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Mixed species nesting associations (MSNA) occur when two or more species aggregate 

nests in space and time. In this study I describe nesting associations among songbirds 

breeding in forested habitat at Powdermill Nature Reserve in Western Pennsylvania, test 

if the distribution of nests correlates with habitat characteristics, and determine if MSNA 

impacts daily nest survival rates (DSR). I examined nesting associations involving Wood 

Thrushes (Hylocichla mustelina) and modeled DSR of thrushes. I also conducted 

artificial nest experiments in which I looked at the effects of density and nesting strata on 

nest survivorship. 65% of Wood Thrushes nested within 50 m of one to four other birds, 

and the nests were spatially aggregated. In contrast, only 15% of sites that lacked a Wood 

Thrush nest had 2 or more nests. Habitat characteristics including stem density and 

diversity were not correlated with the number of nests in an area. The best supported 

model of Wood Thrush DSR includes the interaction of time and number of nesting 

neighbors. DSR slightly decreased with increasing neighbor density. In three of the four 

artificial nest experiments, nest success decreased with higher nest density. In 2011, DSR 

decreased when nests were placed at different heights, but increased when nests were 

placed at the same height. MSNA are prevalent at Powdermill Nature Reserve, and birds



 

iii 

do not aggregate nests around specific habitat features. However, daily nest survival is, in 

general, negatively affected by these associations, although these negative effects are 

marginal at low nest densities, such as those observed on the reserve. The question 

remains, then as to why these birds form these associations. One possibility is that adult 

survival is higher among birds in MSNA than among solitary nesters, or that other 

species in the association benefit from nesting near Wood Thrushes. 
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INTRODUCTION 

Predation  is the top source of nest failure in a multitude of avian species (Martin 

1993, Richardson et al. 2009), and is therefore a major evolutionary force driving 

reproductive behaviors (Martin 1993, Schmidt et al. 2006, Quinn and Ueta 2008).  Nest 

predators are prevalent in the environment and include species from  multiple taxa 

including reptiles, birds, and mammals (Richardson et al. 2009). In response to predation 

pressure, birds evolved several nest defense strategies which include nest site selection 

(Forstmeier and Weiss 2004) and direct behavioral responses such as mobbing (Lima 

2009). Recent work by (Kleindorfer et al. 2009) highlighted another potential anti-

predator strategy that crosses the boundary between nest site selection and direct 

behavioral responses: mixed species nesting associations in which three or more birds 

nest in close proximity to one another. Mixed species nesting associations can be a 

successful anti-predator defense strategy if heterospecifics contribute anti-predatory 

behaviors to the group and if these benefits outweigh potential costs such as increased 

cues for predators, increased risk of disease transmission and competition among 

neighbors.  The goal of my dissertation is to examine mixed species nesting associations 

in northeastern deciduous forests and to study the implications of nest density on nest 

success of the Wood Thrush, a Neotropical migratory songbird that breeds in 

northeastern deciduous forests. 

Mixed species nesting associations occur when multiple species of birds cluster 

their nests in both space and time (Slagsvold 1980, Kleindorfer et al. 2009). The majority 

of described associations are protective nesting associations in which one or more species 

place nests nearby a more aggressive species (Quinn and Ueta 2008).  In these 
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associations, the more aggressive species indirectly protects the other species through 

early warning of predators and aggressive response to predators. (Clark and Robertson 

1979) showed that Yellow Warblers (Dendroica petechia) preferentially nested by Gray 

Catbirds (Dumetella carolinensis) or Red-Winged Blackbirds (Agelaius phoeniceus), 

which were both more aggressive than Yellow Warblers.  Slagsvold (1980) described an 

association in which several passerine species nested nearby a more aggressive species, 

Turdus pilaris. Recently, Kleindorfer et al (2009) showed that Darwin’s Small Tree 

Finches (Camarhynchus parvulus) nesting in heterospecific associations had lower nest 

predation as compared to solitary nesters.  Although Kleindorfer et al. did not specify a 

protector species, they did find that these associations typically involved at least one 

larger species.  The possibility exists that the larger species in the association served as 

the protector species if it was able to defend nests more effectively against larger 

predators than the smaller passerines in the group. Finally, although not covered in these 

examples, mixed nesting associations may involve multiple aggressive species that will 

participate in mobbing predators.  Group mobbing of predators is a widely documented 

occurrence (Lima 2009). 

Aside from nesting near a protector species, birds participating in mixed species 

nesting associations may lower their predation rates through the density of nests. By 

nesting near other birds, an individual lowers the probability that its nest will be 

discovered and /or selected by a predator. This phenomenon was described by Hamilton 

and coined the selfish herd hypothesis (Hamilton 1971).  

Additionally, nesting with neighbors that use different nest sites can dampen the 

efficiency with which predators locate nests in a cluster. Predation rates are often lower 
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in clustered nests that are in different nest substrates than in clusters where the nests are 

in the same vegetation strata (Martin 1993, 1996). Although the total number of nests in a 

cluster remains constant, the density of nests in each stratum is reduced.  Therefore, 

predators will have to search every stratum to find all nests and will receive less reward 

as they encounter unoccupied nest sites in each stratum. If birds choose to nest near 

heterospecific neighbors, then to get the most benefit, birds should choose to nest by 

neighbors that occupy different nest strata and should choose areas with structurally 

complex vegetation that provide a high number of potential nest sites that predators will 

need to search. (Chalfoun and Martin 2009) showed that birds do preferentially nest in 

structurally complex vegetation that contains many possible nest sites (Chalfoun and 

Martin 2009).  

Given that mixed nesting associations are proving to be common and often result 

in higher reproductive success than solitary nesters, it is easy to overlook the potential 

negative consequences of these associations.  The possibility of increased predation 

among associated nesting species exists as nest clusters invoke more cues for predators to 

use while searching for prey (Varela et al. 2007).  Additionally, when a predator finds a 

cluster of nests, the reward is greater than for a solitary nest, which could drive predators 

to forage more extensively for nest clusters than for solitary nests (Martin 1993).  

Additionally, recent evidence shows that transmission of mobile parasites is greater in 

nest clusters than in solitary nests (Kleindorfer and Dudaniec 2009).  Finally, competition 

for resources can be greater for species nesting in associations than for solitary nesters, if 

they overlap in resource use (Slagsvold 1980). 
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Nest site selection is an adaptive strategy that has evolutionary consequences due 

to its direct correlation with reproductive fitness.  As an adaptive strategy, nest site 

selection necessitates that 1) birds are capable of gathering information about the habitat, 

2) birds select habitat based on this information, and 3) these decisions have 

consequences related to reproductive fitness. Researchers have shown that reproductive 

success is affected when birds select nest sites based on the abundance of predators 

(Forstmeier and Weiss 2004, Schmidt et al. 2006), the structure of vegetation (Chalfoun 

and Martin 2009), the reproductive success of birds in the prior year (Betts et al. 2008), 

and the presence of conspecifics (Ahlering et al. 2010). Mixed nest associations represent 

another type of nest site selection in which birds use the presence of other species’ nests 

as information when choosing nest sites. Previous work shows that birds that choose to 

nest near heterospecific nests lower their risk of nest predation (Kleindorfer et al. 2009), 

but these results are highly dependent on the species in the association, the density of 

nests, and the locations of those nests.   

Through my dissertation research, I aim to contribute a better understanding of 

the occurrence and costs and benefits of multi species nesting associations. To meet this 

goal, I plan to quantify the costs and benefits incurred to Wood Thrushes (Hylocichla 

mustelina) which engage in mixed species nesting associations and to examine predation 

rates on different patterns and densities of nests.  

To examine multi species nest associations, I answered the following central 

questions:  
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1. Are heterospecific nests more aggregated around focal Wood Thrush nests than around 

control sites? Do more species and individuals nest around Wood Thrush nests than 

around control sites?  

2. Does the reproductive success of Wood Thrush correlate with the density and diversity 

of neighboring nests? 

3. Does the aggregation of songbird nests correlate with specific habitat features? 

4. A. Does daily nest survival change with increasing density of nests? 

B. Are predation rates lower when nests are aggregated in 3-dimensional space (different 

nest heights) than when they are aggregated in 2-dimensional space (same nest height)?  

Research Site: 

Powdermill Avian Research Center, located in Rector, PA (Western PA, 75 km 

from southeast of Pittsburgh) is a 900-hectare reserve, surrounded by Forbes State Forest 

(24,000 ha) and Linn Run State Park (250 ha) and small, mostly non-commercial 

agricultural plots of land interspersed with homes. The majority of the reserve is 

comprised of mixed deciduous forest, and the remainder of the reserve contains man-

made ponds and fields, a bird banding station with multiple net lanes, and some 

buildings. My study was conducted entirely in the forested areas of the reserve. Many of 

the forested areas in my study sites have dense shrub layers dominated by Common 

Spicebush (Lindera benzoin). There is a small trail system and four roads through the 

forested parts of the reserve. The entire reserve is delineated by a staked grid system, 

which was put in place three years ago to map vegetation distributions on the reserve.  

The stakes are 120 meters apart from one another, are GPS marked, and represent the 

center points of vegetation plots.  
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Study Species: 

Wood Thrushes are medium-sized Neotropical migratory passerines that breed 

throughout much of the eastern United States and over-winter in Southeastern Mexico 

and in Central America (Evans et al. 2011).  Wood Thrushes are ground foragers but nest 

in mid-shrub layer vegetation, typically in small shrubs such as Common Spicebush or 

small trees, such as Sugar Maples (Acer saccharum) (Evans et al. 2011). At Powdermill 

Nature Reserve, Wood Thrushes typically place nests between 1-2 meters above ground, 

but occasionally place nests 10 meters or higher.  Wood Thrush nests are predated upon 

by a multitude of animals including Black Bears (Ursus americanus), American Crows 

(Corvus brachyrhyncos), Red Squirrels (Tamiasciurus hudsonicus), owls, and Eastern 

Chipmunks (Tamias striatus) (Richardson et al. 2009).  

I chose to study the Wood Thrush because they are one of the most abundant 

breeding avian species at Powdermill Reserve, their nests are easy to locate, and I 

observed multi-species nesting associations involving Wood Thrush during my first field 

season. Additionally, nest predation is the most commonly observed cause of nest failure 

for this species at the reserve (Newell and Kostalos 2007).  Finally, Wood Thrush biology 

has been extensively studied in relation to a multitude of factors including nest predation 

(Schmidt et al. 2006), trophic interactions (Schmidt et al. 2008), and habitat use (Newell 

and Kostalos 2007).  
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CHAPTER ONE 

Spatial point pattern analysis reveals nesting associations among Wood 

Thrushes (Hylocichla mustelina) and other nesting passerines 

 

ABSTRACT 

Mixed species nesting associations (MSNA) occur when species nest in close proximity 

to one another.  These associations result from species selecting the same habitat patches 

or from heterospecific attraction in which species use the presence of other species to 

locate good quality habitat or to reduce individual predation risk.  MSNA involving 

Wood Thrushes (Hylocichla mustelina) were described in a northeastern deciduous forest 

by surveying neighboring nests at sites with and without thrushes and by conducting 

spatial point pattern analyses of nest locations. These associations consisted of two to five 

birds, and Red Eyed Vireos (Vireo olivaceus) and Scarlet Tanagers (Piranga olivacea) 

were the most common associates of Wood Thrushes.  Associated species did not 

typically share nest or foraging site preferences, and nests were highly aggregated at local 

scales, suggesting that protection from predators might be the driving force behind these 

associations.  MSNA, especially those occurring in northeastern deciduous forests, 

warrant further study as populations of many of these species are declining, and a decline 

in one species can cause concomitant declines in associated species.  

Key Terms: Mixed Species Nesting Association, nest site selection, Wood Thrush, 

nearest neighbor analysis, heterospecific attraction  
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INTRODUCTION 

Mixed species nesting associations (MSNA) occur when multiple species nest 

near one another (Slagsvold 1980, Kleindorfer et al. 2009).  Nesting associations occur 

among many organisms, including birds (Quinn and Ueta 2008, Kleindorfer and 

Dudaniec 2009, Reiter and Andersen 2013), insects (Windsor 1972), and between birds 

and insects (Young et al. 1990). These associations can occur incidentally when 

organisms choose to nest within the same patchily distributed habitat (Morales et al. 

2012), or deliberately when species use the presence of other species when making 

settling decisions, an occurrence termed heterospecific attraction (Mönkkönen et al. 

1997, Forsman et al. 2002, Lima 2009).  

Species may exhibit heterospecific attraction if they use other species as sources 

of information on habitat quality or if they gain protective benefits from nesting near 

other species (Goodale et al. 2010). Migratory birds have limited time to select breeding 

sites, and using the presence of heterospecifics as an indicator of high quality habitat can 

allow them to initiate egg laying earlier (Forsman et al. 2002). Additionally, nesting in 

groups reduces the per capita predation risk on each individual in the group, allows for 

earlier detection of predators, and provides opportunities for group defense against 

approaching predators (Hamilton 1971, Martin 1993). 

The majority of described nesting associations involve a special case of predation 

risk abatement in which one or more species nest near a more aggressive protector 

species (Slagsvold 1980, Quinn and Ueta 2008).  In these associations, the more 

aggressive species indirectly protects the other species by warning of the presence of 

predators and by attacking predators. For example, Yellow Warblers (Dendroica 
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petechia) were shown to preferentially nest by Gray Catbirds (Dumetella carolinensis) or 

Red-Winged Blackbirds (Agelaius phoeniceus), which were both more aggressive against 

shared predators than Yellow Warblers (Clark and Robertson 1979).   

Participation in MSNA should lead birds to aggregate their nests regardless of 

whether they are reacting to similar habitat requirements or to each other (Reiter and 

Andersen 2013).   Evaluating the spatial distribution of nests and the composition of 

participants in nesting assemblages can lend insight into the reasons for a particular 

nesting association (Bayard and Elphick 2010, Sebastian-Gonzalez et al. 2010, Morales et 

al. 2012). This information can then serve as a baseline to inform future research, 

whether it is evaluating habitat requirements for species assemblages or testing for 

heterospecific attraction and reduction in predation risk directly.   

For example, birds that are utilizing the same patchy habitat resource would likely 

nest near that resource but would maximize the space between themselves and their 

neighbors, creating a pattern of over dispersion within a small area (Forsman et al. 2002).  

In this situation, birds would be more likely to have similar resource requirements as they 

are either selecting the habitat directly or using other similar species as a proxy for 

habitat selection (Seppanen 2007).   

Alternatively, birds that are exhibiting heterospecific attraction to reduce 

predation risk may aggregate their nests at the local scale as information on predation risk 

is most accurate at small distances (Seppanen 2007).  In addition, birds would likely nest 

at different heights and in different substrates to reduce competition for nest sites and to 

decrease predator foraging efficiency (Martin 1993, 1996).   
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Regardless of whether habitat or protection is the driving force, interspecific 

associations are important factors in shaping local communities (Fletcher 2007b, Goodale 

et al. 2010, Sebastian-Gonzalez et al. 2010, Morales et al. 2012). In addition, these 

associations have conservation implications as they warrant conservation at the 

community level rather than at the species level.  Specifically, the fates of associated 

species are connected as a decline in one species can cause parallel declines in associated 

species.   

In this study, the spatial point patterns and composition of mixed species nesting 

associations were studied in an eastern deciduous forest located at Powdermill Nature 

Reserve in western Pennsylvania.  I tested the hypothesis that multiple species of 

songbirds aggregate their nests on the reserve. I expected migratory birds that experience 

high rates of nest depredation and short breeding periods to form MSNA.  These species 

would benefit the most from aggregated breeding as they could potentially use the social 

information available from earlier arriving species to more quickly establish their 

territories and commence nesting. These species could also potentially reduce their 

individual risk of nest attack by breeding near others.  Specifically, I predicted that Wood 

Thrushes would be aggregated with other species.  The major pulse of migrating thrushes 

through the reserve occurs later than many other migratory species, and thrushes are 

vulnerable to a wide variety of predators, both conditions which have been shown to 

foster participating in MSNA in other species (Mönkkönen et al. 1997).   
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METHODS 

Study Site: 

Research was conducted at Powdermill Nature Reserve (PNR), located in Rector, 

PA (latitude +40.16019891, longitude -79.27180242). The 890 hectare reserve is 

comprised of mostly maple and oak dominated deciduous forest and is surrounded by 

Lynn Run State Park, Forbes State Forest, and privately owned farms. The reserve 

contains a square grid system, with stakes located every 100 m on north-south, east-west 

gridlines.  All stake geolocations are mapped and tagged. This grid system was set up by 

scientists to map the vegetation on the reserve, and vegetation surveys were centered at 

the locations marked with the stakes. In this study, a subset of these staked locations were 

used as starting points for nest searches.  Using ArcView software, fifty stake points were 

selected throughout the reserve at random with the selection criteria that points were 

greater than 100 meters from a road or building to avoid most edge effects of nesting 

songbirds.  With this method, the entire reserve was represented in the study and search 

locations were not biased to locations close to trails.   

Locating and Monitoring Wood Thrush Nests: 

Nest searching took place during 0600-1000 hours from May 10 through July 31 

2009-2011 and May 10-31 in 2012.  Stake points were visited a minimum of two times 

per year. I searched visually and aurally for Wood Thrushes at each point for up to 10 

minutes or until a Wood Thrush was detected. Once a Wood Thrush was detected, I 

searched for its nest by following singing and calling individuals to the nest or by visual 

searching of vegetation in appropriate habitat within a male’s territory.  I visited all 50 

stake points in 2009, 40 sites in both 2010 and 2011, and 15 points in 2012. I included 
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incidental nests found while hiking to the survey points.  Nest positions were recorded 

using a Garmin GPS 72 handheld unit and sometimes discretely marked in dense 

vegetation to facilitate relocation. 

Locating nearest neighbors 

Searches for non-Wood Thrush nests took place from July through October each 

season.  In an effort to minimize disturbance to nesting thrushes, I conducted these 

surveys after each Wood Thrush finished its nesting attempt.  I searched for nests within 

50 meters of each Wood Thrush nest (circular plot, search area per site = 7854 m2).  I 

selected this plot size to reflect the typical territory width of nesting Wood Thrushes (100 

m), as the diameter of the plot was 100 m. Within each plot, I looked for nests along four 

50-meter long transects, one in each cardinal direction starting from the focal Wood 

Thrush nest (Fig 1).  I walked along each transect and scanned for nests along both the 

transect and the area surrounding the transect to maximize coverage of each site.  Every 

ten meters, I stopped and did a thorough scan of the plot area that was visible. With this 

method I was able to standardize search efforts across sites and find well concealed nests 

such as those positioned on the ground and in high canopy vegetation.  It is possible that 

extremely small and cryptic nests, such as those of Black and White Warblers, were 

missed, resulting in an underestimation of the number of neighboring nests in an area. 

Nest searching was completed by J. Deo. I recorded the location of each nest with a 

handheld Garmin GPS 72 unit.  I identified the species that built each nest by either 

observing the parents at the nest or by using specific characteristic nest traits including 

size, appearance, and location (Harrison et al. 1975).  
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Control sites 

Control sites were used to compare the density of nests in areas without Wood 

Thrush nests.  Control points were located in a random direction 200 meters away from 

known Wood Thrush nests.  Using the same techniques outlined above, neighboring nests 

were located on four transects (Fig 1).  Nest searches at control sites were conducted 

within one week of the neighbor surveys for Wood Thrush nests.   

Statistical Analysis 

All statistical analyses were performed using R studio and R 2.15.2 (R 

Development Core Team). In 13 out of 40 control sites, Wood Thrush nests were found 

during nest searches along at least one of the four transects.  T-tests were used to 

compare the number of nests and nesting species between control sites with off center 

Wood Thrush nests and sites with central Wood Thrush nests. No significant difference 

was found between these sites, so these sites were combined in all analyses and referred 

to as Wood Thrush sites. With this reclassification, 61 Wood Thrush sites were compared 

to 27 control sites.  

T-tests were then used to compare the mean number of neighboring nests and the 

mean number of nesting species (excluding Wood Thrushes) on Wood Thrush and 

control sites.  Chi square tests were used to compare the abundance of each species 

nesting at plots with and without Wood Thrushes.  

Nearest neighbor analysis was done at sites that had at least two nests. Within a 

site (Wood Thrush or Control), the distance from every nest to its closest neighbor was 

calculated.  Using the method outlined in Clark and Evans (1954), a ratio score was 

calculated by comparing the observed nearest neighbor distance (rA) to the nearest 
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neighbor distance expected under the null hypothesis of complete spatial randomness 

(rE).  rA and rE were calculated using formulas 1.1 and 1.2, where N = the number of nests 

at a site, r = the distance from a nest to the nearest neighboring nest, and p = the number 

of nests/the area of the site.  Formula 1.1 calculates the mean nearest neighbor distance 

between nests at a site.  

1.1 ȓ A = 𝛴 𝑟
𝑁

     

Formula 1.2 calculates the expected mean nearest neighbor distance between nests at a 

site if those nests were placed in a pattern of complete spatial randomness. This formula 

is based on the probability of finding N points at a site of a specified area (Clark and 

Evans 1954). p is the density of nests at a site.   

1.2        ȓ E =  1
2√𝑝

 

The ratio R was then calculated as stated in formula 1.3 by dividing the observed mean 

nearest neighbor distance by the mean nearest neighbor distance expected in complete 

spatial randomness. An R score of 1 indicates spatial randomness, R<1 signifies 

aggregation, and R >1 denotes over dispersion.   

1.3      R= rA
rE

 

Additionally, significance tests (Clark and Evans 1954) were conducted to compare the 

expected (in complete spatial randomness) and observed mean nearest neighbor distances 

at each site (Formula 1.4). These tests are based on the normal probability distribution. C 

represents the standard normal variate, calculated here by subtracting the expected mean 

nearest neighbor distance from the observed mean nearest neighbor distance and dividing 

by the standard error of the expected nearest neighbor distance. σȓE is the standard error 

of the expected mean distance to the nearest neighbors in complete spatial randomness.  



15 
 

 

A C value of 1.96 or higher indicates a significant departure from spatial randomness 

(p≤0.05).  

1.4 C=  rA−rE
σȓE

  where σȓE = 0.26136
√N𝑝

           

 RESULTS 

Number of Interspecific Nests 

There were significantly more nests at sites with Wood Thrushes than sites 

without (1.4 vs 0.7 nests, Figure 2). Additionally, 90% of control sites contained either 

zero nests or one nest.  Only 34% of Wood Thrushes were solitary nesters, and the 

remainder nested near at least one neighbor (Figure 3).  

Number of Neighboring Species 

 Species richness of nesting birds around focal nests (0-3 species) was 

significantly higher (t-test, P<0.05) than that of nests in control sites (0-2 species, Figure 

4). Twelve species nested near Wood Thrush nests, and eight species were found nesting 

at sites without Wood Thrushes (Figure 5). There were significantly more Acadian 

Flycatchers (Empidonax virescens), Scarlet Tanagers (Piranga olivacea), and Red-Eyed 

Vireos (Vireo olivaceus)  nesting at sites with Wood Thrushes than at control sites (Chi-

square P<0.05).  More Eastern Towhees (Pipilo erythrophthalmus) nested at sites lacking 

Wood Thrushes than at sites with them (Chi-square, P<0.05).  

Nearest Neighbor Analysis: 

 Nearest neighbor analysis requires exact distances between at least two points. In 

this analysis, sites had to have at least two nests within the 50-m radius search area to be 

included.  Therefore, I completed nearest neighbor analysis on sites where Wood 

Thrushes nested within 50 meters of at least one other nest (40 sites out of 61).  For the 
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control sites, I ran nearest neighbor statistics on only four out of the 27 plots.  The 

remainder of sites had either zero nests (13 sites) or one nest (10 sites), so nearest 

neighbor statistics could not be calculated for these sites     

 R scores were calculated for 40 Wood Thrush plots to determine if the 

distribution of nests at sites departed from complete spatial randomness.  Ten sites (25%) 

were significantly aggregated (P<0.05) and nine sites (22.5%) were nearly significant 

(0.09>P>0.05). Nests at one site (2.5%) were significantly over-dispersed (P<0.05). The 

remaining 20 sites (50%) had nests placed in a spatially random pattern (P>0.09).  One of 

the control plots had aggregated nests (P=0.055), two plots had over-dispersed nests 

(P<0.05), and nests at the last plot were spatially random. 

DISCUSSION 

The goal of this study was to examine whether breeding songbirds in eastern 

deciduous forests aggregate their nests and to see if other species are aggregated around 

breeding Wood Thrushes.  These questions were answered by using spatial point pattern 

analyses to quantify the degree of aggregation of nests and by comparing nest density and 

species composition at plots with and without Wood Thrush nests. Both of these methods 

demonstrate that forest songbirds do form nesting associations, Wood Thrushes are key 

players in these groups, and songbirds are aggregating their nests.   

MSNA in Eastern Deciduous Forests 

Mixed species nesting associations involving Wood Thrushes were a common 

occurrence on the reserve, with 65% of surveyed thrushes having other species associated 

with them.  The number of participants in these mixed species groups was small, with 

most associations having two to four nesting pairs.  These small groupings are consistent 
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with what Kleindorfer et al (2009) found in MSNA involving Darwin’s small Tree Finch  

in which finches typically nested near one to three heterospecific nests and did not exceed 

five nesting neighbors.   

In theory, as the number of participants increases, the costs of these associations 

(increased detectability by predators and competition) could increase and eventually 

outweigh any potential benefits such as group mobbing of predators and early detection 

of predators (Forsman et al. 2002). That threshold of costs/benefits may occur at low 

numbers for nesting songbirds, possibly due to high numbers of nest predators. At 

Powdermill, I observed that nest predation caused the majority of nest failures in Wood 

Thrush nests, an occurrence which is typical of nesting songbirds (Newell and Kostalos 

2007, Lima 2009).  Therefore, it is possible that nesting near a few species might provide 

some anti-predator benefits such as earlier warning and group mobbing without incurring 

as much cost of extra cues for predators provided by having multiple active nests in an 

area.    

Formation of MSNA 

As the order of arrival of these birds was not studied, the question of who is 

choosing to nest near whom remains unclear.  Two possible scenarios are that Wood 

Thrushes choose to nest near other species or that other birds seek out thrushes.  Both of 

these scenarios would result in the observed patterns of nest aggregation involving 

thrushes and other species.  Studying the order of arrival and conducting directed 

heterospecific attraction experiments (Mönkkönen et al. 1997, Forsman et al. 2002) 

would help identify which scenario is most likely.   

Species Composition of Associations 
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Red-Eyed Vireos, Acadian Flycatchers and Scarlet Tanagers appear to be 

important nesting associates of thrushes.  These three species built more nests in sites that 

had thrushes compared with sites that lacked a nesting thrush.  In addition, half of the 

nests found at sites with nesting thrushes belonged to these three species.  Vireos, 

flycatchers and tanagers nest in different strata and forage in locations different from 

thrushes (Mowbray 1999, Cimprich et al. 2000, Whitehead and Taylor 2002).  These 

differences potentially allow these birds to cluster their nests without experiencing 

negative competitive effects from these associations (Seppanen 2007).  Additionally, 

birds with different nesting strata which associate could potentially maximize anti 

predator benefits because they can detect approaching predators in different strata 

(Goodale et al. 2010).  Finally, Monkkonen et al (1997) found that Red-Eyed Vireos 

selected nest sites that had an artificially inflated number of resident birds, suggesting a 

strong heterospecific attraction by vireos toward other species and that forming nest 

associations might be a common occurrence for this species.   

In contrast, Eastern Towhees (Pipilo erythrophthalmus) did not typically co-occur 

with nesting thrushes.  The presence of strong competitive effects could keep these 

species apart, since the strength of competition is a factor in whether species form 

associations (Fletcher 2007b). Towhees nest at similar heights as thrushes and forage on 

the ground like thrushes (Greenlaw 1996, Evans et al. 2011).  Unlike Pied flycatchers 

which gained benefits from nesting near resident titmice (Parus spp.) despite their 

similarities in resource use (Forsman et al. 2002), thrushes might be avoiding areas where 

Hooded Warblers and towhees occur if they are competing for similar resources.  

Implications of MSNA 



19 
 

 

What benefits, if any, are birds at Powdermill gaining from participating in 

nesting associations?  One potential benefit of being in a group is reduced risk of 

predation (Seppanen 2007, Kleindorfer et al. 2009, Goodale et al. 2010).  Wood Thrushes 

aggressively defend their nests via bouts of loud calling and mobbing behaviors (Evans et 

al. 2011).  As sympatric insectivorous songbirds and thrushes have common predators, 

these species could benefit from the anti-predator behaviors of thrushes.  In this case, 

Wood Thrushes would act as the protector species for the other birds (Clark and 

Robertson 1979, Quinn and Ueta 2008).  Additionally, the common participants in these 

associations (Thrushes, Tanagers and Vireos) nest in different strata, which enable birds 

to scan for different types of predators (Goodale et al. 2010).  By nesting together but at 

different heights, birds can minimize the risk of density dependent predation as overall 

density within a stratum is lowered and predators have to use different search tactics to 

find all nests (Martin 1993, Schmidt and Whelan 1999). 

Nesting associations can also form when birds use the presence of other birds as 

an indicator of habitat quality (Forsman et al. 2002, Fletcher 2007b).  This strategy 

allows birds to quickly assess habitat resources upon arrival to potential territories, as 

birds are more successful when they start nesting earlier (Forsman et al. 2002).  Since 

MSNA on the reserve typically involve species with different nesting and foraging 

strategies, birds are less likely to benefit from the habitat selection criteria of their nesting 

associates, at least at local spatial scales.   

Conclusions 

This study presents evidence for heterospecific associations among songbirds 

breeding in eastern deciduous forests.  Sites with breeding Wood Thrushes have higher 
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incidences of nesting associations than sites without thrushes, suggesting that thrushes are 

choosing areas with higher nest densities or that other species are selecting sites based on 

the location of breeding thrushes.  Thrushes could possibly act as protector species for 

nearby nesting birds and/or gain anti-predator benefits by nesting in association with 

other songbirds. 

Many of the songbirds that form these associations have declining populations 

and experience high rates of nest predation, further constraining population numbers 

(Robinson and Wilcove 1994, Lima 2009). Understanding the prevalence and formation 

of interspecific associations is important as the fate of the species involved could be 

intertwined - a decline in one species could lead to concurrent declines in other species 

involved in the nesting associations.   
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Figure 1: Survey design for nearest neighbor searches.  Non-Wood Thrush nests were 

located by walking along four 50-m transects that each started at either a focal Wood 

Thrush nest (left picture) or a control site (right picture).   

  



22 
 

 

Figure 2: The number of interspecific nests at Wood Thrush plots and plots without 

Wood Thrush nests (control plots). Diamonds indicate means, dark horizontal bars are 

medians. 
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Figure 3: Proportion of sites with zero to four interspecific (non-Wood Thrush) 

neighbors. Each bar represents the proportion of Wood Thrush or control sites that had 

zero to four nesting pairs of sympatric species within 50 meters. Purple bars represent 

sites that had a nesting Wood Thrush and green bars are the sites that lacked a nesting 

Wood Thrush (control sites).  
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Figure 4: Number of neighboring species at Wood Thrush (focal) nests and control plots. 

The mean number of neighboring species around focal nests is 1.26 and around a control 

point is 0.63. Diamonds indicate the mean, and central bolded line is the median. 
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Figure 5: Species composition across Wood Thrush and control plots. This figure shows 

the proportion of sites that had each species nesting within it. Species found at survey 

sites include Acadian Flycatcher (Empidonax virescens), American Crow (Corvus 

brachyrhynchos), American Redstart (Setophaga ruticilla), American Robin (Turdus 

migratorius), Black Throated Blue Warbler (Dendroica cerulean), Downy Woodpecker 

(Picoides pubescens), Eastern Towhee (Pipilo erythrophthalmus), Gray Catbird 

(Dumetella carolinensis), Hooded Warbler (Wilsonia citrine), Northern Cardinal 

(Cardinalis cardinalis), Ovenbird (Seiurus aurocapillus), Rose breasted Grosbeak 

(Pheucticus ludovicianus), Red-eyed Vireo (Vireo olivaceus), Red-bellied Woodpecker 

(Melanerpes carolinus), and Scarlet Tanager (Piranga olivacea). Significance values are 

based on chi-square tests of abundances of each nesting species at sites with and without 

Wood Thrushes (*=0.05<P<0.09, **= P≤0.05, ***=P≤0.01). 
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Table 1. Distribution patterns of nests at Wood Thrush plots.  Table 1 shows the number 

of plots that had aggregated, random, or over-dispersed nests, based on the R value 

(observed nearest neighbor distance/expected nearest neighbor distance in spatial random 

pattern).  All plots had a central Wood Thrush nest and one or more songbird species 

nesting within 50 m of that Wood Thrush. Plots with nests that were significantly closer 

or farther from one another than expected in a spatially random pattern are denoted as 

follows:  **= P≤0.05, *=0.05<P<0.09  

Spatial Pattern Number of Sites with Pattern 

Aggregated 19 (10**; 9*) 

Random 20 

Over-dispersed 1 * 

Total 40 
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CHAPTER 2 

Heterospecific attraction as a possible cause of aggregated nests in a songbird community 
 
ABSTRACT: 
Mixed species nesting associations (MSNA) occur when multiple species aggregate nests 

in areas with patchily distributed resources or when birds select sites based on the 

presence of other species (heterospecific attraction).  Nesting associations were observed 

among songbirds at Powdermill Nature Reserve in western Pennsylvania, but the causal 

factor behind these associations remains unknown. The goal of this study was to test the 

hypothesis that birds form MSNA by selecting the same habitat features.  To test this 

hypothesis, I compared habitat variables in plots that had zero to four nests. Specifically, 

I measured average leaf litter depth, percent cover of leaf litter, ground vegetation, 

canopy cover, water cover, and rock cover within 5 meter radii plots. In addition, I 

determined the number and species composition of shrubby stems and trees within five 

and 10 meter plots respectively.  None of the habitat variables were significantly 

associated with the number of nests in an area, providing preliminary evidence that nest 

associations do not form because birds select sites with the same habitat features.  

Instead, these results suggest that a different mechanism, such as heterospecific 

attraction, or founder effects might be causing multiple species to aggregate nests on the 

reserve. 
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INTRODUCTION: 

Mixed species nesting associations occur when different species aggregate their 

nests in time and space (Kleindorfer et al. 2009).  These associations can form when 1) 

individuals select the same patchily distributed resources (Morales et al. 2012) and 2) 

when individuals use the presence and behaviors of other organisms as cues when 

making settlement decisions (Seppanen 2007, Nocera et al. 2009, Fletcher and Sieving 

2010).  These two mechanisms are not mutually exclusive, as organisms can select an 

area based on resources, and then be further constrained within that area by choosing 

locations near other individuals (Morales et al. 2012).   

Birds that co-occur are predicted to be generalist species that select  similar 

habitats and therefore can benefit from the information provided by the location and 

behavioral cues of other birds nesting nearby (Mönkkönen et al. 1997, Morales et al. 

2012).  In addition, nest associates are usually not direct competitors, especially for food 

resources, and nest and forage at different heights, a strategy that can reduce density 

dependent predation within each strata (Martin 1993, Schmidt and Whelan 1999, Fletcher 

2007a, Goodale et al. 2010). Therefore, species that participate in MSNA are predicted to 

nest and forage in different sites yet select similar habitat features, such as abundant 

canopy cover or a high diversity of plants.   

An additional consideration in nest selection studies is the extent to which 

organisms use social information when choosing habitats.  Several studies have 

documented cases where the presence (real or simulated) of other organisms has 

influenced settlement decisions, even causing individuals to settle in poorer quality 

habitat (Fletcher 2007a, Betts et al. 2008, Morales et al. 2012, Miller et al. 2013).  
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Conspecific and heterospecific attraction are more common in migratory species that use 

the presence of their own and other species as indicators of habitat quality to expedite the 

habitat selection process (Mönkkönen et al. 1997, Forsman et al. 2002).   

The goal of this study was to determine if forest breeding passerines select the 

same habitat factors.  I hypothesized that there was a positive correlation between the 

number of nests and local scale habitat features, if birds are using habitat cues in nest site 

selection.  If these correlations are not found, then that result will lend support to 

alternate hypotheses, including that MSNA are forming because birds are selecting areas 

based on social information independent of habitat cues.   

METHODS: 
 
Study Sites: 

Habitat surveys were conducted at a subset of the Wood Thrush and control plots 

established in the spatial analysis study (Chapter 1) from August through October 2010-

2012 at Powdermill Nature Reserve (GPS coordinates +40.16019891, -79.27180242).  In 

total, habitat surveys were conducted at 51 sites. These sites consisted of locations 

without nesting Wood Thrushes (n=18) and places with nesting Wood Thrushes (n=33).   

I followed a modified protocol based on the Breeding Bird Survey methods for 

measuring habitat characteristics (Martin et al. 1997).  I established two circular plots that 

had radii of 5 and 10 meters at each site and divided them into quarters with the center. 

either below the Wood Thrush nest or at a tree in the center of the control site.   

Five Meter Radius Plot 

I estimated the percent cover of ground vegetation (vegetation less than 50cm 

tall), rocks, fallen snags, water, and leaf litter.  To estimate these values, I visually 
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estimated the percent ground cover in each quadrant and then took the mean of all 

quadrants.  Using a densitometer, I measured the percent canopy cover in each quadrat of 

the circle and then took the average of the four measurements.  I also measured litter 

depth in each quadrant at locations that best represented litter coverage of each quadrant 

and took the mean of the four values.  

Additionally, I identified all herbaceous plant species taller than 50 cm (Petrides 

1973) and counted the number of stems of each species.  Most plants were identified to 

species, but certain groups of plants, including Smilax and Rubus, were identified only to 

genus.  I typically counted stems at the base of each plant.  For large entanglements of 

Smilax spp., where the base of the plants could not be seen, I counted the number of 

stems coming off of the center of the plant.  

Ten Meter Radius Plots 

I measured the diameter at breast height (DBH) of each tree >8 cm DBH within 

the ten meter radius and identified the species (Petrides 1973, Tekiela 2004). 

Statistical Analysis 

Statistical analyses were conducted in R Studio (RStudio 2012, R Core 2014).  

Habitat variables at Wood Thrush and Control sites were compared using MANOVA and 

PCA.  No significant differences were found for any habitat variable between thrush and 

control sites (see results).  Therefore, these sites were combined, and MANOVA and 

PCA were conducted again, using the full survey sample of 51 sites.  These analyses 

were run to identify differences in habitat factors among sites with zero to four nests.   
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RESULTS: 

Wood Thrush and Control Sites: 

There were no differences in habitat between sites with and without Wood Thrush 

nests (MANOVA: F = 1.1313, p= 0.3647, df=1).  Individual habitat variables including 

tree and shrub species abundance and richness, leaf litter depth, percent cover of ground 

vegetation and percent canopy cover did not differ between Wood Thrush and control 

sites (ANOVA: P>0.05, Table 1).  

Number of Nests: 

Because there were no differences between Wood Thrush and control sites, I 

combined all sites and looked for differences in habitat variables among sites that had 

zero to four nests. Sites with zero to four nests did not differ in vegetation composition, 

leaf litter cover, and percent cover of water and downed logs (MANOVA: F=0.81227 

p=0.7872, df=4).  The mean values of all habitat factors, including stem density and 

richness, tree density and richness, and canopy cover, were not significantly different 

across sites with zero to four nests (ANOVA: p>0.05, Figure 1, Table 2).   

I ran a principle component analysis to determine which habitat factors explained 

the variation in the dataset and to determine if sites with different nest densities clustered 

in ordination space based on any habitat factors.  The first and second principle 

components combined explained only 39.4% of the total variation in the dataset (Table 

3).  Percent cover of ground vegetation and litter were significantly correlated with the 

first principle component.  The number of trees and the species richness of trees were 

significantly correlated with the second principle component (Table 4).  Sites with the 

same nest density were not clustered along these components.  
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DISCUSSION: 

The habitat factors measured in this study did not explain the occurrence of nest 

associations at Powdermill Nature Reserve.  Of the eleven habitat traits measured, tree 

density and richness, percent cover of ground vegetation, and leaf litter cover explained 

most of the overall variation in the dataset.  However, none of these traits were 

significantly associated with the number of nests at a site.  These results suggest that an 

alternate causative mechanism, such as heterospecific attraction, may be behind the nest 

aggregations seen at Powdermill.   

The lack of correlation between habitat factors and nest density is a surprising 

result, given the large number of studies that show links between measured habitat factors 

and nest placement and daily nest survival rates (Martin 1991, Frank R. Thompson 2007).  

The number of potential nest sites, for example, is a factor that is positively associated 

with nest site selection in songbirds, as predator foraging efficiency decreases in areas 

with more potential prey sites to search (Chalfoun and Martin 2009).  In addition, nest 

placement has been correlated with high vegetation cover as this feature can impede 

predators and help conceal nests (Martin 1993, Driscoll et al. 2005).  Several of the 

aggregated species in this study (Red-Eyed Vireos, Wood Thrushes) tend to select nest 

sites in areas with moderate to dense understory vegetation (Cimprich et al. 2000, Evans 

et al. 2011), yet no pattern existed between the number of nests and vegetation density.  

One possibility for this lack of correlation is that birds are selecting habitats with more 

potential nest sites rather than total vegetation cover.  My survey techniques did not test 

for the number of nest sites directly, so perhaps areas with more birds had more potential 

nest sites, despite not having more vegetation cover.   
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Another possible cause of aggregated nests is that birds select sites based on 

common food resources.  The birds involved in MSNA are all insectivores, so availability 

of food could be a contributing factor in the occurrence of MSNA.  Birds are able to 

assess the abundance of food at different sites, and select areas with more food (Burke 

and Nol 1998).  The typical foraging locations of the most commonly aggregated species, 

Wood Thrushes (leaf litter), Red-Eyed Vireos (lower canopy), and Scarlet Tanagers 

(upper canopy), do not overlap (Mowbray 1999, Cimprich et al. 2000, Evans et al. 2011), 

making the presence of food resources is an unlikely contributor to MSNA.  

In addition to selecting sites based on similar habitat traits, birds may also form 

MSNA by using social cues in settlement decisions. Social cues are common and 

powerful drivers in site selection in many avian species, including some of the species 

studied at Powdermill (Mönkkönen et al. 1997, Monkkonen and Forsman 2002, 

Seppanen et al. 2007, Betts et al. 2008).  Social cues can be strong enough to override an 

individual’s assessment of habitat.  Researchers manipulated Black-Throated Blue 

Warblers (Setophaga caerulescens) into selecting poorer quality sites in year two of their 

study by simulating conspecific cues in poor quality patches in year one. Hemipteran 

insects (Narnia femorata) selected resource rich nest sites in the absence of social cues, 

but would select resource poor sites in the presence of heterospecific insects that were 

placed in poor quality sites (Miller et al. 2013).   

Species involved in nesting associations at Powdermill would likely benefit from 

using social cues to select habitat.  Nest survival is higher in birds that initiate egg laying 

earlier, so for these migratory species, quickly assessing potential nesting habitat is 

crucial to their reproductive success (Forsman et al. 2002) . Migratory songbirds breeding 
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in forests can be short-lived and many species produce only one to two broods per year, 

so their opportunities to select appropriate breeding habitats is limited (Nocera and Betts 

2010).  Finally, given the high degree of nest predation generally seen in songbirds 

breeding in forests (Lima 2009), individuals in MSNA can potentially reduce the risk of 

predation by earlier detection of predators, detection of different types of predators by 

birds nesting at different heights, and by lower individual predation risk (Hamilton 1971, 

Goodale et al. 2010).  

Conclusions 

The number of breeding songbirds at Powdermill Nature Reserve is not correlated 

with local habitat features.  This result suggests that another mechanism is driving the 

formation of mixed species nesting associations on the reserve.  Participating birds 

typically do not overlap in foraging sites, so the likelihood that shared food resources 

cause birds to aggregate their nests is low. Birds could choose the same areas because 

these sites have a greater number of potential nest sites, a strategy that could reduce 

predation risk. Alternatively, MSNA could form due to the use of social information, 

specifically heterospecific attraction, in which individuals use the presence of other 

species to select sites.  Migratory songbirds on the reserve are good candidate for 

heterospecific attraction because they have limited time in which to select habitat and 

lose the majority of their nests to predation, so could benefit from the information on 

habitat quality and the anti-predator behaviors of other species.   Future studies that test 

for heterospecifc attraction, are needed to confirm that the presence of other species alter 

settlement decisions of forest breeding songbirds at Powdermill.  
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Table 1: Mean Values of habitat variables at Wood Thrush and Control sites. This table 

lists the mean value and standard deviation of each habitat factor at sites with and without 

Wood Thrushes.  P-values are based on ANOVA.  

 
Variable Wood Thrush Sites 

Mean ±  St. Dev. 
Control Sites 

Mean ±  St. Dev. 
P-value 

Litter Depth 24.3±14.0 26.1±11.7 0.64 
% Rock Cover 9.8±13.4 13.3±24.5 0.51 
% Water Cover 2.1±8.6 0.6±2.4 0.45 
Number of Trees 8.2±3.7 9.4±4.1 0.28 
Number of Stems 131.4± 100.9 94.2 ± 49.4 0.15 
% Canopy cover 95.1±3.8 93.4±5.6 0.21 
% Litter Cover 74.5±19.7 66.1±29.5 0.23 
% Ground Vegetation Cover 37.3±23.3 39.7±27.9 0.74 
# of Shrub Species 6.0±3.0 6.3±2.7 0.75 
# of tree species 3.6±1.6 3.9±2.0 0.52 
% log cover 11.9±8.7 9.8±5.7 0.36 
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Figure 1: Box plots showing how each measured habitat variable varies at sites with zero 

to four nests. Shrub and tree diversity represent the number of shrub and tree species 

found within a 5 or 10 meter radii vegetation sampling plot (see methods). Litter cover is 

the percent cover of leaf litter within a 5 meter radius vegetation sampling plot. 
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Figure 2: Ordination of number of nests versus habitat factors.  Numbers within the plot 

are the number of nests found at that site.  Log, rock, water, and litter cover are the 

percent cover within a 5 meter radius plot.  Veg cover is the percent cover of ground 

vegetation. Num stems and Shrub_species are the number of shrubby stems and the 

number of species of shrubs within a 5 meter radius plot.  Num_trees and tree_species are 

the number of trees with a DBH of greater than 8 cm and the number of tree species 

within a 10 meter radius plot.  
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Table 2: ANOVA scores of habitat covariates. This table shows no significant difference 

for each habitat variable across sites having zero to four nests. 

  

VARIABLE Sum Sq Mean Sq F value Pr(>F) 
 Average Litter Depth 825.2 206.3 1.214 0.3178 
 Percent Cover of Rock 246.8 61.71 0.1794 0.9479 
 Percent Cover of Water 63.01 15.752 0.3005 0.8761 
 Number of Trees 25.01 6.2521 0.3991 0.8083 
 Number of Stems 38531 9632.7 1.2839 0.2901 
 Percent Canopy Cover 133.31 33.328 1.7373 0.158 
 Percent Cover of Litter 870.7 217.67 0.3694 0.8292 
 Percent Cover of Ground Vegetation 2013.4 503.35 0.8111 0.5246 
 Percent Cover of Downed Logs 237.26 59.314 0.9876 0.4238 
 Shrub Species Richness 20.41 5.1026 0.5986 0.6655 
 Tree Species Richness 6.624 1.656 0.5094 0.729 
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Table 3: Percentage of variance explained by first seven principal components. The first 

two components explain 39% of the variation in the dataset.  

 

      PC1                     PC2    PC3     PC4     PC5  PC6      PC7 
Standard 
deviation     

1.5298  1.4122  1.1023 1.03603 1.01025 0.94475  

Proportion of 
Variance 

0.2127 0.1813 0.1105 0.0975 0.09278 0.08114  

Cumulative 
Proportion  

0.2127  0.3941 0.5045 0.60210 0.69488 0.77602 

  

 

Table 4: PCA loadings for first two principle components of habitat variables.   

                        PC1                   PC2 
Percent canopy cover     0.31552288   -0.29834267 
Average litter depth    -0.38990174    0.18231068 
Percent cover of litter    -0.46554748  -0.10286149 
Percent cover of rock      -0.07101081   0.22240008  
Percent cover of ground vegetation        0.55874443    0.06701524   
Percent cover of water      0.30279240    0.08344186   
Percent cover of downed logs       -0.16799604    0.29908075   
Shrub species richness   0.08114778  -0.39130982 
Number of trees       -0.04023186  -0.52745372   
Tree species richness    -0.22467687  -0.53053594 
Number of stems        0.18936855    0.06332544 
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CHAPTER 3 

Nest predation varies with number of neighbors and nest 

height 

 

ABSTRACT 

The goal of this study was to examine the effects of nest density and vertical 

distributionon daily egg survival rates. This study consisted of two parts – a field study of 

nesting Wood Thrushes and an artificial nest study where nest density and vertical 

distribution were manipulated.  For the field study, I examined how daily survival rates 

(DSR) of Wood Thrush nests varied when birds nested near different numbers of nesting 

neighbors.  I also examined DSR for artificial nests placed at different heights and 

densities. DSR of thrushes showed no correlation with the number of neighboring nests 

and a positive correlation with distance from the nearest neighbor.  In three of the four 

artificial nest studies, DSR decreased as the number of nests at a site increased, and was 

lower when nest height varied at those sites. These results suggest that density dependent 

predation is occurring on the reserve, and that nesting in different strata does not diffuse 

the impacts of this type of predation.  Questions remain about why thrushes aggregate 

their nests with other species, given that neighboring nests negatively affects DSR.   

INTRODUCTION 

Given the decline of many songbird populations, understanding factors that affect 

breeding success is an important goal (Robinson and Wilcove 1994) . The majority of 

losses during the nesting season in forest breeding songbirds is due to nest attacks, 
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indicating that predation is an important factor potentially limiting songbird populations 

(Robinson and Wilcove 1994, Lima 2009).  One factor that can affect rates of nest 

survival is the arrangement and density of nests in an area. Birds that aggregate their 

nests can lower the risk of nest attacks through group defensive strategies and reduced 

individual risk (Martin 1993). However, songbirds nesting in areas with density 

dependent predators potentially increase predation risk by aggregating nests (Schmidt and 

Whelan 1999).  The goal of this chapter is to explore how the number and arrangement of 

nests affects daily nest survival rates. 

Songbirds that nest near other birds can reduce their individual risk of predation 

in several ways.  First, nest aggregations lowers the risk to each individual in the group 

because predators could become satiated after consuming the contents of other nests, 

could focus foraging efforts on the outermost nests of a group, or could miss a nest within 

a larger group (Hamilton 1971, Mönkkönen et al. 1997). In addition, birds often show 

group mobbing behaviors, where several adults will attack a predator (Seppanen 2007, 

Lima 2009).  This communal response again lowers the individual risk of harm to the 

adult participants and creates a stronger response to drive away the predator.   

The configuration of nests can also impact nest survivorship. Group nesting can 

lower predation risk, and this risk can be further abated if birds nest at different heights 

(Martin 1993, 1996). Nesting in different strata reduces the density of nests in each 

stratum, which can lower the risk of density dependent nest predation (Martin 1993).  

Predator efficiency could also decrease if predators have to search multiple strata and 

sites to find nests (Chalfoun and Martin 2009).  Another potential benefit is that birds 
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breeding at different heights can detect different types of predators (Kleindorfer et al. 

2009, Goodale et al. 2010).    

Aggregated nesting also poses potential risks to breeding birds. Clustered nests 

can be easier for predators to detect because olfactory, auditory, and visual cues increase 

with each additional nest (Varela et al. 2007). Multiple nests provide a larger reward for 

foraging predators, causing them to seek out nest clusters (Martin 1993). Finally, density-

dependent predation can result in several nests being attacked over a small area (Schmidt 

and Whelan 1999).  

Songbirds at Powdermill Nature Reserve form small nest aggregations of two to 

four nests, and these associations do not seem to correlate with measured habitat 

characteristics. In this study, I test the hypothesis that Wood Thrushes increase their daily 

nest survival rates by breeding within 50 meters of other songbird nests.  Additionally, I 

conducted two artificial nest experiments to examine the effects of nest density and 

height on nest survival. I tested the hypotheses that nest survival varies with the number 

of nests in area, peaking at moderate densities and decreasing at high densities. I then 

examined if nest survival increases when nests are placed at different heights. Comparing 

the results of the study on Wood Thrushes to the artificial nest study can bridge the gap 

between theory and reality regarding the optimal configuration of nests in an area.   

METHODS 

Locating and Monitoring Wood Thrush Nests: 

Nest searching took place during 0600-1000 hours from May 10 through July 31 

2009-2011 in the forested areas of Powdermill Nature Reserve in Western Pennsylvania.  

The reserve contains a square grid system, with stakes located every 100 m on north-
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south, east-west gridlines.  All stake geolocations are mapped and tagged. This grid 

system was set up by scientists to map the vegetation on the reserve, and vegetation 

surveys were centered at the locations marked with the stakes. In this study, a subset of 

these staked locations were used as starting points for nest searches.  Using ArcView 

software, fifty stake points were selected throughout the reserve at random with the 

selection criteria that points were greater than 100 meters from a road or building to 

avoid most edge effects of nesting songbirds.   

Stake points were visited a minimum of two times per year. I searched visually 

and aurally for Wood Thrushes at each point for up to 10 minutes or until a Wood Thrush 

was detected. Once a Wood Thrush was detected, I searched for its nest by following 

singing and calling individuals to the nest or by visual searching of vegetation in 

appropriate habitat within a male’s territory.  I visited all 50 stake points in 2009 and 40 

sites in both 2010 and 2011. I included incidental nests found while hiking to the survey 

points.  Nest positions were recorded using a Garmin GPS 72 handheld unit and 

sometimes discretely marked in dense vegetation to facilitate relocation. 

I revisited active nests every three to five days until the nestlings had fledged or 

the nest had failed.  At each visit, I recorded the number of eggs and the number and 

approximate age of nestlings.  If the nest was empty, I observed the nest contents and the 

nest site for signs of predation or fledging.  I considered a nest successful if at least one 

nestling fledged.  I assumed a brood had fledged if the nest was empty 12 days after the 

last nestling hatched (Evans et al. 2011) and the nest did not show signs of predation 

(broken branches around nest, nest on ground, claw marks on trunk, etc.).  Additionally, I 

looked for signs of fledgling activity including droppings in and around the nest, a 
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molded down nest cup, high levels of Wood Thrush activity in the area, and sighting of 

fledglings near the nest.  

Locating nearest neighbors 

Searches for non-Wood Thrush nests took place from July through October each 

season.  In an effort to minimize disturbance to nesting thrushes, I conducted these 

surveys after each Wood Thrush finished its nesting attempt.  I searched for nests within 

a 50-meter radius circle around each Wood Thrush nest (total search area per site = 7854 

m2). To standardize search efforts across sites, I looked for nests every ten meters along 

four 50-meter long transects, one in each cardinal direction starting from the focal Wood 

Thrush nest (see Fig 1 in Chapter 1).  I scanned for nests along each transect and the 

surrounding area to maximize coverage of each site.  With this method I was able to 

systematically search the site and find well camouflaged nests such as those positioned 

on the ground and in high canopy vegetation.  It is possible that extremely small and 

cryptic nests, such as those of Black and White Warblers, were missed, resulting in an 

underestimation of the number of neighboring nests in an area. Nest searching was 

completed by J. Deo with the assistance of several trained field assistants.  J. Deo 

confirmed the identity of all nests. I recorded the location of each nest with a handheld 

Garmin GPS 72 unit.  We identified the species that built each nest by either observing 

the parents at the nest or by using specific characteristic nest traits including size, 

appearance, and location (Harrison et al. 1975). 

Daily nest survival 

I used the program MARK to model daily nest survival rates (White and Burnham 

1999, Dinsmore et al. 2002).  I compared multiple models and selected the model with 
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the lowest AIC value.  The candidate model set included models which incorporated nest 

age, number of neighboring nests, distance to the nearest nest and year (see Table 2 for 

list of models).  I used the likelihood ratio test in MARK to determine if covariates in the 

top ranked model had a significant effect on nest survival.  

Artificial nest study 

In 2010 and 2011, I conducted two experiments at Powdermill Nature Reserve to 

look at the effects of nest density and nest strata on nest predation. I used artificial canary 

nests baited with two quail eggs and one plasticine egg that was the same size and shape 

of the quail eggs. To minimize human scent cues, I used gloves when handling the nests 

and eggs. I attached nests to plants with wire, and covered the wires with leaf litter.  For 

ground nests, I pushed the wire into the ground and then covered the wires with leaf litter.  

Nests were exposed to potential predators for 10-14 days.  In 2010, I collected nests after 

10 days and recorded their binary outcome (successful or attacked).  In 2011, I collected 

nests after 11-14 days and monitored nests every three to four days to estimate DSR.  

Experimental set-up 

 Ten sites (2010) and eight sites (2011) across Powdermill Nature Reserve were 

selected.  The center point of each site was 175 m away from a trail and in mixed 

deciduous forest habitat.  Each site consisted of four treatments consisting of one, three, 

six, and nine nests.  Treatments were arranged in the shape of a plus, with each treatment 

being located one point of the plus (Figure 1).  For the multi-nest treatments, one nest 

was the designated focal nest, and the other nests were the neighboring nests.  The 

neighboring nests were placed at equal angles from one another around the focal nests.  

For example, the treatment with nine nests consisted of the focal nest and eight 
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neighbors.  In that treatment, each neighboring nest was placed 45 degrees from its 

neighbor.  To equalize bias caused by being the treatment closest to the trail, treatments 

were rotated in each replicate so that each different density treatment was closest to the 

trail in at least one replicate. 

Density Experiment:  

In this experiment, I examined the effects of nest density on predation. I set up 89 

nests in 2010 and 76 nests in 201.  Nests were placed in sites typical of Wood Thrush use 

(low shrub).  All nests were placed in shrubs or small trees, and nests were placed 

between 0.9-1.5 meters above the ground on a branch.  The only variation among 

treatments was the number of nests (Table 1). In 2011, I monitored nest predators with 

four thermo-sensing camera traps.  I placed one camera at a random nest in each density 

treatment within the same replicate.  

Height Experiment: 

This experiment examined the effects of varied nest height on predation.  I set up 

83 nests in 2010 and 76 nests in 2011.  The focal nest was placed in a site typical of 

Wood Thrush use (low shrub), and neighboring nests were placed on the ground (0 

meters off ground), in low shrubs (0.9-1.5 m off ground) and high shrubs (> 1.8 meters 

off ground) strata (Table 1). In 2011, I monitored nest predators with four thermo-sensing 

camera traps.  I placed one camera at a nest in each density treatment within the same 

replicate. I put two cameras at ground nests, one camera at a high shrub nest, and one 

camera at a low shrub nest.  

Nest Survival Analyses 
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I used logistic regression to model the effects of nest density and nest height on 

nest survival.  I used R studio to do the logistic regressions.  I ran four separate analyses, 

one for each experiment in each year.  In 2011, I also analyzed daily nest survival using 

the program MARK.  I ran several candidate models to test whether different factors, 

including nest height and the number of neighbors, best explained daily nest survival (see 

Table 6).  For all models, I assumed DSR was constant over time.  I used model 

averaging to determine the weighted average estimate of daily nest survival when 

candidate models had similar weights. 

RESULTS 

Overall Nest Success:  

Nest success was recorded for Wood Thrush nests in 2009-2011 and artificial 

nests in 2010 and 2011 (Table 2). Overall survival of Wood Thrush nests was high, with 

79% of observed nests having at least one nestling fledge. In the experiments where the 

number of artificial nests at a site varied, 66% (2010) and 46% (2011) of nests survived 

during the course of the experiment.  69% (2010) and 9% (2011) of nests survived the 

duration of the artificial nest experiment where both nest density and nest height varied.  

Daily Nest Survival Analysis of Wood Thrushes: 

Daily nest survival (DSR) data was analyzed for 29 Wood Thrush nests.  The 

model in which DSR varied with time, the number of neighbors, and the interaction of 

time and neighbor number received the most support out of all tested models (AIC 

Weight=0.992).  This model showed a significant interaction effect between time and the 

number of neighbors (likelihood ratio test P<0.01). The remaining models received 

nominal to zero support (Table 3).   
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Artificial Nest Study: Predator Species Composition 

Images were retrieved from six of the eight camera traps set up at artificial nests. Two of 

the cameras malfunctioned.  Nine mammalian species were photographed approaching 

nests (Table 4). Black Bears (Ursus americanus) and White-Tailed Deer (Odocoileus 

virginianus) were the most common visitors to the nests and were photographed eating 

quail eggs.  

Artificial Nest Study-Effects of Nest Density and Nest Height on Nest Outcome  

 Logistic regression was used to model the effects of nest density and nest height 

on the survival outcome of artificial nests (Table 5).  High nest density significantly 

increased nest predation of nests placed at similar heights in 2010 (P<0.05) and had a 

nearly significant effect in 2010 (P=0.08) on nests placed at different heights (Figures 2a 

and 3a). Lower nests were attacked more frequently than higher nests in both the density 

and height experiments in 2010 (P<0.01, Figure 4a).  Neither nest density (Figures 2b, 

3b) nor nest height (Figure 4b) predicted nest outcome in 2011 (P>0.05). 

Artificial Nest Study-Modeling Daily Nest Survival in 2011 

Nest survival models were run using MARK for the density and height 

experiments in 2011 (Table 6).  In the density experiment, the four candidate models 

which included models for nest density and height effects on nest survival, received 

roughly equal support (AIC weights 0.233-0.293).  The number of nests was not 

significantly correlated with survival (Table 7, Chi-square: P>0.05). For the height 

experiment, the models that included the number of nests (survival and number of nests) 

and the null model (survival) best predicted daily nest survival (AIC weights of 0.384 and 
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0.338, respectively).  However, neither nest density nor nest height was significantly 

correlated with daily nest survival (Table 7, Chi-square >0.05).   

In both experiments, the daily nest survival rates were averaged across models as 

multiple candidate models received equal support (Table 8).  Average daily survival rates 

did not differ between the two experiments (t test: t = 1.36, df = 6, p = 0.89) 

DISCUSSION 

Number of neighbors 

The best fitting nest survival models in the natural thrush study included the 

interaction between the number of nests and time as a significant covariate.  The time 

dependent model with nest density but no interaction effect received no support.  This 

result indicates that the number of neighbors by itself does not affect Wood Thrush nest 

success.  Nest survival depending on the interaction between time and nest density is 

reasonable, given the phenology of the nesting season and the potential effects of 

multiple breeding pairs within one location. Nest survival has been shown to change over 

time, as the cues given by birds increase during the nesting season due to nestling calls 

and increase parental activity at the nest (Lima 2009).  In addition, nest survival could 

potentially change to a greater extent over time when neighbors are factored in, because 

sympatric nesters also give off cues that predators can detect, but also share in detecting 

predators (Martin 1993, Varela et al. 2007).    

For the artificial nest experiments in 2010, nest survival decreased as the number 

of neighboring nests increased.  The results suggest the presence of density-dependent 

predation.  One of the predictions in density-dependent predation is that the predator will 

consume a larger proportion of prey as prey density increases (Schmidt and Whelan 
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1999).  Density dependent predation could also explain the high levels of predation seen 

in 2011 when many nests were attacked by bears (evident from camera trap images and 

patterns of nest destruction).  

In 2010, the proportion of successful nests was high (0.8-1) for solitary nests and 

nests in groups of three.  At these low densities, the probability of detection by predators 

is potentially lower, especially because of lower olfactory cues than at sites with higher 

nest density (Varela et al. 2007).  Interestingly, Wood Thrushes nested near up to four 

neighbors. Theoretically, there may be an “ideal” number of neighbors where the benefits 

of nesting in aggregation are not outweighed by the ability of predators to detect larger 

clusters of nests (Forsman et al. 2002). At Powdermill, this balance seems to be reached 

at relatively low nest densities.   

Nest Height and Stratum: 

In 2010, artificial nest survival was positively correlated with nest height for both 

the density and height experiments. Studies show conflicting results on whether nests on 

the ground or in shrubs have higher predation risk (Schmidt and Whelan 1999). Nesting 

at different heights can potentially increase nesting success because the density of nests 

per stratum is reduced, and predators have to search more potential nest sites to find 

occupied ones. However, in 2011, the average daily survival estimates for artificial nests 

were not different between nests placed at similar heights (density experiment) and nests 

placed at different heights (height experiment).  This result contrasts that found in a study 

of nests in Arizona, where nest success increased when nests were placed at multiple 

strata (Martin 1993).  One possibility is that predation rates vary among strata, in which 
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case, analyzing survival within a stratum instead of across strata could provide clearer 

results (Schmidt and Whelan 1999).    

Limitations of Artificial Nests 

While useful in studies such as this one, artificial nests have limitations (Faaborg 

2004).  These nests lack parents and nestlings, so cues given off by  birds are absent, a 

factor which can influence how nests are detected by predators (Villard and Part 2004). 

In this study, these experiments were conducted after most birds finished breeding for the 

season (late July and August), so the composition of predators searching for nests might 

be different from earlier in the season.  Regardless of these limitations, the artificial nests 

used in this study provided a way to vary nest density and nest height in a standardized 

manner.  

Conclusions 

This study showed that nest success generally decreases as the number of nests within an 

area increases.  In addition, nest success was higher when nests were spaced farther apart 

and in the same stratum.  However, Wood Thrushes aggregate their nests with other 

species that often nest in different strata than the thrushes.  The question, then remains -

what benefit, if any thrushes gain from breeding near other birds?  One possibility is that 

parental survival is higher when thrushes form nesting associations with other species.  

Additionally, thrushes may use other species to make rapid habitat assessments upon 

arrival of the breeding grounds. Alternatively, other species may gain benefits from 

nesting near thrushes, and thrushes may not incur significant costs or benefits from 

participating in mixed species associations.   
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Figure 1: Experimental design for Artificial Nest Study.  *DIST from trail to nest: 100 

m; DIST from center to nest: 75 m. The treatment placed closest to the trail was rotated 

so that each treatment was closest to the trail in at least one replicate. 

  

  

          

 

    

 

 
 

                                                                                                                                   

 

 

Table 1:  Experimental treatments in Artificial Nest Study. In the density experiment, I 

examined predation rates among different densities of nests placed in the same strata (2-

dimensional space). For the height experiment, I examined predation rates among nests 

placed in different strata (3-dimensional space). 

 

 

Number of Nests Density Experiment Height Experiment 
1 NEST Low Shrub Low Shrub 
3 NESTS Low Shrub 1 Low Shrub, 1 Ground, 1 High Shrub 

6 NESTS Low Shrub 2 Low Shrub, 2 Ground, 2 High Shrub 

9 NESTS Low Shrub 3 Low Shrub, 3 Ground, 3 High Shrub 

6 nests 

9 nests 3 nests 

1 nest 

TRAIL 
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Table 2: Proportion of Successful and Attacked Nests: Table 2a displays the number 

(n) and proportion of successful and depredated nests for each experiment in each year. 

Table 2b shows the number (n) and proportion of Wood Thrush nests that survived and 

were depredated from 2009-2011. 

Table 2a: Artificial Nest Success 

 

 

 

 

 

 
Table 2b: Wood Thrush Nest Success 
 
2009-2011 Wood Thrush n  proportion 
Survived 21 0.72 
Depredated 8 0.26 
Total 29 
 

 

  

 Same Height Different Height 
Artificial Nests 2010 n proportion n proportion 
Survived 59  0.66 57  0.69 
Depredated 30  0.34 26  0.31 
Total 89 83 
   Artificial Nests 2011 n proportion n proportion 
Survived 35  0.46 7  0.09 
Depredated 41 0.54 69  0.91 
Total 76 76 
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Table 3: Comparison of MARK models for Wood Thrush nest study, 2009-2011.  

Table 3 lists the candidate model set for daily survival rates for Wood Thrush nests. 

Models listed under time dependent survival included a time effect on daily nest survival. 

Nest survival was held constant over time for models listed under constant daily survival. 

Wgt = AICc model weight, relative to other models, Par=the number of parameters, 

Dev= deviance. *** indicates that the interaction of time and number of neighbors was 

significant in explaining nest survival (Likelihood ratio test: chi-sq:11.684, df: 1; P=0.0006, 

compared to time dependent survival model). 

 

 

Model AICc Δ AICc Wgt Likelihood Par Dev -2logL 

Time-Dependent Daily 
Survival  

44.3 9.6 0.01 0.008 6 32.05 32.05 

*** + number of neighbors + 
time/number of neighbor 
interaction  

34.7 0.0 0.99 1.000 7 20.37 20.37 

+age of nest on day one of 
season 

55.0 20.3 0.00 0.000 12 30.10 30.10 

+ the number of neighbors 56.9 22.2 0.00 0.000 12 32.01 32.01 
+ study year 57.1 22.4 0.00 0.000 13 30.06 30.06 
+ distance to the nearest 
neighbor + time/distance 
interaction 

60.3 25.6 0.00 0.000 18 22.33 22.33 

+ distance to the nearest 
neighbor 

61.1 26.4 0.00 0.000 14 31.89 31.89 

+ number of neighbors + 
distance to the nearest neighbor 

62.6 27.9 0.00 0.000 15 31.25 31.25 

 
Constant Daily Survival 57.1 22.5 0.00 0.000 1 55.12 55.12 
+ distance to the nearest 
neighbor 

58.8 24.1 0.00 0.000 2 54.77 54.77 

+ the number of neighbors 58.9 24.2 0.00 0.000 2 54.89 54.89 
+ study year 60.6 25.9 0.00 0.000 3 54.50 54.50 
+ number of neighbors + 
distance to the nearest neighbor 

60.8 26.2 0.00 0.000 3 54.77 54.77 
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Table 4: Predator composition at artificial nests.  This table shows the species 

composition of mammals that approached artificial nests baited with quail and plasticine 

eggs at 6 camera traps in 2011.  Numbers indicate the number of times an individual of 

that species approached a nest. 

Predator Species # of sightings 

Black Bear (Ursus americanus) 8 

Raccoon (Procyon lotor) 2 

White-Tailed Deer (Odocoileus virginianus) 5 

White-Footed Mouse (Peromyscus leucopus) 1 

Gray Squirrel (Sciurus carolinensis) 1 

Canine spp. 1 

Weasel sp. (Mustela spp.) 1 

Chipmunk (Tamias striatus) 1 

Porcupine (Erethizon dorsatum) 1 
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Table 5: Significance of nest height and number of neighbors on nest outcome.  This 

table shows how nest height and number of neighbors affect nest predation.  Results are 

from logistic regressions of each experiment in 2010 and 2011.   Significance codes: *** 

P<0.01; ** P<0.05; * P<0.1  

2010 Density Experiment 

Variable Estimate Std. Error z value Pr(>|z|)    

Intercept 3.2406  2.3147  1.400 0.16511    

Number of Nests at Site  0.2884    0.1145   2.518 0.01365 **  

Nest Height   -3.7533 1.4057  -2.670  0.00907 *** 

2010 Height Experiment 

Variable Estimate Std. Error z value Pr(>|z|)    

Intercept   1.2242      0.9085   -1.347   0.18162   

Number of Nests at Site   0.2144  0.1193 1.796  0.07620*  

Nest Height  -0.9283  0.2955 -3.142 0.00235 *** 

2011 Density Experiment 

Variable Estimate Std. Error z value Pr(>|z|)    

Intercept    3.34726   1.90699   1.755  0.0834* 

Number of Nests at Site  -0.13808   0.09748  -1.416  0.1609   

Nest Height  -1.84868   1.46099 -1.265 0.2098 

2011 Height Experiment 

Variable Estimate Std. Error z value Pr(>|z|)    

Intercept   1.93735   1.64454  1.178 0.239 

Number of Nests at Site  -0.02307  0.22666  -0.102 0.919 

Nest Height  -1.80224    1.44031  -1.251  0.211 

Interaction of nest number and 
nest height 

0.54178   0.33266  1.629   0.103 
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Figure 2: Number of Nests vs. Nest Fate (Same nest heights). Figure 2 depicts the 

outcome of quail eggs in solitary and grouped artificial nests in 2010 (2a) and 2011(2b), 

all of which were placed at similar heights (low-shrub height). The number of nests at a 

site varied from 1-9. Light gray indicates the proportion of depredated nests and dark 

gray indicates the proportion of successful nests.  

 
                      Figure 2a:2010                    Figure 2b:2011 

 

Figure 3: Number of Nests vs. Nest Fate (Different nest heights). Figure 5 depicts the 

outcome of quail eggs in solitary and grouped artificial nests in 2010 (3a) and 2011(3b) 

that were placed at three different height classes (ground, low-shrub, high-shrub). The 

number of nests at a site varied from 1-9. Light gray indicates the proportion of 

depredated nests and dark gray indicates the proportion of successful nests.  

  Figure 3a: 2010          Figure 3b: 2011 
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Figure 4: Nest Survival vs. Nest Height in 2010 and 2011.  These figures show the 

outcome of quail eggs in artificial nests that were placed at three different height 

categories (ground, low shrub, high shrub).  The dark horizontal lines indicate the 

medians, and the green circles represent the means.  Nest number at a site varied from 

zero to nine nests. Figure 4a shows data from 2010 and 4b from 2011.  

Figure 4a: 2010        Figure 4b: 2011 

 

 
 
 
 
 
 
 
 
 
 
 
 
  



59 
 

 

Table 6: Comparison of MARK models for 2011 artificial nest study.  Table E lists 

the candidate model set for daily survival rates for nests in the same strata and different 

strata experiments.   

 

Table 7: Influence of nest height and density on artificial nest survival.  This table 

shows the chi-square results comparing models of artificial nest survival that included the 

number of nests and nest height.  

 

 

 

 

SAME STRATA               

Model AICc Δ AICc AICc Wgt Likelihood Par Deviance -2logL 

phi. + nest height 187.162 0.000 0.293 1.000 2 183.135 183.135 

phi. + number of nests 187.554 0.392 0.240 0.822 2 183.528 183.528 

phi. 187.608 0.446 0.234 0.800 1 185.599 185.599 

phi. + number of nests + 

nest height 

187.618 0.456 0.233 0.796 3 181.565 181.565 

DIFFERENT STRATA               

Model AICc Δ AICc AICc Wgt Likelihood Par Deviance -2logL 

phi. + number of nests 192.095 0.000 0.384 1.000 2 188.059 188.059 

phi. 192.346 0.252 0.338 0.882 1 190.335 190.335 

phi. + number of nests + 

nest height 

193.966 1.872 0.151 0.392 3 187.896 187.896 

phi. + nest height 194.301 2.206 0.127 0.332 2 190.265 190.265 

DENSITY EXPERIMENT 
Reduced Model General Model Chi-sq. df Prob. 

Survival Survival + number of nests 2.071 1 0.1501 
HEIGHT EXPERIMENT 

Reduced Model General Model Chi-sq. df Prob. 
Survival Survival + number of nests 2.275 1 0.1315 
 Survival Survival + nest height 0.069 1 0.7924 
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Table 8: Estimates of Daily Nest Survival for 2011 Artificial Nest Experiments. 

Table 8 lists the model averaged estimates of daily survival rates, standard errors and 

confidence intervals for nests in the artificial nest experiments where nest density was 

altered (density experiment) and where both nest density and nest height were altered 

(height experiment). The variation is the percent of variation in the values attributable to 

the variation in the models.  

 

 

 

 

 

 

 

 

  

Experiment DSR Estimate        Standard Error Lower CI Upper CI Variation  
Density 0.886 0.038 0.790 0.942 43.81% 

Height 0.863 0.032 0.789 0.914 44.10% 
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CHAPTER 4 

Study Conclusions 

 

The goal of this project was to examine mixed species nesting associations 

(MSNA) among songbirds breeding in eastern deciduous forests.  This study addressed 

three primary questions. 1) Do songbirds breeding in deciduous forests form MSNA? 2) 

Do birds form MSNA because they use or respond to the same habitat features? 3) Do 

birds that breed near other species display increased daily survival rates of eggs in the 

nests?  

The results presented in Chapter 1 showed that birds do form spatially nonrandom 

nesting associations. These groups involved two to five nesting birds that aggregated 

their nests.  Red-Eyed Vireos, Scarlet Tanagers, and Wood Thrushes were the most 

common members of these groups. Sites with breeding Wood Thrushes had higher 

incidences of nesting associations than sites without thrushes, suggesting that thrushes are 

choosing areas with higher nest densities or that other species are selecting sites based on 

the location of breeding thrushes.   

In the habitat study detailed in Chapter 2, I found that birds do not appear to be 

forming MSNA in response the same vegetation features.  None of the surveyed habitat 

features, including stem density and diversity, percent canopy cover, and percent leaf 

litter cover, were correlated with the number of nests in an area.  The lack of correlation 

of nest density with vegetation features suggests that another factor is driving MSNA. 

One possibility is that birds are selecting another common habitat feature that I did not 

survey, such as prey or predator density.  
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Another possibility, however, is that birds are exhibiting heterospecific attraction 

and selecting sites based on the presence of other nesting birds.  Other studies have 

shown that birds gain improved breeding success by nesting near other species.  If this is 

the case, then nest success should increase as the number of nests increases. However, the 

study presented in Chapter 3 showed that Wood Thrush nest success nominally decreased 

and artificial nest success drastically decreased as the number of nests within an area 

increased.  The only exception was the 2011 artificial nest study in which nests placed at 

the same height had a positive relationship between survival and nest density.  Daily nest 

survival also increased with increasing distance from Wood Thrush nests to their nearest 

neighbor.  

Despite seemingly negative reproductive consequences of nesting near others, 

Wood Thrushes aggregate their nests with other species.  The question, then remains -

what benefit, if any do thrushes gain from breeding near other birds?  One possibility is 

that thrushes gain other benefits from MSNA, such as an increase in adult survival.  Also, 

thrushes are typically double brooders, and their overall breeding success might be higher 

by initiating breeding earlier. They could potentially use the presence of other birds as 

proxies for good habitat rather than spending time prospecting. Alternatively, other 

species may gain benefits from nesting near thrushes.   

Thrushes incur minor reductions in DSR from nesting near one to four neighbors. 

The artificial nest study mirrors these results in that nest survival remained relatively high 

in associations involving only three nests. While the benefits of these associations to 

Wood Thrushes remains unknown, it is possible that birds gain another benefit from 



63 
 

 

participating in MSNA that outweighs the minor reproductive cost from nesting near a 

few neighbors.  
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	Powdermill Avian Research Center, located in Rector, PA (Western PA, 75 km from southeast of Pittsburgh) is a 900-hectare reserve, surrounded by Forbes State Forest (24,000 ha) and Linn Run State Park (250 ha) and small, mostly non-commercial agricult...
	Study Species:
	Wood Thrushes are medium-sized Neotropical migratory passerines that breed throughout much of the eastern United States and over-winter in Southeastern Mexico and in Central America (Evans et al. 2011).  Wood Thrushes are ground foragers but nest in m...
	I chose to study the Wood Thrush because they are one of the most abundant breeding avian species at Powdermill Reserve, their nests are easy to locate, and I observed multi-species nesting associations involving Wood Thrush during my first field seas...

