the only difference is that in C2“distal pulse” is

missing (Figure 6). Based on T2 (Table 2), both “GCS assessment” and “distal

pulse” can follow after a “breath sounds” event, but the probability T2[breath

sounds, distal pulse] is much greater than T2[breath sounds, GCS assessment].
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Therefore, the consensus sequence C1 of our artificial event log should not have

omitted “ distal pulse ” if our tool perfectly simulated the real-world process

execution. There are two potential explanations for this shortcoming. First, the trace

alignment algorithm in ProM [3] may not be robust enough to handle some real-world

variability of event traces. Second, 100 traces in our artificial event log or 437 actual

traces may be insufficient for accurate representation of statistical properties of the

trauma resuscitation process.

We used Phred-quality score for consensus sequence evaluation, which has proved to

provide a robust metric for evaluating the performance of alignment tools for genetic

sequences [10][11]. Phred-quality score to measure the confidence about each

position in a consensus sequence. However, since our problem domain is different,

this issue needs further exploration.

Figure 6: Comparison of the consensus sequence for an artificially-generated
event log (C1) to that of the 437 actual event traces of trauma resuscitation (C2).
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CHAPTER 5 : CONCLUSION AND FUTUREWORK

The event logs created by our methodology are artificial datasets used for evaluating

how the ProM trace alignment tool performs on a given event log. Our experimental

results showed that our tool can generate random event logs that can replay the real

execution of a declarative model of ATLS. Our tool combines the strengths of several

existing evaluation frameworks (e.g., PLG and ROSE), such as using guide tree and

process model to generate realistic event logs of the trauma resuscitation process.

Unlike PLG, we use the statistical model extracted from real data and a guide tree to

event traces. Unlike Rose, which mutates each position in the sequence independently

of its neighbors, we consider the current task when generating the next task. In this

sense, our tool “grows” the event traces from starting event to the final event.

Furthermore, we extracted sequence motifs from real data and defines the positions of

functional importance. For these reasons, our tool is suitable for evaluating trace

alignment tools for their potential use for studying event logs of trauma resuscitations.

Our model was designed to simulate the event traces resulting from real execution of

an ATLS-based process. We plan to improve this evaluation tool in several ways. First,

the model for INDEL operation is unrealistically simple. Currently, we randomly

choose a position in the trace and then grow a new sub-trace from it. However, not all

positions have the same probability that a mutation will occur. For instance, about

78% of our dataset of 437 traces started with“airway assessment”, and about 95% of

those traces which started with “airway assessment” had “breath sounds” in the
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second position. Second, as discussed in Section 4, we need to prove whether

Phred-Quality Score is accurate for consensus sequence evaluation. Third, some

combinations of tasks are critical and are less likely to vary (i.e., mutate), because the

workers are trained to pay special attention to these tasks. However, statistical

commonly sequence pattern may not contains all of these information. To address this

potential finding, we also plan to introduce domain-knowledge and define “motifs,”

and suppress mutation on these tasks.
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APPENDIX A : ALGORITHM TO EXTRACT STATISTICAL MODEL

1. Algorithm To Extract PREFIX_FREQ:

Function GET_PREFIX_FREQ(Event-Log) return PREFIX_FREQ:

PREFIX_FREQ = {} // PREFIX is a dictionary

COUNTER = 0

For trace in Event-Log:

Event = trace[0]

If Event not in PREFIX_FREQ:

PREFIX_FREQ[Event] = 0

End If

PREFIX_FREQ[Event]++

COUNTER++

End for

For event in PREFIX_FREQ:

PREFIX_FREQ[event] = PREFIX_FREQ[event]/COUNTER

End For

Return PREFIX_FREQ

2. Algorithm To Extract T1:

Function GET_T1(Event-Log) return T1:

T1 = {} // T1 is a dictionary

For trace in Event-Log:

If trace.length < 2:
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Continue

First_Event = trace[0]

Second_Event = trace[1]

If First_Event not in T1:

T1[First_Event] = {}

End if

If Second_Event not in T1[First_Event]:

T1[First_Event][Second_Event] = 0

End if

T1[First_Event][Second_Event]++

End For

For first_event in T1:

COUNTER = 0

For second_event in T1[first_event]:

COUNTER = COUNTER + T1[first_event][second_event]

End for

For second_event in T1[first_event]:

T1[first_event][second_event] = T1[first_event][second_event]/COUNTER

End for

Return T1

3. Algorithm To Extract T2:

Function GET_T2(log) return T2:
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T2 = {}

For trace in log:

If trace.length <= 2:

Continue

End if

For i in range(1,trace.length-1):

Current_Event = trace[i]

Next_Event = trace[i+1]

If Current_Event not in T2:

T2[Current_Event] = {}

End if

If Next_Event not in T2[Current_Event]:

T2[Current_Event][Next_Event] = 0

End if

T2[Current_Event][Next_Event]++

End for

For Current_Event in T2:

COUNTER = 0

For Next_Event in T2[Current_Event]:

COUNTER = COUNTER + T2[Current_Event][Next_Event]

End for

For Next_Event in T2[Current_Event]:
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T2[Curent_Event][Next_Event] = T2[Current_Event][Next_Event]/ Counter

End for

Return T2

4. Algorithm To Extract L:

Function GET_L(Event-Log) return PREFIX_FREQ:

L = {} // L is a Python-like dictionary

For trace in Event-Log:

First_Event = trace[0]

Cur_Len = trace.length

If First_Event not in L:

L[First_Event] = {}

End If

If Cur_Len not in L[First_Event]:

L[First_Event][Cur_Len] = 0

End If

L[First_Event][Cur_Len]++

End for

For event in L:

Counter = 0

For Cur_Len in L[event]:

Counter = Counter + L[event][Cur_Len]

End for
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For Cur_Len in L[event]:

L[event][Cur_Len] = L[event][Cur_Len] / Counter

End for

End For

Return L
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APPENDIX B : ALGORITHM TO GENERATE CHILDREN TRACE (JAVA
CODE)

public String[] mutate(String[] oldTrace) {

ArrayList<String> buffer = new ArrayList<String>(

Arrays.asList(oldTrace));

Random dice = new Random();

HashMap<String, Float> subDict = new HashMap<String, Float>();

for (int i = 0; i < this.distance; i++) {

if (dice.nextFloat() >= this.revivalProb) {

String firstEvent = this.getEvent(this.PREFIX_FREQ);

int length = this.getLength(firstEvent);

buffer = this.createSubTrace(firstEvent, 0, length);

continue;

}

int length = this.getLength(oldTrace[0]);

int curLen = buffer.size();

int startPos = 0;

if (length >= curLen) {

startPos = dice.nextInt(curLen);

} else {

startPos = dice.nextInt(length);

}
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// System.out.println(length+" "+startPos);

ArrayList<String> subTrace = this.createSubTrace(

buffer.get(startPos), startPos, length - startPos);

buffer = new ArrayList<String>(buffer.subList(0, startPos));

if (subTrace != null) {

buffer.addAll(subTrace);

}

}

return buffer.toArray(new String[buffer.size()]);

}

private int getLength(String event) {

HashMap<String, Float> subDict = this.L.get(event);

Random dice = new Random();

float counter = 0, prob = dice.nextFloat();

String length = "0";

for (String key : subDict.keySet()) {

counter = counter + subDict.get(key);

if (counter >= prob) {

length = key;

break;

}
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}

return Integer.valueOf(length);

}

private ArrayList<String> createSubTrace(String seed, int startPos,

int length) {

HashMap<String, Float> subDict = null;

String[] subTrace = new String[length];

if (seed == null) {

subDict = this.PREFIX_FREQ;

seed = this.getEvent(subDict);

}

if (length == 0) {

return null;

}

subTrace[0] = seed;

// System.out.println(startPos);

for (int i = startPos + 1; i < startPos + length; i++) {

int realIndex = i - startPos - 1;

String prevEvent = subTrace[realIndex];

subDict = this.T2.get(prevEvent);

if (i == 1) {
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subDict = this.T1.get(prevEvent);

}

// System.out.println(startPos+" "+(startPos+length));

// System.out.println(prevEvent);

String curEvent = this.getEvent(subDict);

subTrace[realIndex + 1] = curEvent;

}

return new ArrayList<String>(Arrays.asList(subTrace));

}

public String getEvent(HashMap<String, Float> subDict) {

Random dice = new Random();

float sum = 0, prob = dice.nextFloat();

String newEvent = null;

for (String event : subDict.keySet()) {

sum = sum + subDict.get(event);

if (sum > prob) {

newEvent = event;

break;

}

}

return newEvent;

}
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APPENDIX C : ALGORITHM FOR COMPUTING MINIMUM SPANNING
TREE (JAVA CODE)

public void pruneTree() {
ArrayList<TreeNode> nodeList = this.getNodeList();
Random dice = new Random();
int counter = 0;
while (counter < this.nodeNum) {

int selectIndex = dice.nextInt(nodeList.size());
TreeNode cur = nodeList.get(selectIndex);
if (!cur.selected) {

cur.selected = true;
cur.relevant = true;
counter++;

}
}
this.root.relevant = true;
for (int i = 0; i < nodeList.size(); i++) {

TreeNode cur = nodeList.get(i);
if (cur.selected) {

while (cur != this.root) {
cur.father.relevant = true;
cur = cur.father;

}
}

}
this.compressTree(this.root);

}

private void compressTree(TreeNode cur) {
if (cur == null) {

return;
}
if (cur.leftChild != null) {

if (!cur.leftChild.relevant) {
cur.leftChild = null;

} else {
this.compressTree(cur.leftChild);

}
}
if (cur.rightChild != null) {

if (!cur.rightChild.relevant) {
cur.rightChild = null;

} else {
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this.compressTree(cur.rightChild);
}

}
}
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APPENDIX D: ALGORITHM FOR FILLING THE GUIDE TREE

public void fillTree() {

this.root.trace = this.ANCESTOR;

this.defineMotifs(this.root);

this.fillNodes(this.root);

}

public void defineMotifs(TreeNode t) {

if (t == null) {

return;

}

HashSet<Integer> positions = new HashSet<Integer>();

for(String[] motif : this.MOTIFS.keySet()){

String str = this.string2character(t.trace);

String subStr = this.string2character(motif);

int index = str.indexOf(subStr);

System.out.println(index);

while(index>=0){

for(int i=0;i<subStr.length();i++){

positions.add(index+i);

}

index = str.indexOf(str, index + 1);
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}

}

t.motifs = positions.toArray(new Integer[positions.size()]);

Arrays.sort(t.motifs);

}

private String string2character(String[] trace){

StringBuilder str = new StringBuilder();

for(String event : trace){

str.append(event.charAt(0));

}

return str.toString();

}

private void fillNodes(TreeNode father) {

if (father == null) {

return;

}

if (father.leftChild != null) {

father.leftChild.trace = this.mutate(father.trace);

this.defineMotifs(father.leftChild);

this.fillNodes(father.leftChild);
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}

if (father.rightChild != null) {

father.rightChild.trace = this.mutate(father.trace);

this.defineMotifs(father.rightChild);

this.fillNodes(father.rightChild);

}

}
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