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ABSTRACT OF THE DISSERTATION 

Applications of the mixed linear model in genome-wide association studies 

and small RNA motif discovery 

 

By LIYANG DIAO 

 

Dissertation Director: 

Kevin C. Chen 

 

If sheer number of papers published is indicative of anything, it suggests that the 

age of genome-wide association studies, or GWAS, is here to stay.  However, in spite of the 

influx of data, several issues remain, one of which is the presence of confounding factors 

caused by relatedness within the study sample.  This can cause many false positive results.  

In recent years, the use of mixed linear models to correct for unknown types of relatedness, 

i.e. "cryptic relatedness", has been very popular.  While this model has been shown to be 

successful in some cases, here we address the feasibility of performing GWAS in a highly 

structured population such as Saccharomyces cerevisiae, and find that the inclusion of fixed 

local ancestry covariates can sometimes lend a study more power. 

Furthermore, we explore the application of mixed linear models in a different type 

of biological problem of discovering motifs associated with active microRNAs.  While there 

exist several algorithms for miRNA motif discovery, only a few consider background 

sequence composition of the 3' UTR binding site in addition to seed sequence motif 

enrichment, which is known to factor into miNRA binding efficacy.  The methods that do 
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account for 3' UTR sequence composition do so by rescoring motif counts based on the 

background UTR sequence in which it appears.  Though computationally efficient, these 

methods are unable to simultaneously compare both gene expression values and UTR 

sequence, which our method, named MixMir, is able to do, with favorable results.  When 

compared to the simple linear model, as well as existing motif discovery algorithms, MixMir 

is able to rank true motifs more highly in multiple data sets.  Such computational methods 

are biologically significant because although it is possible to sequence small RNAs in a 

sample, their expression may not be perfectly correlated with the size of their effect, which 

is what we observed.  
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CHAPTER 1:  INTRODUCTION 

1.1:  GENOME-WIDE ASSOCIATION STUDIES 

1.1.1:  THE ERA OF BIG DATA:  A BRIEF HISTORY OF GWAS 

Genome-wide association studies (GWAS) have become a primary tool in mapping 

genetic traits, particularly with the growing quantity of whole-genome data quickly 

becoming available.  Thanks to high-throughput sequencing methods that have made the 

collection of data faster and more inexpensive than ever before, the exploration of complex 

genetic traits and architectures is possible.  We now find ourselves in a situation where the 

development of statistical methods, and the computational aspects of applying such 

methods to huge amounts of data, has become a crux in the analysis pipeline. 

The idea of GWAS began with the idea of constructing linkage maps to uncover 

disease-associated variants (3,4).  To understand linkage maps, one must first understand 

the concept of recombination.  Recombination between loci occurs when homologous 

chromosomes cross over during meiosis, resulting in the exchange of genetic information 

and increased diversity.  A graphic of chromosomal crossover and a brief discussion of 

linkage blocks and how they can be used in association studies can be found in Figure 1.  

When recombination frequency is low, then fewer crossovers take place and linkage blocks 

tend to be large.  In this case, linkage mapping can be a viable method of discovering causal 

genes located nearby mapped loci.  However, one of the tradeoffs made with large linkage 

blocks is a loss in resolution (3), so that if for example the causal variant is far from the 

mapped locus, and the linkage block is too large, it may be difficult to pinpoint the exact 

cause of the disease.  Thus, successful linkage mapping relies on disease loci being inherited 

alongside nearby loci in linkage blocks.   
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 In general, linkage analyses rely on disease variants having a large effect size, and 

indeed they have trouble identifying disease variants and causal loci, particularly in 

complex human traits (3).  One of the differences between linkage analyses and GWAS is 

that linkage analyses rely on LD blocks arising within a pedigree, while GWAS rely on LD 

blocks arising at the population level (3).  The principles depicted in Figure 1 remain the 

same.  Risch and Merikangas (5) first pointed out that while linkage analyses may suffer 

Figure 1 

a)  Example of chromosomal crossover between the arms of two homologous chromosomes during meiosis.  

After crossover occurs, part of the genetic information on each arm has been swapped with genetic information 

from the other.  Loci that are inherited together are said to be located on the same linkage block (linkage 

disequilibrium, or LD, block), and have a low recombination frequency between them.  b)  After several 

recombinations, we may see some loci are frequently inherited together in what are known as linkage blocks.  In 

this example, SNP 1 and SNP 2 are separated by several recombination events, while SNP 3 and SNP 4 are not, 

and are located on the same linkage block.  If SNP 2 is a causal allele, we may not be able to uncover its 

association if we have only included SNP 1 in our analysis.  However, if SNP 4 is a causal allele, we may be able to 

do so if SNP 3 is included in the analysis, because they reside on the same linkage block.  

A) 

SNP 3 

SNP 1 SNP 2 

B) 

SNP 4 

Causal variant 
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from power to detect common variants of smaller effect, association studies using many 

more data points, such as single nucleotide polymorphisms (SNPs), may point towards a 

solution.  Undertakings such as the human genome project (6-9) attempted to collect such 

large-scale data, with the hope that its completion would give scientists the data necessary 

to improve our understanding of human disease, migration, evolution, and gene therapy, 

among other things. 

 While the initial idea was to apply such studies to simple Mendelian traits, it quickly 

became apparent that the vast majority of phenotypes and genetic architectures are 

complex, and furthermore that the effect size of any one particular mutation may be small 

(4).  In the presence of other confounding factors such as population structure, researchers 

soon found that the limitations of GWAS may not be able to be remedied simply by an 

increase in the amount of data, but also required statistical innovations.  Additionally, 

scientists began to question whether or not the basic principles of GWAS were sound.  In a 

report by Visscher et al., the authors surveyed researchers in the field and specifically 

address four points of contention:  That  

 

1.  GWASs are founded on a flawed assumption that genetics plays an 

important role in the risk to common diseases; 

2.  GWASs have been disappointing in not explaining more genetic 

variation in the population; 

3.  GWASs have not delivered meaningful, biologically relevant 

knowledge or results of clinical or any other utility; and 

4.  GWAS results are spurious (3) 

 



4 
 

 
 

Nonetheless, in the past several years some large successes have been reported by 

the GWAS community.   

Among those are the studies in 2005 and 2006 that implicated variants of the CFH 

gene and HTRA1 promoter with increased risk of developing age-related macular 

degeneration (AMD).  In these studies, Klein et al. and DeWan et al. discovered single 

nucleotide polymorphisms (SNPs) associated with nonneovascular (dry) and neovascular 

(wet) AMD, respectively, located in the CFH gene and the promoter of HTRA1 (10,11).  In 

dry AMD, the variant in CFH confers a greater than 7 fold risk for the disease in individuals 

who are homozygous (10).  In wet AMD, the variant confers a 10 fold risk (11). 

Other often-cited examples of the successes of GWAS are the studies in 2007 and 

2008 that uncovered the association between variants of the BCL11A gene with differing 

levels of fetal hemoglobin (HbF) expression (12-14).  Different levels of HbF are associated 

with varying degrees of morbidity and  mortality in sickle cell disease and β-thalassemia 

(13,15), which although they are monogenic disorders, show a surprising range of 

phenotypes, some of which are explained by levels of HbF.  These computational results 

were later experimentally validated by Sankaran et al., who showed that down-regulation of 

BCL11A expression results in increased HbF expression in primary adult erythroid cells, 

and who also proposed that directed down-regulation like this could be used to treat 

patients with sickle cell disease and β-thalassemia (15). 

In addition to these well-known examples, many other GWAS studies have identified 

susceptibility loci in diseases such as Crohn's disease (16), type 2 diabetes (17), and obesity 

(18).  A quick search for the keyword "genome-wide association study" results in nearly 

300,000 research papers published since 2005, with nearly a third of those having been 

published in the last four years, indicating that GWAS continue to be widely practiced and in 

greater numbers.  In spite of this, however, many doubts remain as to whether GWAS have 
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been biologically useful in most cases, especially when working with complex phenotypes.  

If the goal is to discovery targets for gene therapy, for example, then first we must first 

consider that many phenotypes may not be purely genetic, that the environmental 

component may be large, and that the effect of markers—even truly causal ones—may be 

limited (19).  For the purposes of this thesis, however, we are less concerned with the 

potential therapeutic benefits of successful GWAS than we are with the possibility of first 

discovering true and causal markers.  In chapter two we address one particular difficulty 

with GWAS, namely the confounding effects of population structure in the sample, which we 

discuss below.  We focus on the possibility of performing GWAS on S. cerevisiae, as a model 

organism that is highly structured.  

 

1.1.2:  POPULATION STRUCTURE AND CRYPTIC RELATEDNESS 

Though access to large datasets now lends new studies greater power, several 

persistent complications remain.  One of these is the presence of population structure in the 

samples being studied, which can lead to both false positives and a reduction in power.  This 

can arise due to shared ancestry among the individuals in the sample, or it can appear more 

subtly as "cryptic relatedness", relatedness between individuals for reasons unknown to the 

researcher.  In a classic example of the former, if testing for single nucleotide 

polymorphisms (SNPs) associated with hypertension in a population of African Americans 

and Caucasians, any SNPs which are found more commonly in African Americans would be 

more likely to be implicated, as hypertension is known to occur more frequently in that 

population.  In the latter case, large datasets such as those used in case-control studies of 

complex diseases may find that the affected individuals being analyzed may share genetic 

markers, either through unknown familial relatedness or simply a shared genetic 

background which contributes to the propensity for the disease (20).  While one can in 
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theory attempt to remove some of this confounding by carefully carrying out an experiment 

to avoid such factors, in practice this can be both impractical and costly.   

One example of this is a study of human height using more than five thousand 

individuals from the Framingham Heart Study (FHS), which reported a prediction R2 of 0.25 

using ten-fold cross validation when the prediction was performed on all individuals used in 

the analysis, reviewed in (19).  However, because there are many known familial 

relationships among individuals in the FHS, the authors performed the cross validation 

again while restricting the sample to individuals with no known relationship, which 

reduced the R2 to 0.15.  The authors of (19) performed their own analysis of height in more 

than seven thousand individuals from the FHS and found a similar R2 with close relatives 

removed.  However, they whittled down the sample further by restricting to those 

individuals with pairwise relatedness estimated using SNPs less than a given threshold.  

They found that as this threshold decreases, so does the R2 obtained.  Thus, the authors 

concluded, using a genetic definition of relatedness and statistical methods that correct for 

cryptic relatedness are important, as reported family relationships may not be sufficient to 

reduce confounding. 

One of the early and still popular methods for correcting for population structure 

possible relatedness between individuals is genomic control (GC) (20).  One of the reasons 

for the development of GC was to address the fact that in case-control studies, individuals 

with a particular disease are naturally more likely to be related to one another, and thus 

associations will be found to be stronger than they actually should be (20).  The method 

compares the both the Armitage trend test and the allelic chi-squared test and shows that 

the test statistics are inflated when compared to the case where the members in a 

population under study are related.  The authors define this inflation factor as the variance 

inflation factor, or VIF.  In brief, the inflation factor λ describes the additional variance 
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present in the expression dataset that can be attributed to the presence of collinearity 

between variables (such as the presence of highly linked genetic markers).  Pritchard and 

Donnelly (21) reformulate this inflation factor as 

 

    
           

      

   
  

where R is the number of cases and controls, K is the number of subpopulations 

within the population sampled,    and    are the fractions of cases and controls drawn from 

subpopulation k, respectively, and F is Wright's coefficient of inbreeding (21).  As we can 

see here, if the fractions of cases and controls drawn from each subpopulation k is equal, 

and there is no inbreeding in the population, then the inflation factor is 1, i.e., there is no 

inflation of the test statistic.   

Developed for case-control studies and later extended to quantitative traits (22), GC 

was shown to be effective at controlling the number of false positives induced by 

stratification.  One of the important assumptions when applying GC is that the population 

structure affects each locus identically—that is, GC produces a uniform correction over all 

loci.  Among the conditions under which this is approximately true are that the loci cannot 

have significantly different mutation rates or F (20).  Furthermore, it was also shown that in 

some cases, particularly when the effect of structure is large and a lower threshold for 

significance is desired, GC can suffer from a lack of power (23-25). 

Other methods applied to this problem include principal component analysis (PCA) 

and structured association.  PCA is a commonly used method of dimension reduction that 

can represent a dataset of many dimensions as a combination of a smaller number of 

linearly independent variables, where this number can be selected by the user.  Typically 

PCA chooses the top two independent variables (the "principal components"), so that each 

original data point can be represented in a two-dimensional graph for easy visualization.  
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While the idea of PCA extends back more than a hundred years or more, it has only recently 

been applied to the issue of population stratification (23).  Here the authors take as their 

high-dimensional data matrix the matrix of biallelic markers for each individual in their 

analysis, with individuals in rows.  Denote this matrix M.  The authors then perform PCA on 

the matrix 

  
 

 
     

where n is the number of markers in the study. 

While the first few principal components may not represent any particular 

subpopulations or ancestors exactly, the authors mention that these terms may be socially 

defined and as such may not best categorize the individuals (also cited in (21)).  This is in 

contrast to structured association (SA) methods that try to delineate the details of the 

population structure and correct for it accordingly.  The most well-known of these methods 

is STRUCTURE (26,27), which uses Markov chain monte carlo (MCMC) to estimate the 

proportion of ancestry of each individual from k ancestral populations, where k is defined 

by the user and may not be known.  In short, STRUCTURE defines each ancestral population 

by a set of allele frequencies at each marker, jointly estimating these allele frequencies as 

well as each individual's ancestry.  Furthermore, STRUCTURE allows for the presence of 

admixture.  Later versions of STRUCTURE also allowed for the presence of different types 

linkage disequilibrium between markers and also provided marker-specific estimates of 

ancestry (27).  A more detailed description of STRUCTURE can be found in 2.2.3:  Brief 

description of STRUCTURE and parameters.  After obtaining a genome-wide estimation of 

ancestry, then, these factors may be incorporated in a GWAS in order to control for false 

positives due to shared ancestry. 

It has now become popular to utilize mixed linear models (MLMs) to address the 

issue of population structure, and specifically cryptic relatedness.  Unlike methods such as 
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STRUCTURE which explicitly estimate the ancestry of each individual at both the genome 

level and at each individual marker, and also unlike genomic control methods which 

provide a single variable for correction across all markers, MLMs consider the similarity in 

ancestry pairwise between all individuals in the sample using a kinship matrix.  The kinship 

matrix can be constructed in any number of ways, provided it is positive semidefinite.  Most 

typically this matrix is defined as the identity-by-state (IBS) matrix between all pairs of 

individuals (28).  Then, some part of the phenotypic similarity between individuals can be 

explained by their genotypic similarity.   

One of the factors that makes MLMs appealing is that it is not necessary to explicitly 

define individual ancestry as STRUCTURE does, and as such may be able to better capture 

cryptic relatedness, which might not be clear when we are forced to assume k ancestral 

populations.  At the same time, MLMS are also more flexible than GC, allowing for different 

levels of similarity between individuals in the sample.  However, the issue of whether MLMs 

are effective at analyzing highly structured populations such as S. cerevisiae is less clear, and 

this is the topic we focus on in Chapter 2:  Genome-wide association studies in highly 

structured populations.  A detailed description of the mixed linear model is given in 1.3:  

Mixed linear models. 

As mentioned above, the variance inflation factor, or VIF, is one way to determine 

whether or not population structure exists in a sample.  Another commonly used 

visualization for this is by means of a quantile-quantile (QQ; sometimes percentile-

percentile, PP) plot.  These plots are constructed by plotting the significance values 

returned by the model along the y axis against their expected values along the x axis, which 

should be uniform.  Thus, deviation between model and data results in a deviation between 

the observed versus expected line and the x-y axis.  In cases where stratification causes an 

inflation of the significance of the markers under study, the QQ plot will present as a 
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concave curve.  The presence of true associated markers will also cause a shift in the curve, 

but as the number of true markers is typically much smaller than the set of all markers 

tested, these can be identified as a slight overabundance of markers with low p-values, 

while the remainder of the curve is unaffected. 

 

1.2:  MICRORNA MOTIF DISCOVERY 

1.2.1:  HISTORY, BIOGENESIS, AND MECHANISM 

 In the years since their discovery, small, non-coding RNAs (ncRNAs) have been 

found to be pervasive actors in gene regulation (29-32), adding yet another layer of 

complexity to our understanding of how genes are expressed.  Among the most common of 

these that have been discovered are small interfering RNAs (siRNAs), piwi-interacting RNAs 

(piRNAs), and microRNAs (miRNAs).  These three classes of small RNAs have different 

modes of biogenesis, different mechanisms, and play different roles in the regulation of 

gene expression as well as the expression of transposable elements, for example.   

 siRNAs were the first type of small RNA discovered, in a seminal paper by Fire and 

Mello in 1998 (33).  While the process which later came to be known as RNA interference, 

or RNAi, was first observed in the 1980s in bacteria, Drosophila, mammalian cells, and 

plants (34), the first major step towards understanding the mechanism came when Fire and 

Mello found that the introduction of double-stranded RNA (dsRNA) into C. elegans was 

effective in repression of gene expression, and neither the sense nor antisense strand 

separately.  Meanwhile in 1993 the first observation of a miRNA was reported (35), and in 

the years that have followed, a flurry of studies of small (as well as not-so-small) ncRNAs 

has uncovered new variations in a host of different organisms. 
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 The functions of these various ncRNAs are as of yet only partially understood.  While 

siRNAs were originally thought to be generated strictly from exogenous agents such as 

viruses, potentially as a protective measure, several forms of endogenous siRNAs, 

sometimes called endo-siRNAs (29), have also been discovered, with several classes being 

present in plants.  These endogenous siRNAs are thought to protect the organism against 

retrotransposons and also potentially to promote heterochromatin formation (29). 

 piRNAs are one of the most recently discovered class of small ncRNAs, and are 

thought to primarily protect germ line cells against transposons (29,36).  As a testament to 

the plasticity of the field, a review of small RNAs published in 2008 (37) described both 

repeat-associated RNAs (rasiRNAs) and 21U-RNAs, which in a review published just a year 

later were both reclassified as piRNAs (29).  A potential new class of tRNA-derived small 

RNAs have also been reported recently (38-42); however, reports are not consistent on, for 

example, the RNA fragment length, or even if we should expect a narrow window of 

fragment lengths as we would with siRNAs, miRNAs, and piRNAs.  There is also no known 

function for these tRNA-derived RNAs; however, at least one such RNA is reportedly 

essential for cell proliferation (42).   

As sequencing technologies become cheaper and more efficient, our ability to 

characterize in detail the small RNA landscape across and within organisms will 

undoubtedly uncover exciting new regulatory functions and complexities.  However, the 

scope of this thesis will focus on miRNAs, one of the very well studied classes of small 

ncRNAs, which we will discuss further here. 

miRNAs are approximately 22 nucleotides long, and can be differentiated from other 

small RNAs such as siRNAs by the fact that they arise from their primary transcripts, small 

hairpin structures called pri-miRNAs (see Figure 2).  Though not well characterized, the pri-

miRNA is transcribed from miRNA genes primarily by RNA polymerase II (43), though 
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transcription has also been reported by Pol III (44).  These primary transcripts are then 

processed in the nucleus into so-called precursor miRNAs, or pre-miRNAs, by the Drosha 

RNase III endonuclease and cofactor DGCR8, which cleaves the bottom of the hairpin 

structure (30,45).  The pre-miRNAs are exported into the cytoplasm, where the final 

processing step is performed by the RNase III enzyme Dicer (30), which cleaves away the 

hairpin portion of the pre-miRNA, leaving a duplex consisting of the mature miRNA strand 

and its complement, often denoted miRNA* and called the "star strand" (46), which is 

typically degraded in the cytoplasm, though functional miRNA* activity has been reported 

(47).  Similar to siRNAs, the mature miRNA strand is loaded into the Argonaute protein of 

an RNA-induced silencing complex, or RISC (48) and then guided to its target, where 

targeting is often defined by some level of sequence complementarity of the miRNA to the 

mRNA, though this mechanism is considerably more complex in animals than in plants (see 

1.2.2:  miRNA target prediction and motif discovery).  In the case of perfect complementarity, 

Argonaute-catalyzed mRNA cleavage typically occurs; otherwise some form of translational 

repression occurs instead (48). 
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Figure 2 

miRNA biogenesis begins with the miRNA gene being transcribed by RNA polymerase II or RNA polymerase III, 

into a hairpin structure called the pri-miRNA.  The pri-miRNA is processed by Drosha into what is called the pre-

miRNA, which is exported into the cytoplasm, where the hairpin is removed by Dicer and the miRNA:miRNA* 

duplex is unzipped by a helicase to separate the mature miRNA and the star strand, which usually is quickly 

degraded.  The mature strand is then loaded into the RNA silencing complex and is guided to its target.  

 

It is estimated that more than 60% of all human protein coding genes are regulated 

by miRNAs (32,49).  They have been implicated in essential processes such as cell 

development, hematopoiesis, immune function, and differentiation (50-52), as well as in 

many diseases, such as autoimmune diseases (53) and several types of cancer (54-57).  

miRNA genes as well as their targets have been found to be widely conserved among 

mammals (31,32,49), which further supports the importance of the role they play in fine 

tuning gene regulation.  Their expression is not only highly tissue- and cell- specific (30), 

but their expression also varies temporally (46), so characterizing which miRNAs are 

present and playing an active role is a complex endeavor, and furthermore high expression 
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of a particular miRNA species does not necessarily indicate a large effect size, since 

competition for mRNAs or even argonaute can affect miRNA efficacy (58).   

 

1.2.2:  MIRNA TARGET PREDICTION AND MOTIF DISCOVERY 

Given the biological significance of miRNAs, being able to predict a particular 

miRNA's target genes, or being able to determine which miRNAs are active in a particular 

cell type, are of great interest.  

 As mentioned in the previous section, the biological mechanism by which miRNAs 

act is partially understood, insofar as the mature miRNA strand is directed to its target by 

the RISC.  However, the sequence specific determinants of binding are still somewhat 

unclear.  Predicting the targets of plant miRNAs is more straightforward, as sequences that 

demonstrate extensive complementarity have been shown to largely be true targets (48).  

However, this is not always the case for metazoa, and many computational algorithms have 

been developed to address the nuances of this issue.  Together they suggest three things:  

First, that perfect complementarity to the seed region of the miRNA (nts 2-7 at the 5’ end) is 

required; second, that conserved pairing to this region is enough for predicting targets 

better than random; and last, that highly conserved miRNAs have many conserved targets 

(48).  In general, pairing at the 6 nt seed region alone is not strong enough to discover true 

targets, but the three so-called canonical sites are.  These canonical sites consist of a seed 

site match with an additional A paired to the first nucleotide of the miRNA (from the 5' end), 

called a 7mer-A1, or simply A1, site; a seed site match with an additional Watson-Crick 

match across nucleotide 8 of the miRNA, called a 7mer-m8 site; and a seed site match with 

both A1 and nt 8 matches, called an 8mer site (48).   

Occasionally there is also compensatory pairing at the 3’ end of the miRNA, for 

example if there is imperfect pairing in the seed region, but such examples are rare.  
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Perhaps the most well known instance of imperfect pairing in the seed region is a "G-bulge" 

site, which occurs when a G nucleotide appears in the mRNA between nucleotides 5 and 6 of 

the mature miRNA.  This type of non-canonical binding was shown to be common in miR-

124 binding sites in mouse brain, occurring in at least 15% of all Ago-miRNA interactions 

(59). 

 While the importance of stringent Watson-Crick binding to the seed sequence is 

certain, there are other factors which can affect miRNA binding efficacy.  For example, 

binding sites that are flanked by regions of high AU content and that are located away from 

the centers of long UTRs and stop codons are more likely to be bound by miRNAs (48).  

Additionally, when a miRNA binds near another, their combined effect can be greater than 

the sum of their individual effects (48). 

 Other factors that have been explored in miRNA:mRNA target pair prediction are 

the expression levels of the argonaute proteins, the miRNAs themselves, the expression 

levels of potentially competing miRNAs, and the expression levels of mRNAs competing for 

miRNA binding.  Stanhope et al. (58) incorporated all of these into a multifactor linear 

model aimed at delineating true pairs of miRNAs and their target mRNAs across various 

tissue samples.  In the following, i denotes the index of the tissue sample, and j indicates the 

index of the miRNA:mRNA target pair.   
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Here      
 
 and        

 
 are the expression levels of the mRNA and miRNA, 

respectively, in the jth target pair tested, in the ith tissue sample; Ago2 and Ago134 

represent the expression levels of Argonaute 2 and Argonautes 1, 3, and 4; and      
  

 and 

      
  

 are the expression levels of the all mRNAs and miRNAs, respectively, not in target 

pair j.  The authors found that after performing model selection based on the AIC, model fit 

increased and the so-called AIC-optimized submodel was able to identify many more target 

pairs than the "marginal model", i.e. a simple correlation of miRNA and mRNA expression 

levels without systems biology components (58). 

 In this manuscript we focus on the problem of miRNA motif discovery, which 

attempts to predict active miRNAs within a particular cell type and/or tissue instead of 

attempting to discovery active miRNA and mRNA target pairs.  In modeling, then, we 

assume that miRNA expression levels are unknown, or that those most highly expressed 

miRNAs are not necessarily the ones with the largest effects.  Existing methods instead use 

thousands of mRNA or protein expression measurements coupled with sequence data to 

predict potential seed motifs or canonical binding motifs that may correspond to the active 

miRNAs.  A more in-depth discussion of current methods in miRNA motif discovery can be 

found in 3.3.1:  Current methods in miRNA motif discovery. 

 

1.3:  MIXED LINEAR MODELS 

1.3.1:  HISTORY AND SIGNIFICANCE OF THE MIXED LINEAR MODEL 

 Mixed linear models have been applied extensively in genome-wide association 

studies (GWAS) for the purpose of correcting for population stratification.  The seed of the 

idea was planted by R. A. Fisher in his major 1918 work, The correlation between relatives 
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on the supposition of Mendelian inheritance, where the author was concerned with the 

amount of phenotypic variation attributable to genetic relatedness between individuals, and 

how to separate this from the variation attributable to other, such as environmental, effects 

(60).  In today's terminology, this is equivalent to the separation of variance components, 

and determining the amount of heritability of a trait.  At the time, however, even the idea of 

"variance" was not established as it is today, and in fact Fisher was the first to coin this term 

in the selfsame paper (60).  Perhaps surprisingly to us now, there was some hesitation on 

the part of the reviewers (Karl Pearson of the Pearson correlation and Reginald Punnett of 

the Punnett square) to accept the paper (61)—not with the mathematics of the paper, but 

primarily with Fisher's assumption that there may be many genes underlying a phenotype.  

As Pearson concluded in his review, "Whether the paper be published or not should depend 

... [on] the probability that Mendelians will accept ... a multiplicity of independent units not 

exhibiting dominance or coupling" (61).  This assumption of complex phenotypes is an idea 

that we now take for granted. 

 Since then the theory of mixed linear models (also linear mixed models) has been 

well developed and widely applied.  Its usefulness is readily appreciated:  In the linear 

model, one of the assumptions is that the model's residuals are independent.  However, in 

many cases this assumption is violated.  For example, when the individuals being studied 

are related, their response variables are expected to be correlated as well.  Mixed linear 

models are popular in analyses of longitudinal data as well, since repeated measurements 

from a single individual are expected to be related.  In these cases we would like to 

distinguish between what is called a fixed effect and a random effect.   

The easiest way to understand the difference between the two is via example:  

Suppose we were a pharmaceuticals company interested in studying the effect of a drug.  

We distribute the drug to several hospitals, who each administer it to several of their 
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patients.  While we are interested only in the effect of the drug, we will likely see positive 

correlations among the responses of patients attending a single hospital, in what is known 

as a "batch effect".  In this toy example, the effect of the administering hospital on the 

response is the batch effect, which is not of interest but which we must tease out of the drug 

effect.  Depending on the situation, the hospital effect may be considered a fixed or a 

random effect:  If the scope of our study extends only to a particular subset of hospitals, and 

we are interested in the effect of each of those hospitals specifically, then what we have is a 

fixed effect.  If, on the other hand, we randomly selected a handful of hospitals from across 

the nation, with no interest in the results of any particular hospital, then we have a random 

effect.  Another way to define the difference between a fixed and a random effect is that a 

fixed effect in a model encompasses all possible levels of that factor—for example, the drug 

factor in this study would be a fixed effect, since we are studying all levels of the drug 

(either it is administered or it is not).  However, the hospital effect as we have described it 

does not encompass all possible levels, since we are randomly selecting a few hospitals out 

of thousands of potential hospitals across the nation.  This is where the terminology random 

effect comes from:  In effect, the effect attributable to a particular hospital is randomly 

selected from a probability distribution.   

 

1.3.2:  OVERVIEW OF THE MIXED LINEAR MODEL 

 Here we give a brief description of the mixed linear model, taken primarily from 

papers developed by members of the GWAS community, Searle's book Variance components, 

and also Jiang's Linear and Generalized Linear Mixed Models and Their Applications 

(25,28,62,63), which the reader can reference for further detail.  We first discuss briefly the 

linear model with respect to GWAS, and then expand the model to include random effects, 

which produces the mixed linear model. 
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 In the case of a simple linear model in which we are testing for the effect of a single 

SNP, with no other covariates, the model is formulated as  

               

where    represents the phenotype of individual i,     is a binary variable representing 

either the presence or absence of SNP j in individual i,    is the phenotypic effect of SNP j on 

individual i, and    is an error term associated with individual i.  The variance depends 

solely on   , such that 

         

         

                  
  

             for     

In this case,     is called a fixed effect.  Fixed effects are constants, and represent all 

levels of a factor of interest.  Here,     is either 0 or 1, representing all possible levels of the 

SNP factor (either present or absent). 

For a mixed linear model, the equation is written similarly, with the addition of a 

random effect,   : 

                  

While    is presented no differently than a fixed effect, the way in which it is 

interpreted is different.  Namely, the random effect is not an effect that we have any 

particular interest in.  As in the example we presented in the previous example with a drug 

trial in randomly selected hospitals, the hospital effect is not of interest to us—it is the 

performance of the drug.  This is not reflected in the equations above for readability, but is 

implicit. 

The mixed linear model is subject to the following additional constraints: 
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             for all i, j 

From this we can derive 

          
    

 , 

which are called the variance components of the model.   

In general, the mixed linear model can be formulated as 

           

where in GWA studies, 

                           

                          

                                                      

                                                               

                             

Here, 

         
   

         
  , 

and thus, 

         
        

  . 

The notable addition in these equations are the matrices Z and K.  Z is simply an incidence 

matrix which allows the relevant random effects to be assigned to the relevant individuals.  

In the drug example, patients would be assigned to clinics via the Z matrix. 

Generally speaking, K constrains the covariance structure of the individuals in the 

analysis, which is not defined by the symmetrical error    alone, which can be defined in an 

arbitrary way, as long as the matrix is positive semidefinite, i.e., the eigenvalues of the 

matrix are strictly positive, which is important in solving for the parameters.  In GWAS, this 
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matrix is typically calculated as an identity-by-descent (IBD) or identity-by-state (IBS) 

matrix.  In an IBS matrix, a nucleotide or sequence segment is considered identical between 

two individuals if they are simply the same.  In an IBD matrix, there is the additional 

condition for identity that the nucleotide or sequence segment is inherited without 

recombination from a common ancestor.   

Kang et al. (25,28) cite their own observations and several other studies that show 

that use of various types of kinship matrices such as IBS and IBD result in little estimation 

differences, and in some cases IBS is able to outperform more complex matrices, though 

they note that this may change in studies where the individuals are more recently related.  

Due to the nature of GWAS, it is oftentimes impossible to determine exact ancestries of the 

samples, and thus an IBS matrix is usually applied. 

Mixed linear models may be solved using a restricted maximum likelihood 

estimation, where the variance components   
  and   

  are estimated while the fixed effects 

are integrated out.  This involves several expensive operations, including taking the 

eigendecomposition and inverse of the kinship matrix, which in cases of large GWA studies, 

can be extremely unwieldy.  Thus, scientists in the GWAS community have been at the 

forefront in creating software to handle large datasets quickly and accurately.  These 

software are discussed in section 2.2.6:  Current methods in GWAS.   

Mixed linear models are typically solved either by maximum likelihood (ML) or 

restricted maximum likelihood (REML) methods.  The algorithms we investigated in 

chapters 2 and 3 typically allow users to select either ML or REML and in each case we 

select REML.  The issue with the maximum likelihood estimators (MLE) of the variance 

components is that they can be biased; furthermore, when we are primarily interested in 

the estimation of the variance components, it may be beneficial to bypass the estimation of 

all parameters in favor of one which eliminates nuisance parameters, such as the fixed 
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effects (63,64).  The REML first estimates θ, the vector of all variance components, after 

which estimation of the fixed effects β can be estimated by ML, with     , with    the REML 

estimator.  Later, Bayesian derivations of the REML estimator showed that it could be 

derived as the marginal likelihood of the model with the fixed effect parameters integrated 

out (63).   

In the chapters that follow we consider the efficacy of mixed linear models in 

correcting for population and cryptic relatedness in a highly structured population S. 

cerevisiae.  We consider the benefits of including additional fixed effect factors to a mixed 

linear model and find that in some cases, the additional factors increase the power of our 

model.  Then, we apply a mixed linear model to a new type of problem, of computationally 

discovering small RNA motifs, and show that reinterpreting the parameters of the MLM in 

GWAS leads to improved miRNA prediction, by correcting for background sequence 

composition.   
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CHAPTER 2:  GENOME-WIDE ASSOCIATION STUDIES IN HIGHLY 

STRUCTURED POPULATIONS 

2.1:  INTRODUCTION 

As covered briefly in the introduction, one of the primary issues with GWAS today is 

the presence of different types of population structure in experimental samples.  In this 

chapter we investigate the effectiveness of using GWAS to map complex traits in highly 

structured populations such as Saccharomyces cerevisiae.  S. cerevisiae is a model organism 

for several reasons, some of which are:  Firstly, it is relatively easy to acquire and study; 

secondly, due to its small genome size, it is relatively cheap to sequence; and thirdly, it is 

widely used in human consumption.  The different strains of S. cerevisiae are commonly 

used in beer, wine, and sake fermentation, as well as bread baking.  Other strains are 

associated with food spoilage, natural fermentation, and on the fruits of ripe plants (65).   

We demonstrate that while the population structure of S. cerevisiae is well-defined, 

association studies still benefit from applying mixed linear models for the purposes of 

correcting for cryptic relatedness between individual strains.  Furthermore, we 

demonstrate that the addition of a local ancestry variable can reduce the deviance between 

expected and observed values even more. 

 

2.2:  DATA AND METHODS 

2.2.1:  S. CEREVISIAE SEQUENCE AND EXPRESSION DATA 

We obtained 38 whole-genome sequences of S. cerevisiae from Liti et al. (65).  Each 

sequence belongs to one of the five known populations of the yeast, labeled European, 



24 
 

 
 

Malaysian, North American, West African, and Sake.  These strains were from varying 

sources, including the lab, baking, fermentation, and sake (65).  In total we found 150,077 

SNPs over 16 chromosomes, excluding triallelic sites.  After applying a sequential SNP 

selection procedure to eliminate SNPs that are tightly linked (see 2.2.5:  SNP selection 

procedures), we retain 3,723 SNPs. 

In addition to genomic data, we obtained quantitative phenotype expression data 

for most of the same strains for 201 traits from Warringer et al. (66).  The 201 traits 

correspond to three types of measurements in each of 67 different environments.  The three 

measurements types are growth rate, adaptation, and efficiency, where growth rate is how 

quickly proliferation occurs, adaptation is proliferation lag, and efficiency is how population 

density change (66).  There was both sequence and expression data for 35 strains of S. 

cerevisiae. 

 

2.2.2:  ESTIMATION OF GLOBAL AND LOCAL ANCESTRY 

We used the program STRUCTURE (27,67) to determine both global and local 

ancestry of each of our 35 strains of S. cerevisiae.  For each sequence, global ancestry is 

interpreted as the percentage of the sequence which originated from a particular ancestral 

strain, for each of K ancestral strains.  The number of ancestral strains is predefined by the 

user and given to STRUCTURE as a parameter.  To determine the most likely number of 

ancestral strains, we ran a shorter iteration of STRUCTURE (see 2.2.3:  Brief description of 

STRUCTURE and parameters) for values of K from 3 to 8 (1).  For each iteration, STRUCTURE 

returns a log-likelihood of the probability of the data,           , given the parameters.  

Higher (i.e. less negative) log-likelihoods indicate a better fit to the data.  Though the 

selection of K with STRUCTURE via this method is ad hoc, we find that K=6 provides the best 

fit to the data, which is concordant with previous studies (65,68), and so we use this 
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parameter for an extended analysis of the data in order to obtain the most accurate estimate 

of the population structure (see long run parameters in 2.2.3:  Brief description of 

STRUCTURE and parameters).  A breakdown of global ancestry for each strain can be seen in 

Figure 3. 

 

Figure 3 

Results of STRUCTURE global ancestry estimates, both for windowed and sequential SNP selection procedures.  

STRUCTURE estimates are very sensitive to the choice of SNPs used in the analysis—the selection of SNPs 

relatively uniformly along the genome results in decreased signal in the results.  The global ancestry maps seen 

in the bottom, resulting from sequential SNP selection, is very similar to maps of global ancestry in S. cerevisiae 

obtained previously (65,68). 

We found that the Malaysian, West African, Sake, and European strains were 

primarily descended from a single ancestral population, whereas the North American 
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strains were a so-called "mosaic" of four different ancestral populations.  The remaining 

strains show heavy mosaicism, and are grouped together and referred to simply as mosaic 

strains.  These estimates of global ancestry are in line with a PCA plot of the same SNPs, 

which shows five distinct populations as well as the mosaics more spread out (see Figure 5). 

Figure 3 also demonstrates that the SNPs used in the STRUCTURE analysis 

significantly impact the estimates obtained.  Because SNPs in background linkage 

disequilibrium (LD) confound STRUCTURE results, they must first be removed.  The way in 

which these SNPs are removed affects the results to no small degree.  The results obtained 

in Figure 3 are obtained using the sequential SNP selection procedure detailed in 2.2.5:  SNP 

selection procedures. 

In addition to global ancestry estimates, STRUCTURE also produces local ancestry 

estimates based on a hidden Markov model (27).  To verify the STRUCTURE results, we 

used the program WINPOP, which has improved accuracy for local ancestry estimation 

when the ancestral populations under analysis are closely related (69).  For WINPOP, we 

needed to input both "ancestral" strains genotypes as well as mosaic strain genotypes in 

order to learn the local ancestry of the mosaics.  For this purpose, we assumed that the 

populations deemed by STRUCTURE to be primarily unmixed, that is, the Malaysian, West 

African, and European strains, to represent the "ancestral" genotypes.  The North American 

strains were grouped with the mosaics for this analysis.  Further details of the WINPOP 

algorithm and parameters used can be found in 2.2.4:  Brief description of WINPOP and 

parameters. 

 

2.2.3:  BRIEF DESCRIPTION OF STRUCTURE AND PARAMETERS 

The authors of STRUCTURE introduce it as a Bayesian clustering algorithm, which 

seeks to determine two parameters:  the population of origin of the individuals Z, and the 
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allele frequencies of the ancestral populations P, given the genotypes of the individuals in a 

sample X (67).  In the original paper, the authors assumed Hardy-Weinberg equilibrium 

within populations and complete linkage equilibrium between loci in each population and 

were interested in finding Z and P that maximized the likelihood function          .  In the 

admixture model, there is an additional parameter Q, a vector of length K for each individual 

denoting the proportion of the individual's genome that originated from one of K ancestral 

populations.  Let      denote the admixture proportions of individual i,         
   
     

   
 , 

with   
   

 denoting the proportion of individual i's genome derived from ancestor j.  The 

authors assume a Dirichlet distribution for     , i.e.                 (67).  The parameter 

  essentially determines the distribution of ancestry proportions:  When   is small, an 

individual's ancestry will be primarily from a single population; when   is large, an 

individual's ancestry will evenly originate from all K populations.  

The parameters are solved using an MCMC algorithm and Gibbs sampling, via 

Algorithm 2 in (67).  In short, the parameter P and Q are first sampled from the distribution 

                 .  Then, Z is estimated from                   .  Lastly,   is updated 

using a Metropolis-Hastings step.  These three steps are performed iteratively for a user-

specified number of steps.  The parameter not estimated from the data is K, the number of 

ancestral populations.  While the authors give some indications on how to estimate K by 

approximating         , the solutions are ad hoc and we primarily rely on our own prior 

knowledge of how many distinct populations are on our data set.  For example, values of K 

less than 6 in our data fail to show clear separation of the five “clean” populations of S. 

cerevisiae and the mosaic strains.   

Updates in the STRUCTURE algorithm (27) allowed it to handle some types of 

linkage disequilibrium between markers.  In our analyses, we allow both admixture to occur 

and apply the linkage model.  Introducing admixture into the model allows for an individual 
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to belong to multiple ancestral populations, while the linkage model accounts for linkage 

disequilibrium (LD) between markers that arise due to admixture (27).  The latter, termed 

"admixture linkage disequilibrium", should not be mistaken for "background linkage 

disequilibrium", or LD present in ancestral populations prior to admixture.  STRUCTURE's 

linkage model accounts for two types of linkage:  Admixture LD, mentioned previously, and 

mixture LD, which the authors termed the linkage expected when large chunks of a genome 

are inherited together.  Essentially, the linkage model allows markers to be inherited in 

linkage blocks that derive from a single ancestral population, instead of considering each 

marker separately.  

The MCMC procedure in STRUCTURE jointly estimates population allele frequencies 

for each of the ancestral populations and also the population of origin of each locus in the 

individuals being analyzed.  The number of ancestral populations K is predefined by the 

user.  For the purposes of model selection, STRUCTURE returns the estimated log-likelihood 

of the data given the choice of K. 

We used two sets of parameters for two separate types of STRUCTURE runs:  One 

was a preliminary run used for SNP selection (see 2.2.5:  SNP selection procedures), where 

all parameters used were default except for PLOIDY = 1; BURNIN = 5000; NUMREPS = 5000; 

LINKAGE = 1; ADMBURNIN = 2500; and SITEBYSITE = 1 (1).  Briefly, these parameters can 

be described as:  PLOIDY:  ploidy of the organism; BURNIN:  how many iterations of MCMC 

to run before data collection begins; NUMREPS:  number of iterations of MCMC to run after 

the burn-in period; LINKAGE:  indicates usage or not of the linkage model; ADMBURNIN:  

number of burnin iterations to run with the admixture model when using the linkage 

model; SITEBYSITE: whether or not to output local ancestry percentages (1 indicates True). 

We also ran STRUCTURE for an extended period of time in order to obtain the most 

accurate estimations of local and global ancestry.  The long STRUCTURE runs used for the 
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rest of the analysis used the same parameters except for BURNIN=50000; 

NUMREPS=50000; ADMBURNIN=25000. 

 

2.2.4:  BRIEF DESCRIPTION OF WINPOP AND PARAMETERS  

The primary purpose of STRUCTURE is to provide global estimations of ancestry; 

however, STRUCTURE also returns per-locus estimations.  We use the STRUCTURE 

estimations of ancestry but verify that these are accurate using WINPOP, a program 

specifically addressing the issue of determining local ancestry where the ancestral 

populations are closely related.  Our results show that the STRUCTURE and WINPOP results 

are similar, and as we do not believe the ancestral populations of S. cerevisiae to be closely 

related enough as to warrant a separate estimation of local ancestry using WINPOP, we use 

the STRUCTURE estimations of local ancestry for consistency in the remainder of our 

analyses. 

WINPOP builds off of a previous method LAMP (70), which uses a windowed 

method, assigning ancestry per window and casting a vote for markers that fall into more 

than one window.  The shortcomings of LAMP that WINPOP addresses are 1) LAMP 

assumes no recombinations have occurred within any given window; 2) window length is a 

fixed number that depends on the number of generations since admixture and 

recombination rate, which means it remains fixed regardless of how closely or distantly 

related the populations admixed are (69).  The authors demonstrated that by implementing 

these two fixes, namely by assuming a single recombination per window instead of none, 

and allowing for variable window size dependent on the genetic similarity between the two 

admixed populations within the window, the improvement in estimating local ancestry can 

be substantial.  This is particularly true when the admixed populations are very similar, 

such as admixture between Japanese and Chinese populations (69). 
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WINPOP estimates per locus ancestry for admixed populations, and unlike 

STRUCTURE must be given genotypes of the ancestral populations being mixed.  Thus, we 

took the Malaysian, West African, Sake, and European strains as the ancestral populations 

(as estimated by STRUCTURE), and took the North American and remaining mosaic strains 

as the admixed populations, to estimate their local ancestries.  WINPOP also requires a 

recombination rate r and an estimated number of generations that have passed since 

admixture g.  The former we took from a previous study (71) for a value of           .   

Additionally, we found the results to be very sensitive to the parameter g, the 

estimated number of generations that have occurred since admixture.  While the number of 

generations since admixture is unknown, since S. cerevisiae primarily reproduces asexually 

it can be estimated that the number of outcrossing events since the MCRA of two particular 

strains is g = 314 (71).  STRUCTURE gives a very different estimate of g = 28.  Thus, we ran 

WINPOP for the following range of generations:  5, 10, 15, 28, 157 and 314.  The first four 

values result in very similar patterns of ancestry while the last two values give very noisy 

results. We found that the local ancestry calls were significantly similar between WINPOP 

and STRUCTURE (data not shown) so we used the STRUCTURE local ancestry estimates for 

the remainder of the analysis. 

 

2.2.5:  SNP SELECTION PROCEDURES 

As described previously, it is important to remove SNPs in high linkage 

disequilibrium (LD) because STRUCTURE does not model background LD.  To do this, we 

implemented two procedures for selecting an independent set of SNPs:  a “sliding window” 

procedure and a “sequential” procedure to test different methods of SNP selection and how 

it affects STRUCTURE results.   
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For the sliding window procedure, we selected a small number of SNPs within each 

window of N consecutive SNPs.  The SNPs within a window were selected using a linkage 

disequilibrium (LD) criterion, where we computed, for each pair of SNPs in the window, the 

measure of LD defined by D'2, where we compute D' as 

 

   
 

    
 
                           

    
 

      
                                          

                                          

  

 

If the LD was above a threshold, the SNP with more missing data was removed, with 

ties broken randomly.  We tested window sizes of N = 10 to 100 consecutive SNPs in 

increments of 10, and D'2 thresholds of 0.1 to D = 0.9 in increments of 0.1.  These 

parameters resulted in approximately 1700 SNPs to 15,500 SNPs selected out of a total of 

150,077 SNPs.  Most windows contained one SNP, resulting in a roughly uniform 

distribution of SNPs across the genome.  The window size N was the main determinant of 

the number of SNPs selected and the threshold D'2 had a relatively small effect on the choice 

of SNPs (data not shown).  We chose a final window size of N = 30 as the number of SNPs 

chosen at this window size was approximately the average of all trials (data not shown).  

Instead of removing the SNP with more missing data, we also implemented several other 

procedures, including removing a random SNP, choosing the SNP with the higher minor 

allele frequency (MAF) and choosing the SNP that was more differentiated among the 

ancestral populations, as previously described (72).  However, the set of SNPs selected was 

essentially unchanged (data not shown). 
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For our sequential SNP selection procedure, we identified LD blocks along a 

chromosome and selected one representative SNP per block.  Starting with the first SNP in a 

chromosome (SNP A), we calculated LD as described previously between this SNP and the 

next SNP (SNP B).  If SNP B was in high LD with SNP A where "high LD" is defined by some 

upper bound on D'2, the SNP with less missing data was kept, with ties broken randomly.  If 

SNP B was in LD with SNP A but not above a certain threshold (lower bound), the next SNP 

was considered and no change was made to SNP A.  If SNP B was not in LD with SNP A, then 

we kept SNP A as the defining SNP for the previous LD block and let SNP B begin a new LD 

block.  We varied the lower bound cutoff and the upper bound cutoff from D'2 = 0.05 to 0.95 

in increments of 0.05 and found that the upper bound cutoff did not significantly impact the 

number of SNPs selected, while the lower bound cutoff had a significant impact, with more 

SNPs selected with a higher lower bound.  This trend plateaued at a lower bound of 0.90 

(given an upper bound of 0.95), with approximately 5700 SNPs.  We chose a D'2 cutoff for 

high LD of 0.95 and a D'2 cutoff for low LD of 0.16, resulting in a total of 3723 SNPs.  We 

compared the distribution of SNPs chosen with a more relaxed lower bound of D'2 = 0.5 to 

the distribution of SNPs chosen with D'2 = 0.16 and found that both patterns were 

consistent (data not shown). 

 We compared the SNPs selected by both of these methods in each chromosome by 

looking at a few measures:  First, we looked at the distribution of SNPs across the 

chromosome.  Second, we compared the SNP distribution with known areas of high and low 

recombination rate.  These two measures give us a sense of how much information is 

captured by the selected SNPs—we want to select more SNPs in areas of higher 

recombination and low LD and fewer SNPs in areas of low recombination and high LD, since 

we are interested in SNPs that can give us a better view of the ancestral landscape. 
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 We obtained regions of exceptionally high and low recombination activity from (73) 

and show a representative plot of the overlap of these regions with the SNPs selected by the 

windowed and sequential methods in Figure 4.   

 

Figure 4 

Comparison of sequential and windowed SNPs.  SNPs selected by the windowing method (bottom) tend to be 

more uniform across the genome whereas SNPs selected by the sequential method (top) tend to follow the 

recombination landscape of the genome more closely.  Red lines represent the position of the centromere, bright 

green bars represent crossover recombination hotspots, cyan rectangles represent non-crossover 

recombination hotspots, and orange represents overall recombination hotspots, as determined by (73). 

 

We see that the SNPs selected by the sequential method are spread much less 

uniformly along the chromosome, and that in general we see that blocks of high crossover 

recombination correspond to denser SNP islands.  Furthermore, we see that fewer SNPs 
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were selected near the centromeres (represented by the red bar), where fewer crossover 

recombinations occur.  These patterns are not observed by SNPs selected via the windowed 

method, which in general are spread very uniformly regardless of recombination hotspots.  

Thus, we performed all further analyses with SNPs selected by the sequential method.  

When we set the LD cutoff to D'2 = 0.16, the sequential procedure resulted in a set of 3723 

SNPs, which is similar to the number of SNPs used in the STRUCTURE analysis of (65).  To 

reiterate the admixture result of STRUCTURE and our selection of k=6, we performed 

principal components analysis using the 3723 SNPs and found that the non-admixed strains 

found by STRUCTURE cluster together (Figure 5) in five distinct clusters, suggesting that 

our selection of k was appropriate. 

 

Figure 5 
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PCA plot of sequentially selected SNPs.  Second principal component plotted against the first for each of the 

strains after performing principal components analysis on the genotype matrices including the sequentially 

selected SNPs.  The results are consistent with the STRUCTURE estimates of global ancestry for each of the six 

"populations". 

 

2.2.6:  CURRENT METHODS IN GWAS 

We focused on the presence of global and local ancestry covariates in both linear 

and mixed linear models.  A general linear model (which we refer to as LM) without 

covariates is our baseline comparison model, as it does not correct for any kind of 

population structure.  In LM models, the estimates of global ancestry can be used as a fixed 

covariates to correct for population stratification.  We also analyze the linear model with 

local ancestry estimate covariates, as well as the linear model with both global and local 

ancestry estimate covariates.  In addition to the simple linear model, a popular method for 

population stratification correction is the mixed linear model (MLM) with the kinship 

matrix as a random effect.  We utilize MLM with global, local and both global and local 

ancestry estimates as covariates in our analyses.  At the time of these analyses, there were 

several existing programs that implemented these methods in an efficient way for genome-

scale studies, including TASSEL (74) and EMMAX (28), which both produce approximate 

results.  TASSEL can run both LM and MLM models, while EMMAX can only run MLM.  We 

implemented an LM both with and without covariates in R, and we used both EMMAX and 

TASSEL’s MLM algorithms.  A summary of all methods follows: 

 

LM methods, implemented in R: 

1. Whole-genome ancestry covariates (estimated by STRUCTURE); 

2. Local ancestry covariates (estimated by STRUCTURE); 
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3. Both whole-genome and local ancestry covariates. 

 

MLM methods: 

1. Kinship matrix only (estimated by EMMAX-KIN), implemented in EMMAX and 

TASSEL; 

2. Kinship matrix with whole-genome ancestry fixed covariates, implemented in 

EMMAX and TASSEL; 

3. Kinship matrix with local ancestry fixed covariates, implemented in EMMAX; 

4. Kinship matrix with both global and local ancestry fixed covariates, 

implemented in EMMAX. 

A list of these methods and their abbreviations can be found in Table 1.   

 

Abbreviation Statistical method Covariates 

R-LM LM None 

R-Q LM Q 

R-LA LM LA 

R-LAQ LM LA+Q 

EMMAX-K MLM K 

EMMAX-QK MLM Q+K 

TASSEL-K MLM K 

TASSEL-QK MLM Q+K 

EMMAX-KLA MLM LA+K 

EMMAX-KLAQ MLM LA+K+Q 

 

Table 1 
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Summary of GWAS methods used.  The first column contains the abbreviation we use in this manuscript; the 

second column gives the statistical model; the last column lists the covariates used along with each statistical 

model. 

The two MLM solvers we used initially in these analyses were EMMAX and TASSEL, 

which are essentially two implementations of the same algorithm.  However, we note that 

we found discrepancies in their performance, with EMMAX clearly outperforming TASSEL 

in terms of speed and accuracy (in some cases we found that TASSEL would return NANs 

where EMMAX would not).  Therefore we used EMMAX for all of our analyses.   

EMMAX is an updated version of the program EMMA (25).  Its advantage lies in a 

smart approximation made under the assumption that most SNPs tested in GWAS have a 

small effect.  Briefly, Kang et al. (28) note that one of the issues with GWAS is that while the 

model being tested is generally represented as  

            

 

   

    

where k is the SNP index, so that the summation represents the effect of each of M 

SNPs on the phenotype of individual i, the model being tested is necessarily  

                  

i.e., only the effect of a single SNP at a time is being analyzed.  From a comparison 

with the previous equation, we see that error term      here includes the effect of all SNPs in 

the full model that are not SNP k.  In other words,                  .  In the case where 

the individuals in the sample are completely unrelated so that there are no dependencies 

among the    s,      can be assumed to be independent and identically distributed, and the 

model reduces to a simple linear model.  However, when individuals exhibit some amount 

of relatedness, or for example when linkage affects the    s, this is no longer the case.  In 

these cases, the mixed linear model can be used to estimate the      properly using variance 

components techniques (28). 
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The issue with using mixed linear models on such a large dataset is that solving for 

the variance components is computationally demanding, and if it needs to be solved for 

each of possibly hundreds of thousands of SNPs, it may be prohibitively so.  EMMAX makes 

the simplifying assumption in this case that 

           
   

          
 

    

so that the variance components only need to be estimated once, and then reused 

for all SNPs tested.  This assumption essentially states that the effect of each individual SNP 

is small compared to the sum of effects of all the SNPs, which can be true in many 

phenotypes analyzed in GWAS. 

More recently, other fast and exact methods of solving mixed linear models have 

been proposed, namely GEMMA and FaST-LMM.  However, at the time of this analysis these 

were not yet available, and so we give an overview of these programs in section 3.3.2:  

Application of mixed linear models to motif discovery:  MixMir. 

 

2.2.7:  COMPUTING THE KINSHIP MATRIX 

 In GWAS, the relatedness matrix typically defines pairwise genetic relatedness 

between all individuals in the study, and as such is referred to as the "kinship matrix".  We 

compute this matrix for all MLMs performed using EMMAX-KIN, a script which comes in the 

EMMAX package.  The program PLINK is first used to convert .ped and .map files containing 

genotype information to .tped and .tmap files, which are readable by EMMAX-KIN.  EMMAX-

KIN can compute two different types of kinship matrices, "identity-by-descent" (IBD) and 

"identity-by-state" (IBS).  We elected to use the IBS option, as suggested by (75).  The 

difference between IBD and IBS is that in the calculation of an IBS matrix, we are only 

interested in shared alleles between individuals and not necessarily in the those alleles 
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which are shared due specifically to descent.  The authors Zhao et al. found that in their 

analysis of Arabidopsis thaliana, using the IBS matrix removed more false positives than the 

IBD matrix, and in fact that it alone did almost as well as using both kinship matrix and 

global ancestry covariates (75). 

 

2.2.8:  SIMULATION STUDIES 

In addition to our analyses with the true S. cerevisiae genotypes and phenotypes, we 

also performed two sets of simulations, in which we tested the power of each statistical 

method in recovering "true" SNPs for simulated phenotypes.   

In the first set of simulations, we randomly selected as a baseline phenotype the 

"maltose 2% growth rate" phenotype from Warringer et al. (66).  Then from the 3723 SNPs 

used in our analyses, we randomly assigned n of them to be "causal" for the phenotype, such 

that each strain harboring the major allele of each of the "causal" SNPs received an additive 

fixed effect of size V to the phenotypic value of the strain.  We tested a variety of genetic 

architectures by allowing n = [3, 10, 100] and V = [1, 3], representing few to many SNPs of 

small effect; as well as one set of simulations with n = 3 and V = 10 to simulate the case of 

few SNPs of large effect.  After adding in the fixed effects of the "causal" SNPs, we then re-

normalized the phenotype in a standard way by subtracting the mean and dividing by the 

standard deviation.  The mean and variance for the original maltose 2% growth rate 

phenotype were 0.9347 and 0.5781, respectively. 

One of our concerns with the various models we tested was potentially having too 

few samples for sufficient power.  Since the Liti et al. data contained only 35 strains, we 

looked to a study by Schacherer et al. (68), which contained the sequences for almost twice 

as many strains of S. cerevisiae.  To perform a set of simulations comparable to the first and 

also in line with the rest of our analyses with the Liti et al. (65) data, we applied our 
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sequential SNP selection procedure to the set of 101,343 SNPs reported by Schacherer et al. 

(68).  This resulted in a set of 12,916 SNPs.  Again we used STRUCTURE to obtain estimates 

of global and local ancestry with K = 6 ancestral populations, which is consistent with the 

number of populations observed by Schacherer et al. (68), who used K = 5 instead.  With K = 

6 we see a similar picture of global ancestry (see Figure 6).  As before, we used the IBS 

kinship matrix obtained by EMMAX-KIN for all mixed linear models. 

 

 

Figure 6 

Results of STRUCTURE global ancestry estimates for 63 strains of S. cerevisiae from Schacherer et al.  Again we 

use the sequential SNP selection procedure described previously, and assume K = 6 ancestral populations.  

Compared to our original 35 strains from Liti et al. , we find that the population structure is less clear, especially 

without the characteristic "clean" strains. 

Since we did not have phenotypic data for the 63 strains in the larger data set, we 

simulated phenotypes by first setting the phenotypic value for all strains to 0, and then 

continued with adding phenotypic effects as in the first set of simulations.  i.e., for each 

strain harboring the major allele of a randomly selected "causal" SNP, we add a fixed 
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additive effect to the phenotype.  As in the first set of simulations, we let n = [3, 10, 100] and 

V = [1, 3], and additionally ran one set of simulations with n = 3 and V = 10 to simulate the 

case of few causal SNPs with very large effect. 

Each set of simulations consisted of 200 iterations for each of the pairs of possible n 

and V values, for each of the statistical methods listed in Table 1.  Analysis of the results, i.e. 

comparison of the performance of each of the statistical methods, was performed using 

receiver operator characteristic (ROC) curves.  ROC curves are a standard way of measuring 

performance by plotting the true positive rate against the false positive rate, graphed as: 

 

  
  

     
 

    
  

     
 

 

where TP, TN, and FP are the numbers of true positive, true negative, and false positive 

predictions, respectively.  The area under the ROC curve, or the AUROC, can be used to 

compare ROC curves, where the larger AUROC value indicates better performance.  In our 

simulation studies, the average ranks of the planted "causal" SNPs was taken and plotted as 

the ranks of true positives.   

 

2.3:  RESULTS 

2.3.1:  PHENOTYPES AND POPULATION STRUCTURE OF 35 STRAINS OF S. CEREVISIAE 

 We obtained 35 strains of S. cerevisiae from Liti et al..  For each of these strains we 

also obtained their phenotypes in different environments, which consisted of three types of 

quantitative measurements in each of 67 environments.  We consider each such 
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measurement in each environment a "phenotype".  With these 201 phenotypes, we 

investigated the possibility of performing genome-wide association studies (GWAS) in a 

highly structured population such as S. cerevisiae, the issue with such populations being the 

presence of highly confounding factors resulting from relatedness between individuals.  To 

address this issue, we first needed to determine the structure of the population. 

One popular program for estimating population structure was developed by 

Pritchard et al. and aptly named STRUCTURE (27,67,76), which estimates the amount of 

shared ancestry in a given sample using Markov chain Monte Carlo (MCMC).  One issue with 

STRUCTURE that is not frequently discussed is the way in which SNPs must be pruned prior 

to use in the program, as certain types of linkage disequilibrium (LD) are not accounted for 

in the model.  As such, we compared different SNP selection procedures and found that a 

sequential procedure that takes into consideration the LD landscape in the genome 

produces the most accurate STRUCTURE results (see 2.2.5:  SNP selection procedures).  This 

resulted in a set of 3723 SNPs distributed across 16 chromosomes according to the linkage 

disequilibrium landscape, with fewer SNPs concentrated in areas of high LD and fewer 

recombination events (such as near centromeres) and more SNPs in areas of higher 

recombination, consistent with previous reports of recombination hotspots in S. cerevisiae 

(73). 

Running these SNPs through STRUCTURE and setting K = 6 ancestral populations 

gave us a clear picture of the relatedness between individual strains on a global scale.  We 

obtained local ancestry estimates using the same STRUCTURE results, which were verified 

again with a separate program (see 2.2.2:  Estimation of global and local ancestry).   

We performed a preliminary analysis of the 201 phenotypes using a simple linear 

model.  An empirical way of determining the amount of population structure present is by 

plotting the p-values obtained for each SNP against their expected p-values in what is 
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commonly known as a QQ plot.  Expected p-values under the null hypothesis should follow a 

null distribution, and in the case of GWAS, if the number of significantly associated SNPs is 

small compared to the total number of SNPs tested, we should observe in our QQ plots a line 

mostly following the x-y axis with some deviation at lower p-values, where the observed 

values would be lower than the expected. 

We use as a quantitative measure of the QQ plot deviation the mean squared 

deviation, or MSD, between the expected and observed p-values.  Using this as a score for 

genetic stratification, we determined the top ten most stratified phenotypes to be 

rapamycin 0.5 mg/ml adaptation; rapamycin 1mg/ml adaptation; pH 3.5 adaptation; LiCl 

150 mM efficiency; CuCl2 0.75 mM rate; CuCl2 0.375 mM rate; KCl 1.45 M rate; CoCl2 0.015 

mM adaptation; maltose 2% rate; and LiCl 225 mM efficiency.   

Additionally, we took the phenotypic variance across all 35 strains for each of the 

phenotypes measured, and found that the average phenotypic variance of the most 

stratified phenotypes (0.77) was significantly higher than expected (0.30; P-value 0.0036, 

100,000 boostrap replicates).  This suggests that conditions with high levels of population 

structure at the genotype level are also more varied phenotypically.  Since we have three 

types of measurements in each of 67 environments, we also consider which environments 

show the most genetic stratification across growth adaptation, efficiency, and rate 

measurements.  These results are presented in Table 2. 

From these preliminary analyses we concluded that correction for population 

structure is important in S. cerevisiae, and that depending on the phenotype different 

degrees of stratification may be present and may require different methods of correction. 

 

Environment P-value 
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Rapamycin 0.0006 

CuCl2 0.0024 

LiCl 0.026 

Kcl 0.084 

pH 0.095 

 

Table 2 

Environment types that were significantly genetically structured compared to the background.  The p-value 

reflects the significance of how much more structured the environment was.  We used as a measure of genetic 

stratification the MSD of the QQ plot.   

2.3.2:  COMPARISON OF STATISTICAL CORRECTIONS FOR GLOBAL AND LOCAL ANCESTRY 

For each of the methods listed in Table 1 and each of the 201 phenotypes described 

in 2.2.1:  S. cerevisiae sequence and expression data, we performed a GWAS analysis.  As 

described previously, there was some discrepancy between results obtained by TASSEL and 

by EMMAX, where EMMAX was faster and more accurate than TASSEL.  Therefore, we 

omitted TASSEL from further analyses.  For the remaining methods, we drew QQ plots for 

each phenotype.  We present a series of these plots in Figure 7.  For each phenotype, we also 

determine which method performs best using the MSD statistic as before.  Across all 201 

phenotypes, we see that EMMAX-KLA corrects for the most amount of stratification more 

than any other method, followed by R-LAQ.  These results are presented in Table 3 and 

Figure 9, where we compare the overall performance using the average MSDSs, and also the 

variance of the MSDs obtained from each method.  We find that the best and worst 

correction methods both involve the mixed linear model:  the best and second best methods 

are EMMAX-KLA and EMMAX-K, respectively; the worst methods are EMMAX-QK and 

EMMAX-KLAQ.  If the mixed linear models and the kinship matrix are correcting for effects 
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very similar to that of global ancestry, then we might expect then that adding the global 

ancestry covariate could overcompensate for stratification and cause the poor performance.   

 

 

Figure 7 

Representative QQ plots for the different statistical methods tested for population structure correction.  In each 

plot, the y-axis shows the expected p-value and the x-axis shows the observed p-value.  The blue line represents 

the observed = expected line, and the red line is what we actually observe.  The large deviation of the latter from 

the former in the simple linear regression indicates that there is a significant amount of population structure 
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present associated with the phenotype.  In this particular example, we see that EMMAX-KLA provides the best 

correction. 

 

We also repeated these tests using the variance inflation factor (VIF) as proposed by 

(20) instead of the MSD, and found that at least in our case, there was no significant 

difference between the two, namely that EMMAX-KLA still performed better than the other 

GWAS methods as determined by the VIF (data not shown).  We note that the mean of the 

test statistics has been proposed as a good estimator for the VIF (77,78), so our MSD 

statistic has some basis in formal statistical theory. 

 

Statistical method No. of phenotypes where  

method performed best 

R-LM 11 

R-Q 22 

R-LA 14 

R-LAQ 49 

EMMAX-K 36 

EMMAX-QK 5 

EMMAX-KLA 62 

EMMAX-KLAQ 2 

 

Table 3 

Number of phenotypes in which each method performed best.  Using the MSD as the measure of performance, 

we ranked the all methods for each phenotype separately, and determined which method performed best.  The 

second column is the number of phenotypes in which the respective method had the lowest MSD.  While 

EMMAX-KLA performs the best more often than any other method, methods such as R-LAQ also perform well.  

On the other hand, EMMAX-QK and EMMAX-KLAQ performed the worst.  This may be due to overcorrection 
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resulting from combining the mixed linear model and the global ancestry covariates, if they are correcting for 

similar effects. 

 

Since it appears that different statistical methods may perform best under different 

circumstances, we selected the best method in each case and created the meta-statistical 

method which we will refer to as "BEST".  We select as significant SNPs the ones which meet 

a threshold p-value of 0.05.  While the number of SNPs and therefore the multiple testing 

burden was reduced by our SNP selection procedure, we still employed two types of 

correction:  One which corrects for family-wise error, or FWER (Holm), and one which 

corrects for the false discovery rate, or FDR (Benjamini-Hochberg, BH).The number of 

GWAS loci detected under the Holm correction was small, considering that the total number 

of SNPs found was 389 by the simple linear model, across all 201 phenotypes.  As another 

example, EMMAX-KLA finds 637 SNPs significant, so that the expected number of associated 

SNPs per phenotype is just over three.  As seen by these numbers, we found a wide range of 

significant SNPs called by the different statistical methods (see Table 4).  This demonstrates 

the importance of considering different kinds of statistical methods when performing a 

GWAS. 

 

 Including duplicates Unique SNPs 

Method Holm BH Holm BH 

R-LM 389 2662 99 1200 

R-Q 249 1024 106 415 

R-LA 235 353 31 57 

R-LAQ 68 97 14 29 

EMMAX-K 431 2154 220 891 
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EMMAX-QK 191 1261 107 723 

EMMAX-KLA 637 1477 65 171 

EMMAX-KLAQ 90 144 17 44 

BEST 162 359 63 177 

 

Table 4 

Number of SNPs found significant using each method across all phenotypes, after two different kinds of multiple 

testing correction:  Family-wise error (FWER, Holm) and false discovery rate (FDR, Benjamini-Hochberg).  For 

both we use a threshold of p = 0.05.  Multiple testing corrections were made for each phenotype separately, not 

for the 201 phenotypes combined.  For the numbers in the first two columns, we count SNPs which are found 

significant in more than one phenotype multiple times.  For the last two columns, if a SNP is found significant in 

more than one phenotype, it is counted just once. 

We compared the similarities between the statistical methods pairwise by taking 

the Pearson correlation of the p-values produced (Table 5).  We notice that while there are 

generally higher similarities between the MLM-based methods, as expected, there is not a 

pervasive pattern of similarity given covariates or statistical method.  For example, the 

highest degree of similarity exists between R-LM and EMMAX-K.  Also, EMMAX-K and 

EMMAX-KLA are relatively dissimilar, at least in terms of the p-values obtained.  This 

reiterates the importance of testing different statistical methods in GWAS analyses, as 

method similarity is not obvious.    

 

 R-Q R-LA R-LAQ EMMAX-K EMMAX-
QK 

EMMAX-
KLA 

EMMAX-
KLAQ 

R-LM 0.1684 0.0850 0.0566 0.7341 0.2024 0.0753 0.0936 

R-Q  0.2886 0.0989 0.2540 0.2847 0.1686 0.0557 

R-LA   0.2654 0.0977 0.1190 0.2208 0.0849 

R-LAQ    0.0619 0.0492 0.1027 0.0738 
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EMMAX-K     0.338 0.1374 0.1241 

EMMAX-QK      0.2493 0.4173 

EMMAX-
KLA 

      0.2683 

 

Table 5 

Similarities between methods studied as calculated by the Pearson correlation between SNP p-values. 

2.3.3:  BIOLOGICAL AND FUNCTIONAL ANALYSIS OF GWAS SNPS 

We performed a biological and functional analysis of the GWAS SNPs identified by 

the various statistical methods using the meta-statistical "BEST" method, as described in 

2.3.2:  Comparison of statistical corrections for global and local ancestry.  To investigate the 

functional significance of the statistically significant SNPs, we examined the fraction of 

significant SNPs contained in genes.  While the S. cerevisiae genome is gene-rich, with 63% 

of all SNPs in our analysis falling in genes, we found that the SNPs called significantly under 

the FDR correction were enriched in genic regions.  75% of SNPs called significantly under 

the FDR correction were in genes compared to 63% of all SNPs used in our analysis (p-

value, 1e-4, calculated by a permutation test).   

We also examined the biological functions of the GWAS SNPs using the GO term 

enrichment program FuncAssociate (79).  We found several interesting enriched functions, 

including biotin biosynthesis for the phenotype pH 3.5 adaptation (Fisher’s exact test, p-

value 0.001).  Because of the small number of SNPs, most functions did not reach statistical 

significance.  Nonetheless, among the uncorrected P-values, we observed many suggestive 

functions, such as glucoside transport for the phenotype, glucose 8% efficiency (Fisher’s 

exact test, uncorrected p-value 0.003), and oligosaccharide metabolic process for the 

phenotype glucose 0.5% rate (Fisher’s exact test, uncorrected p-value 0.003).  Although 
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these functional results are preliminary, they suggest that more highly powered GWAS in S. 

cerevisiae may be able to elucidate important biochemical pathways. 

Next we followed up on several associations previously detected by Cubillos et al. 

(80) and Warringer et al. (66).  These researchers studied four broad phenotypes and their 

associated genes:  copper tolerance, associated with CUP1/2; NaCl and LiCl tolerance, 

associated with ENA1/2/5; galactose growth, associated with GAL1/2/3; and maltose 

growth, associated with MAL31/32/33. To determine if the GWAS methods that we tested 

discovered the previously published associations, for each condition, gene, and GWAS 

method, we searched for all SNPs that were nominally significant at a p-value threshold of 

0.05 in the vicinity of the relevant gene(s). 

We computed how many relevant SNPs that each GWAS method found for all four 

reported associations and the percentage of SNPs found compared to the total number of 

nominally significant SNPs found by each algorithm (data not shown). The closest SNP to 

CUP1 and CUP2 (chr08:214751) was found by EMMAX-QK and LM-Q, while the next closest 

SNP (chr08:221695) was found by EMMAX-KLAQ and LM.  For NaCl tolerance, four SNPs 

that fell within theENA1gene were discovered by several GWAS methods. Similarly for LiCl 

tolerance, four SNPs were discovered, three of which fell within ENA1, and one of which fell 

1743 bp downstream of ENA5 (chr04:525679). The GWAS methods combined also 

discovered four SNPs associated with the maltose growth environments, all of which were 

located within MAL31.  No significant SNPs were found in or near GAL1/2/3 by any of 

the GWAS methods only because there were few SNPs in our set near these genes (data not 

shown).  We conclude that the GWAS methods are often able to recover previously known 

associations, but that different statistical methods may be needed in order to elucidate 

those associations. 
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2.3.4:  EVOLUTIONARY ANALYSIS OF GWAS SNPS 

It is also important to understand the nature of the evolutionary forces acting on 

SNPs that affect phenotypic variation.  To address this issue, we considered the 

distributions of minor allele frequencies of the 3723 SNPs used in our analysis and all 

intergenic SNPs and compared them to the distribution of minor allele frequencies (MAF) of 

the SNPs that were found to be statistically significant by the GWAS methods. We did not 

attempt to root the SNPs to obtain derived allele frequencies, similar to a previous study 

(81).  Overall, significantly associated SNPs were highly enriched for rare alleles compared 

to either the 3723 SNPs used in our analysis or all intergenic SNPs (Table 6, Figure 8). These 

results were robust whether we used an FWER or an FDR multiple testing correction 

method and whether we considered nonpleiotopic or pleiotropic SNPs.  Note that in general 

GWAS methods have more statistical power for SNPs with higher MAF, so our tests were 

conservative because they showed that GWAS SNPs were nonetheless enriched in lower 

MAF.  Also, the strain sampling and SNP selection procedures should not bias our result 

because all sets of SNPs should be equally affected. 

 

Type of SNP Multiple testing 

correction 

p-value vs. 

GWAS 

p-value vs. 

intergenic 

Mean 

MAF 

Nonpleiotropic Holm 1.676e-15 0.0088 0.1329 

 FDR 1.251e-17 4.975e-85 0.1227 

Pleiotropic Holm 0.0028 7.692e-07 0.0898 

 FDR 1.005e-12 0.0125 0.1228 

 

Table 6 

Minor allele frequencies for nonpleiotropic and pleiotropic SNPs found by the BEST method.  The BEST method 

refers to the best method of correction for each condition separately.  The p-values are from one-sided Wilcoxon 
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tests.  By comparison, the mean MAF for intergenic SNPs was 0.1684, and the mean MAF for GWAS SNPs was 

0.1839.

 

Figure 8 

Comparison of minor allele frequencies between intergenic SNPs throughout the genome, SNPs used in our 

GWAS analysis, and SNPs selected as significant by the BEST meta-statistical method, after correction for 

multiple testing.  We see a significant enrichment for rare alleles in the selected SNPs. 

2.3.5:  SIMULATION STUDIES REVEAL HIGH VARIANCE ASSOCIATED WITH LOCAL 

ANCESTRY ESTIMATION 

In addition to our GWAS on real data, we performed two sets of simulations in 

which we fixed a certain number of "true" SNPs and compared the ability of each statistical 

method to find them under a wide variety of genetic architectures.  The first set of 

simulations was based on an existing phenotype from the Warringer et al. data (66), while 

the second set was based on a simulated phenotype (see 2.2.8:  Simulation studies).  We 
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measured the performance of each method using a receiver operator characteristic (ROC) 

plot.   

 Overall, we find that all methods perform better under simple genetic architectures, 

with the number of SNPs being the primary indicator of performance (see Figure 10).  We 

see very little change in performance when changing the SNP effect size V while fixing the 

number of SNPs N.  We find that over the average performance of 200 simulation iterations, 

EMMAX-K performs best, while EMMAX-KLA appears to perform similarly to the linear 

models with different ancestry covariates.  To address why this is the case, we computed 

the variance of the ranks of the simulations.  We observed that the methods based on local 

ancestry have higher variance than the other methods, which is an effect we also observed 

in our analysis of the original S. cerevisiae data (see Figure 9).  While we find here that the 

mean squared distance of EMMAX-KLA is the lowest of all models tested, its range of values 

is greater than that of EMMAX.  This is presumably because when randomly selecting SNPs 

to be causal SNPs, some of those were invariably correlated with local ancestry.  This is a 

common issue with mixed linear models in GWAS as well, where inclusion of the candidate 

marker in the computation of the kinship matrix results in a loss of power of the study due 

to overfitting of the candidate marker (82).  The example is easily extensible to overfitting 

by including fixed ancestry covariates related to the candidate marker. 

By adding a local ancestry covariate, we were inadvertently correcting the effect of 

the SNP by the GWAS method.  This raises an important larger point:  until this point we 

were primarily focused on reducing the number of false positives, by selecting methods 

which minimize the MSD.  However, reducing the false positive rate will necessarily also 

reduce the power the statistical approach.  Nonetheless, we find that our methods have 

enough power to elucidate meaningful biological associations as previously published in 

Cubillos et al. (80) and Warringer et al. (66).   
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Figure 9 

Boxplots of mean squared distance (MSD) across all phenotypes for each statistical method, ordered by lowest 

average MSD.  While EMMAX-KLA has the lowest average MSD, the other methods including a local ancestry 

covariate show higher variance than methods not including a local ancestry covariate.  In particular, if we 

compare EMMAX-KLA with EMMAX-K, we see that the MSD values from EMMAX-K have lower variance.  This 

may be due to some loci being associated both with the phenotype and also with the population structure, which 

we also observed in the simulation studies.  Further discussion in 2.3.5:  Simulation studies reveal high variance 

associated with local ancestry estimation. 
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Figure 10 

Receiver operator characteristic (ROC) curves for two sets of simulation studies.  Left columns:  First set of 

simulation studies, based on an existing phenotype.  Right columns:  Second set of simulation studies, based on a 

purely simulated phenotype and also using a larger set of genotypes (see 2.2.8:  Simulation studies).  ROC curves 

are drawn for the average performance over 200 iterations.  Figures A-C demonstrate the performance of each 

method under different numbers of simulated causal SNPs.  In each figure, we hold the effect of the causal SNP 

fixed at V = 3.  The number of causal SNPs in figures A-C are 3, 20, and 100, respectively.  Overall, it is the 

number of SNPs determines the performance of the statistical methods.  We also see that the purely simulated 

phenotype sees better performance, which may be due to two factors:  First, the phenotype being less noisy; and 

second, the larger number of strains.  In general, we see that EMMAX-K performs best on average.  We explore 

this issue further in 2.3.5:  Simulation studies reveal high variance associated with local ancestry estimation. 

2.4:  DISCUSSION 

GWAS have proven to be a highly effective way to map the genes underlying 

complex phenotypic traits in many species.  In all applications of GWAS, it is crucial to 

control for underlying population structure, since it can cause spurious associations.  Here 

we have performed an empirical study of statistical methods for correcting for population 

structure when performing GWAS in the important model organism, S. cerevisiae.  Our main 

results are that GWAS is indeed a feasible approach in S. cerevisiae and that it is important 

to take into account the local ancestry of an S. cerevisiae strain when performing GWAS.  At 

a practical level, the EMMAX mixed linear model implementation (28) using an identity-by-

state kinship matrix as a random effect and local ancestry inferred by STRUCTURE (27) as a 

fixed effect performed best in our experiments. Importantly, our work also shows that 

existing methods for detecting local ancestry, such as STRUCTURE (27) and WINPOP (69), 

are effective in S. cerevisiae, at least for the purposes of GWAS.  Nonetheless, the 

demographic history of S.cerevisiae is complex (65,68) and properly modeling it will 

probably require more specialized statistical methods than the methods designed for the 
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comparatively simpler cases of recent punctate admixture in human populations, 

particularly Latinos and African Americans (83). 

There are many differences between performing GWAS in S. cerevisiae and humans. 

First, the burden of multiple hypothesis testing correction is much lower in S. cerevisiae 

because it has a much smaller genome size.  Our analysis used only 3723 SNPs compared to 

the 500,000 typically used in human GWAS studies.  If a simple Bonferroni-type correction 

is used, we would expect an S. cerevisiae GWAS to be far more powerful than a comparable 

GWAS in humans.  Second, the extent of linkage disequilibrium is much less in S. cerevisiae, 

so GWAS in S. cerevisiae is more likely to pinpoint the actual causal variant than in humans, 

where it is more likely to find an association with a tag SNP.  The S. cerevisiae genome is also 

much more gene-rich than the human genome, so each significant SNP is easier to link to a 

putative causal gene than in the human case.  Third, since it is relatively cost effective to 

fully resequence S. cerevisiae genomes, we were able to use whole-genome resequencing 

data compared to the SNP genotyping chips still typically used in human GWAS studies 

(although continued decreases in sequencing cost may make whole-genome resequencing 

for humans feasible at some point in the future).  Thus GWAS in S. cerevisiae can in principle 

test causal SNPs for association rather than tag SNPs. It has previously been shown that the 

power to detect association is much higher when testing the causal SNPs than when testing 

a tag SNP (84).  Fourth, with S. cerevisiae it is possible to perform replicate phenotypic 

measurements to reduce the environmental noise.  For all of these reasons, we believe that 

the power of GWAS in S. cerevisiae mitigates the relatively small sample sizes of individuals 

used in our study.  We also note that it is possible to study many environmental conditions 

in S. cerevisiae, such as drug treatments, which would be impossible or unethical to do in 

humans. 
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S. cerevisiae is an important model organism for many aspects of molecular biology. 

Recent work on mapping complex traits in this species using recombinant inbred lines has 

yielded many important insights (85).  In addition to its use as a model organism, S. 

cerevisiae is also an important agricultural species in its own right. Thus we hope that the 

statistical methods for GWAS investigated here will lead to further advances in our 

understanding of the genotype–phenotype map in this important species.  Our comparisons 

to previous mapping results in S. cerevisiae (66,80) are promising in this regard.  A recent 

study of GWAS in S. cerevisiae also found similar results to our study (86). In particular, they 

showed through simulations on the same set of S. cereivisae strains that GWAS in S.  

serevisiae is generally difficult because of the complex population structure but is feasible 

for Mendelian trait and cis QTL mapping. One difference is that Connelly and Akey (86) 

stressed the difficulties of GWAS in S. cerevisiae whereas we have stressed the relative 

utility of using local ancestry corrections in S. cerevisiae GWAS, while continuing to 

acknowledge the overall difficulty of using GWAS methods in this species. Nonetheless, our 

improved GWAS performance on the larger set of S. cerevisiae strains from Schacherer et al. 

(68) suggests that increased sampling and sequencing of strains will improve GWAS results 

in the future. Such studies will be facilitated by the small size of the S. cerevisiae genome (12 

Mb), the decreasing cost of DNA sequencing, and the relative tractability of high-throughput 

phenotyping in yeast (87). 

In addition, there are many other studies of GWAS in other model organisms that 

are similar to our study, including studies in mice (88), Arabidopsis (75), maize and rice 

(89), tomato (90), dog (91), and Drosophila melanogaster (92). Recent admixture is a 

pervasive phenomenon in many species.  For example, there is strong evidence of non-

African admixture in the DPGP D. melanogaster lines from Africa (J. Pool, unpublished 

results).  GWAS in admixed human populations is also an important current research 
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problem, and a very interesting goal for the future will be to combine admixture mapping 

with association mapping (93,94).  Thus we believe that our results will also be useful for 

GWAS analyses in humans and other model systems as well. 
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CHAPTER 3:  MIRNA MOTIF DISCOVERY USING MIXED LINEAR 

MODELS 

3.1:  INTRODUCTION  

Since their discovery, small non-coding RNAs have proven to be an important and 

pervasive mechanism for gene regulation.  MicroRNAs, or miRNAs, are a special class of 

these small RNAs that specifically arise from small hairpin structures, and were first 

observed nearly two decades ago.  In 2002, a miRNA database was established, called 

miRBase, containing just 218 entries.  Since that time, the sheer volume of data has 

increased exponentially every year, and the database now contains sequence information 

for tens of thousands of mature miRNAs, in 193 species, including C. elegans, D. 

melanogaster, human, and mouse (95).  In spite of the wealth of data, the exact mechanism 

by which miRNAs suppress gene expression has not been entirely elucidated, and their 

purpose is not entirely understood.  One key issue now is to determine the potential targets 

of known miRNAs, which could help us understand the extent and nature of their function; 

another is de novo discovery of the miRNAs themselves.  Here we will see that in fact these 

two problems are closely related.  

Specifically, we propose a new model for small RNA motif discovery employing 

mixed linear models.  As inspiration we use the problem of population stratification in 

genome-wide association studies.  In such studies, one of the primary hurdles is the 

presence of relatedness among individuals that can lead to inflated test statistics for 

markers that are in fact not linked to the phenotype being assessed.  It has repeatedly been 

shown that mixed linear models are effective in correcting for this type of confounding 

factor (28,96), and we make use of this fact by drawing an analogy whereby "SNPs", or 
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single nucleotide polymorphisms, in a GWAS are represented by potential small RNA motifs 

in the 3' UTR of a gene, and "population stratification" is translated to be the relatedness 

between mRNAs—for example, this could be taken to be the sequential relatedness 

between complete 3' UTR sequences—thus capturing any background effects that could 

influence the efficacy of a miRNA but that are not readily observable. We first briefly 

describe our previous work with mixed linear models and GWAS, then follow up with our 

small RNA motif discovery proposal. 

 

3.2:  DATA 

3.2.1:  MOUSE CD4+ DICER KO EXPRESSION PROFILES 

CD4+CD25- Conventional T cell mRNA expression profiles 

Mice carrying a floxed Dicer allele in combination with CD4Cre transgene on a 

mixed C57BL/129 background (97) were maintained under specific pathogen-free 

conditions. Peripheral CD4+CD25- T cells were sorted on a FACS ARIA (Becton Dickinson) 

from 6-8 week-old mice and RNA extracted using RNAbee (AMSBio) according to the 

manufacturer’  instructions.  100 nanograms of RNA was used to interrogate the GeneChip 

Mouse Gene 1.0 ST Array (Affymetrix).  We obtained log fold changes in gene expression for 

24,601 mRNA transcripts between WT and Dicer KO mouse CD4+ CD25- T cells.  These 

experiments were performed by Antoine Marcais. 

 

Conventional T cell miRNA expression profiles 

We obtained two data sets of miRNA expression for CD4+CD25- T cells from 

independent sources using different technologies. 
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 First, from the same cells from which we obtained our mRNA microarray expression 

data, we also obtained comparative miRNA expression data between CD4+CD25+ T-cells 

and CD4+25- T-cells from Cobb et al. (22), who studied the differences in miRNA expression 

profiles for the two types of cells.  The authors performed a miRNA microarray analysis 

with probes for 173 miRNAs from miRBase.  Of these, we take the top 20 differentially 

expressed to be true, "active" miRNAs, as reported by the authors in Figure 2. 

To corroborate these results, we also used miRNA expression data from C57BL/6 

mice determined by the nCounter miRNA expression assay kit (Nanostring Technologies), 

from Sommers et al. (24).  The authors validated the Nanostring nCounter expression 

results with Exiqon microarrays and Taqman qRT-PCR assays.  92 probes corresponding to 

86 miRNAs in miRBase were evaluated.  Of these, we took the top 21 highly expressed for 

experimental validation of our predictions, corresponding to the most highly expressed 

miRNAs presented by the authors in Figure S1. 

 

3.2.2:  MOUSE ADRENAL CORTEX DICER KO MRNA AND MIRNA EXPRESSION PROFILES 

We obtained mRNA and miRNA expression data for Dicer KO adrenal cortex tissue 

from mouse embryos at stages E15.5 and E16.5 from a study by Krill et al. (98).  Sf1-Cre 

mice were crossed with mice carrying a floxed Dicer allele to produce Sf1-Cre/Dicerlox/lox 

mice.  Embryos were harvested at E15.5 and E16.5 and the adrenals from each were 

collected.  A total of 4 control and 4 Dicer KO biological replicates were obtained for each 

time point.  Affymetrix Mouse 430 v2.0 gene expression arrays were used for hybridization.  

Krill et al. also report miRNA expression in adrenal cortex at developmental stages 

E15.5 and E16.5.  ABI miRNA OpenArray was used for miRNA expression analysis.  These 

arrays are able to target 750 miRNAs.  We took the top 25 highly expressed miRNAs for 

E15.5, the top 35 highly expressed miRNAs for E16.5, and the top 15 miRNAs which are 
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found highly expressed at both time points, in line with Figure 4 and Table 1 in Krill et al. 

(98). 

 

3.2.3:  MOUSE EMBRYONIC STEM CELL DICER KO EXPRESSION PROFILES 

The embryonic stem (ES) cells were derived and described in Nesterova et al. (99).  

ES cell lines were maintained on a feeder layer (mitomycin-inactivated primary mouse 

embryonic fibroblasts) in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 

10% fetal calf serum (FCS, Autogen Bioclear), 7% Knockout Serum Replacement (KSR), 2 

mM L-glutamine, 1× non-essential amino acids, 50 M 2-mercaptoethanol, 50 g/ml 

penicillin/streptomycin (all from Invitrogen) and LIF-conditioned medium, made in house, 

at a concentration equivalent to 1000 U/ml.  Cells were grown at 37°C in a humid 

atmosphere with 5% CO2.  Affymetrix GeneChip Mouse Gene 1.0 ST Arrays were used to 

perform the microarray.  These experiments were performed by Antoine Marcais.   

 

3.2.4:  HELA TRANSFECTION EXPRESSION PROFILES 

We obtained two types of data for five miRNA transfection experiments in human 

HeLa cells:  microarray and proteomics from Selbach et al. (100).  The authors performed 

transfections by synthetic miRNAs and mock transfections in human HeLa cells for let-7b, 

miR-1, miR-155, miR-16, and miR-30a.  The amount of protein synthesis was given by the 

log of the ratio of protein synthesized in the miRNA transfected cells divided by the mock 

transfection between 8hrs and 32hrs post transfection. Microarray analyses were 

performed with the Affymetrix Human Genome U133 Plus 2.0 chip.  We used the microarray 

log fold change values taken at both 8hrs and 32hrs post transfection for each miRNA 

transfection experiment. 
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In this paper, the authors developed the pSILAC (standing for "pulsed" SILAC) 

method for measuring the change in protein production between two different samples.  

Reported proteomics data was obtained using the pSILAC method.  We mapped the pSILAC 

Uniprot protein IDs to Refseq transcript IDs by downloading an ID mapping table from the 

Uniprot website. For the different transfection experiments, there were slightly different 

numbers of proteins with expression values, resulting in a range of the number of protein 

expression data points with corresponding 3' UTR sequences from ~3000 - 3600 across all 

the transfection experiments. 

 

3.2.5:  3' UTR SEQUENCE DATA FOR MOUSE AND HUMAN 

The 3' UTR sequences for mouse and human RefSeq gene mRNAs were both 

downloaded from the UCSC Genome Browser.  In total we downloaded 26,845 sequences 

for mouse and 40,571 sequences for human, versions mm10 and hg19, respectively 

(101,102).  In the case of transcript variants, we retained only the longest transcript.  

Furthermore, we removed all UTRs of length 10 or lesser.  We are able to associate 17,988 

unique mouse UTR sequences to their microarray expression values for the mouse Tconv 

Dicer KO dataset, and 22,266 unique human UTR sequences to their microarray expression 

values for each of the Selbach et al. miRNA transfection experiments.  The number of 

transcripts able to be associated to the Selbach pSILAC data is ~4k, varying slightly 

depending on the transfection.   

 

3.2.6:  MIRNA MOTIF DATABASE:  MIRBASE 
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We downloaded 1,908 mature mouse miRNA sequences corresponding to ~1200 

distinct 6mer seeds and 2,578 mature human miRNA sequences corresponding to ~1500 

distinct 6mer seeds from the miRBase database (release 20) (95). 

 

3.3:  METHODS  

3.3.1:  CURRENT METHODS IN MIRNA MOTIF DISCOVERY 

There are several existing methods for miRNA motif discovery that we compared 

our methods to.  The foremost of these is miReduce (103), based on the Reduce algorithm 

(104), which is essentially a forward stepwise regression.  More recently, two other 

algorithms were also published, Sylamer (105) and cWords (106), which have both 

implemented ways to correct for background sequence composition.  In all of these 

methods, we take as the dependent variable the set of log fold changes in expression 

between two experiments, in particular a Dicer knockout (KO) experiment versus a wild-

type.  The main idea in each of these algorithms is to correlate motif presence in the 3' UTRs 

of the genes with their change in expression.  We would expect, for example, that in cells in 

which Dicer has been knocked out, that miRNAs would no longer work properly, thus 

leading to an overall increase in gene expression.  Here we give a brief overview of these 

three algorithms and how they differ from each other and from MixMir (2). 

 

miReduce 

 miReduce implement a forward stepwise regression, which adds one factor at a time 

into a linear model as long as the factor still contributes significantly to the model.  The 

basic model can be written as 
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where    is the log fold change in expression for gene i,    is some baseline change in 

expression,    is the effect of the presence of motif j, and     is the presence or absence of 

motif j in the 3' UTR of gene i.  Here we let M be the set of significant motifs. 

 We start by assuming that      , the empty set.  Then we iteratively select the 

motif which minimizes the error when fitted to the model above.  If found significant, this 

motif,   , is then added to the set M, and the vector of errors from fitting    is subtracted 

from   , the vector of all expressions.  This procedure is then repeated until no motifs are 

found significance.  The measure of statistical significance is determined using the extreme 

value distribution, which describes the probability that the largest of M samples from a 

normal distribution (104). 

 miReduce is a simple and fast method that performs remarkably well in some cases, 

for example in the miRNA transfection data we analyzed (3.2.4:  HeLa transfection 

expression profiles).  However, the method is purely based on motif presence/absence, and 

as described in 1.2.2:  miRNA target prediction and motif discovery, there are other 

sequence-based factors affecting miRNA binding, in particular the sequence composition 

around the binding site.  To that end, two other methods have been published which 

address this very issue. 

  

Sylamer 

 Sylamer (105) was published in 2008 and approaches the problem differently.  

Instead of using the actual expression values, for example, Sylamer ranks the gene list by 

change in expression and uses this ranking to select for overexpressed motifs in the top N 

elements of the list.   
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 We ran Sylamer using the web-based implementation Sylarray (107).  We did this 

instead of running the command line version of Sylamer primarily because we noticed that 

in order for Sylamer to perform on par with the other methods investigated, some 

preprocessing needed to be performed, namely that sequence "purging" needed to be done 

using a third party program such as RSAT (108).  The "purging" function of RSAT helps to 

remove redundancies in the sequence, such as repetitive monomers and dimers, which can  

result in many false positives, and biases towards AU rich motifs. 

Simply speaking, the Sylamer algorithm first ranks the genes in a list by decreasing 

expression value.  It then considers as the first "bin" the top N genes, and seeks to determine 

whether a motif in question is over- or under-expressed in the top N genes compared to the 

remainder of the list, determined by a hypergeometric distribution.  After the first bin, 

Sylamer then proceeds in increments of N, considering over- and under- representation of a 

motif in the top kN genes at step k.  The significance of each motif in each bin is then log 

transformed if the motif is overrepresented, and negative log transformed if 

underrepresented, resulting in a table of m motifs by k bins.   

Due to computational constraints, Sylarray can be run either on the set of all words 

(by default, 6mers, 7mers, and 8mers), or only on a subset of words which correspond to 

known miRNAs in miRBase.  If run on a the set of all words, Sylarray then returns the motif 

enrichment table above for all motifs satisfying a p-value cutoff of p < 0.01.  This table can 

be interpreted visually by simply plotting the enrichment table in the natural way, with log 

p-values along the y axis for each word, for each bin along the x axis.  The interpretation of 

this enrichment plot is simple if there are a few words which are highly over- or under-

expressed, as these will result in a steep incline (similarly, decline) for the plot of a 

particular motif, either at the start of the plot, indicating a strong effect in the first few bins, 

or along the entire length of the plot, indicating an effect spanning many genes.  The 
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Sylarray output is in the form of a java file which can draw such a plot and also show the top 

three over- and under-expressed words and their corresponding miRNAs.   

Additionally, the Sylamer algorithm attempts to correct for composition biases by 

replacing the word counts in a particular bin by their expected word counts, as determined 

by the composition bias of that particular bin.  It does this via a higher order Markov model, 

conditioning the expected word count of a particular word on shorter words within the bin.  

The authors note that as the bin size grows, the expected word counts computed in this 

manner will deviate further and further from the true word counts, so for our analyses we 

use the default bin size of N = 200, which should not see this issue.   

We run Sylarray allowing sequence purging, using all words and not just those 

corresponding to miRNAs, and with a bin size of N = 200, for all of our analyses.  When we 

create our final ranking of motifs using the motif enrichment table, we take as the p-value 

for each motif the lowest p-value across all bins.  This recapitulates the results returned by 

the Sylarray java-based graphing program, and also produces the expected p-value 

distribution for all motifs with p < 0.01.  

 

cWords 

 The most recent of the algorithms we compared against was cWords, published in 

2013 (106).  Like Sylamer, it takes as input a ranked list of genes according to degree of 

expression change.  However, the way in which cWords determines the significance of a 

particular word somewhat differs from Sylamer:  Given G ranked genes in an analysis and a 

particular motif m, cWords computes a probability    for      , for the probability of 

observing the motif m in gene i.  This probability is based on a Markov model like before, 

which determines the probability of observing a particular word conditioned on the 

probability of observing shorter words of length k.  Specifically, 
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where       is the probability of observing word W conditioned on shorter words of 

length k,          is frequency of the first k letters of the word W, and    is the length of 

W.  Then the probability of seeing a word appear m times or more is given by a binomial 

distribution: 

             
 

 
           

 

   

  

where         from above. 

The algorithm computes such a p-value for each word, for all genes.  Thus, for each 

word we obtain a list of p-values as described above, ranked in the same order as the genes.  

The authors then compute what they call a "running sum" of the log transformed p-values, 

determining the significance of its deviation from random by comparing it to the expected 

distribution of the maximum running sum.  Additional details can be found in (106). 

 

3.3.2:  APPLICATION OF MIXED LINEAR MODELS TO MOTIF DISCOVERY:  MIXMIR 

Similar to cWords and Sylamer, we are interested in how correcting for background 

sequence composition can improve miRNA motif predictions.  Unlike the previous methods, 

however, MixMir employs a pairwise method of correction, which considers similarities in 

expression change between two transcripts as well as similarities between their 3' UTR 

kmer composition.   

To do this, we borrow the mixed linear model (MLM) as it has been applied 

extensively in GWAS.  In that model, we had the following equation: 
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with    the phenotype of individual and     representing either the presence or absence of 

SNP j in individual i, and    is a random effect.  In GWAS, this random effect factors into the 

model when we look at the decomposition of the variance of    into its components. 

In the motif discovery problem, the independent variable is the presence of a 

particular motif in a sequence instead of a SNP.  In our specific application, we are 

interested in discovering miRNAs, and so     represents the presence of miRNA motif j in 

gene i, and    represents the change in gene expression between two data sets, for example 

a Dicer knockout and a wild-type cell.  Further, we are considering as the random effect the 

sequence similarities between two 3' UTRs, which may affect miRNA binding efficacy.  For 

example, we know that a high AU content in the region flanking the miRNA binding motif 

increases miRNA binding efficacy.  However, other unknown specific sequence composition 

rules may affect also affect miRNA binding, and we wish to correct for these even without 

knowing what they are.  The parallel which we wish to draw in this case is the measure of 

kinship in GWAS and kmer content similarity in motif discovery:  That is, we define a 

measure of similarity between 3' UTRs which parallels the definition of the identity-by-state 

(IBS) kinship matrix we saw previously. 

 

GWAS miRNA Model term 

Strain "phenotype" mRNA expression    

Presence of SNPs Presence of miRNA motifs     

IBS kinship matrix 3' UTR similarity K 

 

Table 7 

Comparison of components of mixed linear model between GWAS and MixMir. 
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To this end, we let                     , where the       is the vector of kmer 

counts for UTR i scaled by UTR length, and cor is the Pearson correlation of the two vectors.  

Thus, K represents a measure of similarity, or "kinship", between two transcripts.   

We used both GEMMA v0.98 (62) and FaST-LMM v2.07 (109) to solve the MLM 

described above.  These two algorithms were developed after EMMAX and differ primarily 

in the fact that they are "exact" and do not make the simplifying assumptions that EMMAX 

does, namely that the effect of each SNP/motif is small.  In the case of miRNAs, this 

assumption is not likely to be valid, so we opted to use an exact method.  We began by using 

GEMMA, as it was the most recent version of an exact MLM solver made tractable for large 

data sets as those used in GWAS.  However, we ran into some issues with GEMMA with 

some of our analyses, as in some cases it would fail to estimate coefficients and p-values.  

Thus, we provide a short description of both FaST-LMM and GEMMA here.   

FaST-LMM is an “exact” method, meaning it yields exact test statistics, unlike 

EMMAX, which makes the assumption that the variance parameters for all SNPs are the 

same (see 2.2.6:  Current methods in GWAS).  FaST-LMM implements two main innovations:  

First, the authors note that the restricted maximum likelihood (REML) of a mixed linear 

model can be written in such a way as to depend on only a single variable (δ); and second, 

that the data (SNPs, phenotypes, covariates) can be transformed to be uncorrelated using 

the spectral decomposition of the relationship matrix, so that after transformation only a 

linear regression is necessary to obtain identical results (109).  Thus, FaST-LMM avoids the 

problem of having to re-estimate the variance parameters for every SNP, while still avoiding 

having to assume that these parameters are the same across all SNPs (as EMMAX does). 

Though theoretically their computational complexities are the same (62), GEMMA 

uses the Newton-Raphson optimization method, whereas FaST-LMM uses Brent's algorithm 

(62).  In their own analyses, Zhou and Stephens found GEMMA to be much faster than FaST-
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LMM on a smaller data set (~700 individuals, 12x speedup), while only twice as fast on a 

larger data set (~4600 individuals) (62).  In our analyses, on the other hand, we found that 

FaST-LMM outperformed GEMMA, and also that GEMMA often produced NaNs, which may 

have to do with the implementation of the algorithm rather than the algorithm itself.  In all 

cases where GEMMA and FaST-LMM produced sensical results, the results were by and 

large the same (in terms of p-values and estimation of the size of the fixed effect).  Our 

sample sizes were, however, much larger than those tested in the GEMMA paper, with 

approximately          genes (“individuals”) and        (“markers”), so it is possible 

that at larger values of n, GEMMA is not as efficient. 

Since both GEMMA and FaST-LMM were built for GWAS, they accept only categorical 

inputs, and so we compare MixMir against a linear model with binary presence/absence 

variables.  This categorical linear model, which we call "LM Bin", is simply the expression 

levels of the miRNAs regressed against the presence or absence of a particular motif.   

 

3.3.3:  PROPER ESTIMATION AND USAGE OF P-VALUES 

Throughout the following analyses, we assume that the p-values returned by the 

mixed linear model and cWords are properly estimated, as we use these p-values in part to 

perform a degree of model selection.  To verify that this is the case, we performed 20 

randomizations of the Tconv sequence and expression data, and ran both MixMir and 

cWords on the randomized data for k = 2..6.  For MixMir, the p-values obtained from the 

randomized data exactly follow the diagonal line expected under the null hypothesis, 

suggesting that our p-values are indeed properly estimated. 

However, we did not find this to be the case for cWords in the Tconv data in 

particular, where the p-values were highly skewed towards being very large, i.e. 

insignificant (see Supplementary Figure 1).  Further, we find in 3.4.1:  Parameter testing for 
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MixMir and cWords on the Tconv data that for the true data, the p-values are very skewed 

towards being very small, i.e. significant (Supplementary Figure 2).  These two factors 

combined suggest that p-values found by cWords are not in fact properly estimated, at least 

for the mouse Dicer KO Tconv data.  We also performed this test for the ES cell data; 

however, in that case we found that randomized data resulted in an expected distribution of 

p-values for both MixMir and cWords, so the effect appears to be dataset dependent. 

 

Figure 11 

Plots of observed versus expected p-values obtained by the linear model and MixMir for different values of k, for 

randomized (grey lines) and non-randomized (red lines) data.  From these plots we see that the observed p-

values estimated with randomized data closely follow the expected, whereas the observed p-values with non-

randomized data results in a large number that are much smaller than expected, suggesting a large number of 

false positives.  Notably, this is not the pattern observed in cWords, which at least for the Dicer KO Tconv data 

produces much higher p-values than expected given randomized data (i.e. close to 1). 
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3.4:  RESULTS 

3.4.1:  PARAMETER TESTING FOR MIXMIR AND CWORDS ON THE TCONV DATA 

MixMir uses a linear model of miRNA targeting, similar to previous models such as 

miReduce, but adds a similarity matrix that corrects for background sequence composition 

(see 3.3.2:  Application of mixed linear models to motif discovery:  MixMir).  This similarity 

matrix is calculated by taking the correlation of a vector of kmer counts pairwise between 3' 

UTRs.  Since this similarity matrix can be strongly affected by our choice of k, we initially 

tested MixMir with different similarity matrices computed using       .  For values of k 

greater than 6, the similarity matrices became inaccurate due to the limited total amount of 

3' UTR sequence in the genome and the running time of the implementation was slow, so we 

did not consider higher values of k further. 

We performed model selection by comparing PP plots as we used in Chapter 2:  

Genome-wide association studies in highly structured populations.  The results of these plots, 

compared alongside the same plot for the linear model, are displayed in Figure 12.  As 

before, the observed p-values should follow a uniform distribution under the null 

hypothesis, and a large deviation is suggestive of the presence of many false positives. 

We found that as we increased k, the observed p-values obtained from MixMir 

approached the expected p-values.  Furthermore, we found that as k increased, MixMir 

became less similar to the baseline linear model, where similarity is defined by the Pearson 

correlation of the p-values of the motifs tested.  These patterns were similar if we computed 

the Pearson correlation of motif ranks instead of motif p-values (Table 8).  Combined, these 

results suggest that the MixMir model which performed the most correction of the p-values 

was MixMir6.  Note that this analysis implicitly assumes that there are relatively few highly 

active miRNAs in any particular cell type compared to the total number of possible miRNA 
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sequences (in this case 4096 hexamers), an assumption we believe to be generally true 

biologically (110).  Therefore, we selected MixMir6 to represent the mixed linear model 

results in comparison with the other methods in our analysis. 

 

Figure 12 

Percentile-percentile plot comparing MixMir with k = 2 .. 6.  Expected p-values are found on the x-axis; observed 

p-values are found on the y-axis.  The yellow line is the PP plot for the linear model, which displays an extremely 

skewed distribution towards many very low p-values.  As we increase the length of background words used for 

correction, i.e. k, we see the observed p-values approach the expected p-values.  

 

Method LM Bin MixMir2 MixMir3 MixMir4 MixMir5 

MixMir2 0.8876     

MixMir3 0.8101 0.9677    

MixMir4 0.6336 0.8397 0.9363   

MixMir5 0.3407 0.5356 0.6517 0.8012  

MixMir6 0.2293 0.3624 0.4428 0.5643 0.8832 
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Table 8 

Comparison of MixMir result similarities with the simple linear model (LM Bin).  Pairwise Pearson correlation of 

all motif ranks. We saw that the degree of rank similarity between the LM and MixMir results varied directly 

with the length of the kmer used to construct the relationship matrix. 

 

 The plots above assume that the p-values returned by the mixed linear model are 

properly estimated.  To verify this, we performed 20 randomizations of the sequence and 

expression data, and ran MixMir on the randomized data for k = 2..6.  p-values obtained 

from the randomized data exactly followed the diagonal line expected under the null 

hypothesis line, suggesting that our p-values are indeed properly estimated. 

 We initially tested k = 2 to 6 for cWords to perform model selection as we did with 

MixMir, which we refer to as cWords2 to cWords6.  The authors recommended setting k = 1 

to 3 for cWords, presumably because of the limited amount of sequence in 3’ UTRs (3.3.1:  

Current methods in miRNA motif discovery).   The resulting PP plots showed that there was a 

significant discrepancy between observed and expected p-values, similar to the simple 

linear models, suggesting a relatively high false positive rate for cWords on this data set, or 

perhaps that p-values are incorrectly estimated.  To first test this possibility, we also 

performed 20 randomizations of the data as above for use with cWords.  We found that the 

randomized data resulted in observed p-values much higher (i.e. closer to 1) than their 

expected values, which suggested that perhaps in this data set, p-values are not properly 

estimated (Supplementary Figure 1). 

We observed that little improvement was gained by using any kmer background 

correction as judged by PP plots (Supplementary Figure 2), so we did not use this as a 

criterion for model selection.  We tested the similarity of the results of the different cWords 

models with the results of the linear model and found that k = 2 gave results least similar to 
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those of the linear model, where similarity is defined by the ranks of the motifs tested 

(Table 9). 

Additionally, when we examined the prediction performance on the T conv data set, 

we saw a large drop in performance for k=5 and k=6, with many fewer matches to miRBase 

miRNAs and T conv cell highly expressed miRNAs than for k=2, 3, and 4.  This  is entirely 

consistent with the authors’ recommendation and our observation above that there is 

insufficient 3’ UTR sequence data to train higher orders of the Markov model.  Thus, for 

further analyses, we retained just cWords2 as representative of the algorithm. 

 

Method LM Bin cWords2 cWords3 cWords4 cWords5 

cWords2 0.7978     

cWords3 0.8611 0.9335    

cWords4 0.9287 0.8682 0.9312   

cWords5 0.9616 0.8476 0.9020 0.9610  

cWords6 0.9616 0.8475 0.9019 0.9609 1.000 

 

Table 9 

Comparison of cWords result similarities against simple linear model.  Pairwise Pearson correlation of all motif 

ranks. Here we saw an opposite effect of what we observed with MixMir (Table 8):  as we increase k in cWords, 

the results became closer to those of the linear models, with cWords2 and cWords3 producing the most different 

results. cWords5 and cWords6 were nearly identical in motif ranking. 

 

3.4.2:  MIXMIR OUTPERFORMS CURRENT METHODS IN DISCOVERING MIRNA MOTIFS 

FOUND IN MIRBASE IN THE TCONV DATA 
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To compare MixMir against the previous motif discovery methods, we tested a total 

of five models:  the simple linear model based on motif presence/absence (LM Bin), which 

we take as our baseline method, miReduce, cWords2, and Sylamer, and MixMir6.  For the 

linear models, all possible motifs were ranked by p-value; for miReduce, we set the p-value 

cutoff to be 0.5, resulting in 57 motifs returned (see Methods for a discussion of this choice 

of p-value cutoff).  Sylarray returned 885 words with p-value < 0.01, so these were ranked 

according to p-value.  The motifs in the cWords results are ranked according to a Z-score 

(106), which we found were not consistent with the p-value, so we retained the original Z-

score ranking, which produced better results.  

 We compared the significant hexamer motifs found by each method to miRNAs in 

miRBase (3.2.6:  miRNA motif database:  miRBase). We performed two matching procedures 

to the miRNAs.  First, in our stringent matching criterion, we considered a hexamer a match 

to a particular miRNA only if it matches the seed sequence of a mature miRNA.  Second, in 

our relaxed matching criterion, we allowed the hexamers to match to any of three positions 

starting at nucleotides 1, 2, or 3 from the 5' end of the mature miRNA.  We included offset 

match positions 1 and 3 in order to include all possible types of marginal binding site 

matches (48), including the potential for extensive complementarity through nts 1-8.  This 

relaxed criterion also allows for shifts in the discovered motifs, which are common in 

practical applications of motif-finding algorithms to biological data.  In general we expect to 

see more false positives when including matches to offset seed sequences, so for all 

comparisons we considered both the results from the stringent and the relaxed matching 

criterion.   

As described in 1.2.2:  miRNA target prediction and motif discovery, there are 

additional types of seed sequence matching, not limited to exact seed only and offset seed 

sequences.  Namely, another common type of site is the A1 site, in which there is an 
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additional A paired to the first nucleotide of the 5' end of the miRNA as well as matching to 

nts 2-6 of the mature miRNA (48).  However, we found that including the A1 site resulted in 

many matches to low-confidence miRNAs (e.g. poorly conserved and having very low 

expression) for the categorical linear model, while influencing the results of other models 

very little.  Therefore we chose to omit the A1 site matches from our analyses (data not 

shown). 

 We present results for the two matching criteria using truncated receiver operating 

characteristic (ROC) curves and analyze the results by computing an area-under-the-curve 

(AUC) value for each curve (Figure 13). Briefly, we constructed the ROC curves by taking the 

top 20 and 50 ranked motifs of each method, with true positives taken to be matches to any 

miRNA in miRBase (see Supplementary Note for details). These truncated ROC curves are 

exactly a close-up of the bottom left hand corner of an ROC curve over all possible results.  

We chose to truncate the full ROC curve, which is typically constructed over all possible 6-

mer motifs, both because the methods did not return the same number of predictions and 

most importantly because we believe that focusing attention on only the top motifs is a 

more biologically meaningful comparison since only a few motifs are likely to be 

biologically relevant (i.e. only a small fraction of all possible miRNAs in the database are 

actually expressed in a cell (110)).  It is important both that truncating the ROC curve does 

not change the ranking of the methods and that we believe our results are robust in that the 

ROC curves for MixMir dominate the other curves over essentially the entire range of 

sensitivity settings (Figure 13). We caution that the truncated AUC value should not be 

interpreted as a typical AUC with a baseline value of 0.5 for a random method. Instead, we 

plot in our curves a baseline expected value for a random predictor given the number of 

motifs being plotted and the number of possible true positives, to which the other AUC 

values may be compared. 
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 We present both truncated ROC curves for relaxed motif matching as well as for 

stringent motif matching (Figure 13).  We found that the AUC values for the simple linear 

model was low and it found fewer miRNAs than miReduce, Sylamer, cWords2, and MixMir6.   

cWords2, Sylamer, and miReduce were comparable in performance in both window sizes of 

N = 20 and N = 50 foremost motifs.  All four of those methods performed worse than 

MixMir6, which was more accurate over almost the entire range of sensitivity values.  This 

effect was more noticeable when we used the strict motif matching criterion to position 2 

only in the top 50 motifs.  These results suggest that MixMir more accurately identifies 

motifs corresponding to the exact miRNA seed region.  The top 50 motifs and whether they 

match to miRNAs in miRBase are given in Supplementary Table 1. 
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Figure 13 

Truncated ROC curves for A) the most highly ranked 20 motifs by each method and B) the most highly ranked 50 

motifs by each method, where true positives are taken to be motifs  matching to miRNAs in miRBase. 

 

3.4.3:  EXPERIMENTAL VALIDATION 

Using miRBase as a standard for "true" miRNAs acting in our data is still likely to 

result in false positives, however, since the database consists of experimentally verified and 

computationally predicted miRNAs, not all of which may be active in all cell types 



82 
 

 
 

(111).  Thus, comparing the predicted motifs to all miRNAs in miRBase, while informative, 

may not be the most biologically meaningful representation of their performance.  We 

therefore further validated our results using miRNA expression levels in CD4+ T cells 

determined in two independent experiments by Cobb et al. (112) and Sommers et al. (113).  

These two experiments were conducted using different technologies, the latter measuring 

miRNA expression using the nCounter system (Nanostring Technologies).  The Cobb et al. 

data compared miRNA expression profiles between CD4+CD25- and CD4+CD25+ T-cells.  

This experiment has the benefit of being performed in the same laboratory and on the same 

wildtype T conv cells from which we obtained the mRNA microarray data used in our 

analysis. 

 Several, but not all, of the most highly-expressed miRNAs in each of the two data 

sets overlapped.  Notably, the let-7 family (consisting of let-7b, let-7c, and let-7d), miR-30b, 

miR-26b, miR-142-3p, and miR-15a are among the miRNAs found to be expressed in T conv 

cells in both data sets.  This is consistent with differences between the studies, including the 

particular labs, quantification technologies and the comparison between two cell types in 

the case of the Cobb et al. data.    

 We considered the top 20 highly expressed miRNAs reported by Cobb et al. and the 

top 21 miRNAs reported by Sommers et al. (3.2.1:  Mouse CD4+ Dicer KO expression profiles).  

These results can be found in Supplementary Table 1.  In general, we found that while there 

was clearly a significant overlap between highly expressed and active miRNAs, relatively 

few of the highly expressed miRNAs were also found to be active by the methods we tested.  

For example, of the top ten motifs returned, MixMir identified three exact seed sequences 

corresponding to highly expressed miRNAs. miReduce also performed well, but not as 

accurately (Supplementary Table 1 and Supplementary Table 2).  cWords found more 

highly expressed miRNAs than the simple linear model, but they are ranked further down 
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the list than either miReduce or MixMir6. Of the discovered highly-expressed miRNAs, miR-

142 (both 3p and 5p) is particularly interesting as it has previously been found to be highly 

expressed in  T conv cells and it plays a significant biologically role in regulating cAMP 

(114).  miR-142-3p was found in the Cobb et al. data and was discovered by both miReduce 

and MixMir6.  These results suggest that miRNA motif finding algorithms can play a 

significant role in identifying the most biologically active miRNAs in a sample and that 

simply measuring miRNA expression levels is insufficient to do so. 

 Overall, MixMir ranked true motifs higher than other methods, while the simple 

linear model and cWords found fewer matches to miRNAs expressed in this cell type 

(Supplementary Table 1 and Supplementary Table 2).  These results are consistent with our 

previous analysis of the ROC curves on the full miRBase miRNA data set.  These results 

suggest that MixMir tends to rank true miRNAs higher than other motif-finding methods, an 

important consideration for experimental groups that might only have the resources to 

validate a few top candidate miRNAs.  It also shows that we were able to discover 

biologically meaningful results in our mouse Dicer-knockout T conv data set.   

 

3.4.4:  ANALYSIS OF AU BIAS AND POSITIVE EFFECTS 

It is known that there is often an AU bias in computationally discovered motifs when 

using microarray data (115).  The AU content in the 3' UTRs used in our analyses was 

55.9%, while the average AU content in the miRNA seed sequences from miRBase was 

48.8%.  However, the motifs discovered by the simple linear model had very high average 

AU content, suggesting that their high false positive rate was partially due to discovering 

elements representing the AU-rich background sequence (Table 10).   
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Method % AU in motif 

LM Bin 88.67 

miReduce 43.33 

Sylamer 58.33 

cWords2 81.67 

MixMir6 53.67 

 

Table 10 

AU content of motifs discovered by the different methods. Simple linear models and cWords2 returned motifs 

with very high AU content. Both MixMir and miReduce had substantially lower average AU content, closer to the 

background 3’ UTR base composition. 

 

MixMir6 motifs had average AU content similar to that in the background 3' UTR 

sequence, suggesting that the correlation matrix component of MixMir successfully 

corrected for the AU bias.  Consistent with this idea, as we altered the correlation matrix 

used in MixMir from k = 2 to k = 6, we observed a linear decrease in the average AU content 

of motifs as k increases (Table 11).  Sylamer showed a similar degree of correction.  The 

miReduce results had an even lower average AU content than the background 3’ UTRs.  

cWords, on the other hand, had motif AU composition similar to that of the simple linear 

model, which was very high and was not significantly changed by altering the value of k 

(Table 11).  Taken together these results showed that the simple linear model suffered from 

high AU bias, but this bias was corrected by miReduce, Sylamer, and MixMir.  Although 

miReduce does not have an explicit correction for 3’ UTR base composition, it likely 

implicitly performs this correction by finding a motif highly correlated with background 

composition and then finding the residuals with respect to that motif to identify the 

remaining motifs.  We observed this phenomenon in our data in practice, where miReduce 
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often found an AU-rich motif as the most significant motif.  As described in 3.3.1:  Current 

methods in miRNA motif discovery, Sylamer likely removes the AU rich motifs as a separate 

preprocessing step, unlike the other methods.   

 

Method % AU in motif 

MixMir2 75.0 

MixMir3 71.0 

MixMir4 66.0 

MixMir5 53.67 

cWords3 85.67 

cWords4 84.33 

cWords5 86.33 

cWords6 86.67 

 

Table 11 

Percentage of A and U nucleotides in the top 50 motifs returned. As k decreases from 6 to 5, we see a decrease in 

the percentage of AUs. 

 

3.4.5:  MIXMIR CORRECTS FOR 3' UTR LENGTH 

We expect the coefficient of the fixed effect (i.e. the motif effect) to be positive if the 

motif represents the seed sequence of an active miRNA since miRNAs almost always 

downregulate their targets and a positive effect corresponds to higher expression in the 

Dicer KO. To test this, we looked at the number of motifs with a positive effect in each 

method, both overall and also compared to all motifs with a significant p-value (p < 0.01). 

We find that this was overwhelmingly true across all motifs, particularly the simple linear 
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model and cWords. Sylamer returned the lowest number of positive-effect motifs in those 

which are significant, at only 58.64%, while MixMir showed the best enrichment for 

positive-effect motifs in those which are found significant, compared to the number positive 

over all motifs tested (Table 12). 

 

Method Number of 
significant motifs 

Percent of significant 
positive coefficients 

Percent positive 
coefficients overall 

LM Bin 3726 90.97% 99.34% 

Sylamer 885 58.64% NA 

cWords2 3744 99.97% 98.63% 

MixMir6 121 96.70% 67.94% 

 

Table 12 

Percentage of significant motifs that have positive coefficients in the four models examined. The number of 

significant motifs in the first column is determined by a cutoff of p < 0.01.  The percentage of motifs from the 

first column which are positive (i.e., the percentage of significant coefficients which are positive) is given in the 

second column.  The third column is the percentage of all motifs which have positive coefficients, not limited to 

those which have been found to be significant. 

 

 We reasoned that the overall very high enrichment of positive effects across all 

motifs in the simple linear model might be an artifact due to the inherent relationship 

between 3' UTR length and motif count, because longer sequences have a higher probability 

of containing any given motif, simply by chance. Thus an mRNA that is repressed due to a 

miRNA motif would also induce a similar correlation for all other motifs found in that 3’ 

UTR. To test this hypothesis, we included 3’ UTR length as a covariate to test how it would 

affect the direction of the miRNA effect.  A full discussion of this the 3’ UTR length effect can 

be found in Appendix B.2:  Analysis of the effects of adding a 3' UTR length covariate.  Briefly, 
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the 3’ UTR length covariate strongly shifted the p-values of motifs found by the simple linear 

models, which resulted in the PP plots for the simple linear models being significantly less 

skewed.  These results suggest that an additional reason for the higher performance of 

MixMir compared to the simple linear models is that MixMir implicitly corrects for 3’ UTR 

length using the relatedness matrix.  After correcting for 3’ UTR length, we found that the 

percentage of positive effects across motifs remained high but not artificially high.  This is 

consistent with our biological intuition that while most significant motifs should have 

positive effects, some significant motifs will appear to have negative effects due to the 

indirect effects that are not captured by our steady-state microarray expression 

measurements.  In any case, since we found that the additional length covariate did not 

change the rankings of the top 50 motifs in any of the linear methods, we did not use it for 

the comparisons between methods presented above. 

 

3.4.6:  APPLICATION TO MIRNA TRANSFECTION DATASETS 

All methods perform well for most miRNA transfections but MixMir performs the best 

for let-7b 

In addition to testing MixMir on our mouse Dicer-knockout T conv data, we also 

tested our algorithm on miRNA transfection data from human cell lines, to demonstrate that 

our results are not particular to the mouse microarray data set. We tested both microarray 

and quantitative protein expression data obtained from Selbach et al. (100) (see 3.2.4:  HeLa 

transfection expression profiles), and compared our results to those obtained from the same 

data using miReduce, cWords, Sylamer, and the simple linear model (Table 13 and Table 

14). This data extends our analysis to a very different technology, from microarrays to 

pSILAC, and from mouse to human.  
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  let-7b miR-1 miR-155 miR-16 miR-30a 

MixMir 1[2], 2[1], 3[3] 1[2], 4[3], 11[1] 1[2], 2[3], 6[1] 1[2], 2[3], 3[1] 1[2] 

miReduce 1[2] 1[2] 1[2] 1[2] 1[2] 

Sylamer 1[2] 1[2], 4[3] 1[2], 12[3] 1[2], 11[3] 4[2] 

cWords 1[2], 2[1], 3[3] 1[2], 2[3], 3[1] 1[2], 2[3] 1[2], 2[3],  1[2], 8[3], 16[1] 

LM Bin NA 3[2] 1[2] NA NA 

 

Table 13 

Results for five different HeLa cell miRNA transfections, derived from proteomics expression data.  Red, 

boldfaced numbers indicate the rank of the motif found; numbers in square brackets indicate the type of match, 

with 2 indicating an exact seed match, and 1 and 3 indicating offset matches.  Overall, we find that most methods 

are able to correctly identify the seed sequence of the transfected miRNA as the first motif.  

 

  let-7b miR-1 miR-155 miR-16 miR-30a 

MixMir 1[3], 2[2], 5[1] 1[2], 2[3], 3[1] 1[2], 3[3] 1[2], 2[3], 17[1] 1[2], 17[3] 

miReduce 6[2] 1[2], 10[3] 1[2] 3[2] 1[2] 

Sylamer 19[2] 1[2], 2[3], 3[1] 1[2] 2[2], 4[3] 1[2], 4[1], 10[3] 

cWords NA 1[2], 2[3], 3[1] 1[2], 2[3] 1[2], 2[3], 19[1] 1[2], 3[3], 5[1] 

LM Bin NA 1[2], 2[3], 3[1] 1[2], 3[3] 11[2] 1[2], 3[3], 5[1] 

 

Table 14 

Results for the same five experiments as depicted in Table 13, but using microarray expression data instead of 

proteomics data.  Again we find that in general all of the statistical methods perform quite well, with the 

exception of the let-7b transfection experiment.  However, MixMir is still able to identify an offset seed sequence 

as the highest ranked motif, and the exact seed sequence as the second highest ranked motif.    

 

 We found that nearly all methods were able to find the exact seed sequence for 

nearly all the of the quantitative proteomics data sets, with the exception being that 

Sylamer ranked the seed sequence of miR-30a fourth rather than first. This is an expected 
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result because unlike the Dicer-knockout scenario where many microRNAs were perturbed, 

the transfection experiment perturbs one microRNA very strongly and therefore is expected 

to produce much less noisy expression data. Here our analysis demonstrates that the 

performance of MixMir extends from the complicated T conv data set considered earlier to 

other simpler data sets as well.  

 In addition, we found that MixMir was able find the exact seed sequence or an offset 

seed sequence (in the case of let-7b) of the transfected miRNA as precisely the most 

significant motif for each of the microarray experiments at 32hrs post , while in several 

cases the other methods had difficulty doing so. In particular, the other statistical methods 

had difficulty identifying both seed and offset matches in the let-7b experiment. No other 

method was able to identify the seed or any offset matches in the let-7b experiment, with 

miReduce ranking the seed sixth, and Sylamer and cWords performing very poorly. We 

found that MixMir was able to find many offset seed matches—all 3 offset seed sequences 

were found generally within the top 10 motifs.  Additionally, we found motifs further 

downstream of the miRNA seed sequence for let-7b (rank 17, miRNA nts 12-17), miR-155 

(rank 5, nts 4-9), and miR-16 (rank 16, nts 9-14), which may be suggestive of noncanonical 

binding in these miRNAs (116,117). The center of miR-16 has also been suggested to be 

involved in binding to AU-rich elements (118) although this result has been challenged 

(119). Since miReduce is a useful tool in experimental labs for validating that a transfection 

experiment actually worked and MixMir improves on the other methods slightly for several 

experiments, this is an additional practical use of MixMir as well.  

 

MixMir predicts the miR-290 cluster as biologically most significant in mouse 

embryonic stem cells 
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Next we analyzed new unpublished microarray data from mouse Dicer knockout 

embryonic stem cells (3.2.3:  Mouse embryonic stem cell Dicer KO expression profiles). We 

found that all methods implicated the exact seed of the miR-290 cluster (AAGTGC) as the 

top motif, except Sylamer which ranked it second ( 

Table 15). It is known that the miR-290 cluster, consisting of miR-290 to miR-295, 

has very high activity in mouse embryonic stem (ES) cells, to the extent that replacing only 

this microRNA cluster can rescue most of the Dicer KO phenotype (110). Thus our results 

are consistent with our results for the single microRNA transfection experiments that on 

relatively simple experiments where only a single microRNA dominates the microRNA 

transcriptome of the cell, many methods are generally able to find the correct motif.  

However, the motif analyses extend to offset seeds and non-canonical miRNA targeting as 

well. MixMir was able to identify both offset seeds for the miR-290 cluster in the top ten 

predictions, while the other programs found either 1 or 0 of the offset seeds. We did not 

observe any obvious non-canonical miRNA seeds among the MixMir motifs, a point we 

discuss further in section 3.5:  Discussion. 

 

MixMir6 1[2], 6[1], 7[3]  

miReduce 1[2] 

Sylamer 2[2] 

cWords2 1[2], 6[3], 15[1] 

LM Bin 1[2] 

 

Table 15 

Rank of the exact seed and offset seeds of the miR-290 cluster of miRNAs for each of the methods tested for 

microarray data obtained from comparing Dicer knockout and WT embryonic stem cells. 
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MixMir identifies highly expressed miRNAs in mouse Dicer knockout adrenal cortex 

samples  

We further tested MixMir on a published set of adrenal cortex Dicer KO 

experiments, performed by Krill et al. (98). The authors found that while mouse embryos 

with Dicer KO adrenal cortex cells developed normally up to E14.5, at E18.5 they 

experienced total adrenal cortex failure. In all they found 16 miRNAs that were down-

regulated in the adrenal cortex of both E15.5 and E16.5 mice, including miR-34c, miR-21, 

miR-10a, and let-7d, which play a role in tumorigenesis among other functions (98). They 

also presented lists of miRNAs specifically down-regulated at each stage. 

We analyzed the mRNA microarray expression data (3.2.2:  Mouse adrenal cortex 

Dicer KO mRNA and miRNA expression profiles) from both E15.5 and E16.5 embryos using 

the linear model, miReduce, Sylamer, cWords, and MixMir. When compared to the miRNAs 

that are down-regulated at both E15.5 and E16.5, we found that most methods were able to 

find either an exact or offset seed match to let-7d either as the first or second motif 

returned, with the exception of the linear model, which performed worse. Overall, MixMir 

ranked true miRNA seeds higher than the other methods in both E15.5 and E16.5 data sets 

(Table 16). Most notably, MixMir found both miR-34b and miR-34c in the top ranked motifs 

at E15.5, which no other method was able to do. We also performed a separate analysis of 

motif ranks and miRNA matches for E15.5 and E16.5 separately, as some miRNAs were 

found to be significantly down-regulated at one stage and not at another—namely, there 

were more such miRNAs at E16.5, as expected. We found similar results in this analysis, in 

particular that MixMir consistently found biologically significant miRNAs, with performance 

comparable to miReduce for both time points. cWords and the linear model were 

comparable for E16.5 only (Supplementary Table 3).  
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E15.5 E16.5 

Rank miRNAs Rank miRNAs 

MixMir 2 
5 
8 

[1]miR-34b-3p, [1]miR-34c-
3p 
[2]let-7d-5p, [2]miR-202-3p 
[3]let-7d 

1 
3 
16 

[1]miR-34b-3p, [1]miR-34c-3p 
[2]let-7d-5p, [2]miR-202-3p 
[3]let-7d-5p 

miReduce 1 [3]let-7d-5p 1 [2]let-7d-5p, [2]miR-202-3p 
Sylamer 2 

10 
[3]let-7d-5p 
[2]let-7d-5p, [2]miR-202-3p 

NA  

cWords 1 
2 

[2]let-7d-5p, [2]miR-202-3p 
[3]let-7d-5p 

3 
9 

[2]let-7d-5p, [2]miR-202-3p 
[2]miR-107-3p 

LM Bin 9 
13 

[2]let-7d-5p, [2]miR-202-3p 
[3]let-7d-5p 

3 
9 

[1]miR-34b-3p, [1]miR-34c-3p 
[3]miR-193a-3p 

 

Table 16 

Comparison of all methods in analyses of adrenal cortex Dicer knockout data for mouse embryos at stages E15.5 

and E16.5. We present matches to miRNAs found to be experimentally down-regulated in the Dicer KO samples 

compared to WT in both E15.5 and E16.5 adrenal cortex samples, as reported by the authors. The top 20 motifs 

returned by each method were analyzed. Column labeled Rank gives the rank of the motif matched; miRNAs are 

preceded by the match position of the motif, with [2] indicating an exact seed match. 

 

Thus, testing the different methods on additional biological data sets confirms the 

improvement of MixMir over previous methods. We believe that the most important use of 

miRNA motif finding methods is to find a small number of miRNAs that are most important 

in a particular cell type for further experimental validation, since usually there are very few 

miRNAs that are active in a cell type (110). Therefore, we view the ability of MixMir to 

improve the predictions by a small number of motifs to be a significant result that is a 

feature of the biological properties of the miRNA system. 

 

3.5:  DISCUSSION 

In conclusion, we have presented MixMir, a novel method for microRNA (miRNA) 

motif discovery from sequence and gene expression data. Our method corrects for pairwise 
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sequence similarities between 3' UTRs that could confound a motif finding algorithm in a 

way that is fundamentally different from previous approaches to this problem (e.g. cWords, 

Sylamer). We applied MixMir to a microarray dataset from wild-type and Dicer knock-out 

(KO) mouse CD4+CD25- T cells (T conv cells) collected by one of the authors. Since Dicer is 

required for miRNA biogenesis, we expect that Dicer KO cells do not contain any miRNAs 

and indeed this point was validated by quantitative PCR for selected miRNAs, showing a 

greater than 90% decrease in the knock-out (unpublished results). We found that MixMir 

was more accurate in finding active miRNAs in these cells than three other similar 

published methods, miReduce, cWords and Sylamer, as well as a simple linear regression 

model we used as a baseline for comparison. We validated our computational predictions 

using two independent biological data sets consisting of miRNA expression measurements 

in this cell type quantified by either miRNA microarrays or single molecule imaging using 

the nCounter system (Nanostring Technologies). 

 Importantly we found that miRNA activity was highly but not perfectly correlated 

with miRNA abundance in the cells, so it is not sufficient to simply measure miRNA 

expression levels in a cell type to determine the miRNAs that play the largest role in shaping 

global gene expression in those cells. For example, as in similar analyses for transcription 

factors, miRNAs could be highly abundant but not highly active in repressing mRNA 

expression due to their sub-cellular localization or the presence of competing RNA species 

that could sequester the miRNAs from their mRNA targets (120). Another possibility is that 

miRNAs may have differential efficiency of loading into the RISC complex or of targeting 

mRNAs, and certain mRNAs may not be efficiently repressed by miRNAs due to the 

presence of either stable RNA secondary structures occluding the miRNA binding site or the 

binding of additional trans-acting factors. An interesting biological finding from our analysis 

is that the miRNAs that we found to be the most active in T conv cells were in fact exactly 
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the miRNAs that were more differentially expressed between these cells and CD4+ CD25+ T 

cells (T reg), based on previously published data from the same cell type (112). 

 To confirm the performance of MixMir on additional data sets, we tested MixMir 

against the other methods on five miRNA transfection experiments in HeLa cells, using both 

microarray and pSILAC quantitative proteomics data previously published by Selbach et al. 

(100). In all transfection experiments, for the pSILAC data, nearly all methods were able to 

find the exact seed sequence first, with the exception of the linear model, which failed to do 

so in three cases, and Sylamer, which failed to do so for miR-30a (Table 13). In the 

microarray data, MixMir ranked the exact seed sequence of the transfected miRNA first, 

with the exception of let-7b where it ranked it second. For the let-7b experiment, all of the 

other methods performed much more poorly than MixMir, demonstrating that MixMir gives 

a significant improvement on at least one transfection experiment.  

We performed a similar analysis with mouse embryonic stem (ES) cell Dicer 

knockout experiments, for which we also included previously unpublished microarray 

expression data, and mouse adrenal cortex Dicer knockout experiments, using data 

obtained from Krill et al. (98). In the former, we found again that most methods we tested 

were able to identify the seed sequence of the miR-290 cluster known to be highly active in 

ES cells but that MixMir additionally found more offset seed sequences for this cluster; in 

the latter, we found that MixMir either identified more true miRNAs or performed 

comparably to the other methods depending on the time point examined. Note that the 

adrenal cortex data might be noisier than the other experiments because it was derived 

from more heterogeneous primary tissue rather than cell cultures. 

These experiments demonstrate the general applicability of MixMir on different 

technologies (microarray and proteomics), species (human and mouse), cell types (cell 

lines, primary T cells and adrenal cortex tissue) and experiments of varying complexity, 
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from relatively simple (microRNA transfection or ablation of a single dominant microRNA 

cluster) to relatively complex (perturbation of many microRNAs in a tissue).  Our analysis of 

HeLa cells also demonstrate the utility of MixMir in a context where miReduce is often used 

in practice—to verify that a miRNA transfection experiment was carried out successfully. 

 In our miRNA targeting model, we made several assumptions similar to previous 

methods, like miReduce.  First, we searched over non-degenerate kmer motifs only.  

Although this does not rule out the possibility of detecting degenerate motifs, it probably 

biases our search towards non-degenerate seed matches.  Although we searched for several 

published types of degenerate motifs such as G-bulge sites and imperfect sites in our data, 

we found only a few cases of such sites.  We note that many of the analyses of non-canonical 

miRNA motifs have been performed on Ago HITS-CLIP or PAR-CLIP data and therefore 

represent biochemical binding events of the miRNAs, which are not necessarily perfectly 

correlated with repression that is detectable at the mRNA level.  Similar observations hold 

for ChIP-seq data on transcription factors where biochemical binding does not necessarily 

produce transcription of the target gene. Second, we searched over motifs in 3’ UTRs only.  

This choice was based on previous results in the literature but can be easily changed to 

examine other sequences, such as coding sequences or 5’ UTRs, by users of MixMir.  Third, 

our model assumes that the miRNA regulatory effect is additive, which is supported by 

previous evidence (48) but is still an approximation to biological reality. 

 Our approach to the motif discovery problem borrows an idea from genome-wide 

association studies (GWAS), namely that cryptic relatedness between individuals acts as a 

confounding factor that causes simple linear models to detect many false positive 

associations.  In GWAS, cryptic relatedness is captured by a kinship matrix representing 

pairwise similarities between individuals.  In the miRNA motif discovery problem, we 

considered background nucleotide composition similarity, which may affect miRNA binding 
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in a variety of ways.  It may affect binding site accessibility (121), represent other cis-

regulatory sites for RNA-binding proteins, or simply be a correlate of paralogy—consider 

for instance ribosomal genes that are very similar and have similar expression patterns (e.g. 

due to similar transcriptional regulation) but are not affected by miRNA targeting (122). 

Such signals can confound a motif finder based on a simple linear model if sequence 

similarity is not corrected.  In particular, we found that the relatedness matrix corrected for 

high AU content of the 3’ UTRs.  This observation could be due to the presence of AU-rich 

elements, which are known to be involved in mRNA regulation, other AU-rich motifs for 

trans-acting factors or more open secondary structures in the 3’ UTR that might increase 

the efficiency of miRNA binding.  Furthermore, it has been shown in microarray analyses 

that demonstrated AU bias may be caused by underlying array probe bias (115).  

 We constructed a relatedness matrix analogous to the kinship matrix by 

representing kmer content similarity between 3' UTRs, which implicitly accounts for 3’ UTR 

length. Our finding k = 6 provided the most correction of the results is intuitive, as this 

choice of k corrects for motifs of the same length as the seed sequences for which we are 

searching and synergistic interactions between nearby miRNA binding sites and RNA 

binding protein binding sites have been previously documented (123,124).  It is possible 

that we are also computing an approximation to the alignment score of the 3’ UTRs and that 

global similarity of 3’ UTRs is more important than the presence of short, 6 nt motifs, but we 

consider this possibility unlikely because very few pairs of 3’ UTRs should have any 

meaningful sequence alignment at all.  Most significantly, MixMir6 was able to correctly 

implicate significant hexamer motifs associated with both known miRNAs as well as with 

highly expressed miRNAs in our dataset, as indicated using the area under the truncated 

receiver operating characteristic (AUROC).  In particular, on the data sets we tested, MixMir 

performed better than current state-of-the-art methods of motif discovery, miReduce, 
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cWords, and Sylamer (104-106) over the entire range of sensitivity settings considered and 

on several different types of data. 

 Notably, both cWords and Sylamer correct for 3' UTR length and compositional 

biases. Overall, cWords performed better than Sylamer, but exhibited strong AU bias in the 

datasets we examined. These results suggest that background nucleotide composition 

similarity can strongly affect the ability of a linear model to uncover true motifs, but also 

that the way in which we correct for background composition can dramatically alter the 

results. Unlike Sylamer and cWords, MixMir utilizes the expression fold change values 

instead of just the ranks. Additionally, MixMir makes pairwise comparisons of the entire 3' 

UTR sequences, thus performing a more direct comparison of sequence context, rather than 

comparing motif vs. background composition within each 3' UTR like the other methods. 

 The MixMir software is freely available online at https://github.com/ldiao/MixMir, 

and utilizes FaST-LMM, a fast mixed linear model solver that can be obtained freely online 

(see the MixMir README file with the software for details).  One limiting factor in our 

approach is the total amount of 3’ UTR sequence available to construct large correlation 

matrices for long kmers.  Increasing the kmer length to 7mers or higher would make the 

correlation matrix very sparse and difficult to estimate accurately.  Another drawback of 

MixMir is its relative computational inefficiency:  we exhaustively analyzed all 6mers but if 

we wanted to exhaustively analyze all 7- or 8mers, the runtime and memory requirements 

for FaST-LMM would make the computation too inefficient for practical use in our 

experience.  However, miReduce suffers from a similar problem of computational 

inefficiency for values of k greater than about 6, so this is not an issue unique to MixMir.   

  Finally, we note that our mixed linear model approach is not limited to solving the 

miRNA motif discovery problem. Like the REDUCE software, MixMir can potentially also be 

applied to other regulatory element motif detection problems, such as transcription factor 
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and RNA binding protein motif prediction, by varying the type of sequence input and gene 

expression fold change input. For example, REDUCE was originally applied to transcription 

factors but was later applied to miRNAs in miReduce (104), RNA binding proteins in 

matrixREDUCE (125), degenerate transcription factor motifs in fREDUCE (126) and ChIP-

chip data.  We believe that MixMir can be similarly applied to many of these types of data 

and possibly also other data types such PAR-clip (127) as well. 
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CHAPTER 4:  CONCLUSIONS AND FUTURE APPLICATIONS 

4.1:  CONCLUSIONS 

Though the idea of the mixed linear model was first developed by Fisher to account 

for the effect on phenotype of genetic similarities between individuals (60), the utility of 

mixed linear models has in a wide variety of biological problems is clear.  Their usefulness is 

due to their versatility and ease of definition:  So long as we can define some measure of 

expected similarity between samples, we can generate the relationship matrix needed to 

formulate the model.  Such relationships are plentiful in biology—while we have focused 

here on genetic similarities between strains of yeast and kmer similarity between 3' UTR 

sequences as they have applied to the problems at hand, other examples traditionally 

include longitudinal data models and random batch effects caused by, for example, the 

random selection of clinics at which to administer a drug.  Recently MLMs have also been 

applied to correct for cell type composition in epigenome-wide association studies (128), 

and undoubtedly more applications are yet to come. 

We have examined the efficacy of MLMs to correct for relatedness in the yeast 

Saccharomyces cerevisiae, a species exhibiting very strong population structure.  There is 

some doubt as to whether genome-wide association studies are feasible in such a sample, as 

the confounding effects of the complex population structure may be difficult to overcome 

(86).  In Chapter 2:  Genome-wide association studies in highly structured populations we 

investigated how to address this issue and posited that the inclusion of fixed local ancestry 

covariates in a typical mixed linear model may be helpful in removing the confounding 

effects.  Here we defined the relationship matrix by the identity-by-state matrix estimated 

from the SNPs being interrogated.  While we found issues with power in the event that a 

causal SNP's local ancestry covariates are themselves associated with the phenotype, our 
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simulation studies showed that when this is not the case, we have greater power to detect 

the causal SNP than a mixed linear model without the local ancestry covariates.  Thus, what 

we observed was that the local ancestry MLM we tested had a higher variance when it came 

to ranking planted causal SNPs:  They could be ranked very highly, performing better than 

any other method; or they could be ranked more lowly.  On the other hand, MLM methods 

without fixed ancestry covariates show more consistency in their rankings of causal SNPs 

than their counterparts.  Nonetheless, we showed that in real data with known gene-

phenotype associations, the mixed linear model including local ancestry covariates is able to 

uncover the SNP nearest the causal gene. 

After becoming familiar with MLMs and their application to GWAS, we considered 

another biological problem, which on the surface appears to be quite different but which 

also benefited from a similar modeling strategy.  In this case we were interested in 

predicting the active microRNAs in a cell type, using only the change in expression between 

the wild type cell and the cell in which miRNAs were no longer functional (i.e., with Dicer 

knocked out).  While a considerable amount of work has been done on this problem, we 

took a different approach and modeled the background sequence composition of the 3' UTR, 

where miRNAs typically bind.  Sequence composition is known to have an effect on the 

efficacy of miRNA binding (96); however, the exact details as to what features might play a 

part in this role are not known, making the flexibility of the mixed linear model quite 

attractive.  Specifically, we do not have to incorporate the exact sequence features, which 

are unknown, and instead we defined a measure of kmer similarity between 3' UTRs and 

used this similarity measure in our MLM relationship matrix. 

While some other papers have addressed the issue of sequence composition 

(105,106), our method firstly allows for regression on quantitative change in expression, 

rather than ranking alone; we also take a relative approach, by comparing log fold change in 
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expression and sequence similarity pairwise between all samples, instead of only 

considering the effect of the background composition of a single 3' UTR on the likelihood of 

observing a given motif.  The method we proposed is more computationally demanding due 

to the processing of an     large matrix, where N is the number of samples, but we found 

that overall, our method is able to better detect true miRNAs, and rank them more highly, 

than others that we tested.  We believe that making a small sacrifice in computational 

complexity is worthwhile to uncover more high-confidence miRNAs, and from a biological 

perspective since our method ranks true miRNAs more highly it can be better used for 

further experimental verification, similarly to miReduce (103). 

 

4.2:  FUTURE DIRECTIONS 

In the work presented here we have demonstrated the importance of correcting for 

population structure in genome-wide association studies, and how feasible it might be to 

perform GWAS in highly structured populations using a combination of the mixed linear 

model with local ancestry covariates.  We also demonstrated that the mixed linear model 

can be used to correct for sequence composition factors that affect miRNA binding. 

The mixed linear model appears to be particularly well suited to biological 

problems.  Many experimental setups result in groups of samples being more similar in 

phenotype than might be expected by chance, which is not indicative of any interesting 

relatedness, but rather of confounding factors we wish to exclude from our analyses.  The 

power of MLMs to correct for batch effects in a flexible and simple way have been exploited 

recently to correct for issues such as sample heterogeneity in epigenome-wide association 

studies in blood (128).  In sections 4.2.1:  miRNA:mRNA target pairs in breast cancer and 

4.2.2:  Application to discovery of RNA binding proteins:  Beyond miRNAs, we describe other 
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potential applications of MLMs, including another type of motif discovery problem and 

motif target prediction.   

 

4.2.1:  MIRNA:MRNA TARGET PAIRS IN BREAST CANCER 

As mentioned above, MLMs have great potential to correct for batch effects, 

particularly when these effects are not well-defined.  For example, if we had two different 

labs produce microarray measurements of the exact same biological sample, it's not unusual 

that replicate measurements within a lab will be more similar to each other than to 

measurements from the other lab.  One simple way to correct for this kind of batch effect is 

to include a fixed categorical factor to account for the "lab" effect.  However, in some cases 

the effect is less obvious and well-defined.  A good example of this would be studies in 

which tissue samples are used, since tissue samples can be quite heterogeneous.  Studies of 

breast cancer and chronic obstructive pulmonary disease often collect breast and lung 

samples, where the tissues studied are in fact composed of many different elements—

breast tissue as a whole is a composite of fat and muscle cells, as well as gland and duct 

tissue, and the lungs are also an organ with complex structure composed of a network of 

alveoli and bronchioles.  This makes expression profiles derived from such tissue samples 

difficult to compare, since different samples likely contain a different composition of tissue 

subtypes. 

Quite some exploration has been done with regard to the role that miRNAs play in 

cancer (54-57).  We hypothesized that performing mRNA:miRNA target pair prediction 

using a mixed linear model would be more effective than using a linear model with fixed 

covariates.  Such a model has been proposed previously, taking into consideration miRNA, 

mRNA, AGO, and other types of expression information (58).  However, since breast tissue 

samples (both tumor and normal) are likely to be heterogeneous, we believed that 
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correcting for this using a relationship matrix defined by overall tissue sample expression 

could reduce the number of false positives discovered by a linear model, without the need 

to guess at possible confounding factors. 

We downloaded gene expression data for both normal breast tissue and breast 

cancer samples from The Cancer Genome Atlas (TCGA) (129).  We also obtained miRNA 

expression data derived from genome analyzer and HiSeq platforms.  Many mRNA and 

miRNA samples were paired.  Since we had more HiSeq samples, and data derived from 

HiSeq should be more accurate, we chose to focus first on paired samples with HiSeq miRNA 

expression data.  This consisted of 490 tumor samples and 83 normal samples.  Tumor 

samples contained expression values for 20365 genes and 1046 miRNAs; normal samples 

contained expression values for 20365 genes and 748 miRNAs, where the set of normal 

miRNAs is contained in the set of tumor miRNAs.  We removed miRNAs for which there 

were no matched expression values in normal.  Of the samples obtained, we removed all 

miRNAs with no variation in expression. 

Similarity matrices were created based on a pairwise Pearson correlation of gene 

expression vectors across all genes, for each pair of samples, including miRNA expression.  

This resulted in a matrix with starkly different values when comparing tumor to normal 

samples, as expected.  In fact, Pearson's r is primarily negative for tumor-normal pairs, 

which means the relationship matrix constructed is not positive semidefinite and therefore 

cannot be used as is in the mixed linear model.  Therefore, we chose to analyze tumor and 

normal tissues separately first.    

We tested conserved miRNA:mRNA target pairs as predicted by TargetScan, with a 

cutoff of         (32,49).  This was primarily a time saving step, as the set of all possible 

miRNA:mRNA target pairs in our data sets is considerable (                   ), so 

that even using the simple linear model, the analysis of all target pairs is expensive.  The 
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number of TargetScan predicted conserved target pairs fitting our criteria is 95,422 in 

normal and 97,834 in tumor, which made further analysis more feasible. 

We tested a simple model described by: 

                

where        describes the expression value of miRNA i and       describes the 

expression value of mRNA j.  The MLM further contained a relatedness matrix describing 

similarity of samples.   

Initial MLM analyses were performed using a student license version of ASReml, 

which allowed for quantitative phenotypes as well as the definition of a custom relationship 

matrix.  After the ASReml license expired and is now only available commercially, we used 

R's lmekin package, which produces identical results.  We tested the basic MLM against a 

simple linear model (LM) which was performed in R.  For additional comparison, we also 

created a randomized relationship matrix, by randomizing entries in the original matrix. 

One of the preliminary results we obtained concerned the number of significant 

target pairs observed as well as the sign of the coefficient of the fixed effect      .  While it 

is unsurprising that the number of significant target pairs found at        after false 

discovery rate (FDR) correction is much smaller in the mixed linear model compared with 

the linear model (~120-200 vs. 7,000-10,000), the more interesting note is that in the top 

100 most significant target pairs, we find the fixed coefficients in the MLM to be primarily 

positive, whereas in the linear model and the mixed linear model with random kinship 

matrix the coefficients are approximately 45% positive (Table 17).  The randomized 

relationship matrix MLM models are more similar to the linear models overall, but more so 

in normal samples than in tumor (Table 18).   

 

 % Positive over all % Positive in top 100 
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target pairs miRNAs 

LM Tumor 44.74 45.75 

LM Normal 45.01 47.08 

MLM Tumor 43.35 88.73 

MLM Normal 50.84 91.16 

MLM Tumor 
rand 

46.05 46.79 

MLM Normal 
rand 

45.08 46.20 

 

Table 17 

Percentage of target pairs with positive fixed coefficients when analyzed with the linear model (LM), the mixed 

linear model (MLM), for tumor and normal samples separately.  The last two rows represent analysis with the 

MLM with a randomized relationship matrix, which are more similar to the LM results than to the non-

randomized MLM.    

 

 MLM Tumor Rand LM Tumor 

MLM Tumor 0.2714 0.2277 

MLM Tumor Rand  0.5508 

 MLM Normal Rand LM Normal 

MLM Normal 0.1497 0.1515 

MLM Normal Rand  0.8140 

 

Table 18 

Pearson correlation of p-values for each target pair, comparing mixed linear models with randomized 

relationship matrices and those with non-randomized matrices.    

 

We performed preliminary functional analysis by taking the genes implicated in 

significant miRNA:mRNA target pairs and analyzing them using FuncAssociate 2.0 with 

       (130), which searches for enriched GO terms in gene lists.  Analyses using genes 
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implicated by the linear model produced no results for either tumor or normal, possibly 

because of the large number of genes found to be significant.  Overrepresented attributes 

found using significant genes implicated in MLM include cell differentiation, chemotaxis, 

and various developmental processes in tumor samples, and muscle development in normal 

samples.  The most significant target pairs as identified by the MLM are given in Table 19 

below.  These include well-known targets such as HOXB3 as well as known oncomirs such 

as miR-22.   

 

miRNA Gene 

hsa-mir-10a HOXB3 
hsa-mir-182 KIAA1324 
hsa-mir-22 FBXO46 
hsa-mir-30a LMBR1L 
hsa-let-7b NPEPL1 
hsa-mir-30a ZNRF1 
hsa-mir-21 KLHL15 
hsa-mir-21 CASKIN1 
hsa-mir-30a SMAP1 
hsa-mir-30a ELFN2 
hsa-mir-30a CARS 
hsa-mir-148a STT3A 
hsa-mir-182 CASP2 
hsa-mir-30a STX2 
hsa-mir-30a FOXA1 
hsa-mir-148a EXTL3 
hsa-let-7b ANKRD49 
hsa-let-7b E2F2 
hsa-mir-148a LRCH1 
hsa-let-7b USP44 
hsa-mir-22 HSPG2 
hsa-mir-30a PTGFRN 
hsa-mir-30a BSN 
hsa-let-7b PBX2 
hsa-mir-182 C9orf80 
hsa-mir-22 ERBB4 

 

Table 19 

List of most significant miRNA:mRNA target pairs as identified by the mixed linear model applied to tumor 

samples. 
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While these results are only exploratory, they suggest that correcting for possible 

confounders such as tissue type composition is important, and possibly even more so in 

heterogeneous samples such as those that would be expected in cancer phenotypes.  It also 

begins to address the issue of moving from motif discovery to target prediction, which is a 

natural next step.  Here we used a precompiled database of conserved and predicted 

targets, but many other target prediction algorithms exist.  We believe that the mixed linear 

model can be applied to this type of problem as well, perhaps to account for the effect of 

background sequence composition on binding efficacy as we assumed in the development of 

MixMir.  Issues to overcome would include the computational complexity of testing all 

potential miRNA:mRNA target pairs, especially when data sets are very large and the 

relationship matrix becomes unwieldy.   

 

4.2.2:  APPLICATION TO DISCOVERY OF RNA BINDING PROTEINS:  BEYOND MIRNAS 

While we have focused primarily on miRNA motif discovery, there is no reason that 

MixMir cannot be applied to other types of motif discovery problems.  In particular, we also 

applied MixMir to the discovery of an RNA binding protein (RNAbp) called HuR.  While 

RNAbps are thought to widely perform posttranscriptional gene regulation, the roles that 

each RNAbp play are still mostly unknown (131).  The RNAbp HuR appears to be a player in 

mRNA stabilization in the cytoplasm (132).  The HuR binding motif has been previously 

described by computational and experimental methods, with slightly differing results 

(131,132).  We were able to recover these motifs using MixMir in our data. 

One primary difference between miRNA motif discovery and RNAbp motif discovery 

is that with miRNAs, the seed region we take for our motif is highly conserved and also does 

appear to allow variations, with a few exceptions (59,116).  However, RNAbp motifs, like 
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transcription factor (TF) motifs, often allow variations in binding motifs, which result in 

motif predictions in the form of position weight matrices (PWMs).  These are typically 

depicted in graphical form as a motif logo, which describe the probability of seeing a 

particular nucleotide at a position in the motif based on the size of the letter (see Figure 14).  

For more common application of MixMir to TF and RNAbp motifs, we would need to be able 

to reassemble a PWM using the list of significant motifs returned by the regression model. 

 

 

Figure 14 

Example motif logo generated by http://weblogo.berkeley.edu/examples.html. 

 

 Thus, while we have presented here a framework for discovering significant motifs 

with consideration for background sequence composition, there are issues that remain to 

be explored, such as application to miRNA motif prediction and discovery of more complex 

sets of motifs, such as with transcription factors and RNA binding proteins.    
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APPENDIX A: 

SUPPLEMENTARY FIGURES: 

 

Supplementary Figure 1 

PP plots for randomized data, with expected p-values obtained from cWords with background Markov Model of 

order 2.  While we would expect to see p-values randomly distributed, i.e. falling along the x-y axis in the plot 

with randomized data, we in fact see highly inflated p-values.  
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Supplementary Figure 2 

Percentile-percentile plot comparing cWords with Markov model of order k = 2 .. 6.  Expected p-values are found 

on the x-axis; observed p-values are found on the y-axis.  The yellow line is the PP plot for the linear model, 

which displays an extremely skewed distribution towards many very low p-values.  We do not observe better 

correction in terms of the number of false positives with different choices of k.  
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SUPPLEMENTARY TABLES:   

 

Method Rank Motif miRNAs matched 

LM Bin 13 TGTAAA [1]mmu-miR-30b-5p, [1]mmu-miR-30c-5p, 

[1]mmu-miR-30e-5p 

 24 TAAACA [3]mmu-miR-30b-5p, [3]mmu-miR-30c-5p, 

[3]mmu-miR-30e-5p 

cWords2 7 TCAAGT [2]mmu-miR-26a-5p, [2]mmu-miR-26b-5p 

 26 TGTAAA [1]mmu-miR-30b-5p, [1]mmu-miR-30c-5p, 

[1]mmu-miR-30e-5p 

 30 TTCAAG [1]mmu-miR-26a-5p, [1]mmu-miR-26b-5p 

 35 TAGTTT [1]mmu-miR-19a-3p 
 44 GTGCAA [2]mmu-miR-19a-3p 
 47 AGCAGC [2]mmu-miR-15b, [2]mmu-miR-195a-5p 
Sylamer 8 TCAAGT [2]mmu-miR-26a-5p, [2]mmu-miR-26b-5p 

 23 TAGTGT [3]mmu-miR-142-3p 

miREDUCE 2 GTGCAA [2]mmu-miR-19a-3p 

 6 GTAAAC [2]mmu-miR-30b-5p, [2]mmu-miR-30c-5p, 

[2]mmu-miR-30e-5p 

 8 TCAAGT [2]mmu-miR-26a-5p, [2]mmu-miR-26b-5p 

 15 GTAGTG [2]mmu-miR-142-3p 

MixMir6 1 GTGCAA [2]mmu-miR-19a-3p 
 2 TCAAGT [2]mmu-miR-26a-5p, [2]mmu-miR-26b-5p 

 4 GTAGTG [2]mmu-miR-142-3p 

 8 TAGTGT [3]mmu-miR-142-3p 

 12 TGTAAA [1]mmu-miR-30b-5p, [1]mmu-miR-30c-5p, 

[1]mmu-miR-30e-5p 

 17 CTGCAT [2]mmu-miR-20a-3p 

 37 TTCAAG [1]mmu-miR-26a-5p, [1]mmu-miR-26b-5p 

 

Supplementary Table 1 

Performance of each method on miRNA expression data from mouse CD4+ T-cells. The number in square 

brackets refers to the position of the 6-mer match in the mature miRNA (position 2 is the exact seed match).  

Selected miRNAs shown are those which are also highly expressed in one of two experimental data sets.   

 

Exact seed match 
    

Offset seed match 
   Ran

k 

LM 

Bin 

cWords

2 

Sylame

r 

miReduc

e 

MixMir

6 

  

LM 

Bin 

cWords

2 

Sylame

r 

miReduc

e 

MixMir

6 

1 

TTAAA

A TTAAAA TTTATT ACAAAA GTGCAA 

  

TTAAA

A TTAAAA TTTATT ACAAAA GTGCAA 
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2 

TAAAA

A TTTAAA TTAATT GTGCAA TCAAGT 

  

TAAAA

A TTTAAA TTAATT GTGCAA TCAAGT 

3 

TATAA

A TATAAA TAAATA GGGACC AAAGCA 

  

TATAA

A TATAAA TAAATA GGGACC AAAGCA 

4 

AAAGC

A TATATA AGGGGG GTACAA GTAGTG 

  

AAAGC

A TATATA AGGGGG GTACAA GTACAA 

5 

AAGAA

A ATATAA CCCCCC CCTGGA GAACAG 

  

AAGAA

A ATATAA CCCCCC CCTGGA GAACAG 

6 

AAAAA

T AATATA ATAAAT GTAAAC GTATCT 

  

AAAAA

T AATATA ATAAAT GTAAAC GTATCT 

7 

AAATT

A TCAAGT TTATTA GATGCT AAGAAA 

  

AAATT

A TCAAGT TTATTA GATGCT AAGAAA 

8 

TTTAC

A TAAAAT TCAAGT TCAAGT TAGTGT 

  

TTTAC

A TAAAAT TCAAGT TCAAGT TAGTGT 

9 

ATACA

A TATACA TTTAAT CACGGA TATAAA 

  

ATACA

A TATACA TTTAAT CACGGA TATAAA 

10 

AAAAT

G ATATAT CGGCAG TAGGGT CAAAGC 

  

AAAAT

G ATATAT CGGCAG TAGGGT CAAAGC 

11 

ATAAA

A AAAATA ATATAG CCGCGC GTGGGA 

  

ATAAA

A AAAATA ATATAG CCGCGC GTGGGA 

12 

TTTAA

A TAAAAA CTTACT CGGCTT TGTAAA 

  

TTTAA

A TAAAAA CTTACT CGGCTT TGTAAA 

13 

TGTAA

A TGTACA GGGGGA GCACTA TCAATG 

  

TGTAA

A TGTACA GGGGGA GCACTA TCAATG 

14 

TTCAA

A CTTAAA CGCGAG GGATCC TGTGTG 

  

TTCAA

A CTTAAA CGCGAG GGATCC TGTGTG 

15 

TAAAA

T TTTACA AATAAA GTAGTG ATCAAT 

  

TAAAA

T TTTACA AATAAA GTAGTG ATCAAT 

16 

TTAAA

T TTTTAA TATTGC TTTGTG CCAGCG 

  

TTAAA

T TTTTAA TATTGC TTTGTG CCAGCG 

17 

CTTAA

A ATATAC CCTGGG GGATCG CTGCAT 

  

CTTAA

A ATATAC CCTGGG GGATCG CTGCAT 

18 

TACAA

A AAAACC ACGGGT ACAGTA CTGCGT 

  

TACAA

A AAAACC ACGGGT ACAGTA CTGCGT 

19 

TATAC

A TACATT GCACTT CGCGCC CTCTGA 

  

TATAC

A TACATT GCACTT CGCGCC CTCTGA 

20 

TTTCA

A AACCAA GCTGCT GTTCCG GTCGGC 

  

TTTCA

A AACCAA GCTGCT GTTCCG GTCGGC 

21 

TCAAA

A CAAGTT TCATGT ACGCTG TGCAAC 

  

TCAAA

A CAAGTT TCATGT ACGCTG TGCAAC 

22 

AAATA

C AATGTT TCCCCC TCGATC GCACTA 

  

AAATA

C AATGTT TCCCCC TCGATC GCACTA 

23 

AAAAA

A TTCTAA TAGTGT CCGGCT GCACGC 

  

AAAAA

A TTCTAA TAGTGT CCGGCT GCACGC 

24 

TAAAC

A TTTAAG TAATTA AACGGG TTCCAT 

  

TAAAC

A TTTAAG TAATTA AACGGG TTCCAT 

25 

ATCAA

A ACTTAA CCCTCA TTCTAT AAGCAT 

  

ATCAA

A ACTTAA CCCTCA TTCTAT AAGCAT 

26 

ATTAA

A TGTAAA CGAAGC CCGTAA TCTGCG 

  

ATTAA

A TGTAAA CGAAGC CCGTAA TCTGCG 

27 

AAACA

T AAATAT CCGTTT GCTCCG CAACGG 

  

AAACA

T AAATAT CCGTTT GCTCCG CAACGG 

28 

ATACA

T AACTGC GCACGC TCGCTC GCTGGC 

  

ATACA

T AACTGC GCACGC TCGCTC GCTGGC 

29 

AAAGA

A ATGTAC TCCCAT GAACGC TTAGTA 

  

AAAGA

A ATGTAC TCCCAT GAACGC TTAGTA 

30 

AAAAG

A TTCAAG ACGAAT CGATGC AACGGG 

  

AAAAG

A TTCAAG ACGAAT CGATGC AACGGG 

31 

AAAAG

C TTTCAA TATATG CGATGG TCAAAC 

  

AAAAG

C TTTCAA TATATG CGATGG TCAAAC 

32 

AATAA

A AAACAA CTACCC CGTTGG ATCAAA 

  

AATAA

A AAACAA CTACCC CGTTGG ATCAAA 

33 

AAAAC

A ATAAAA TTTAAG TGGTCC GGAACA 

  

AAAAC

A ATAAAA TTTAAG TGGTCC GGAACA 

34 

AAAAT

T TTCCTA GGTGAG ATACAC AATGCA 

  

AAAAT

T TTCCTA GGTGAG ATACAC AATGCA 

35 

AAATA

A TAGTTT GGAGGG AATCTC CAAACG 

  

AAATA

A TAGTTT GGAGGG AATCTC CAAACG 

36 

AAAAT

A AAATGT GGTAAT ACGAGA GGCAGC 

  

AAAAT

A AAATGT GGTAAT ACGAGA GGCAGC 

37 

GAAAA

A TACATA AGTATT AAAGCG TTCAAG 

  

GAAAA

A TACATA AGTATT AAAGCG TTCAAG 

38 

TTTTA

A ATACAT TTATTT CTACGT TTCAGC 

  

TTTTA

A ATACAT TTATTT CTACGT TTCAGC 

39 

CAAAA

C ATACAA ACGCGT CACTTA AGCGCA 

  

CAAAA

C ATACAA ACGCGT CACTTA AGCGCA 

40 

AAAAA

G ACCAAG TGAAAC TTCTTC AAAGTT 

  

AAAAA

G ACCAAG TGAAAC TTCTTC AAAGTT 

41 

TAAAT

A AATCAA TTGCTC AACCGA AACCGA 

  

TAAAT

A AATCAA TTGCTC AACCGA AACCGA 
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42 

AGAAA

A TTAAGT GCGTTC CGGTAT GAACAC 

  

AGAAA

A TTAAGT GCGTTC CGGTAT GAACAC 

43 

ATTTA

A TTAAGA AGGGAG TTATCG GGGGCA 

  

ATTTA

A TTAAGA AGGGAG TTATCG GGGGCA 

44 

AATTT

A GTGCAA TTTATA CGCATA TTCGGC 

  

AATTT

A GTGCAA TTTATA CGCATA TTCGGC 

45 

AAATG

T AAAGCA TAAATT CGGACG AATAAG 

  

AAATG

T AAAGCA TAAATT CGGACG AATAAG 

46 

TGAAA

A TGATTT CGTTCA GCTGCG CGCTCA 

  

TGAAA

A TGATTT CGTTCA GCTGCG CGCTCA 

47 

AACAT

A AGCAGC GCTGGG CGGCGG CCCATA 

  

AACAT

A AGCAGC GCTGGG CGGCGG CCCATA 

48 

AATGC

A ATTCAA ATATCA TTCGCA TACCAT 

  

AATGC

A ATTCAA ATATCA TTCGCA TACCAT 

49 

TTACA

A TACAAT AAATAA ACCTGT TTATTG 

  

TTACA

A TACAAT AAATAA ACCTGT TTATTG 

50 

TAAAT

T AACAAA ACATGT TTCGGC AGTAGT 

  

TAAAT

T AACAAA ACATGT TTCGGC AGTAGT 

 

Supplementary Table 2 

The top 50 motifs from each of the following methods, along with their miRNA matches in miRBase:  LM Bin, 

cWords2, miReduce, MixMir6.  Left:  Matches to exact seed sequence.  Right:  Matches allowing offset seed 

sequences.  Light grey backgrounds indicate a match to miRBase, Orange indicates a match to a highly expressed 

miRNA found by both experimental data sets (Sommers et al. and Cobb et al).  Green indicates a miRNA found by 

only the Cobb et al. data set.  We take as highly expressed the miRNAs corresponding to the top ten unique 

motifs in each dataset. 

 

 

 E15.5 E16.5 

Rank miRNAs Rank miRNAs 

MixMir 2 

5 

8 

[1]miR-34b-3p, [1]miR-

34c-3p 

[2]let-7d-5p, [2]let-7g-5p, 

[2]miR-202-3p 

[3]let-7d-5p, [3]let-7g-5p  

1 

3 

16 

31 

39 

[1]miR-34b-3p, [1]miR-34c-3p 

[2]let-7d-5p, [2]miR-202-3p 

[3]let-7d-5p, [2]miR-196a-5p 

[2]miR-30e-5p 

[3]miR-193a-3p, [3]miR-193b-

3p 

miREDUCE 1 

4 

[3]let-7d-5p, [3]let-7g-5p 

[1]miR-672-3p 

1 

4 

[2]let-7d-5p, [2]miR-202-3p 

[2]miR-362-3p, [1]miR-672-3p 

Sylamer 2 

10 

23 

[3]let-7d-5p, [3]let-7g-5p  

[2]let-7d-5p, [2]let-7g-5p, 

[2]miR-202-3p 

[2]miR-22-5p  

34 

43 

[3]miR-10a-3p 

[3]miR-18a-5p 

cWords 1 

2 

[2]let-7d-5p, [2]let-7g-5p, 

[2]miR-202-3p 

[3]let-7d-5p, [3]let-7g-5p 

3 

9 

35 

46 

[2]let-7d-5p, [2]miR-202-3p 

[2]miR-107-3p 

[3]miR-193a-3p 

[3]miR-34b-3p, [3]miR-34c-3p 
 

Supplementary Table 3 
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Comparison of all methods in analyses of adrenal cortex Dicer knockout data for mouse embryos at stages E15.5 

and E16.5. We present matches to miRNAs found experimentally down-regulated in the Dicer KO compared to 

WT adrenal cortex samples, broken down for E15.5 and E16.5 separately.  As in Table 15, only the top 50 motifs 

returned by each method were analyzed. 
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APPENDIX B: 

B.1:  PLOTTING THE TRUNCATED RECEIVER OPERATOR CURVES 

To draw a ROC curve, we must be able to define the true positives.  In our case, we 

chose not to draw ROC curves across all possible motifs while using all miRNAs in miRBase 

as the true positives, since relatively few of them are expected to be expressed in a 

particular cell type.  Furthermore, the methods did not output the same number of motifs—

in particular, miReduce outputs many fewer motifs than the other methods.  It is not clear 

how to best draw ROC curves when the methods do not output the same number of 

predictions.   

 We thus chose to truncate the ROC curves to the number of motifs to N = 20 and N = 

50, to demonstrate how well the methods perform in the top predictions.  The way we 

truncated the curves produces exactly the same curves as would be obtained by magnifying 

the top results in a full ROC curve.  The remainder of the full ROC curve is expected to 

approach the random predictor line for all methods and would not give additional 

information about the performance of the methods.  After truncation, we simply scale the X 

and Y axes to both range from 0 to 1.  We caution that this truncated AUC statistic should 

only be used to compare the different methods to each other and not to the typical baseline 

value of 0.5 for a random method.  To this end, we include in each plot a baseline for a 

random predictor calculated from the expected true and false positive rate given the total 

number of hexamers matching miRBase miRNAs and the total number of motifs being 

tested. 

 In the truncated ROC curves, we see that the results of the comparisons are robust 

in that the accuracy of MixMir dominates that of the other methods over almost the entire 

range of sensitivity settings. We consider this to be the best indicator of MixMir’s 
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performance as the AUC values are really only needed for comparison when ROC curves 

intersect each other. 

 

B.2:  ANALYSIS OF THE EFFECTS OF ADDING A 3' UTR LENGTH COVARIATE 

Figure 15 plots the percentage of positive associations against motif rank as a PP-

plot.  The LM Bin model without 3’ UTR length as a covariate had nearly all positive 

associations across all motifs, but when we added the 3’ UTR length covariate, this was 

altered dramatically. There was a less pronounced effect for MixMir, presumably because 

the relationship matrix implicitly corrects for this UTR length effect, as genes with longer 

UTRs (with more motifs present) will have lower relatedness to genes with shorter UTRs. 

 

Figure 15 

Comparison of PP plots for the linear model and MixMir6, with and without the inclusion of a fixed effect 

variable to account for 3' UTR length.  The model including the 3' UTR length variable is denoted by *.  We notice 

that while the p-values of the linear model change dramatically with the inclusion of the additional variable, the 

results of MixMir do not visibly change.  
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 Additionally, the inclusion of the 3’ UTR length covariate partially corrected the 

skewness of the PP plots observed in Figure 12 (see Figure 15).  Notably, the simple linear 

models became much less skewed.  Interestingly, MixMir6* showed no improvement over 

MixMir6.  Further, motif rankings produced by the linear model was substantially different 

when comparing models with and without the added covariate.  This shift was much smaller 

or non-existent in MixMir (Table 20). 

 The addition of the 3’ UTR length covariate provides a strong correction for the 

overall percentage of positive coefficients in the simple linear models (Table 21). This 

brings out the enrichment of positive coefficients in the significant motifs for the linear 

models, to be more in line with what we observe in the mixed linear models.   

 However, note that these changes in motif rank did not strongly affect our previous 

ROC results, as the most highly ranked motifs did not change significantly (data not shown). 

We thus present our results in the main text without the correction for 3’ UTR length. 

 

Method LM Bin* MixMir6 MixMir6* 

LM Bin 0.5666 0.2293 0.2227 
LM Bin*  0.3097 0.3088 
MixMir6   0.9993 

 
Table 20 

Pairwise Pearson correlations of motif rank, comparing LM Bin and MixMir. While motif rank was considerably 

changed by adding the UTR length covariate to the linear model, MixMir changed much less. 

 

 

Method Number of significant 

motifs (p < 0.05) 

Percent of positive 

coefficients 

Percent positive 

coefficients (overall) 

LM Bin* 1792 75.56% 61.04% 

MLM6* 439 86.33% 66.75% 

 
Table 21 
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After incorporating a covariate for 3' UTR length (methods including the covariate marked with an asterisk), we 

found that the number of positive coefficients overall dropped significantly, particularly for the simple linear 

model (LM Bin).  Similar to Table 12, the number of significant motifs in the first column is determined by a 

cutoff of p < 0.05.  The second column shows the percentage of motifs from the first column which have positive 

coefficients, and the third column shows the percentage of all motifs which have positive coefficients.  Notably, 

the overall percentage of positive coefficients has dropped considerably for the linear model.  However, MixMir6 

has changed very little. 
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