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 Forest soil organic carbon (SOC) is the largest terrestrial pool of carbon, and its 

management plays a significant role in global efforts to mitigate atmospheric carbon 

concentrations. Despite its importance, much of the world is still lacking good baseline 

data of forest soil carbon stocks. In the past, broad scale stocks of forest SOC have been 

derived from soil surveys based on a small number of sampling units, and the resulting 

estimates are highly uncertain. More recently, predictive statistical models have received 

attention as an approach for mapping soil carbon at scales relevant to climate change 

policy and research. However, in order for these models to be useful they must provide 

full and accurate accounting of uncertainty, in addition to accurate predictions.  

 This dissertation aims to improve prediction of forest SOC by incorporating two 

potentially important sources of uncertainty into the modeling process: (1) spatial 

dependence in soil inventory data; and (2) error associated with assuming a single model 

to be “true”. In order to address these issues, we turn to well established techniques in the 

Bayesian statistics literature. Our primary focus is on exploring the application of spatial 

Bayesian hierarchical regression models for improving estimates of forest carbon. This 

line of research involves both characterizing the spatial dependence in forest SOC 
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inventories at regional, national, and continental scales (the focus of chapters 1 and 3), 

and applying spatial hierarchical models for mapping SOC and validating this method 

against non-spatial approaches (chapter 4). Additionally, in chapter 2 we compare 

methods for model selection and weighting, as well as the effect of model averaging to 

account for model uncertainty, through rigorous predictive checks. This work is 

conducted with both forest SOC data as well as other ecological datasets.  

 Taken together, these studies highlight the need for a consistent statistical 

framework in order to generate reproducible estimates of forest SOC stocks across the 

globe. Our results argue for hierarchical models, and especially spatial hierarchical 

models, as a reasonable way forward for predictive mapping of SOC. However, they also 

highlight significant methodological development that will be necessary in order to 

obtain predictively accurate models.  
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Introduction 

 Globally, the forestry sector accounts for approximately 17 percent of annual 

greenhouse gas emissions, primarily through deforestation and forest degradation in 

tropical nations (Houghton 2003, Le Quere et al. 2009, Edwards et al. 2010). In 2010, the 

United Nations’ “Reducing Emissions from Deforestation and Forest Degradation in 

Developing Countries” (REDD+) program estimated that an international investment of 

approximately $22-38 billion could lead to a 25 percent reduction in forest sector 

emissions by 2015 (Angelsen 2009, Corbera and Schroeder 2011). Since then, 

approximately $2.72 billion has been pledged by more than ten nations to support 

activities that meet the goals outlined by the REDD+ strategy. While this is far off from 

the target to achieve a 25 percent reduction, it is clear that forest sector emissions 

represents a ‘low hanging fruit’ in global efforts to mitigate the effects of climate change, 

and the value of these efforts is widely recognized by policymakers in developed nations.  

 The establishment of a Monitoring, Verification, and Reporting (MVR) system 

for assessing forest C stocks has been identified as a core work area of the REDD+ 

program, and this has resulted in significant methodological development by the forest 

science community (Gibbs et al. 2007, Asner 2011, Herold and Skutsch 2011). Much of 

this is focused on the design of optimal sampling networks for newly established national 

forest inventories (Maniatis and Mollicone 2010, Kohl et al. 2011), and on integrating 

these data with suitable remote sensing datasets capable of supplying ‘wall to wall’ 

coverage for developing regional forest C baseline estimates (Achard et al. 2007, Goetz 

and Dubayah 2011, De Sy et al. 2012). In the latter case, this work is primarily conducted 

on existing national forest inventories in developed nations, such as the US Forest 
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Service’s Forest Inventory and Analysis (FIA) database (Birdsey et al. 2013). In general 

forest scientists agree on a ‘three tiered’ approach, where fine-scale measurements (e.g. 

ecological monitoring stations) taken at few locations may be related to inventory 

datasets with many observations covering large spatial ranges, as well as related remote 

sensing data (Hoover 2008).  

 Public availability of these datasets, coupled with increasing computing power 

and methodological developments in computational statistics, have motivated many 

studies aimed at developing forest carbon stocks via model-based prediction (Potter 1999, 

Purves and Pacala 2008, Saatchi et al. 2011). Generally this involves identifying 

covariates from remote sensing datasets, establishing relationships between these and 

ground measured observations of forest carbon stocks or fluxes from inventory data, and 

then employing guided interpolation across a sampling grid. A variety of methodological 

approaches have been put to this purpose within the literature, including multiple 

regression (Brown 1997, Chave et al. 2004), “data model fusion” techniques (Luo et al. 

2011), and random forest or regression tree models (Grimm et al. 2008, Powell et al. 

2010). 

 Thus far, most of these efforts have been aimed at aboveground forest carbon 

stocks and fluxes. This is natural, given that traditionally forest inventories have been 

designed to sample trees. National forest biomass equations such as those developed by 

Jenkins et al. (2003) allow for the estimation of aboveground forest carbon stocks from 

typical forest inventory measurements. Further, there is a significant body of literature 

relating aboveground biomass to a variety of remote sensing datasets, including spectral 

data from satellite platforms such as Landsat or MODIS, and light detection and ranging 
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(LiDAR) surveys (Dubayah and Drake 2000, Lu 2006, Goetz and Dubayah 2011). These 

covariates, along with climatic, topographic, and other datasets, have been incorporated 

into predictive models for aboveground carbon storage at a variety of spatial scales.  

 While there has been significant development in quantifying aboveground carbon, 

the forest soil carbon pool remains poorly understood. This is in spite of the fact that 

forest soil carbon is the largest global terrestrial carbon pool (Goodale et al. 2002, Pan et 

al. 2011), and that soil carbon sequestration has been cited as an important strategy for 

offsetting atmospheric C emissions (Heath et al. 2003, Lal 2005). This is particularly true 

in tropical regions, the principle targets of the REDD+ program, where reforestation and 

forest restoration may lead to increased rates of soil carbon accretion in degraded and/or 

desertified soils (Post and Kwon 2000, Lal 2004). Given the long residence time of 

carbon stored in soils (Chapin et al. 2002), soil C sequestration seems like a vital 

component of any policy or management plan looking to engineer permanent increases in 

terrestrial carbon stocks.  

 In order for these gains to be verifiable, good baseline estimates, along with 

reasonable estimates of uncertainty, are necessary. Global estimates of soil C storage 

have traditionally been the domain of soil survey, such as the USDA’s national soils 

database (Bredja et al. 2001). However, these are at a coarse resolution, derived by 

assigning average values of soil carbon from a small number of samples to taxonomic 

map units (McBratney et al. 2003). As a result, significant sources of error go ignored 

and the resulting estimates are highly uncertain. Further, since these stocks are derived 

using deterministic ‘map algebra’ approaches (i.e. assigning average values to taxonomic 
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map units and summing these to gain regional C stocks), this uncertainty is difficult to 

quantify.  

 These shortcomings of soil survey are widely recognized within the soil science 

community, and have given rise to a large literature on ‘digital soil mapping’ (DSM) 

(McBratney et al. 2003, Grunwald 2009). As with predictive models for aboveground 

carbon, DSM involves established statistical relationships between soil attributes and 

remote sensing covariates in order to carry out ‘rasterized’ prediction across the study 

region. The earliest literature on guided prediction of soil attributes focused on terrain 

analysis (Moore et al. 1991, Odeh et al. 1994, Mueller and Pierce 2001), but many data 

sources have been used since, including: land cover classifications (Tóth et al. 2013), 

satellite remote sensing data (McGrath and Zhang 2003, Simbahan et al. 2006, Wang et 

al. 2013), and other soil attributes (Guhaniyogi et al. 2013).  

 Not surprisingly soil carbon has been a popular focus of digital soil mapping 

studies (Minasny et al. 2013), and several recent efforts have been aimed at mapping soil 

carbon across broad spatial scales. Much of this work has focused on agricultural 

landscapes. For example, Tóth et al. (2013) used multiple regression to map soil 

properties for croplands within the member states of the European Union, using the 

recently published LUCAS topsoil database. Similar studies are available for karst 

landscapes in China (Liu et al. 2006), as well as grassland ecosystems in Ireland 

(McGrath and Zhang 2003). A variety of studies have also sought to map soil C across 

mixed-used landscapes (Bernoux et al. 2006, Minasny et al. 2006, Malone et al. 2009, 

Mishra et al. 2010, Vasques et al. 2010a).   
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 There are few examples of regional DSM for forest soil carbon. Until recently, 

this has primarily been due to a lack of data. Surveys conducted by soil scientists and 

agronomists are typically biased towards croplands, and the additional expense of 

incorporating soil sampling into forest survey led it to be excluded from early national 

forest inventories, where the primary aim was to estimate standing stock of timber 

resources rather than carbon. The exception is the National Forest Inventory of Finland, 

which began monitoring forest soil C in 1985 (Liski and Westman 1997). The Forest 

Inventory and Analysis (FIA) program of the United States Forest Service included soil 

attributes among the “forest health measurements” taken as part of their phase 3 program 

beginning in 2000 (Heath et al. 2003). More recently, the LUCAS topsoil database sought 

to establish a large network of point-referenced samples of soil attributes across all 

landcover types within the European Union, including forests (Tóth et al. 2013b).  

 The availability of these and similar datasets provides an excellent opportunity to 

develop predictive models for broad scale modeling of forest soil carbon distribution. 

Such an effort not only supplies important baseline information for the countries already 

possessing forest soil C inventory data, but also contributes positively to the goals of the 

REDD+ program. In order for participating nations to fully monitor changes in forest C 

stocks, an approach for establishing baseline estimates of forest soil C will be a necessary 

component of the MVR system. Developing reasonable protocols and predictive models 

for generating these estimates, based on existing data, represents a significant 

contribution to the monitoring of forest carbon pools.  

  In designing predictive models for forest soil carbon, the primary goals should be 

two-fold. First, models should possess mean structures that are capable of generating 



6 

 

accurate predictions anywhere within the study region. Achieving this goal requires the 

careful selection of model covariates, as well as considerations for the relationships 

between these variables and soil C. A large literature on designing functions for DSM 

already exists (see McBratney et al. 2003 and Minasny et al. 2013 for thorough reviews). 

While much of this literature focuses on agricultural and mixed-use landscapes, it 

provides a reasonable basis for the design of predictive functions for forest soil C as well.  

 The second goal is a model that provides reasonable estimates of uncertainty 

surrounding predictive estimates. This is an equally important quality in models, yet a 

large portion of DSM mapping studies make no attempt to formally quantify prediction 

error (Grunwald 2009). If estimates of forest soil C derived from predictive models are to 

be used as a basis for policy making and management decisions, or if they are to be fed 

into global climate models, an accurate estimate of uncertainty is necessary (Huntingford 

et al. 2009, Shvidenko et al. 2010). Failing to provide such an estimate, or providing 

inaccurate error bounds that suggest a higher degree of precision than the model actually 

provides, may have serious implications. 

 Fully quantifying uncertainty in predictive models of forest C means more than 

providing error bars around aggregate stock estimates. If our goal is to design the ‘best’ 

predictive model possible, it may be useful to understand where and how uncertainty 

arises. Error in model predictions may come from multiple sources, but can generally be 

grouped into three categories: (1) error associated with data collection and sample 

analysis; (2) “model error” stemming from parameter estimation; and (3) error arising 

from spatial and temporal variability underlying the data (Banerjee et al. 2004, Finley et 

al. 2010). Each of these features requires specific consideration, but one or more is 
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frequently ignored in predictive modeling studies. This is in large part due to the 

limitations of the methodological techniques traditionally used to fit predictive models 

for DSM and forest C mapping, though advances in modern computational statistics offer 

some appealing solutions. 

 Uncertainty arising from data measurement error and parameter estimation has 

been addressed in the forest carbon literature. Forest inventories usually include rigorous 

quality assurance quality control (QAQC) procedures to help minimize error within the 

data themselves, and widely used analytical techniques such as linear regression attempt 

to capture this variation with “white noise” error terms (Miehle et al. 2006). Over the last 

decade, forest scientists have also come to recognize the importance of capturing 

uncertainty in estimates of model parameters (Radtke et al. 2002, Williams et al. 2005). 

This has contributed to the prevalence of Bayesian analytical techniques in the forest 

sciences, including hierarchical models (Green and Valentine 1998, Cressie et al. 2012), 

Bayesian synthesis (Green et al. 1999, 2000, MacFarlane et al. 2000), and so-called “data 

model fusion” techniques (Keenan et al. 2011, 2012, Luo et al. 2011).  

 Other sources of uncertainty have only received attention more recently. Model 

error associated with selecting a single best fitted model and assuming it to be “true” has 

been cited in the statistics literature as an important consideration in model selection 

problems (Raftery et al. 1997, Wintle et al. 2003) . This has given rise to a large literature 

on model averaging, either based on weighting information criteria used for model 

selection such as Akaike’s information criterion (AIC) or the deviance information 

criterion (DIC) (Hoeting et al. 1999, Burnham and Anderson 2002), or through Bayesian 

measures of model fit such as posterior model probability (Key et al. 1999, Clyde et al. 
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2011). In fact, given the large variation in typical natural resources datasets, some authors 

recommend model averaging is adopted as standard practice (Johnson and Omland 2004, 

Burnham et al. 2011). Forest carbon models are no exception. Recently, Green and 

Bollock (2013) observed that ignoring model error in a biomass model for Loblolly Pine 

resulted in credible intervals that underestimated total variance by 10-40 percent.  

 Failure to explicitly model spatial processes is another key source of error in 

predictive models of forest SOC. Modeling spatial dependence in soil inventory data is 

not a recent development. In fact, applied geostatistics has roots in geology and natural 

resource science, and soil scientists and agronomists were early adopters of spatial 

interpolation methods such as kriging, primarily for within field soil nutrition mapping 

(Odeh et al. 1994, McBratney et al. 2003, Hengl et al. 2004). While kriging methods 

represent a step forward in that they explicitly model spatial dependence via spatial 

covariance functions (Isaaks and Srivastava 1989), they do not allow for uncertainty in 

the parameters of these functions. This can be problematic since spatial covariance 

models are derived by fitting an empirical semivariogram, and significant residual error 

in the spatial pattern is ignored in this process (Banerjee et al. 2004). Theoretical 

variogram models rarely fit the empirical variogram very well, and in fact “cleaning up” 

the variogram by removing outliers is often recommended as standard practice 

(Goovaerts 1997). The very large spatial datasets that have become commonplace in 

forestry (i.e., large forest inventories and remote sensing datasets) demand a more 

flexible approach.  

 In the Bayesian paradigm, hierarchical regression models that include spatial 

random effects provide the kind of versatile method necessary for addressing macroscale 
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issues in forest science. These models describe spatial dependence as a stochastic 

Gaussian process (Gelfand 2012), introduced as a “spatial random effects” term in a 

regression model, where our model of interest is described as: 

 ( )    ( )   ( )    ( ) 

Where  ( ) are the observed data at locations  ,  ( ) is some mean function (i.e. a linear 

relationship with a chosen set of covariates),  ( ) are the spatial random effects, and 

 ( ) is a “white noise” error term representing both data/measurement error as well as 

spatial variance at finer scales than those considered by the analysis (Banerjee et al. 

2004). In this sense, we partition the total variance around the mean structure into two 

parts: the spatial and non-spatial components. Since we are working within a hierarchical 

framework, it is possible to place prior specifications on the parameters controlling the 

spatial process (i.e. the spatial range and sill parameters), as well as that in  ( ) 

(equivalent to the “nugget effect” in geostatistics). In this way, we may fully capture 

uncertainty within the spatial dependence underlying forest soil carbon.  

Spatial hierarchical models have been applied to map aboveground forest 

attributes at broad spatial scales, including forest biomass (Finley et al. 2010, Johnson et 

al. 2014), forest community composition (Finley et al. 2009), deforestation rates 

(Agarwal et al. 2005), and individual tree structure variables (Babcock et al. 2013). 

Additionally, Guhaniyogi et al. (2013) used multivariate spatial hierarchical models to 

map a suite of forest soil nutrients, including SOC, at a fine scale within a tropical forest 

in Costa Rica. Thus far, these models have not been applied to map soil carbon at scales 

relevant to international climate change research and policy, though their use in other 

macroscale forest science studies indicates significant potential. Similarly, to the best of 
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our knowledge techniques for addressing model uncertainty have not been applied to 

digital soil mapping, though research on model averaging for prediction throughout 

ecology and natural resources argues for their consideration here.  

The aim of this dissertation is to contribute to the development of a consistent 

modeling approach for forest soil carbon at regional, national, and continental scales. To 

accomplish this, we explore the development of predictively accurate functions, but place 

particular emphasis on the quantification of uncertainty. More specifically, we focus on 

the roles model error and spatial dependence may play in forest soil C models, given that 

these sources of error are frequently overlooked by DSM studies. Here, we present a 

collection of papers focusing on computational methods, primarily from the Bayesian 

statistics literature, that are useful tools for forest and soil scientists interested in mapping 

soil C or other forest attributes at broad spatial scales.  

 Chapter one addresses the issue of modeling regional scale spatial dependence 

with sparse inventory data. For economic reasons, forest inventory plots are often only 

available at low densities, and frequently sampling strategies are not specifically designed 

with spatial analysis in mind. This study uses a low density set of forest soil carbon 

inventory data for the Coastal Plain of New Jersey, USA to ask whether, for this case, 

modeling spatial dependence offers any improvement in prediction accuracy relative to 

comparable non-spatial models. Two non-Bayesian methods from conventional 

geostatistics, universal kriging and co-kriging, are compared to non-Bayesian, non-spatial 

multiple regression models. We find that spatial dependence is unimportant for this 

dataset, though it is not clear if this is a result particular to our region, or one that is 

generalizable across other temperate forest ecosystems.  
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 Chapter two provides a departure from the primary focus on spatial dynamics of 

forest soil C to consider the role of ‘model error’ in natural resources and ecological 

datasets. Here we directly compare the performance of several widely used criteria for 

model selection: Akaike’s information criterion (AIC) (Akaike 1973), the deviance 

information criterion (DIC) (Spiegelhalter et al. 2002), and Bayesian posterior model 

probability (Kass and Raftery 1995, Bayarri et al. 2012). We use both ‘best’ model and 

model averaged predictors with these metrics, and compare their performance for three 

datasets based on posterior predictive checks (Gelman 2003). The conclusions drawn in 

this study do not advance one method for model selection over others, but instead suggest 

that any can be a reasonable approach, providing rigorous evaluation using predictive 

diagnostics is subsequently performed.  

 Chapter 3 is the first of two on applying spatial Bayesian hierarchical models to 

the prediction of forest soil carbon at broad spatial scales. Here we explore whether 

spatial dependence exists in forest inventory datasets for three different spatial scales: the 

Coastal Plain physiographic province of New Jersey, forested lands within with the 

nation of Germany, and forests within the member states of the European Union. We use 

variograms and surface plots of model residuals and spatial random effects to examine 

the spatial structure in soil carbon, soil nitrogen, and the residuals of these variables. The 

results of this study suggest that spatial dependence in forest soil C and N is primarily 

present at broader spatial scales, perhaps driven by increasing environmental 

heterogeneity associated with crossing large spatial extents. However, we also find that 

the soil C and N residuals exhibit spatial structure in all of the datasets, suggesting that 

these variables co-vary across space at all of the scales we considered.  
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 Lastly in chapter 4 we turn to the comparison of spatial and non-spatial models 

for these three study regions. We construct linear functions based on the ‘scorpan’ model 

of McBratney (2003), and compare models for each dataset via k-folds cross validation. 

We find that spatial models offer better predictive performance, even for the datasets that 

did not exhibit much spatial dependence. We find an interpolated surface of soil N (from 

our inventory data) to be a good predictor of soil C, but do not find strong linear 

relationships with other remote sensing covariates. Our results highlight spatial 

hierarchical models as an ideal framework for predictive mapping of soil C, but also 

suggest that linear functions are not optimal. In general, we find the construction of good 

mean structures for forest soil C to be both scale and context dependent.  

 Taken together, these four studies contribute to the development of predictive 

models for forest soil C, and highlight spatial hierarchical models as an appropriate 

framework for broad scale mapping of forest soil carbon. However, there is much more to 

be done. Our work raises questions about controls over spatial dynamics in SOC, and 

how they vary across multiple scales. Further, the results of our model comparison 

studies argue for new lines of research on the development of optimal predictive models 

of forest soil carbon. These issues will be highlighted in the discussion sections of the 

proceeding chapters.  

Digital mapping of soil carbon, particularly forest SOC, is a nascent field. 

Undoubtedly in the coming decades the increasing availability of both soil inventory and 

remote sensing data, as well as the development of new efficient methods for analyzing 

massive datasets, will lead to significant improvements over the current literature on 

predictive modeling of soil attributes. However, if these models are to be widely used 
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within the management and policy community, and are to lead to verifiable estimates of 

soil organic carbon stocks, a consistent modeling framework must be employed. It is our 

hope that, if nothing else, the work presented here highlights a methodological way 

forward that future work may build upon.  
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Overview of the datasets. 

 This dissertation relies on several soil carbon datasets, collected at different scales 

both within New Jersey, United States and across Europe. Additionally, chapter two 

employs two unrelated published datasets representing statistical variable selection 

problems. Before proceeding with the presentation of the research chapters, here we 

present an overview of these data. Most importantly, we outline the survey and sampling 

protocol for the soil carbon inventory collected by the authors in 2011 and 2012, as part 

of this dissertation research.  

 The New Jersey soil carbon data is the only dataset used in all four research 

chapters. Chapter one relies solely on this dataset, collected in forests across New 

Jersey’s physiographic plain. Chapter two again utilizes these data, but also considers 

data on individual tree volume in Loblolly Pine from Burkhart et al. (1984) as well as 

ecosystem productivity in laboratory microcosm experiments from McGrady-Steed et al. 

(1997). In chapters 3 and 4, we also make use of the European Union Joint Research 

Centre’s LUCAS topsoil dataset, which is a publicly available set of geo-referenced 

observations of a variety of soil properties. Details on these data, and the associated 

sampling protocols, may be found in (Toth et al. 2013a, 2013b). What follows is a full 

description of the NJ data used within our studies.  

Sampling design. 

 500 plots were established throughout New Jersey’s coastal plain, using a 

stratified random sampling design based on dominant forest type and drainage class. 

Forest cover classes were extracted from the 2010 LULC classification of New Jersey 

performed by the Center for Remote Sensing and Spatial Analysis (CRSSA), Department 
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of Ecology & Evolution, Rutgers University (Hasse and Lathrop 2010). A drainage class 

map was created from the SSURGO data set (Soil Survey Staff, NRCS) using the soil 

mapper function. Four vegetation classes (coniferous forest, deciduous forest, mixed 

forest, wetland forests) and three drainage classes (excessively drained, well drained, 

poorly drained) were used in a factorial design, resulting in ten sampling strata. 

Manipulation of source vegetation and soil data to create individual files for each 

sampling stratum was accomplished using ArcMap 10.0 (ESRI, Redlands, CA).The 500 

sampling plots were then randomly generated, proportional to stratum area, using the 

Geospatial Modeling Environment module (Spatial Ecology, 2010).  

 Several other variables were considered for sampling stratification, including 

elevation, soil texture, and fire history. All of these, along with vegetation and soil 

moisture, can greatly influence soil organic matter distribution (Chapin et al., 2002). 

However after exploring the available data, the latter two were decided upon as the two 

dominant factors that would work the best for dividing the entire region into a reasonable 

number of sampling strata. Other variables will be incorporated into the model, and the 

distribution of our sampling regime should incorporate enough spatial variation to make 

use of these factors for predicting SOC distribution.  

 The sampling model was parameterized to establish plots at a minimum distance 

of 80 meters, and an 80 meter buffer around all paved roads and other land use types was 

also established. 80 meters was selected as an appropriate lag distance based on a pilot 

study we undertook in the fall of 2010.  

Plot sampling 
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 A subset of 182 plots was sampled during the course of the study. Many more 

plots than we intended to sample were generated in order to account for the fact that 

many would be located on private land, and present access issues. The decision was made 

to not constrain the sample distribution to public land for two reasons. First, the 

proportion of each stratum type on public land may not be the same as it is across the 

entire coastal plain. Second, while good spatial data of all state land boundaries was 

available, we were lacking land held by NGOs or other non-governmental agencies that 

would permit us access. In selecting which plots to sample care has been taken to 

maintain roughly the same proportions in each strata, and to spread sampling out across 

the entire geographic area.  

 Sampling points were located to +/- 5 meters using a Magellan mobile mapper 

handheld GPS unit. Soil sampling was conducted at the center of each plot. One 625 cm
2
 

litter sample was collected, along with three soil samples in the following depth 

increments: 0-10 cm, 10-20 cm, and 20-30 cm. Each increment sample consisted of a 

bulk density core and a second sample of approximately equal volume for lab analysis. 

Bulk density cores were carefully inserted into the soil matrix, using a sharp knife to cut 

around the outside of the core, in order to minimize soil compaction. The whole cores 

were extracted, carefully cleaned of excess soil, and wrapped in aluminum foil to be 

brought back to the lab. Analytical samples were collected with a small trowel and 

transferred to brown vials for transport.  

Laboratory analysis 

 Four laboratory analyses were completed on the field collected samples: bulk 

density, loss-on-ignition (LOI) analysis for soil organic matter content, elemental 
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spectroscopy (CHN) analysis for soil carbon and nitrogen content, and CHN analysis for 

leaf litter content. The decision was made to analyze soils for both SOM and SOC to help 

correct for the very small volume of material (well less than 1 cm
3
) typically used for 

CHN analysis. The extrapolation of carbon content for a sample > 100 g in size based on 

a very small analytical subsample may be prone to considerable measurement error.  

 Bulk density samples were dried for 48 hours at 105
 o
C and passed through a 2 

mm sieve. Both the less than 2 mm and greater than 2 mm fractions were weighed, and 

bulk density was calculated as: 

BD = FM/(V-(CM/PD) 

Where BD = bulk density, FM = <2 mm fraction, V = volume of the sampling core, CM 

= >2 mm fraction, and PD = particle density, a constant of 2.65 g*cm
-3

. Bulk density 

values were calculated for each of the depth increments.  

 The analytical samples were air dried for at least 72 hours, and then sieved to 2 

mm. The fine fraction material was ground into a fine powder with a mortar and pestle, 

and homogenized for a period of 15 minutes by shaking and rolling the container. Two 

sub-samples were then drawn for the LOI and CHN analyses. 

 Soil organic matter content was estimated using loss-on-ignition (LOI). Samples 

were placed in a Lindberg muffle furnace (General Signal, Watertown, WI, USA) at 400 

o
C for 24 hours. This temperature allowed for all soil organic matter to fully evolve, 

while minimizing mass loss from matrix water and inorganic compounds (Ben Dor and 

Banin 1989). Soils in New Jersey’s Coastal Plain are low in carbonates (Tedrow, 1986), 

so little measurement error is expected from evolution of inorganic carbon. Final mass 

was taken while the samples were still hot in order to limit measurement error due to 



18 

 

condensation on the soil material. Gravimetric soil organic matter content (cm
3
*cm

-3
) is 

then calculated as: 

(IMc-FM)/IMc 

Where IMc = initial soil mass, corrected for residual water volume and FM = mass of 

remaining material after 24 hours at 400 
o
C.  

 Percent carbon and nitrogen by weight were determined using CHN analysis. 

Analyses were performed by the Ecosystems Lab of the University of Nebraska. Litter 

samples were dried to 70 
o
C, weighed, and ground to fine a powder using a Wiley mill. 

This material homogenized and also submitted for CHN analysis. 

Calculation of SOC & SOM stocks 

 Prior to analysis, both soil organic carbon and organic matter stocks for each 

depth increment were converted to metric tons per hectare, a standard areal unit for 

expressing soil carbon stocks, according to the following equation: 

SC = Cc * BD * V 

where: 

SC = soil organic carbon stock (t/ha) 

Cc = soil carbon concentration (kg*kg
-1

) 

BD = soil bulk density (kg*m
-3

) of the < 2 mm fraction 

V = the volume of a rectangle 1 hectare in area and 10 cm in depth 

Litter carbon stock is also expressed on an area basis, in units of metric tons/hectare, as: 

LC = LCc * A 

where: 

LC = litter carbon stock (t/ha) 
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LCc = litter carbon content of the 625 cm
2
 sampling frame 

A = the area of a 1 hectare rectangle 

Total soil carbon stock is then calculated as: 

SCtotal = LC + SC0-10cm + SC10-20cm + SC20-30cm 

Data archiving & storage 

 The final datasets, which include raw bulk density and gravimetric contents of 

soil organic carbon (SOC), soil organic matter (SOM), and soil nitrogen (SN), as well as 

derived areal estimates in terms of megagrams/hectare, will be archived in several 

locations. First, these data will remain as part of the permanent databank owned by the 

Center for Remote Sensing and Spatial Analysis (CRSSA) at Rutgers University. A 

special folder will be created for all relevant files, as well as associated metadata. This 

folder will also include all post-processed raster layers used as model predictors (see the 

methods outlined in Chapter 4 and it’s appendix for details). In addition, the datasets will 

be made publicly available via the International Soil Carbon Network (ISCN) database.  
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Chapter 1: Comparing spatial and non-spatial approaches for predicting forest soil 

organic carbon at unsampled locations. 

Abstract 

 Prediction of soil organic carbon (SOC) at unsampled locations is central to 

statistical modeling of regional SOC stocks. This is often accomplished by applying 

geostatistical techniques to plot inventory data. However, in many cases inventory data is 

sparsely sampled (<0.1 plots/km
2
) relative to the region of interest, and it is unknown if 

geostatistics provides any advantage. Our objective was to test whether modeling spatial 

autocorrelation, in multivariate and univariate predictive models, improved estimates of 

SOC at prediction locations based on sparsely-sampled inventory data. We conducted our 

study using a dataset sampled across all forested land in the Coastal Plain physiographic 

province of New Jersey, USA. We considered five models for predicting SOC, two linear 

regression models (intercept only and multiple regression with predictor variables), 

ordinary kriging (a univariate spatial approach), and two multivariate spatial methods 

(regression kriging and co-kriging). We conducted a simulation study in which we 

compared the predictive performance (in terms of root mean squared error) of all five 

models. Our results suggest that our sparsely-sampled SOC data exhibits no spatial 

structure, though several of the covariates are spatially autocorrelated. Multiple linear 

regression had the best performance in the simulation study, while co-kriging performed 

the worst. Our results suggest that when inventory data is dispersed across the region of 

interest, modeling spatial autocorrelation does not provide significant advantage for 

predicting SOC at unsampled locations. However, it is unknown whether this 

autocorrelation does not exist at broad scales, or if sparse sampling strategies are unable 
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to detect it. We conclude that in these situations, multiple regression provides a 

straightforward alternative to predicting SOC for mapping studies, but that more work on 

the spatial structure of soil carbon across multiple scales is needed.  

Introduction 

Globally, forests are thought to store approximately 861 Pg  of carbon, with about 

44% of this mass found in forest soils (Pan et al., 2011). The large capacity of the forest 

soil pool to sequester carbon makes its management a viable option for mitigating the 

effects of atmospheric carbon emissions (Goodale et al., 2002; Lal, 2008). Naturally, 

there is considerable interest in the quantification of forest SOC pools for carbon 

monitoring projects, and the development of market-based carbon accounting schemes. 

There is a need for methodologies that produce consistent results with a degree of 

accuracy acceptable to policymakers (Chen et al., 2000a; Houghton, 2003; Shvidenko et 

al., 2010). 

 Forest carbon stocks are typically measured using forest inventories, and areal 

estimates are gained by ‘scaling up’ these measurements across the region of interest 

(Birdsey, 1992; Goodale et al., 2002). However, these data are often sparse relative to the 

extent of the stock estimate. In the case of forests, soil carbon sampling is often excluded 

from large inventory efforts due to the additional time and cost needed to collect and 

process samples relative to aboveground forest measurements. As a result, regional 

estimates of forest soil carbon storage are often highly uncertain, leading to wide 

disparity among the literature. For example, estimates of carbon stocks for European 

forest soils have ranged from 3 Pg C to as high as 79 Pg C; a difference that constitutes 
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approximately 9% of the global forest soil carbon stock (Cannell et al., 1992; Goodale et 

al., 2002; Liski et al., 2002; Jones et al., 2005). 

 Developing a regional soil carbon stock from inventory data involves prediction 

of the response variable at many unsampled locations (i.e. all squares of a grid covering 

the region of interest). Spatial autocorrelation, where nearby points are on average more 

similar than points that are further apart, is a common property in environmental datasets 

and, when present in inventory data, may be leveraged to increase prediction accuracy 

(Simbahan et al., 2006). Spatial autocorrelation may be summarized by computing the 

semivariance, a measure of spatial similarity, and plotting these values for all pair-wise 

combinations of the sampling points as a function of distance (Goovaerts, 1997). These 

plots, typically referred to as the empirical semivariogram, may be fitted with 

‘theoretical’ semivariogram models, such as Matérn class or spherical functions. Kriging 

methods, a widely used class of spatial interpolators, incorporate such theoretical 

semivariogram models to weight predictions at unsampled locations (Isaaks and 

Srivastava 1989). This feature, combined with the fact that these methods may be 

extended to model spatial covariance between the response and predictor variables, 

makes kriging a logical approach for the prediction of soil carbon. 

Geostatistical techniques have been successfully applied to predict soil organic 

carbon at unsampled locations, based on plot inventory data, at a variety of spatial scales. 

Several studies are available for agricultural fields, where very dense sampling regimes 

(>400 plots/km
2
) can be achieved, and clear patterns of spatial variation are often 

elucidated (Chen et al., 2000a; Lark, 2000; Mueller and Pierce, 2001; Simbahan et al., 

2006). In such situations, geostatistical models have been shown to offer considerable 
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improvement in prediction results when compared to non-spatial regression models 

(Simbahan et al., 2006).  

Fewer examples are available for regional soil carbon mapping, where reduced 

sampling density may make spatial autocorrelation more difficult to detect. Still, several 

studies have shown an increase in prediction accuracy when incorporating geostatistical 

techniques. Liski and Westman (1997) used block kriging to interpolate measurements of 

soil organic carbon taken as part of the national forest inventory (NFI) in Finland, and 

detected significant spatial structure in these clustered, but densely sampled (~5 

plots/km
2
), data. More recently Mishra et al. (2010) compared the performance of several 

geostatistical methods, including geographically weighted regression and regression 

kriging, to multiple regression models for predicting SOC across a heterogeneous region 

in the northern Midwestern United States. Their results suggest a significant increase in 

prediction accuracy (~22% relative improvement) when incorporating spatial error 

structure into the model. Other examples where significant spatial structure was detected 

and used to model SOC are available for grasslands in Ireland (McGrath and Zhang 2003, 

Zhang et al. 2011) and agricultural landscapes in the karst region of China (Liu et al. 

2006, Zhang et al. 2012). 

 While the aforementioned studies modeled soil organic carbon across large spatial 

extents, most took advantage of reasonably dense plot inventory data (≥ 0.1 plots/ km
2
), 

and in the case of Liski and Westman (1997) approximately 5 plots/km
2
. The exception is 

the study by Mishra et al., which utilized sparsely sampled data (approx. 0.003 plots/ 

km
2
), but modeled SOC across a heterogeneous landscape with several major cover types 

and a pronounced latitudinal gradient (from the upper Peninsula of Michigan south to 
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Kentucky, USA); both of which may exert strong controls on soil organic carbon 

distribution. When the region of interest comprises a single cover class, as it would in 

forestry applications, or does not span many degrees of latitude, it is less clear that 

modeling spatial autocorrelation presents any advantage for predicting forest soil organic 

carbon. In fact, a few studies provide evidence suggesting this is the case. Studies in 

tropical forests that examined forest SOC across multiple scales, in tropical dry forests in 

the West Indies (Gonzalez and Zak, 1994) and in the Brazilian Amazon (Cerri et al., 

2000; Bernoux et al., 2006), suggest that the spatial structure is limited to fine scales 

only.  

In this study, our primary objective was to assess whether incorporating spatial 

autocorrelation into models for predicting forest soil organic carbon at unsampled 

locations improved results for sparsely sampled (<0.1 plots km
2
) inventory data. To meet 

our objective, we compared the performance of both univariate and multivariate spatial 

models to similar linear regression models. We predicted that the spatial models would 

perform the best when predicting forest SOC at independent validation locations, despite 

the sparsity of our sampling locations relative to the region of interest. To test this 

prediction, we developed a simple simulation experiment to directly compare the 

predictive accuracy of all models considered in the experiment.  

Methods 

2.1 Study region 

 This study was conducted on the Coastal Plain physiographic province of New 

Jersey, USA (Fig. 1.1). This region is largely forested, and the remaining landcover 

mainly consists of residential and agricultural development. Three major upland forest 
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communities dominate the region: (1) Pitch Pine (Pinus rigida) forest, (2) Oak (Quercus 

sp.) forest, and (3) mixed communities that span a gradient between these two classes 

(Hasse and Lathrop 2010). On the inner coastal plain, these communities mix with other 

hardwood species such as American Beech (Fagus grandifolia) and Hickory (Carya) 

species. Forested wetlands are common along river courses or in low areas. Most of these 

are hardwood swamps dominated by Red Maple (Acer rubrum), Sweet Gum 

(Liquidambar styraciflua), and Black Gum (Nyssa sylvatica). However, forested peat 

bogs with pure stands of Atlantic White Cedar (Chamaecyparis thyoides) are also present 

across the landscape. Soils in the region are largely typic Hapludults and 

Quartzisappamments of marine or alluvial origin (Tedrow, 1986). Soils range from very 

poorly to excessively drained, and are primarily sandy in texture. However, clayey and 

mucky soils are frequent in wet areas. The total area of the study region (i.e. all forested 

land in New Jersey’s Coastal Plain) is approximately 4,522 km
2
. 

2.2 The datasets 

 We considered two plot inventory datasets for this study.  The primary dataset, 

hereafter referred to as the ‘small’ dataset consists of 62 plots, and possesses 

measurements for forest soil organic carbon and all of the covariates used in the model 

experiments. This corresponds to a sampling density of approximately 0.013 plots/km
2
. 

The ‘large’ dataset consists of 120 plots and contains measurements of the model 

covariates only, and was used for the co-kriging analysis. The small dataset is a subset of 

the large dataset, so those 62 plots are co-located and present in each. The plots were 

sampled in a stratified random design across the landscape, based on both forest 

community type and soil drainage class (Fig. 1.1).  
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 At each sampling location, soil was collected from three depth intervals: 0-10 cm, 

10-20 cm, and 20-30 cm. At each depth interval bulk density was sampled using the core 

method (Blake and Hartge, 1986), and a second sample was taken for laboratory analysis. 

Bulk density samples were dried for 24 hours at 105
 o
C and passed through a 2 mm sieve 

to remove the coarse fragments (i.e. gravel and litter material) that are not a component 

of the soil organic matter pool. The analytical samples were air dried for at least 48 hours, 

sieved to 2 mm, then ground into powder with a mortar and pestle and homogenized.  

Percent soil organic carbon was estimated by elemental (‘CHN’) analysis on a 

subsample of the air-dried analytical sample. A second subsample was used to measure 

percent soil organic matter (SOM) by loss-on-ignition (LOI). These SOM measurements 

were recorded for all 120 plots, and used as a covariate in the multivariate models. Soil 

organic matter typically has a significant relationship with SOC, and has been used as a 

predictor for soil organic carbon in several studies (Konen et al., 2002; De Vos et al., 

2005). Samples were placed in a Lindberg muffle furnace (General Signal, Watertown, 

WI, USA) at 400 
o
C for 24 hours. Both percent SOC and percent SOM were converted to 

stock estimates using the following formula (Hoover 2008): 

            (1) 

Where S is the stock estimate (Mg*ha
-1

), P is a percent measurement of SOC or SOM, 

BD is soil bulk density (g∙cm
-3

), V is the volume of a 1 ha
2
 rectangle with a depth of 30 

cm, and g is a unit scaling constant.  
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Figure 1.1: Distribution of sampling locations and primary forest cover types across 

the study region. 
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2.3 Model covariates 

In addition to the plot measured soil organic matter data, we utilized four 

covariates extracted from remote sensing and GIS datasets: normalized difference 

vegetation index (NDVI), band 2 of the ‘tasseled cap’ transform (TC2), compound 

topographic index (CTI), and elevation (ELEV). These variables represent a reasonable 

set of potential predictors for soil organic carbon, and are similar to covariates 

incorporated by several recent regional SOC mapping studies (McGrath and Zhang, 

2003; Mishra et al., 2010; Zhang et al., 2012; Vasques et al., 2012). NDVI and TC2, the 

“greenness” band of the tasseled cap transform, are both related to net photosynthetic 

output, which has a theoretical relationship to inputs into the soil organic carbon pool 

(Chapin et al., 2002). Terrain position can have a strong influence on soil organic carbon 

storage, so we included two related variables: elevation and estimates of the compound 

topographic index (CTI). CTI is a steady state wetness index designed to model soil 

water content based on values of slope and flow direction extracted from a digital 

elevation model (Moore et al., 1991). It has been shown to correlate with soil moisture 

content, which may exert influence over soil organic carbon formation and storage 

(Barling et al., 1994). 

To extract the NDVI and TC2 measurements for our sampling locations, cloud-

free Landsat TM scenes (glovis.usgs.gov) were downloaded for a single date during the 

study, July 14
th

 2011, and tiled into a mosaic of the study region. We used a Level 1 data 

product from the Landsat 5 thematic mapper instrument that had been previously 

corrected for radiometric error and terrain variability, geo-referenced, and converted to 
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Universal Transverse Mercator (UTM) projection. The Erdas Imagine software package 

(Leica Geosystems, Atlanta, GA, USA) and ArcGIS (ESRI, Redlands, CA) were used to 

separately generate rasters for both variables with a grid cell size of 30 m
2
 for all forested 

land within the study region, and to extract values of NDVI and TC2 for our sampling 

locations. Both the elevation and CTI data were derived from a 10m digital elevation 

model (DEM) provided by the Center of Remote Sensing and Spatial Analysis (CRSSA), 

Rutgers University. Compound topographic index was calculated for all cells in the DEM 

using ArcGIS. 

2.3 Modeling approaches 

 Our objective in this study was to test whether explicitly modeling spatial 

autocorrelation improved prediction accuracy for our sparsely sampled forest SOC data. 

To accomplish this we considered five models that represent spatial and non-spatial 

approaches for both univariate (SOC data only) and multivariate (incorporating the 

predictor variables) cases (Table 1.1). This design allowed us to both examine the effect 

of modeling spatial autocorrelation only, in the case of the univariate spatial model (OK), 

as well as the influence of the spatial variance term for two different multivariate 

approaches.  
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Table 1.1: Dimensions and spatial variance assumptions for the five predictive 

models considered in this study. 

Model Dimensions Spatial variance term 

Intercept only regression (IR) univariate no 

Multiple linear regression (MLR) multivariate no 

Ordinary kriging (OK) univariate yes 

Regression kriging (RK) multivariate yes 

Co-kriging (COK) multivariate yes 

   

 

Our non-spatial approach was linear regression models of the general form: 

 

                                                       ∑      
 
   ,          (2) 

 

where    represents the observations of soil organic carbon,    is the intercept,    is a 

slope parameter associated with each of the   covariates, and         where   is the 

number of observations.  

All three of the spatial models we incorporated are variations on the kriging 

algorithm, where spatial prediction is accomplished as a function of the theoretical 

semivariogram; a model fitted to a plot of semivariance values against distance for each 

pair-wise combination of sampling locations in the dataset (i.e. the empirical variogram) 
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(Goovaerts 1997). For the univariate model (OK), the linear estimator used to predict 

new values of the response variable, for some set of locations u, takes the form: 

  ( )  ∑   ( ) ( (  )   ( ) 

 ( )

   

 (3) 

 

Where   ( ) is the vector of predicted values of the response variable at new locations, 

 (  ) is the vector of known values of the response at sampled locations,  ( ) is the 

mean response, and the    is the vector of  ‘kriging weights’ for each sampled location, 

that are determined by the semivariogram model, and n(u) is the neighborhood size 

(Goovaerts, 1997; Simbahan et al., 2006). In the case of ordinary kriging, note that the 

mean is taken to be a function of the locations u so that it is allowed to vary across the 

region (Isaaks and Srivastava, 1989). In this way, we are removing the mean function, 

commonly referred to as the ‘drift’ in geostatistics, and kriging the residuals.  

 In addition to the univariate ordinary kriging model, we considered two different 

approaches for incorporating covariates into spatial models. The first of these is 

regression kriging (RK), which is very similar to OK in principle. The difference is that 

the residuals of the response and predictor variables are interpolated, and in this way co-

varying spatial patterns are indirectly incorporated into the analysis (Odeh et al., 1994; 

Hengl et al., 2004; Simbahan et al., 2006). For prediction at new locations, the spatially 

predicted residuals must be added back on to the mean trend, resulting in the following 

linear estimator for   ( ): 
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  ( )      ∑     ( )   ∑    ( )

 ( )

   

 

   

 

 

(4) 

Where    are the regression parameters associated with the predictors   , p is the number 

of predictors, and  ( ) are the residuals between the response and covariables (Hengl et 

al., 2003, 2004). The rest of the terms in the model are as defined above. We wish to note 

that the technique we outline here is one of several closely related approaches that have 

all variously been termed ‘regression kriging’, ‘kriging with external drift’, and ‘kriging 

with a trend’ (Goovaerts, 1997; Wackernagel, 1998; Chiles and Delfiner, 1999). We 

follow Hengl et al. (2004) in describing the method outlined above, where the non-spatial 

trend and the spatial interpolation of the residuals are accomplished separately, as 

regression kriging.   

The second multivariate method considered here is co-kriging, which represents a 

particularly flexible approach to modeling multivariate geostatistical data. Rather than 

interpolating residuals between the response and predictor variables, co-kriging starts 

with the fitting of both direct and cross variograms for all variables in the model, 

typically with a linear model of coregionalization (Gelfand et al., 2004). Essentially, this 

means we model the spatial covariance of the response and predictors individually, but 

also model the spatial cross-covariance among the model variables. This variogram 

system is employed to weight predictions of the response variable at new locations, 

according to the following linear estimator: 
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)    (   
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  ( )

    

  

   

  ( )

    

 

 

(5) 

Where    ( )  are the predicted values of the response variable at new locations,    is the 

weight assigned to the response variable Z1 and    
 represents the weights for the 

covariates Zi (Goovaerts, 1997; Simbahan et al., 2006). In this model, the expected values 

mi are subtracted from the data, indicating we consider the spatial association between the 

response and predictor variables to be a multivariate non-stationary process.  

 Co-kriging is appropriate for situations in which a response variable that is 

expensive to measure is sampled sparsely, while several ‘cheap’ covariates have been 

sampled in the same as well as additional locations. In our case, we have the ‘large’ 

dataset available, which contains 120 measurements of all of the model covariates. These 

additional values are used to fit the direct and cross variograms during co-kriging, along 

with the 62 observations which also contain measurements of the response variable. This 

situation lends itself well to the co-kriging approach.  

2.4 Model comparison simulation 

 To compare the performance of the four models for predicting soil organic 

carbon, we devised a simulation that compared predicted vs. actual results for 

independent validation data. We first randomly divided the ‘small’ dataset into fitting and 

validation datasets. We reserved 25% of the data for validation (N=15) and used  the 

remaining 47 plots to fit the models. We split the data this way, rather than using an even 

split, because initial runs of several kriging models resulted in undefined covariance 

functions when n=31 for the model fitting data. A fitting set of 47 plots translates to a 
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density of approximately 0.01 plots/km
2
 across the study region. In the case of the co-

kriging model, the additional covariate observations in the ‘large’ dataset were included 

in the model fitting, as the structure of the coregionalization model permits this design. 

To increase normality, all variables were log-transformed prior to fitting the models. 

Each model was used to predict soil organic carbon for the validation dataset, and we 

computed root mean squared error (RMSE) to assess model performance. Prior to 

computing RMSE, predicted values of log(SOC) were back-transformed into their 

original units. To avoid biasing results by selecting a single, favorable fitting dataset we 

ran this simulation for 10,000 iterations and tracked mean RMSE for the entire study. 

This is especially relevant for the geostatistical models, as relatively sparse datasets such 

as ours may possess spatial autocorrelation with some configurations but not with others.  

 To initialize the OK and COK models, we supplied values for the sill, range, and 

nugget parameters derived by fitting a Matérn class covariance function to the empirical 

variograms for soil organic carbon in the full dataset. In the co-kriging model, these 

values were used to initialize the parameters for all direct and cross variograms. In the 

case of regression kriging, we supplied initial parameter values from a theoretical 

variogram fitted to the residuals of SOC and the model covariates. All model fitting was 

accomplished with ordinary least squares. A Matérn covariance function was selected 

because it is a particularly flexible model for spatial autocorrelation, and is a popular 

choice in current geostatistical research (Stein, 1999; Finley et al., 2010).  The simulation 

was conducted using the R statistical computing environment. Variogram fitting, ordinary 

kriging, and regression kriging were conducted using the geoR package (Ribeiro and 

Diggle, 2001), and co-kriging was accomplished in the gstat package (Pebesma, 2004).  
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Results 

3.1 Exploratory analysis 

Table 1.2 presents the mean and standard deviation for all variables, as well as the 

regression parameters for the MLR model and the correlation coefficients between 

log(SOC) and each of the covariates for the full dataset (n=62). Soil organic matter is 

highly correlated with SOC (ρ=0.708), while the remaining variables are not notably 

correlated (ρ<0.2 for each). For the intercept only model, α = 3.59.  

 

Table 1.2: Mean (μ), standard deviation (σ
2
), slope parameters (  ) and correlation 

coefficients (ρ) for the five covariates and SOC.  

 

  Μ σ
2 

βj ρ 

SOC (Mg/ha
2
) 65.93 65.67 ** ** 

SOM (Mg/ha
2
) 113.17 153.66 0.678 0.708 

NDVI 0.61 0.05 0.395 0.103 

TC2 29.54 9.13 -0.507 0.046 

CTI 9.99 2.48 0.332 0.106 

ELEV (m) 26.35 12.25 0.157 0.098 

 

  Examination of the spatial structure in the SOC dataset does not reveal any spatial 

autocorrelation among the 62 sample sites (Moran’s I = -0.05, p = 0.39). However, slight 

positive spatial autocorrelation was noted for the following covariates: TC2 (Moran’s I = 

0.06, p = 0.04), CTI (Moran’s I = 0.05, p = 0.09), and ELEV (Moran’s I = 0.036, p < 
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0.001). Both SOM and NDVI do not possess significant spatial autocorrelation (p > 

0.10). The empirical variograms, as well as the fitted Matérn covariance functions (i.e. 

the theoretical variograms), agree with these results (Fig. 1.2). TC2, CTI, and ELEV 

show an increase in semivariance across distance, each with an asymptotic range > 

120,000 m. However, note that there is considerable residual error between the empirical 

semivariance values and the fitted covariance model. NDVI suggests an increase in 

semivariance, but the scale of the y-axis for this plot indicates a minute change across the 

effective range. Both SOC and SOM do not show spatial structure in either the empirical 

or theoretical semivariograms.  

  

Figure 1.2: Empirical (open circles) and theoretical (solid lines) variograms for the 

response (SOC) and the five covariates.  
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3.2 Model comparison experiment  

 The results of the simulation experiment show that the multiple regression model 

provided the most accurate predictions for the validation data, in terms of mean RMSE 

over the 10,000 trials in the simulation (Table 1.3). Ordinary kriging was the worst 

performing model, followed by co-kriging. These results correspond with the general 

lack of structure in the SOC data described above. Regression kriging had a similar, 

though slightly inferior, performance relative to multiple regression. This is not 

surprising, given that the regression kriging estimator is simply an extension of that of 

MLR. Comparing the two univariate methods also suggests a disadvantage to modeling 

spatial autocorrelation, as the intercept only regression model reduced error when 

compared to the ordinary kriging model.    

Table 1.3: Results of the simulation experiment. Note that this table presents back-

transformed values of forest SOC. Mean RMSE refers to the mean root mean 

squared error over the 10,000 trials in the simulation experiment. RI refers to the 

relative improvement in predictive performance of each model, when compared to 

the worst performing method (Ordinary Kriging).  

Model mean RMSE(Mg∙ha
-1

) RI (%) 

Intercept only regression (IR) 59.65 12.1 

Multiple regression (MLR) 51.52 24.1 

Ordinary kriging (OK) 67.9 -- 

Regression kriging (RK) 53.43 21.3 

Co-kriging (CK) 61.01 10.1 
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Discussion 

 In contrast to studies where prediction of SOC is accomplished with relatively 

dense plot inventories (>0.1 plots/km
2
) (e.g. Liski and Westman, 1997; Lark, 2000; 

McGrath and Zhang, 2003; Simbahan et al., 2006; Zhang et al,. 2012), we found that 

modeling spatial autocorrelation did not improve prediction accuracy at unsampled 

locations for our sparse inventory data. Both variogram analysis and Moran’s I statistics 

suggest a lack of spatial autocorrelation in our soil carbon data. While spatial structure 

was noted in some of the covariates, the lack of spatial structure in SOC resulted in 

inferior performance of the spatial models relative to multiple regression. However, note 

that the RMSE of all models is large relative to the mean of soil carbon for the whole 

dataset (65.9 Mg∙a
-1

), suggesting that there is a high degree of uncertainty in all five 

models.  

 Generally, these results highlight the difficulties of spatial prediction of forest soil 

carbon. A number of studies have identified spatial structure at local scales in a variety of 

forest types, with variogram range parameters from 4-500 meters (for example, 

Robertson et al.,, n.d..; Lister et al., 2000; Wang et al., 2002; Garten Jr. et al., 2007; 

Worsham et al., 2010). It is not known, however, if these fine-scale spatial dynamics are 

meaningful to predictions for regional datasets, where distances between plots may range 

from one to hundreds of kilometers. Further, it remains unclear whether spatial 

autocorrelation at broad scales is an important factor in understanding regional forest 

carbon dynamics. Our results suggest otherwise, as do those of the few other studies that 

have looked at this question (Liski and Westman, 1997; Cerri et al., 2000; Bernoux et al., 

2006).  
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In our data, determining whether regional forest SOC data truly exhibits no spatial 

structure, or if this is the result of a detectability issue caused by low sampling densities, 

remains unclear. Assuming spatial structure exists at the regional scale, describing it may 

require a large number of observations relative to the region of interest. While national 

forest inventories, such as the US Forest Service’s Forest Inventory and Analysis (FIA) 

program, may achieve the requisite densities for aboveground measurements (Finley et 

al., 2007), collection of data on soil variables is often only completed at a fraction of 

these plots. Further, the ability to detect spatial autocorrelation is influenced by the 

sampling design (Fortin et al., 1989). Thus, surveys may need to be specifically designed 

to detect broad-scale spatial structure in forest soils.  

Those studies which have detected regional spatial autocorrelation in the soil 

organic pool have typically done so over heterogeneous landscapes, spanning multiple 

cover classes (McGrath and Zhang, 2003; Mishra et al., 2010; Vasques et al., 2010; 

Zhang et al., 2011). In these contexts, the spatial structure of soil carbon is influenced by 

other spatially-explicit dynamics, such as patterns in land use and land cover, which may 

make regional patterns easier to define (Vasques et al., 2012). Modeling soil carbon over 

very large regions, such as the northern portion of the Midwestern United States (Mishra 

et al., 2010), also incorporates the effect of latitudinal climate gradients which are well 

known to influence soil organic carbon (Chapin et al., 2002). In this way, Mishra et al. 

detected an advantage to spatial approaches (geographically weighted regression and 

regression kriging) over multiple regression despite a very low plot density (<0.001 

plots/km
2
). In forestry applications, particularly across comparatively small regions such 

as the Coastal Plain of New Jersey, there may be fewer influences on the regional spatial 
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structure of soil organic carbon. However, additional studies in different forest types will 

be necessary to determine if this is in fact the case.  

Incorporating covariates of soil carbon into predictive models is a typical strategy, 

and one employed by almost all of the studies outlined here. In our case, four of the five 

covariates we considered were not strongly correlated with forest SOC. These patterns 

may be unique to our region in some ways. For instance, one would expect a strong 

relationship between soil organic carbon and elevation. However, the Coastal Plain of 

New Jersey is a fairly low-relief landscape, and fully capturing the covariance between 

SOC and elevation in an inventory dataset may be particularly challenging.  

Field measured soil organic matter was the one covariate that was reasonably 

correlated with SOC, but given that this variable was also sampled as part of our forest 

inventory it has limited usefulness for predicting soil carbon at unsampled locations. For 

regression models, it is generally necessary to have values for the covariates at the 

prediction locations (i.e., for all cells of a sampling grid in mapping applications). 

Methods based on fitting coregionalization models, such as co-kriging, are attractive in 

that they do not share this prerequisite (Goovaerts, 1997; Banerjee et al., 2004; Gelfand et 

al., 2004). However, in the absence of spatial structure in the response variable, these 

methods will likely yield poor results, as was the case with our data. An alternative 

strategy is to model the spatial dynamics of the covariates themselves. For example, soil 

organic matter may be interpolated based on ancillary variables in order to inform a 

sampling grid for soil carbon. However, this introduces additional sources of uncertainty 

which may propagate through to the final estimate of the response variable.  
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The results of our study have applications for forest SOC mapping projects, 

particularly where new inventories are being established to accomplish these goals. This 

may be especially relevant in developing countries, where international funding 

mechanisms such as the United Nations’ Reducing Emissions from Deforestation and 

Degradation (REDD+) program has motivated increased interest in managing forests to 

offset carbon emissions (Edwards et al., 2010). Newly established forest inventories will 

be important for both gathering baseline data on forest carbon stocks in these regions, and 

for verifying gains in carbon sequestration (Maniatis and Mollicone, 2010). Our results 

suggest that when plot inventories are sparsely distributed (<0.1 plots/km
2
), there is no 

spatial autocorrelation present in forest SOC data, and as a result modeling spatial 

structure does not result in increased prediction accuracy. In these cases, multiple linear 

regression presents a straightforward alternative, providing a set of reasonable covariates 

can be identified for all prediction locations.  

Taken in context with the existing literature on the spatial dynamics of forest 

SOC, our work highlights the need for more studies that explicitly model soil carbon 

across a range of spatial scales. Without these data, it remains unknown whether regional 

spatial autocorrelation does not exist or requires more dense sampling schemes to detect. 

Further, our results are from but one forest type, and it is not clear that the dynamics we 

describe are generalizable to other forest ecosystems. That all of our models provide a 

fairly poor fit to our SOC data demonstrates just how challenging characterizing 

uncertainty in regional soil carbon stocks can be. Advanced statistical modeling 

techniques such as geostatistics present many appealing methods for the prediction of 

forest soil carbon, but their utility is premised on a set of assumptions that the available 
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data may not meet. We advocate that these methods are considered for the prediction of 

forest carbon, and for SOC mapping studies, but only when their use is warranted by the 

data. 

Conclusions 

 When predicting soil organic carbon at unsampled locations based on sparse 

inventory datasets, it may be difficult to detect a significant degree of spatial 

autocorrelation. This is especially true on homogenous landscapes, or for studies that 

only consider one cover type, as there may be spatial structure associated with the 

correlation between SOC density and land cover type. In such cases, geostatistical models 

may be inappropriate, and multiple linear regression offers an appealing and 

straightforward alternative. Including covariates can increase the predictive performance 

of statistical models. The best predictors will not only be closely correlated with soil 

organic carbon, but will be available for the full extent of the study region. The results of 

our study have implications for SOC mapping approaches using existing inventories, 

where analytical efforts are constrained by data quality and availability, as well as for 

new sampling efforts where resources are limited. Future work should look to model 

spatial autocorrelation of soil carbon across multiple scales, to fully characterize the 

relationship of well-described local spatial structure to broad-scale, regional patterns.   
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Chapter 2: Model selection and evaluation: lessons learned from ecological data 

 

Abstract. 

 Model selection is important in ecology, typically with the goal of selecting the 

‘best’ model from some set of candidate models. However, the choice of model selection 

criteria may influence results. This creates a lack of consistency which is exacerbated by 

the fact that evaluation of models is rarely performed, and has led to confusion in the 

literature over ‘best practices’ for model selection. Here we present three case studies 

with the goal of evaluating the performance of different model selection strategies. We 

selected models using methods that span both Information Theoretic and Bayesian 

approaches. We evaluated performance by generating simulated datasets from the 

posterior predictive distribution and performing posterior predictive checks. Our results 

show that each criterion provided quite different results both for model selection and 

evaluation. Given these inconsistences, evaluation based on prediction revealed important 

features of the models that would have otherwise been overlooked.  Posterior predictive 

checks are a useful, general framework for evaluating models based on their predictive 

performance, and we will conclude with some practical advice for incorporating this 

approach into the model selection process.  

Keywords: Model selection, Bayesian posterior model probabilities, AIC, DIC, posterior 

predictive checks 

 

Introduction.  

The model selection problem, where the goal is to find the ‘best’ model or models 

among a candidate set        , is one that most ecologists and natural resource 
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scientists entertain on a regular basis. Model selection typically takes one of several 

forms: including the selection of suitable covariates for some response variable(s) of 

interest; determination of an appropriate probability distribution for a given dataset; or 

‘curve fitting’ to describe the relationship between two or more variables. The last decade 

has seen many ecologists moving away from classic hypothesis testing, where one 

‘alternative’ model is compared to a ‘null’ model,  and toward multi-model inferential 

frameworks where multiple alternative models may be entertained simultaneously 

(Johnson and Omland 2004). As a result, statistical methods for evaluating and ranking 

models are now commonplace in the literature.  

 In modern statistics, model selection is accomplished by using a test statistic 

designed to estimate the ‘fit’ of the model to the data available to the analyst. Two 

principle paradigms for model selection have emerged within the literature: (1) 

information theoretic (IT) approaches, such as Akaike’s information criterion (AIC) 

(Akaike 1973, Burnham and Anderson 2002); and (2) Bayesian model selection, 

including Bayes factors (Kass and Raftery 1995), model posterior probability (Berger and 

Barbieri 2004, Bayarri et al. 2012), and the Bayesian information criterion (BIC) 

(Schwarz 1978). While these paradigms all share a common goal, they differ in approach. 

AIC and various derivatives compare models by minimizing the Kullback-Leibler 

divergence between the estimated model and some “true” distribution (Burnham and 

Anderson 2002), while the Bayesian approaches attempt to select the model with the 

highest posterior model probability (Yang 2005). A very large literature exists on the 

implications of these differences, and we refer readers to those sources for more 

background on this debate  (Shao 1997, McQuarrie and Tsai 1998, Burnham et al. 2011).  
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 Regardless of paradigm, most analysts employ a similar approach to model 

selection: 

1. Establish a set of candidate models, based on a priori hypotheses or candidate 

predictor variables; 

2. Evaluate each model using the criterion of choice; and  

3. Proceed with the analysis; whether it is prediction, interpretation, or both; 

using the “best” fitted model or a model-average of all reasonable candidates.  

This is a deceptively simple outline for a process that is quite complex. Most, if not all, 

scientists agree that it is necessary to think carefully about the models that will be 

compared, even when this process is aided by computational tools such as statistical 

variable selectors or data-mining strategies. When using model averaging, which is 

recommended as routine practice to address model uncertainty (Raftery et al. 1997, 

Burnham and Anderson 2002), choosing which models to include requires consideration, 

and a variety of computational and heuristic methods have been recommended to address 

this question (Hoeting et al. 1999). In short, standard practice calls for careful thought at 

both the beginning and the end of the model selection process.  

 However the second step, where model fit is actually evaluated, is more often 

than not left to a single test statistic.  This is despite the fact that several comparative 

studies have demonstrated that the relative performance of IT and Bayesian model 

selection criteria is often problem specific and context dependent (Kuha 2004, Wang and 

Liu 2006, Ward 2008). As Aho et al. (2014) recently observed, the search for a 
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‘consistent and efficient’ model selection strategy seems impossible. The question then 

becomes how best to proceed when no optimal model selection criterion exists.  

 A logical strategy is to consider how well models under consideration perform 

when applied to a common analytical goal: prediction. Posterior predictive checking, 

where replicate datasets are generated from simulated model parameters and used as the 

basis for checking model fit (Rubin 1984, Gelman et al. 1996), is an approach that has 

gained traction in the statistics literature. In posterior predictive checking, models are 

evaluated based on their ability to replicate the distribution of the data of interest. Many 

faux datasets are generated, using values sampled from the joint posterior distribution of 

the model parameters, to account for uncertainty in parameter estimates (Gelman 2003). 

Comparisons may be made quantitatively, through computation of predefined test metrics 

such as the posterior predictive p-value (Meng 1994), or simply by qualitative (visual) 

assessment (Gelman 2007). Posterior predictive checking is appealing in its simplicity; it 

shows us how well a model under consideration does at reproducing the data of interest, 

without relying on derived quantities that lack such a straightforward interpretation. This 

makes posterior predictive checking a highly interpretable method for evaluation in 

model selection problems. 

 The apparent lack of consistency among criteria for evaluating models implies a 

need for more rigorous approaches to the second step of the model selection process we 

outline above; statistical evaluation. We envision a more iterative approach to the model 

selection problem, where IT or Bayesian methods are coupled with stringent predictive 

checks to first cull poor models from consideration, and then to provide direct evidence 

(i.e. ability to generate replicate data resembling the data at hand) for model fit. Here, we 
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examine this approach by considering three case studies that represent a common, and 

particularly vexing, analytical problem for ecological data: variable selection for linear 

regression. Our objectives here are twofold: (1) compare the performance of several IT 

and Bayesian model selection criteria for a given set of models; and (2) consider how the 

results from posterior predictive checks compare to those of the model selection criteria. 

After presenting the results of this analysis, we conclude with practical recommendations 

for undertaking robust evaluation of models.  

Background 

Variable selection in linear regression 

The variable selection problem arises when we have a large number of potential 

covariates           for some response variable Y, and we are interested in using the 

linear regression model                   , where          is some subset 

of the full covariate set that best fits or predicts Y (Berger and Barbieri 2004, Liang et al. 

2008, O’Hara and Sillanpää 2009). The primary motivations for choosing a ‘best subset’ 

are typically to develop a reduced predictive model for Y, or for developing 

hypotheses/drawing inference on how Y relates to the selected covariates. In either case, 

we are interested in the most parsimonious model that will meet our criterion (i.e. 

minimum squared error in the case of prediction). Scientists are often interested in both 

prediction and inference, and suitable analyses will look to foster both goals.  

In both Bayesian statistics and maximum likelihood analysis, it is common to 

treat variable selection as a model comparison problem. In this case, we consider 2
q 

possible models, which contain all possible sub-models that may be constructed from the 

full covariate set (George and McCulloch 1993). From this, a candidate model or set of 
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models may be evaluated by the test criteria of the analyst’s choice. This perspective is 

useful, but the number of models under consideration quickly becomes unwieldy with 

increasing q. For example, a variable selection system with 30 covariates can generate  > 

one billion potential models. For model sets this large, performing even a simple AIC 

calcuation for each model is not feasible. Variable selection has attracted the interest of 

many statisticians in recent years, particularly in Bayesian statistics, and an array of 

simulation-based approaches now exist to address this problem.  

Bayesian approaches to model selection 

 Model selection within the information theoretic framework, based on AIC and 

similar criteria, is widely used within the ecological literature and we refer readers to 

authoritative sources on this approach for additional background information (i.e., 

Burnham and Anderson 2002). Bayesian model selection approaches, particularly 

selection via posterior model probability and posterior predictive checking, remain 

somewhat underutilized in the ecological sciences. Johnson and Omland (2004) 

suggested that this is due to the computational requirements of these methods, as well as 

a lack  of software that facilitates their easy implementation. These methods sometimes 

require specialized Markov chain Monte Carlo (MCMC) algorithms that are difficult for 

non-statisticians to ‘tune’ and use reliably. Over the last decade, however, there has been 

a significant increase in the tools available for performing Bayesian model selection. 

Here we include a brief introduction to the approaches we employ in our simulation 

study.  
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 Bayesian model comparison is based on posterior model probability. Given data 

 , the posterior probability of model   , that is contained within some set of models 

under consideration         can be defined as: 

    (  | )   
 ( |  )  (  )

∑  ( |  )  (  ) 
 = 

 (    )

∑  (    ) 
 

Where  ( |  ) is the marginal likelihood of model    and  (  ) represents the prior 

information about   . From the above, it can be observed that the posterior model 

probability is simply the ratio of the joint probability of   and    to the sum of the joint 

probabilities of the data and models over all possible models. The simplicity of this 

derivation lends a high degree of interpretability to PMP as a model evaluation criterion; 

it provides support for    by computing the probability of selecting it as a reasonable 

model given data   and the other models in M.  

 Classic Bayesian hypothesis testing compares two models    and   , given data 

D, using the Bayes factor (Jeffreys 1961, Kass and Raftery 1995): 

  (     )   
 (  | )  (  | )

 (  )  (  )
  

Note that we are simply looking at the ratio of the ratio of the posterior odds of    to  the 

prior odds of   (Ando 2010). A larger Bayes factor indicates a higher marginal 

likelihood for    given the data D, with BF > 3 typically seen as providing substantial 

evidence for preferring this model over the other (Kass and Raftery 1995). Applying 

Bayes’ theorem to each term in the numerator of (2) reveals: 

  (     )   
[
 ( |  ) (  )

 ( )
] [

 ( |  ) (  )
 ( )
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This is the ratio of the probability of D given    over the probability of D given   . 

Further, we can see that if the prior probabilities of the two models are equal, then: 

  (     )  
 (  | )

 (  | )
 

which is a ratio of the posterior probabilities of the two models. This is a useful property 

of the Bayes factor in “objective” Bayesian analysis, where it is customary to  assume 

that all models under consideration have equal, weakly informative priors.  

 The Bayes factor is a conceptually straightforward comparative metric of the 

evidence contained within two models, but it is often difficult to quantify in practice, and 

this seems to have limited its application for model selection problems. The difficulty 

arises from the need to compute an exact marginal likelihood from each model, which 

requires integration over the prior distribution (Kadane and Lazar 2004). Various 

methods for exact computation or asymptotic calculation of the marginal likelihood have 

been proposed (Gelfand and Dey 1994, O’Hagan 1995), though these approaches are  

computationally expensive. They require  proper priors if one hopes to obtain closed form 

solutions, and  calculation of the marginal likelihood can be  problematic  with the vague 

‘proper’ priors that are routinely used in practical Bayesian statistical modeling (Bayarri 

et al. 2012). The Bayes factor is further limited in being a pair-wise comparison by 

definition, and it is cumbersome for multimodel inference with three or more models.  

 Recent advances in Markov Chain Monte Carlo (MCMC) sampling methods have 

made it possible to compute the model posterior probabilities directly, thus circumventing 

the need to calculate the marginal likelihoods (George and McCulloch 1993, Casella et 
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al. 2009, Ando 2010). If we include model selection as a step in the MCMC sampler, then 

posterior model probabilities are calculated from MCMC output as: 

 (  | )   
 

 
∑(      )

 

   

 

where   is the number of MCMC samples, and    is a ‘model indicator’ related to    

(Dellaportas et al. 2002, Ntzoufras 2009). Thus, we use a unique indicator related to each 

model under consideration and then track which model is selected in each iteration of the 

sample. From that output, the posterior model probability is calculated as the number of 

iterations in which    is selected over the total number of samples.  

 While computation of the model posterior probability is easy, ensuring the 

MCMC algorithm will move among candidate models in order to obtain a representative 

sample can be challenging. This is especially true in variable selection problems, where 

hundreds or even thousands of models may be entertained (Kuo and Mallick 1998). 

Proper exploration of the model space is influenced by prior specification on the 

regression parameters, and there is an extensive literature on prior choice for linear 

regression models which we will not elaborate on here (but see Zellner and Siow 1984, 

Zellner 1986, Liang et al. 2008, Bayarri et al. 2012 and the references therein). The 

design of the algorithm can also affect the efficiency of the sampler, and many methods 

are available in the literature. O’Hara and Silänpää (2009) present an extensive review 

and performance comparison of these differing methods.  

 The principle drawback of these approaches is that a large number of samples 

must be collected in order to ensure that the algorithm has fully explored the model 

space. As a result, such algorithms can be computationally intensive. Green (1995)  
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introduced reversible jump MCMC (RJMCMC), which is a particularly efficient 

algorithm. RJMCMC ‘jumps’ between models from iteration to iteration, by drawing 

moves (i.e. addition or subtraction of predictor variables) from a proposal distribution, 

and then evaluating whether those moves should be made or the current model should be 

retained. This approach, coupled with modern computing technology, makes it easy to 

draw a sufficient number of samples even when the model space is very large. While 

practical Bayesian model selection was previously reliant on ad-hoc estimates of 

posterior probability, such as the Bayesian information criterion (BIC), these advances 

render the direction calculation of PMP convenient. This is advantageous for many 

problems, as the computation of BIC for large model spaces is impractical and it has been 

shown to be sensitive to sample size (Posada and Buckley 2004).  

Model evaluation & posterior predictive checking 

 We now turn our attention to the question of model evaluation, which we 

approach using posterior predictive checks. Unlike model selection, which assesses the 

evidence for model fit based on the marginal likelihood of each model under 

consideration, posterior predictive checking evaluates models based on their ability to 

replicate the data at hand (Gelman et al. 1996). These checks are based on the posterior 

predictive distribution, which is defined according to: 

 (     |    )   (     |  ) (    |  ) 

Here,       represents the new data to be predicted,      are the data at hand, and    is 

the model under consideration. The Bayesian posterior predictive distribution is unique in 

that it uses the entire posterior distribution of the model, given an existing set of data to 

generate a probability distribution for each new observation, rather than a point estimate 
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(Ntzoufras 2009). Model fit can then be assessed based on some test statistic   by 

plotting       against      and estimating the tail area probability:  

  (    )     (     )   (    )|        

This is the classical p-value, averaged over the posterior distribution of the model 

parameters in  , and corresponds to the ‘posterior predictive p-value’ first described by 

Rubin (1984).  

The choice of   is important, and a method that detects discrepancies between the 

observed and replicated datasets should be selected (Meng 1994). Gelman (2000) reviews 

a number of potential choices for  , including simple measures of central tendency and 

variance (i.e. mean and standard deviation), as well as checks on the residuals between 

the observed and replicated data. The decision of which discrepancy measures to use is 

somewhat problem specific, and requires careful thought on the part of the analyst prior 

to undertaking the model checking endeavor. This challenge, as well as potential 

calibration issues related to the lack of a uniform distribution of the posterior predictive 

p-value under the null hypothesis (Bayarri and Berger 2004, Bayarri and Castellanos 

2007), has led some authors to suggest that graphical diagnostics are more informative 

for model checking than are test statistics per se (Gelman 2003, 2007, Gelman et al. 

2003). These checks may comprise the full range of standard diagnostic plots that are 

routinely used in the preliminary stages of data analysis; including comparison of the 

frequency distributions of the observed and replicated datasets via histograms, residual 

plots, and q-q plots.  

Posterior predictive checking offers some major advantages as a method for 

model evaluation. Comparing how well a model reproduces a given set of data via 
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graphical diagnostics allows the analyst to consider the range of potential discrepancies 

that might exist between the observed and simulated datasets. These checks, as well as 

quantitative metrics such as posterior predictive p-values, are closely related to methods 

that most scientists find intuitive and easy to understand (Anderson et al. 2001). 

However, posterior predictive checking is impractical as a model selection strategy when 

many models are under consideration. Instead, it is best used for evaluating a narrowed 

list of models selected via other approaches. Posterior predictive checking has also been 

criticized for ‘using the data twice’ (Bayarri and Castellanos 2007), and thus it is 

recommended that it is combined with cross-validation procedures. We note in passing 

that empirical Bayes estimation, which today seems to be a reasonably well accepted 

method, was initially also subject to the criticism of using the data twice.  

Methods 

 We considered three datasets, hereafter referred to as the ‘protist data’, ‘forest 

data’, and ‘soils data’. All of these examples represent ‘variable selection’ problems in 

the linear regression context. Our goal is to identify datasets where a single response 

variable (Y) is considered as a function of a reasonably large (1,…,Q where Q  > 10) set 

of predictor variables (Xq). It is important to note that these datasets typify the so-called 

“M-open” model selection problem (Key et al. 1999), where many models are considered 

and none are believed to be the ‘true’ model underlying the data. For these type of 

problems, the information theoretic approach has traditionally been viewed as preferable 

(Link and Barker 2006).  

The protist data are that of McGrady-Steed et al. (1997), and it consists of 85 

observations of cumulative CO2 flux in a community microcosm experiment. The dataset 
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has 30 covariates, which are species richness and the abundance of each species included 

in the microcosms. The original study aimed to understand how diversity metrics, as well 

as presence/absence of member organisms in model communities, influenced ecosystem 

productivity (estimated as CO2 flux).  The forest data consists of 189 observations of total 

outside bark cubic foot volume of unthinned loblolly pine (Pinus taeda) from old field 

sites in Virginia. The data contains 11 covariates, which include age, mean diameter, tree 

basal area, and several other typical forest mensuration measurements. These data were 

collected specifically for the development of forest yield equations. The soils data 

contains 172 observations of forest soil organic carbon from plots on the Coastal Plain 

physiographic province of New Jersey, USA. The dataset has 18 covariates, including 

field measured soil organic matter content, vegetation indices extracted from Landsat 

data, and soil physical properties extracted from the USDA’s SSURGO database. These 

are the same data used elsewhere in this dissertation for developing predictive models of 

forest SOC.  A full list of the covariates in each dataset may found in appendix A, table 

A.1.  

 For each of the three datasets, we defined a model set   that consisted of the top 

five models, according to their posterior model probability, computed from a reversible 

jump Markov Chain Monte Carlo (RJMCMC) procedure using the ‘Jump’ extension for 

WinBUGS (Lunn et al. 2006). We retained the intercept term and employed statistical 

variable selection to determine the additional covariates that would be included in each 

model. We acknowledge that the choice to keep the top 5 models selected by RJMCMC 

is arbitrary. Here the goal is to compare the relative merits of several model selection 

approaches for a given set of models M, so we prefer to select M by an automated 



56 

 

approach. In a variable selection problem, M will consist of all possible models that may 

be generated from the chosen set of covariates. We can explore this model space within 

an MCMC by attaching an indicator parameter   to each covariate in the full model, and 

tracking which variables were included at each iteration of the sampler (Ntzoufras et al. 

2000, Dellaportas et al. 2002). Here, we used equal prior probabilities on the model 

indicator parameters (        (   )), so that each model in M would have the same 

prior likelihood of being retained at each step in the MCMC.  

For each dataset, we considered the following predictors: (1) ‘best’ model 

selected by posterior model probability (PMP); (2) model averaging with PMP; (3) the 

‘median probability model’ based on PMP (Berger and Barbieri 2004); (4) ‘best’ model 

selected by the deviance information criterion (DIC) (Spiegelhalter et al. 2002);  (5) 

model averaging with DIC; (6) ‘best’ model selected by Akaike’s information criterion 

(AIC); and (7) model averaging with AIC. PMP for each model in the set was obtained 

via RJMCMC when defining the model sets. Model averaging was implemented by 

scaling the posterior probabilities of the selected models to sum to one. The median 

probability model, as proposed by Berger and Barbieri (2004), is constructed by 

including all covariates with a posterior inclusion probability > 0.5. This model can in 

some sense be viewed as providing a “model averaged” result, and it has been shown to 

provide superior predictive performance in certain cases (Berger and Barbieri 2004, 

Bayarri et al. 2012).  

 We used the corrected form of AIC that accounts for small samples, which is 

recommended by Burnham and Anderson (2002) as standard practice. We also included 

DIC in our analysis as it is widely used for model selection in the Bayesian framework in 
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ecology and evolution. While DIC is a Bayesian procedure it is based on a decision 

theoretic argument, which differs from methods based on posterior model probability 

(Spiegelhalter et al. 2002). Model averaging for DIC and AIC is based on ‘AIC weights’, 

using the approach advocated by Burnham and Anderson (2002). Table 2 displays the 

posterior model probabilities, AIC, and DIC scores for all models within each model set. 

PMP and DIC were calculated by fitting the full dataset as a hierarchical model in the 

BUGS program, while AIC was derived by fitting the models via ordinary least squares 

in the R programming language.  

 We now describe the procedure we devised to compare and evaluate the 

performance of each predictor via posterior predictive checks. First, the datasets were 

randomly divided into ‘fitting’ and ‘validation’ sets, where approximately 66% of the 

observations were used to fit the models and the remaining 33% were retained for 

validation. For each model, the fitting data were used to draw 10,000 parameter samples 

from the posterior predictive distribution. All models were fit as hierarchical models, 

with vague priors and hyper-priors on the regression coefficients (      (      )) and 

model variance term (          (           )). Model selection was performed on 

the fitting data for each dataset, using posterior model probability, DIC, and AIC in order 

to construct the seven predictors described above.   

 In the case of AIC, it is important to note that we used it to select and rank models 

in a non-Bayesian context, using the selected models fit via ordinary least squares (OLS), 

then we proceeded to make predictions with the AIC-selected models via the posterior 

predictive distributions obtained from fitting the same models in a Bayesian framework. 

This differs from the normal use of AIC within the literature, but is appropriate given our 
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goal of comparing the performance of different model selection criteria based on 

posterior predictive checks. Naturally we wished to remain consistent in how these tests 

were performed. Burnham and Anderson have argued that AIC has a Bayesian derivation 

(2004), so we do not see an inherent conflict in using it in conjunction with Bayesian 

prediction.  

 For posterior predictive checking, we adopted a ‘hold-out predictive’ approach, 

where the data are randomly divided into fitting and validation sets. In our study, we used 

approximately 66% of each dataset for model fitting, and retained one third for 

validation. Parameter samples drawn from the joint posterior distribution of the fitting 

data were applied to predict the response variable, based on the observations of the 

covariates in each model from the validation data (Vehtari and Ojanen 2012). This 

approach differs from typical model checks using the posterior predictive distribution, 

where fitting and validation are accomplished using the full joint posterior distribution of 

all the data available. In our case, we prefer using an independent hold-out set to provide 

a more stringent test, and to ameliorate the issues associated with posterior predictive 

checks related to “using the data twice” (i.e. for parameter estimation and validation) 

(Bayarri and Castellanos 2007, Gelman 2007). We are confident that models which pass 

these independent posterior predictive checks will be reasonable choices for prediction 

with each dataset.    

 For each set of parameter samples (n=10,000), simulated values of the response 

variable, based on the validation data, were retained for the seven predictors we 

considered (i.e. ‘best’ model and model averaged predictors with PMP, AIC, and DIC, as 

well as the median probability model according to PMP). Posterior predictive checks 
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were performed using the 2.5 percent and 97.5 percent credible interval bounds of the 

simulated datasets. We computed a posterior predictive ‘p-value’ to check whether the CI 

bounds of the observed data were within the 95 percent credible interval of our simulated 

values. Additionally, the predictors were evaluated with root mean squared error (RMSE) 

and mean absolute error (MAE) by comparing the average value of the 10,000 

observations we retained from the simulation. Model selection was then conducted using 

these posterior predictive checks, as well as information supplied by considering PMP, 

DIC, and AIC for the model sets.  

Results 

In general, the three model selection criteria were not consistent in the models 

they selected (Table 2.1). The soils data were the only case where PMP, AIC, and DIC 

agreed on a ‘best’ fitted model, and even here there were differences in relative support 

for the candidate models among each predictor. PMP has strong support for the model 

containing only soil organic matter (SOM) and the intercept, while both AIC and DIC 

consider one or more additional models as reasonable competitors. A similar effect is also 

noted in both the soil and forest data. The forest data provides the most striking example 

of disagreement among each method, with the three criteria each selecting a different 

‘best’ model. These results show that proceeding with both top model selection and 

model averaging with each method may result in considerably different predictors within 

each dataset.  
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Table 2.1: Model structure, posterior model probability (PMP), deviance 

information criterion (DIC), and Akaike’s information criterion (AIC) for the five 

models considered for each dataset. Asterisks indicate the top model according to 

each method. 

a. Protist Data 
  

 Model PMP DIC AIC 

x5 + x16 7.0E-5* 863.2 864.2* 

x5 5.44E-5 860.4* 865.2 

x5 + x10 4.66E-5 865.6 866.9 

x5 + x12 + x16 4.55E-5 863.5 866.3 

x5 + x7 + x16 4.08E-5 864.1 866.6 

   
 b. Forest Data 

  
 Model PMP DIC AIC 

x5 + x6 + x7 + x8 0.218* -475.1 -251.2 

x1 + x2 + x5 + x6 + x7 + 

x10 
0.114 

-

498.9* 
-251.1 

x5 + x6 + x8 0.11 -455.9 -244.7 

x5 + x6 + x8 + x11 0.099 -469.8 -250.1 

x6 + x7 + x8 0.092 -461.2 -251.7* 

   
 c. Soil Data 

  
 Model PMP DIC AIC 

x3 0.825* 53.8* 41* 

x3 + x9 0.066 55.87 44.1 

x3 + x4 0.036 55.11 43.9 

x3 + x8 0.019 55.68 41.9 

x3 + x11 0.012 55.41 44 

 

 

 Table 2.2 presents the results of the posterior predictive checks we performed on 

each predictor. In general the results of two checks, squared error terms and the 95% 

quantiles, differed in whether they preferred ‘best’ model or model averaged predictors. 

The model averaged predictors reduced error better than single models, with PMP model 
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averaging performing the best for the protist and forest data, and DIC model averaging 

performing the best for the soils data. For all three datasets, AIC model averaging 

performed the worst among the model averaged predictors.  

 Conversely, posterior predictive checks on the 2.5 and 97.5 percent quantiles 

reveal that model averaging tends to pull prediction towards the mean, overestimating the 

lower credible interval bound and underestimating the upper. For the protist data, both CI 

bounds for all three model averaged predictors are significantly different than the 

observed CIs (‘p’ < 0.05). For the forest and soil data, the effect is still present but less 

apparent. In fact, model averaging with PMP is a reasonable predictor according to this 

diagnostic. Histograms of the simulated 2.5 and 97.5 credible intervals for each dataset 

can be found in appendix A (Figs. A.1-A.3).  
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Table 2.2: Results of the posterior predictive checks: mean root mean squared error 

(RMSE) and mean absolute error (MAE), as well as posterior predictive p-values 

for the lower and upper credible interval bounds. * Indicates a significant difference 

at the α = 0.1 level (i.e. the 90% credible level), while ** indicates significance at α = 

0.05. Graphical diagnostics for these checks may be found in appendix A (figures 1-

3).  

a. Protist Data 
    

Predictor RMSE MAE lower upper 

PMP, top model 845.9 702.3 
  

PMP, model av. 683.8 544.6 ** ** 

DIC, top model 863.6 717.7 
  

DIC, model av. 738.4 596.3 ** ** 

AIC, top model 845.26 702.33 
  

AIC, model av. 697.32 557.15 ** ** 

MPM 871.8 725.2     

     
b. Forest Data 

    
Predictor RMSE MAE lower upper 

PMP, top model 0.048 0.04 
  

PMP, model av. 0.04 0.033 
 

* 

DIC, top model 0.052 0.043 
  

DIC, model av. 0.046 0.038 * ** 

AIC, top model 0.05 0.041 
  

AIC, model av. 0.044 0.037 
 

** 

MPM 0.049 0.04     

     
c. Soil Data 

    
Predictor RMSE MAE lower  upper  

PMP, top model 0.81 0.63 
  

PMP, model av. 0.78 0.59 
  

DIC, top model 0.81 0.63 
  

DIC, model av. 0.71 0.52 
 

** 

AIC, top model 0.81 0.63 
  

AIC, model av. 0.72 0.53 
 

** 

MPM 0.81 0.63     
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Discussion 

 Our results highlight a need for careful evaluation of models following selection. 

In our study, conducting model selection with IT and Bayesian criteria led to divergent 

results. In each case, proceeding based on only one criterion presents a risk of ignoring 

predictors with superior performance. This is best exemplified in the Soils Data, where 

PMP assigned very low marginal likelihoods to models 2-5, but DIC retained three of 

these as competitors to model 1. Model averaging with DIC turned out to be a good 

predictor for these data, and considering PMP only would have led us to dismiss 

reasonable models off-hand.  

 These differences in performance among the datasets may be in part explained by 

features of the data themselves. The protist data is a case where none of the models fit the 

data well, as evidenced by their low posterior probabilities (Table 2.1). By contrast, the 

forest data model set possesses several reasonable alternatives, with reasonably 

competitive PMPs and AIC scores, while one ‘best’ model was preferred by all three 

statistics in the soils data. Examining posterior inclusion probabilities for the covariates 

in these datasets (appendix A, table A.1) shows a large number of variables in the protist 

data that do not have strong relationships with the response variable. The forest data is 

somewhat the opposite case, with many covariates possessing high posterior inclusion 

probabilities, while one variable (soil organic matter content) is strongly favored for the 

soils data. Thus, in the case of the protist and forest data, it is perhaps not surprising that 

PMP, DIC, and AIC would to different results, given that they available models compete 

closely with one another. Of course, the difference is that none of the models are 

meaningful for the protist dataset, while all provide good predictions in the forest data.  
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For the soils data, where there was less parity among candidate predictor variables, all 

three statistics converged on the same ‘best’ model.   

 In these case studies, subsequent evaluation of models based on simulated data 

was important for identifying which predictors were the best at reproducing observed 

values. Posterior predictive checks using both squared and absolute error, as well as the 

2.5 and 97.5 percent quantiles, revealed that regardless of the criterion used model 

averaging tended to misestimate the CI bounds. On the other hand, model averaging often 

led to significant reductions in bias according to root mean squared error (RMSE) and 

mean absolute error (MAE). These features were only made apparent by examining 

multiple tests for model support.  

 Considering these results, the decision on whether or not to model average is 

dependent on the goals of the analysis. If the aim is to generate an aggregate sample or 

population mean, we may be more interested in reducing bias at the expense of missing 

more extreme values in the dataset. Conversely, if we are more interested in model-based 

inference, such extremes may be important to consider. Note however that it was the 

posterior predictive checks that revealed these trends and that failing to perform robust 

model evaluation following selection with IT and/or Bayesian criteria would have led us 

to ignore potentially important features of our models.  

 It is interesting to note that when comparing ‘best’ model and model averaged 

predictors, posterior model probability did as well or better than AIC and DIC for both 

the protist and forest data; two datasets where our results suggest multiple models should 

compete closely with one another. This is despite the expectation for AIC to perform 

better than Bayesian criteria in “M-open” problems such as variable selection (Burnham 
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and Anderson 2004, Yang 2005, Aho et al. 2014). Many authors have suggested that the 

class of Bayesian model selection criteria related to the Bayes factor may be superior to 

IT approaches when we do believe the ‘true’ model is present in M (i.e., “M-closed” 

cases) (Kass and Raftery 1995, Berger and Pericchi 1996, Johnson and Omland 2004, 

Link and Barker 2006), but it is not clear that this implies inferior performance in “M-

open” problems. Further, model averaged predictors with DIC and AIC did better than 

PMP for the soils data, where all three statistics agreed on the ‘best’ model, suggesting 

that in this case PMP over-penalized reasonable models relative to DIC and AIC.  

The frequentist properties of posterior predictive checking make it a method with 

a high degree of interpretability for most scientists. Anderson et al. (2001) have 

previously promoted predictive checks as a straight-forward method for displaying the 

results of complex Bayesian models in the ecological literature. We certainly agree with 

this sentiment, but argue that analysts using the maximum likelihood and frequentist 

paradigms should utilize these methods as well. Information theoretic measures of model 

fit have no absolute meaning, and though they can identify the “best” among a group of 

candidate models, they do not indicate how well the “best” model actually fits the data. 

Here, posterior predictive checking provides a simple method for evaluating models that 

have been selected using IT model choice. Frequentist statistical tests are typically 

premised on the computation of p-values, though in standard applications the distribution 

of ‘future trials’ upon which the p-value is based never exists (Spiegelhalter et al. 2002). 

By basing frequentist checks on many simulated datasets, posterior predictive methods 

avoid this significant pitfall (Rubin 1984). While our checks were performed based on the 

posterior predictive distribution, an inherently Bayesian concept, similar approaches 
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could be devised based on alternative sampling strategies such as bootstrapping or 

simulated annealing. 

Taken together, the three analytical scenarios we present here provide a strong 

case for the need to carefully evaluate models following selection. We have noted that the 

model selection paradigm used affects predictive performance, and that in our examples 

model averaging requires a tradeoff between complete coverage of the credible interval 

and minimizing predictive bias. The analytical scenario we present; comparison of 

several nested linear models; is a common problem for many ecologists, and it follows 

that these issues would occur in other linear model selection problems. To address this, 

we offer the following practical suggestions for carrying out model selection and 

evaluation: 

1. Carefully consider the models, or covariates, of interest a priori: As others 

have observed, all models under consideration should represent reasonable hypotheses 

for the question at hand (Hoeting et al. 1999, Burnham and Anderson 2002). In the case 

of variable selection problems, it is necessary to only include covariates for which there 

is a reasonable expectation that they could be a good predictor for the response variable. 

Automatic variable selection can be very useful when there are many potential covariates 

and little is known about their relationships to the response variable prior to the analysis 

(Murtaugh 2009, Guan and Stephens 2011, Garcia-Donato and Martinez-beneito 2013). 

However, the resulting models should be carefully considered before they are submitted 

for model selection.  

2. Consider multiple methods when selecting among candidate models. In 

these case studies we found posterior model probability, DIC, and AIC to all be 
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reasonable methods for selecting models, even though they provided divergent results. It 

may in fact be reasonable to consider both information theoretic and Bayesian approaches 

when undertaking model selection. PMP provides a very different kind of evidence in 

support of one model over another when compared to AIC or DIC, as it is based on a 

different concept for evaluating model fit (Ando 2010). Even if one’s particular statistical 

philosophy prefers the use of one model selection procedure over another, we believe it is 

good practice to see how the results of an alternative method compare prior to proceeding 

with the analysis.  

Determining how many models to include from the initial set also requires careful 

consideration. In our analysis we simply selected the top five models according to 

posterior model probability, since our goal was only to compare the relative performance 

of several model selection methods with a given set of models. However, we 

acknowledge that this is a suboptimal approach when the analysis aims to make 

meaningful inference on or prediction of ecological data. There is a large literature on 

this question (see Hoeting et al. 1999, and Burnham and Anderson 2002 as well as their 

references), and we refer readers to authoritative sources reviewing different methods for 

approaching this problem.  

3. Evaluate both single and model averaged predictors: While model 

averaging is often suggested as standard practice, the results of our model evaluation 

suggest that model averaging may sacrifice accurate coverage of the confidence interval 

in order to minimize uncertainty in prediction. In many cases, such as the Forest and 

Soils data, this may be inconsequential, and in these situations model averaging is still 

preferred in order to account for model uncertainty in the analysis (Raftery et al. 1997). 
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However, our evaluation revealed significant bias towards the mean from model 

averaging within the Protist dataset. For situations such as this, where there are many 

weakly correlated predictor variables but no information is available to dismiss them a 

priori, using a single model constructed from the best covariates may be logical. The 

median probability model of Berger and Barbieri (2004) represents one formal attempt to 

deal with this issue, but this approach generally performed poorly in  our analyses.  

4. Conduct model evaluation with simulation based methods, such as 

posterior predictive checks: Ultimately, the best way to evaluate a model is to see how 

well it reproduces independent observations of the response variable. Posterior predictive 

checking is a rich and flexible approach for accomplishing this, and we recommend that 

ecologists adopt it as standard practice. In our analysis, we were able to simulate a large 

sample (N = 10,000) of replicate datasets using ‘coda’ output from the BUGS software 

and a simple simulation model. Posterior predictive checks on the 2.5 and 97.5 percent CI 

bounds revealed important features of the predictors we considered that would have been 

overlooked by standard cross-validation procedures. This general approach can be 

adapted to compare the distribution of model parameters and other aspects of the data, 

and explicit quantitative ‘p-values’ are easy to compute.  

The ‘hold-out predictive’ approach that we adopted, where the posterior 

distribution of model parameters is derived from a fitting dataset, and prediction is 

accomplished using a separate ‘validation’ set of covariate observations, provides a 

stringent test for model predictive performance. We recommend that this approach is 

employed when possible (i.e., when there is a suitably large number of observations to 

facilitate data-splitting). When smaller datasets are available, it is possible to combine 
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posterior predictive evaluation into simulation-based cross validation procedures, where 

one or several observations are held out for prediction at each iteration.  

Conclusion 

 Thanks to rapid advances in statistical methodology for model selection, scientists 

now have more options available to them than ever before. While there is significant 

theoretical literature devoted to debating the merits of the major model selection 

paradigms, particularly Bayesian model selection and Information Theoretics, their 

relative performance in applied contexts remains an open question. We have presented 

three case studies in which we compared several different model selection approaches, 

and submitted the resulting predictors to formal evaluation via posterior predictive 

checking. While our results confirm our general preference for posterior model 

probability, these data demonstrate that the relative performance of these model selection 

paradigms is context dependent. We believe it is logical to examine both, and that the 

model or models with which the analysis proceeds, as well as the decision to model 

average or not, should be guided by the data and the goals of the analysis. Regardless of 

how model selection is accomplished, we advocate that model evaluation with 

simulation-based methods is adopted as standard practice.  
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Chapter 3: Quantifying spatial dependence in forest soil carbon and nitrogen pools  

across multiple spatial scales. 

Abstract 

 Forest soils contain a globally significant terrestrial carbon stock, so accurate 

accounting of forest soil carbon pools is necessary for any efforts to mitigate the effects 

of climate change. National forest inventories play an important role in forest C 

accounting, including forest soils, but predictive models are necessary to “scale up” plot-

level observations to broad spatial scales. Specifically accounting for spatial 

autocorrelation within these models will be necessary in calibrating soil C stocks from 

inventory data, but the spatial dependence of soil C at broad spatial scales is poorly 

understood. Here we conduct exploratory analyses aimed at characterizing the spatial 

structure of soil chemical inventories over regional to continental spatial scales, 

considering both soil carbon data and its spatial covariance with soil nitrogen. We 

demonstrate that spatial autocorrelation is not reliably estimable over micro and meso 

scales (within a single physiographic province), but is detectable and substantial at macro 

(both national and continental) scales.  We show, however, that spatial covariance 

between soil C and N is detectable at all scales. Our results suggest that allowing for 

spatial autocorrelation will be necessary for improving the accuracy of predictive models 

and for fully quantifying uncertainty in national and continental forest soil C stocks, and 

that co-modeling soil nitrogen with carbon may be beneficial across all three scales we 

consider. In addition to discussing the implications for current forest soil monitoring 
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schemes, we conclude by discussing future research needed to formulate general 

expectations about spatial structure in soil C data.  

Keywords: Forest soil carbon, geostatistics, macroscale, variograms, spatial hierarchical 

modeling  

Introduction  

 Soil contains the largest pool of terrestrial carbon, so coordinated international 

efforts to mitigate the effects of climate change require reasonable baselines of terrestrial 

C stocks. Forest soils contain approximately 48% of that soil inventory (Pan et al. 2011). 

Given the large contribution of forested lands to carbon sequestration, full and accurate 

estimates of forest soil organic carbon (SOC) are important (Goodale et al. 2002, 

Shvidenko et al. 2010). The United Nations initiative on “Reducing Emissions from 

Deforestation and forest Degradation” (REDD+) funds the next generation of forest 

inventories in developing nations (Edwards et al. 2010, Maniatis and Mollicone 2010),  

and understanding how best to incorporate soil sampling into broad scale forest 

inventories will contribute to improving global forest carbon stock baselines.  

 Improving predictive models for forest soil inventory data constitutes an 

important step towards improving global forest soil C stocks. Traditional broad scale 

approaches for forest soil carbon accounting rely on either inventory-based analyses 

(Eswaran et al. 1993) or on ‘mass balance’ methods, where the SOC pool is estimated 

based on other forest C pool and flux estimates (Dixon et al. 1994, Goodale et al. 2002, 

Pan et al. 2011). Digital soil mapping (DSM), where prediction of soil attributes is 
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propagated across a rasterized grid that covers the study region, has received attention as 

an alternative method (McBratney et al. 2003, Grunwald 2009, Minasny et al. 2013). This 

results in high resolution maps of soil attributes, generated by predictive statistical 

models, which offers significant potential for improving predictive accuracy and 

uncertainty quantification. Developing a good predictive model requires a thorough 

understanding of the factors that introduce uncertainty into model estimates. When spatial 

autocorrelation is not included in predictive models, error arising from spatial processes 

underlying soil attribute data may mistakenly be attributed to model error, thereby 

reducing the predictive accuracy and precision of soil nutrient models. (Grunwald 2009, 

Minasny et al. 2013). By leveraging analytical techniques capable of explicitly modeling 

spatial dependence, it may be possible to improve the performance of predictive models 

for forest soil carbon and other nutrients substantially.  

Further improvements may be achieved by coupled spatial modeling of forest 

SOC with related nutrients, such as soil Nitrogen. Given the close relationship between 

soil carbon and nitrogen (Chapin et al. 2002), spatial dependence in the residual error of 

forest soil C and N may offer improved predictive performance when these variables are 

modeled jointly, even if there is little spatial structure in the soil C data. However, 

whether considering spatial dependence within or among variables, these improvements 

are dependent on a modeling approach that captures apparent spatial autocorrelation in 

soil inventory data at scales relevant to national and international forest inventories. 

Geostatistical practice encompasses a broad suite of techniques from both 

Bayesian and frequentist statistical paradigms, united in attempting to explicitly model 
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spatial autocorrelation among geo-referenced samples (Goovaerts 1997). These methods 

typically facilitate interpolation by fitting a model, such as an exponential or Matérn-

class function, to a spatial covariance matrix for all pairwise points within the sample 

(Isaaks and Srivastava 1989, Banerjee et al. 2004). Changes in variance among samples, 

as a function of distance, can be used to guide predictions at unsampled locations. A 

substantial body of literature exists demonstrating that geostatistical models can lead to 

improved predictions when interpolating environmental variables at the landscape scale, 

including soil nutrients (Finley et al. 2010, Mishra et al. 2010, Guhaniyogi et al. 2013).  

 Geostatistics offers powerful tools for interpolating point data across smooth 

surfaces, but the utility of these techniques for mapping forest soil carbon and nitrogen 

remains poorly explored. These methods can improve the prediction accuracy, relative to 

non-spatial regression models, provided that there is sufficient spatial structure with the 

point data themselves. The ability to detect spatial dependence can depend on several 

factors, including sampling design - the distribution and density of samples across the 

study region (Fortin et al. 1989), the scale of measurement error (Cressie 1993, Goovaerts 

1997), and the overall heterogeneity of factors influencing soil formation (Ettema and 

Wardle 2002).  Many existing soil databases were not generated with geostatistical 

applications in mind, and in these cases the utility of spatial methods in digital soil 

mapping  remains unclear (Minasny et al. 2013). Moreover, soil formation is a complex 

process, and many environmental and anthropogenic factors influence the accretion of 

soil carbon and nitrogen (Jenny et al. 1968, Chapin et al. 2002). Spatial patterns within 

these processes may either contribute to spatial dependence within soil nutrient data, or 

may make it more difficult to detect (Vasques et al. 2012, Clough and Green 2013).  
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 Detecting and modeling spatial dependence may be particularly challenging when 

the spatial scale is restricted. While several studies have shown spatial dependence of soil 

carbon data across large, heterogeneous landscapes (Malone et al. 2009, Marchetti et al. 

2010, Mishra et al. 2010, Zhang et al. 2012, Vasques et al. 2012, Toth et al. 2013a, de 

Brogniez et al. 2014), most studies of spatial dependence in forest soils have focused on 

small spatial scales (McBratney et al. 2003, Minasny et al. 2013). Spatial variation at fine 

scales is typically assumed to be unimportant for either regional or national estimates, 

and is incorporated into the estimated ‘nugget effect’ (Banerjee et al. 2004, Finley et al. 

2010).  

There is some evidence that spatial dependence exists in forest soil attributes at 

broader scales, and McKenzie and Ryan (1999) used geostatistical methods to improve 

forest soil carbon predictions for a 50,000 ha national forest in Australia. Spatial 

dependence has also been noted for both soil organic carbon and soil pH within a large 

forested watershed in the Medicine Bow Mountains, Wyoming, USA (Rahman et al. 

1996). At larger spatial scales, Liski and Westman (1997) used a block (based on 16 km
2
 

sampling units) kriging design to interpolate soil carbon for all forested lands within 

Finland, based on that country’s National Forest Inventory data. Bernoux et al (2006) 

also found kriging preferable to non-spatial models for a large forested region 

(approximately 334,000 km
2
) in the Amazon basin of Brazil. However, in the latter study 

a large geostatistical ‘nugget effect’ suggests that much of the spatial dependence was 

limited to scales smaller than those the authors considered.  
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As with soil carbon, spatial dependence in soil N has mainly been studied at fine 

scales. Examples are available from agricultural systems (Sutherland et al. 1993, Ruffo et 

al. 2005), grasslands and scrub shrub communities (Gallardo and Parama 2007), and 

forests (Lister et al. 2000, Wang et al. 2007). Several studies have considered spatial 

dependence in soil N for mixed use landscapes, and have applied geostatistical models to 

improve predictions of this and other soil nutrients (Qu et al. 2012, Wang et al. 2013). 

However, as with carbon, the spatial patterns of soil N at the regional scale have not been 

widely described. Similarly, spatial co-dependence in soil C and N at broad scales has not 

been explicitly explored, though Watt and Palmer (2012) found significant spatial 

structure in soil Carbon:Nitrogen ratio from an inventory dataset collected across New 

Zealand.  

 Geostatistical modeling of forest nutrients at larger scales (> 100,000 ha) has not 

been common, because the data accommodating such efforts have only recently become 

available (McBratney et al. 2003, Poggio and Gimona 2014). Traditional soil surveys are 

designed to map soil taxonomy and related properties for aggregated areal units, and 

typically do not possess a sufficient density of sampling points to facilitate geostatistical 

modeling within a single land cover type. More recently, the European Union has 

established the LUCAS topsoil database (Tóth et al. 2013b), providing quality controlled, 

point-referenced observations (approximately 20,000 plots total) of soil C and related 

variables for the 23 member states of the European Union. Additionally, soil carbon is 

now part of many national forest inventory programs, including the US Forest Inventory 

and Analysis (FIA) database, and the Finnish National Forest Inventory (NFI), providing 

opportunities to evaluate spatial dependence of forest SOC at national inventory scales.     
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 The objective of this study is to explore how spatial dependence in soil carbon 

and soil nitrogen, as well as spatial covariance between them, changes across multiple 

spatial scales. We characterized the spatial structure of forest soil nutrient data at three 

different spatial scales: within a single physiographic region (Coastal Plain of New 

Jersey, USA), across a national scale landscape (national forests of Germany), and across 

continental scales (forested lands within the European Union). To guide our study, we 

proceed with the following hypotheses: (1) Spatial autocorrelation will exist at all three 

scales for both soil carbon and nitrogen; (2) The distributions of soil carbon and nitrogen 

will be coupled across space at all scales; and (3) Spatial dependence will be better 

defined for more heterogeneous landscapes, where sampling regions cut across multiple 

forest communities, geologies, and broad environmental gradients.  

Methods 

Datasets 

 We consider two principle datasets for this study: (1) a forest soil inventory 

conducted by the authors in 2011 and 2012 for the Coastal Plain physiographic province 

in New Jersey, United States, and (2) the LUCAS topsoil database, which covers the 23 

member states of the European Union and is made publicly available by the European 

Commission’s Joint Research Centre. Both datasets possess geo-referenced observations 

of soil organic carbon and soil nitrogen, scaled by field measured soil bulk density and 

expressed in units of Mg/ha
2
. The NJ data represent 172 point observations, sampled only 

within forests in a stratified random design, based on forest community type and soil 

drainage class. The LUCAS database consists of approximately 20,000 point 
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observations, covering a range of land use land cover (LULC) classes. Of these the 4,818 

sample points were located within forests, as determined by rasterized LULC datasets 

available as part of the LUCAS survey, were retained for our study. The NJ data cores 

were sampled to a depth of 30 cm, while those for the LUCAS dataset were sampled to 

20 cm. Thorough descriptions of these datasets can be found in (Clough and Green, 2013) 

and (Toth et al. 2013a, 2013b), respectively.  

 Using these datasets, we examined spatial dependence in soil carbon and soil 

nitrogen at regional, national, and continental scales. Table 3.1 summarizes the number of 

observations, study area, minimum distance between points, and observation density 

(plots/km
2
) in each dataset. Note that the plot density is higher for our regional dataset 

and approximately equal for the national and continental samples, and that at all scales 

the sampling densities are small relative to the region of interest. This is typical of 

regional soil inventories, given the effort and expense required to collected point 

referenced soils data. As a result, we focus our investigation only on spatial dependence 

at regional (NJ), national (DE), or continental (EU) scales. This is important to note, 

because spatial dependence may also exist at finer scales than our inquiry. Maps of each 

study region, including the distribution of the sampling locations, are shown in Figure 

3.1.  
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Table 3.1: Location and sampling distribution of the regional, national, and 

continental datasets 

Study Region 
Total 

#/observations 

Study area 

(km^2) 

Sampling density 

(plots/km2) 

New Jersey, USA (NJ) 172 130,140 0.1 

Germany (DE) 382 357,790 0.001 

European Union (EU) 4,818 4,055,580 0.001 
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Data analysis 

 Our analysis consisted of two steps: (1) exploratory analysis using 

semivariograms; and (2) mapping of spatial random effects from univariate spatial 

Bayesian hierarchical models (Banerjee et al. 2004), with direct comparison to non-

spatial residuals. Both analyses were applied to soil carbon and nitrogen to understand the 

spatial structure within each variable, as well as to the residuals between carbon and 

nitrogen components. Here we use spatial structure within residuals to characterize the 

joint spatial distribution between SOC and soil nitrogen. 

Variogram analysis 

 Semivariance, a measure of pair-wise divergence between all combinations of 

sampling locations, can be related to spatial separation by computing an empirical 

semivariogram (Isaaks and Srivastava 1989): 

 ( )   
 

 | ( )|
∑(     )

 

 ( )

 

Where  ( ) is the set of all pairwise distances such that |     |   , | ( )| is the 

number of unique pairs in  ( ), and the  ’s are the measurements of the variable of 

interest at locations   and   respectively. As indicated above, we computed empirical 

variograms for carbon, nitrogen, and carbon/nitrogen residuals at each of the three scales 

we considered. In our analysis, we assume any spatial dependence within our data will be 

isotropic (i.e.,   only represents distance, not direction), and stationary (Cressie 1993).  
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 We fit each empirical variogram with an exponential covariance function 

(Goovaerts 1997, Ribeiro and Diggle 2001):  

 (          )      (  ) (   
 

  
 )        

Here   is the effective range of the spatial dependence,    is the partial sill  and    is the 

geostatistical nugget effect, representing both “white noise” error and spatial dependence 

below our scale of inquiry (Banerjee et al. 2004, Finley et al. 2013). This procedure 

produces a ‘theoretical variogram’, which can be plotted against the empirical variogram. 

Inspection of these variogram models can reveal important information about the spatial 

dependence within the dataset.   

Hierarchical modeling 

 In order to characterize spatial dependence across the study domain, we fit 

univariate spatial Bayesian hierarchical models to our variables of interest, within each 

region. These models are of the form:  

 ( )    ( )   ( )    ( )  , 

where  ( )      is the mean at location  ,  ( ) is a spatial Gaussian process, and 

 ( )    (    ) is a typical error term, representing measurement error and other 

‘random effects’, as well as microscale spatial dependence; i.e., the geostatistical “nugget 

effect” (Cressie 1993, Banerjee et al. 2004). 
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 The  ( )’s, frequently termed the spatial ‘random effects’, represent the portion 

of the model error that is explained by a spatial process model; in our case an exponential 

covariance function. They are of particular interest for characterizing spatial dependence 

within point-referenced datasets (Finley et al. 2007a). Within a hierarchical framework, 

the spatial random effects are specified as:  

 |        (     ( )) 

Where   is a valid spatial autocorrelation model (e.g., an exponential function), and 

  and   are the sill and spatial range parameters as previously described (Banerjee et al. 

2004, Finley et al. 2013).  

 These models are simply an extension of a standard, non-spatial linear model. The 

key difference is that the model variance is decomposed into a spatial ( ( )) and non-

spatial ( ( )) component. This allows us to explicitly model the spatial random effects as 

described above, and facilitates direct comparison with the non-spatial residuals. In this 

way, we can examine how much variance is explained by the spatial information, and 

how much remains as residuals (i.e., measurement error and microscale spatial variation). 

Surface plots, interpolations of both non-spatial residuals and the spatial random effects 

across the study region, are a convenient way to visualize and understand these results.  

Spatial dynamics of soil carbon and nitrogen 

 Both of these analyses were applied to observations of soil C and N for each of 

the three datasets described above (regional, national, and continental data). In the first 

stage of the analysis, we computed empirical variograms and fitted theoretical variogram 
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models to these results. The empirical variograms were fitted with exponential covariance 

functions via nonlinear least squares, and initial values for the sill (  ) and range ( ) 

were derived from visual inspection of the empirical variogram plots. For this analysis, 

we assume an isotropic spatial pattern for both soil C and N. All variogram analyses were 

conducted using the geoR package for the R statistical computing environment (Ribeiro 

and Diggle 2001).  

 Following variogram analysis, we fit univariate spatial Bayesian hierarchical 

models to both the soil C and N data. For this analysis, we placed a flat prior on the 

model intercept (  ), and ‘vague’ inverse gamma priors on   and    (e.g., 

   (           )). For the range parameter  , we used an weakly informative uniform 

prior with a restricted domain around the estimated spatial range from fitting the 

theoretical variograms. These specifications are as follows: regional, 

        (
 

      
 

 

      
); national,         (

 

       
 

 

       
); continental, 

        (
 

      
 

 

      
). The bounds on these priors are derived by considering an 

effective spatial range    as the distance where the correlation between locations equals 

0.05. Assuming an exponential correlation function, solving the equation      

   (     ) reveals that          (    )  , or approximately    . The model was 

fit via a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm, and the 

MCMC chains were initialized using estimated values of the spatial parameters from the 

variogram fitting. A posterior sample of the spatial parameters was obtained from 2,500 

MCMC iterations, following a burn-in period of 7,500 iterations.  
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 In the case of the EU data, fitting a “full rank” spatial hierarchical containing all 

4,818 observations of soil C is not computationally feasible. Sampling the spatial random 

effects for an n x n spatial covariance matrix, where n = 4,818, requires a huge 

computational expense; well beyond what standard modern computers are capable of 

providing. To avoid this issue, we fit the EU data with a ‘low rank’ predictive process 

model (Banerjee et al. 2008, Wikle 2010, Finley et al. 2012), where the spatial random 

effects were modeled using a set of 500 “knots” distributed across the region via a k-

means clustering algorithm (Finley et al. 2013). We define these knots as a set of 

locations    such that     , where observed values of the response variable within the 

‘neighborhood’ defined by each knot have been summarized. Spatial hierarchical models 

with low rank predictive processes have been shown to be effective at capturing spatial 

dependencies elsewhere in the natural resources literature (Finley et al. 2009, Latimer et 

al. 2009, Guhaniyogi et al. 2013). However, the number and spatial configuration of 

knots on which the predictive process is based will have a large impact on the quality of 

the resulting model (Gelfand et al.2013). Using k-means clustering weights the 

distribution of knots along with the distribution of observations, and we tested both lower 

and higher numbers of knots to establish that 500 provided a reasonable balance between 

computational efficiency and spatial coverage. 

 From this sample, we drew posterior estimates of the spatial surface  ( )| ( ). 

In addition, we fitted a non-spatial, ‘intercept only’ regression (       ) and 

recovered the residuals () for each observation in the sample. To assess the degree to 

which  ( ) explains model variance, these residuals and the spatial random effects were 
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interpolated for the sampling area, using multilevel B-splines (Lee et al. 1997). 

Multilevel B-splines are an efficient non-statistical interpolation method that is frequently 

used in computer science and image analysis. For our purposes, they provide a 

convenient way to smooth the residuals and spatial random effects across our study 

regions, to better visualize how these correspond with one another. Spatial regression 

models were fitted in the spBayes package for R (Finley et al. 2007, 2013), and the 

interpolation was accomplished using the MBA package for R.  

Spatial co-dependence between soil C and N 

 In order to understand how the distribution of soil C and N are coupled across 

space, we first examined variograms for the residuals between carbon and nitrogen. 

These residuals were computed by fitting              via ordinary least squares. 

Empirical and theoretical variograms were fitted as described above. In addition, we 

fitted the following spatial regression model:  

 ( )          ( )   ( )    ( ) 

We again interpolated both the non-spatial residuals and spatial random effects via 

multilevel B-splines, and examined these plots to assess the degree of spatial covariance 

within each dataset.  

Results 

 Figure 3.2 shows the empirical variograms, along with the fitted variogram 

models, for both soil C and N at the three scales we considered. For both carbon and 

nitrogen, the national scale data exhibits strong spatial dependence, while no clear spatial 
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pattern exists for the regional dataset. At the continental scale, soil carbon exhibits some 

spatial dependence, while soil nitrogen does not. Note that the scale of these variograms 

is not commensurate with the study regions. After inspecting initial empirical variograms 

with a maximum distance equal to the longest pairwise distance in each dataset, a 

reasonable maximum distance was selected and the variograms were recomputed for 

display. These distances are: regional, 60 km; national, 200 km; and continental, 4,000 

km. Beyond these distances, the initial variograms revealed no spatial autocorrelation.  
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Figure 3.2: Empirical and fitted theoretical variograms for soil carbon and nitrogen 

at three spatial scales. 
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The theoretical variograms (exponential covariance functions) fit both the regional and 

national datasets well, generally confirming a lack of spatial dependence within the 

former and clear spatial patterns in both soil C and N in the latter. In the case of regional 

soil N, the theoretical variogram does suggest a slight spatial pattern at local scales (3-5 

km). For the continental dataset, however, there is no discernable spatial pattern in the 

soil N data. In the case of C, the empirical variogram suggests some degree of spatial 

dependence out to approximately 3,750 km, though a sharp drop in semivariance at a 

slightly greater distance (4,000 km) influences the fit of the exponential function. This 

may be caused by a small number of extreme values in that spatial range. In the case of 

soil N, the empirical variogram exhibits a general trend of increasing semivariance from 

fine to broad scales, but it dips at approximately 2,000 km. In this case, an exponential 

covariance function may be a suboptimal choice for a semivariogram model.   

 Variograms for C/N residuals suggest some spatial dependence at all three spatial 

scales (Figure 3.3). In the case of the regional dataset, the pattern is fairly weak and the 

theoretical variogram model provides a poor fit to the empirical variogram. Both the 

national and continental variograms exhibit reasonably strong spatial dependence. This is 

interesting in the latter case, given that there was no spatial dependence observed in 

Nitrogen at the continental scale (Figure 3.2). 
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Figure 3.3: Empirical and theoretical variograms of the carbon/nitrogen residuals at 

three spatial scales  
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 While variograms are capable of capturing general spatial patterns across the 

study area, they do not reveal any information about how patterns of spatial dependence 

change across the region, or how this spatial error is related to the overall variance within 

the model. To address such issues, we examined surface interpolations of non-spatial 

model residuals, and the spatial random effects ( ( )) from the univariate spatial 

Bayesian hierarchical models. These plots reveal how much of the total variance across 

the study region is explained by the spatial random effects. Where the surface plots of the 

model residuals and spatial random effects exhibit similar patterns,  ( ) accounts for a 

larger proportion of the total variance. In this way, comparing these plots is useful for 

describing and visualizing spatial dependence in point-referenced data.  

 In the case of soil carbon (Figure 3.4), the spatial random effects are not a large 

component of the total variance for the regional dataset, but demonstrate a clear pattern 

of spatial dependence over larger national and continental scales. In the spatial random 

effects of the regional data, we see the entire study area is dominated by a flat expanse of 

low to moderate values, even where the residuals reveal significant variation. There are 

some peaks that are correlated with high values in the residuals, but they are moderate in 

comparison, suggesting the spatial term in the model provides a poor fit for these regions. 

This contrasts with both the national and continental data, where the spatial random 

effects do a much better job of capturing extreme values; for instance in the northern and 

northwestern portions of the continental dataset. Note that these results differ from the 

theoretical variogram model, which suggested only limited spatial dependence in these 

data.  
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Figure 3.4: Non-spatial residuals and spatial random effects of soil C at three scales 



92 

 

 The nitrogen plots (Figure 3.5) reveal fairly similar trends, with spatial 

dependence being strongest for the national dataset, somewhat weaker at the continental 

scale, but weak in the regional data. Unlike carbon, spatial random effects do describe 

some of the total variance for the regional dataset. This is most apparent for the very low 

values (the blue regions in the center of the plot). Note that the presence of some spatial 

dependence in these plots is consistent with the results of the variogram analysis, which 

suggested some spatial structure in soil N at fine scales (< 5 km). For the national dataset, 

as with carbon, the spatial random effects have a very similar distribution to the residuals, 

suggesting they explain a large portion of the total variance.  
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Figure 3.5: Non-spatial residuals and spatial random effects of soil nitrogen at three 

spatial scales.  
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The continental data exhibit a similar general trend to carbon, with generally 

higher N stocks in the northern and northwestern portions of the region. Note, however, 

that there is a high degree of local heterogeneity in the interpolated residuals, much of 

which is smoothed over by the spatial random effects. Given that we restricted the prior 

on the range parameter   to 3,500-4,500 km, it is not surprising that the model did a poor 

job of capturing the local dynamics.   

 The interpolated surfaces for soil C and N residuals (Figure 3.6) generally 

confirm the results of the variogram analysis. The regional spatial random effects do 

exhibit some spatial dependence, largely driven by several extreme values in the dataset. 

At the national scale, the spatial random effects of the C/N residuals exhibit a similar 

spatial pattern to that of effect variable individually, while the continental dataset shows 

the same general north-south gradient that was observed in soil C.  
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Figure 3.6: Non-spatial residuals and spatial random effects of the C/N residuals at 

three spatial scales. 
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Discussion 

 Our results suggest that spatial structure in forest soil C and N varies across 

spatial scales. Both variograms and surface plots of spatial random effects show that the 

strongest spatial pattern was apparent at the intermediate scale (Germany), and weakest at 

the finest scale (Coastal Plain, New Jersey). At the continental (European) scale, our 

results suggest moderate spatial dependence in soil C, represented as a general north to 

south gradient in C stocks, and no spatial dependence for soil Nitrogen.  

 Taken together, these results confirm some of our hypotheses, but do not agree 

with others. We expected to find spatial autocorrelation at all scales of our analysis. 

Many studies have shown spatial dependence in forest soil nutrients at fine scales 

(McBratney et al. 2003, Minasny et al. 2013), and our results confirm that it exists at very 

broad scales, in accord with other work (Liski and Westman 1997, Vasques et al. 2012). 

The failure to detect regional scale spatial autocorrelation is intriguing, particularly in 

view of the fact that the regional database exhibits 100 times the sample density as either 

the national or continental datasets (Table 3.1).  

 This result may be explained in part by the generally homogenous nature of this 

study region. New Jersey’s Coastal Plain is typical of this physiographic province, with 

mostly very well drained sandy soils, originating from marine and alluvial deposits 

(Tedrow 1998). Forest communities are mainly pure and mixed Pine forests (in this area, 

Pinus rigida), and the landscape generally lacks steep changes in elevation. By restricting 

our analysis within a single physiographic province, and not crossing multiple geologic 

formations and associated forest communities, it is possible we did not introduce enough 
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broad scale variance into the data for any spatial structure to exist at the regional scale. At 

the same time factors that control spatial distribution of soil nutrients at local scales, such 

as variability in microclimate and microtopography, are too localized to be detected by 

even the relatively dense sampling density of our study, and are subsumed by an inflated 

nugget effect (  ); in fact, the variogram for regional soil N (Figure 3.2) suggested 

possible spatial dependence with a range () of approximately 4 km.  

 It is important to note that these results may be specific to the Coastal Plain 

ecosystem, and not typical of all temperate forests. It is possible that Coastal Plain soils 

are particularly homogenous in concentrations of soil nutrients, and Lister et al. (2000) 

have found only limited spatial dependence, even at the stand level, in Coastal Plain 

forest soils. Similar efforts should be repeated for other temperate forest ecosystems in 

both the United States and Europe, but in practice, forest soil datasets collected at the 

regional scale are rare.  

 At the broadest extent, the continental scale, spatial dependence in soil C and soil 

N was apparent but not profound. The variograms suggested moderate spatial structure in 

soil C and none in soil N (figure 3.2), and the surface plots of  ( ) generally confirm this 

(figure 3.3). In the case of soil C, the general pattern revealed by these figures conforms 

to expectations, with the highest concentrations of soil C observed  in northerly regions 

with cold climates, such as Scandanavia and the northern United Kingdom, and a gentler 

latitudinal gradient moving southward through continental Europe. The non-spatial 

residuals of soil N show significant local variation, but the spatial random effects fail to 
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capture a general continental trend. This suggests that soil N stocks are more strongly 

influenced by local factors than by a continental gradient.  

 While we observed strong spatial dependence in both soil C and soil N at the 

national scale, weaker spatial structure at the continental scale does not accord with our 

second hypothesis that spatial dependence should generally be easier to detect when 

crossing heterogeneous regions. However, in the same fashion that the regional dataset 

was collected at too broad a scale to capture the microscale spatial dependence driven by 

local factors, the continental dataset may have been too coarse to capture the finer details 

of geological, forest ecological or elevational patterns.  Moreover, the spatial patterns we 

detect in soil C may arise from ‘global’ factors such as climate and the distribution of net 

primary productivity (NPP). More work is necessary in order to fully untangle the factors 

influencing soil C and N stocks at multiple scales. Here we only point to these possible 

factors to illustrate the major message that arises from these results; that spatial 

dependence in soil nutrient stocks is highly scale dependent.  

 At all three scales, we observed spatial dependence in the residuals between 

carbon and nitrogen, suggesting that these nutrients co-vary across space. Predictably, 

this was most prominent in the national dataset, where both C and N exhibit their own 

clear spatial patterns. However, even in the regional and continental data, where 

variogram analysis suggested one or both of these variables were not spatially dependent, 

spatial structure was observed within the residuals. Given the close linkages between the 

soil carbon and nitrogen cycles, it is not surprising that these variables would be jointly 

distributed across space, but the fact that their residuals display their own spatial 
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dependence is an interesting result. It may suggest that other spatially structured 

environmental factors are influencing the interaction of soil carbon and nitrogen across 

the landscape. Given the role aboveground-belowground interactions play in linking C 

and N cycling, forest community structure and composition could be a potential 

explanatory factor. These observations merit further study.  

 Taken together, our results have important implications for efforts to monitor 

forest soil carbon stocks. Coordinated international efforts such as the UN REDD+ 

program, as well as international agreements such as the Kyoto accords, require forest 

carbon accounting at the national level, and monitoring forest soil carbon stocks is an 

important component of these efforts (Maniatis and Mollicone 2010). When spatial 

autocorrelation is present in soil inventory data, utilizing spatial models can offer 

improved prediction accuracy and provide a more accurate representation of predictive 

uncertainty across the study region (Hengl et al. 2004, Simbahan et al. 2006). Here, we 

observed spatial dependence in soil C across Germany as well as across the entire 

European Union. These are the primary scales of interest for broad scale soil carbon 

accounting, and we suggest that a spatial modeling approach merits consideration for 

national efforts to estimate forest soil C stocks.  

 Of course, prior to applying a geostatistical model to soil inventory data, careful 

exploratory analyses must be made to characterize the spatial structure. We used two 

approaches to examine spatial dependence in our datasets: variograms and direct 

comparison of non-spatial residuals and spatial random effects via interpolated surface 

plots. Variograms are a foundational tool in the geostatistical literature, and have been 
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employed by most efforts aimed at characterizing spatial dependence in soil nutrient data. 

Variograms provide information about the general tendencies of the spatial dependence, 

but they do not provide any direct information on how the spatial pattern is arranged 

across the study. Variograms are also quite sensitive to outliers, which may lead to 

misrepresentations of the data’s spatial structure (Goovaerts 1997). This may explain the 

disagreement between the variogram and hierarchical model analyses for the continental 

data, as the general spatial pattern was sensitive to a few extreme observations.  

 The hierarchical Bayesian approach allowed for direct examination of the spatial 

random effects, which helps to address these issues. By comparing the residuals from a 

non-spatial model to those of spatially random effects, we were able to assess how much 

of the total model variance was explained by spatial pattern. This analysis also provided 

inference on the distribution of soil C and N, based on an interpolated surface of the 

spatial random effects ( ( )).  

 It is important to note that our analysis of C and N alone makes two key 

assumptions about the spatial dependence in soil nutrients, i.e. that the distributions are 

both stationary and isotropic, whereas our analysis of C-N residuals assumes 

nonstationaity of C These are common assumptions for environmental geostatistics, 

though for many natural resources datasets, they may be poor (Isaaks and Srivastava 

1989). By contrast, our results indicate that soil C patterns across continental Europe may 

be anisotropic models. Further, the significant local variation in our residual plots 

suggests that it is very possible the mean and variance of soil C and N shift across the 

region. Modeling anisotropy and/or nonstationarity introduces significant challenges to 
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model design and development, but future studies should seek to implement these models 

in order to compare results.  

 In this study, we consider only one example from each of the representative 

scales, and the results may be particular to the datasets we analyzed. Our general 

observation that spatial dependence in forest C and N is a function of increasing scale and 

landscape heterogeneity is logical, however, given current understanding of the controls 

over soil nutrient pools. As more nations work to incorporate soil sampling into forest 

inventories, additional broad scale datasets will become available from across the globe. 

Our collective understanding of the spatial distribution of forest soil attributes is very 

much “still in development”, and further inquiry will be important in extending our 

understanding. Future work should seek to characterize spatial dependence in soil C for 

new regions, particularly in tropical and boreal forests, and also employ analyses that 

consider more complex spatial dynamics.  

Conclusion 

 Spatial dependence of soil carbon and nitrogen is both scale and context 

dependent. In our study, spatial structure was an important feature of soil carbon datasets, 

particularly at the scales most relevant to national and international forest inventories. For 

this reason, when using point inventory data to develop broad scale estimates of soil 

nutrient stocks, spatial models should be considered as a potential approach. Exploratory 

analyses of the type we performed provide a rich picture of the spatial structure of a 

point-referenced dataset, and results should be examined carefully before deciding on a 

modeling approach. More advanced modeling strategies that account for additional 
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features of spatial datasets like anisotropy or nonstationarity may be preferable to the 

models we fit here. Finally, we have shown that soil carbon and soil nitrogen co-vary 

across space at all three scales we considered. Coupled modeling of these and other soil 

attributes may also lead to improved estimates of soil nutrient stocks.  
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Chapter 4: Comparing spatial and non-spatial Bayesian hierarchical models for 

mapping forest soil organic carbon at regional, national, and continental scales 

Abstract 

 Model based prediction has become a popular alternative to soil survey for 

mapping soil attributes such as forest soil organic carbon (SOC). However, the methods 

generally used in the literature present significant shortcomings, particularly in their 

failure to fully quantify prediction uncertainty. In this study, we explore the use of spatial 

Bayesian hierarchical regression models for mapping forest SOC at three scales: within a 

single physiographic province (the Coastal Plain of New Jersey), the national scale 

(Germany), and across continental Europe. To validate the spatial approach, we compare 

prediction results to non-spatial hierarchical models of the same structure. Our results 

suggest that including a spatial process improves predictions of forest SOC at all three 

scales we studied. However, the linear models we utilized are highly uncertain, despite 

stringent efforts to identify suitable predictor variables. Additional work is needed to 

improve the performance of predictive models for forest SOC, particularly in identifying 

suitable nonlinear functional forms to fully capture relationships between SOC and 

environmental covariates. Spatial hierarchical models provide a convenient framework 

for accomplishing these goals, while allowing for fully accounting of prediction 

uncertainty.   

Introduction 
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 The forest soil organic carbon (SOC)  pool constitutes one of the largest terrestrial 

pools of carbon worldwide (Goodale et al. 2002, Heath et al. 2003, Pan et al. 2011). 

Accretion of atmospheric carbon into forest soils, particularly in young forests, has been 

promoted as an important strategy for mitigating atmospheric carbon emissions (Lal 

2008), and losses of forest soil carbon related to forest degradation and climate change 

have been a major focus of international cooperatives such as the United Nations’ 

“Reducing Emissions from Deforestation and Forest Degradation” (REDD+) program 

(Birdsey et al. 2013). Despite the importance of the forest soil carbon pool to global 

carbon dynamics, good baseline data on forest SOC stocks is still lacking for much of the 

world.  

Rapid advances in computational statistics, coupled with increasing availability of 

large soil attribute datasets, have led to improvements in spatial approaches for modeling 

the distribution of soil nutrients (McBratney et al. 2003). Increasingly soil scientists are 

focusing on point-referenced observations of soil attributes, coupled with ‘rasterized’ 

remote sensing and GIS datasets, to develop predictive models for mapping soil nutrient 

distributions over large spatial scales (Minasny et al. 2013). These methods present many 

advantages over traditional survey-based approaches, from which areal estimation of soil 

properties is accomplished by extrapolating observations from a small number of samples 

across soil survey map units, including: (1) higher spatial resolution; (2) incorporation of 

spatial and/or temporal processes to improve model-based forecasting; (3) leveraging 

statistical relationships between soil variables and related predictor variables; and (4) 

probabilistic estimation of prediction uncertainty (Grunwald 2009). The development of a 

model-based framework for forest SOC that is capable of cheaply and efficiently 
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producing high resolution maps at broad scales would enhance global research and policy 

related to carbon management.    

When designing a predictive model for forest soil carbon, we seek an approach 

that possesses several characteristics: 

 Predictive accuracy: Model design, particularly selection of predictor variables, 

should be both theoretically sound and informed by analyses aimed at maximizing 

predictive utility.  

 Scalability: An ideal framework should be applicable at any spatial scale, and should 

accommodate the “scaling up” of patterns observed at finer scales to broad scale 

estimates.  

 Uncertainty quantification: Predictions should reflect uncertainty of the data, model 

parameters, and other potentially important sources of variation (i.e. spatial and 

temporal processes) where applicable.  

 Computational efficiency: The above characteristics must be balanced against the 

limits of computational resources.  

Designing an approach with these features in mind will lead to a model that is generally 

applicable, adaptable to different ecological contexts, and is capable of producing 

predictions with reasonable estimates of uncertainty. Achieving this goal requires careful 

consideration of both the mean structure of the model and the selected computational 

method.  
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 A large literature on selection of suitable covariates for predicting soil attributes 

already exists (see reviews by McBratney et al. 2003, Grunwald 2009, and Minasny et al. 

2013). Most of this work focuses attention on environmental factors that are considered 

to be important influences of the spatial distribution of soil properties, and then seeks to 

identify available sources of remote sensing and GIS data related to those factors. This is 

perhaps best formalized by the ‘scorpan’ model (McBratney et al. 2003), which is based 

on the famous soil forming factors of Jenny (1941). A general presentation of the 

‘scorpan’ model can be written as: 

    (             ) , 

where    is the soil attribute(s) of interest,   refers to other soil properties,   is climate,   

is the influence of organisms (plants, animals, human activity),   signifies topographic 

variables,   refers to parent material and underlying geology,   stands for soil age, and   

refers to spatial position. The ‘scorpan’ approach provides a theoretically sound 

framework from which precise functions for the prediction of soil attributes may be 

constructed. The set of chosen covariates, as well as how they should be scaled to the 

attribute of interest, must be established via careful analytical consideration.  

 Following the ‘scorpan’ approach addresses two of our target qualities for a 

predictive model of forest SOC: predictive accuracy and scalability. By providing a 

general set of guidelines, rather than a rigid set of model variables, we are free to 

construct functions for available data that are both context- and scale-dependent. We can 

reasonably expect that the role of various covariates will change, depending on the scale 

of inquiry. For example, mean annual temperature may not be a good predictor of SOC 
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within small regions, but is probably quite important for continental scale analyses. 

Similarly, we may be interested in a host of within-plot effects that will manifest as 

‘noise’ over broader spatial scales. The ‘scorpan’ approach tailors the variables we use to 

the spatial scale of examination, but selection of covariates within each factor must be 

conducted carefully to avoid over-fitting models. A logical approach for this may 

incorporate both a priori expert knowledge and computational approaches such as 

statistical variable selection.  

Once a reasonable predictive function (or set of functions for multi-scale studies) 

has been established, we turn our attention to computational approaches for model fitting. 

As outlined above, we seek a procedure that will provide reasonable estimates of 

uncertainty, while still remaining computationally efficient. Policy-makers rely on 

scientists’ error estimates to inform decision-making processes (Shvidenko et al. 2010), 

and propagating uncertainty in SOC stock baselines into climate projections is a principle 

goal of ensemble climate  models (Le Quere et al. 2009, Beer et al. 2010). Despite the 

importance of accounting for uncertainty, Grunwald (2009) found that approximately 

36% of DSM studies surveyed made no attempt to quantify uncertainty in predicted 

values.  

Fully characterizing uncertainty in digital maps of forest SOC requires more than 

error bars around aggregate estimates. We may be interested in determining how much of 

our uncertainty stems from measurement error in the data, versus that from model 

parameter estimates or from spatial variability (Banerjee et al. 2004).  We may also wish 

to map uncertainty in order to plan future sampling efforts. Finally, it would also be 
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useful to consider the uncertainty of model choice, rather than simply adopting a 

particular model.  In practice, ‘model uncertainty’ is not widely considered in digital soil 

mapping, but it can be described and dealt with via model averaging procedures (Raftery 

et al. 1997, Hoeting et al. 1999, Burnham and Anderson 2002). 

Both statistical and machine learning approaches have been proposed for 

rasterized prediction of SOC. In a recent review, Grundwald (2009) found that least 

squares regression, decision/classification schemes, tree-based modeling, and univariate 

kriging are all common methods for digital soil mapping. Simulation models, where the 

SOC pool is determined as the balance between soil carbon inputs and outputs, have also 

been used to map soil nutrients, though less frequently than other methods (Bricklemyer 

et al. 2007, Causarano et al. 2007, Bauer et al. 2008). In general, multiple linear 

regression seems to be the most popular approach, with kriging and related approaches 

nearly as common. 

Each of these approaches addresses some of our criteria for a good predictive 

model, but fails to cover all. Deterministic models provide detailed description of the 

mean structure, resulting in good predictive accuracy when properly specified, but 

frequently make no attempt to quantify uncertainty (Keith et al. 2009). Machine learning 

methods are highly efficient, but the model structure is usually predetermined by the 

methodological approach, and quantifying uncertainty from all sources may prove 

difficult (Grunwald 2009). Regression methods offer flexibility in specifying the 

functional form and selecting covariates, and provide a probabilistic framework for 

quantifying uncertainty. However, fitting methods such as least squares ignore parameter 
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uncertainty, and standard regression models do not explicitly incorporate spatial error. 

Geostatistical approaches, such as kriging models (Goovaerts 1997, Stein 1999), provide 

the ability to specifically model error arising from spatial dependence, but univariate 

kriging does not use model covariates to improve prediction (Hengl et al. 2003).  

Geostatistical methods that incorporate predictor variables, such as regression 

kriging (Hengl et al. 2004), geographically weighted regression (Mishra et al. 2010, 

Mishra and Riley 2012) and co-kriging (Odeh et al. 1994, Goovaerts 1997, Wang et al. 

2013), come closest to addressing our predictive model criteria. These methods are fit in 

a statistical framework, allow for a good degree of flexibility in specifying mean 

functions, specifically incorporate spatial processes, and are reasonably efficient with 

moderately sized datasets. However, when the spatial covariance (semivariogram) 

function of a geostatistical model is fit with least squares, which is typically the case, 

model parameter error is again ignored. Further, fitting a function to the spatial 

covariance matrix is computationally expensive (Finley et al. 2007a, Banerjee et al. 

2008), and standard geostatistical methods may be impractical for very large datasets.  

In order to avoid these shortcomings and to obtain a well-behaved predictive 

model of forest SOC, we turn to an alternative, spatial Bayesian hierarchical models 

(Banerjee et al. 2004). These models are extremely flexible, accommodate a wide array 

of mean structures, and facilitate modeling of spatial dependence via explicit spatial 

covariance models (i.e., exponential or Matérn functions). Further, by working in the 

Bayesian inferential framework, inclusion of appropriate prior and ‘hyper-prior’ 

specifications of model parameters yields a full accounting of uncertainty arising from 
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data, model parameters, and spatial processes (Congdon 2006).  By generating a 

Bayesian posterior predictive distribution that can be marginalized for each new estimate 

(Ntzoufras 2009, Vehtari and Ojanen 2012), we can propagate uncertainty into the end 

result in seamless fashion. Finally, advances in statistical computing, particularly the 

development of ‘low rank’ predictive process models (Banerjee et al. 2004, 2008, Wikle 

2010, Finley et al. 2012), renders the computation of spatial Bayesian hierarchical models 

feasible, even for very large datasets.  

Spatial Bayesian hierarchical models have been used for other natural resource 

applications, including spatial mapping of forest attributes (Finley et al. 2007b, 2010), 

crop production (Finley et al. 2011), regional-scale climate modeling (Salazar et al. 

2011), and mapping of species range distributions and abundance (Thogmartin et al. 

2004). Guhaniyogi et al. (2013) have used multivariate spatial hierarchical models to 

study the distribution of several soil nutrients at local scales in tropical hardwood forests 

in central Costa Rica, but there are no examples of their application for regional mapping 

of forest soil attributes. Bayesian hierarchical models have also been used to scale soil 

properties across a heterogeneous urban landscape surrounding the city of Phoenix, USA 

(Oleson et al. 2006, Kaye et al. 2008), but these studies did not attempt to model a spatial 

process explicitly.  

In this study, we applied spatial Bayesian hierarchical models to map regional 

forest SOC at three different scales: the Coastal Plain physiographic province of New 

Jersey, USA (NJ), the nation of Germany (DE); and the member states of the European 

Union (EU). Our objectives were to: (1) establish a suitable set of covariates, based on 
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the ‘scorpan’ framework, for modeling forest SOC within each study region; (2) develop 

maps of forest SOC distribution, along with corresponding maps of prediction 

uncertainty; and (3) compare the performance of the spatial approach with non-spatial 

hierarchical models. This final objective is aimed at determining whether the extra 

computational demands of a spatial process provide enough predictive improvement to 

warrant the effort.  

Methods 

Datasets 

 For this study, we used the same three datasets we analyzed in chapter 3: the 

dataset collected by the authors on the Coastal Plain physiographic region of New Jersey 

(NJ), and the LUCAS topsoil database of the European Union (Tóth et al. 2013). As in 

chapter 3, we consider only forested land for the European dataset at two scales: national 

(DE), and continental (EU). Complete descriptions of these datasets may be found in 

Clough and Green (2013), and Tóth et al. (2013). Refer to Chapter 3, Figure 1 for a map 

of the three study regions.  

Covariate selection 

 Selection of predictor variables for SOC was carried out in two stages. In the first 

stage, we assembled a broad range of datasets that characterize the major soil forming 

factors considered by the ‘scorpan’ model discussed above (McBratney et al. 2003). Once 

the relevant datasets were in hand, we conducted both statistical variable selection and 

exploratory analyses aimed at revealing which covariates would serve as useful 
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predictors of SOC. Our goal was to derive models containing variables that represented 

all of the major soil forming factors, but to utilize computational approaches to refine the 

list, rather than simply choosing a set of covariates a priori. Table 4.1 lists the initial 

covariates considered for each dataset as well as the source of these data.  

 All of the covariate sets were first converted to a standard pixel size (30 m for NJ, 

250 m for Germany and Europe). These were selected because they are the same as the 

finest resolution datasets for each analysis. All NJ soil-data layers were geo-referenced 

with the plot observations and projected in Universal Transverse Mercator (UTM), while 

the German and European datasets were converted to an Alber’s equal area projection. 

Once all datasets were in a common resolution and projection, pixel values that 

coregistered with the SOC observation points were extracted from each layer for variable 

selection, model construction, and validation. Initial processing of covariate data was 

accomplished with the ARC and ERDAS Imagine programs.  

 Since our aim was to use the ‘scorpan’ framework as a general guide, we selected 

covariates that were reasonable for our separate scales of inquiry, leading to somewhat 

different initial datasets for each study region.  Table 4.1 lists the initial set of predictor 

variables for the NJ dataset. We used an interpolated surface of total soil nitrogen, 

generated using multilevel B-splines (Lee et al. 1997) from field measured observations 

that were co-located with the SOC measurements in the dataset. For topographic 

variables, we included elevation and slope as potential predictors, as initial exploration of 

other terrain attributes were not promising on this low-relief landscape. A 10 m digital 

elevation model of the study region was used, and slope was calculated from these data. 
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The climate variables we include are interpolated surfaces from the PRISM climate 

dataset. We considered two Landsat derived metrics that are known to relate to 

aboveground biomass, the normalized difference vegetation index (NDVI) (Steltzer and 

Walker 2006) and the so-called “Greenness” band of the tasseled cap transformation 

(Goetz and Dubayah 2011). We also included the “brightness” and “wetness” bands of 

the tasseled cap transform. Landsat data are available at a fine resolution (30 m pixels), 

so these data, rather than coarser satellite datasets such as MODIS, were a good choice 

for our regional analysis. Since we do not expect large variations in the underlying 

geology across New Jersey’s coastal plain, we instead include two predictors related to 

soil texture and chemistry from the SSURGO dataset: available water capacity and soil 

pH.  

Table 4.1: Selected covariates for the NJ data. 

Data layer Source 

Total soil nitrogen (N) Field-measured 

Elevation (ELEV) 10 cm digital elevation model 

(DEM) Slope (SLOPE) 

Precipitation (PRECIP) 
PRISM climate data, 30 year 

normals 
Maximum temperature (MAXTEMP) 

Minimum temperature (MINTEMP) 

TC (tasseled cap( Brightness (TC1) 

Landsat ETM 5 
TC Greeness (TC2) 

TC Wetness (TC3) 

Normalized difference vegetation index (NDVI) 

Available water capacity (AWC) 
USDA SSURGO database 

Soil pH (pH) 
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For Germany and Europe, we again used interpolated soil N surfaces derived with 

the same method as the NJ data, and considered the same primary terrain attributes 

(elevation and slope). Given the coarser scale, the elevation data were derived from 

NASA’s shuttle radar mission (SRM) global topography dataset. For climatic effects, we 

used the 19 “BIOCLIM” variables from the WORLDCLIM database. These variables are 

derived from monthly estimates of rainfall and temperature, and are designed to represent 

biologically meaningful climatic effects, including annual averages, seasonality, and 

extremes in temperature and precipitation (Hijmans et al. 2005). We expected greater 

variation in underlying lithology for Germany and Europe, so we used geologic 

classification data as more general measures of the parent material effects.  Similarly, we 

considered only a coarser-scale estimate of net primary production (NPP), derived from 

MODIS spectral data. The covariates used for the German and Europe analyses are 

summarized in table 4.2. With the exception of co-occurring observations of soil nitrogen 

within each dataset, we used only publicly available data.   

 

 

 

 

 

 



115 

 

 

Table 4.2: Initial covariates for the Germany and Europe analyses 

Data layer Source 

Total soil nitrogen (N) Field-measured 

Elevation (ELEV) 
NASA SRTM 

Slope (SLOPE) 

Mean annual temperature (BIO1) 

WORLDCLIM database 

Mean diurnal range (BIO2) 

Temperature isothermality (BIO3) 

Temperature seasonality (BIO4) 

Maximum temperature of warmest month (BIO5) 

Minimum temperature of coldest month (BIO6) 

Temperature annual range (BIO7) 

Mean temp. of wettest quarter (BIO8) 

Mean temp. of driest quarter (BIO9) 

Mean temp. of warmest quarter (BIO10) 

Mean temp. of coldest quarter (BIO11) 

Annual precipitation (BIO12) 

Precip. of driest month (BIO13) 

Precip. Seasonality (BIO15) 

Precip. of wettest quarter (BIO16) 

Precip. of driest quarter (BIO17) 

Precip. of warmest quarter (BIO18) 

Precip. of coldest quarter (BIO19) 

Soil parent material (GEO) BGR geologic map of Europe 

Annual Net Primary Production (NPP) MODIS derived 30 year average 

 

Computational evaluation of model covariates consisted of both automated 

variable selection and subsequent exploratory analysis. In order to gain an idea of which 

covariates tended to be more important for predicting SOC, we first submitted the full 

linear models containing all covariates to an automated Bayesian variable selection 

procedure. Bayesian variable selection is typically evaluated via posterior model 
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probability (Clyde et al. 2011). Consider an initial model space      , where   is the 

number of potential covariates under consideration. Thus, M contains all possible models 

that may be constructed with the available predictors, and an efficient Markov Chain 

Monte Carlo (MCMC) algorithm is used to search this model space and identify the 

‘best’ models based on their posterior probability (George and McCulloch 1993, Casella 

et al. 2009) We evaluated the following linear regression model       , where Y is a n 

x 1 vector of the response variables, X is an n x p design matrix, and   is a p x 1  vector 

of model coefficients. The diagonal element   is a binary “indicator parameter” that 

tracks whether a variable is ‘in’ or ‘out’ at each iteration of the MCMC sampler. 

From this output, posterior inclusion probabilities (PIPs) can be computed for 

each covariate as the number of iterations where       over the total number of 

iterations in the MCMC sample (Ntzoufras et al. 2000, Dellaportas et al. 2002). This 

analysis was conducted with the “Robust” reference priors of Bayarri et al. (2012) on the 

regression coefficients and an equal prior inclusion probability (i.e.,            (   )) 

on their associated index parameters. Robust priors are specifically designed as 

‘uninformative’ and are widely used in “objective” Bayesian analysis (Berger 2006). 

These, combined with a prior on the indicator parameters that allows for an equal 

probability of inclusion at each iteration, allowed us to conduct variable selection that is 

only informed by the data. Given the large number of initial covariates in each dataset, a 

Gibbs sampler was used to draw 100,000 posterior samples of the model parameters, and 

inference was conducted following a burn-in of 50,000 iterations. We retained variables 

for further consideration if they had a PIP > 0.5, which is a common cut off in the 
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Bayesian statistics literature (Berger and Barbieri 2004).. Variable selection was 

conducted using the ‘BayesVarSel’ package for R (Garcia-Donato and Forte 2012).  

 We examined basic diagnostics for each covariate selected by the variable 

selection procedure, including histograms and scatterplots with the response variable, as 

well as correlation coefficients and    values. Since our variable selection was not 

conducted in spatial context, we also examined variograms of the residuals between the 

covariate and response. Final selection of covariates for each dataset was then made 

based on the results of both these exploratory analyses and our variable selection 

procedure.  

 While we employed statistical methods to select predictor variables, we preserved 

the general structure of the ‘scorpan’ model. For instance, climate related variables were 

included in each model, regardless of the results of our analysis, because there is a strong 

theoretical basis for the effect of climate on SOC distribution. However, given that 

multiple climate variables were initially considered (3 for NJ, 19 for DE and EU), 

computational evaluation is useful for identifying which of these are most likely to 

explain the distribution of SOC. By using this general approach, we retain a theoretically 

valid model for SOC prediction, while avoiding the need to make decisions on precise 

covariates a priori, as well as potential colinearity issues related to over-fitting linear 

models with many correlated variables.  

Hierarchical modeling 
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 Following covariate selection, the final spatial Bayesian hierarchical models were 

all of the general form:  

 ( )    ( )   ( )    ( ) , 

where  ( ) is the SOC observation at location  ,  ( ) is the mean structure,  ( ) is a 

univariate spatial process modeled by an exponential covariance function, and  ( ) is the 

residual “white noise” error term (Banerjee et al. 2004).  Model fitting was conducted 

using the same procedures as in chapter 3, where both the NJ and DE datasets were fit as 

full rank spatial models, and the EU data were fit with a modified predictive process 

(Finley et al. 2012) to reduce computational burden. The same initial values, drawn from 

the variograms for SOC, and prior specifications for both the regression coefficients and 

spatial parameters that were used in our exploratory analyses were used again here. 

Please refer to chapter 3 for a detailed description of this approach.  

Comparison of Spatial and non-Spatial Models 

To compare the performance of spatial and non-spatial models, we fit both to each 

of the three datasets, containing all of the covariates selected in the first phase of our 

analysis. The spatial models were given vague priors on the regression coefficients, 

partial sill (  ), and nugget (  ) and weakly informative priors on the spatial range ( ), 

resulting from preliminary variogram analysis. The latter priors are weakly informative 

because the bounds were selected based on the observed emprircal semivariograms, but 

the priors were considered to be flat within those bounds. The non-spatial models were fit 

with vague prior specifications on all parameters. Model fitting, prediction, and checking 

were carried out using the spBayes package available for R (Finley et al. 2007a).  



119 

 

 We applied k-fold cross validation (Vehtari and Ojanen 2012) to test predictive 

performance. Each dataset was randomly divided into ten approximately equal size sets, 

and each of these was successively held out for validation, while the model was fit to the 

remaining nine partitions. This process was repeated until all 10 data sets had been used 

for model validation. Prediction was performed using the covariates from each validation 

location, via draws from the posterior predictive distribution: 

 (    | )   ∫  (    |     ) (   | )     , 

where      are the prediction locations,   are the fitting data,   contains the spatial 

process parameters, and   represents the regression coefficients. We computed root mean 

squared error (RMSE) and mean absolute error (MAE) for each validation, and compared 

predictive performance based on the mean of these results. We also compared models 

based on the deviance information criterion (DIC) (Spiegelhalter et al. 2002). 

Mapping forest SOC at large spatial scales 

 Following model evaluation and selection, the ‘best’ fitted model (either spatial or 

non-spatial) was used to produce distribution maps of SOC (Mg/ha), as well as the 95% 

credible interval, for all forested land in each study region. Ideally, this would involve 

prediction at each pixel of a grid covering the region. Such an approach can become 

computationally expensive for large raster datasets, particularly when Bayesian 

prediction has been used to generate a posterior predictive distribution for each pixel, 

rather than a single point estimate. Given the high resolution of our prediction grids, full 

Bayesian prediction at every pixel was not computationally feasible.  
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 Balancing computational efficiency against the need to produce a spatially-

registered ‘uncertainty surface’ for SOC, we combine sparse Bayesian prediction with a 

highly efficient nonstatistical interpolation algorithm; multilevel B-splines (Lee et al. 

1997). This is a method from computer science and image visualization that utilizes a 

hierarchical lattice framework to approximate smooth surfaces with small computational 

investment. We produced a dense prediction grid consisting of 40,000 observations, 

distributed at regular intervals across each study region. Initial exploration suggested this 

resolution was a reasonable compromise, particularly for the very large Europe dataset. 

Values of the model covariates were drawn from the raster datasets for these points, and 

independent predictions were made via the posterior predictive distribution for each 

location, following a burn-in period of 9,000 MCMC iterations. A sample of 100 

posterior predictive observations, thinned from 1,000 MCMC samples, was drawn for 

each of the 40,000 locations. In initial tests, 100 observations were sufficient to produce 

the posterior predictive distribution.  

 Following prediction, the samples were summarized by a mean value of SOC at 

each location, as well as a 95% credible interval estimated from the posterior predictive 

distribution. We thus produced a regular grid of estimated mean forest SOC, along with 

an associated credible envelope. These values were then passed to the spline interpolator 

to create smooth surfaces of mean SOC and the 95% CIs for all forested land in the study 

region, at a resolution matching the original prediction grids. As with model validation, 

prediction was accomplished in the spBayes package, while the spline interpolation was 

performed using the MBA package for R.  
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Results 

 Table 4.3 shows the structure of the models used to predict SOC for each dataset, 

based on the results of our variable selection procedure. For the New Jersey and German 

datasets, log-transformed soil N was the best single covariate, and the remaining 

covariates had somewhat weaker relationships with SOC. The New Jersey data showed 

the largest R
2
 for the selected model, but this is mostly explained by soil N, which is 

highly correlated with soil C in these data. In the German dataset, soil N is also the only 

covariate with a strong relationship to soil C. Soil N was not a strong predictor in the EU 

data, and in fact none of the selected covariates had strong relationships with SOC, 

leading to a low R
2
 when compared to the New Jersey and German models. In both cases, 

the remaining covariates allow us to consider all of the major soil forming factors.  The 

full results of the variable selection for each dataset can be found in Appendix B.  
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Table 4.3: Results of the covariate selection procedure. Note that the non-spatial 

models are shown here, but the same structure is also utilized for the spatial models.  

  Model R
2 

New Jersey 

   (      )                              

                          

             

0.93 

Germany 

   (      )            (     )             

                            

    (   )          

0.51 

Europe 

   (      )                                
                            
                   

0.18 

 

 For all three regions, spatial models yielded lower values for both root mean 

squared error (RMSE) and mean absolutely error (MAE), based on ten-fold cross 

validation, but the relative improvement varied (Table 4.4). For the New Jersey data, the 

spatial hierarchical model reduced RMSE by approximately 30%, while the gains were 

more modest for the German (9.3%) and EU (1.2%) datasets. Recall that the observations 

in the German and EU datasets were less dense (0.001 ha
1

) than they were for the New 

Jersey dataset (0.1 ha
1

), and further that spatial random effects in the EU model were fit 

with a predictive process based on 500 knots. This may in part explain why the gains 

offered by modeling spatial dependence were smaller for these datasets. Deviance 

information criterion (DIC) also supports spatial models for Germany and the EU, but 

actually supports the non-spatial model for the New Jersey data. Given the results of the 

cross validation analyses, however, this result should not weigh heavily in our model 

selection, because DIC uses point estimates rather than the full posterior predictive 

distribution for prediction (Spiegelhalter et al. 2002). This fact has led several authors to 
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observe that DIC may over-fit in situations where none of the competing models provide 

a strong fit to the data  (Plummer 2008, Spiegelhalter et al. 2014).  

Table 4.4: Deviance information criterion (DIC), and root mean squared error 

(RMSE) and mean absolute error (MAE) from k-folds cross validation. The DIC 

scores result from fitting models to the complete datasets.  

    DIC RMSE MAE 

New Jersey 
Spatial 99.01 80.91 47.39 

Non-spatial 96.59 116.71 83.18 

     

Germany 
Spatial -162.46 23.51 13.95 

Non-spatial -95.66 25.26 15.76 

     

Europe 
Spatial -171.33  134.4 71.98 

Non-spatial -156.56  136.3 73.31 

 

 Based on our model selection results, we proceeded with spatial hierarchical 

models to map forest SOC, including 95% credible intervals, for our three study regions 

(Figure 4.1). For the NJ data, predicted SOC ranged from 5 Mg/ha – 300 Mg/ha. The 

lowest values are predicted for the central region of New Jersey’s Coastal Plain. This 

corresponds to a soil deposit known as the Beacon Hill formation, which is comprised of 

excessively well drained and nutrient poor soils (Tedrow 1998). The model also predicts 

generally higher concentrations of SOC for forests on the inner Coastal Plain, an expanse 

along the northwestern edge of the study region, where soils tend to be somewhat higher 

in silt concentrations and as a result more nutrient rich (Tedrow 1986). Note, however, 
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that the accompanying credible intervals reveal that the predictions supplied by this 

model are highly uncertain. In large portions of the study area, the variance estimates are 

an order of magnitude larger than the predicted estimates. This is consistent with the 

results of our model selection procedure, which suggested that the final model for the NJ 

data provided a poor fit. While we gained predictive accuracy by modeling a spatial 

process, as suggested by RMSE and MAE from the cross validation exercise (table 4.4), 

both models were poorly fitting.  

 Of the three study regions, we had the greatest success predicting forest SOC for 

Germany. However, results here were still highly uncertain. The majority of the sampling 

observations were concentrated in several large forested areas in the northern central 

portion of the nation (Chapter 3, figure 1), particularly in the states of Rhineland-

Palatinate and Hesse. These are some of the most densely forested regions in Germany, 

so this spatial bias is not surprising. Still, the distribution of our predictive results are in 

accordance with other studies on spatial distribution of forest SOC in Germany, showing 

generally lower concentrations in the Scots Pine (Pinus sylvestris) dominated regions in 

the northeast (Wellbrock and Bolte 2008), and higher values in the humic-rich soils in the 

northwest as well as the Alpine soils in the southern portion of the country (Wiesmeier et 

al. 2013, Gruneberg et al. 2014). Wellbrock and Bolte (2008) also found significant local 

variation in forest SOC concentrations across the nation, though much of that is smoothed 

out by our spline interpolation approach. 
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Figure 4.1: Predicted forest soil organic carbon, and accompanying 95% credible 

intervals, for the three study regions.   
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 The SOC map of Europe likewise conforms to expectations, with higher forest 

soil carbon concentrations in the high latitude boreal forests as well as the alpine regions 

in central Europe. However, these results had the highest uncertainty of the three regions 

we studied. Note that while the scale suggests some extremely large uncertainty values, 

these are mainly outliers and through the majority of the region uncertainty, while still 

large, is more concordant with the mean predictions. Given the very low density of the 

spatial process knots, as well as the grid we used for statistical prediction, the EU results 

are more smoothed than those from New Jersey or Germany. Still, it is interesting to 

observe that the model generally captured expected trends in SOC distribution along 

latitudinal and elevational gradients.   

Discussion 

In each of our three case studies, spatial Bayesian hierarchical models provided a 

reasonable alternative to a non-spatial predictive model for forest SOC, though in all 

three cases both models revealed significant uncertainty in prediction estimates. In the 

New Jersey and German datasets, the gains in predictive accuracy were significant, while 

for the European dataset, they were slight at best. Despite the uncertainty, the spatial 

predictive models did a reasonable job capturing the spatial distribution of forest SOC, 

conforming to our understanding of the study system as well as the work of others.  

Bayesian prediction allowed for the creation of an ‘uncertainty surface’ via interpolation 

of the range of the posterior predictive distribution of each new observation. In our study, 

this was important for evaluating model performance, and for understanding how model 

uncertainty was influenced by environmental processes and the spatial distribution of the 

sampling locations.  
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The gains provided by fitting a spatial hierarchical model must be weighed 

against the added computational burden. The New Jersey and German datasets were 

relatively small (< 500 observations), so generation of adequate posterior samples of the 

model parameters could be accomplished in minutes. The European dataset, on the other 

hand, required approximately 10 hours on a computing system possessing a quad-core 

Intel i5 processor and 32 Gb of memory to draw the 10,000 posterior samples we needed. 

This was even after fitting  ( ) with a modified predictive process, based on 500 knots, 

a very sparse framework from which to model continental-scale spatial dependence in 

forest SOC. Fitting the “full rank” model using all observations would not have been 

possible with available computational resources. In this case, given the limited benefits to 

be obtained from modeling spatial dependence, a non-spatial model might be sensible.  

 

Regardless of whether predictive models include a spatial term, we advocate 

usage of a Bayesian hierarchical framework to predict forest SOC. By generating a 

posterior predictive distribution, conditional on the joint distributions of the observed 

data and the model parameters, we are able to obtain a credible uncertainty estimate 

around each predicted value (Gelman et al. 2003, Ntzoufras 2009). This is quite valuable 

in mapping of forest SOC stocks, where uncertainty estimates are of particular interest for 

both policy makers and other scientists (Shvidenko et al. 2010). Generating ‘uncertainty 

surfaces’ allows analysts to ‘track’ how model error is distributed across space, and to 

incorporate this information into future sampling efforts. Further, adopting a Bayesian 

approach frees us from the need to assume that model parameters will be fixed at any 

single value, particularly important for spatial models, where the spatial covariance 
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functions used in traditional kriging often provide a poor fit to empirical variograms 

(Goovaerts 1997). Traditional kriging ignores potentially important sources of 

uncertainty, and as a result may provide biased mean and variance estimates. Bayesian 

hierarchical models allow us to capture the full range of parameter uncertainty, 

seamlessly propagating it into predictions.  

As noted, Bayesian prediction is computationally more intensive, and this may 

become an issue when the goal is to predict variables at high resolution across very broad 

spatial scales. We addressed this issue by predicting on a lower resolution grid, and then 

interpolating the resulting means and 95% credible intervals with highly efficient 

multilevel B-splines. The resulting maps have inevitably been somewhat smoothed, and 

their usefulness is dependent on the goals of the analysis. If the aim were simply to 

characterize the general distribution of forest SOC, as well as model uncertainty across 

space, our results may suffice. In general, our models did a good job of producing forest 

SOC distributions that conform to reality, despite the uncertainty in the predictive 

estimates. However, if the goal is to develop a highly credible map of the regional forest 

SOC stock, then it is ideal to use the predictive model to generate a posterior predictive 

distribution for every pixel within the study region. Future work should pursue alternative 

strategies for easing the computational burden of prediction on high resolution grids that 

will avoid the need to smooth results as widely as we do here.  

In attempting to construct valid mean structures for predicting regional forest soil 

C, we found the ‘scorpan’ approach to be a useful tool in guiding the selection of 

covariates (McBratney et al. 2003, Grunwald 2009, Minasny et al. 2013). Drawing an 

initial set of predictor variables based on the major categorical factors influencing the 
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formation and distribution of soils is sensible, but this exercise would have led us to 

greatly over-fit our datasets if we had included all of the initial covariates we considered. 

Combining a philosophical model such as ‘scorpan’ with computational variable 

selection provided a productive ‘middle ground’. Using this approach, we were able to 

construct models that were theoretically sound but also informed by observed 

relationships between forest SOC and the covariates within the dataset. If our work on 

spatial dynamics of forest SOC, both here and within Chapter 3, teaches us nothing else, 

it is that controls over SOC distribution will be both scale and context dependent. 

Approaching the design of predictive models with this reality in mind is the best way to 

achieve reasonable results.  

Even with a guided approach, we had difficultly establishing strong relationships 

between forest SOC and potential covariates. The New Jersey and German models 

provided a good fit, which was almost entirely driven by the inclusion of soil nitrogen, 

predicted from co-located measurements, in the models. The remaining covariates we 

considered had highly variable relationships with SOC, and there were no clear trends to 

discern in some cases. Incorporating remote sensing data for the prediction of forest SOC 

will probably be more difficult than for agricultural landscapes, for which one can use 

spectral information about the soil itself (Hengl et al. 2004, Simbahan et al. 2006, Tóth et 

al. 2013b), while heavy forest vegetation cover leaves us reliant on relationships 

mediated by aboveground carbon dynamics. We found little evidence of Landsat or 

MODIS derived products that were useful for mapping forest SOC.  

Topographic and climate variables were somewhat important in our analyses, in 

agreement with the work of other authors (Odeh et al. 1994, Mueller and Pierce 2001, 
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Zhang et al. 2012, Vasques et al. 2012). Even so, our models did a poor job of capturing 

the variance in such relationships. Moreover, we modeled log-transformed SOC with 

linear functions of selected covariates, but linearity may not provide proper scaling. Other 

authors have suggested that models used for digital soil mapping should be able to 

capture nonlinear relationships between soil attributes and covariates (McBratney et al. 

2003, Malone et al. 2009). This is possible to accommodate within a spatial hierarchical 

model, and we suggest that future work should involve rigorous model comparison 

between linear and nonlinear functional forms.  

In ecosystem science, the SOC pool is often estimated via complex process 

models that treat it as a balance between C inputs (litter deposition and decomposition) 

and outputs (soil respiration) (Chapin et al. 2002). Given that relationships between these 

carbon fluxes and several variables we considered are well established in the literature; 

for instance, the influence of climatic gradients of litter decomposition rates have been 

well reported (Couteaux et al. 1995); biologically realistic process models may provide 

an ideal approach for developing accurate mean structures. However, in order to address 

our need for valid uncertainty estimates in model predictions, it is necessary to use these 

models within a probabilistic framework. Bayesian melding, where complex model 

functions are implemented in the context of a statistical hierarchical model (Raftery et al. 

1995, Poole and Raftery 2000), can be used to accomplish this goal. This technique, and 

closely related methods such as Bayesian synthesis and ‘data assimilation’, have been 

used to quantify uncertainty in a variety of forest science contexts, including stand 

growth models (Green et al. 1999, MacFarlane et al. 2000), and forest carbon models 

(Schwalm et al. 2010, Keenan et al. 2012, LeBauer et al. 2013). Adopting this approach 
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for modeling SOC may be logical, given our difficulty in establishing linear relationships 

between forest SOC and other biophysical variables.  

Bayesian melding can also be carried out in the context of spatial hierarchical 

models. Finley et al. (2011) used this technique to improve yield estimates within 

agricultural fields, using a complex crop production model. This method is especially 

attractive for digital soil mapping, since it allows for the direct modeling of spatial 

dependence for the input data, as well as the model parameters. This is potentially 

important, since it is reasonable to expect that rates of carbon fluxes related to SOC 

accretion will vary significantly across large regions. Of course, the use of even more 

complex models within a hierarchical framework will add to the computational difficulty 

we encountered when producing high resolution maps via Bayesian prediction. To 

address this issue, it may be necessary to explore computational alternatives to MCMC 

sampling for deriving posterior distributions, such as integrated nested Laplacian 

approximation (INLA) (Rue et al. 2009). INLA is an analytical technique that offers 

significant computational gains, and has already been used for reducing the burden 

presented by high dimensional hierarchical models (Eidsvik et al. 2012). Approximate 

Bayesian Computation (ABC) is another promising method, which unlike INLA may also 

be applied to fit non-Gaussian models.  

In addition to accommodating complex mean structures, a hierarchical framework 

allows us to address other simplifying assumptions we made here, and that are frequently 

made by other analysts mapping SOC distributions. The datasets we used contained only 

surface soil samples, so resulting estimates ignore subsoil C storage. This is particularly 

problematic for humic and wetland soils, where significant long-term carbon storage may 
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occur at depths greater than 30 cm (Grunwald 2009). Several authors have proposed the 

use of soil profile depth functions, developed from sparse profile datasets, for estimating 

SOC storage across a wider depth interval. Malone et al. (2009) used geostatistical 

techniques to interpolate parameters of an exponential depth function for mapping soil 

carbon and available water capacity in the Lower Namoi Valley of southern Australia, 

which offers a significant improvement over models that only predict for surface soil 

layers. However, their approach only allowed for point estimates of PTF parameters at 

each pixel. As discussed, a fully Bayesian generalization would allow us to account for 

uncertainty in these models.  

Regardless of the particular functional forms employed to map forest SOC, or the 

spatial scope of these studies, it is clear that establishing reproducible baselines of forest 

soil carbon stocks at the national scale requires a consistent framework. Though there is 

much further to go, our results argue for Bayesian hierarchical models as a central 

approach. Spatial hierarchical models in particular seem promising, as we have identified 

spatial structure in soil carbon data at the scales most relevant to international policy 

mechanisms such as REDD+. Using this approach, we were able to obtain reasonable 

maps of the distribution of soil organic carbon, even if the results were highly uncertain. 

Perhaps more importantly given the magnitude of uncertainty, a Hierarchical Bayesian 

approach provides an honest accounting of all levels of uncertainty. As more forest soil 

inventory datasets become available, it will become possible to test a variety of functional 

forms across multiple study regions. Spatial hierarchical models will accommodate such 

searches for improved predictive accuracy, while remaining scalable and allowing for full 

accounting of predictive uncertainty.  
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Conclusions 

 Here, we have identified four qualities that we seek in a predictive model for 

forest SOC: (1) predictive accuracy; (2) scalability; (3) quantification of uncertainty; and 

(4) computational efficiency. Our results suggest that Bayesian hierarchical spatial 

models provide a reasonable framework for addressing these goals.  That said, our linear 

model versions of the ‘scorpan’ functions did not provide accurate predictions, despite 

considerable efforts to identify useful covariates. Further, we found that full prediction on 

high resolution grids is too computationally burdensome when using MCMC. More 

complex functions may allow us to account for the nonlinear relationships between SOC 

and environmental predictor variables, but relationships between soil inventory data and 

remote sensing covariates will probably still be highly variable. Given this reality, 

accounting for uncertainty in model-based predictions will be important for both policy 

and scientific applications.  There is a clear need for a consistent framework that allows 

for full accounting of model error, and Bayesian hierarchical models accomplish this.  

 While we argue that hierarchical models are ideal for digital soil mapping of 

forest SOC, there are still some computational challenges that arise from this approach, 

particularly for high resolution prediction. More efficient estimation of the posterior 

predictive distributions will be required before the method can be widely applied. We 

have attempted here to circumvent this difficulty by interpolating predictions from a 

coarse grid via multilevel B splines, but the resulting maps ignore much of the local 

detail. Efficient parameter estimation in high dimensional models is an area of active 

research in the statistics literature (Rue et al. 2009, Eidsvik et al. 2012), and future work 

should look to apply these methods to high dimensional spatial prediction.  
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 Model-based prediction offers significant improvement over traditional soil 

survey for mapping soil attributes. Advances in computational statistics have facilitated 

the development of the next generation of predictive models in forest and soil science. 

Despite these developments, we still have a long way to go, before we can fully utilize 

the massive remote sensing datasets that have attracted significant interest over the last 

decade. Future collaborations between forest scientists, soil scientists, and applied 

statisticians will contribute to the development of new practical tools for soil nutrient 

mapping. While we suggest that Bayesian hierarchical models are an appropriate method 

for fitting models, and that more complex nonlinear functions will be necessary to 

maximize predictive accuracy, it is important to remember that there is no “one size fits 

all” approach for mapping soil attributes. Each model will be both context and scale 

dependent, and model design should be tailored to each particular study. With this in 

mind, developing more general rules for predictive models such as those we suggest here 

may be more useful than selecting a model a priori for achieving consistency and 

reproducibility among soil mapping studies.  
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Appendix A: Additional tables and figures for chapter 2 

 

Table A.1: Covariates of each dataset, with posterior inclusion probabilities (PIP) 

from the reversible jump MCMC procedure. PIP tracks the number of iterations in 

which each covariate was included in the selected model, and can be regarded as a 

level of support for that variable as a predictor.  

Soil data PIP 

Northing (X) 0 

Easting (Y) 0 

field-measured soil organic matter (SOM) 1 
Normalized difference vegetation index 

(NDVI) 0.04 

Tassled cap, greenness band (TC2) 0.009 

Compound topographic index (CTI) 0.0006 

Elevation (ELEV) 0.0003 

Leaf off NDVI (LO NDVI) 0.023 

Available soil water content (AWC) 0.074 

Soil bulk density (BD) 0.003 

Cation exchange capacity (CEC) 0.015 

Electrical Conductivity (ECEC) 0.001 

# frost free days (FROST) 0.002 

Organic matter content, SSURGO (OrgMat) 0.0004 

Percent Clay (CLAY) 0.0005 

pH 0.003 

Water content at 15 bars (WC15bar) 0.012 

 
 Protist data 

 Species richness (RICHNESS) 0.182 

Ankistrodesmus (ANKISTRO) 0.378 

Chlamydomonas (CHLAMYS) 0.186 

Microflagellates (MICROFLA) 0.191 

Halteria (HALTERIA) 0.835 

Monostyla (MONOSTY) 0.247 

Stylonychia(STYLON) 0.266 

Amoeba (AMOEBAL) 0.273 

Amoeba (AMOEBAS) 0.239 

EYESPOTS 0.272 

Rotaria (ROTARIA) 0.234 

Brachionus (BRACHION) 0.292 

Frontonia (FRONTON) 0.302 
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Scendesmus (SCENDES) 0.176 

Diatom sp. (DIATOM) 0.274 

Ankistrodesmus (ANKISTRS) 0.469 

Staurastrum (STAURST) 0.2 

Stentor (STENTI) 0.3 

Colpidium (COLP) 0.335 

Heliozoa (HELIO) 0.277 

Paramecium (PARAMECIUM) 0.304 

Euglena (EUGLENA) 0.303 

Gastrotrich sp. (GASTRO) 0.344 

Oxytricha (OXYTRICH) 0.301 

P. bursarii (PBURSARI) 0.281 

Stentor (STENTO) 0.286 

Spriostomum (SPIROSTO) 0.301 

Netrium (NETRIUM) 0.3 

Amoeba (AMOEBA) 0.297 

Aspidisca (ASPIDISC) 0.295 

 
 Forest data 

 Age (A) 0.39 

Mean diameter (MD) 0.957 

Basal area (BA) 0.0009 

# trees/acre (N) 0.022 

1/age (INVA) 0.999 

Log basal area (LB) 1 

Log mean diameter (LMD) 0.785 

Height of dominants (HD) 0.614 

HD/age (SQ)* 0.585 

Log HD/age (LSQ)* 0.588 

Log # trees/acre (LN) 0.246 
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Figure A.1: Histograms of simulated 2.5 and 97.5 percent credible intervals for the 

soils dataset. The blue line indicates the observed CI for the validation data.  
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Figure A.2: Histograms of simulated 2.5 and 97.5 percent credible intervals for the 

forest data. The blue line indicates the observed CIs of the validation dataset.  
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Figure A.3: Histograms of simulated credible intervals for the protist data. The blue 

line indicates the observed 2.5 and 97.5 CI of the hold-out validation dataset.  
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Appendix B: Complete description of the variable selection analysis for identifying 

predictive models for forest SOC 

 Table B.1 presents the results of the Bayesian variable selection procedure for 

each dataset. Note that for all three datasets, most of the covariates we initially 

considered had low posterior inclusion probabilities (PIPs). These values correspond to 

the proportion of MCMC iterations in which each covariate was included in the candidate 

model by the variable selector, and are frequently used in Bayesian inference as an 

indicator of the relationship between a covariate and the response (Berger and Barbieri 

2004). Looking at the highest probability models (HPMs) according to variable selection, 

the NJ data resulted in the sparsest model with 4 of 11 covariates. The model for 

Germany contained 6 of 23 potential covariates, while the model for Europe included 12 

of 23 covariates. However, note that in each case, several variables that may exhibit 

collinearity have all been included in the HPM. For example, the HPM for Europe 

contains mean diurnal range (BIO2), maximum temperature of the warmest month 

(BIO5), temperature annual range (BIO7), mean temperature of the driest quarter (BIO9), 

and mean temperature of the coldest quarter (BIO11). Further analysis is merited to 

establish which of these climatic predictors provides the best fit to soil carbon and to 

refine predictive models.  

 Note also that the results outlined in table 1 do not include soil Nitrogen. For each 

dataset total N was easily the best predictor of soil carbon, with a PIP = 1.0 in initial runs 

of the variable selector. The variable selection routine we employed is sensitive to this 

situation, where one variable provides a much better fit than any of the others, and it is 
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possible for the MCMC routine to become ‘fixed’ and provide a poor posterior sample 

for the other covariates. Since our goal is produce a good predictive model based on the 

‘scorpan’ function, we excluded soil N from the variable selection analysis to avoid this 

issue. Nitrogen is included in all models, and summary plots of its relationship to soil C 

in each dataset are shown below.  

Table B.1: Posterior inclusion probabilities from the Bayesian variable selection 

procedure for all potential covariates. An asterisk indicates that a variable was 

retained in the highest probability model retained by the variable selector.  

New Jersey PIP HPM 

    ELEV 0.2   

    SLOPE 0.51 
 

    PRECIP 0.81 * 

    MAXTEMP 0.23 
 

    MINTEMP 0.26 
 

    TC1 0.78 * 

    TC2 0.22 
 

    TC3 0.36 
 

    NDVI 0.554 * 

    AWC 0.428 
 

    pH 0.94 * 

    
   

    Germany PIP HPM   Europe PIP HPM 

ELEV 0.19 
 

 

ELEV 0.99 * 

SLOPE 0.56 * 

 

SLOPE 0.83 * 

BIO1 0.3 
 

 

BIO1 1 * 

BIO2 0.24 
 

 

BIO2 0.99 * 

BIO3 0.22 
 

 

BIO3 0.14 
 

BIO4 0.24 
 

 

BIO4 0.15 
 

BIO5 0.25 
 

 

BIO5 0.55 * 

BIO6 0.3 
 

 

BIO6 0.54 
 

BIO7 0.23 
 

 

BIO7 0.73 * 

BIO8 0.63 * 

 

BIO8 0.55 
 

BIO9 0.19 
 

 

BIO9 0.59 * 

BIO10 0.24 
 

 

BIO10 0.16 
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BIO11 0.32 
 

 

BIO11 1 * 

BIO12 0.36 
 

 

BIO12 0.15 
 

BIO13 0.32 
 

 

BIO13 0.4 * 

BIO14 0.98 * 

 

BIO14 0.99 * 

BIO15 0.76 * 

 

BIO15 0.26 
 

BIO16 0.49 * 

 

BIO16 0.3 
 

BIO17 0.23 
 

 

BIO17 0.42 
 

BIO18 0.32 
 

 

BIO18 0.16 
 

BIO19 0.24 
 

 

BIO19 0.3 * 

GEO 0.63 * 

 

GEO 1 * 

NPP 0.17     NPP 0.09   

 

 As discussed in the methods, our goal is to preserve the general model structure of 

the ‘scorpan’ approach, since it is based on the major factors that influence soil 

formation. As a result, in each dataset we included covariates with low posterior 

inclusion probabilities in our further analysis. For the NJ data, these were slope and 

available water capacity (AWC). We include the former because it is a topographic 

variable and the latter because it is closely related to soil texture.  
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Figure B.1: Scatterplots of log-transformed soil organic carbon with selected 

covariates for the NJ dataset.  

 In general, none of these variables are strongly correlated with soil carbon. The 

strongest relationships are with annual precipitation, available water capacity, and soil 

pH, each with ρ = ~ 0.2 (figure B.1). The residuals between soil C and each of these 

covariates do not exhibit significant spatial dependence (figure B.2). Given that we have 

previously established that there is no spatial structure in soil carbon for our NJ data, this 

is not a surprising result.  
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Figure B.2: Empirical variograms of the residuals between log-transformed soil C 

and each covariate.  

 For the Germany dataset, four climatic variables had the strongest relationship 

with soil C; mean temperature of the wettest quarter (BIO8), mean precipitation of the 

driest month (BIO14), precipitation seasonality (BIO15), and precipitation of the wettest 

quarter (BIO16) (figure B.3). We also consider slope, bedrock geology (GEO), and mean 

annual net primary production (NPP) in order to include variables related to all soil 

forming factors. While the four climate variables are related to one another, exploratory 
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analyses (e.g. R
2
, AIC) suggested that the model including all four provides the best fit 

for the data. In general, the residuals between these covariates and soil C are spatially 

autocorrelated (figure B.4).

 

Figure B.3: Scatterplots between log-transformed soil carbon and selected 

covariates for the Germany dataset.   
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Figure B.4: Variograms of the residuals between log-transformed soil C and the 

selected covariates for the Germany dataset.    

 Selected covariates for the Europe dataset include elevation (ELEV), mean annual 

temperature (BIO1), mean diurnal range (BIO2), precipitation of the driest month 

(BIO14), precipitation of the coldest quarter (BIO19), bedrock geology (GEO) and net 

primary production (NPP) (figure B.5). As with the preceding two datasets, the 
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relationship between these covariates and forest soil C are rather variable. Several do 

exhibit general linear trends, most notably BIO1 and Bio14, though there is significant 

residual error in this relationship. Geology and NPP are generally poor predictors, but we 

again include them in the final model to specify a complete ‘scorpan’ function.  

   

Figure B.5: Selected covariates for the Europe dataset.  
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