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ABSTRACT OF THE DISSERTATION

Totally geodesic maps into manifolds with no focal points

BY JAMES DIBBLE

Dissertation Director:

Xiaochun Rong

The space of totally geodesic maps in each homotopy class [F] from a compact Riemannian man-

ifold M with non-negative Ricci curvature into a complete Riemannian manifold N with no focal

points is path-connected. If [F] contains a totally geodesic map, then each map in [F] is energy-

minimizing if and only if it is totally geodesic. When N is compact, each map from a product

W ×M into N is homotopic to a smooth map that’s totally geodesic on the M-fibers. These results

generalize the classical theorems of Eells–Sampson and Hartman about manifolds with non-positive

sectional curvature and are proved using neither a geometric flow nor the Bochner identity. They

can be used to extend to the case of no focal points a number of splitting theorems proved by Cao–

Cheeger–Rong about manifolds with non-positive sectional curvature and, in turn, to generalize a

theorem of Heintze–Margulis about collapsing.

The results actually require only an isometric splitting of the universal covering space of M and

other topological properties that, by the Cheeger–Gromoll splitting theorem, hold when M has non-

negative Ricci curvature. The flat torus theorem is combined with a theorem about the loop space of

a manifold with no conjugate points to show that the space of totally geodesic maps in [F] is path-

connected. A center-of-mass method due to Cao–Cheeger–Rong is used to construct a homotopy to

a totally geodesic map when M is compact. The asymptotic norm of a Zm-equivariant metric is used

to show that the energies of C1 maps in [F] are bounded below by a constant involving the energy
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of an affine surjection from a flat Riemannian torus onto a flat semi-Finsler torus, with equality for

a given map if and only if it is totally geodesic. This builds on work of Croke–Fathi.

It is also shown that the ratio of convexity radius to injectivity radius can be made arbitrarily

small over the class of compact Riemannian manifolds of any fixed dimension at least two. This

uses Gulliver’s examples of manifolds with focal points but no conjugate points.
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Chapter 1

Introduction

A Riemannian manifold N has no conjugate points if the exponential map at each point is non-

singular and no focal points if the exponential map on the normal bundle of each geodesic is non-

singular. When N is complete, these are equivalent to any two points in the universal Riemannian

covering space N being joined by a unique geodesic and, respectively, every distance ball in N

being strongly convex. Complete manifolds with no conjugate points or no focal points are known

to share, to varying degrees, many of the geometric properties of those with non-positive sectional

curvature. It almost goes without saying that manifolds with non-positive curvature have been

extensively studied, with rigidity results dating back to the celebrated theorem of Gauss–Bonnet.

It’s perhaps less well known that the modern study of manifolds with no conjugate or no focal

points dates back more than seventy years, with notable contributions by, for instance, Hedlund–

Morse [HM] and Hopf [Ho]. The following characterizations, due to O’Sullivan [O’S1], show why

these three types of spaces should be related.

Theorem 1.1. (O’Sullivan) Let (N,g) be a complete Riemannian manifold. Then the following hold:

(a) N has non-positive sectional curvature if and only if, for every geodesic γ : [0,∞)→ N and every

Jacobi field J along γ, d2

dt2 ‖J‖
2 ≥ 0;

(b) N has no focal points if and only if, for every geodesic γ : [0,∞)→ N and every non-trivial

Jacobi field J along γ that satisfies J(0) = 0, d
dt ‖J‖

2 > 0; and

(c) N has no conjugate points if and only if, for every geodesic γ : [0,∞)→ N, every non-trivial

Jacobi field J along γ that satisfies J(0) = 0, and every positive time, ‖J‖2 > 0.

It follows that complete Riemannian manifolds with non-positive sectional curvature have no focal

points and that those with no focal points have no conjugate points. This refines the well-known

theorem of Cartan–Hadamard. On the other hand, Gulliver [Gul] constructed examples of complete
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Riemannian manifolds with positive sectional curvature but no focal points and examples with focal

points but no conjugate points. The latter examples may be used to show that, for each m ≥ 2,

inf r(M)
inj(M) = 0 over the class of compact m-dimensional manifolds, where r and inj are the convexity

and injectivity radiuses. This fills in a gap in the literature pointed out by Berger [Ber].

Even more so than in the case of no conjugate points, many of the major results about Rie-

mannian manifolds with non-positive sectional curvature generalize to those with no focal points.

These include the center theorem [O’S1], flat torus theorem [O’S2], and higher rank rigidity the-

orem [Wat], as well as the fact that, in dimensions up to three, all compact manifolds that admit

metrics with no focal points also admit metrics with non-positive curvature [IK]. This is because

many of the arguments used to prove results about non-positively curved manifolds actually depend

only on the convexity of certain sets or functions that holds under the weaker assumption that there

are no focal points. One such result is the flat strip theorem, which states that, in a complete and

simply connected manifold N with no focal points, any two geodesic lines with finite Hausdorff

distance bound a totally geodesic flat strip. This was proved by O’Sullivan [O’S2], using a result of

Goto [Got], and independently by Eschenburg [Esc]. The flat strip theorem implies that the set of

axes of an isometry is convex. Another is that N has no focal points if and only if, for each y ∈ N,

d2(·,y) is a strictly convex function [Eb1]. By contrast, Burns showed that the flat strip theorem may

fail for manifolds no conjugate points [Burn1], and an unpublished example of Kleiner shows the

same for the flat torus theorem [Kle].

A celebrated tool in the study of manifolds of non-positive curvature, but which has seen little

use in the study of manifolds with no focal points, is the harmonic map heat flow invented by Eells–

Sampson. In their foundational paper [ES], they introduced the notion of a harmonic map between

Riemannian manifolds as a smooth critical point of the energy functional E(u) :=
∫

M ‖du‖2 dµM,

which is a generalization of the Dirichlet energy of a real-valued function defined on Euclidean

space. They also constructed a version of the heat equation as the negative gradient flow of this

energy and showed that, for any C1 map u0 : M → N between compact manifolds, where N has

non-positive sectional curvature, a unique solution u : M× [0,∞)→ N to their heat equation

∂u
∂t

= τu

u(·,0) = u0

(1.1)

exists for all time and uniformly subconverges as t→∞ to a harmonic map. That is to say, there
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exists a sequence of times ti →∞ such that u(·, ti) converges uniformly to a harmonic map. From

this, they deduced that every homotopy class of maps contains an energy-minimizing representative.

This portion of their argument uses the second variation of the energy under the flow, in which the

sectional curvature of the target appears, to show that the energy is a convex function of time. This

ensures long-term existence and uniform subconvergence. They also proved that, when the domain

is a compact manifold with non-negative Ricci curvature, harmonic maps are totally geodesic.

Theorem 1.2. (Eells–Sampson) Let M and N be Riemannian manifolds, where M is compact and

has non-negative Ricci curvature and N is complete and has non-positive sectional curvature. If

f : M → N is a harmonic map, then f is totally geodesic. If, in addition, M has positive Ricci

curvature at a point, then f is constant.

This portion of their argument uses an identity, ultimately inspired by the work of Bochner [Bo],

that relates the second fundamental form of a harmonic map to the Ricci curvature of the domain

and the sectional curvature of the target. Specifically, if f is harmonic and β f its second fundamental

form, then

∆e f = ‖β f ‖
2 +

〈
f∗
(
RicM(ei)

)
, f∗(ei)

〉
−

〈
RN

(
f∗(ei), f∗(e j)

)
f∗(ei), f∗(e j)

〉
(1.2)

Hartman [Har] improved upon the results of Eells–Sampson in the following ways.

Theorem 1.3. (Hartman) Let M and N be Riemannian manifolds, where M is compact and N is

complete and has non-positive sectional curvature. Let f : M→ N be a C1 map. Then the following

hold:

(a) The solution u f : M× [0,∞)→ N to the heat equation with u f (·,0) = f (·) exists for all time;

(b) The solution u f converges uniformly to a harmonic map u∞(·) := limt→∞ u f (·, t) if and only if f

is homotopic to a harmonic map;

(c) The set of harmonic maps homotopic to f is path-connected, and energy is constant on it;

(d) If f is homotopic to a harmonic map and h : M→ N is another C1 map such that d( f ,h) < inj(N)

uniformly, then t 7→ ‖u f (·, t),uh(·, t)‖p is non-increasing for each 1 ≤ p ≤∞.

As an application of a theorem of Li–Zhu [LZ], it’s possible to recover the long-term existence and

subconvergence shown by Eells–Sampson under the weaker assumption that the target has no focal
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points. However, the limit map under such a flow is only known to be harmonic. Since manifolds

with no focal points can have positive curvature, the Bochner identity (1.2) cannot be gainfully

applied, and it’s not at the start clear that a harmonic map, or even an energy-minimizing map, into

a manifold with no focal points is totally geodesic, nor that each homotopy class of maps contains

a totally geodesic representative. The main point of this dissertation is to generalize the existence

results of Eells–Sampson, and to a great extent Hartman’s results, to energy-minimizing maps into

compact manifolds with no focal points. This also yields a new proof of those results in the case of

non-positive sectional curvature.

Theorem 1.4. Let M be a compact Riemannian manifold with non-negative Ricci curvature, N a

complete Riemannian manifold with no focal points, and [F] a homotopy class of maps from M to

N. Then the following hold:

(a) The set of totally geodesic maps in [F] is path-connected;

(b) If [F] contains a totally geodesic map, then each map in [F] is energy-minimizing if and only if

it is totally geodesic; and

(c) If N is compact, then [F] contains a totally geodesic map.

In particular, for compact N, a map in [F] is energy-minimizing if and only if it is totally geodesic,

and the set of energy-minimizing maps in [F] is non-empty and path-connected. The proof of

Theorem 1.4 is more geometric than previous approaches, in the sense that it uses neither the heat

flow nor the Bochner identity and generally makes minimal use of partial differential equations.

The key tools instead are a structure theorem about the loop space of a complete manifold with no

conjugate points, the flat torus theorem [O’S2], the Cheeger–Gromoll splitting theorem [CG2], a

center-of-mass construction due to Cao–Cheeger–Rong [CCR1], the asymptotic norm of a periodic

metric on Zm [BBI], and a characterization of totally geodesic maps that builds upon work of Croke

[Cr1] and Croke–Fathi [CF] about energy and intersection. While the original proof of the Cheeger–

Gromoll splitting theorem in [CG1] and [CG2] uses the theory of elliptic equations, it’s worth

pointing out, in the spirit of keeping the analysis as elementary as possible, that Eschenburg–Heintze

[EH] later found a proof that uses the maximum principle instead. Furthermore, in the case of a

flat domain, the splitting theorem is not needed. A qualitative corollary of Hartman’s results also

generalizes to manifolds with no focal points.
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Theorem 1.5. Let W and M be Riemannian manifolds, where M is compact and has non-negative

Ricci curvature. Endow W ×M with the product metric obtained from W and M. Let N be a

compact Riemannian manifold with no focal points and f : W ×M → N a continuous function.

Then f is homotopic to a smooth map that’s totally geodesic on each M-fiber.

To obtain Theorem 1.5 under the stronger assumption that N has non-positive sectional curvature,

one could first apply a parameterized heat flow to W ×M. That is, one could simultaneously flow

each individual M-fiber. The various parts of Theorem 1.3, along with Theorem 1.2, ensure that this

flow exists for all time and uniformly converges to a map that’s totally geodesic on each M-fiber.

Jost [J1] used the existence results of Eells–Sampson to give a new proof of the flat torus theo-

rem in the case of non-positive sectional curvature. Theorem 1.4 is, loosely speaking, the converse,

as it shows that the flat torus theorem can be used as one ingredient in a proof of the results of Eells–

Sampson. In fact, the results here are more general than stated in Theorem 1.4 and Theorem 1.5, as

they depend only on an isometric splitting of the universal covering space M, the commutativity of a

certain diagram, and a topological property of [F] that, by the Cheeger–Gromoll splitting theorem,

hold for compact manifolds with non-negative Ricci curvature. The main results also hold when N

is a compact surface with no conjugate points. However, Kleiner’s counterexample to the flat torus

theorem [Kle], in conjunction with a result of Lemaire [Lem] and, independently, Sacks–Uhlenbeck

[SaU], shows that they may fail for higher-dimensional manifolds with no conjugate points. Specif-

ically, for each n ≥ 3, there exist a compact n-dimensional manifold N with no conjugate points and

an energy-minimizing map T 2→ N that is not totally geodesic.

In principle, it should be possible to use Theorem 1.4 and Theorem 1.5 to generalize to man-

ifolds with no focal points those results for non-positively curved manifolds that depend only on

energy-minimizing, rather than harmonic, maps being totally geodesic. As proof of concept, it’s

noted here, without detailed justification, that they extend to the case of no focal points a num-

ber of splitting theorems proved by Cao–Cheeger–Rong [CCR1] about manifolds with non-positive

sectional curvature. These build on work in [CCR2]. One such generalization is the following.

Theorem 1.6. Let M and N be compact Riemannian manifolds of the same dimension. Suppose

M admits an F-structure. If there exists a continuous function f : M → N with non-zero degree,

then every metric on N with no focal points admits a local splitting structure for which there is a
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consistency map homotopic to f .

Precise definitions of the above terminology can be found in [CCR1]. Roughly speaking, a manifold

admits an F-structure if it can be cut into pieces that, up to finite covers, admit effective torus actions

that are compatible on overlaps. This generalizes the notion of a graph manifold. Theorem 1.6

implies that the universal cover of any such compact manifold with no focal points can be written as

a union of isometric products Zi = Di×R
ki , each of which is convex, whose Euclidean factors project

to immersed submanifolds that, up to homotopy, contain the orbits of the torus actions. Using this,

it’s possible to extend a result of Heintze-Margulis [CCR1] to preclude collapsing with bounded

sectional curvature for a large class of compact manifolds that admit metrics with no focal points.

Theorem 1.7. For each n ∈ N, there exists ε = ε(n) > 0 such that, if M is a compact n-dimensional

manifold that admits a Riemannian metric with no focal points and negative Ricci curvature a point,

then, for every metric on M with |secM | ≤ 1, there is a point at which the injectivity radius is at least

ε.

The arguments of [CCR1] work, more or less verbatim, to prove Theorem 1.6 and Theorem 1.7,

once Theorem 1.4 and Theorem 1.5 are invoked in the place of the results of Eells–Sampson and

Hartman.
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Chapter 2

Preliminaries

2.1 Algebraic topology

This section lays out some notation and terminology and proves two well-known algebraic results.

It will be assumed that the reader is familiar with the essentials of algebraic topology. A map is a

continuous function. If X is a topological space and x,y ∈ X, a map γ : [a,b]→ X is a path from x to

y if γ(a) = x and γ(b) = y. A path γ : [a,b]→ X is a loop if γ(a) = γ(b). The set of natural numbers is

N = {1,2,3, . . .}. If G is a group, its identity element will be denoted by e. Multiplicative notation for

groups will be used throughout, so that, for each g ∈G, its inverse is denoted g−1. If S ⊆G, then the

subgroup generated by S is <S >:= {aε1
1 . . .aεk

k

∣∣∣k≥ 1,ai ∈ S , εi =±1}∪{e}. This is the intersection of

all subgroups of G containing S . When S = {g1, . . . ,gn} is finite, <S > will be denoted <g1, . . . ,gn>.

The centralizer of S is Z(S ) := {g ∈G
∣∣∣gs = sg for all s ∈ S }. This is always a subgroup of G. When

S is finite, as above, the centralizer of S will be denoted Z(g1, . . . ,gn). Although this concept will

see light use here, the normalizer of S is N(S ) := {g ∈ G
∣∣∣g−1sg ∈ S for all s ∈ S }. When H is a

subgroup of G, N(H) is the union of all subgroups of G in which H is normal. The commutator

subgroup of G is [G,G] := {a−1b−1ab
∣∣∣a,b ∈ G}. If N is a normal subgroup of G, then G/N is

Abelian if and only if [G,G] ⊆ N. Generally speaking, the groups considered here will be contained

in the fundamental group of a manifold at a point.

If M is a topological manifold and p1, p2 ∈ M, it is widely understood that π1(M, p1) and

π1(M, p2) are isomorphic; an isomorphism between them may be constructed by conjugating loops

in π1(M, p1) by any fixed path connecting p1 to p2. In that way, one may speak of the abstract

group π1(M), but this obscures the fact that there is no canonical isomorphism between the groups

at different points. Since there is no single geometrically realized object π1(M), I will endeavor to

avoid the notation π1(M) and explicitly note throughout the dependence on basepoints.

Let P(M) denote the set of homotopy classes of paths in M. For each x1, x2 ∈ M, denote by
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P(x1, x2)⊆P the set of homotopy classes of paths from x1 to x2. The set P(M) isn’t quite a group

under concatenation, since the concatenation of two paths only exists when the endpoints line up;

but concatenation is associative whenever it’s defined, the constant paths are like identity elements,

and reversing the parameterization of a path is akin to inversion.1 For each [α] ∈P(x1, x2), the

function A[α] : π1(M, x1)→ π1(M, x2) will denote conjugation by [α]. More precisely, A[α]([γ]) :=

[α−1 ·γ ·α]. Each A[α] is a group isomorphism, so the function [α] 7→ A[α] resembles a group action

of P(M) on
∐

x∈M π1(M, x). Each A[α] extends to an isomorphism
(
π1(M, x1)

)k
→

(
π1(M, x2)

)k

by setting A[α]([γ1], . . . , [γk]) :=
(
A[α]([γ1]), . . . ,A[α]([γk])

)
. This defines an equivalence relation on∐

x∈M
(
π1(M, x)

)k by setting ([σ1], . . . , [σk]) � ([γ1], . . . , [γk]) if and only if there exists [α] ∈P(M)

such that ([σ1], . . . , [σk]) = A[α]([γ1], . . . , [γk]). If S (M) := {G ≤ π1(M, x)
∣∣∣ x ∈ M} denotes the set of

subgroups of
∐

x∈M π1(M, x) and S (x) := {G ≤ π1(M, x)} for each fixed x ∈ M, then something akin

to an action of P(M) on S (M) is given by taking each [α] ∈P(x1, x2) to the function G 7→ A[α](G).

Overloading notation, this latter function will also be denoted by A[α] : S (x1)→ S (x2), so that

A[α](G) = {A[α]([γ])
∣∣∣ [γ] ∈G}. This may be used to define an equivalence relation on S (M).

The deck transformation group of a covering map ψ : M̃ → M will be be denoted by some

variant of the symbol Γ; the exact symbol will always be clear in context. In many situations, it will

be necessary to discuss nested covering maps, that is, covering maps of spaces that themselves are

covering spaces; a bar will typically be used to denote something associated with the higher covering

space, while tilde will be reserved for the intermediate cover. In keeping with that convention, the

universal covering map of M will typically be denoted by π : M→M; its deck transformation group

might be denoted Γ. Recall that π : M → M is a normal covering map, which by definition is

taken to mean that its deck group acts transitively on each fiber. Equivalently, one could define a

covering map φ : M̃ → M to be normal if, for each p̃ ∈ M̃, φ∗
(
π1(M̃, p̃)

)
is a normal subgroup of

π1
(
M,φ(p)

)
. If p ∈ M and p̃ ∈ φ−1(p), then the deck transformation group Γ̃ of a covering map φ is

naturally identified with the quotient N
(
φ∗

(
π1(M̃, p̃)

))
/φ∗

(
π1(M̃, p̃)

)
, where N

(
φ∗

(
π1(M̃, p̃)

))
is the

normalizer of φ∗
(
π1(M̃, p̃)

)
in π1(M, p) that is, the largest subgroup in which φ∗

(
π1(M̃, p̃)

)
is normal.

In particular, when φ is a normal covering map, Γ̃ � π1(M, p)/φ∗
(
π1(M̃, p̃)

)
. When π : M→ M is the

universal covering map, M is simply connected, so π∗
(
π1(M, p)

)
=<e> for any p ∈ M, and one sees

1In the parlance of category theory, P(M) is often denoted π1(M) and called the fundamental groupoid of M. But
such abstraction isn’t important here.
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that Γ � π1(M, p). Under this identification, [σ] ∈ π1(M, p), represented by the loop σ : [0,1]→ M,

corresponds to the deck transformation that takes p to σ(1), where σ : [0,1]→ M is the lift of σ

with σ(0) = p.

If G is a group and H a subgroup, the index of H in G, denoted [G : H], is the number of

either left or right cosets of H in G. The following well-known algebraic results have important

consequences in the theory of covering spaces. They will be useful in Chapter 6.

Lemma 2.1.1. Let H be a finite-index subgroup of a group G. Then H contains a subgroup N that

is normal in G and has index satisfying [G : N] ≤ [G : H]! <∞.

Proof. Note that, for each g ∈G, gaH = gbH if and only if aH = bH. One may therefore define an

injective function φg : G/H→G/H by setting φg(aH) := gaH. If aH ∈G/H, then aH = φg(g−1aH),

so φg is also surjective. Thus φg is a permutation of G/H; denote by Σ(G/H) the group of such

permutations under composition. Define Φ : G → Σ(G/H) by Φ(g) := φg. For all g1,g2 ∈ G,

φg1g2(aH) = (g1g2)aH = g1(g2aH) = φg1 ◦ φg2(aH). That is to say, Φ(g1g2) = Φ(g1) ◦Φ(g2), so Φ

is a homomorphism. Thus N := ker(Φ) is a normal subgroup of G and, by the first isomorphism

theorem, G/N � Φ(G). Since Σ(G/H) has cardinality [G : H]!, this implies that [G : N] ≤ [G : H]!.

As the kernel of Φ, N consists of those g ∈G such that φg(aH) = gaH = aH for all a ∈G. It follows

that N = ∩a∈GaHa−1 and, consequently, N ⊆ eHe−1 = H.

�

Lemma 2.1.2. Let G1 and G2 be groups and H a normal subgroup of G1×G2 such that [G1×G2 :

H] < ∞. Then there exist normal subgroups Ni of Gi, i = 1,2, such that N1 ×N2 ⊆ H, [Gi : Ni] <

[G1×G2 : H] for each i, and [G1×G2 : N1×N2] ≤ [G1×G2 : H]2 <∞.

Proof. For each i = 1,2, denote by 1
2ρi : G1 ×G2 → Gi projection onto the i-th factor. Then each

ker( 1
2ρi) is a normal subgroup of G1 ×G2, so H ∩ ker( 1

2ρi) is normal as well. Since ker( 1
2ρ1) =

{e} ×G2 and ker( 1
2ρ2) = G1 × {e}, 1

2ρ1|ker( 1
2ρ2) : ker( 1

2ρ2)→ G1 and 1
2ρ2|ker( 1

2ρ1) : ker( 1
2ρ1)→ G2 are

isomorphisms. Let N1 := 1
2ρ1

(
H∩ker( 1

2ρ2)
)

and N2 := 1
2ρ2

(
H∩ker( 1

2ρ1)
)
. As the image of a normal

subgroup under an isomorphism, each Ni is a normal subgroup of Gi. Note that N1×N2 equals the

subset product
(
H∩ker( 1

2ρ2)
)(

H∩ker( 1
2ρ1)

)
, which is contained in H. By the second isomorphism
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theorem, (ker( 1
2ρi)H)/H � ker( 1

2ρi)/
(
H∩ker( 1

2ρi)
)
. Since ker( 1

2ρ2)/
(
H∩ker( 1

2ρ2)
)
�G1/N1, it fol-

lows that [G1 : N1] = [ker( 1
2ρi)H : H] ≤ [G1 ×G2 : H]. Similarly, [G2 : N2] ≤ [G1 ×G2 : H]. Since

(G1×G2)/(N1×N2) � (G1/N1)× (G2/N2), it follows that [G1×G2 : N1×N2] = [G1 : N1][G2 : N2] ≤

[G1×G2 : H]2.

�

2.2 Riemannian geometry

It will be assumed that the reader knows the basics of differential and Riemannian geometry. These

include the notions of smooth manifolds, partitions of unity, Riemannian metrics, differential forms,

vector bundles, connections, curvature, geodesics, Jacobi fields, and so forth. Excellent references

for this background material include the books of Klingenberg [Kli1], Chavel [Chav], and Cheeger–

Ebin [CE]. The textbooks by Lee on topological [Lee1], smooth [Lee2], and Riemannian [Lee3]

manifolds were profoundly influential on my thinking during my first years as a graduate student,

and an astute reader will no doubt hear their echoes here. In Chapter 7, it will also be assumed

that the reader is at least somewhat familiar with length spaces and Finsler manifolds, although the

prerequisites there are rather light. The treatment in the textbook by Burago–Burago–Ivanov [BBI]

more than suffices. As far as Finsler manifolds are concerned, one need only have the intuition that

they are endowed with a norm, rather than an inner product, on each tangent space.

Wherever possible, manifolds in this dissertation are assumed to be connected. The only excep-

tions are those that cannot be assumed so because they result from constructions that may produce

disconnected spaces. For example, in Chapter 3, the inverse function theorem is invoked to construct

a submanifold Ñ of a tensor bundle T(k,0)N, and this space will not in general be connected. Man-

ifolds will also be assumed smooth. However, manifolds won’t necessarily be assumed complete.

When it’s relevant that a manifold M may have boundary ∂M , ∅, this will be noted explicitly.

The tangent bundle of a smooth manifold M will be denoted by TM and the tangent space at

each point p ∈ M by TpM. When M is Riemannian, its unit sphere bundle is SM, and the normal

bundle to a submanifold S ⊆ M is NS . One similarly has at each point the spaces SpM and, for

p ∈ S , NpS . The sphere of radius r ≥ 0 in TpM will be denoted Sp(r). The set of (k, l)-tensors on
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the tangent space TpM is denoted

T(k,l)
p M = TpM⊗ · · ·⊗TpM︸               ︷︷               ︸

k times

⊗T∗pM⊗ · · ·⊗T∗pM︸               ︷︷               ︸
l times

Here, T∗pM is the dual space to TpM. The vector bundle of (k, l)-tensors over M is T(k,l)M =∐
p∈M T(k,l)

p M. The symbol π will denote projection to the basepoint of a vector bundle. In pre-

senting some of the background material, it will sometimes be used implicitly that a bilinear map

V ×W → Z, where V , W, and Z are vector spaces, may be canonically identified with a linear map

V⊗W→ Z. If V and W are vector spaces, then the space of linear maps from V to W will be denoted

L (V,W).

To say that a map between manifolds Ck means that, in any local coordinates, all of its k-th

order partial derivatives exist and are continuous. When k =∞, this means that the map is Ck for

all k ∈ N. The space of Ck maps from M to N is denoted Ck(M,N). Where it exists, the push-

forward, or differential, of a map f : M→ N between manifolds is denoted f∗. When f ∈ C1(M,N),

its derivative D f exists at each point and is given by D f (v) = f∗(v). Formally speaking, this may

be identified with a section of the vector bundle
∐

p∈M L (TpM,T f (p)N) over M. That is, for each

p ∈ M, Dp f : TpM → T f (p)M is a linear map. Note that f∗(v) may exist for all v ∈ TM without f

being C1.

The exponential map of a Riemannian manifold M will be denoted by exp : TM → M and its

restriction to the tangent space at p ∈ M by expp : TpM → M. For each v ∈ TM, the geodesic

determined by v will be written γv. That is, γv(t) := exp(tv) whenever that expression is defined. For

complete M, the geodesic flow Ψ : R×SM→ SM is the map defined by Ψ(t,v) := γ′v(t). For each

fixed T ∈ R, ΨT : SM→ SM is defined by ΨT (·) := Ψ(T, ·).

The Levi-Civita connection will be the only one ever used. For any vector fields X and Y ,

their covariant derivative will be denoted ∇XY . One has that ∇XY −∇Y X = [X,Y], where [X,Y] is

the Lie bracket. The Levi-Civita connection induces a covariant derivative along each curve γ in

M, denoted ∇γ′ . It will be assumed that the reader is familiar with the basics of the calculus of

variations, especially including the first and second variations of length and energy. A geodesic

loop γ : [a,b]→ M is a loop that’s also a geodesic. Note that a geodesic loop may not be smoothly

closed at the endpoints. That is, it’s not necessarily the case that limt↘a γ
′(t) = limt↗b γ

′(t). If this

does hold, then γ is a closed geodesic. A closed geodesic descends to a geodesic S 1→ M under the
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quotient map that identifies a and b. A geodesic γ : R→ M is a closed geodesic if it restricts to a

closed geodesic on some finite interval or, equivalently, if it is periodic.

Unless otherwise stated, whenever a covering space of a Riemannian manifold is endowed with

a Riemannian metric, that will be the pull-back metric from the covering map. When M is a Rie-

mannian manifold, its isometry group will be denoted by I (M). If φ ∈ I (M), an axis of φ is a

geodesic γ : R→ M such that, for some t0 ∈ R, φ
(
γ(t)

)
= γ(t + t0) for all t ∈ R. The displacement

function of φ is x 7→ d
(
x,φ(x)

)
, and the minimum set of φ, denoted min(φ), is the set of points that

minimize its displacement function. The deck transformation group Γ of π : M→ M acts by isome-

tries, so one may speak of the axes of each deck transformation γ, which are naturally identified

with the closed geodesics in M freely homotopic to any representative of [γ].

Lemma 2.2.1. Let M be a complete Riemannian manifold, p ∈ M, and γ a deck transformation of

π : M → M. Then α : R→ M is an axis of γ if and only if π ◦α is a closed geodesic in M whose

restriction to some finite interval represents A[σ]([γ]) for some path σ : [a,b]→ M.

It’s well-known that every non-trivial free homotopy class of loops in a compact manifold contains a

closed geodesic. This may be proved using, say, the classical theorem of Arzelà–Ascoli. Therefore,

when M is compact, the set of axes corresponding to any non-trivial deck transformation is non-

empty.

It will be helpful to know that a local isometry from a complete Riemannian manifold into a

simply connected manifold is a diffeomorphism. This was proved by Ambrose [Am].

Lemma 2.2.2. (Ambrose) Let M and N be Riemannian manifolds and f : M→ N a local isometry.

If M is complete and N is simply connected, then f is a diffeomorphism.

This is a special case of a more general result, a proof of which may be found in [CE].

Lemma 2.2.3. Let M and N be Riemannian manifolds and f : M → N a local isometry. If M is

complete, then f is a covering map.

2.3 Integration

The basics of geometric measure theory will be taken for granted. The symbol µ will typically

be used to denote a measure, with a subscript to indicate the space it measures. For example, the
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Lebesgue measure induced by a Riemannian metric on a manifold M will be denoted µM. Most

spaces under discussion will naturally be endowed with certain well-understood measures. The σ-

algebra associated to a measure space will be suppressed in the notation, as it will usually be implied

by the context.

The unit sphere bundle SM of a Riemannian manifold M is naturally endowed with the Li-

ouville measure µSM. The key points about µSM, which are rigorously developed in [Chav], are

that it’s invariant under the geodesic flow Ψ and that it’s locally the product measure µM × µSM.

The following is a classical fact about measure-preserving transformations, known as the Poincaré

recurrence theorem.

Theorem 2.3.1. (Poincaré) Let (X,µ) be a measure space with finite total measure and f : X→ X

a measure-preserving transformation. For any measurable A ⊆ X, almost all points of A return to

A infinitely often under the iterates of f . Consequently, if µ(A) > 0, then for any K ∈ N there exists

k ≥ K such that f k(A)∩A , ∅.

Applying this to the geodesic flow, one obtains the following result, also often referred to as the

Poincaré recurrence theorem in the literature.

Corollary 2.3.2. Let M be a complete Riemannian manifold with finite volume and U ⊆ SM a set

with positive Liouville measure. For any t > 0, there exists T ≥ t such that ΨT (U)∩U , ∅.

The following result, known as Santaló’s formula, will play an important role in Chapter 7. In

the following, (M,g) is a compact Riemannian manifold with boundary ∂M , ∅. Let ν denote the

inward-pointing unit normal vector field along ∂M, and define S(∂M) := {w ∈ SM
∣∣∣π(w) ∈ ∂M} and

S+∂M := {w ∈ S(∂M)
∣∣∣g(w, ν) > 0}. The Liouville measure on SM restricts to a measure µS+∂M on

S+∂M. For each w ∈ S+∂M, `(w) := min{t > 0
∣∣∣γw(t) ∈ ∂M} and ςw : [0, `(w)]→ M is defined by

ςw(t) := f ◦γw|[0,`(w)]. That is, ςw is the image under f of the geodesic γw, defined until γw hits ∂M

again.

Theorem 2.3.3. Let (M,g) be a compact Riemannian manifold with boundary ∂M , ∅. Let f : M→

R be a measurable function. Then∫
SM

f (v)dµSM =

∫
S+∂M

[∫ `(w)

0
f
(
ΨT (w)

)
dt

]
g(w, ν)dµS+∂M
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It will also be helpful to record the coarea formula, which allows one to convert integrals over the

domain of a smooth surjection into integrals over the target. This result appears in many forms in

the literature; the one presented here will be the most useful for the work to come.

Theorem 2.3.4. Let M and N be Riemannian manifolds, f : M → N a smooth surjection whose

push-forward f∗ is surjective almost everywhere, and φ : M → [0,∞] a measurable function. Let

J f := |det( f∗|ker( f∗)⊥)|. That is, J f is the Jacobian of the restriction of f∗ to the orthogonal com-

plement of its kernel. Then∫
M
φ(x)dµM =

∫
N

[∫
f −1(y)

φ(x)
J f (x)

dµ f −1(y)

]
dµN

One may check [Chav] for more information about Santaló’s formula and the coarea formula. This

section ends with a basic inequality that will be used in the proof of Theorem 7.4.4. For want of a

better place, it’s recorded here.

Lemma 2.3.5. Let f : [a,b]→ R be a measurable function, and let a = x0 < x1 < · · · < xn = b be a

partition of [a,b] for some n ≥ 1. Then
n−1∑
i=0

[ ∫ xi+1

xi
f (t)dt

]2

xi+1− xi
≥

[ ∫ b
a f (t)dx

]2

b−a
.

Proof. The result is immediate in the case n = 1. Suppose that n = 2. It must be shown that[ ∫ x1

a f (t)dt
]2

x1−a
+

[ ∫ b
x1

f (t)dt
]2

b− x1
≥

[ ∫ b
a f (t)dt

]2

b−a

Since
∫ b

a f (t)dt =
∫ x1

a f (t)dt +
∫ b

x1
f (t)dt, elementary algebraic manipulations show the above to be

equivalent to [
(b− x1)

∫ x1

a
f (t)dt− (x1−a)

∫ b

x1

f (t)dt
]2
≥ 0

This proves the result in the case n = 2. The general case n ≥ 3 follows by induction.

�

One may note that the inequality in Lemma 2.3.5 is equality whenever f is constant.

2.4 Convexity

A function h : I→ R, where I ⊆ R is an interval, is convex if h
(
st1 + (1− s)t2

)
≤ sh(t1) + (1− s)h(t2)

for all s ∈ [0,1] and t1, t2 ∈ I. It actually suffices to check this property at the midpoint of an arbitrary
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subinterval; that is, h is convex if and only if h
( t1+t2

2
)
≤

h(t1)+h(t2)
2 for all t1, t2 ∈ I. The function is

strictly convex if the first inequality, or equivalently the second, is strict for all s ∈ (0,1) and all

t1, t2 ∈ I with t1 , t2. If h is convex, then h is automatically continuous. If h is twice differentiable,

then convexity is equivalent to the condition that h′′ ≥ 0. If h′′ > 0, then h is strictly convex, but

the converse does not hold. For example, the function t 7→ t2 is strictly convex, but its derivative

vanishes at zero. However, a twice differentiable function h is strictly convex if and only if h′′ ≥ 0

and h′′ = 0 at most once.

Let (M,g) be a Riemannian manifold. A function h : M → R is convex if, for each geodesic

γ : [a,b]→ M, the composition g ◦ γ : [a,b]→ R is convex. It is strictly convex if each h ◦ γ is

strictly convex. As before, convex functions on manifolds are automatically continuous. Note that

the sum of convex functions is convex, and the sum of strictly convex functions is strictly convex.

This generalizes to integrals of families of convex or strictly convex functions.

Lemma 2.4.1. Let M be a complete Riemannian manifold and (A,µ) a measure space. Suppose

that {hα : M→ R
∣∣∣α ∈ A} is a family of convex functions. Then the function F : M→ R defined by

F(x) :=
∫

A hα(x)dµ is convex. If each hα is strictly convex, then F is strictly convex.

Proof. Let α : [a,b]→ M be a geodesic. Then

F
( t1 + t2

2

)
=

∫
A

hα
( t1 + t2

2

)
dµ

≤

∫
A

hα(t1) + hα(t2)
2

dµ

=
F(t1) + F(t2)

2

This shows that F is convex. If each hα is strictly convex, the inequalities become strict, and F is

strictly convex.

�

A key fact is that a C2 function h : M→ R is strictly convex whenever ∇2h is everywhere positive-

definite. Here, ∇2 f denotes the Hessian of h, which is defined to equal the covariant derivative of

the gradient gradh. This is a symmetric (0,2)-tensor on M satisfying

∇2h(v,w) = g
(
∇vgradh,w

)
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for each p ∈ M and v,w ∈ TpM. Furthermore, ∇2h is positive-definite if and only if, for every

non-constant geodesic γ : (−ε,ε)→ M, d2

ds2

∣∣∣
s=0(h◦γ)(s) > 0.

There are many different notions of convexity that can be defined for subsets of a manifold M,

three of which will be useful here. A subset X ⊆ M is convex if, given any p,q ∈ X, there exists a

minimal geodesic γ : [a,b]→ M connecting p to q such that γ([a,b]) ⊆ X. Note that the minimal

geodesics γ do not have to be unique for X to be convex. A subset X ⊆ M is strongly convex if,

given any p,q ∈ X, there is a unique minimal geodesic γ : [a,b]→ M connecting p to q and, further,

γ([a,b]) ⊆ X. A subset X ⊆ M is locally convex if, for each x ∈ X, there exists 0 < ε < r(x) such

that X∩B(x, ε) is strongly convex. Here, r(x) is the injectivity radius of x, which is discussed in the

next section. One may check that the closure of a convex set, when complete, is again convex and

that a convex subset of a strongly convex set is strongly convex. Ozols [Oz] and, independently,

Cheeger–Gromoll [CG2] proved the following structure theorem for locally convex sets.

Theorem 2.4.2. (Ozols, Cheeger–Gromoll) Let M be a Riemannian manifold. If X ⊆ M is a closed

and locally convex set, then X is an embedded submanifold of M with smooth and totally geodesic

interior and possibly non-smooth boundary.

Some elementary facts about strictly convex functions defined on convex sets are listed in the fol-

lowing lemma.

Lemma 2.4.3. Let M be a Riemannian manifold and X ⊆ M a convex set. If f : X→ R is a strictly

convex function, then the following hold:

(a) There exists at most one local minimum of h on X;

(b) If h has a local minimum at p ∈ X, then p is the unique global minimum of h on X; and

(c) If X is compact, then h has a unique local minimum on X, which is also its global minimum.

Proof. (a) Assume that p1, p2 ∈ X are distinct local minimums of X. Since X is convex, there

exists a geodesic γ : [a,b] → M with γ(a) = p1, γ(b) = p2, and γ([a,b]) ⊆ X. The composition

h◦γ : [a,b]→ R is strictly convex with local minimums at a and b, which is a contradiction.

(b) Assume there exists q ∈ X such that q , p and h(q) ≤ h(p). As before, let γ : [a,b]→ M be a

geodesic connecting p to q that remains inside X. Then h◦γ is strictly convex. Since p is the unique

local minimum in X, there must exist a < t0 < b such that h ◦γ(t0) > h(p), as otherwise one would
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have h ◦γ(t) = h(a) for all t, contradicting uniqueness. It follows that h ◦γ|[a,b] must have a global

maximum, which contradicts the fact that h is strictly convex.

(c) Since h is continuous, it must have a global minimum on X, which is also a local minimum. By

part (a), this local minimum is unique.

�

If X ⊆ M, then the convex hull of X, denoted conv(X), is the smallest set containing X with the

property that, for any p,q ∈ conv(X), the image of every minimal geodesic in M from p to q is

contained in conv(X). This is equal to the intersection of all subsets of M that contain X and have

this property. If X is contained in a strongly convex set, then conv(X) is the intersection of all

strongly convex sets containing X.

2.5 Geometric radiuses

It’s assumed throughout this section that (M,g) is a complete Riemannian manifold. It’s well-known

that there exist continuous functions inj,r : M→ (0,∞] such that, for each x ∈ M,

inj(x) = max{R > 0
∣∣∣ expx |B(0,s) is injective for all 0 < s < R}

and

r(x) = max{R > 0
∣∣∣B(x, s) is strongly convex}

where B(0, s) ⊂ TxM denotes the Euclidean ball of radius s around the origin. The number inj(x)

is called the injectivity radius of x, and r(x) is called the convexity radius of x. If S ⊆ M, the

injectivity radius of S is defined by inj(S ) := inf{inj(x)
∣∣∣ x ∈ S }, and the convexity radius of S

is defined by r(S ) := inf{r(x)
∣∣∣ x ∈ S }. If S is compact, then those infimums are minimums and

inj(S ),r(S ) > 0. One may find proofs of these results in [Kli1] and [CE]. In the first, it’s also shown

that there exists a continuous function ρ : M→ (0,∞] with the property that

ρ(x) = max{R > 0
∣∣∣B(

z,ρ(x)
)

is strongly convex for all z ∈ B
(
x,ρ(x)

)
}

This strengthens the defining property of r, and, as such, ρ(x) is called the strong convexity radius

of x. In fact, once it’s known that r is positive and continuous, an elementary argument shows that,

for any ε > 0,

ρ(x) ≥min
{
ε,r(z)

∣∣∣ d(z, x) ≤min{ε, inj(x)}
}
> 0
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The continuity of ρ follows from the observation that |ρ(z)− ρ(x)| ≤ d(z, x). By construction, one

has that ρ(x) =∞ for some x ∈ M if and only if r(M) =∞.

In a similar fashion, one may define the conjugate radius of x by

rc(x) := min{T > 0
∣∣∣∃ a non-trivial normal Jacobi field J along a unit-speed geodesic γ

with γ(0) = x, J(0) = 0 and J(T ) = 0}

and the focal radius of x by

r f (x) := min{T > 0
∣∣∣∃ a non-trivial normal Jacobi field J along a unit-speed geodesic γ

with γ(0) = x, J(0) = 0 and ‖J‖′(T ) = 0}

If γk : [0,T ]→ M are unit-speed geodesics starting at x and Jk are normal Jacobi fields along γ

satisfying ‖J‖′(0) = 1, then, by passing a subsequence, one may without loss of generality suppose

that γk and Jk converge uniformly, along with their derivatives, to a unit-speed geodesic γ starting

at x and, respectively, a normal Jacobi field along γ satisfying ‖J‖′(0) = 1. It follows by normalizing

the Jacobi fields in their definitions that rc(x) and r f (x) are well-defined. It’s well-known that

rc,r f > 0, facts which underlie the standard proofs that inj,r > 0. The essential point in proving

this is that an upper bound K on the sectional curvatures in U ⊆ M implies that, for any normal

Jacobi field J along a unit-speed geodesic γ : [0,T ]→ U such that J(a) = 0, ‖J‖′(t) ≥ ‖Ĵ‖′(t) for

all 0 ≤ t ≤ r(S 2
K), where S 2

K is the model space of constant sectional curvature K and Ĵ is a normal

Jacobi field along a unit-speed geodesic γ̂ : [0,T ]→ S 2
K satisfying Ĵ(0) = 0 and ‖Ĵ‖′(0) = ‖J‖′(0).

This follows from the standard proof of the Rauch comparison theorem,2 which ultimately dates

back to the work in [R]. Moreover, if J is a non-trivial Jacobi field with J(0) = 0 and J(T ) = 0,

then, since ‖J‖′(0) > 0, there must exist 0 < t < T such that ‖J‖′(t) = 0. It follows that r f < rc. If

S ⊆ M, the conjugate radius of S is defined by rc(S ) := inf{rc(x)
∣∣∣ x ∈ S }, and the focal radius of S

is defined by r f (S ) := inf{r f (x)
∣∣∣ x ∈ S }.

The geometric significance of the conjugate radius is that expx has invertible derivative at every

vector in B
(
0,rc(x)

)
⊆ TxM, and, consequently, is a local diffeomorphism. However, the global

topology of M may cause expx to not be injective on B
(
0,rc(x)

)
. For example, if T n is a flat torus,

2The usual statement of the Rauch comparison theorem is more general than this, but under these assumptions implies
that ‖J‖(t) ≥ ‖Ĵ‖(t) for all 0 ≤ t ≤ inj(S 2

K).
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then rc(T n) = ∞, while inj(T n) < ∞. The geometric intuition behind the focal radius is given by

the fact that, at least for 0 < t < inj(x), ‖J‖′(t) = IIt(J, J), where IIt(·, ·) denotes the scalar second

fundamental form of the distance sphere ∂B(x, t), measured with respect to the outward pointing

normal γ′(t). Therefore, for 0 < t < min{inj(x),r f (x)}, IIt(·, ·) is positive-definite.

Let S be a submanifold of M, z ∈ M, and γ : [a,b]→ M a geodesic. Then z is focal to S along

γ if γ(b) = z and there exists a variation Γ : (−ε,ε)× [a,b]→ M of γ through geodesics γs(·) = Γ(s, ·)

such that γ′s(a) ∈ NS for all s ∈ (−ε,ε) and whose variation field J is non-trivial and vanishes at

time b. For example, the north pole on S 2 is focal to the equator along any of the great circles

connecting them. It turns out that the existence of focal points to S can be characterized in terms of

the existence of certain types of Jacobi fields along geodesics normal to S . Recall that the second

fundamental form IIS assigns to each p ∈ S a symmetric bilinear map TpS ×TpS → TpS . This is

given by

IIS (x,y) := ∇M
X Y −∇S

XY = (∇M
X Y)⊥

for any vector fields X and Y such that X|S ,Y |S ∈ TS , X(p) = x, and Y(p) = y. Formally speaking, up

to the identification of bilinear maps TpS ×TpS → TpS with linear maps TpS ⊗TpS → TpS , IIS is

identified with a section of the vector bundle
∐

p∈S L (TpS �TpS ,TpS ). In a similar way, one may

define a section AS of
∐

p∈S L (NpS ⊗TpS ,TpS ) by setting

AS (z, x) := (∇M
X Z)⊥−∇M

X Z = −(∇M
X Z)>

for any vector fields Z and X such that Z|S is a local section of NS , X|S is a local section of TS ,

Z(p) = z, and X(p) = x. The expressions on the right-hand side are bilinear over C∞(M,R), so AS is

well-defined and, at each point, bilinear. From the classical Weingarten equation

g(∇M
X Z,Y) = −g

(
Z, IIS (X,Y)

)
one sees that AS and IIS are related by

g
(
AS (z, x),y

)
= g

(
z, IIS (x,y)

)
(2.1)

It follows that, for each p ∈ M and z ∈ NpS , AS (z, ·) is a symmetric operator on TpS . A proof of the

following may be found in [Her1].
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Lemma 2.5.1. Let M be a complete Riemannian manifold, S ⊆ M a submanifold, v ∈ TpS , and

γ : [a,b]→ M a geodesic such that γ′(a) ∈ NpS . Then the following are equivalent:

(i) For any smooth curve σ : (−ε,ε)→ N with σ′(a) = v, there exists a variation Γ : (−ε,ε)× [a,b]→

M of γ through geodesics γs(·) = Γ(s, ·) such that γ′s(a) ∈ NS and Γ(s,a) = σ(s) for all s; and

(ii) There exists a non-trivial normal Jacobi field J along γ such that J(a) = v, J(b) = 0, and

AS
(
γ′(a),v

)
+∇γ′ J(a) ∈ NpS .

Consequently, γ(b) is focal to S along γ if and only if there exists a non-trivial normal Jacobi field

J along γ such that J(a) ∈ TpS , J(b) = 0, and AS
(
γ′(a), J(a)

)
+∇γ′ J(a) ∈ NpS .

Focal points to a submanifold consisting of a single point are called conjugate points. That is, given

x ∈ M, the point z is conjugate to x along γ if γ(b) = z and there exists a variation Γ : (−ε,ε)→ M

of γ through geodesics γs(·) = Γ(s, ·) such that γs(a) = x for all s ∈ (−ε,ε) and whose variation field

vanishes at time b. This is equivalent z being focal to the submanifold {x} along γ. On S k, each

point is conjugate to its antipode along any of the great circles connecting them.

If S ⊆ M is a submanifold, then the cut locus of S is the set

cut(S ) := {v ∈ NS
∣∣∣γv|[0,1] minimizes the distance to S while γv|[0,T ] does not for all T > 1}

and the focal locus of S is the set

focal(S ) := {v ∈ NS
∣∣∣ exp |NS is singular at v}

For x ∈ M, the cut locus of x, denoted cut(x), is defined to be the cut locus of the set {x} and takes

the form

cut(x) = {v ∈ TxM
∣∣∣γv|[0,1] is a minimal geodesic while γv|[0,T ] is not minimal for all T > 1}

Similarly, the conjugate locus of x, denoted conj(x), is the focal locus of {x}. This is the set

conj(x) = {vx ∈ TxM
∣∣∣ expx is singular at vx}

It follows directly from the definitions that inj(x) < ∞ if and only if cut(x) , ∅, in which case

inj(x) = dTx M
(
0,cut(x)

)
and, moreover, there exists v ∈ cut(x) such that ‖v‖ = inj(x). The names

focal locus and conjugate locus are justified by the following alternative characterizations, which

date back at least to the work of Morse [Mo].
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Lemma 2.5.2. Let M be a complete Riemannian manifold. Then the following hold:

(a) For any submanifold S ⊆ M, focal(S ) =
{
v ∈ NS

∣∣∣ exp(v) is focal to S along γv|[0,1]
}
.

(b) For any x ∈ M, conj(x) =
{
vx ∈ TxM

∣∣∣ expx(vx) is conjugate to x along γvx |[0,1]
}
.

Proof. (a) Let v ∈ focal(S ). Then there exist v ∈ NS and wv ∈ Tv(NS ) such that (exp |NS )∗(wv) = 0.

Note that wv , 0. Let α : (−ε,ε)→ NS be any curve with α′(0) = wv. Define a map Γ : (−ε,ε)×

[0,1]→ N by Γ(s, t) := exp
(
tα(s)

)
. Then Γ is a variation of γv|[0,1] through geodesics γs(·) := Γ(s, ·) =

γα(s)(·). By construction, γ′s(0) ∈ NS for all s ∈ (−ε,ε). The variation field J of Γ satisfies J(1) =

∂
∂s

∣∣∣
s=0(exp◦α)(s) = (exp |NS )∗(wv) = 0. It remains to show that J is non-trivial. If J(0) , 0, the result

follows. If J(0) = 0, then (π ◦α)′(0) = 0 and, with respect to the identification Tv(NS ) � Tπ(v)S ×

Nπ(v)S , wv must lie entirely in the second component. If v = 0, then (exp |NS )∗(wv) = wπ(v) , 0,

which is a contradiction. Hence v , 0, and one may write ∇γ′ J(0) =
wπ(v)
‖v‖ , 0. Thus J is non-trivial.

It follows that exp(v) is focal to S along γv|[0,1].

The same argument works in reverse. Let v ∈NS be arbitrary, and suppose that exp(v) is focal to

S along γv|[0,1]. Let Γ : (−ε,ε)× [0,1]→ M be a variation of γv|[0,1] through geodesics γs(·) = Γ(s, ·)

such that γ′s(0) ∈NS for all s ∈ (−ε,ε) and whose variation field J is non-trivial and satisfies J(1) = 0.

Define a curve α : (−ε,ε)→NS by α(s) := γ′s(0). Note that (exp |NS )∗
(
α′(0)

)
= ∂

∂s

∣∣∣
s=0Γ(s,1) = J(1) =

0. If (π ◦α)′(0) , 0, then α′(0) , 0, and v ∈ focal(S ). If (π ◦α)′(0) = 0, then J(0) = 0. If v = 0,

then γv is a constant geodesic, and J must be an affine map into Nπ(v)S . Since J(0) = J(1) = 0, J

must be trivial, which is a contradiction. Thus v , 0 and α′(0) = ‖v‖∇γ′ J(0) , 0. This shows that

v ∈ focal(S ).

(b) This follows from part (a) by setting S = {x}.

�

In later chapters, I’ll be concerned only with points that are focal to totally geodesic submanifolds

or, more precisely, with the absence of such points.

A general relationship between inj and rc is described by the following well-known result of

Klingenberg [Kli2]. Here, and throughout this section, `(x) denotes the length of the shortest non-

trivial geodesic loop based at x.
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Theorem 2.5.3. (Klingenberg) Let M be a complete Riemannian manifold and x ∈ M. If v ∈ cut(x)

has length inj(x), then one of the following holds:

(i) v ∈ conj(x); or

(ii) γv|[0,2] is a geodesic loop.

Consequently, inj(x) = min{rc(x), 1
2`(x)}.

Klingenberg used Theorem 2.5.3 to characterize inj(M). In the following, `(M) := inf{`(x)
∣∣∣ x ∈ M}

and, when M is compact, `c(M) > 0 is the length of the shortest non-trivial closed geodesic in M.3

Corollary 2.5.4. Let M be a complete Riemannian manifold. Then each of the following holds:

(a) inj(M) = min{rc(M), 1
2`(M)}; and

(b) If M is compact, then inj(M) = min{rc(M), 1
2`c(M)}.

Proof. Part (a) follows directly from Theorem 2.5.3 by taking infimums. To prove (b), suppose

that M is compact, and let x ∈ M be a point at which inj realizes its minimum. It must be the

case that 0 < inj(x) < ∞. Since B
(
0,2inj(x)

)
⊂ TxM is compact, there must be a vector v ∈ cut(x)

such that ‖v‖ = inj(x). By Theorem 2.5.3, v ∈ conj(x) or γv|[0,2] is a geodesic loop. In the first

case, inj(M) ≥ rc(M), which implies that inj(M) = rc(M) = min{rc(M), 1
2`(M)}. Since `(M) ≤ `c(M),

inj(M) = min{rc(M), 1
2`c(M)}. In the second case, write z := γv(1) = expx(v). Then γ′v(1) ∈ cut(z)

has length inj(M), which must also equal to the distance from z to cut(z). Again applying Theorem

2.5.3, one has either that γ′v(1) ∈ conj(z), which as before implies inj(M) = min{rc(M), 1
2`c(M)},

or that γγ′v(1)|[0,2] is a geodesic loop. In the latter case, it follows that γv is a closed geodesic, so

inj(M) ≥ 1
2`c(M) ≥ 1

2`(M) and, consequently, inj(M) = 1
2`c(M) = min{rc(M), 1

2`c(M)}.

�

It will be instructive to outline the proof of Theorem 2.5.3, as described by Cheeger–Ebin [CE].

The argument that inj(x) ≥ min{rc(x), 1
2`(x)} is by contradiction. If inj(x) < min{rc(x), 1

2`(x)}, then

one may, by passing to convergent subsequences of vi,wi ∈ B
(
0, inj(x) + εi

)
⊂ TxM, where vi , wi

and εi → 0, produce vectors v,w ∈ TxM such that ‖v‖ = ‖w‖ = inj(x) and expx(v) = expx(w). Since

3A well-known theorem of Fet–Lyusternik [FL] asserts that every compact manifold contains a non-trivial closed
geodesic.
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inj(x) < rc(x), expx is a local diffeomorphism at v and w, which shows that v , w. Since inj(x) <

1
2`(x), the loop α : [0,2]→ M defined by

α(t) :=


expx(tv) if 0 ≤ t ≤ 1

expx
(
(2− t)w

)
if 1 ≤ t ≤ 2

cannot be a geodesic, so (expx)∗(vv) , −(expx)∗(ww), where, up to the identification Tv(TxM) �

TxM, vv ∈ Tv(TxM) is being identified with itself, and similarly for ww ∈ Tw(TpM). This means it’s

possible to perturb v and w slightly and produce shorter vectors that are mapped to each other by

expx, which contradicts the definition of inj(x). The fact that inj(x) ≤ 1
2`(x) follows directly from

the definition of inj(x). It only remains to show that inj(x) ≤ rc(x). A standard argument for this fact

is that, by the Morse index theorem [Mo], a geodesic cannot minimize past its first conjugate point.

This same reasoning can be used to show that r(x) ≤ r f (x). The key idea is that a unit-speed

geodesic initially perpendicular to a submanifold S cannot minimize distance to S beyond its first

focal point. For the sake of completeness, a somewhat narrower fact is proven here. This is modeled

after the presentation in [Lee3]. Let γ : [a,b]→ M be a unit-speed geodesic, and denote by V the

vector space of piecewise C2 vector fields along γ. Define the index form I : V ×V → R by

I(V,W) :=
∫ b

a

[
g(∇γ′V,∇γ′W)−g

(
R(V,γ′)γ′,W

)]
dt

This is a symmetric bilinear form on V . Fix V ∈ V . Denote by a < a1 < a2 < . . . < ak < b the points

where V is not C2 and by ∆i∇γ′V the change in ∇γ′V at ai. That is,

∆i∇γ′V := lim
t↘ai
∇γ′V(t)− lim

t↗ai
∇γ′V(t)

Integration by parts yields

I(V,W) = −

∫ b

a
g
(
∇γ′∇γ′V + R(V,γ′)γ′,W

)
dt−

k∑
i=1

g
(
∆i∇γ′V,W(ai)

)
+ g(∇γ′V,W)

∣∣∣b
a (2.2)

for each W ∈ V .

Suppose V is the variation field of a variation Γ : (−ε,ε)× [a,b]→ M of γ. Then V extends

to a vector field along Γ by setting V := Γ∗
( ∂
∂s

)
. Write V⊥(·) := V(0, ·)− g

(
V(0, ·),γ′(·)

)
γ′(·) and

γs(·) := Γ(s, ·). By taking the second variation of length, one finds that

d2

ds2

∣∣∣∣
s=0

L(γs) = I(V⊥,V⊥) + g
(
∇VV(0, ·),γ′(·)

)∣∣∣b
a (2.3)
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In particular, if both Γ(·,a) and Γ(·,b) are known to be geodesics, then ∇VV(0,a) = 0, ∇VV(0,b) = 0,

and, consequently, d2

ds2

∣∣∣
s=0L(γs) = I(V⊥,V⊥). In this sense, the index form is akin to the Hessian of

the length functional on such variations.

In the special case that J is a Jacobi field along each γ|[ai,ai+1], one has that the Jacobi equation

∇γ′∇γ′ J + R(J,γ′)γ′ = 0 (2.4)

holds. Substituting (2.4) into (2.2) yields

I(J,W) = −

k∑
i=1

g(∆i∇γ′ J,W) + g(∇γ′ J,W)
∣∣∣b
a (2.5)

for each W ∈ V .

An important fact, which will be used implicitly throughout the remainder of this dissertation,

is that d2(·, p)|B
(

p,inj(p)
) is C∞. This is because d2(x, p) = ‖exp−1

p (x)‖2 for all x ∈ B
(
p, inj(p)

)
. In the

same way, d(·, p) is C∞ on B
(
p, inj(p)

)
\ {p}. Within r f (p), more can be said. The following is a bit

stronger than the corresponding result in [CE], although the argument is similar.

Lemma 2.5.5. Let M be a complete Riemannian manifold and p ∈ M. Let R := min{inj(p),r f (p)}.

Then each of the following holds:

(a) ∇2 d(·, p) is positive-definite on B(p,R) \ {p}; and

(b) ∇2 d2(·, p) is positive-definite on B(p,R).

Proof. (a) This is equivalent to the statement that d2

ds2

∣∣∣
s=0 d

(
α(s), p

)
> 0 for any non-constant geodesic

α : (−ε,ε)→ B(p,R) \ {p}. Fix such an α. Write L := d
(
α(0), p

)
> 0. Since R ≤ inj(p), there exists a

unit-speed minimal geodesic γ : [0,L]→ B(p,R) \ {p} connecting p to α(0), and one may construct

a variation Γ : (−ε,ε)× [0,L]→ B(p,R) \ {p} of γ by setting

Γ(s, t) := expp

(
s · exp−1

p
(
α(s)

))
Let J := Γ∗

( ∂
∂s

)
. Since Γ is a variation through geodesics, each Js(·) := J(s, ·) is a Jacobi field along

γs(·) := Γ(s, ·). Since J0(0) = 0, one may write J0(t) = J⊥0 (t) + ctγ′(t), where c := g
(
∇γ′ J(0),γ′(0)

)
and g(J⊥0 ,γ

′) = 0. Since J⊥0 satisfies (2.4), it is also a Jacobi field. Note that J⊥0 (0) = 0 and J⊥0 (L) =

α′(0)−g
(
γ′(L),α′(0)

)
γ′(L). If J⊥0 (L) = 0, then α and γ are, up to affine reparameterization, the same
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geodesic, and the conclusion follows. If J⊥0 (L) , 0, then ∇γ′ J⊥0 (0) , 0. Since R ≤ r f (p), it follows

from the definition of r f that d
dt

∣∣∣
t=L‖J

⊥
0 ‖ = ‖J⊥0 ‖

′(L) > 0. One also has that

‖J⊥0 (L)‖
d
dt

∣∣∣∣
t=L
‖J⊥0 ‖ = g

(
∇γ′ J⊥0 (L), J⊥0 (L)

)
=

∫ L

0

d
dt

∣∣∣∣
t=t′

g(∇γ′ J⊥0 , J
⊥
0 )dt′

=

∫ L

0

[
g
(
∇γ′ J⊥0 (t′),∇γ′ J⊥0 (t′)

)
−g

(
R
(
J⊥0 (t′),γ′(t′)

)
γ′(t′), J⊥0 (t′)

)]
dt′

= I(J⊥0 , J
⊥
0 )

Thus I(J⊥0 , J
⊥
0 ) > 0. At the same time, for each s ∈ (−ε,ε), d

(
α(s), p

)
= L(γs). Since Γ(·,0) = p and

Γ(·,L) = α(·) are geodesics, the discussion following (2.3) shows that

d2

ds2

∣∣∣∣
s=0

d
(
α(s), p

)
= I(J⊥0 , J

⊥
0 )

Combining results shows that d2

ds2

∣∣∣
s=0 d(α(s), p) > 0.

(b) Let α : (−ε,ε)→ B(p,R) be any non-constant geodesic. If α(0) = p, then d2(α(s), p
)

= ‖α′‖s2

and, consequently, d2

ds2

∣∣∣
s=0 d2(α(s), p

)
= 2‖α′‖ > 0. If α(0) , p, then one computes

d2

ds2

∣∣∣∣
s=0

d2(α(s), p
)

=
[ d

ds

∣∣∣∣
s=0

d
(
α(s), p

)]2
+ d

(
α(0), p

) d2

ds2

∣∣∣∣
s=0

d
(
α(s), p

)
> 0

The final inequality there follows from part (a).

�

Lemma 2.5.5 may be used to show that d(·, p) and d2(·, p) are strictly convex on B(p,R). Moreover,

since r(p) ≤min{inj(p),r f (p)}, one may replace R with r(p).

Corollary 2.5.6. Let M be a complete Riemannian manifold and p ∈ M. Then each of the following

holds:

(a) ∇2 d(·, p) is positive-definite on B
(
p,r(p)

)
\ {p}; and

(b) ∇2 d2(·, p) is positive-definite on B
(
p,r(p)

)
.

Hereafter, the function d2(·, p) will be preferred over d(·, p) because of its regularity at p. Applying

Corollary 2.5.6(b) to the strong convexity radius, one obtains the following.

Corollary 2.5.7. Let M be a complete Riemannian manifold. Then the strong convexity radius

ρ : M→ (0,∞] is a continuous function with the following properties:
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(a) For each z ∈ B
(
x,ρ(x)

)
, B

(
z,ρ(x)

)
is strongly convex;

(b) For each z ∈ B
(
x,ρ(x)

)
, ∇2 d2(·,z) is positive-definite on B

(
z,ρ(x)

)
; and

(c) ρ(x) =∞ for some x ∈ M if and only if r(M) =∞.

Remark 2.5.8. Since B
(
x, 1

2ρ(x)
)
⊆ B(z,ρ(x)

)
whenever d(z, x) ≤ 1

2ρ(q), Corollary 2.5.7(b) implies

that each d2(·,z)|B
(

x, 1
2ρ(x)

) is strictly convex. This is the key property that will be used in the con-

struction of the center of mass in Chapter 6.

Remark 2.5.9. A version of Corollary 2.5.7 holds without the assumption that M is complete. The

key point in such a generalization is that the function

x 7→ sup
{
R > 0

∣∣∣ expx is defined on all of B(0,R) ⊆ TxM
}
> 0

is continuous. Such a generalization would be convenient in, say, the proof of Lemma 2.6.2, but it’s

not strictly necessary for the results of this dissertation and will be omitted.

Another preliminary observation will help in the proof that r(x) ≤ r f (x). Given any V ∈ V , one

may construct a variation Γ : (−ε,ε)× [a,b]→ M of γ with variation field V by setting Γ(s, t) :=

expγ(t)
(
sV(t)

)
. Since ∇VV(·, t) = 0 for all t, the discussion following (2.3) shows that d2

ds2

∣∣∣
s=0L(γs) =

I(V⊥,V⊥). Whenever g
(
V(a),γ′(a)

)
= g

(
V(b),γ′(b)

)
= 0, the first variation formula implies that

d
ds

∣∣∣
s=0L(γs) = 0. If I(V⊥,V⊥) < 0, it follows that L(γs) < L(γ) whenever |s| , 0 is sufficiently small.

In particular, in order to prove that L(γ) is a strict local maximum of the distance between geodesics

γv0 and γv1 , where v0 ∈Tγ(a)M and v1 ∈Tγ(b)M are perpendicular to γ′(a) and γ′(b), respectively, one

needs only to produce a piecewise C2 normal vector field V along γ such that V(a) = v0, V(b) = v1,

and I(V,V) < 0.

Lemma 2.5.10. Let M be a complete Riemannian manifold and x ∈ M. Then r(x) ≤ r f (x).

Proof. Assume that r(x) > r f (x). Let J be a non-trivial normal Jacobi field along a unit-speed

geodesic γ with γ(0) = x, J(0) = 0, and ‖J‖′(T ) = 0, where T := r f (x). Set z := γ(T ) and vz :=−γ′(T ).

Note that J(T ) , 0, since otherwise there would exist 0 < t < T such that ‖J‖′(t) = 0, in contradiction

of the fact that T = r f (x) < rc(x). Let S be the image of γJ(T )|(−δ0,δ0) for δ0 > 0 small enough that

γJ(T )|(−δ0,δ0) is an embedding. Then S is a smooth and embedded submanifold of M, and vz ∈NS is a

focal point of S . Since r is continuous, one may choose ε > 0 to be small enough that r(x′)> r f (x)−ε
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whenever d(x, x′) < ε. The next step is to show that there exist arbitrarily small 0 < s0 < ε and

0 < s1, s2 < δ0 such that

d
(
γ(−s0),γJ(T )(−s1)

)
, d

(
γ(−s0),γJ(T )(s2)

)
< T + s0 (2.6)

Suppose for the moment that this is possible. Choose such si to be small enough that 0 < s0 < ε and

γJ(T )(−s1),γJ(T )(s2) ∈B
(
γ(−s0),r

(
γ(−s0)

))
. Write x′ := γ(−s0). Then d(x, x′)< ε, so z ∈B

(
x′,r(x′)

)
.

This shows that max{d
(
x′,γJ(T )(−s1)

)
, d

(
x′,γJ(T )(s2)

)
} < r(x′), so, for any fixed R satisfying

max{d
(
x′,γJ(T )(−s1)

)
, d

(
x′,γJ(T )(s2)

)
} < R < r(x′)

one has that B(x′,R) is strongly convex. This means that γJ(T )|[−s1,s2] ⊂ B(x′,R), so d(x′,z) =

d
(
x′,γJ(T )(0)

)
< R. Letting R↘max{d

(
x′,γJ(T )(−s1)

)
, d

(
x′,γJ(T )(s2)

)
}, one has that

d(x′,z) ≤max{d
(
x′,γJ(T )(−s1)

)
, d

(
x′,γJ(T )(s2)

)
} < T + s0

At the same time, d(x′,z) = L(γ|[−s0,T ]) = T + s0, since γ|[−s0,T ] maps into the strongly convex ball

B
(
x′,r(x′)

)
and therefore must be the unique minimal geodesic connecting x′ to z. This is a contra-

diction, which completes the proof, modulo the existence of si so that (2.6) holds.

By the earlier discussion about the index form, to prove the existence of such si, it suffices to let

0 < s0 < ε be arbitrary and produce a piecewise C2 normal vector field V along γ|[−s0,T ] such that

V(−s0) = 0, V(T ) = J(T ), and I(V,V) < 0. Define a vector field J0 along γ|[−s0,T ] by

J0(t) :=


0 if t ≤ 0

J(t) if t ≥ 0

Since J(0) = 0, J0 is continuous, and it’s apparent that J0 is smooth on [−s0,0] and [0,T ]. Since J

is normal, so is J0. Note that

∆∇γ′ J0 = lim
t↘0
∇γ′ J0(t)− lim

t↗0
∇γ′ J0(t) = − lim

t↗0
∇γ′ J(t) , 0

since otherwise J would be identically zero. Let W be any smooth vector field along γ|[−s0,T ] with

W(0) = ∆∇γ′ J0, W(−s0) = 0, and W(T ) = 0; such a vector field W can be constructed in local

coordinates using a bump function. Set Vε := J0 + εW. It follows from (2.5) that I(J0, J0) = 0 and

I(J0,W) = −‖∆∇γ′ J0‖
2 < 0. Consequently,

I(Vε,Vε) = I(J0, J0) + 2εI(J0,W) +ε2I(W,W)

= −2ε‖∆∇γ′ J0‖
2 +ε2I(W,W)
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This is negative for all sufficiently small ε.

�

It’s tempting to think that, akin to the case of the injectivity radius, r(x) = min{r f (x), 1
4`(x)} for each

x ∈ M, but it’s not clear that this holds in general. The best such pointwise bound that I’ve obtained

is r(x) ≤ min{r f (x), 1
2`(x)}, which follows from Lemma 2.5.10 and the fact that r(x) ≤ 1

2`(x). One

may also note that r f (x) ≤ rc(x). In any event, one may still obtain global equalities akin to those in

Corollary 2.5.4. These are presented in Theorem 2.5.12.

Lemma 2.5.11. Let M be a complete Riemannian manifold. Then r f (M) ≤ 1
2 rc(M).

Proof. Fix ε > 0, and let x ∈ M be such that rc(x) < rc(M) + ε. Choose a unit-speed geodesic

γ : [0,rc(x)]→ M with γ(0) = x and a non-trivial normal Jacobi field J along γ with J(0) = 0 and

J
(
rc(x)

)
= 0. Write z := γ

(
rc(x)

)
. There must exist 0 < T < rc(x) such that ‖J‖′(T ) = 0. If T ≤ 1

2 rc(x),

then r f (x) ≤ 1
2 rc(x) < 1

2 rc(M)+ 1
2ε. If T ≥ 1

2 rc(x), then, since t 7→ γ
(
rc(x)− t

)
is a unit-speed geodesic

starting at z and t 7→ J
(
rc(x)− t

)
is a non-trivial normal Jacobi field along it with J(0) = 0 and

‖J‖′
(
rc(x)− T

)
= 0, one has r f (z) ≤ 1

2 rc(x)− T < 1
2 rc(M) + 1

2ε. Therefore, r f (M) < 1
2 rc(M) + 1

2ε.

Since the choice of ε > 0 was arbitrary, r f (M) ≤ 1
2 rc(M).

�

Theorem 2.5.12. Let M be a complete Riemannian manifold. Then the following hold:

(a) r(M) = min{r f (M), 1
4`(M)}; and

(b) If M is compact, then r(M) = min{r f (M), 1
4`c(M)}.

Proof. (a) Lemma 2.5.10 implies that r(M) ≤ r f (M). Assume that r(M) > 1
4`(M), and let ε :=

4
5 [r(M)− 1

4`(M)] > 0. Note that the case ε = ∞ is possible if r(M) = ∞. Let γ : [0,1]→ M be a

non-trivial geodesic loop with L(γ) < `(M) + ε. Then 1
4 L(γ) + ε < r(M), so B

(
γ( 1

4 ), 1
4 L(γ) + ε

)
and

B
(
γ( 3

4 ), 1
4 L(γ) + ε

)
are strongly convex. However, both γ(0) and γ( 1

2 ) are in each of those balls;

since γ([0, 1
2 ]) ⊂ B

(
γ( 1

4 ), 1
4 L(γ) + ε

)
and γ([ 1

2 ,1]) ⊆ B
(
γ( 3

4 ), 1
4 L(γ) + ε

)
, it follows that each of γ|[0, 1

2 ]

and −γ|[ 1
2 ,1] is the unique minimal geodesic connecting γ(0) to γ( 1

2 ). This is a contradiction, which

shows that r(M) ≤ 1
4`(M). Thus r(M) ≤min{r f (M), 1

4`(M)}.

Assume that r(M)<min{r f (M), 1
4`(M)}. Choose p ∈M such that r(p)<min{r f (M), 1

4`(M)}. Let

εi > 0 be a sequence with εi ↘ 0 and r(p) + ε1 < min{r f (M), 1
4`(M)}. By Lemma 2.5.11, r f (M) ≤
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1
2 rc(M). By Theorem 2.5.4(a), inj(M) = {rc(M), 1

2`(M)}. Thus r(p)+ε1 <
1
2 inj(M). According to the

definition of r(p), one may, by passing to a subsequence of the εi, without loss of generality suppose

that each B
(
p,r(p) + εi

)
is not strongly convex. Thus there exist xi,yi ∈ B

(
p,r(p) + εi

)
and minimal

geodesics γi : [0,1]→ M from xi to yi such that γi([0,1]) 1 B
(
p,r(p) + εi

)
. Fix δi > 0 such that

max{d(p, xi), d(p,yi)} < r(p) + δi < r(p) + εi, and fix ti ∈ (0,1) such that d
(
p,γi(ti)

)
≥ r(p) + εi. Let

(ai,bi) be the connected component of {t ∈ (0,1)
∣∣∣ d

(
p,γi(t)

)
> r(p)+δi} containing ti. Without loss of

generality, replace xi and yi with γi(ai) and γi(bi), respectively, so that xi,yi ∈ ∂B
(
p,r(p) + δi

)
. Also

replace γi with γi|[ai,bi], reparameterizing the latter so that γi(0) = xi, γi(1) = yi, and d
(
p,γi(t)

)
>

r(p) + δi for all t ∈ (0,1). Since B
(
p,r(p) + ε1

)
is compact and L(γi) ≤ 2[r(p) + ε1] for all i, one

may, by passing to a subsequence, without loss of generality suppose that xi → x ∈ ∂B
(
p,r(p)

)
,

yi→ y ∈ ∂B
(
p,r(p)

)
, and γi uniformly converges to a minimal geodesic γ : [0,1]→ M from x to y.

Note that d
(
p,γ(t)

)
≥ r(p) for all t ∈ [0,1].

The next step is to show that x , y. Assume that x = y, and choose δ > 0 such that r(p) + 3δ <

min{r f (M), 1
4`(M)}. As above, one also has that r(p) + 3δ < 1

2 inj(M). Let i be large enough that

xi,yi ∈ B(x, δ). Then L(γi) = d(xi,yi) < 2δ, so

γi([0,1]) ⊂ B
(
p,r(p) + 3δ

)
⊂ B

(
p,r f (p)

)
∩B

(
p,

1
2

inj(p)
)

By Lemma 2.5.5(b), d2(p, ·) is strictly convex within B
(
p,r f (p)

)
∩B

(
p, inj(p)

)
. Since

d
(
p,γi(0)

)
, d

(
p,γi(1)

)
= r(p) +δi < r(p) + 3δ

and, by construction, γi is not constant, this implies that d
(
p,γi(t)

)
< r(p) + δi for all t ∈ (0,1). This

is a contradiction. So x , y, and γ is not constant.

Since d(x,y) ≤ 2r(p) < inj(M), γ is the unique minimal geodesic connecting x to y. Since

x,y ∈ ∂B
(
p,r(p)

)
, it’s possible to choose sequences wi,zi ∈ B

(
p,r(p)

)
such that wi → x and zi → y.

Since B
(
p,r(p)

)
is strongly convex, there exist unique minimal geodesics σi : [0,1]→ M from wi

to zi with σi([0,1]) ⊂ B
(
p,r(p)

)
. By passing to a subsequence, one may, without loss of generality,

suppose that σi converges uniformly to γ. This implies that

γ([0,1]) ⊆ B
(
p,r(p)

)
⊂ B

(
p,r f (p)

)
∩B

(
p, inj(p)

)
Again using the strict convexity of d2(p, ·), along with the fact that γ is not constant, one has that

d
(
p,γ(t)

)
< r(p) for all t ∈ (0,1). This is a contradiction. So r(M) = min{r f (M), 1

4`(M)}.
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(b) For compact M, one has that

r(M) = min{r f (M),
1
4
`(M)} ≤min{r f (M),

1
4
`c(M)}

Since inj(M) = min{rc(M), 1
2`c(M)}, the argument in the final three paragraphs of the proof of (a)

shows, essentially without modification, that r(M) ≥min{r f (M), 1
4`c(M)}.

�

Remark 2.5.13. Corollary 2.5.4, Lemma 2.5.11, and Theorem 2.5.12 together imply the widely

known inequality

r(M) ≤
1
2

inj(M)

Berger [Ber] has noted that there are no examples in the literature of compact manifolds M for

which this inequality is strict. Such examples may be found using Gulliver’s method of constructing

manifolds with focal points but no conjugate points [Gul]. The key idea in Gulliver’s construction

is to raise a blister on any compact hyperbolic manifold M with sufficiently large injectivity radius,

introducing enough positive curvature in a ball of fixed radius, independent of M, to create focal

points within that ball but not enough to create any conjugate points. The result of Mal’cev [Ma],

also sometimes attributed to Selberg [Se], that finitely generated linear groups are residually finite

implies that, in each dimension m ≥ 2, there are hyperbolic manifolds of arbitrarily large injectivity

radius. It follows from a short argument using Theorem 2.5.12(b) that infM
r(M)

inj(M) = 0 over the class

of compact manifolds of any fixed dimension m ≥ 2.

2.6 Harmonic maps

Let (M,g) and (N,h) be Riemannian manifolds and f : M → N a map. When f is C2, its tension

field τ f is a vector field along f whose vanishing characterizes when f is harmonic. Its second

fundamental form β f assigns to each point p ∈ M a symmetric bilinear map T2
pM → T f (p)N, the

vanishing of which characterizes when f is totally geodesic. These were introduced by Eells–

Sampson [ES], who proved these characterizations. The first purpose of this section is to give

intrinsic definitions of τ f and β f and sketch the standard proofs of these properties. This will not be

done in full rigor; the interested reader may find the details in a number of textbooks that discuss
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harmonic maps, for example, [J2] or [X1]. The second purpose is to prove the regularity of arbitrary

totally geodesic maps.

Without any regularity assumptions, f is called totally geodesic if it takes geodesics in M to

geodesics in N. In other words, whenever γ : [a,b]→ M is a geodesic, f ◦ γ is also a geodesic.

When f is C2, its second fundamental form is defined for x,y ∈ TpM by

β f (x,y) := (∇T∗M⊗ f −1(TN)
X d f )(Y, ·)

for any locally defined vector fields X and Y such that X(p) = x and Y(p) = y. This expression needs

to be unpacked. The expressions f −1(TN) and T∗M⊗ f −1(TN) are shorthand for the vector bundles∐
p∈M T f (p)N and, respectively,

∐
p∈M T∗pM ⊗T f (p)N over M. Here, T∗pM denotes the dual space

to TpM. For each p ∈ M, the linear transformation f∗|Tp M : TpM → T f (p)N may be canonically

identified with a unique dp f ∈ T∗pM ⊗T f (p)N such that f∗(v) = dp f (v, ·) for all v ∈ TpM. The map

p 7→ dp f is a section of T∗M⊗ f −1(TN). In coordinates (x1, . . . , xm) for M and (y1, . . . ,yn) for N,

d f =
∂ fα
∂xi dxi⊗

∂

∂yα

Here and throughout, the Einstein summation notation is used. Note that T∗M is canonically

endowed with the pull-back metric < ·, ·>T∗M:= g
(
](·), ](·)

)
under the musical isomorphism ] :=

[−1 : T∗M → TM, where [ : TM → T∗M takes x ∈ TpM to the covector x[(·) := g(x, ·) ∈ T∗pM.

The bundle f −1(TN) inherits the metric < ·, ·> f −1(TN):= h f◦π(·, ·) from TN. These induce a met-

ric < ·, ·>T∗M⊗ f −1(TN) on T∗M⊗ f −1(T N), which is characterized by the property that, whenever {εi}

and {v j} are orthonormal bases for T∗pM and T f (p)N, respectively, {εi⊗v j} is an orthonormal basis for

T∗pM⊗T f (p)N. Corresponding to these bundle metrics are Levi-Civita connections ∇T∗M, ∇ f −1(TN),

and ∇T∗M⊗ f −1(TN), the last of which obeys the product rule

∇
T∗M⊗ f −1(TN)
X (ω⊗Z) = (∇T∗M

X ω)⊗Z +ω⊗ (∇ f −1(TN)
X Z)

For any locally defined vector fields Xi and Yi and smooth functions gi and hi, where i = 1,2,

(∇T∗M⊗ f −1(TN)
g1X1+g2X2

d f )(h1Y1 + h2Y2, ·) =

2∑
i, j=1

gih j(∇
T∗M⊗ f −1(TN)
Xi

d f )(Y j, ·)

It follows that β f is well-defined. In coordinates, one has

∇T∗M
∂

∂xi
dxk = −Γk

i j dx j

∇
f −1(TN)
∂

∂xi

∂

∂yα
=
∂ fβ
∂xi Γ̂

γ
αβ

∂

∂yγ
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where Γk
i j and Γ̂

γ
αβ are the Christoffel symbols of M and N, respectively. Using these, one computes

β f
( ∂
∂xi ,

∂

∂x j

)
=

( ∂2 fα
∂xi∂x j + Γ̂αβγ

∂ fβ
∂xi

∂ fγ
∂x j −Γk

i j
∂ fα
∂xk

) ∂

∂yα

It follows from the symmetry of the Christoffel symbols that β f is symmetric. Formally, β f is

identified with a section of the vector bundle
∐

p∈M L
(
TpM�TpM,T f (p)N

)
over M, where L (·, ·)

is the space of linear transformations and � the symmetric product

Roughly speaking, the second fundamental form measures how far a C2 map is from being

totally geodesic. Let γ : (−ε,ε) → M be a geodesic. Then f ◦ γ is a curve in N, and a direct

computation shows that

∇N
( f◦γ)′( f ◦γ)′ = β f (γ′,γ′)

Here, only the vector components on either side are being compared. It follows that a C2 map f is

totally geodesic if and only if β f = 0.

The tension field of a C2 map f is τ f := trace(β f ). This notion of trace will be explained briefly.

If ω ∈ T∗pM ⊗ T∗pM is a (0,2)-tensor, one may construct a (1,1)-tensor ω] by composing with ]

in, say, the first component. That is, ω](·, ·) := ω
(
](·), ·

)
∈ TpM ⊗T∗pM. This is called raising the

first index and defines an isomorphism T∗pM ⊗T∗pM → TpM ⊗T∗pM. The trace of a simple (1,1)-

tensor is defined to be its contraction; that is, trace(z⊗ ζ) := ζ(z). This extends to a linear map

TpM ⊗T∗pM → R. There is a canonical isomorphism TpM ⊗T∗pM � L (TpM,TpM), under which

this agrees with the usual notion of trace.4 One may now obtain a linear map T∗pM⊗T∗pM→ R by

setting trace(ω) := trace(ω]). With respect to any orthonormal basis {e1, . . . ,em} for TpM,

trace(ω) =

m∑
i=1

ω(ei,ei) (2.7)

In a similar way, one may define the trace, or contraction, of an arbitrary (k, l)-tensor, where k+ l≥ 2,

along any pair of indices, which lowers the rank of the tensor by two. This is done by either raising

or lowering one of the two indices, if needed, then taking the trace of the (1,1)-tensor obtained by

fixing the entries in the other slots.

The trace of a transformation in L
(
TpM�TpM,T f (p)N

)
may be defined by taking the trace of

its components with respect to any orthonormal basis for T f (p)N. In the specific case of β f , given

4This isomorphism identifies T : TpM→ TpM with the (1,1)-form (ζ,z) 7→ ζ
(
T (z)

)
.
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any such orthonormal basis {v1, . . . ,vn}, there exist unique βi
f ∈ T∗pM⊗T∗pM such that β f (p) = βi

f vi,

and the tension field at p takes the form

τ f (p) = trace(β f )(p) = trace(βi
f )vi

This is independent of the choice of {v1, . . . ,vn}. Since β f is symmetric, this also doesn’t depend on

the choice of index raised in the construction. Applying (2.7), one finds that

τ f (p) =

m∑
i=1

β f (ei,ei)

for any orthonormal basis {e1, . . . ,em} for TpM. In local coordinates,

τ f = gi j
( ∂2 fα
∂xi∂x j + Γ̂αβγ

∂ fβ
∂xi

∂ fγ
∂x j −Γk

i j
∂ fα
∂xk

) ∂

∂yα

where [gi j] = [gi j]−1. In particular, in exponential normal coordinates around p and f (p),

τ f (p) =

m∑
i=1

∂2 fα
∂(xi)2 (p)

∂

∂yα
(
f (p)

)
From this, one sees that τ f generalizes the Laplacian ∆ f of a C2 function Rk→ R.

Assuming only C1 regularity of f , one may define its energy density e f : M→ [0,∞) by e f :=

1
2 trace(< ·, ·> f −1(TN)). It follows from (2.7) that, whenever p ∈ M and {e1, . . . ,em} is an orthonormal

basis for TpM,

e f (p) =
1
2

m∑
i=1

<ei,ei> f −1(TN)=
1
2

m∑
i=1

h
(
f∗(ei), f∗(ei)

)
Thus e f is, indeed, non-negative. One also has that e f = 1

2‖d f ‖2T∗M⊗ f −1(TN). When M is compact,

possibly with boundary, the energy of f is

E( f ) :=
∫

M
e f dµM

In this case, f is harmonic if it is a smooth critical point of this energy functional E : C1(M,N)→

[0,∞). The significance of τ is that it’s the negative gradient of E. That is, for any C1 variation

F : [0, ε)×M→ N of f , taking the first variation of energy shows that

d
dt

∣∣∣∣
t=0

E
(
F(t, ·)

)
= −

∫
M

g
(
τ f ,V

)
dµM

where V is the variation field of F at time t = 0. It follows that a C2 map f is harmonic if and only

if τ f = 0. Combining results, one obtains the characterizations of totally geodesic and, respectively,

harmonic maps proved in [ES].
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Theorem 2.6.1. (Eells–Sampson) Let M and N be Riemannian manifolds and f : M→ N a C2 map.

Then the following hold:

(a) f is totally geodesic if and only if β f = 0; and

(b) f is harmonic if and only if τ f = 0.

In particular, Theorem 2.6.1(b) implies that every C2 map satisfying τ f = 0 is smooth. Since τ f =

trace(β f ), every C2 totally geodesic map must be harmonic. This puts Theorem 1.2 into perspective.

It’s also worth noting that Eells–Sampson proved that any C1 local minimum of E is harmonic.

This section ends with the observation that totally geodesic maps are smooth, a small point

which I haven’t been able to locate elsewhere in the literature. The proof is elementary.

Lemma 2.6.2. Let M and N be Riemannian manifolds. If f : M → N is continuous and totally

geodesic, then f is smooth.

Proof. It suffices to argue locally. Fix p ∈ M. Choose 0 < R < ∞ to be small enough that expp

is defined on all of B(0,2R) ⊆ TpM. Since the sectional curvature on B(p,2R) is bounded above,

one may, if necessary, shrink R so that, for each x ∈ B(p,R), expx is injective on B(0,R) ⊆ TxM.

This follows from the Jacobi field comparison arguments discussed in the previous section. In the

same way, one may choose 0 < R′ < ∞ such that exp f (p) is defined on all of B(0,2R′) and, for

each y ∈ B
(
f (p),R′

)
, expy is injective on B(0,R′) ⊆ TyN.5 Shrinking R once more, if necessary, one

may suppose that f
(
B(p,R)

)
⊆ B

(
f (p),R′

)
. The essential step is to show that f is C1 on B(p,R).

Suppose for the moment that this is the case. Then the derivative Dp f : TpM→ T f (p)N exists and, in

particular, is linear. Since f is totally geodesic, f |B(p,R) = exp f (p) ◦Dp f ◦ exp−1
p |B(p,R), and it follows

that f |B(p,R) is smooth. This completes the proof, modulo f |B(p,R) being C1.

The fact that f is totally geodesic implies that, for each wz ∈ TB(p,R), f∗(wz) exists. It also

implies that f ◦γwz = γ f∗(wz) whenever these are defined. It will be shown that f∗|SB(p,R) is continuous

with respect to the usual topologies on SM and SN. Assume not, and let vx,vk
xk
∈ SB(p,R) be such

that vk
xk
→ vx but f∗(vk

xk
)9 f∗(vx). One may suppose, without loss of generality, that no subsequence

of f∗(vk
xk

) converges to f∗(vx). Two special cases will be considered:

(i) ‖ f∗(vk
xk

)‖ ≥ c for some 0 < c ≤ 1 and all k ∈ N; and

5If M is complete, one may choose any 0 < R < 1
2ρM(p) and 0 < R′ < 1

2ρN
(
f (p)

)
.
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(ii) ‖ f∗(vk
xk

)‖ → 0.

Eliminating the possibility of cases (i) and (ii) shows that f∗ is continuous, since, if (i) fails to hold,

then one may pass to a subsequence for which (ii) holds.

Suppose that (i) holds. For all k large enough that xk ∈ B
(
x,R

)
and, consequently, f (xk) ∈

B
(
f (x),R′

)
, f ◦ γvk

xk
is defined on at least the interval

[
0,min

{
R, R′

‖ f∗(vk
xk )‖

}]
⊆

[
0,min

{
R, R′

c

}]
. Let

R′′ := c ·min{R,R′} > 0. Since f is totally geodesic, there exist 0 < tk ≤min
{
R, R′

c

}
such that

dN
(
f ◦γvk

xk
(tk), f (xk)

)
= dN

(
γ f∗(vk

xk )(tk),γ f∗(vk
xk )(0)

)
= R′′

for all such k. By passing to a subsequence, one may without loss of generality suppose that tk→ T .

By the continuity of f and the exponential map,

dN
(
f ◦γvk

xk
(tk), f (xk)

)
→ dN

(
f ◦γvx(T ), f (x)

)
It follows that dN

(
f ◦γvx(T ), f (x)

)
= R′′. This implies that T , 0 and that ‖ f∗(vk

xk
)‖ → ‖ f∗(vx)‖ = R′′

T .

By passing to another subsequence, one may suppose without loss of generality that, for some

w ∈ T f (x)N such that w , f∗(vx), f∗(vk
xk

)→ w. Since 0 < T‖w‖ = T‖ f∗(vx)‖ ≤ R′, exp f (p) is injective

on B
(
f (p),R′

)
, from which it follows that

dN
(
γw(T ),γ f∗(vx)(T )

)
, 0

At the same time,

dN
(
γw(T ),γ f∗(vx)(T )

)
= lim

k→∞
dN

(
γ f∗(vk

xk )(T ),γ f∗(vx)(T )
)

= lim
k→∞

dN
(
f ◦γvk

xk
(T ), f ◦γvx(T )

)
= 0

This is a contradiction.

Suppose that (ii) holds. Since f∗(vk
xk

)9 f∗(vx) and f (xk)→ f (x), one has that f∗(vx) , 0. Let

T := min
{
R, R′
‖ f∗(vx)‖

}
. For all k large enough that xk ∈ B

(
x,R

)
and ‖ f∗(vk

xk
)‖ < R′

R , f (xk) ∈ B
(
f (x),R′

)
and γ f∗(vk

xk )(T ) is defined. Since ‖ f∗(vk
xk

)‖ → 0, f ◦ γvk
xk

(T ) = γ f∗(vk
xk )(T )→ f (x). At the same time,

f ◦γvk
xk

(T )→ f ◦γvx(T ). Thus f ◦γvx(T ) = f (x). However, since T‖ f∗(vx)‖ < R′ and f∗(vx) , 0, f ◦

γvx(T ) = γ f∗(vx)(T ) , f (x). This is a contradiction. It follows that f∗ is continuous and, consequently,

f is C1.

�
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Remark 2.6.3. It’s reasonable to think that the assumption of continuity can be dropped from Lemma

2.6.2. However, the argument required would no doubt be more tedious than is worth attempting

here.

It follows from Lemma 2.6.2 and Theorem 2.6.1 that a map f is totally geodesic if and only if it is

smooth and satisfies β f = 0.

2.7 Beta and gamma functions

A few standard results about the beta and gamma functions will be needed in the discussion of

length and intersection in Chapter 7. These have been treated elegantly in many textbooks over

the years; for example, the basic properties mentioned here may be found in [AAR]. In keeping

with usual practice, these functions will be defined on domains in the complex plane, but in the

application they will only be needed on the real numbers. Let C+ := {z ∈ C
∣∣∣Re(z) > 0}, where Re(z)

denotes the real part of z. The beta function B : C+×C+→ C is defined by

B(x,y) :=
∫ 1

0
tx−1(1− t)y−1 dt

The gamma function Γ : C+→ C is defined by

Γ(z) :=
∫ ∞

0
tz−1e−t dt

The improper integral in the definition of Γ converges on C+, so Γ is well-defined. By analytic

continuation, Γ extends to a meromorphic function on C with poles at the non-positive integers.

These functions, which were introduced by Euler, have many beautiful properties. For example,

Γ(z + 1) = zΓ(z), which since Γ(1) = 1 implies that Γ(n) = (n−1)! for all n ∈ N. That is, z 7→ Γ(z + 1)

is a continuous extension of the factorial. Another classical result is that Γ
( 1

2
)

=
√
π. A few other

well-known facts are worth recording here.

Lemma 2.7.1. Each of the following holds:

(a) B(x,y) =
Γ(x)Γ(y)
Γ(x + y)

for all x,y ∈ C+;

(b) cn−1 =
2π

n
2

Γ
(n

2
) for all n ∈ N; and

(c) B( k
2 ,

l
2 ) =

2ck+l−1
ck−1cl−1

for all k, l ∈ N.
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Note that Lemma 2.7.1(c) follows immediately from parts (a) and (b). It will also help to record the

following bound on the ratio of two gamma functions due to Gurland [Gur].

Theorem 2.7.2. (Gurland) For any n ∈ N,
Γ
(n+1

2
)

Γ
(n

2
) <

n
√

2n + 1
.

There is an extensive literature on bounding the ratio of two gamma functions. A fairly compre-

hensive survey article on the subject is by Qi [Q]. It’s explained there how Theorem 2.7.2 both

generalizes and improves upon the two-sided bound

1√
π
(
n + 1

2
) < 1 ·3 ·5 · · · (2n−1)

2 ·4 ·6 · · · (2n)
<

1
√
πn

due to Wallis in the seventeenth century and the later improvement

1√
π
(
n + 1

2
) < 1 ·3 ·5 · · · (2n−1)

2 ·4 ·6 · · · (2n)
<

1√
π
(
n + 1

4
)

by Kazarinoff [Ka]. The quantity being bounded in those is often called the Wallis ratio. Gurland’s

result, a relatively early one in the area, can be used to establish a bound involving the beta function.

Corollary 2.7.3. Let k, l ∈ N. Then B
( k+1

2 , l
2
)
<

√
k

k+l B
( k

2 ,
l
2
)
.

Proof. By Lemma 2.7.1(a), B
( k+1

2 , l
2
)
=

Γ
(

k+1
2

)
Γ
(

l
2

)
Γ
(

k+l+1
2

) and B
( k

2 ,
l
2
)
=

Γ
(

k
2

)
Γ
(

l
2

)
Γ
(

k+l
2

) = k+l
2

Γ
(

k
2

)
Γ
(

l
2

)
Γ
(

k+l+2
2

) . Therefore,

the desired inequality is equivalent to

Γ
( k+1

2
)

Γ
( k

2
) Γ

( k+l+2
2

)
Γ
( k+l+1

2
) < 1

2

√
k(k + l) (2.8)

By Theorem 2.7.2,
Γ
( k+1

2
)

Γ
( k

2
) Γ

( k+l+2
2

)
Γ
( k+l+1

2
) < k
√

2k + 1

k + l + 1
√

2(k + l + 1) + 1

Hence (2.8) can be established by showing that

k
√

2k + 1

k + l + 1
√

2(k + l + 1) + 1
<

1
2

√
k(k + l)

Elementary algebraic manipulations show this to be equivalent to

l2 +
3
2

l + k
(
l−

1
2
)
> 0

This holds since k, l ≥ 1.

�
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Remark 2.7.4. The more general inequality B
(
x + 1

2 ,y
)
<

√
x

x+y B(x,y) holds for all x,y > 0. This is

a small point that, to the best of my knowledge, may have gone unremarked upon in the literature.

A well-known result of Bustoz–Ismail [BusI] is that the function

x 7→
√

x
Γ(x)

Γ
(
x + 1

2
)

is decreasing on (0,∞), a fact which by elementary manipulations is seen to be equivalent to the

inequality for the beta function. It’s interesting to note the similarity this bears to the well-known

equality B(x + 1,y) = x
x+y B(x,y).

It turns out that Corollary 2.7.3 is equivalent to an inequality relating the volumes of spheres.

Corollary 2.7.5. Suppose k,n ∈ N satisfy n ≥ k. Then each of the following holds:

(a) nc2
nc2

k−1 ≤ kc2
n−1c2

k; and

(b) nc2
nc2

k−1 = kc2
n−1c2

k if and only if n = k.

Proof. If n = k, then the equality in (b) is clear. The proof of (b) will be completed by showing that,

whenever n > k,

nc2
nc2

k−1 < kc2
n−1c2

k

This will also prove (a). In that case, write l = n−k > 0. Then the desired inequality is equivalent to

4c2
k+l

c2
kc2

l−1

<
k

k + l

4c2
k+l−1

c2
k−1c2

l−1

By Lemma 2.7.1(c), this is equivalent to

B2
(k + 1

2
,

l
2

)
<

k
k + l

B2
(k
2
,

l
2

)
This is equivalent to the inequality in Corollary 2.7.3.

�

Corollary 2.7.5 will be used in the proof of the final inequality in Theorem 7.4.4. It’s worth pointing

out that it, and not Theorem 2.7.2 itself, is all that’s needed for this purpose. Since it will later be

shown that Corollary 2.7.5, and consequently Corollary 2.7.3, may be derived from other results in

Chapter 7, Gurland’s result is not, strictly speaking, necessary for this dissertation. Presenting it

here merely helps simplify the exposition and put Corollary 2.7.3 into context.
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Chapter 3

Manifolds with no conjugate points

3.1 Topology and geometry

Recall that, by definition, a Riemannian manifold N has no conjugate points if the exponential

map at each point is non-singular. This is equivalent to the universal covering space N having no

conjugate points. When N is complete, this is also equivalent, by Theorem 1.1(c), to the condition

that rc(N) =∞ and, similarly, that rc(N) =∞. There are a few other widely known equivalences.

Theorem 3.1.1. Let N be a complete and simply connected Riemannian manifold. Then the follow-

ing are equivalent:

(i) N has no conjugate points;

(ii) For each p ∈ N, expp : TpN→ N is a diffeomorphism;

(iii) inj(N) =∞; and

(iv) rc(N) =∞.

Proof. (i)⇒ (ii) Since N is complete and has no conjugate points, expp : TpN→ N is well-defined

and a local diffeomorphism. When TpN is endowed with the pull-back metric from expp, expp is a

local isometry. If vk ∈ TpN is a Cauchy sequence with respect to this metric, then there exists R > 0

such that dTpN(0,vk) ≤ R for all k. By the definition of expp, this implies that vk ∈ B(0,R) for all k.

By compactness, vk contains a convergent subsequence and, consequently, converges itself. Thus

TpN is complete. It follows from Lemma 2.2.2 that expp is a diffeomorphism.

(ii)⇒ (iii) This follows from the definition of inj(N).

(iii)⇒ (iv) This follows from Corollary 2.5.4.

(iv)⇒ (i) This follows from Lemma 2.5.2(b).

�
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Thus a complete N has no conjugate points if and only if N satisfies any of the conditions (i)-

(iv). Using the classical theorem of Hopf–Rinow [HR], (ii) may be reformulated as a synthetic

condition, one which dates back to the first postulate in Euclid’s Elements. Namely, N has no

conjugate points if and only if, given any p,q ∈ N, there exists a unique unit-speed geodesic from p

to q. This geodesic must necessarily be minimal. Even without the assumption that N is complete,

this minimality requirement on N implies that N has no conjugate points.

Lemma 3.1.2. Let N be a Riemannian manifold. If all geodesics in N are minimal, then N has no

conjugate points.

Proof. Let p ∈ N. Assume that (expp)∗(wvp) = 0 for some vp ∈ TpN and wvp ∈ Tvp(TpN). As in

the proof of Lemma 2.5.2, vp , 0 and, moreover, the Gauss lemma implies that wvp = w⊥vp
. Let

α : (−ε,ε)→ N be the arc of the great circle on Sp(‖vp‖) with α′(0) = wvp . The variation field J of

the variation Γ : (−ε,ε)→ N defined by Γ(s, t) := exp
(
tα(s)

)
is a non-trivial normal Jacobi field along

the unit-speed geodesic γ(·) := Γ(0, ·) satisfying J(0) = 0 and J(‖vp‖) = 0. By construction, Γ(s,0) = p

for all s ∈ (−ε,ε). Thus γ(0) and γ(‖vp‖) are conjugate along γ. As discussed after Theorem 2.5.3,

the Morse index theorem implies that a geodesic cannot minimize past its first conjugate point. This

is a contradiction. It follows that N has no conjugate points, and, consequently, so does N.

�

From the synthetic characterization, one sees that a complete N has no conjugate points if and only

if each basepoint-fixed homotopy class of paths [α] ∈P(p,q) contains a unique geodesic. This

forces the set of closed geodesics in each free homotopy class to have many nice properties. The

geometric structure of this set is related in fundamental ways to the algebraic structure of π1(N,y),

and it is strongly affected by the properties of Busemann functions and the asymptotic behavior of

geodesics in N. The discussion here will mostly focus on how the topology of N directly affects its

geometry, especially the way it affects the set of geodesic loops, and not on more analytical issues,

even though the latter questions have a rich history and deep import. A key observation, which dates

back to Busemann [Buse], is that any two freely homotopic closed geodesics must have the same

length.

Lemma 3.1.3. (Busemann) Let N be a complete Riemannian manifold with no conjugate points and
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γ1,γ2 : [0,1]→ N closed geodesics. If there exists a homotopy H : [a,b]× [0,1]→ N from γ1 to γ2,

then L(γ1) = L(γ2).

Proof. Assume that L(γ1) , L(γ2). Without loss of generality, let γ1 be the longer of the two,

so that there exists ε > 0 such that L(γ1) = L(γ2) + ε. Let α : [a,b]→ N be the curve defined by

α(s) := H(s,0), and write ` := L(α). By slightly perturbing H, one may, without loss of generality,

suppose that ` <∞. Let n ∈ N satisfy n > 2`
ε . Let Hn : [a,b]× [0,n]→ N be defined by Hn(s, t) :=

H(s, t− dte), where dte denotes the integer part of t. In other words, for each s ∈ [a,b], Hn(s, ·) is

periodic and iterates H(s, ·) n times. This map Hn is continuous, and Hn(a, ·) and Hn(b, ·) are closed

geodesics of length nL(γ1) and nL(γ2), respectively. If H
n

: [a,b]× [0,k]→ N is any lift of Hn, then

L
(
H

n
(a, ·)

)
= nL(γ1) > nL(γ2) + 2` and L

(
H

n
(b, ·)

)
= nL(γ2). Thus

d
(
H

n
(a,0),H

n
(a,n)

)
≤ d

(
H

n
(a,0),H

n
(b,0)

)
+ d

(
H

n
(b,0),H

n
(b,n)

)
+ d

(
H

n
(b,n),H

n
(b,0)

)
≤ nL(γ2) + 2`

This contradicts the fact that H
n
(a, ·) is the minimal geodesic connecting H

n
(a,0) and H

n
(a,n).

Therefore, L(γ1) = L(γ2).

�

The proof of Lemma 3.1.3 demonstrates a general approach in this area, namely, to lift to N and

use the synthetic characterization. Before continuing in that vein, it will help to establish a few

results from general topology. If N is complete, then, by Theorem 3.1.1, expp : TpN → N is a

diffeomorphism and, consequently, N � Rdim(N). It follows that N is contractible. By the homotopy

lifting property, this is equivalent to N being aspherical, which by definition means that πk(N, p) =

0 for all k ≥ 2 and p ∈ N. Thus N is an Eilenberg–Mac Lane space of the form K
(
π1(N,q),1

)
,

determined up to homotopy equivalence by its fundamental group [EM]. It follows that any map

f : M→ N with f∗
(
π1(M, p)

)
= 0 is homotopic to a constant map, a result which gives the first hint

that maps into N are determined to a great extent by what they do at the level of fundamental group.

Proposition 3.1.4. Let M and N be Riemannian manifolds, where N has no conjugate points, and

let f : M→ N be a continuous function. If f∗
(
π1(M, p)

)
=<e> for any p ∈ M, then f is homotopic

to a constant map.
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Proof. Let q ∈ π−1(q) ⊆ N. Since f∗
(
π1(M, p)

)
=< e>≤ π1(N,q), f lifts to a map f : M → N with

f (p) = q. Since N is contractible, it follows that f is homotopic to a constant map, and any such

homotopy descends to N.

�

This program will be further developed in this chapter, culminating in the result that maps T n→ N

are, up to homotopy, determined by what they do at the level of fundamental group. This isn’t

a novel conclusion, since it holds for any K
(
π1(N,q),1

)
space, but the non-conjugacy hypothesis

enables a constructive method that will be useful in establishing Theorem 1.4(c). A well-known

result is that the fundamental group of any aspherical manifold is torsion-free or, in other words,

contains no elements of finite order. The original proof of this fact used a fixed-point theorem of

Smith [Sm1], in an application that, as far as I can tell, was first recorded by Hurewicz [Hu].

Theorem 3.1.5. (Hurewicz–Smith) Let N be an aspherical manifold and y ∈ N. Then π1(N,y) is

torsion-free.

Remark 3.1.6. Theorem 3.1.5 implies that, when N is a complete Riemannian manifold with no

conjugate points, each π1(N,y) is torsion-free. Under the stronger assumption that N is compact,

this follows immediately from the classical result that each free homotopy class of loops contains a

closed geodesic.

More specifically, Smith’s theorem in [Sm1] implies that, when N is an aspherical manifold, every

periodic transformation N → N of prime order p has a fixed point. If π1(N,y) were to contain an

element γ , e of finite order, then there would exist k ≥ 1 such that γk had prime order, and the

corresponding deck transformation N → N would have no fixed points, a contradiction. This is

essentially the argument given in [Hu], with the caveat that Smith’s result only holds for transfor-

mations K → K, where K ⊆ Rn. Since Davis [D] constructed compact aspherical manifolds in any

dimension n ≥ 4 whose universal covers are not homeomorphic to Rn, one must apply something

like the well-known Whitney embedding theorem for this to work. A later generalization by Smith

[Sm2] of his result to cell complexes makes this last step unnecessary. By contrast, the next proof

uses the minimality of geodesics in N in an essential way.

Lemma 3.1.7. Let M and N be Riemannian manifolds, where M is complete and has finite volume
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and all geodesics in N are minimal. If f : M→ N is a totally geodesic map with the property that

f∗
(
π1(M, x)

)
=<e> for any x ∈ M, then f is constant.

Proof. The argument is by contradiction. By Lemma 2.6.2, f is smooth. Assume that, for some

vx ∈ TM, f∗(vx) , 0. Then there exists an open set U ⊂ TM containing vx such that U is compact

and f∗(wz) , 0 for all wz ∈ U. Note that the latter condition implies that U is disjoint from the zero-

section in TM. Let ε > 0, m := maxwz∈U
‖Dz f ‖, V := U∩TB

(
x, εm

)
, and c := minwz∈V

‖ f∗(wz)‖> 0. By

the Poincaré recurrence theorem, there exists T > 2ε
c such that ΨT (V)∩V , ∅. Let wz ∈ V be such

that ΨT (wz) = γ′wz
(T ) ∈ V . Let α : [0,1]→ M be a minimal geodesic from x to z and β : [0,1]→ M a

minimal geodesic from x to γwz(T ), so that L(α),L(β) ≤ ε
m . Write y := f (x), and choose y ∈ π−1(y).

Since f∗
(
π1(M, x)

)
=< e>, f lifts to a map f : M→ N satisfying f (x) = y and f = π ◦ f . Since the

concatenation σ := α · γwz |[0,T ] · β
−1 is a loop based at x, f ◦σ = ( f ◦α) · ( f ◦ γwz |[0,T ]) · ( f ◦ β−1) is

a loop based at y. Since f is totally geodesic, each of f ◦γwz , f ◦α, and f ◦ β−1 is a geodesic. By

assumption, they are all minimal. But L( f ◦ γwz |[0,T ]) = T | f∗(wz)| > 2ε and, since m is a Lipschitz

constant for f |π(V), L( f ◦α),L( f ◦β) < ε. This contradicts the triangle inequality. Therefore, f∗ = 0

on TM and, consequently, f is constant.

�

Remark 3.1.8. The requirement that M have finite volume cannot be dropped from Lemma 3.1.7.

For example, if N is any complete Riemannian manifold with no conjugate points, then the Rieman-

nian universal covering map π : N → N is totally geodesic and satisfies π∗
(
π1(N,y)

)
=< e> for all

y ∈ N.

Lemma 3.1.9. Let M be a connected Riemannian manifold, N a complete Riemannian manifold

with no conjugate points, and H1,H2 : M× [0,1]→ N continuous functions. Suppose

H1(x,0) = H1(x,1) = H2(x,0) = H2(x,1)

for all x ∈ M and that, for some p ∈ M, [H1(p, ·)] = [H2(p, ·)] ∈ π1
(
N,Hi(p,0)

)
. Then there exists a

homotopy F : [0,1]×M× [0,1]→ N from H1 to H2 such that

F(s, x,0) = F(s, x,1) = Hi(x,0) = Hi(x,1)

for each x ∈ M, s ∈ [0,1], and i = 1,2.
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Proof. Since M is connected, a standard argument shows that, for each x ∈M, [H1(x, ·)] = [H2(x, ·)] ∈

π1
(
N,Hi(x,0)

)
. The map F will be characterized by the following property:

(*) If Hi,x, i = 1,2, are lifts of the Hi(x, ·) to N with H1,x(0) = H2,x(0), then F(s, x, t) = π ◦Fx(s, t),

where Fx : [0,1]× [0,1]→ N is defined by Fx(s, t) := expH1,x(t)

(
s · exp−1

H1,x(t)

(
H2,x(t)

))
.

First note that, for any choice of lifts Hi,x as above, each Fx is well-defined since N has no conjugate

points. Since H1,x(1) = H2,x(1) ∈ π−1(Hi(x,0)
)
, π◦Fx(s,0) = π◦Fx(s,1) = Hi(x,0) for all s ∈ [0,1]

and i = 1,2. To see that the above yields a well-defined function F, it must be shown that the

expression π◦Fx(s, t) does not depend on the choice of lifts Hi,x. This is equivalent to the statement

that, for each deck transformation [α] ∈ Γ,

[α] · expH1,x(t)

(
s · exp−1

H1,x(t)

(
H2,x(t)

))
= exp[α]·H1,x(t)

(
s · exp−1

[α]·H1,x(t)

(
[α] ·H2,x(t)

))
This holds since [α] is an isometry of N and takes geodesics to geodesics. Therefore, F(s, x, t) :=

π◦Fx(s, t) is well-defined.

To see that F is continuous, note that there exist an evenly covered open set U ⊆ N containing

Hi(x,0) and an open set V ⊆ M containing x such that Hi(V,0) ⊆ U for each i. The maps Hi|V×[0,1]

lift to maps Hi : V×S 1→ π−1(U) with Hi(x, ·) = Hi,x(·). The function F : [0,1]×U× [0,1]→ π−1(U)

that’s defined by F(s,y, t) := expH1(y,t)

(
s · exp−1

H1(y,t)

(
H2(y, t)

))
is continuous. Since F|[0,1]×U×[0,1] =

π◦F, it follows that F is continuous.

�

The literature on manifolds with no conjugate points is far too vast to be adequately surveyed in

this space, but a few milestones are worth mentioning. Much of the interest in this subject dates

to Hopf’s result that any Riemannian metric on the torus T 2 without conjugate points must be flat

[Ho] and his conjecture that the same should be true in any dimension. This was previously shown

by Hedlund–Morse [HM] under the stronger assumption that the metric has no focal points. Hopf’s

proof used the theorem of Gauss–Bonnet, along with an analysis of the Riccati equation, and didn’t

generalize in an obvious way. In it, he introduced what would become known as the stable Jacobi

tensor. A simple way of understanding the stable Jacobi tensor is that, for a fixed geodesic ray

γ : [0,∞)→ M, it assigns to each v ∈ Tγ(0)N the Jacobi field obtained as the limit as t→∞ of the

Jacobi fields Jt along γ satisfying the initial conditions Jt(0) = v and Jt(t) = 0. Conditions that ensure
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the existence and continuity of the stable Jacobi tensor were established by Eschenburg–O’Sullivan

[EO’S], and a simplified proof of its existence was given by Innami [I].

Green [Gr1] showed that the total scalar curvature of a compact Riemannian manifold M with

no conjugate points is non-positive and vanishes if and only if M is flat. Many others subsequently

attacked Hopf’s conjecture, mostly by focusing on the asymptotics of geodesics and their corre-

sponding Busemann functions. Busemann functions and their level sets, called horospheres, were

introduced in [Buse] and have since become a fundamental tool in Riemannian geometry. For ex-

ample, they play an essential role in the original proof of the Cheeger–Gromoll splitting theorem

in [CG1] and [CG2] and the simplification by Eschenburg–Heintze [EH]. Another notable contri-

bution by Green [Gr2] was the claimed result that, when N is complete and has sectional curvature

bounded below, geodesics from each point are uniformly divergent, although it must be noted that

Eberlein identified [Eb2], and later filled [Eb3], a gap in Green’s proof. Much effort has gone into

studying the regularity of Busemann functions and horospheres. Eschenburg [Esc] proved their C2

regularity when the stable Jacobi tensor is continuous, generalizing a result of Eberlein [Eb4] for the

case of non-positive sectional curvature that was later recorded by Heintze–Im Hof[HI]. Eschen-

burg also introduced the class of manifolds with bounded asymptotes, which are manifolds with

no conjugate points that have uniformly bounded stable Jacobi tensor, and proved the continuity of

the stable Jacobi tensor for such spaces. However, the limitations of those methods were exposed

when Ballmann–Brin–Burns [BBB] constructed a compact surface with no conjugate points and

discontinuous stable Jacobi tensor, disproving a claim of Hopf.

Avez [Av] proved that any Riemannian torus with no focal points must be flat by examining the

growth rate of the fundamental group. Croke [Cr2] showed that the volumes of balls in a simply

connected Riemannian manifold N with no conjugate points are asymptotically at least as large as

those in Euclidean space, with equality in the limit if and only if N is flat. Croke–Kleiner [CK1]

proved that any Riemannian torus with no conjugate points and bounded asymptotes is flat, using a

foliation of SN constructed by Heber [Heb] and a volume comparison argument. Around the same

time, Burago–Ivanov [BurI] proved the Hopf conjecture, using an essentially different method than

previous attempts. The key new tool in their proof was the asymptotic norm of a Zm-periodic metric,

which was first described by Burago [Bura] and is discussed in Chapter 7.

Many other significant results have gone unmentioned here. Fundamental results on the geodesic
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flow of manifolds with no conjugate points or no focal points were proved by Eberlein in [Eb3] and

[Eb1], building on the result of Klingenberg [Kli3] that any Riemannian manifold with Anosov

geodesic flow has no conjugate points. Knieper [Kn] proved the ergodicity of the geodesic flow of a

compact and non-flat surface with no conjugate points and continuous Jacobi tensors. Freire–Mañé

[FM] proved that topological entropy and volume entropy are the same under a Hölder continuity

assumption on the metric. A number of rigidity results for manifolds with non-positive sectional

curvature have been shown by Croke and Croke–Kleiner to hold for manifolds with no conjugate

points, for example the result in [CK2] that any complete Riemannian metric with no conjugate

points on a non-compact flat manifold that agrees with a flat metric outside a compact set must

itself be flat. It has also been shown by Bangert–Emmerich [BE] that any cylinder without conjugate

points and whose loop length grows sublinearly in both directions is flat, which improves upon a

result of Burns–Knieper [BK].

3.2 The set of geodesic loops

It will be shown that each covering space N/Z([γ1], . . . , [γk]) is realized concretely as a submanifold

of the tensor bundle TkN := T(k,0)N. Specifically, the set

Nk := {v1⊗ · · ·⊗ vk ∈ T(k,0)
y N

∣∣∣y ∈ N, exp(v1) = · · · = exp(vk) = y}

is smooth submanifold of TkN with respect to the inherited differentiable structure, and the space

N/Z([γ1], . . . , [γk]) is realized as the connected component of Nk containing w1 ⊗ · · · ⊗wk, where

each γwi is the unique geodesic loop contained in [γi]. Roughly speaking, Nk is the submanifold of

TkN consisting entirely of the initial vectors of geodesic loops.

Throughout this section, the notation π is overloaded. In addition to referring to the universal

covering map π : N→ N, it also refers to the map π : TkN→ N that takes v1⊗· · ·⊗vk to the common

basepoint at which the vi are located. The meaning will always be clear from context.

Lemma 3.2.1. Let N be a complete n-dimensional Riemannian manifold with no conjugate points.

For each k ∈ N, Nk is a non-empty, smooth, and embedded submanifold of TkN, and π|Nk : Nk → N

is a local diffeomorphism.1

1I’m indebted to a student at Capital Normal University, whose name I unfortunately never learned, who suggested
an elegant simplification of my original proof of this result.
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Proof. Since 0⊗ · · · ⊗ 0 ∈ Nk for each x ∈ N, Nk , ∅. Let f : TkN → Nk+1 be the map defined by

f (v1 ⊗ · · · ⊗ vk) :=
(
π(v1 ⊗ · · · ⊗ vk),exp(v1), . . . ,exp(vk)

)
. Since N has no conjugate points, for each

vi ∈ TN, the derivative of expπ(vi) is non-singular at vi; that is, Dvi expπ(vi) : Tvi(Tπ(vi)N)→ Texp(vi)N

is a linear isomorphism. The restriction Dv1⊗···⊗vkπ|Tπ(v1⊗···⊗vk )N : Tπ(v1⊗···⊗vk)N → Tπ(v1⊗···⊗vk)N is also

a linear isomorphism. These show that rank( f ) = n(k + 1) everywhere, since with respect to the

splitting

Tv1⊗···⊗vk (T
kN) � Tπ(v1⊗···⊗vk)N ×Tv1(Tπ(v1)N)× · · ·×Tvk (Tπ(vk)N)

the derivative of the i-th component of f has rank n when restricted to the i-th component of

Tv1⊗···⊗vk (T
kN) for each 1 ≤ i ≤ k + 1. Denote by D := {(y, . . . ,y) ∈ Nk+1

∣∣∣y ∈ N} the diagonal in

Nk+1. Since dim(TkN) = dim(Nk+1) = n(k +1), the inverse function theorem implies that f is a local

diffeomorphism, and Nk = f −1(D) is a smooth and embedded submanifold of TkN of dimension n.

Fix v1⊗ · · ·⊗ vk ∈ Nk. Assume that

Tv1⊗···⊗vk Nk ∩
(
{0}×Tv1(Tπ(v1)N)× · · ·×Tvk (Tπ(vk)N)

)
, {(0, . . . ,0)},

and choose a non-zero w = (0,w1, . . . ,wk) ∈ Tv1⊗···⊗vk Nk. By the definition of Nk,

Dvi expπ(v1⊗···⊗vk)(wi) = Dv1⊗···⊗vkπ|Nk (w) = 0

for all 1 ≤ i ≤ k. However, for some i, wi , 0, so Dvi expπ(v1⊗···⊗vk)(wi) , 0. This is a contradiction.

This implies that rank(π|Nk ) = n, so π|Nk is a local diffeomorphism.

�

By Lemma 2.2.2, to show that π|Nk is a covering map, it suffices to show that Nk, when endowed

with the pull-back metric π|∗Nk
(g), is complete. This is done by showing that the lengths of vectors

along a constant-speed path in Nk cannot blow up in finite time. To that end, define length functions

Li : Nk→ [0,∞) by setting Li(v1⊗ · · ·⊗ vk) := ‖vi‖.

Lemma 3.2.2. Let N be a complete Riemannian manifold with no conjugate points. With respect

to the pull-back metric π|∗Nk
(g) on Nk, each Li : Nk → [0,∞) is smooth and has gradient satisfying

‖∇Li‖ < 2.

Proof. On the zero-section in TkN, which is a connected component of Nk, Li is identically zero

and the result follows. On any connected component N0 of Nk disjoint from the zero-section, Li is
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smooth. Let v = v1 ⊗ · · · ⊗ vk ∈ N0, fix a unit vector w = (w0, . . . ,wk) ∈ TvN0, and choose any curve

α̃ = (α̃1, . . . , α̃k) : (−ε,ε)→ N0 satisfying α̃′(0) = w. Let u := π∗(w) ∈ Tπ(v)N and α := π ◦ α̃, so that

α′(0) = u. Define a variation V : (−ε,ε)× [0,1]→ N of γwi by setting V(s, t) := expα(t)
(
tα̃i(s)

)
. Then

V is a variation through geodesic loops, so its variation field J is a Jacobi field along γwi . Since N0

is endowed with the pull-back metric, ‖J(0)‖ = ‖α̃′(0)‖ = ‖w‖ = 1. Set αs(t) := V(s, t). By the first

variation formula,

d
ds

∣∣∣∣
s=0

L(αs) =
g
(
α′0(1)−α′0(0), J(0)

)
L(α0)

≤
‖α′0(1)−α′0(0)‖‖J(0)‖

L(α0)

≤
[‖α′0(1)‖+ ‖α′0(0)‖]‖J(0)‖

L(α0)

= 2‖J(0)‖

= 2

So ‖∇wLi‖ = ‖ ∂∂s

∣∣∣
s=0Li ◦ α̃(s)‖ = ‖ d

ds

∣∣∣
s=0L(αs)‖ ≤ 2. Moreover, the first inequality is an equality if and

only if α′0(1) = −α′0(0), which is impossible since these are the initial and final vectors of a geodesic

loop. So ‖∇wLi‖ < 2. It follows that ‖∇Li‖ = max
{
‖∇wLi‖

∣∣∣w ∈ TvN0,‖w‖ = 1
}
< 2.

�

Remark 3.2.3. Since α0 = γwi , the above argument shows that ∇Li points in the direction of γ′wi
(1)−

γ′wi
(0). This implies that w is a critical point of Li if and only if wi is the initial vector of a closed

geodesic.

Lemma 3.2.4. Let N be a complete Riemannian manifold with no conjugate points and N0 a con-

nected component of Nk. When endowed with the pull-back metric π|∗N0
(g), N0 is complete.

Proof. Let vn = vn
1⊗· · ·⊗vn

k ∈ N0 be a Cauchy sequence. Then there exists C ≥ 0 such that d(vn,v1)<

C for all n; in other words, vn ∈ B(v1,C). By Lemma 3.2.2, ‖∇Li‖ < 2 for all i, which means that

‖L(vn
i )−L(v1

i )‖ < 2C for all n. Therefore, each vn lies in the set⋃
y∈B(π(v1),C)

{w1⊗ · · ·⊗wk ∈ TkN
∣∣∣‖wi‖ ≤ ‖v1

i ‖+ 2C,π(w1⊗ · · ·⊗wk) = y}

By compactness, vn contains a convergent subsequence, which implies that vn itself converges.

�
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Using Lemma 3.2.4, one may prove the previously mentioned structure theorem for the loop space

of a complete manifold with no conjugate points, which will play a central role in what follows.

It will help to introduce some notation first. If [σ] ∈ π1(N, p), then, since N has no conjugate

points, there exists a unique vector v ∈ TpN such that γv is a geodesic loop in [σ]. Therefore, if

[σ1], . . . , [σk] ∈ π1(N, p), there exists a unique v = v1⊗· · ·⊗vk ∈ Nk such that, for each i, vi ∈ [σi] and

γvi is a geodesic loop. The connected component of Nk containing v will be denoted Ñ[σ1],...,[σk], and

the restriction π|Ñ[σ1],...,[σk ]
will be denoted π[σ1],...,[σk].

Theorem 3.2.5. Let N be a connected and complete Riemannian manifold with no conjugate points,

p ∈ N, and [σ1], . . . , [σk] ∈ π1(N, p). Then each of the following holds:

(a) The set

Ñk := {v1⊗ · · ·⊗ vk ∈ TkN
∣∣∣ exp(v1) = · · · = exp(vk) = x}

is a smooth submanifold of the tensor bundle TkN;

(b) Each projection π[σ1],...,[σk] : Ñ[σ1],...,[σk]→ N is a smooth covering map; and

(c) The fundamental group of Ñ[σ1],...,[σk] satisfies

(π[σ1],...,[σk])∗
(
π1(Ñ[σ1],...,[σk],v1⊗ · · ·⊗ vk)

)
= Z([γv1], . . . , [γvk ])

Consequently, Ñ[σ1],...,[σk] is diffeomorphic to N/Z([γ1], . . . , [γk]).

Proof. (a) This is shown in Lemma 3.2.1.

(b) This follows from Lemma 3.2.1, Lemma 3.2.4, and Lemma 2.2.2.

(c) Let [α] = (π[σ1],...,[σk])∗([α̃]) for some [α̃] ∈ π1(Ñ[σ1],...,[σk],v1 ⊗ · · · ⊗ vk), and fix a representa-

tive α̃ : [0,1]→ N of [α̃]. Write α̃ = (α̃1, . . . , α̃k). Then α̃i(0) = α̃i(1) = vi for each i, and [α] =

[π[σ1],...,[σk] ◦ α̃]. Define a map Hi : [0,1] × [0,1] → N by Hi(s, t) := γα̃i(s)(t). This is a homo-

topy through geodesic loops. This map satisfies Hi(0, ·) = Hi(1, ·) = γvi(·) and Hi(·,0) = Hi(·,1) =

π[σ1],...,[σk] ◦ α̃(·). It follows that [γvi] = [π[σ1],...,[σk] ◦ α̃][γvi][π[σ1],...,[σk] ◦ α̃]−1 = [α][γvi][α]−1, and,

consequently, [α] ∈ Z([γv1], . . . , [γvk ]). So

(π[σ1],...,[σk])∗
(
π1(Ñ[σ1],...,[σk],v1⊗ · · ·⊗ vk)

)
≤ Z([γv1], . . . , [γvk ])

On the other hand, suppose [α] ∈ Z([γv1], . . . , [γvk ]), and fix a representative α : [0,1]→ N of [α].

Lift α to a map α̃ : [0,1] → Ñ[σ1],...,[σk] with α̃(0) = v1 ⊗ · · · ⊗ vk. Write α̃ = (α̃1, . . . , α̃i), and let
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Hi(s) := A[α|[0,s]]([γvi]) ∈ π1
(
N,α(s)

)
. By construction, α̃i(s) is the initial vector of the unique geodesic

loop in Hi(s). Since Hi(1) = A[α]([γvi]) = [α][γvi][α]−1 = [γvi], it follows that α̃i(1) = vi. So α̃(0) =

α̃(1) = v1⊗ · · ·⊗ vk, and α̃ ∈ π1(Ñ[σ1],...,[σk],v1⊗ · · ·⊗ vk). This shows that

[α] = (π[σ1],...,[σk])∗([α̃]) ∈ (π[σ1],...,[σk])∗(π1(Ñ[σ1],...,[σk],v1⊗ · · ·⊗ vk)

and, consequently,

Z([γv1], . . . , [γvk ]) ≤ (π[σ1],...,[σk])∗
(
π1(Ñ[σ1],...,[σk],v1⊗ · · ·⊗ vk)

)
It follows by general theory that Ñ[σ1],...,[σk] is diffeomorphic to N/Z([γ1], . . . , [γk]).

�

Remark 3.2.6. Each Ñ[σ1],...,[σk] corresponds to an equivalence class of the k-tuple ([σ1], . . . , [σk])

under the conjugation map A, not just the equivalence classes of the individual [σi]. That is,

Ñ[σ1],...,[σk] = Ñ[γ1],...,[γk] if and only if ([γ1], . . . , [γk]) = A[α]([σ1], . . . , [σk]) for some [α] ∈P . If

N is any compact hyperbolic surface, y ∈ N, and [β], [γ] ∈ π1(N,y) are independent in the sense that

neither is a multiple of the other, then it follows from the well-known theorem of Preissmann [P]

that [β]−1[γ][β] , [γ]. Consequently, for [σ] := [β]−1[γ][β], Ñ[β],[γ] , Ñ[β],[σ], even though [β] � [β]

and [γ] � [σ].

A few properties of the spaces Ñ[σ1],...,[σk] are described in the next results.

Lemma 3.2.7. Let N be a complete Riemannian manifold with no conjugate points, p ∈ N, and

[σ] ∈ π1(N, p). If v ∈ Ñ[σ], then γ̃v : [0,1] → Ñ[σ] defined by γ̃v(t) = γ′v(t) is the unique closed

geodesic based at v in its free homotopy class, [γ̃v] is in the stabilizer of the conjugation action of

π1(Ñ[σ],v) on itself, and < [γ̃v]> is a normal subgroup of π1(Ñ[σ],v).

Proof. Because Ñ[σ] is a local isometry, γ̃vx is a geodesic. Because γ̃vx(0) = γ′vx
(0) = γ′vx

(1) = γ̃vx(1),

γ̃vx is closed. Since N has no conjugate points, γ̃v is the unique closed geodesic in [γ̃v]. By Theorem

3.2.5(c), (π[σ])∗
(
π1(Ñ[σ],v)

)
= Z([γv]); it follows that [γ̃v] = [α̃]−1[γ̃v][α̃] for any [α̃] ∈ π1(Ñ[σ],v).

So [γ̃v] is in the stabilizer of the conjugation action, and γ̃v is the unique closed geodesic based at v

in its free homotopy class. It follows immediately that < [γ̃v]> is normal.

�
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Lemma 3.2.8. Let T n be a torus, x ∈ T n, {[s1], . . . , [sn]} a minimal generating set for π1(T n, x),

N a complete Riemannian manifold with no conjugate points, f : T n → N a continuous function,

y = f (x), and [σi] = f∗([si]) for each i. Then there exists a canonical lift F̃ : T n→ Ñ[σ1],...,[σn] such

that f = π[σ1],...,[σn] ◦ F̃.

Proof. Since N has no conjugate points, each [σi] contains a unique geodesic loop based at y. Let

vi ∈ TxN be the initial vector of that loop. Then v1 ⊗ · · · ⊗ vn ∈ Ñ[σ1],...,[σn] and π[σ1],...,[σn](v1 ⊗ · · · ⊗

vn) = y. Since π1(T n, x) =< [s1], . . . , [sn]> is Abelian, so is f∗
(
π1(T n, x)

)
=< [σ1], . . . , [σn]>. Note

that

(π[σ1],...,[σn])∗
(
π1(Ñ[σ1],...,[σn],v1⊗ · · ·⊗ vn)

)
= Z([σ1], . . . , [σn]) =< [σ1], . . . , [σn]>

It follows that f lifts to a continuous function F̃ : T m → Ñ[σ1],...,[σn] satisfying F̃(x) = v1 ⊗ · · · ⊗ vn

and f = π[σ1],...,[σn] ◦ F̃.

�

Loosely speaking, the covering map π[σ] : Ñ[σ] → N unwraps the set of closed geodesics freely

homotopic to any representative of [σ] so that there’s at most one through each point. This contrasts

with the situation on N itself, as shown by the next example.

Example 3.2.9. Let α,β,γ : R3→ R3 be the isometries

α(x,y,z) := (x + 1,y,z)

β(x,y,z) := (x,y + 1,z)

γ(x,y,z) := (y,−x + 1,z−1)

Then γ−1 ◦α ◦ γ = β. The quotient F := R3/ <α,β,γ> is a compact and flat three-manifold. The

axes of α and β descend to a foliation of F by two families of closed geodesics that are everywhere

perpendicular. Since α and β are conjugate, those closed geodesics are all freely homotopic. This

shows that, through each point in F, there exist two distinct freely homotopic closed geodesics.2

A bit more notation will be introduced. Recall that, by definition, each Ñ[σ1],...,[σk] is connected.

It follows that, for each p ∈ N, v ∈ π−1
[σ1],...,[σk](p), and p ∈ π−1(p), there exists a covering map

ψ[σ1],...,[σk] : N→ Ñ[σ1],...,[σk] satisfying ψ[σ1],...,[σk](p) = v and π = π[σ1],...,[σk] ◦ψ[σ1],...,[σk]. Define

C̃[σ1],...,[σk] := {v1⊗ · · ·⊗ vk ∈ Ñ[σ1],...,[σk]
∣∣∣γvi is a closed geodesic for all i}

2This example was constructed during a conversation with Jason DeBlois.
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In the case that k = 1, C̃[σ] should be thought of as the set of closed geodesics freely homotopic to

any representative of [σ]. The following combines two results of Croke–Schroeder [CrS] about this

set. It will be shown in Chapter 4 that, when N has no focal points, much more can be said.

Theorem 3.2.10. (Croke–Schroeder) Let N be a compact Riemannian manifold with no conjugate

points, p ∈ N, and [σ] ∈ π1(N, p). Then C̃[σ] is a compact and connected subset of Ñ[σ].

The proof that C̃[σ] is connected uses Morse theory and is more difficult than the proof that it’s

compact. It follows from this compactness that, for each p ∈ N, there are at most finitely many

v ∈ TpN such that γv is a closed geodesic freely homotopic to any representative of [σ]. Using this,

one may show that each C̃[σ1],...,[σk] is compact. However, in the setting of no conjugate points, one

may use Kleiner’s counterexample to the flat torus theorem [Kle] to show that C̃[σ1],...,[σk] might not

be connected for k ≥ 2.

Remark 3.2.11. The question of whether each C̃[σ] is path-connected, or more specifically locally

rectifiably path-connected in the sense of [CrS], is open. Ivanov–Kapovitch [IK] recently bypassed

this issue to prove new results about the fundamental group of a compact manifold with no conjugate

points.

3.3 The loop map

The principal application of Theorem 3.2.5 will be to construct an explicit homotopy between any

two maps f ,g : T n→ N satisfying f∗
(
π1(T m, x)

)
� g∗

(
π1(T m, x)

)
. The idea is to first deform f and g

into canonical forms corresponding to representatives in a suitable cover Ñ[σ1],...,[σn], then to connect

those canonical forms through a path in Ñ[σ1],...,[σn] that defines a homotopy in N. The key tool in

doing so is a map Υv1⊗···⊗vn : T n → N that can be associated to v1 ⊗ · · · ⊗ vn ∈ Ñ[σ1],...,[σk] whenever

< [σ1], . . . , [σk]> is Abelian.

It will help to introduce some notation. Let ∼ denote the quotient map on [0,1] that identifies

the endpoints, so that S 1 � [0,1]/ ∼. Fix θ = (θ1, . . . , θn) ∈ T n, and, for each i = 1, . . . ,n, define a map

si : T i � T i−1× ([0,1]/ ∼)→ T n by setting si(x, t) := (x, θi + t, θi+1, . . . , θn). When i = 1, this takes the

form s1(t) := (θ1 + t, θ2, . . . , θn). When T n has the standard product metric, each si(x, ·) is a closed

geodesic in T n based at (x, θi, . . . , θn). Let s0 : T 0 � {pt} → M be defined by s0(T 0) = (θ1, . . . , θn).
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Let [σ1], . . . , [σn] generate an Abelian subgroup of π1(N,q). For each v = v1⊗· · ·⊗vn ∈ Ñ[σ1],...,[σn],

the loop map determined by v, denoted Υv : T n � ([0,1]/ ∼)n→ N, is defined by the following in-

ductive process: Write p := π[σ1],...,[σn](v). Let Υ1 : S 1 � ([0,1]/ ∼)→ N be defined by

Υ1(t) := γv = expp
(
tv1

)
Then Υ1 is a geodesic loop based at Υ(θ1) = p, and (Υ1)∗

(
π1(S 1, θ1)

)
=< [σ1]>. Suppose that,

for some 1 ≤ i ≤ n− 1, a map Υi : T i → N has been defined that satisfies Υi(θ1, . . . , θi) = p and

(Υi)∗
(
π1

(
T i, (θ1, . . . , θi)

))
=< [σ1], . . . , [σi]>. Note that

(π[σ1],...,[σi+1])∗
(
π1(Ñ[σ1],...,[σi+1],v1⊗ · · ·⊗ vi+1)

)
= Z([σ1], . . . , [σi+1]) =< [σ1], . . . , [σi+1]>

where the first equality holds by Theorem 3.2.5(c) and the second because < [σ1], . . . , [σi+1]> is

Abelian. Since (Υi)∗
(
π1

(
T i, (θ1, . . . , θi)

))
=< [σ1], . . . , [σi]>, Υi lifts to a map Υ̃i : T i → Ñ[σ1],...,[σi]

with Υ̃i(θ1, . . . , θi) = (v1, . . . ,vi+1). Write Υ̃i = (V1, . . . ,Vi+1), where each Vi is a vector field along

Υi consisting of the initial vectors of geodesic loops freely homotopic to σi. Let Υi+1 : T i+1 �

T i× ([0,1]/ ∼)→ N be defined by

Υi+1(x, t) := expΥi(x)
(
tVi+1(x)

)
As in the first case, each Υi+1(x, ·) is a geodesic loop based at Υi(x), Υi+1(θ1, . . . , θi+1) = p, and

(Υi+1)∗
(
π1

(
T i+1, (θ1, . . . , θi+1)

))
=< [σ1], . . . , [σi+1]>

Let Υv := Υn. By construction, for each x ∈ T i−1, Υv◦ si(x, ·) is a geodesic loop based at Υv◦ si(x,0) =

Υv(x, θi, . . . , θn).

Remark 3.3.1. If the loop map Υv : T n→ N is totally geodesic, then v ∈ C̃[σ1],...,[σn]. By the flat strip

theorem, discussed in the next chapter, the converse is true when N has no focal points.

Lemma 3.3.2. Let F̃ : M → Ñ[σ1],...,[σn] be continuous. Then the composition ΥF̃ : M × T n → N

defined by ΥF̃(x, t1, . . . , tn) := ΥF̃(x)(t1, . . . , tn) is continuous.

Proof. This is seen inductively and follows from the continuity of exp : TN→ N.

�
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Theorem 3.3.3. Let T n be a flat Riemannian torus, p ∈ T n, {[s1], . . . , [sn]} a minimal generating set

for π1(T n, p), and N a complete Riemannian manifold with no conjugate points. If f ,g : T n→ N are

continuous, then f and g are homotopic if and only if f∗([s1], . . . , [sn]) � g∗([s1], . . . , [sn]).

Proof. If f and g are homotopic, then any homotopy H : [a,b]× T n → N from f to g yields a

path α(·) := H(·, x) such that A[α]
(
f∗([s1], . . . , [sn])

)
= g∗([s1], . . . , [sn]). Conversely, suppose that

f∗([s1], . . . , [sn])� g∗([s1], . . . , [sn]). Without loss of generality, one may suppose that p = (θ1, . . . , θn),

where θi are as in the definition of the loop map Υ. Write [σi] := f∗([si]). Let F̃ be the canonical

lift of f to Ñ[σ1],...,[σn] given by Lemma 3.2.8. Write F̃ = (V1, . . . ,Vn) and vi := Vi(θ1, . . . , θn); the

Vi are vector fields along f , each of which consists of the initial vectors of geodesic loops freely

homotopic to [σi]. The idea is to first deform f and g into canonical forms using the loop map Υ,

then to connect them by a path in Ñ[σ1],...,[σn].

Specifically, it will first be shown that f is homotopic to Υv1⊗···⊗vm . Some preliminaries will help

simplify the argument. A family of maps F̃i : T i−1→ Ñ[σi],...,[σn] can be defined by setting

F̃i(·) :=
(
Vi ◦ si(·,0), . . . ,Vn ◦ si(·,0)

)
=

(
Vi(·, θi, . . . , θn), . . . ,Vm(·, θi, . . . , θn)

)
Since π[σi],...,[σn] ◦ F̃i = f ◦ si−1, each F̃i is a lift of f ◦ si−1 to Ñ[σi],...,[σn]. The corresponding ΥF̃i

are

maps from T n into N and satisfy ΥF̃i
◦ si−1 = f ◦ si−1. Note that F̃1 has as its image v1⊗· · ·⊗vn, so the

goal is to show that f is homotopic to ΥF̃1
. This is done by showing inductively that f is homotopic

to each ΥF̃i
, counting down from the base case i = n. For each x ∈ T n−1, f ◦ sn(x,0) = ΥF̃n

◦ sn(x,0)

and [ f ◦ sn(x, ·)] = [ΥF̃n
◦ sn(x, ·)] ∈ π1

(
N, f ◦ sn(x,0)

)
. It follows from Lemma 3.1.9 that f = f ◦ sn is

homotopic to ΥF̃n
= ΥF̃n

◦ sn. This completes the base case. The inductive step is similar, with one

added wrinkle. Suppose that f is homotopic to ΥF̃i+1
. Since π[σi],...,[σn] ◦ F̃i+1 = f ◦ si = ΥF̃i+1

◦ si,

F̃i is a lift of ΥF̃i+1
◦ si to Ñ[σi+1],...,[σn]. For each x ∈ T i−1, ΥF̃i+1

◦ si(x,0) = ΥF̃i
◦ si(x,0) and [ΥF̃i+1

◦

si(x, ·)] = [ΥF̃i
◦ si(x, ·)] ∈ π1

(
N, f ◦ si(x,0)

)
, so, as in the base case, Lemma 3.1.9 shows that ΥF̃i+1

◦ si

is homotopic to ΥF̃i
◦ si. Let H : [a,b]× T i → N be a homotopy from ΥF̃i+1

◦ si to ΥF̃i
◦ si. By

construction, H(a, θ1, . . . , θi) = ΥF̃i+1
◦ si(θ1, . . . , θi) = f ◦ si(x) = π[σi+1],...,[σn](θi+1, . . . , θn) and

H∗
(
π1

(
[a,b]×T i, (a, θ1, . . . , θi)

))
=< [σ1], . . . , [σi]>

≤ Z([σi+1], . . . , [σn])

= (π[σi+1],...,[σn])∗
(
Ñ[σi+1],...,[σn],vi+1⊗ · · ·⊗ vn

)
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Hence there exists a lift H̃ : [a,b]×T i→ Ñ[σi+1],...,[σn] of H satisfying H̃(a, θ1, . . . , θi) = (θi+1, . . . , θn)

and π[σi+1],...,[σn]◦ H̃ = H. The map ΥH̃ is a homotopy from ΥF̃i+1
to ΥF̃i

. This completes the inductive

step.

Applying the same argument to g, one has that g is homotopic to some Υw1⊗···⊗wn . Since

f∗([s1], . . . , [sn]) � g∗([s1], . . . , [sn]), w1 ⊗ · · · ⊗wn ∈ Ñ[σ1],...,[σn]. By definition, Ñ[σ1],...,[σn] is con-

nected, so there exists a path γ̃ : [a,b]→ Ñ[σ1],...,[σn] from v1⊗ · · · ⊗ vn to w1⊗ · · · ⊗wn. The map Υγ̃

is a homotopy from Υv1⊗···⊗vn to Υw1⊗···⊗wn .

�

Remark 3.3.4. Since N is an Eilenberg–Mac Lane space, Theorem 3.3.3 may be proved using gen-

eral topology, but that method is not constructive.

Remark 3.3.5. The conclusion of Theorem 3.3.3 may fail to hold if the condition f∗([s1], . . . , [sn]) �

g∗([s1], . . . , [sn]) is weakened to f∗
(
π1(T n, x)

)
� g∗

(
π1(T n, x)

)
. The difference is that the former

condition keeps track of the order of terms, while the latter doesn’t. For example, on a flat T 2,

there exists a unique totally geodesic map T : T 2 → T 2 that permutes [s1] and [s2]. One has that

id∗
(
π1(T 2, x)

)
= π1(T 2, x) = T∗

(
π1(T 2, x)

)
, but T is not homotopic to the identity map.
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Chapter 4

Manifolds with no focal points

4.1 The flat strip theorem and its consequences

Recall that, by definition, a Riemannian manifold N has no focal points if the exponential map on the

normal bundle of each geodesic is non-singular. More specifically, this means that, for each interval

I ⊆ R and each geodesic γ : I→ R such that γ(I) is an embedded submanifold of N, focal
(
γ(I)

)
= ∅.

One sees that N has no focal points if and only if N has no focal points. Moreover, since each point

p ∈ N is an embedded submanifold equal to the image of a constant geodesic, N must also have no

conjugate points. If, in addition, N is complete and simply connected, then all geodesics in N are

minimal, and every non-constant geodesic extends to a maximal embedding.

Theorem 4.1.1. Let N be a complete and simply connected Riemannian manifold. Then the follow-

ing are equivalent:

(i) N has no focal points;

(ii) For each totally geodesic submanifold S of N, focal(S ) = ∅;

(iii) For each geodesic γ : R→ N, exp |Nγ(R) : Nγ(R)→ N is a diffeomorphism;

(iv) r(N) =∞;

(v) r f (N) =∞; and

(vi) For each p ∈ M, ∇2 d2(·, p) : N→ [0,∞) is positive-definite.

Proof. (i)⇔ (ii) The implication (ii)⇒ (i) is clear. Suppose S ⊆M is a totally geodesic submanifold

and that v ∈ focal(S ). By Lemma 2.5.2(a), exp(v) is focal to S along γ := γv|[0,1]. By Lemma 2.5.1

and equation (2.1), there exists a non-trivial normal Jacobi field J along γ such that J(0) ∈ Tγ(0)S ,

J(1) = 0 and ∇γ′ J(0) ∈ Nγ(0)S . Let α : (−ε,ε)→ N be the geodesic α := γJ(0). Since α(−ε,ε) is

totally geodesic, Lemma 2.5.1 implies that γ(b) = exp(v) is focal to α(−ε,ε) along γ, which by
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Lemma 2.5.2(a) implies that focal
(
α(−ε,ε)

)
, ∅. It follows by contraposition that (i)⇒ (ii).

(i)⇔ (v) Suppose that r f (p) <∞ for some p ∈ N, and let J be a non-trivial normal Jacobi field along

a unit-speed geodesic γ : [0,r f (p)]→ N such that J(0) = 0 and ‖J‖′
(
r f (p)

)
= 0. Since r f (p) < rc(p),

J
(
r f (p)

)
, 0. Let α : (−ε,ε)→N be the geodesic α := γJ

(
r f (p)

). Let Ĵ be the non-trivial normal Jacobi

field Ĵ(t) :=
(
r f (p)− t

)
along the geodesic γ̂ defined by γ̂(t) := γ

(
r f (p)− t

)
. Then (̂J)

(
r f (p)

)
= 0 and

g
(
α′(0),∇γ̂′ Ĵ(0)

)
= g

(
Ĵ(0),∇γ̂′ Ĵ(0)

)
=

d
dt

∣∣∣∣
t=0

g
(
Ĵ(t), Ĵ(t)

)
= ‖J‖′

(
r f (p)

)
Since α(−ε,ε) is totally geodesic, it follows from Lemma 2.5.1, equation (2.1), and Lemma 2.5.2(a)

that focal
(
α(−ε,ε)

)
, ∅. Conversely, suppose that focal

(
α(−ε,ε)

)
, ∅ for some geodesic α : (−ε,ε)→

N. Applying the previous reasoning in reverse, one may, without loss of generality, suppose that

there exists a non-trivial normal geodesic γ : [0,T ]→ N such that γ′(0) ∈ Nα(0)α(−ε,ε), J(T ) = 0,

and ‖J‖′(0) = 0. Note that the final equality is ensured by choosing T to be small enough that γ(T )

is not conjugate to γ(0) along γ, in which case ∇γ′ J(0) = cα′(0) for some c , 0. By reversing the

parameterizations of γ and J, one finds that r f
(
γ(T )

)
≤ T .

(v)⇔ (iv) Suppose r f (N) =∞. Since (i) holds, N has no conjugate points, which since N is com-

plete and simply connected implies `(N) = ∞. It follows from Theorem 2.5.12(a) that r(N) = ∞.

Conversely, if r(N) =∞, Theorem 2.5.12(a) implies that r f (N) =∞.

(iv)⇔ (vi) If r(N) =∞, then Corollary 2.5.6(b) states that each ∇2 d(·, p) is positive-definite. Con-

versely, if each ∇2 d(·, p) is positive-definite, then each d2(·, p) is strictly convex. This means that

each distance ball in N is strongly convex, so r(N) =∞.

(i)⇔ (iii) It’s clear that (iii)⇒ (i). Suppose N has no focal points. The argument is similar to the

proof that (i)⇒ (ii) in Theorem 3.1.1. It will use the following claim: If p ∈ M and γ : [0,T ]→ N

is a geodesic starting at p, then dN
(
exp(v), p

)
≥ T for all v ∈ Nγ(T )γ(R). To see this, first note that

γv : R→ N satisfies γv(0) = γ(T ). It follows from the first variation formula that t = 0 is a critical

point of the function t 7→ d2
N
(
γv(t), p

)
. By (vi), d2

N(·, p) is strictly convex, so d2
N
(
γv(0), p

)
= T 2 is the

strict global minimum of d2
N(·, p) along γv. The claim follows.

Since N is complete and focal
(
γ(R)

)
= ∅, exp |Nγ(R) : Nγ(R)→ N is well-defined and a local

diffeomorphism. When Nγ(R) is endowed with the pull-back metric from exp |Nγ(R), exp |Nγ(R) is

a local isometry. Write p := γ(0). If vk ∈ Nγ(R) is a Cauchy sequence with respect to this metric,

then there exists R > 0 such that dNγ(R)(vk,0p) ≤ R for all k. From the above claim, one sees that
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π(vk) ∈ γ([−R,R]) for all k. Since all geodesics in N are minimal, the triangle inequality implies that

vk ∈ {v ∈ Nγ(R)
∣∣∣π(v) ∈ γ([−R,R]) and ‖v‖ ≤ 2R}

By compactness, vk contains a convergent subsequence and, consequently, converges. Thus Nγ(R)

is complete. The proof is completed by invoking Lemma 2.2.2.

�

Remark 4.1.2. Theorem 4.1.1 is widely known. Conditions (iii) and (vi) were shown by Eberlein

[Eb1] and (iv), which is equivalent to Theorem 1.1(b), by O’Sullivan [O’S1]. It’s worth pointing

out that (iii) is a rather ancient synthetic condition: Given any point p ∈ N and any geodesic γ not

containing p, there exists a unique geodesic from p that meets γ perpendicularly.

Remark 4.1.3. The fact that (i)⇒ (iii) is a special case of a theorem of Hermann [Her2], who showed

that, if N is a complete Riemannian manifold and S ⊆ N a closed and connected submanifold with

focal(S ) = ∅, then exp |NS : NS → N is a covering map.

By contrast, when N is complete and simply connected and has non-positive curvature, d : M ×

M → [0,∞) is a strictly convex function. Equivalently, whenever α,β : [a,b]→ M are geodesics,

t 7→ d
(
α(t),β(t)

)
is strictly convex. It was pointed out in [O’S2] that this fails to hold for surfaces

with any positive curvature. Still, it turns out that this distance function along asymptotic geodesics

may be controlled. A key result that has allowed many theorems about manifolds with non-positive

curvature to be generalized to those with no focal points is the flat strip theorem of O’Sullivan

[O’S2] and, independently, Eschenburg [Esc].

Theorem 4.1.4. (O’Sullivan, Eschenburg) Let N be a complete and simply connected Rieman-

nian manifold with no focal points and α,β : R→ N distinct unit-speed geodesics such that s 7→

dN
(
α(s),β(s)

)
is bounded. Then dN

(
α(s),β(s)

)
= c for some c > 0 and all s ∈ R, and the map

V : R× [0,c]→ N defined by

V(s, t) := expα(s)

(
t · exp−1

α(s)
(
β(s)

))
is a totally geodesic embedding. Consequently, α(R) and β(R) bound a totally geodesic, embedded,

and flat strip of surface in N.
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Remark 4.1.5. One may, without loss of generality, reparameterize β so that the Jacobi field s 7→

exp−1
α(s)

(
β(s)

)
is perpendicular and V is an isometry.

The proofs in [O’S2] and [Esc] use results of Eberlein [Eb3] that certain Jacobi fields in N must

be parallel. O’Sullivan’s original argument assumed that, for any non-trivial Jacobi field J along a

geodesic γ : [0,∞)→ N that satisfies J(0) = 0, ‖J(t)‖→∞ as t→∞. After his article was submitted,

but before it was published, Goto [Got] showed that this is always the case. Eschenburg’s argument

required no such assumption. Versions of the flat strip theorem were proved earlier by Green [Gr3]

for surfaces with no focal points and Eberlein–O’Neill [EO’N] for manifolds of any dimension

with non-positive sectional curvature. Burns [Burn1] showed that the flat strip theorem may fail for

surfaces with no conjugate points.

O’Sullivan [O’S2] used the flat strip theorem to prove a powerful result, known as the flat torus

theorem.

Theorem 4.1.6. (O’Sullivan) Let N be a complete Riemannian manifold with no focal points, p ∈ N,

p ∈ π−1(p) ⊆ N, and G ≤ π1(N, p) an Abelian group of rank m. Then the following hold:

(a) min(G) :=
⋂

g∈G min(g) ⊆ N is strongly convex and isometric to D×Rm for some closed and

strongly convex D ⊆ N, min(G) is invariant under the action of G on N, and the action of G on

min(G) � D×Rm is by translation on the Rm fibers, so that, for each g ∈ G and (p, x) ∈ D×Rm,

g · (p, x) = (p,g · x);

(b) If F is any Rm-fiber of min(G) � D×Rm, then F/G is a flat torus T m, and the restriction of π to

F descends to an isometric and totally geodesic immersion ı : T m→ N satisfying ı∗
(
π1(T m, x)

)
�G

for any x ∈ T m; and

(c) If N is compact, then D , ∅.

Remark 4.1.7. O’Sullivan stated all of the above results for compact manifolds, but it’s long been

known that parts (a) and (b) hold for all complete with no focal points. His proof can effectively

be split into two halves, one that shows (a) and (b) whenever min(G) , ∅ and the other that shows

min(G) , ∅ whenever N is compact.

The flat torus theorem was first proved in the case of non-positive curvature by Gromoll–Wolf [GW]

and, independently, Lawson–Yau [LY]. As a corollary, O’Sullivan showed that, when N is compact,

every solvable subgroup of π1(N, p) is conjugate to the fundamental group of a compact flat manifold



60

isometrically and totally geodesically immersed in N. This result is also often referred to as the flat

torus theorem in the literature. It’s worth pointing out that the arguments in this dissertation only use

Theorem 4.1.6, not the statement about solvable subgroups. That said, the question about solvable

subgroups has an interesting history of its own. It implies that every solvable subgroup of π1(N, p)

is a Bieberbach group and, as a consequence of the following result of O’Sullivan [O’S1], that N is

flat if and only if each π1(N, p) is solvable.

Theorem 4.1.8. Let N be a compact Riemannian manifold with no focal points and p ∈ N. Then

the following hold:

(a) For some 0 ≤ k ≤ dim(N), Z := Z
(
π1(N, p)

)
is isomorphic to Zk;

(b) N is isometric to Rk ×N∗, where N∗ is a simply connected Riemannian manifold with no focal

points, and the action of Z on N � Rk ×N∗ is by translation on each Rk-fiber, so that g · (x, p) =

(g · x, p) for each g ∈ Z;

(c) M is foliated by totally geodesic and flat k-toruses, each of which is the image under π of an

Rk-fiber of N � Rk ×N∗; and

(d) There exist a flat torus T k, a complete Riemannian manifold N̂, and a Riemannian covering

map ψ : T k × N̂ → N with Abelian deck transformation group Γ̂ such that, for any (x̂, p̂) ∈ ψ−1(p),

H := (ψ◦ ιx̂)∗
(
π1(N̂, p̂)

)
is a normal subgroup of π1(N, p) containing the commutator subgroup C :=

[π1(N, p),π1(N, p)] and each of the following sequences is exact:

0→ Z×H→ π1(N, p)→ Γ̂→ 0

0→ Z×
(
H/C

)
→ H1(N,Z)→ Γ̂→ 0

Theorem 4.1.8 is known as the center theorem. This was first proved by Wolf [Wo] in the case of

non-positive sectional curvature. In the statement of part (d), H1(N,Z) denotes the first homology

group with integer coefficients, and certain canonical identifications are being employed in the short

exact sequences.

This history of this subject dates back at least to the theorem of Preissmann [P] that any Abelian

subgroup of the fundamental group of a compact and negatively curved manifold is cyclic. Preiss-

mann’s result was generalized by Byers [By] to solvable subgroups. The flat torus theorem is most
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properly viewed as a continuation of this work. The theorem, as described by Jost [J2], devel-

oped over a long period. Al’ber proved it in the case of rank two Abelian subgroups [Al1], but

his work may have been missed by Western mathematicians for some time. He also obtained re-

sults similar to those of Hartman in the case of negative curvature, and he made the first explicit

connection between the existence results of Eells–Sampson and Preissmann [Al2]. Yau [Y] proved

that any solvable subgroup of π1(N,y), where N is compact and has non-positive curvature, must

be a Bieberbach group. Shortly thereafter, the general case of the flat torus theorem for solvable

subgroups of π1(N,y), again for compact and non-positively curved N, was obtained independently

by Gromoll–Wolf [GW] and Lawson–Yau [LY]. It was this work that O’Sullivan generalized to

compact manifolds with no focal points. Gromoll–Wolf and, in the analytic case, Lawson–Yau also

proved that, whenever the fundamental group of a compact manifold with non-negative sectional

curvature has trivial center and splits as a product, then the manifold splits as an isometric product.

Although Kleiner [Kle] has showed that the flat torus theorem may fail to hold for compact

manifolds with no conjugate points, it’s interesting to note that Yau’s result about solvable subgroups

does generalize. After O’Sullivan’s result, the progress on this latter question was incremental.

Croke–Schroeder [CrS] proved it for analytic metrics; they also showed that, in the smooth case,

every nilpotent subgroup is Abelian. The smooth case was ultimately resolved by Kleiner [Kle] and,

independently, Lebedeva [Leb]. Ivanov–Kapovitch [IK] have since proved stronger results about the

structure of the fundamental group of a compact manifold with no conjugate points.

As this dissertation links the flat torus theorem to the existence results of Eells–Sampson, it can

be viewed as a furtherance of Al’ber’s observation about Preissmann’s theorem. The methods are

different, however, as Al’ber’s approach was based in the calculus of variations. It’s worth noting

that Hansen [Han], in something of an early spiritual predecessor to this work, pointed out that

Al’ber’s results could be obtained using only general topology and Preissmann’s theorem. Jost [J1]

further developed these ideas when he used the existence results of Eells–Sampson to give a new

proof of the flat torus theorem for solvable subgroups in the case of non-positive curvature. The

main new result in this dissertation, that the flat torus theorem may be used as part of a proof of the

Eells–Sampson existence results, is essentially the converse of what Jost showed.

Lemma 4.1.9. Let N be a complete Riemannian manifold with no focal points and p ∈ N. Suppose

that G =< [σ1], . . . , [σn]> is a maximal Abelian subgroup of π1(N, p). Let D ⊆ N be a non-empty,
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closed, and strongly convex set as in Theorem 4.1.6. Then ψ[σ1],...,[σn]|D is injective.

Proof. Assume ψ[σ1],...,[σn]|D is not injective, and choose any p,q ∈ D such that ψ[σ1],...,[σn](p) =

ψ[σ1],...,[σn](q). Since D is convex, and consequently path-connected, there exists a path α : [a,b]→D

from p to q. Under the identification D � D× {0} ⊆ D×Rm, α̃ := ψ[σ1],...,[σn] ◦α is a homotopically

non-trivial loop in C̃[σ1],...,[σn]. Since G is maximal, Z(G) = G. Since (π[σ1],...,[σn])∗
(
[α̃]

)
∈ Z(G), it

must be that [α̃] ∈ G. However, the action of G on D×Rk is by translation in the Rk-fibers, which

since [α̃] , 0 implies that α(b) < D×{0}. This is a contradiction.

�

Theorem 4.1.10. Let N be a compact Riemannian manifold with no focal points and p ∈ N. Suppose

that [σ1], . . . , [σn] ∈ π1(N, p) generate an Abelian subgroup G =< [σ1], . . . , [σn]> of rank m. Then

C̃[σ1],...,[σn] is a non-empty, compact, convex, and locally convex subset of Ñ[σ1],...,[σn]. If G is a

maximal Abelian subgroup, then C̃[σ1],...,[σn] is isometric to C×T m, where C ⊆ C̃[σ1],...,[σn] is strongly

convex.

Proof. Let D ⊆ N be a non-empty, closed, and strongly convex set as in Theorem 4.1.6, so that, in

particular, min(G) is isometric to D×Rm. If (p, x) ∈ D×Rm, then [σi] · (p, x) = (p, [σi] · x), and since

(p, x) ∈ min(G) the vector wi := (0, [σi] · x− x) ∈ T(p,x)(D×Rm) � TpD×TxR
m descends via π∗ to

the initial vector of a closed geodesic in [σi]. Therefore, ψ[σ1],...,[σn]( p̃, x) =
(
π∗(w1), . . . ,π∗(wn)

)
∈

C̃[σ1],...,[σn]. On the other hand, if (w1, . . . ,wn) ∈ C̃[σ1],...,[σn], then each wi is the initial vector of a

closed geodesic in [σi], so ψ−1
[σ1],...,[σn](w1, . . . ,wn) ∈min(G). Therefore,

C̃[σ1],...,[σn] = ψ[σ1],...,[σn](D×Rm) , ∅

Since there exists a covering map Ñ[σ1]→ Ñ[σ1],...,[σn] that maps the set C̃[σ1] onto a set containing

C̃[σ1],...,[σn], Theorem 3.2.10 implies that C̃[σ1],...,[σn] is compact. If ṽ, w̃ ∈ C̃[σ1],...,[σn], one may choose

v,w ∈ D×Rm such that ψ[σ1],...,[σn](v) = ṽ and ψ[σ1],...,[σn](w) = w̃. Since D×Rm is strongly convex,

there exists a unique geodesic path α from v to w, and α̃ := α is a geodesic path in C̃[σ1],...,[σn]

connecting ṽ to w̃. Hence C̃[σ1],...,[σn] is convex.

Let v ∈ C̃[σ1],...,[σn], and choose v ∈ N, an open set U ⊆ N containing v, and an open set V ⊆

Ñ[σ1],...,[σn] containing v such that ψ[σ1],...,[σn]|U : U → V is an isometry. It will be shown that, for

any deck transformation γ of ψ[σ1],...,[σn], γ
(
U ∩ (D×Rk)

)
= γ(U)∩ (D×Rk). Choose any point
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q ∈ U ∩ (D×Rk). Then ψ[σ1],...,[σn](q) ∈ C̃[σ1],...,[σn], so ψ[σ1],...,[σn](q) = (u1, . . . ,un), where each γui is

a closed geodesic in [σi]. Write q := ψ[σ1],...,[σn](q). By Theorem 3.2.5(iii), γ is identified with an

element of (ψ[σ1],...,[σn])∗
(
π1

(
Ñ[σ1],...,[σn], (u1, . . . ,un)

))
= Z([γu1], . . . , [γun]), and any path connecting

q to γ ·q descends via π to a loop γ ∈ Z([γu1 , . . . , [γun]). Therefore, [γ]−1[γui][γ] = [γui], which since

N has no conjugate points implies that ψ[γ1],...,[γn] ◦ γ(q) = (u1, . . . ,un) = ψ[γ1],...,[γn](q). So γ(q) ∈

γ(U)∩ (D×Rk), and it’s been shown that γ
(
U ∩ (D×Rk)

)
⊆ γ(U)∩ (D×Rk). Applying the same

argument to γ−1 shows that γ(U)∩(D×Rk)⊆ γ
(
U∩(D×Rk)

)
. So γ

(
U∩(D×Rk)

)
= γ(U)∩(D×Rk).

By shrinking U and V , one may now suppose that U = B(v, ε) for some 0< ε≤ r
(
Ñ[σ1],...,[σn](v)

)
and,

moreover, that U ∩ (D×Rk) is strongly convex. Then V ∩ C̃[σ1],...,[σn] = ψ[σ1],...,[σn]
(
U ∩ (D×Rk)

)
is

strongly convex. So C̃[σ1],...,[σn] is locally convex.

In the case that G is a maximal Abelian subgroup of π1(N, p), Z(G) = G. Since Z(G) is, up to

the canonical identification, the deck transformation group of ψ[σ1],...,[σn], which in this case acts on

D×Rm by translation in the Rm-factor, ψ[σ1],...,[σn](D×Rk) is isometric to D×Rm/G � D×T m. At

the same time, by Lemma 4.1.9, ψ[σ1],...,[σn] is injective on D, so its image C := ψ[σ1],...,[σm](D) , ∅

is a convex subset of Ñ[σ1],...,[σn] contained in C̃[σ1],...,[σn], and ψ[σ1],...,[σn]|D : D→ C is an isometry

with respect to the intrinsic metric on C. It will be shown that C is strongly convex. For any

p̃, q̃ ∈ C, there is exactly one geodesic α̃ : [a,b]→ C connecting p̃ to q̃. It must be shown that α̃

is minimal in Ñ[σ1],...,[σn]. Let β̃ : [a,b]→ Ñ[σ1],...,[σn] be any minimal geodesic from p̃ to q̃. Write

p := ψ[σ1],...,[σn]|
−1
D ( p̃), and lift α̃ and β̃ via ψ[σ1],...,[σn] to geodesics α and β, respectively, based at

p. Then β is a minimal geodesic. By construction, α([a,b]) ⊆ D and β(b) ∈ ψ−1
[σ1],...,[σn](q̃) ⊆ D×Rk.

Since D×Rm is strongly convex, one must have that β([a,b]) ⊆ D×Rk. Since D×Rk has a product

metric, β([a,b]) ⊆ D. Since D is strongly convex, β = α and, consequently, β̃ = α̃. So C is strongly

convex. It follows that C̃[σ1],...,[σn] is isometric to C×T m.

�

Remark 4.1.11. When the Abelian subgroup G in Theorem 4.1.10 is not maximal, one still has that,

in the covering space N/G, which lies above Ñ[σ1],...,[σn], the image of D×Rk under the quotient

map N→ N/G is a closed and strongly convex set that splits isometrically as D×T m.

Example 4.1.12. When N is complete but non-compact, the set C̃[σ1],...,[σn] may be empty. For

instance, the cylinder S 1 ×R can be endowed with a complete and negatively curved metric, as a
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surface of rotation, that has no closed geodesics.

Corollary 4.1.13. Let T n be a flat Riemannian torus and N a compact Riemannian manifold with

no focal points. If f : T n→ N is continuous, then f is homotopic to a totally geodesic map.

Proof. This almost follows from Theorem 4.1.6 and Theorem 3.3.3, but it’s not in general the case

that the totally geodesic immersion ı guaranteed by the flat torus theorem is defined on a torus of

the same dimension as T n. Instead, it follows from Theorem 4.1.10 and Theorem 3.3.3.

�

Corollary 4.1.14. Let T n be a flat Riemannian torus, N a complete Riemannian manifold with no

focal points, and [F] a homotopy class of maps from T n to N. Then the set of totally geodesic maps

in [F] is path-connected.

Proof. Let f1, f2 ∈ [F] be totally geodesic. Fix x ∈ T n, and choose a minimal generating set

{[ς1], . . . , [ςn]} for π1(T n, x). Write [σi] := ( f1)∗([ςi]). Since f1 and f2 are homotopic, one has

that g∗([ς1], . . . , [ςn]) � ([σ1], . . . , [σn]). By Lemma 3.2.8, each fi lifts canonically to a map F̃i :

T n → Ñ[σ1],...,[σn]. Since each fi is totally geodesic, F̃i(T n) ⊆ Ñ[σ1],...,[σn]. By Theorem 4.1.10,

C̃[σ1],...,[σn] is convex. For any geodesic α̃ : [a,b] → Ñ[σ1],...,[σn] from F̃1(x) to F̃2(x) such that

α̃([a,b]) ⊆ C̃[σ1],...,[σn], Υα̃ is a homotopy from f1 to f2 through totally geodesic maps.

�

A theorem of Lemaire [Lem] and, independently, Sacks–Uhlenbeck [SaU] states that, if f is a map

from a compact orientable surface into a compact manifold N, dim(N) ≥ 3, π2(N,y) = 0, and f∗ is

injective, then f is homotopic to an energy-minimizing map. In particular, this holds for any map

from a two-dimensional flat torus into a compact manifold with no conjugate points whose induced

homomorphism is injective. If N is any compact manifold with no conjugate points, dim(N)≥ 3, and

< [σ1], [σ2]>≤ π1(N, p) is an Abelian subgroup of rank two, then, for the unique initial vectors vi

of closed geodesics γvi ∈ [σi], the loop map Υv1⊗v2 exists and has injective induced homomorphism

(Υv1⊗v2)∗. As πk(N,y) = 0 for all k ≥ 2, it follows that Υ(v1,v2) is homotopic to an energy-minimizing

map. Since Kleiner [Kle] has shown that the flat torus theorem may fail for compact manifolds with

no conjugate points in any dimension greater than two, one obtains the following surprising result.
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Theorem 4.1.15. For each n ≥ 3, there exist a flat torus T 2, a compact n-dimensional Riemannian

manifold N with no conjugate points, and an energy-minimizing map T 2 → N that is not totally

geodesic.

This contrasts with the situation for compact manifolds with no focal points, where, as shown in

Theorem 1.4(b)-(c), every energy-minimizing map from a flat torus is totally geodesic. It is appar-

ently, and rather surprisingly, an open question whether every homotopy class of maps T n → N,

where n > 3 and N is a compact manifold with no conjugate points, contains an energy-minimizing

representative.

4.2 Heat flow methods

It will be instructive to detour from the proof of Theorem 1.4 and Theorem 1.5 and explore what can

be said about the existence, uniqueness, and convergence of solutions to the Eells–Sampson heat

equation (1.1) when the target is a compact Riemannian manifold with no focal points. Specifically,

it will be shown that, for compact domains, solutions to (1.1) exist for all time, are unique, and

uniformly subconverge to harmonic maps. The results of this section won’t be used elsewhere in

the dissertation, but their limitations help illustrate the need for the work to come in later chapters.

Recall that Eells–Sampson [ES] proved the short-term existence and uniqueness of solutions

u : M× [0,∞)→ N to (1.1) when M and (N,h) are arbitrary compact Riemannian manifolds. When

N has non-positive sectional curvature, they proved long-term existence and uniqueness, as well as

uniform subconvergence to harmonic maps. To say that u subconverges means that there exists a

sequence of times ti → ∞ such that u(·, ti) converges.1 A key point in their argument is that the

energy of the map under the flow is a non-increasing and convex function of time, the convexity

being a consequence of the curvature assumption on N. When N is only assumed to have no focal

points, the examples of Gulliver [Gul] show that the sectional curvatures of N may be unbounded,

in which case this convexity may not hold and the argument falls apart.

A great deal of effort over the years has gone into determining whether and how solutions to

(1.1) may blow up, which is to say, when they may fail to exist for all time or to converge in the

limit. The history of this problem will be sketched briefly, with the caveat that this discussion is far

1Actually, their methods show that a stronger statement holds, namely, for each sequence of times ti→∞, there exists
a subsequence ti j such that u(·, ti j ) converges to a smooth harmonic map.
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from comprehensive and omits mention of great work done by many authors. In the case of M = S 1,

Ottarsson [Ot] proved long-term existence and uniform subconvergence to closed geodesics for

all compact targets N. The work of rigorously defining the heat flow on domains with boundary,

including proving short-term existence of solutions to the Dirichlet problem, was done by Hamilton

[Ham], who also generalized the results of [ES] to this case. The great breakthrough in this area

was provided by Struwe [St1], who showed that, when M is a compact surface, a weak solution

u : M× [0,∞)→ N to (1.1) exists and is smooth except possibly at finitely many points, around each

of which a bubbling phenomenon similar to that described in [SaU] occurs. Roughly, at a singular

time (x, t) ∈ M× (0,∞), one may find a sequence of times tk↗ t and radiuses rk↘ 0 such that, after

rescaling the metrics on B(x,rk) appropriately, the maps u(·, tk)|B(x,rk) converge to a map u∞ :R2→ N

that extends by stereographic projection to a non-constant harmonic map u∞ : S 2→ N. A harmonic

map S m→ N is called a harmonic sphere. When all harmonic spheres from S 2 into N are constant,

the long-term existence, uniqueness, and uniform subconvergence to harmonic maps of solutions to

(1.1) follows. Struwe’s results were generalized to domains with boundary by Chang [Chan].

The first examples of blow-up were provided by Coron-Ghidaglia [CoG] in dimensions greater

than two and, later, by Chang–Ding-Ye [CDY] in dimension two. Many subsequent examples have

been constructed, including by Chen-Ding [CD] and Topping. Topping’s examples are notable,

as they show that the flow may fail to converge in the limit without any bubbling ever occurring

[Topp1], develop multiple bubbles at the same point at infinite time [Topp2], and converge to a

discontinuous function at the first finite-time singularity [Topp3]. Chen–Struwe [ChS] generalized

the existence of a weak solution u : M × [0,∞)→ N to the case of n = dim(M) ≥ 3 and proved its

regularity away from a singular set of locally finite n-dimensional Hausdorff measure. In this case,

Lin–Wang [LW] showed that singularities may occur only if N admits a harmonic sphere from S m

for some 2 ≤ m ≤ n− 1 or a non-constant harmonic map from (Rm,e
−|x|2

2(m−2) ds2) with finite energy,

where 3 ≤ m ≤ n and ds2 is the Euclidean metric on Rm. A harmonic map from (Rm,e
−|x|2

2(m−2) ds2)

with finite energy is called a quasi-harmonic sphere. A result in this direction was also proved

by Struwe [St2]. Using their result, Lin–Wang showed that, when all harmonic and quasi-harmonic

spheres into N are constant, classical solutions to (1.1) exist for all time.

Following Gordon [Gor], a Riemannian manifold is called convex-supporting if every compact

subset has an open neighborhood that admits a function with positive-definite Hessian. Gordon
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showed that any harmonic map from a compact Riemannian manifold M with finite fundamental

group into a Riemannian manifold N that has a convex-supporting covering space must be constant.

In particular, if each π1(M, x) is finite and N admits such a function, any harmonic map M→ N must

be constant. This precludes the existence of non-constant harmonic spheres. To prove the long-term

existence and regularity of the heat flow, it remains to show that N doesn’t admit non-constant

quasi-harmonic spheres. This was done by Li–Zhu [LZ], who also applied techniques of Li–Tian

[LT] and Lin [Li] to prove that globally defined heat flows subconverge in C2(M,N) to harmonic

maps.2

Theorem 4.2.1. (Li–Zhu) Let N be a compact Riemannian manifold. Suppose that N admits a C2

function ρ : N→ [0,∞) such that ∇2ρ is everywhere positive-definite and ρ(y) ≤C
(
1 + d(y,y0)

)k for

some y0 ∈ N, C ≥ 0, and k ≥ 1 and all y ∈ N. Then the following hold:

(a) Every quasi-harmonic sphere into N is constant; and

(b) If M is a compact Riemannian manifold, then, given any C1 map u0 : M→ N, a unique solution

u : M× [0,∞)→ N to the heat equation (1.1) exists, is smooth on M× (0,∞), and subconverges in

C2(M,N) to a smooth harmonic map as t→∞.

Theorem 4.2.1(a) improves upon a result of Ding–Lin [DL], which required a stronger assumption

on ∇2ρ. Part (b) implies, in particular, uniform subconvergence to harmonic maps. Combining part

(b) with Theorem 4.1.1, one obtains the corresponding result when N has no focal points.

Corollary 4.2.2. Let M and N be compact Riemannian manifolds, where N has no focal points.

Given any C1 map u0 : M → N, a unique solution u : M × [0,∞)→ N to the heat equation (1.1)

exists, is smooth on M× (0,∞), and subconverges in C2(M,N) to a smooth harmonic map as t→∞.

Note that the limit map of the flow in Corollary 4.2.2 is not known to minimize energy. Using

the direct method, rather than a geometric flow, Xin [X2] showed that, when N has no focal points,

every homotopy class of maps M→ N contains an energy-minimizing harmonic representative. The

argument essentially combines Theorem 4.1.1, Gordon’s result, and a regularity theorem of Schoen–

Uhlenbeck [ScU]. A much more general existence result of this form, for homotopy classes of maps

2Li–Zhu make no mention of uniqueness in the statement of their results, but this may be taken for granted, as in [ES]
it’s shown that classical solutions are unique for as long as they exist. Similarly, though Li–Zhu only state their result for
smooth initial data, the short-term existence for C1-initial data shown in [ES], when combined with the result of Li–Zhu,
implies long-term existence.
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between metric measure spaces, is given in [J3], where references to other work in this direction

may be found. Applying a theorem of Alexander–Bishop [AB], Burns [Burn2] showed that any

complete and simply connected surface with no conjugate points is convex-supporting. Along with

a result of Eells [Ee], which similarly combined the work of Gordon and Schoen–Uhlenbeck, this

shows that every homotopy class of maps M→ N into a compact surface with no conjugate points

contains an energy-minimizing harmonic representative.

The most significant limitation of Corollary 4.2.2, and of the many related existence results, is

that the map in the limit is only known to be harmonic or, at best, energy-minimizing. Recall that

Eells–Sampson also proved Theorem 1.2, which in part states that, when M has non-negative Ricci

curvature and N has non-positive sectional curvature, every C2 harmonic map M → N is totally

geodesic. The proof of that fact will be sketched here. For details, one may check the original paper

[ES] or the textbooks [J2] or [X1].

The proof of Theorem 1.2 depends heavily upon the Bochner identity (1.2). The notation in (1.2)

is rather terse. In it, ∆ denotes the Laplace-Beltrami operator, which is the divergence of the gradi-

ent. The norm ‖β f ‖ at each point p ∈ M is the operator norm on the space L (TpM�TpM,T f (p)N)

that may be computed as the sum of the Hilbert-Schmidt norms of the (0,2)-tensors, or more pre-

cisely the linear operators TpM → TpM with which they’re canonically identified, that appear as

the components of β f with respect to any orthonormal basis for T f (p)N. The inner products are

< ·, ·>=< ·, ·> f −1(TN). The Ricci tensor RicM is being identified with a (1,1)-tensor, and repeated

subscripts in a term indicate contraction. After unpacking everything, one finds that any C2 har-

monic map f : M→ N satisfies

∆e f −‖β f ‖
2 = Q f

where Q f : M→ R at each point x ∈ M takes the form

Q f (x) =

m∑
i, j=1

h
(
RN

(
f∗(ei), f∗(e j)

)
f∗(e j), f∗(ei)

)
+

m∑
i=1

RicM(ei,ei)‖ f∗(ei)‖2

for any orthonormal basis {e1, . . . ,em} of TxM consisting of principal directions of the Ricci tensor on

M. By the curvature assumptions, Q f is non-negative. By the divergence theorem,
∫

M ∆e f dµM = 0.

It follows that
∫

M ‖β f ‖
2 dµM ≤ 0 and, consequently, β f = 0. By Theorem 2.6.1, this is equivalent to

f being totally geodesic.

When N is only assumed to have no focal points, the Bochner identity is not useful, and it’s not
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clear at the start that energy-minimizing maps M → N are totally geodesic, nor that every homo-

topy class of maps contains a totally geodesic representative. This is the main technical difficulty

overcome in this dissertation, by completely different methods. The more general question about

whether every harmonic map M→ N is totally geodesic remains open.

Recall also that Hartman [Har] improved upon the results of Eells–Sampson in Theorem 1.3.

Hartman’s method is to use the bound on sectional curvature, by the parabolic maximum principle

as well as direct computation, to show that certain functions associated with the heat flow are non-

increasing in time. It suffices to say that this method also fails when N is only assumed to have no

focal points. An early proof of Theorem 1.5 that bypassed this issue used parameterized heat flows

on loops. The argument was first to prove Theorem 1.4(c) by successively applying a parameterized

heat flow to each of the families of loops in the expression T k = S 1 × · · · ×S 1 and, after finite time,

projecting the family being flowed onto closed geodesics. This used the long-term existence of

solutions to the heat equation (1.1) shown by Ottarsson [Ot] and a new result that the heat flow from

a compact manifold with boundary doesn’t leave an arbitrary compact and locally convex set before

the image of the boundary does. This latter result generalizes a theorem of Hamilton [Ham] and may

be proved by combining the maximum principle in [Ham] with ideas of Evans [Ev] about viscosity

solutions. Looking closely at the equations relating the energy of a loop with its total geodesic

curvature under the heat flow, one may show, using the work of Lenbury–Maneesawarng [LM] and

Karuwannapatana–Maneesawarng [KM] about length and total curvature in singular spaces with

curvature bounded above, that, after finite time, the loops in each family being flowed are uniformly

C0-close to closed geodesics. After the flow is lifted to an appropriate covering space Ñ[σ1],...,[σm],

a theorem of Walter [Wal] about the nearest-point projection onto compact and locally convex sets

ensures that it may be stopped at this time and the loops simultaneously projected onto closed

geodesics in the set C̃[σ1],...,[σm]. The argument proceeds inductively, using the loop map Υ and the

flat strip theorem while flowing the (i + 1)-th family to extend to a totally geodesic map along each

of the already-completed T i-fibers. Once Theorem 1.4(c) is established, Theorem 1.5 may be shown

using the center of mass and a partition of unity as in the proof of Theorem 6.3.2.



70

Chapter 5

Commutative diagrams

5.1 Manifolds with non-negative Ricci curvature

Here and throughout, Mi and Ni, where i = 1,2, will be connected topological manifolds and Mi→

Mi×Ni
πi
→Ni trivial fiber bundles, where πi in each case is projection onto the second component and

ρi : Mi×Ni→Mi onto the first. The functions χ : M0→M1, ψ : M0×N0→M1×N1, and φ : N0→ N1

will be covering maps. The spaces under study here will be those for which the diagram

M0×N0
π0 //

ψ

��

N0

φ

��
M1×N1

π1 // N1

(5.1)

commutes. The diagram (5.1) will be said to commute isometrically when M0 and the Ni and

Mi ×Ni are Riemannian manifolds, M0 ×N0 has the product metric obtained from M0 ×N0, and ψ

and φ are local isometries. It’s worth emphasizing, pointedly, that in this case M1×N1 is not assumed

to have a product metric and that π1 is not necessarily a Riemannian submersion. Intuitively, the

space M1 × N1 is obtained from M0 × N0 by a quotient in which twisting only occurs along the

M0-fibers. When this diagram commutes, the spaces involved will be shown to possess certain nice

topological properties. One such property is that there exist a covering map χ : M0 → M1 and a

homeomorphism ϕ : M0×N0→ M0×N0 such that the diagram

M0×N0
ϕ //

χ×φ

��

M0×N0
π0 //

ψ

��

N0

φ

��
M1×N1

id // M1×N1
π1 // N1

(5.2)

commutes.

Diagrams of the form (5.1) arise naturally in relation to compact manifolds with non-negative

Ricci curvature, as shown by Cheeger–Gromoll in [CG1] and [CG2]. This is an application of their

famous splitting theorem.
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Theorem 5.1. (Cheeger–Gromoll) Let M be a complete Riemannian manifold with non-negative

Ricci curvature. Then M is isometric to M̂×Rk, where M̂ admits no minimal geodesics γ : R→ M̂

and Rk has its standard flat metric.

This generalizes a result of Toponogov [Topo] for manifolds with non-negative sectional curvature.

Using Theorem 5.1, Cheeger–Gromoll showed that every compact manifold with non-negative Ricci

curvature is finitely covered by a space M1 × T k in a diagram of the form (5.1) that commutes

isometrically.

Corollary 5.2. (Cheeger–Gromoll) Let M be a compact Riemannian manifold with non-negative

Ricci curvature. Then there exist Riemannian manifolds M0 and M1, where M0 is compact and

simply connected, a constant metric on Rk, a flat torus T k, and Riemannian covering maps ψ :

M0×R
k→ M1×T k and φ : Rk→ T k such that the diagram (5.1) commutes isometrically.

Proof. This is almost exactly the statement of Theorem 9.2 of [CG2], but it’s not immediately

clear from their diagram that the diffeomorphism M̂→ M1×T k makes the diagram (5.1) commute.

However, following their proof, one finds that the diffeomorphism they construct is canonical and

does indeed take the image of each M0-fiber to the correct M1-fiber.

�

Theorem 1.4 will actually be shown to hold for all M that are finitely covered by the space M1×T k

in a diagram (5.1) that commutes isometrically, provided the homotopy class of maps [F] satisfies a

certain topological property which always holds when each π1(M1, p̃) is finite. This latter condition

holds whenever M0 is simply connected. Moreover, it was shown by Cheeger–Gromoll [CG1]

that there are manifolds with non-negative Ricci curvature for which the covering map ψ0 in the

corresponding diagram (5.1) cannot be finite. Their example is to let Z act on S 2×R by an irrational

rotation on the first component and translation on the second. Then the quotient under this action is

diffeomorphic to S 2 × S 1 but is never finitely covered by S 2 ×R. Modifying this so that the initial

metric on S 1 is no longer round but still admits an isometric S 1 action, one obtains a space that

satisfies diagram (5.1) but which may have negative Ricci curvature.
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5.2 Geometric structure

This section is dedicated to rigorously developing the geometric structure of spaces in a diagram

(5.1) that commutes. Most of the results are technical lemmas, with elementary proofs, that will

be used in the next two chapters. The notation ι is used throughout to signify inclusion into either

the first or second component of a product, while ρi indicates projection onto the i-th component.

For example, if x ∈ N0, then ιx : M0 → M0 × N0 is the map ιx(·) := (·, x). Similarly, if p ∈ M0,

then ιp : N0 → M0 ×N0 is ιp(·) := (p, ·). The maps ρ1 : M1 ×N1 → M1 and ρ2 : M1 ×N1 → N1 are

projection. The meaning will always be clear in context.

Lemma 5.3. Suppose the diagram (5.1) commutes. Let x ∈ N0, and write x̃ := φ(x). Then the

restriction ψ|M0×{x} : M0×{x} → M1×{x̃} is a covering map.

Proof. Fix any x ∈ N0, and write x̃ := φ(x). Since φ ◦ π0 = π1 ◦ψ, ψ(M0 × {x}) ⊆ M1 × {x̃}. To see

that ψ|M0×{x} : M0×{x} → M1×{x̃} is surjective, fix p̃ ∈ M1. M1. Choose any (q̃, x̃) ∈ M1×{x̃}. Since

M1 is connected, there exists a path σ : [a,b]→ M1 from p̃ to q̃. Let σ̃ := ιx̃ ◦σ, and denote by

σ : [a,b]→ M0 × {x} the lift of σ̃ under ψ with σ(a) = (p, x). Since φ ◦ π0 ◦σ(t) = π1 ◦ψ ◦σ(t) =

π1 ◦ σ̃(t) = z̃ for all t, π0 ◦σ(t) ∈ φ−1(x̃) for all t. Since π0 ◦σ(a) = z and φ−1(x̃) is a discrete subset

of N0, it follows from continuity that π0 ◦σ(b) = x. Therefore, ψ
(
σ(b)

)
= σ̃(b) = (q̃, z̃). So ψ ◦ ιx

is surjective. Since ψ is a covering map and M0 × {x} and M1 × {x̃} are embedded submanifolds of

M0 ×N0 and M1 ×N1, evenly covered neighborhoods of ψ in M1 ×N1 restrict to evenly covered

neighborhoods of ψ◦ ιx in M1×{x̃}. Thus ψ◦ ιx is a covering map.

�

Proposition 5.4. Suppose the diagram (5.1) commutes. For any x ∈ N0, write χx := ρ1 ◦ψ◦ ιx. Then

there exists a homeomorphism ϕ : M0×N0→ M0×N0 such that the diagram (5.2) commutes when

χ = χx.

Proof. By Lemma 5.3, each ψ|M0×{z} : M0×{z} → M1×{z̃} is a covering map. For the given x ∈ N0,

write x̃ := φ(x). Since ρ1|M1×{x̃} : M1×{x̃}→M1 and ιx : M0→M0×{x} are homeomorphisms, χ= χx

is indeed a covering map. It remains to produce the homeomorphism ϕ. Any such ϕ would have to

be a lift of χ×φ along ψ. Let p ∈ M0, and write p̃ := ρ1 ◦φ(p, x), so that φ(p, x) = ( p̃, x̃) = χ×φ(p, x).
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Since χ×φ and ψ are covering maps, such a lift ϕ will exist and be a homeomorphism exactly when

(χ×φ)∗
(
π1

(
M0×N0, (p, x)

))
= φ∗

(
π1

(
M0×N0, (p, x)

))
. Recall that

(χ×φ)∗
(
π1

(
M0×N0, (p, x)

))
= (ιx̃ ◦χ)∗

(
π1(M0, p)

)
(ι p̃ ◦φ)∗

(
π1(N0, x)

)
and

ψ∗
(
π1(M0×N0, (p, x)

)
= (ψ◦ ιx)∗

(
π1(M0, p)

)
(ψ◦ ιp)∗

(
π1(N0, x)

)
It therefore suffices to show that (ιx̃ ◦χ)∗

(
π1(M0, p)

)
= (ψ◦ ιx)∗

(
π1(M0, p)

)
and (ι p̃ ◦φ)∗

(
π1(N0, x)

)
=

(ψ◦ ιp)∗
(
π1(N0, x)

)
. The first is a matter of as

(ιx̃ ◦χ)∗
(
π1(M0, p)

)
= (ιx̃ ◦ρ1 ◦ψ◦ ιx)∗

(
π1(M0, p)

)
= (ψ◦ ιx)∗

(
π1(M0, p)

)
As for the second,

(ι p̃ ◦φ)∗
(
π1(N0, x)

)
= (ι p̃ ◦φ◦π0)∗

(
π1

(
M0×N0, (p, x)

))
= (ι p̃ ◦π1 ◦ψ)∗

(
π1

(
M0×N0, (p, x)

))
= ψ∗

(
π1

(
M0×N0, (p, x)

))
= (ιp ◦ψ)∗

(
π1(M0, p)

)
Therefore, the desired homeomorphism ϕ exists.

�

In light of Proposition 5.4, whenever the diagram (5.1) commutes, there is no loss of generality in

assuming that the diagram (5.2) commutes as well.

Lemma 5.5. Suppose the diagram (5.1) commutes isometrically. Then each M1-fiber of M1×N1 is

totally geodesic.

Proof. Let (p̃1, z̃) ∈ M1×N1, and choose (p1,z) ∈ ψ−1( p̃1, z̃). Let U ⊆ M0 ×N0 and V ⊆ M1×N1 be

open sets around (p1,z) and (p̃1, z̃), respectively, such that ψ|U : U → V is an isometry. Shrinking

U and V , if necessary, one may suppose that φ◦π0 is injective on U and that V is strongly convex.

Note that V intersects M1 × {z̃} in an open subset of M1 × {z̃} containing ( p̃1, z̃). Let (p̃2, z̃) ∈ V , and

fix a minimal geodesic α̃ : [a,b]→ V from (p̃1, z̃) to ( p̃2, z̃). Let α : [a,b]→ U be the lift of α̃ based
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at (p1,z). Then α is a minimal geodesic and, since φ ◦π0 = π1 ◦ψ, φ ◦π0 ◦α(0) = z̃ = φ ◦π0 ◦α(1).

Since φ ◦ π0 is injective on U, α(1) = α(0) = z. Since M0 ×N0 has a product metric, π0 ◦α(t) = z

for all t. Thus π1 ◦ α̃(t) = π1 ◦ψ◦α(t) = φ◦π0 ◦α(t) = z̃ for all t. This shows that M1 × {z̃} is totally

geodesic.

�

Lemma 5.6. Suppose the diagram (5.1) commutes, where M0, N0, and the Mi×Ni are Riemannian

manifolds, M0×N0 has the product metric obtained from M0 and N0, and ψ is a local isometry. Let

Γ denote the deck transformation group of M0×N0. Then Γ ⊆I (M0)×I (N0).

Proof. It must be shown that each γ ∈ Γ is of the form γ = α×β for some α ∈I (M0) and β ∈I (N0).

This is done by first showing that γ takes M0-fibers to M0-fibers. Fix x ∈ N0, and let σ : [a,b]→

M0 × {x} be continuous. Then π0 ◦σ = x for all t. Let σ̃ := ψ ◦σ. Then π1 ◦ σ̃(t) = π1 ◦◦ψ ◦σ(t) =

φ◦π0 ◦σ(t) = φ(x) for all t. Let σ0 := γ ◦σ, and x0 := σ0(a). Then ψ◦σ0 = σ̃, so as before one has

that x̃ = π1 ◦ σ̃(t) = π1 ◦ψ◦σ0(t) = φ◦π0 ◦σ0(t) for all t. So π0 ◦σ0 ∈ φ
−1(x̃) for all t. Since φ−1(x̃) is

discrete, this implies that π0 ◦σ0(t) = x0 for all t. Since M0 is connected, it follows that γ takes each

each M0 fiber into a single M0-fiber. Since γ is an isometry, it must preserve the normal distribution

to the M0-fibers; since M0 ×N0 has a product metric, that is exactly the tangent distribution to the

N0-fibers. Since N0 is connected, γ also takes each N0-fiber into an N0-fiber. Because π0 ◦ γ is

constant along each M0-fiber and ρ0 ◦ γ is constant along each N0-fiber, there exist α : M0 → M0

and β : N0→ N0 such that α×β. Since γ is an isometry, α and β are isometries as well.

�

As an application of Lemma 5.6, one may show that, when φ is normal, the metric on N1 need not

be given in advance, but is instead uniquely determined by the rest of the diagram (5.1).

Proposition 5.7. Suppose the diagram (5.1) commutes, where M0 and N0 are Riemannian man-

ifolds, M0 × N0 has the product metric obtained from M0 and N0, φ is normal, and ψ is a local

isometry. Then there exists a unique Riemannian metric on N1 with respect to which φ is a local

isometry.

Proof. Denote by h the metric on N0, g the metric on M0, and Γ the deck transformation group of φ.

Since φ is a normal covering map, h will descend to a metric on N1 if and only if h is Γ-equivariant.
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Fix any x ∈ N0 and v1,v2 ∈ TxN0, write x̃ := φ(x), and let γ ∈ Γ. Note that φ ◦ γ(x) = x̃. Fix any

p1 ∈ M0. Since ψ(p1, x) ∈ M1 × {x̃}, Lemma 5.3 states that ψ|M0×{γ(x)} : M0 × {γ(x)} → M1 × {x̃} is

surjective, and there exists p2 ∈ M0 such that ψ
(
p2,γ(x)

)
= ψ(p1, x). Since ψ is a normal covering

map, there exists a deck transformation σ of ψ that takes (p1, x) to
(
p2,γ(x)

)
. By Lemma 5.6,

σ = α×β for α ∈I (M0) and β ∈I (N0). One has that

φ◦β = φ◦π1 ◦σ◦ ιx

= π0 ◦ψ◦σ◦ ιx

= π0 ◦ψ◦ ιx

= φ◦π0 ◦ ιx

= φ

Thus β is a deck transformation of φ. Since β(x) = γ(x), it follows that β = γ, and one has

h(v1,v2) = g×h
(
(0,v1)(p1,x), (0,v2)(p2,x)

)
= g×h

(
σ∗(0,v1)(p1,x),σ∗(0,v1)(p1,x)

)
= g×h

((
α∗(0),β∗(v1)

)(
p2,γ(x)

), (α∗(0),β∗(v2)
)(

p2,γ(x)
))

= g×h
((

0,β∗(v1)
)(

p2,γ(x)
), (0,β∗(v2)

)(
p2,γ(x)

))
= h

(
β∗(v1),β∗(v2)

)
= h

(
γ∗(v1),γ∗(v2)

)
Thus h descends to a unique metric on N0 with respect to which φ is a local isometry.

�

In the following, a fundamental domain for a covering map ϕ : Y → Z is defined to be a set X ⊆ Y

such that ψ|X : X → Z is bijective. In practice, fundamental domains should be nice sets, at least

measurable with boundary measure zero, but that is not taken as part of the definition here.

Lemma 5.8. Suppose the diagram (5.2) commutes. If A ⊆M0 and B⊆ N0 are fundamental domains

of χ and φ, respectively, then ϕ(A×B) is a fundamental domain of ψ.

Proof. It must be shown that ψ◦ϕ(A× B) = M1 ×N1 and that ψ|ϕ(A×B) is injective. To see the first,

let (p̃, x̃) ∈ M1×N1. Since χ(A) = M0 and φ(B) = N0, there exist p ∈ A and x ∈ B such that φ(x) = x̃.
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Therefore, ψ ◦ϕ(p, x) = χ×φ(p, x) = ( p̃, x̃). To see the second, suppose (pi, xi) ∈ ϕ(A× B), i = 1,2,

satisfy ψ(p1, x1) = ψ(p2, x2). Then there exist (qi,zi) ∈ A×B such that (pi, xi) = ϕ(qi,zi). Thus

(
χ(qi),φ(zi)

)
= χ×φ(qi,zi)

= ψ◦ϕ(qi,zi)

= ψ(pi,zi)

for each i. Therefore, χ(q1) = χ(q2) and φ(z1) = φ(z2). Since χ|A and φ|B are injective, (q1,z1) =

(q2,z2), and consequently (p1,z1) = ϕ(q1,z1) = ϕ(q2,z2) = (p2,z2), and ψ|ϕ(A×B) is injective.

�

Lemma 5.9. Suppose the diagram (5.2) commutes. If χ is finite with #(χ) sheets and B ⊆ N0 is a

fundamental domain of φ, then M0×B is the union of #(χ) fundamental domains of ψ.

Proof. Since χ has #(χ) sheets, M0 is the union of #(χ) fundamental domains of χ. By Lemma

5.8, whenever B0 ⊆ N0 is a fundamental domain of φ, ϕ(M0 ×B0) is the union of #(χ) fundamental

domains of ψ; so the result will follow if it’s shown that, for some such B0, M0×B = ϕ(M0×B0). Fix

p ∈M0. Since φ◦π0 ◦ϕ◦ ιp = π1 ◦ (χ×φ)◦ ιp = φ, π0 ◦ϕ◦ ιp is a deck transformation of φ. Therefore,

B0 := (π0 ◦ϕ◦ ιp)−1(B) is a fundamental domain of φ. Note that, for each z ∈ N0, φ◦π0 ◦ϕ◦ ιz(·) =

π1 ◦ (χ×φ) ◦ ιz(·) = φ(z). As in the proof of Lemma 5.3, it follows by continuity that π0 ◦ϕ ◦ ιz is

constant. One may therefore show that ρ0◦ϕ◦ ιz : M0→M0 is a homeomorphism. If (q,z) ∈M0×B0,

then

π0 ◦ϕ◦ ιq(z) = π0 ◦ϕ◦ ιz(q)

= π0 ◦ϕ◦ ιz(p)

= π0 ◦ϕ◦ ιp(z)

Since π0 ◦ ϕ ◦ ιp(z) ∈ B, it follows that ϕ(q,z) = ϕ ◦ ιq(z) ∈ M0 × B. So ϕ(M0 × B0) ⊆ M0 × B. On

the other hand, if (q, x) ∈ M0 × B, let z := (π0 ◦ϕ ◦ ιp)−1(x) and q0 := (ρ0 ◦ϕ ◦ ιz)−1(q). As above,

π0 ◦ϕ(q0,z) = π0 ◦ϕ◦ ιp(z) = x. At the same time, ρ0 ◦ϕ(q0,z) = q. So (q, x) = ϕ(q0,z) ∈ ϕ(M0×B0).

So M0×B ⊆ ϕ(M0×B0).

�
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Lemma 5.10. Suppose the diagram (5.2) commutes isometrically. Let N be a Riemannian manifold

and f̃ : M1×N1→ N a continuous function. Then the following hold:

(a) If f̃ is constant along each M1-fiber and, for each p̃ ∈ M1, f̃ ◦ ι p̃ is totally geodesic, then f̃ is

totally geodesic; and

(b) If M1 ×N1 has finite volume, each geodesic in N is minimal, f̃ is totally geodesic, and, for any

( p̃, x̃) ∈ M1 ×N1, ( f̃ ◦ ιx̃)∗
(
π1(M1, p̃)

)
=< e>, then f̃ is constant along each M1-fiber and, for each

p̃ ∈ M1, f̃ ◦ ι p̃ is totally geodesic.

Proof. (a) Suppose f̃ is constant along each M1-fiber and that each f̃ ◦ ι p̃ : N1 → N is totally

geodesic. Write f := f̃ ◦ψ. Since π1 ◦ψ = φ◦π0, f is constant along each M0-fiber. Since M0×N0

has a product metric, to prove that f is totally geodesic, it suffices to show that, for each p ∈ M0,

f ◦ ιp : N0→ N is totally geodesic. Let (p, x) ∈M0×N0, and write ( p̃, x̃) :=ψ(p, x). Let γ : [a,b]→ N0

be a geodesic geodesic with γ(a) = x, and write γ̃ := φ◦γ. Since φ is a local isometry, γ̃ is a geodesic.

Note

π1 ◦ψ◦ ιp = φ◦π0 ◦ ιp

= φ

= π1 ◦ ι p̃ ◦φ

Thus π1 ◦ ι p̃ ◦ γ̃ = π1 ◦ ι p̃ ◦φ ◦γ = π1 ◦ψ ◦ ιp ◦γ. Since f̃ is constant along each M1-fiber, it follows

that f̃ ◦ ι p̃ ◦ γ̃ = f̃ ◦ψ◦ ιp ◦γ = f ◦ ιp ◦γ. Since the former is a geodesic, so is the latter. Since (p, x)

and γ were arbitrary, f is totally geodesic.

(b) By Lemma 2.6.2, f̃ is smooth. By Lemma 5.5, each M1-fiber of M1 ×N1 is totally geodesic.

Since M1 × N1 has finite volume and its M1-fibers are totally geodesic, the coarea formula may

be used to show that almost all M1-fibers have finite volume. By Lemma 3.1.7 and a continuity

argument, f̃ must be constant along every M1-fiber. Let ( p̃, x̃) ∈ M1×N1 and (p, x) ∈ ψ−1( p̃, x̃), and

let γ̃ : [a,b]→ N1 be a geodesic with γ̃(a) = x̃. Since φ ◦π0 = π1 ◦ψ, x ∈ φ−1(x̃). map f := f̃ ◦ψ is

totally geodesic. Let γ : [a,b]→ N0 be the lift of γ̃ satisfying γ(a) = x and γ̃ = φ◦γ. Then ιp ◦γ is

a geodesic, which implies that f ◦ ιp ◦γ is also a geodesic. As shown above, f̃ ◦ ι p̃ ◦ γ̃ = f ◦ ιp ◦γ.

Thus f̃ ◦ ι p̃ ◦ γ̃ is a geodesic. Since x̃ and γ̃ were arbitrary, f̃ ◦ ι p̃ is totally geodesic.

�
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Lemma 5.11. Suppose the diagram (5.1) commutes. Suppose also that the Ni are Riemannian

manifolds such that φ : N0→ N1 is a local isometry, that N0 is simply connected, and that M1 and

N1 are compact. Let N be a Riemannian manifold, π : N → N its Riemannian universal covering

map, and f̃ : M1×N1→ N a continuous function such that ( f̃ ◦ ιz̃)∗
(
π1(M1, q̃)

)
=<e> for any (q̃, z̃) ∈

M1×N1. Write f := f̃ ◦ψ. For each R ≥ 0, there exists C = C(R, f̃ ) ≥ 0 such that the following hold:

(a) Given any (p, x) ∈ M0 ×N0 and y ∈ π−1( f (p, x)
)
, f lifts to a map F : M0 ×N0 → N such that

F(p, x) = y and π◦F = f ; and

(b) Every such lift F satisfies dN
(
F(q0,z0),F(q1,z1)

)
≤C whenever dN0(z0,z1) ≤ R.

Proof. (a) Write ( p̃, x̃) := ψ(p, x). Since ( f̃ ◦ ιx̃)∗
(
π1(M1, p̃)

)
=< e>, the homotopy lifting property

implies that ( f ◦ ιx)∗
(
π1(M0, p)

)
=<e>. This and the fact that N0 is simply connected that

f ∗
(
π1

(
M0×N0, (p, x)

))
= ( f ◦ ιx)∗

(
π1(M0, p)

)
( f ◦ ιp)∗

(
π1(N0, x)

)
=<e>

Therefore, f lifts to a map F : M0×N0→ N such that F(p, x) = y and the diagram

M0×N0
F //

ψ

��

f

##

N

π

��
M1×N1

f̃ // N

commutes.

(b) Fix (p, x) ∈ M0 ×N0, (p̃, x̃) := (p, x), y ∈ π−1( f (p, x)
)
, and F : M0 ×N0 → N as in part (a). Let

χ = χx : M0 → M1 be the covering map and ϕ : M0 × N0 → M0 × N0 the homeomorphism from

Proposition 5.4, so that the diagram (5.2) commutes. It will be shown that, for each (q̃,z) ∈ M1×N0,

F ◦ϕ is constant on (χ× id)−1(q̃,z). Write z̃ := φ(z). Let q0,q1 ∈ χ
−1(q̃), and fix any path σ : [a,b]→

M0 from q0 to q1. Then σ̃ := χ◦σ is a loop in M1 based at q̃. Note that, for each i = 0,1,

π◦F ◦ϕ(qi,z) = f̃ ◦ψ◦ϕ(qi,z)

= f̃ ◦χ×φ(qi,z)

= f̃ (q̃, z̃)

So π◦F ◦ϕ(q0,z) = π◦F ◦ϕ(q1,z); in other words, F ◦ϕ(q0,z) and F ◦ϕ(q1,z) lie in the same fiber
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of π. Note that F ◦ϕ◦ ιz ◦σ is a path connecting F ◦ϕ(q0,z) to F ◦ϕ(q1,z). By assumption,

0 = ( f̃ ◦ ιz̃)∗([σ̃])

= [ f̃ ◦ ιz̃ ◦χ◦σ]

= [ f̃ ◦χ×φ◦ ιz ◦σ]

= [ f̃ ◦ψ◦ϕ◦ ιz ◦σ]

= [π◦F ◦ϕ◦ ιz ◦σ]

It follows from the homotopy lifting property that F ◦ϕ(q0,z) = F ◦ϕ(q1,z). Thus F ◦ϕ is constant

on each fiber of χ× id. This implies that F ◦ϕ descends along χ× id to a map F̃ : M1×N0→ N such

that the diagram

M0×N0
ϕ //

χ×id
��

M0×N0
F //

ψ

��
f

##

N

π

��
M1×N0

id×φ //

F̃

22

M1×N1
f̃ // N

commutes.

The next step is to define a function D : N1→ [0,∞) by D(z̃) := diam
(
F̃
(
M1 × B(z,R)

))
for any

z ∈ φ−1(z̃). To see that D is well-defined, fix z̃ ∈ N1 and z0,z1 ∈ φ
−1(z̃). Denote by α : N0 → N0

the deck transformation of φ that takes z0 to z1. Since φ is a local isometry, α is an isometry, and

α
(
B(z0,R)

)
= B(z1,R). One has that

π◦ F̃ ◦ id×α = f̃ ◦ id×φ◦ id×α

= f̃ ◦ id× (φ◦α)

= f̃ ◦ id×φ

= π◦ F̃

In other words, F̃ and F̃ ◦ id×α are lifts along π of the same map. Since π is normal, it follows from

general theory that there exists a deck transformation β : N → N of π such that β ◦ F̃ = F̃ ◦ id×α.

Since π is a local isometry, β is an isometry. Therefore,

diam
(
F̃
(
M1×B(z0,R)

))
= diam

(
β◦ F̃

(
M1×B(z0,R)

))
= diam

(
F̃ ◦ id×α

(
M1×B(z0,R)

))
= diam

(
F̃
(
M1×B(z1,R)

))
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This shows that D is well-defined. Since M1 is compact, D(z̃) < ∞ for each z̃ ∈ N1. Since D is

continuous and N1 is compact, it follows that D is bounded above by some C ≥ 0. If (qi,zi) ∈M0×N0,

i = 0,1, satisfy dN0(z0,z1)≤R, then dN
(
F(q0,z0),F(q1,z1)

)
≤ diam

(
F̃
(
M1×B(z0,R)

))
= D

(
φ(z0)

)
≤C.

It only remains to show that this inequality holds for an arbitrary lift G : M0 ×N0 → N of f . This

follows from the fact that there exists an isometry γ : N→ N such that γ ◦F = G.

�

Remark 5.12. In the case of R = 0, Lemma 5.11(b) is equivalent to the statement that every such

lift F satisfies diam
(
F ◦ ιz(M0)

)
≤ C for each z ∈ N0. For this to hold, the diagram (5.1) need only

commute, not necessarily isometrically. One may define a pseudo-metric dF on M0×N0 by setting

dF
(
(q0,z0), (q1,z1)

)
:= dN

(
F(q0,z0),F(q1,z1)

)
for any such lift F. One may also define a pseudo-metric dH on N0 by setting dH(z0,z1) to be the

Hausdorff distance between the compact sets F
(
π−1

0 (z0)
)

and F
(
π−1

0 (z1)
)
. The result for R = 0 is

then equivalent to the statement that (M0 ×N0, dF) is within finite Gromov-Hausdorff distance of

(N0, dH).

Lemma 5.13. Suppose the diagram (5.1) commutes isometrically, where M0 has finite volume. Then

there exists a number #(ψ) ∈N such that each ψ|z has #(ψ) sheets and each M1-fiber of M1×N1 has

volume equal to 1
#(ψ) vol(M0).

Proof. By Lemma 5.5, each M1-fiber of M1×N1 is totally geodesic. Since the M0-fibers of M0×N0

are also totally geodesic and ψ is a local isometry, Lemma 5.3 implies that each ψ|M0×{z} : M0×{z}→

M1×{φ(z)} is a Riemannian covering map. Since M0 has finite volume, each ψ|M0×{z} must therefore

be a finite covering map, and each M1-fiber must have finite volume. Let χ = χx := ρ1 ◦ψ ◦ ιx and

ϕ : M0 ×N0→ M0 ×N0 be as in Proposition 5.4, so that the diagram (5.2) commutes. As shown in

the proof of Lemma 5.9, each π0 ◦ϕ◦ ιz is constant, and, consequently, each ρ0 ◦ϕ◦ ιz : M0→ M0 is

a homeomorphism. Therefore, χ = (ρ1 ◦ψ◦ ιπ0◦ϕ◦z)◦ (ρ0 ◦ϕ◦ ιz) for each z. That is to say, ρ0 ◦ϕ◦ ιz

maps each fiber of χ to a fiber of ρ1 ◦ψ◦ ιπ0◦ϕ◦z; so their fibers must have the same cardinality. Since

π0 ◦ϕ is surjective, this shows that each ϕ|M0×{z} has the same number of sheets as χ. Let #(ψ) ∈ N

denote that common number of sheets. Then each M1-fiber must have volume equal to 1
#(ψ) vol(M0).

�
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Remark 5.14. By Lemma 5.6, whenever (5.1) commutes isometrically, the deck transformation

group Γ of ψ satisfies Γ ⊆I (M0)×I (N0). In the abstract, M1 is realized as the quotient of M0 by

the kernel of the projection onto the first component of that splitting. This provides another way of

seeing that each ψ|z has the same number of sheets.

As a consequence of Lemma 2.1.1 and Lemma 2.1.2, when a diagram of the form (5.1) commutes

isometrically and ψ1 : M1 ×N1 → M is a finite Riemannian covering map, one may, by passing to

covers of the spaces in the diagram, replace ψ1 with a normal covering map. That is the content

of the next lemma, which is rather technical but will play an important role in the work to come.

A few more algebraic preliminaries will help clarify the argument. A key fact, which will be used

implicitly and repeatedly, is that, when M ×N is a product manifold and (p,q) ∈ M ×N, the map

π1(M, p)×π1(N,q)→ π1
(
M×N, (p,q)

)
defined by

([α], [β]) 7→ [ιq,1 ◦α][ιp,2 ◦β]

is an isomorphism, where ιq,1 : M→ M ×N and ιp,2 : N → M ×N are the standard inclusion maps

ιq,1(·) := (·,q) and ιp,2(·) := (p, ·). Suppose A ≤ π1(M, p) and B ≤ π1(N,q). Since each of π1(M, p) �

π1(M,q(ιq,1)∗
(
π1(M, p)

)
and π1(N,q)� (ιp,2)∗

(
π1(N,q)

)
, viewed as subgroups of π1(M, p)×π1(N,q)�

π1
(
M × N, (p,q)

)
, is contained in the centralizer of the other, the subgroup product AB is a sub-

group of π1
(
M × N, (p,q)

)
. If f : M × N → X is continuous and x := f (p,q), then, since f∗ :

π1
(
M ×N, (p,q)

)
→ π1(X, x) is a homomorphism, f∗(A× B) = f∗(AB) = f∗(A) f∗(B), the latter also

being the subgroup product. When X = Y × Z and f is a product map of the form f = g× h for

g : M→ Y and h : N→ Z, where y = g(p) and z = h(q), these equalities take the form (g×h)∗(A×B) =

g∗(A)×h∗(B) = (ιz,1 ◦g)∗(A)(ιx,2 ◦h)∗(B).

Lemma 5.2.1. Suppose the diagram (5.1) commutes. Let M be a manifold and ψ1 : M1 ×N1→ M

a finite covering map. Then there exist manifolds M̂i and N̂i, i = 1,2, and covering maps ψ̂0 :

M̂0× N̂0→ M̂1× N̂1 and φ̂ : N̂0→ N̂1 such that the diagram

M̂0× N̂0
π̂0 //

ψ̂0
��

N̂0

φ̂
��

M̂1× N̂1
π̂1 // N̂1

(5.3)

commutes, where each π̂i denotes projection onto the second component. There also exist finite and

normal covering maps ψ̂1 : M̂1× N̂1→ M, ζ1 : N̂1→ N1, ξ1× ζ1 : M̂1× N̂1→ M1×N1 and, for each
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i = 1,2, ξi : M̂i→ Mi. If N0 is simply connected, then N̂0 = N0 and ξ0 × id : M̂0 × N̂0→ M0 ×N0 is

a finite and normal covering map. Moreover, if the Mi, Ni, and Mi×Ni are Riemannian manifolds,

where M0 × N0 has the product metric obtained from M0 and N0, and ψ0, ψ1, and φ are local

isometries, then the M̂i, N̂i, and M̂i × N̂i may be endowed with Riemannian metrics, where the

metric on M̂0 × N̂0 is the product metric obtained from M̂0 and N̂0, that make ψ̂0, ψ̂1, and φ̂ local

isometries.

Proof. Let (p̃, x̃) ∈ M1×N1 and (p, x) ∈ ψ−1
0 ( p̃, x̃), where, since φ◦π0 = π1 ◦ψ0, φ(x) = x̃. Write x :=

ψ1( p̃, x̃). Since ψ1 has finitely many sheets, G := (ψ1)∗
(
π1

(
M1×N1, ( p̃, x̃)

))
is a finite-index subgroup

of π1(M, x). Note that π1
(
M1 ×N1, ( p̃, x̃)

)
� π1(M1, p̃)×π1(N1, x̃). Write G1 := (ψ1 ◦ ιx̃)∗

(
π1(M1, p̃)

)
and G2 := (ψ1 ◦ ι p̃)∗

(
π1(N1, x̃)

)
. Then G �G1×G2. By Lemma 2.1.1, there exists a normal subgroup

H of π1(M, x) such that H ⊆G and [G : H]≤ [π1(M, x) : H]<∞. By Lemma 2.1.2, there exist normal

subgroups Hi of Gi, i = 1,2, such that H1×H2 ⊆H, [Gi : Hi]≤ [G : H] for each i, and [G : H1×H2]<

∞. Since (ψ1 ◦ ιx̃)∗ : π1(M1, p̃)→G1 and (ψ1 ◦ ι p̃)∗ : π1(N1, x̃)→G2 are isomorphisms, Ĥ1 := (ψ1 ◦

ιx̃)−1
∗ (H1) and Ĥ2 := (ψ1◦ι p̃)−1

∗ (H2) are finite-index and normal subgroups of π1(M1, p̃) and π1(N1, x̃),

respectively. By the general theory of covering spaces, there exist a manifold M̂1, a point p̂1 ∈ M̂1,

and a finite and normal covering map ξ1 : M̂1→M1 such that ξ1( p̂1) = p̃ and (ξ1)∗
(
π1(M̂1, p̂1)

)
= Ĥ1.

Similarly, there exist a manifold N̂1, x̂1 ∈ N̂1, and a finite and normal covering map ζ1 : N̂1 → N1

such that ζ1(x̂1) = x̃ and (ζ1)∗
(
π1(N̂1, x̂1)

)
= Ĥ2. Since ξ1 and ζ1 are finite finite and normal, so

is ξ1 × ζ1. By construction, ψ̂1 := ψ1 ◦
(
ξ1 × ζ1

)
is a covering map that satisfies ψ̂1(p̂1, x̂1) = x and

(ψ̂1)∗
(
π1

(
M̂1× N̂1, (p̂1, x̂1)

))
= H1×H2. It follows that ψ̂1 is finite and normal.

By Lemma 5.3, ψ0|M0×{x} : M0×{x}→M1×{x̃} is a covering map. So χ := 1
2ρ1◦ψ0◦ ιx : M0→M1

is a covering map satisfying χ(p) = p̃. Let I := Ĥ1 ∩χ∗
(
π1(M0, p)

)
≤ π1(M1, p̃). Then there exist a

manifold M̂0, p̂0 ∈ M̂0, and covering maps χ̂ : M̂0 → M̂1 and ξ0 : M̂0 → M0 such that χ̂( p̂0) = p̂1,

ξ0( p̂0) = p, ξ1 ◦ χ̂ = χ ◦ ξ0, and (ξ1 ◦ χ̂)∗
(
π1(M̂0, p̂0)

)
= I = (χ ◦ ξ0)∗

(
π1(M̂0, p̂0)

)
. Note that I is a

normal subgroup of χ∗
(
π1(M0, p)

)
. By the second isomorphism theorem,

[χ∗
(
π1(M0, p)

)
: I] = [χ∗

(
π1(M0, p)

)
Ĥ1 : Ĥ1] ≤ [π1(M1, q̃) : Ĥ1] <∞

So ξ0 is finite and normal. The constructions involving N̂0 are different and somewhat simpler: Let

ζ0 : N̂0→ N0 be the universal covering map of N0 and x̂0 ∈ ζ
−1
0 (x). Then there exists a covering map

φ̂ : N̂0→ N̂1 such that φ̂(x̂0) = x̂1 ζ1 ◦ φ̂ = φ◦ ζ0.
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The next step is to define a covering map ψ̂0 : M̂0× N̂0→ M̂1× N̂1 so that the diagram

M̂0× N̂0
ψ̂0

yy

ξ0×ζ0

%%
M̂1× N̂1

ξ1×ζ1 %%

M0×N0

ψ0yy
M1×N1

commutes. This is done by lifting along ξ1× ζ1. Note that

ψ0 ◦ (ξ0× ζ0)(p̂0, x̂0) = ψ0(p, x) = ( p̃, x̃) = ξ1× ζ1( p̂1, x̂1)

Since ξ1 × ζ1 is a covering map, a map ψ̂0 satisfying the above diagram and ψ̂0( p̂0, x̂0) = ( p̂1, x̂1)

exists exactly when

(
ψ0 ◦ (ξ0× ζ0)

)
∗

(
π1

(
M̂0× N̂0, ( p̂0, x̂0)

))
≤ (ξ1× ζ1)∗

(
π1

(
M̂1× N̂1, ( p̂1, x̂1)

))
Note that the diagram

M̂0
ξ0 //

χ̂

��

M0
ιx //

χ

��

M0×N0

ψ0

��
M̂1

ξ1 // M1
ιx̃ // M1×N1

commutes. Therefore,

(ψ0 ◦ ιx ◦ ξ0)∗
(
π1(M̂0, p̂0)

)
= (ιx̃ ◦ ξ1 ◦ χ̂)∗

(
π1(M̂0, p̂0)

)
= (ιx̃)∗(I)

≤ (ιx̃)∗(Ĥ1)

= (ιx̃ ◦ ξ1)∗
(
π1(M̂1, p̂1)

)
It follows that

(
ψ0 ◦ (ξ0× ζ0)

)
∗

(
π1

(
M̂0× N̂0, ( p̂0, x̂0)

))
= (ψ0)∗

(
(ιx ◦ ξ0)∗

(
π1(M̂0, p̂0)

)
(ιp ◦ ζ0)∗

(
π1(N̂0, x̂0)

))
= (ψ0 ◦ ιx ◦ ξ0)∗

(
π1(M̂0, p̂0)

)
(ψ0 ◦ ιp ◦ ζ0)∗

(
π1(N̂0, x̂0)

)
= (ψ0 ◦ ιx ◦ ξ0)∗

(
π1(M̂0, p̂0)

)
≤ (ιx̃ ◦ ξ1)∗

(
π1(M̂1, p̂1)

)
≤ (ιx̃ ◦ ξ1)∗

(
π1(M̂1, p̂1)

)
(ιp̃ ◦ ζ1)∗

(
π1(N̂1, x̂1)

)
= (ξ1× ζ1)∗

(
π1

(
M̂1× N̂1, ( p̂1, x̂1)

))
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where the equality in the fourth line follows from the fact that N̂0 is simply connected. Thus ψ̂0

exists. Since ψ0 ◦ (ξ0 × ζ0) and ξ1 × ζ1 are covering maps between manifolds, ψ̂0 must also be a

covering map.

It will next be shown that π̂1 ◦ ψ̂0 = φ̂ ◦ π̂0. Write ψ̂0 = (α̂, β̂) for maps α̂ : M̂0 × N̂0 → M̂1 and

β̂ : M̂0 × N̂0 → N̂1. Then π1 ◦ (ξ1 × ζ1) ◦ ψ̂0 = π1(ξ1 ◦ α̂, ζ1 ◦ β̂) = ζ1 ◦ β̂. At the same time, by the

definition of ψ̂0, π1 ◦ (ξ1 × ζ1) ◦ ψ̂0 = π1 ◦ψ0 ◦ (ξ0 × ζ0) = φ ◦π0 ◦ (ξ0 × ζ0) = φ ◦ ζ0 ◦ π̂0 = ζ1 ◦ φ̂ ◦ π̂0.

Thus ζ1 ◦ β̂ = ζ1 ◦ φ̂ ◦ π̂0. Put differently, β̂ and φ̂ ◦ π̂0 are lifts via ζ1 of the same function. Since

β̂( p̂0, x̂0) = π̂1◦ ψ̂0( p̂0, x̂0) = π̂1( p̂1, x̂1) = x̂1 = φ̂(x̂0) = φ̂◦ π̂0( p̂0, x̂0), it follows that π̂1◦ ψ̂0 = β̂= φ̂◦ π̂0.

In the case that N0 is simply connected, N̂0 = N0 and ζ0 = id, and ξ0 × ζ0 = ξ0 × id is a finite

covering map. In the case that the Mi, Ni, and Mi ×Ni are Riemannian manifolds, where M0 ×N0

has the product metric obtained from M0 and N0, and ψ0, ψ1, and φ are local isometries, each of the

manifolds M̂i, N̂i, and M̂i× N̂i may be endowed with the pull-back metrics from the corresponding

ξi, ζi, and ξi× ζi, respectively. Since M0×N0 has a product metric, the pull-back metric on M̂0× N̂0

from ξ0 × ζ0 is the product metric obtained from M̂0 and N̂0. Since ξ1 ◦ ζ1 ◦ ψ̂0 = ψ0 ◦ ξ0 × ζ0,

ψ̂1 = ψ1 ◦ (ξ1× ζ1), and ζ1 ◦ φ̂ = φ◦ ζ0, the maps ψ̂0, ψ̂1, and φ̂ are local isometries.

�
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Chapter 6

Deformation into totally geodesic maps

6.1 Riemannian center of mass

A key tool that will be used is the center of mass. According to Berger [Ber], this topic has a

long history. It was first used by Cartan to study manifolds of non-positive curvature and has since

been used productively by a number of prominent geometers. Its modern renaissance seems to date

to the work of Grove–Karcher [GK]. It turns out that the construction works equally well on the

universal cover of a complete manifold with no focal points, since the essential property it requires

is that the distance squared to each point is strictly convex. This chapter begins with a proof that the

center of mass exists. Key properties that will be used are from Corollary 2.5.7(a)-(b). Namely, if

N is a complete Riemannian manifold and q ∈ N, then B
(
q, 1

2ρ(q)
)

is strongly convex and, for each

z ∈ B
(
q, 1

2ρ(q)
)
, the function d2(·,z)|B

(
q, 1

2ρ(q)
) is strictly convex.

Lemma 6.1.1. Let N be a Riemannian manifold, q ∈ N, and Y ⊂ B
(
q, 1

2ρ(q)
)

a compact and convex

set. If p ∈ B
(
q, 1

2ρ(q)
)
\Y, let γ : [0,1]→ N be any geodesic with γ(0) = p, γ(1) ∈ Y, and L(γ) =

d(p,Y). Then, for each y ∈ Y, the function t 7→ d
(
γ(t),y

)
is strictly decreasing.

Proof. It suffices to show that t 7→ d2(γ(t),y
)

is strictly decreasing, since
√
· : (0,∞)→ (0,∞) is

strictly increasing. This is equivalent to s 7→ d2(γ(1− s),y
)

being strictly increasing. Let α : [0,1]→

B
(
q, 1

2ρ(q)
)

be the unique minimal geodesic connecting y to γ(1). Since Y is convex, α([0,1]) ⊆ Y .

Since y ∈ B
(
q, 1

2ρ(q)
)
, the function d2(·,y) is strictly convex on B

(
q, 1

2ρ(q)
)
. Since γ realizes the

distance from p to Y , the first variation formula implies that g
(
α′(1),γ′(1)

)
≤ 0. The result follows

by constructing a variation

A : [0, ε)× [0,1]→ B
(
q,

1
2
ρ(q)

)
of α by setting A(s, t) := expy

(
t exp−1

y
(
γ(1− s)

))
and applying the first variation formula; this shows

that s 7→ d2(γ(1− s),y
)

has non-negative derivative at s = 0. By strict convexity, it must be strictly
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increasing on [0,1].

�

A mass distribution is a measurable function m : Z → M, where (Z, ν) is a measure space of

total measure one. Whenever m maps into a ball B(q,R), where 0 < R < 1
2ρ(q), the function

x 7→
∫

Z d2(x,m(z)
)
dν, defined on B

(
q, 1

2ρ(q)
)
, is strictly convex and, consequently, attains a unique

minimum on B(q,R). The above lemma implies that this minimum must occur inside conv
(
m(Z)

)
and be a global minimum on B

(
q, 1

2ρ(q)
)
.

Proposition 6.1.2. Let M be a complete Riemannian manifold, q ∈ M, and m : Z → B
(
q, 1

2ρ(q)
)

a

mass distribution. Then the function x 7→
∫

Z d2(x,m(z)
)
dν is strictly convex on B

(
q, 1

2ρ(q)
)
.

Proof. By the construction of 1
2ρ(q), for each z ∈ Z, the function d2(·,m(z)

)
is strictly convex on

B
(
q, 1

2ρ(q)
)
. The result now follows from Lemma 2.4.1.

�

Proposition 6.1.3. Let M be a complete Riemannian manifold, q ∈ M, and m : Z → M a mass

distribution. Suppose m(Z)⊆B(q,R) for some 0<R< 1
2ρ(q). Then the function x 7→

∫
Z d2(x,m(z)

)
dν

attains a unique minimum Φm on B
(
q, 1

2ρ(q)
)
, which must lie inside conv

(
m(Z)

)
. If R < ρ(q)

6 , then Φm

is the unique minimum on N.

Proof. By the construction of 1
2ρ(q), the ball B(q,R) is strongly convex, so B(q,R) is as well.

Since m(Z) ⊆ B(q,R), conv
(
m(Z)

)
⊆ B(q,R). Since x 7→

∫
Z d2(x,m(z)

)
dν is strictly convex, it at-

tains a unique minimum Φm on conv
(
m(Z)

)
. Assume there exists x ∈ B

(
q, 1

2ρ(q)
)
\ conv

(
m(Z)

)
such that

∫
Z d2(x,m(z)

)
dν ≤

∫
Z d2(Φm,m(z)

)
dν. Let γ : [0,1]→ M be any geodesic with γ(0) = x,

γ(1) ∈ conv
(
m(Z)

)
, and L(γ) = d

(
x,conv

(
m(Z)

))
. By Lemma 6.1.1, t 7→ d

(
γ(t),m(z)

)
is strictly

decreasing for each z ∈ Z, so d2(γ(1),m(z)
)
< d2(x,m(z)

)
, and, consequently,

∫
Z d2(Φx,m(z)

)
dµ ≤∫

Z d2(x,m(z)
)
dµ <

∫
Z d2(γ(1),m(z)

)
dµ. This is a contradiction, which shows that Φm is the unique

minimum on B
(
q, 1

2ρ(q)
)
. Suppose R <

ρ(q)
6 . Then there cannot exist x ∈ N \ B

(
q, 1

2ρ(q)
)

with∫
Z d2(x,m(z)

)
dν≤

∫
Z d2(Φm,m(z)

)
dν, since then d

(
x,m(z)

)
≥

ρ(q)
3 and d

(
Φm,m(z)

)
<

ρ(q)
3 for all z ∈ Z.

So Φm is the unique minimum on N.

�
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The point Φm ∈ B
(
q, 1

2ρ(q)
)

is called the center of mass of m. In Grove–Karcher [GK], its existence

is shown using a somewhat different tack, although ultimately the strict convexity of the square of

the distance function is the key point in any approach. They prove that, when the mass distribution

m(Z) maps into a sufficiently small ball, whose size is given explicitly in terms of upper and lower

bounds for the sectional curvature and the injectivity radius, the function x 7→
∫

Z exp−1
x

(
m(z)

)
dν has

a unique zero. This zero is Φm.

Lemma 6.1.4. Let M be a complete Riemannian manifold, q ∈ M, and m : Z→ M a mass distribu-

tion. Suppose m(Z) ⊆ B(q,R) for some 0 < R < 1
2ρ(q). Then Φm equals the unique minimum of the

function x 7→
∫

Z exp−1
x

(
m(z)

)
dν on B(q,R).

Proof. Let v ∈ TxB(x,R). For each z ∈ Z, construct a variation V : (−ε,ε)× [0,1] → B(x,R) by

V(s, t) := expm(z)

(
t · exp−1

m(z)
(
γv(s)

))
. As shown in the proof of Lemma 2.5.5,

d
ds

∣∣∣∣
s=0

d2(γv(s),m(z)
)

= −2g
(
v,exp−1

q
(
m(z)

))
Therefore, the gradient ∇v

∫
Z d2(·,m(z)

)
dν satisfies

∇v

∫
Z

d2(·,m(z)
)
dν =

d
ds
|s=0

∫
Z

d2(γ(s),m(z)
)
dν

=

∫
Z

d
ds
|s=0 d2(γ(s),m(z)

)
dν

= −2
∫

Z
g
(
v,exp−1

x
(
m(z)

))
dν

= −2g
(
v,

∫
Z

exp−1
x

(
m(z)

))
dν

Since Φm minimizes x 7→
∫

Z d2(x,m(z)
)
dν, it follows that g

(
v,

∫
Z exp−1

Φm

(
m(z)

)
dν

)
= 0 for all vec-

tors v ∈ TΦmB(x,R), and consequently
∫

Z exp−1
Φm

(
m(z)

)
dν = 0. Since Φm is the unique minimum on

B(x,R), the function x 7→
∫

Z exp−1
x

(
m(z)

)
dν can have no other zeros on B(x,R).

�

Another useful property is that, roughly speaking, the center of mass in a product space is the

product of the centers of mass.

Lemma 6.1.5. Let M be a complete Riemannian manifold, q ∈M, R< 1
2ρ(q), m : Z→B(q,R) a mass

distribution, and S a closed and convex subset of B(q,R). Suppose that S is isometric to the product
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S 1 × · · · ×S n, where the S i are convex subsets of S . For each i = 1, . . . ,n, denote by πi : S → S i the

standard projection. If m(Z) ⊆ S , then Φm =
(
Φπ1◦m, . . . ,Φπn◦m

)
.

Proof. Note that S and the S i are strongly convex, since B(q,R) is strongly convex. Note that

conv
(
πi ◦m(Z)

)
⊆ S i. Thus Φπi◦m ∈ S i. It follows that

(
Φπ1◦m, . . . ,Φπn◦m

)
is identified with a point in

S . By the same reasoning, Φm ∈ conv
(
m(Z)

)
⊆ S , which, since S is isometric to S 1×· · ·×S n, means

that there exist si ∈ S i such that Φm = (s1, . . . , sn). Since S and S i are convex, dS = d on S × S ,

dS i = d on S i×S i, and d2((x1, . . . , xn), (y1, . . . ,yn)
)

=
∑n

i=1 d2(xi,yi) for xi,yi ∈ S i. Therefore,∫
Z

d2(Φm,m(z)
)
dν =

∫
Z

d2
(
(s1, . . . , sn),

(
π1 ◦m(z), . . . ,πn ◦m(z)

))
dν

=

n∑
i=1

∫
Z

d2(si,πi ◦m(z)
)
dν

≥

n∑
i=1

∫
Z

d2(Φπi◦m,πi ◦m(z)
)
dν

with equality if and only if si = Φπi◦m for all i. Since Φm is the unique minimum of the function

x 7→
∫

Z d2(·,m(z)
)
dz, it follows that Φm = (Φπ1◦m, . . . ,Φπn◦m).

�

It’s also worth noting that, since the center of mass is defined only using the distance function, it

commutes with isometries.

Lemma 6.1.6. Let M be a complete Riemannian manifold, q ∈ M, and m : Z→ M a mass distribu-

tion. Suppose m(Z) ⊆ B(q,R) for some 0 < R < 1
2ρ(q). Let γ ∈I (M). Then γ(Φm) = Φγ◦m.

The following will also be useful; it will be applied to show that the center of mass can be used to

smooth out a map without leaving a locally convex set.

Lemma 6.1.7. Let M be a complete Riemannian manifold, q ∈ M, 0 < R < 1
2ρ(q), S a compact and

locally convex subset of B(q,R), and m : Z→ S a mass distribution. If ν
(
m−1(S ◦)

)
> 0, where S ◦ is

defined with respect to the structure S has as a topological manifold, possibly with boundary, then

Φm ∈ S ◦.

Proof. Since S is convex, conv
(
m(Z)

)
⊆ S , so Φm ∈ S . Assume Φm ∈ ∂S . Let P be a supporting

hyperplane to S at Φm. Since ν
(
m−1(S ◦)

)
> 0, m−1(S ◦) , ∅. There are two unit normal vectors to P

at Φm; let ν be the one with the property that g
(
exp−1

Φm

(
m(z)

)
, ν

)
> 0 for all z ∈ m−1(S ◦). Note that
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g
(
exp−1

Φm

(
m(z)

)
,v

)
≥ 0 for all z ∈ Z. It follows that g

(∫
Z exp−1

Φm

(
m(z)

)
dν,v

)
=

∫
Z g

(
exp−1

Φm

(
m(z)

)
,v

)
dν≥∫

m−1(S ◦) g
(
exp−1

Φm

(
m(z)

)
,v

)
dν > 0. This contradicts the fact that

∫
Z exp−1

Φm

(
m(z)

)
dν = 0. Therefore,

Φm ∈ S ◦.

�

I will need to use the center of mass mostly when Y is a discrete set of point masses of the form

{yi
∣∣∣1 ≤ i ≤ k} ⊂ B

(
q, 1

2ρ(q)
)
, where each yi has mass λi ∈ [0,1] and

∑k
i=1λi = 1. To bring this in

line with the definition given above, Z is taken to be a finite set {zi
∣∣∣1 ≤ i ≤ k}, ν is the discrete

measure ν(zi) = λi, and m : Z→ N is defined by m(zi) = yi. In this special case, much of the abstract

formalism can be done away with. For any Y = (y1, . . . ,yk) ∈ N
k

and Λ = (λ1, . . . ,λk) ∈ [0,1]k, where∑k
i=1λi = 1, the trio (Z, ν,m) will be implicitly identified with the pair (Y,Λ), and Φm will be denoted

ΦΛ(Y). Since yi ∈ B
(
q, 1

2ρ(q)
)
, there exists 0 < R < 1

2ρ(q) such that yi ∈ B(q,R), so ΦΛ(Y) exists,

uniquely minimizes x 7→
∑k

i=1λi d2(x,yi) on N, and lies inside conv{y1, . . . ,yn}. Since the function∑k
i=1λi d2(·,yi) varies continuously with yi and λi, this defines a continuous function Φ : N

k
×Z →

B(q,R), where Z denotes the zero set of (λ1, . . . ,λk) 7→ (
∑k

i=1λi)−1, viewed as a function on [0,1]k.

The previous lemmas, in this special case, take the following forms.

Lemma 6.1.8. Let M be a complete Riemannian manifold, q ∈ M, R < 1
2ρ(q), and S a closed and

convex subset of B(q,R). Suppose that S is isometric to the product S 1 × · · · × S n, where the S i

are convex subsets of S . For each i = 1, . . . ,n, denote by πi : S → S i the standard projection. If

Y ∈ S k and Λ ∈ [0,1]k, where
∑k

i=1λi = 1, then ΦΛ(Y) =
(
ΦΛ

(
π1(Y)

)
, . . . ,ΦΛ

(
πn(Y)

))
, where πi(Y) =

πi(y1, . . . ,yk) =
(
πi(y1), . . . ,πi(yk)

)
.

Lemma 6.1.9. Let M be a complete Riemannian manifold, q ∈ M, 0 < R < 1
2ρ(q), S a compact

and convex subset of B(q,R), Y ∈ S k, and Λ ∈ [0,1]k, where
∑k

i=1λi = 1. If there exists yi ∈ S ◦ with

λi > 0, where S ◦ is defined with respect to the structure S has as a topological manifold, possibly

with boundary, then ΦΛ(Y) ∈ S ◦.

Lemma 6.1.10. Let M be a complete Riemannian manifold, q ∈ M, and Λ ∈ [0,1]k, where
∑k

i=1λi =

1. Suppose Y ∈ B
(
q, 1

2ρ(q)
)k. Let φ : M→ M be an isometry. Then φ

(
ΦΛ(Y)

)
= ΦΛ

(
φ(Y)

)
.

It follows immediately from the definition of Φ that, for any Λ = (λ1, . . . ,λk) ∈ Z k and x ∈ M,

ΦΛ(x, . . . , x) = x. Moreover, the center of mass is invariant under permutations of indices. That
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is, if σ : {1, . . . ,k} → {0, . . . ,k} is any permutation, σ(Λ) := (λσ(1), . . . ,λσ(k)), and σ(x1, . . . , xk) :=

(xσ(1), . . . , xσ(k)), then Φσ(Λ)
(
σ(x)

)
= ΦΛ(x).

6.2 Construction of a homotopy

A key insight of Cao–Cheeger–Rong is that the center of mass function can be used to glue together

homotopies in a way that preserves the property of being totally geodesic [CCR1]. They were

working in the context of Riemannian manifolds N with non-positive sectional curvature, but the

essential property required is only that, for each p ∈ N, d2(·, p) is strictly convex. By Theorem 4.1.1,

this holds when N has no focal points. In this case, by Corollary 2.5.7, ρ(N) =∞ and the center of

mass is defined globally on N.

Theorem 6.2.1. Let M be a manifold, N a complete Riemannian manifold with no focal points,

and h1, . . . ,hk : [a,b]×M → N continuous functions such that hi(a, ·) = h j(a, ·) for all i, j. Let Λ =

(λ1, . . . ,λk) ∈ Zk. Then there exists a continuous function h : [a,b]×M → N characterized by the

following property:

(*) If x ∈ M, then, for any lifts hi(·) : [a,b]→ N of the curves hi(·, x) satisfying hi(a) = h j(a) for all

i, j, h(·, x) = π◦ΦΛ

(
h1(·), . . . ,hk(·)

)
.

Consequently, this map satisfies h(a, ·) = hi(a, ·) for all i. If M is a flat Riemannian torus and each

hi(b, ·) is totally geodesic, then h(b, ·) is totally geodesic.

Proof. The map h will be defined by property (*), but first it must be shown that π◦ΦΛ(h1, . . . ,hk)

is independent of the choice of basepoint hi(a) ∈ N. This will follow from the fact that ΦΛ com-

mutes with the deck transformations of π : N → N. For any x ∈ M, let y1,y2 ∈ π
−1(hi(a, x)

)
⊆ N.

For each l = 1,2, denote by hi,l : [a,b]→ N the lifts of the paths hi(·, x) with hi,l(a) = yl. Denote

by γ : N → N the deck transformation satisfying γ(y1) = y2. Note that γ ◦ hi,1 = hi,2. Since γ ◦

ΦΛ(h1,1, . . . ,hk,1) = ΦΛ(γ◦h1,1, . . . ,γ◦hk,1) = ΦΛ(h1,2, . . . ,hk,2), it follows that π◦ΦΛ(h1,1, . . . ,hk,1) =

π◦γ ◦ΦΛ(h1,1, . . . ,hk,1) = π◦ΦΛ(h1,2, . . . ,hk,2). Thus h is well-defined.

For any x ∈ M and y ∈ π−1(hi(a, x)
)
, let hi(·) : [a,b]→ N be lifts of hi(·, x) satisfying hi(a) = y for

all i, j. Then h(a, x) = π◦ΦΛ

(
h1(a), . . . ,hk(a)

)
= π◦ΦΛ(y, . . . ,y) = π(y) = hi(a, x). Thus h(a, ·) = hi(a, ·).

To see that h is continuous, first note that, for each x ∈ M, h(a, x) is contained in an open set V
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evenly covered by π. Since h(a, ·) = hi(a, ·) is continuous, h−1(a,V) is open. Therefore, the functions

hi(a, ·) have lifts on h−1(a,V) that extend to continuous functions hi : [a,b]×h−1(a,V)→ N. As the

composition of continuous functions, h = π◦ΦΛ(h1, . . . ,hn) is continuous.

Suppose that M is a flat torus T n and that each hi(b, ·) is totally geodesic. The goal is to show that

h(b, ·) is totally geodesic. Since each geodesic α0 : [a,b]→ T n may be uniformly closely approxi-

mated by some portion of a closed geodesic, it suffices by taking limits to prove that the composition

of h(b, ·) with any closed geodesic α : S 1 � ([0,1]/ ∼)→ T n is totally geodesic. Let q := h
(
a,α(0)

)
and [σ] := [h

(
a,α(·)

)
] ∈ π1(N,q), and let w ∈ TqN be the initial vector of the unique geodesic loop in

[σ]. Note that the image of the map induced on π1
(
[a,b]×S 1, (a,0)

)
by each hi

(
·,α(·)

)
: [a,b]×S 1→

N is the subgroup generated by [σ]. At the same time, (π[σ])∗
(
π1(Ñ[σ],w)

)
= Z([σ]). It follows that

the hi
(
·,α(·)

)
lift to maps H̃i : [a,b]×S 1 � [a,b]× ([0,1]/ ∼)→ Ñ[σ] such that H̃i(a,0) = H̃ j(a,0) = w

and H̃i(a, ·) = H̃ j(a, ·) for all i, j. Since each hi(b, ·) is totally geodesic, H̃i(b, ·) is a closed geodesic,

which means that H̃i(b,S 1) ⊆ C̃[σ]. Let Hi : [a,b]× [0,1)→ N be lifts of H̃i|[a,b]×[0,1) to N with

Hi(a, ·) = H j(a, ·) for all i, j. Then all Hi
(
b, [0,1)

)
lie in the same component C of ψ−1

[σ](C̃[σ]). By

Theorem 4.1.6, C is strongly convex and splits isometrically as C0 ×R
rank{[σ]}, where rank{[σ]} ∈

{0,1} and each Hi(b, ·) maps into an Rrank{[σ]}-fiber. It follows that each Hi(b, ·) takes the form

Hi(b, t) = (ci,di +νt), where ci ∈C0, ν,di ∈ R, and, by Lemma 3.1.3, all Hi(b, ·) have the same speed

|ν|. This implies, by Lemma 6.1.8, that ΦΛ

(
H1(b, t), . . . ,Hk(b, t)

)
=

(
ΦΛ(c1, . . . ,ck), [

∑k
i=1λidi]νt

)
.

Therefore, h
(
b,α(·)

)
= π ◦ΦΛ

(
H1(b, ·), . . . ,Hk(b, ·)

)
is a geodesic. It follows that h(b, ·) is totally

geodesic.

�

Lemma 6.2.2. Let M be a manifold, N a complete Riemannian manifold with no focal points,

h1, . . . ,hk : [a,b]×M→N continuous functions such that hi(a, ·) = h j(a, ·) for all i, j, Λ = (λ1, . . . ,λk) ∈

Zk, and X ⊆M a path-connected set. Let h : [a,b]×M→N be the continuous function characterized

by property (*) that’s guaranteed by Theorem 6.2.1. If each hi(b, ·) is constant on X, then h(b, ·) is

constant on X.

Proof. Let pk ∈ X for k = 1,2, and write yk := h(a, pk). Then yk = hi(a, pk) for all i. Choose y1 ∈

π−1(z1). For each i, let hi,1 : [a,b]→ N denote the lift of hi(·, p1) with hi,1(a) = y1. Since X is path-

connected, there exists a path σ : [0,1]→ M from p1 to p2 such that σ([0,1]) ⊆ X. Then h
(
a,σ(·)

)
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is a path from y1 to y2. Since each hi(b, ·) is constant on X, each hi
(
b,σ(·)

)
is a constant path. Let

σ : [0,1]→ N be the lift of h
(
a,σ(·)

)
with σ(0) = y1, and write y2 := σ(1). Then y2 ∈ π

−1(y2). Let

hi,2 : [a,b]→ N denote the lift of hi(·, p2) with hi,2(a) = y2. Define a map Hi : [0,1]× [a,b]→ N

by Hi(s, t) := hi
(
t,σ(s)

)
. Since Hi(0,a) = hi(a, p1) = y1, Hi lifts to a map Hi : [0,1]× [a,b]→ N

satisfying Hi(0,a) = z1. By construction, Hi(0, ·) = hi,1(·); since Hi(a, ·) = σ, one has Hi(a,1) =

σ(1) = y2, which means Hi(1, ·) = hi,2(·). Since Hi(·,b) is constant, so is Hi(·,b). It follows that

hi,1(b) = Hi(0,b) = Hi(1,b) = hi,2(b). Therefore, by property (*),

h(b, p1) = π◦ΦΛ

(
h1,1(b), . . . ,hn,1(b)

)
= π◦ΦΛ

(
h1,2(b), . . . ,hn,2(b)

)
= h(b, p2)

This shows that h(b, ·) is constant on X.

�

The following theorems develop further machinery based upon observations of Cao–Cheeger–Rong

[CCR1] about the center of mass. By a well-known theorem of Bieberbach, every compact flat

manifold F admits a finite and normal covering by a torus. By averaging over the deck transforma-

tion group of such a covering π0 : T n→ F, one may prove that, whenever f : F → N is continuous

and f̃ := f ◦ψ : T n → N is homotopic to a totally geodesic map, f is also homotopic to a totally

geodesic map. It’s worth emphasizing, however, that the given homotopy on T n may not descend to

F. A somewhat more general form of this principle, to finite covering maps that aren’t necessarily

normal, is stated in Lemma 6.2.3, with the normal case discussed in Remark 6.2.4.

Theorem 6.2.3. Let M and M̃ be Riemannian manifolds, ψ : M̃→ M a finite covering map with n

sheets, Λ ∈Zn, N a complete Riemannian manifold with no focal points, f : M→ N a continuous

function, and f̃ := f ◦ψ the lift of f to M̃. Suppose H̃ : [a,b]× M̃ → N is a continuous function

with H̃(a, ·) = f̃ (·). Then there exists a continuous function h : [a,b]×M→ N characterized by the

following property:

(**) If x ∈ M and ψ−1(x) = {x1, . . . , xn}, then, for any lifts hi(·) : [a,b]→ N of the curves H̃(·, xi)

satisfying hi(a) = h j(a) for all i, j, h(·, x) = π◦ΦΛ

(
h1(·), . . . ,hn(·)

)
.

Consequently, this map satisfies h(a, ·) = f (·).
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Proof. For each x ∈ M, let Ux ⊆ M be an open set containing x that’s evenly covered by ψ, and, for

each i = 1, . . . ,n, let Ux,i ⊆ M̃ be the component of ψ−1(Ux) containing xi. Let hx,i : [a,b]×Ux→ N be

defined by hx,i(t,y) := H̃
(
t,ψ|−1

Ux,i
(y)

)
. Then hx,i(a, ·) = f |Ux(·) for all i. Let hx : [a,b]×Ux→ N be the

map guaranteed by Theorem 6.2.1 with respect to the maps hx,i. Note that, for each y ∈Ux, hx(·,y) is

characterized by property (**), which is independent of x and Ux. Therefore, setting h(t,y) := hx(t,y)

for any x ∈ N such that y ∈Ux yields a well-defined map h : [a,b]×M→ N characterized by property

(**). By construction, h(a, ·) = f (·).

�

Remark 6.2.4. Suppose the covering map ψ in Theorem 6.2.3 is normal. Denote by Γ̃ = {γ̃1, . . . , γ̃n}

the deck transformation group of ψ. The maps H̃i : [a,b]× M̃→ N defined by H̃i(t, x) := H̃
(
t, γ̃i(x)

)
satisfy H̃i(a, ·) = H̃(·), and the map h̃ : [a,b]× M̃→ N guaranteed by Theorem 6.2.1 with respect to

the maps H̃i is Γ̃-equivariant. Since Γ̃ acts transitively on each fiber ψ−1(x), it follows that h̃ = h◦ψ,

where h : [a,b]×M→ N is the map from Theorem 6.2.3. Roughly speaking, h is the average of H̃

over Γ̃.

The next result will play an important technical role in the proof of the main theorem. The key idea

is that one may glue together locally defined homotopies using a partition of unity and the center of

mass.

Theorem 6.2.5. Let T n be a flat Riemannian torus and W and M manifolds, where M is connected,

and endow W×M×T n with the product metric obtained from any Riemannian metrics on W and M

and the given flat metric on T n. Let N be a complete Riemannian manifold with no focal points and

f : W ×M×T n→ N a continuous function. Suppose that, around each w ∈W, there exist an open

set Vw and a continuous function hw : [a,b]×Vw ×M ×T n → N such that hw(a, ·) = f |Vw×M×T n(·),

hw(b, ·) is constant along each M-fiber, and hw(b, ·) is totally geodesic along each T n-fiber. Then

there exists a continuous function H : [a,b]×W ×M × T n → N such that H(a, ·) = f (·), H(b, ·) is

constant along each W-fiber, and H(b, ·) is totally geodesic along each T n-fiber.

Proof. For each w ∈ W, let Uw ⊆ W be an open set containing w such that Uw ⊂ Uw ⊂ Vw, and

let {λw} be a partition of unity subordinate to the open cover {Uw} of W. The goal is to define a

homotopy H : [a,b]×W ×M→ N by gluing together the homotopies hw with weights λw. For each

p ∈ W, there exists a neighborhood Wp around p such that at most finitely many λw are non-zero
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on Wp. Denote these by λw1 , . . . ,λwk . If p < supp(λwi) for some i, then one may replace Wp with

Wp ∩ supp(λwi)
{ and discard λwi . In that way, one may, without loss of generality, suppose that

p ∈ supp(λwi) for each i and, consequently, that p ∈ Vwi . Further shrinking Wp, namely by replacing

it with Wp ∩
(
∩k

i=1 Vwi

)
, one may, without loss of generality, suppose that each Hwi is defined on

[0,1]×Wp×M×T n. Then Λp := (λw1 , . . . ,λwk ) is a continuous function from Wp into Zk ⊂ [0,1]k.

For each w ∈ Wp, let Hp,w : [a,b] × {w} × M × T n → N be the map characterized by prop-

erty (*) guaranteed by Theorem 6.2.1, where Λ = Λ(w) and hi = hwi |Wp×M×T n . Then Hp,w(a, ·) =

f |{w}×M×T n(a, ·). Note that Λ is constant along each M-fiber and each T n-fiber. Because each

Hp,w is characterized by property (*) along each T n-fiber, Theorem 6.2.1 states that Hp,w(b, ·) is

totally geodesic along each T n-fiber. Similarly, by Lemma 6.2.2, Hp,w is constant along each M-

fiber. Define Hp : [a,b]×Wp ×M × T n by Hp(t,w, x,y) := Hp,w(t, x,y). Since the center of mass

Φ : N
k
×Zk → N is continuous, the proof that Hp is continuous on [a,b]×Wp ×M ×T n proceeds

along exactly the same lines as in the proof of Theorem 6.2.1.

The desired homotopy H : [a,b]×W ×M×T n→ N will be defined on each [a,b]×Wp×M×T n

to equal Hp. To see that H is well-defined, suppose Wp1∩Wp2 , ∅. Then p1 and p2 are in the support

of every λw that’s non-zero on Wp1 and, similarly, every λw that’s non-zero on Wp2 . Therefore, p1

and p2 determine the same wi and, perhaps up to a permutation of their elements, Λp1 = Λp2 on

Wp1 ∩Wp2 . So Hp1 = Hp2 on [a,b]× (Wp1 ∩Wp2)×M ×T n. Since each Hp is continuous, so is H.

By construction, H(a, ·) = f (·), H(b, ·) is constant along each M-fiber, and H(b, ·) is totally geodesic

along each T n-fiber.

�

Remark 6.2.6. One may take M to be a single point in Theorem 6.2.5, in which case it becomes a

statement about maps f : W ×T n→ N. It will be interpreted this way in the proof of Theorem 6.2.8.

Remark 6.2.7. Theorem 6.2.5, along with most of the results in this section, generalizes to fiber bun-

dles T n→ M
π
→ B endowed with Riemannian bundle metrics with flat T n-fibers. Roughly speaking,

a Riemannian bundle metric is a metric defined only along the fibers of the bundle; equivalently, it

is the restriction to each fiber of a Riemannian metric on M. In that way, bundle metrics describe

the intrinsic geometry of the fibers. Since the proof of the Theorem 6.2.5 nowhere requires the

T n-fibers to be totally geodesic, the result naturally generalizes. However, such a generalization is
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not necessary for later developments.

From this point on, it will be assumed that M0, Rk, T k, and M1×T k have Riemannian metrics, that

the metric h on Rk is constant and flat, and that the diagram

M0×R
k π0 //

ψ0
��

Rk

φ

��
M1×T k π1 // T k

(6.1)

commutes isometrically. By definition, this means that M0 ×R
k has the product metric obtained

from M0 and Rk and that ψ0 and φ are Riemannian covering maps, but not necessarily that M1×T k

has a product metric nor that π1 is a Riemannian submersion. Since φ is a Riemannian covering

map, the metric on T k must be flat.

Theorem 6.2.8. Suppose the diagram (6.1) commutes isometrically. Let M be a Riemannian mani-

fold, ψ1 : M1×T k→ M a finite Riemannian covering map, N a compact Riemannian manifold with

no focal points, f : M→N a continuous function, and f̃ := f ◦ψ1. Suppose ( f̃ ◦ιx̃)∗
(
π1(M1, p̃)

)
=<e>

for any ( p̃, x̃) ∈ M1 ×T k. Then f is homotopic to a totally geodesic map whose lift to M1 ×T k is

constant along each M1-fiber.

Proof. By Lemma 5.2.1, one may replace M0 and M1 with the spaces M̂0 and M̂1, respectively,

in diagram (5.3), replace T k with a possibly larger flat torus, and replace ψ0, ψ1, and φ with the

corresponding covering maps, so that ψ1 is normal and the diagram

M0×N0
π0 //

ψ0

��

N0

φ

��
M1×N1

π1 // N1

commutes isometrically. It’s worth emphasizing that M0 ×R
k still possesses the product metric

obtained from M0 and Rk. In the first stage of the proof, M1 ×T k will be taken to have the product

metric obtained from M1 and T k, which is not necessarily the Riemannian covering metric with

respect to ψ1. For each x̃ ∈ M1, let U x̃ be a contractible neighborhood of x̃. It will be shown that

f̃ |U x̃×T k is homotopic to a map g̃x̃ : U x̃ × T k → N that’s totally geodesic along each T k-fiber with

respect to the product metric. Since U x̃ is contractible, f̃ |U x̃×T k is homotopic to a map f̃1,x̃ that’s

constant along each U x̃-fiber. The loop map Υ may be used to construct a homotopy from f̃1,x̃ to
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a map f̃2,x̃ that equals the totally geodesic map guaranteed by the flat torus theorem on each each

T k-fiber. Applying Theorem 6.2.5 to these sets U x̃ and the homotopies from f̃ |U x̃×T k to f̃2,x̃, one

obtains a homotopy from f̃ to a map g̃ that’s totally geodesic along each T k-fiber with respect to the

product metric. This is equivalent to g̃◦ ιp̃ : T k→ N being totally geodesic for each p̃ ∈ M1.

The map g̃ lifts canonically to a map G̃ : M1×T k→ Ñ[σ1],...,[σk]. Since g̃ is totally geodesic along

each T k-fiber, G̃(M1×T k) ⊆ C̃[σ1],...,[σk]. Fix ( p̃, x̃) ∈ M1×T k. Since G̃∗
(
π1

(
M1×{x̃}, (p̃, x̃)

))
=<e>,

G̃|M1×{x̃} lifts to a map G : M1×{x̃} → N such that

G(M1×{x̃}) ⊆min([σ1], . . . , [σk]) = ψ−1
[σ1],...,[σk](C̃[σ1],...,[σk])

Since min([σ1], . . . , [σk]) is strongly convex, G is homotopic to a constant map via a homotopy

that remains inside that minimal set. Composing the loop map Υ with the map ψ[σ1],...,[σk] ◦G, one

obtains a homotopy from g̃ to a map g̃0 that’s totally geodesic along each T k-fiber and constant

along each M0-fiber. By Lemma 5.10(a), g̃0 is totally geodesic with respect to the pull-back metric

from ψ1.

According to Remark 6.2.4, applying Lemma 6.2.3 to the homotopy from f̃ to g̃0 yields a

continuous map h : [a,b]×M→ N such that its lift h̃ : [a,b]× M̃→ N is characterized by property (*)

with respect to the maps H̃i(t, p̃, x̃) := H̃
(
t, γ̃i( p̃, x̃)

)
, where Γ̃ = {γ̃1, . . . , γ̃n} is the deck transformation

group of ψ1. It will be shown that h̃(b, ·) is totally geodesic along each T k-fiber with respect to the

product metric on M1×T k. By the general theory of covering spaces, corresponding to each γ̃i there

is a deck transformation γi of ψ1 ◦ψ0 such that the diagram

M0×R
k γi //

ψ0
��

M0×R
k

ψ0
��

M1×T k γ̃i // M1×T k

commutes. By Lemma 5.6, each γi is of the form γi = αi×βi for some αi ∈I (M0) and βi ∈I (Rk).

For each i, one has that

π1 ◦ γ̃i ◦ψ0 = π1 ◦ψ0 ◦γi

= φ◦π0 ◦γi

= φ◦βi ◦π0
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Let p̃1, p̃2 ∈ M1, x̃ ∈ T k, and x ∈ φ−1(x̃). By Lemma 5.3, ψ0|M0×{x} : M0M0 × {x} → M1 × {x̃} is

surjective. Thus there exist p j ∈ M0, j = 1,2, such that ψ0(p j, x) = ( p̃ j, x̃). It follows that

π1 ◦ γ̃i( p̃ j, x̃) = π1 ◦ γ̃i ◦ψ0(p j, x)

= φ◦βi ◦π0(p j, x)

= φ◦βi(x)

This shows that γ̃i( p̃1, x̃) and γ̃i( p̃2, x̃) lie in the same M1-fiber. Since g̃0 is constant along each

M1-fiber, one has

H̃i(b, p̃1, x̃) = H̃
(
b, γ̃i( p̃1, x̃)

)
= g̃0 ◦ γ̃i( p̃1, x̃)

= g̃0 ◦ γ̃i( p̃2, x̃)

= H̃
(
b, γ̃i( p̃2, x̃)

)
= H̃i(b, p̃2, x̃)

That is to say, each H̃i(b, ·) is constant along each M1-fiber. Let σ : [a,b]→ T k be a geodesic starting

at x̃ ∈ T k, and let σ̃ := ιp̃ ◦σ for p̃ ∈ M1. Choose (p, x) ∈ ψ−1( p̃, x̃), and let σ : [a,b]→ M0 ×R
k be

the lift of σ̃ satisfying σ(a) = (p, x) and ψ◦σ = σ̃. Since H̃i(b, ·) is constant along each M1-fiber and

π1 ◦ σ̃ = π1 ◦ψ◦σ = φ◦π0 ◦σ = φ◦π0 ◦ ιp ◦π0 ◦σ = π1 ◦ψ◦ ιp ◦π0 ◦σ,

H̃i
(
b, σ̃(·)

)
= H̃i

(
b,ψ◦ ιp ◦π0 ◦σ(·)

)
Arguing as before, one has that

H̃i
(
b,ψ◦ ιp ◦π0 ◦σ(·)

)
= H̃

(
b,ψ◦γi ◦ ιp ◦π0 ◦σ(·)

)
= H̃

(
b,ψ◦ (αi×βi)◦ ιp ◦π0 ◦σ(·)

)
= H̃

(
b,ψ

(
αi(p),βi ◦π0 ◦σ(·)

))
Since φ ◦ π0 ◦σ = π1 ◦ψ ◦σ = π1 ◦ ι p̃ ◦ σ̃ = σ̃ and φ is a local isometry, π0 ◦σ is a geodesic, so

βi ◦ π0 ◦σ is a geodesic in Rk. Since M0 ×R
k has a product metric,

(
αi(p),βi ◦ π0 ◦σ(·)

)
is also

a geodesic, which since ψ is a local isometry means that ψ
(
αi(p),βi ◦ π0 ◦σ(·)

)
is as well. Since

H̃(b, ·) = g̃0(·) is totally geodesic, H̃i
(
b, σ̃(·)

)
is a geodesic. So each H̃i

(
b, ι p̃(·)

)
is totally geodesic.
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It follows from Lemma 5.10(a) that each H̃i
(
b, ι p̃(·)

)
is totally geodesic. Theorem 6.2.1 now

implies that each h̃
(
b, ι p̃(·)

)
is totally geodesic. Moreover, by Lemma 6.2.2, h̃(b, ·) is constant along

each M1-fiber. Another application of Lemma 5.10(a) shows that h̃(b, ·) is totally geodesic with

respect to the pull-back metric, which implies that h(b, ·) is totally geodesic.

�

Remark 6.2.9. When M0 is compact and simply connected, π1(M1, p̃) is finite. By Theorem 3.1.5,

π1(N,y) is torsion-free. It follows that ( f̃ ◦ ιx̃)∗
(
π1(M1, p̃)

)
=<e>.

Theorem 6.2.10. Suppose the diagram (6.1) commutes isometrically. Let M be a Riemannian

manifold, ψ1 : M1×T k→ M a finite Riemannian covering map, N a complete Riemannian manifold

with no focal points, and [F] a homotopy class of maps from M to N such that, for any f ∈ [F] and

f̃ := f ◦ψ1, ( f̃ ◦ ιx̃)∗
(
π1(M1, p̃)

)
=<e> for any ( p̃, x̃) ∈M1×T k. Then the set of totally geodesic maps

in [F] is path-connected.

Proof. By Lemma 6.2.4, one may take ψ1 to be normal. Suppose f ,g ∈ [F] are are totally geodesic.

It follows from Lemma 5.10(b) that f̃ is constant along each M1-fiber and totally geodesic along

each T k-fiber. Thus f̃ descends to a totally geodesic map f̂ : T k → N. It’s similarly true that

g̃ := g ◦ψ1 descends to a totally geodesic map ĝ : T k → N. Theorem 4.1.14 states that f̂ and ĝ are

homotopic via a homotopy through totally geodesic maps. This homotopy can be extended to a

homotopy through totally geodesic maps on M1 ×T k that are constant along each M1-fiber. Using

Theorem 6.2.5, as discussed in Remark 6.2.4, this homotopy descends to one on M. It follows

exactly as in the proof of Theorem 6.2.8 that this homotopy is through totally geodesic maps.

�

By Corollary 5.2, when M is a compact manifold with non-negative Ricci curvature, one may sup-

pose that the diagram (6.1) commutes isometrically for a compact and simply connected M0 and that

there exists a finite Riemannian covering map ψ1 : M1 ×T k → M. As in Remark 6.2.9, f̃ := f ◦ψ1

satisfies ( f̃ ◦ ιz̃)∗
(
π1(M1, p̃)

)
=<e> for all ( p̃, z̃) ∈ M1 ×T k. Theorem 1.4(c) is therefore a corollary

of Theorem 6.2.8, and Theorem 1.4(a) is a corollary of Theorem 6.2.10.
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6.3 Generalization to product domains

This section contains the proof of Theorem 1.5. Much of the proof of the next result resembles that

of Theorem 6.2.5.

Lemma 6.3.1. Let M and N be Riemannian manifolds, and let S ⊆ N be a closed and convex set. If

f : M→ Y is continuous, then f is homotopic to a smooth map u : M→ N whose image lies in S ◦

via a homotopy H : [0,1]×M→ S .

Proof. If ∂S = ∅, there is little to prove, so one may suppose ∂S , ∅. The key idea is to construct

a continuous function R : [0,1]× S → S such that R(0, ·) = id(·) and R(1,S ) ⊆ S ◦. Assume this is

possible for the moment. Define H0(s, x) := R
(
s, f (x)

)
. Then H0(1,M) ⊂ S ◦. Since S is closed and

convex, S is a submanifold of N with totally geodesic interior and possibly non-smooth boundary. In

particular, S ◦ is a smooth manifold. Therefore, H0(1, ·) can be approximated by a smooth function

u : M → S ◦ such that d
(
H0(1, x),u(x)

)
< inj(S ). This means that x

V
7→ exp−1

H0(1,x)
(
u(x)

)
is a well-

defined vector field along H0(1,M). Note that V(x) ∈ TH0(1,x)S ⊆ TH0(1,x)N. The map H1 : [0,1]×

M→ S defined by H1(s, x) := expH0(1,x)
(
sV(x)

)
is a homotopy from H0(1, ·) to u(·). So H := H1 ·H0

is the desired homotopy, which completes the proof, modulo the existence of R.

Since S is a topological manifold with boundary, each point x ∈ S is contained in an open

ball B
(
x, ε(x)

)
such that B

(
x, ε(x)

)
∩ S is homeomorphic to an open subset of the closed upper

half-space in Rn. Without loss of generality, one may suppose that 0 < ε(x) ≤ ρ(x). Using these

homeomorphisms, one may construct a family of deformation retractions Rx : [0,1]×B
(
x, ε(x)

)
∩

S → B
(
x, ε(x)

)
onto subsets of B

(
x, ε(x)

)
∩ S ◦. Let {λx} be a partition of unity subordinate to the

open cover {B
(
x, 1

2ε(x)
)
∩ S

∣∣∣ x ∈ S } of S . The map R will be defined by gluing together the maps

Rx using the center of mass with weights λx. Around each p ∈ S , there exists an open set Vp such

that at most finitely many λx are non-zero on Vp. Denote these by λx1 , . . . ,λxk . If p < supp
(
λxi

)
for

some i, then one may replace Vp with Vp∩supp
(
λxi

){ and discard λxi . In that way, one may, without

loss of generality, suppose that p ∈ supp
(
λ(xi)

)
for each i and, consequently, that p ∈ B

(
xi,

1
2ε(xi)

)
.

Further shrinking Vp, namely by replacing it with Vp ∩
(
∩k

i=1 B
(
xi,

1
2ε(xi)

))
, one may, without loss

of generality, suppose that each Rxi is defined on [0,1]× Vp ∩ S . Then Λp := (λx1 , . . . ,λxk ) is a

continuous function from Vp into Zk.

For each x ∈ S and k ∈ N, the function ΦΛ is well-defined and continuous on B
(
x,ρ(x)

)k
×Z k.
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The desired map R will be defined on each [0,1]×Vp∩S to equal ΦΛp(Rx1 , . . . ,Rxk ). To see that R is

well-defined, suppose Vp1 ∩Vp2 , ∅. Then p1 and p2 are in the support of every λx that’s non-zero

on Vp1 and, similarly, every λx that’s non-zero on Vp2 . Therefore, p1 and p2 determine the same xi

and, perhaps up to a permutation of their elements, Λp1 = Λp2 on Vp1 ∩Vp2 . So ΦΛp1
(Rx1 , . . . ,Rxk ) =

ΦΛp2
(Rx1 , . . . ,Rxk ) on [0,1]× (Vp1 ∩Vp2 ∩S ). Since each Rp is continuous, so is R. By construction,

R(0, ·) = id(·). By Lemma 6.1.7, R(1,S ) ⊆ S ◦.

�

Theorem 6.3.2. Suppose the diagram (6.1) commutes isometrically. Let M be a Riemannian

manifold, ψ1 : M1 × T k → M a finite Riemannian covering map, N a compact Riemannian man-

ifold with no focal points, W a manifold, and f : W × M → N a continuous function. Write

f̃ := f ◦ (id×ψ1) : W ×M1 × T k → N. Endow W ×M with the product metric obtained from any

Riemannian metric on W and the given metric on M. Suppose f̃∗
(
π1({w}×M1×{x̃}, (w, p̃, x̃)

)
=<e>

for any (w, p̃, x̃) ∈ W ×M1 × T k. Then f is homotopic to a map that’s totally geodesic on each

M-fiber.

Proof. The argument proceeds much like the proof of Theorem 6.2.8. By Lemma 6.2.4, one may,

without loss of generality, take ψ1 to be a normal covering map. Around each w ∈W, there exists

a contractible neighborhood Uw, and each f |Uw×M is homotopic to a map fw that’s constant on each

Uw-fiber. By Theorem 6.2.8, each fw is homotopic to a map gw that’s constant on each Uw-fiber,

totally geodesic on each M-fiber, and whose lift g̃w to M1 ×T k is constant on each M1-fiber. Let

hw : [a,b]×Uw×M→N be a homotopy from f |Uw×M to gw, and define h̃w : [a,b]×Uw×M1×T k→N

by h̃w(t,v, p̃, x̃) := hw
(
t,v,ψ1( p̃, x̃)

)
. Since h̃w(b, ·) is constant along each Uw-fiber and, because ψ1

is a local isometry, totally geodesic along each M1×T k-fiber, one may now show, by the argument

in the proof of Lemma 5.10(b), that h̃w(b, ·) is totally geodesic along each T k-fiber with respect to

the product metric on Uw ×M × T k. Theorem 6.2.5 states that there exists a continuous function

H̃ : [a,b]×W ×M × T n → N such that H̃(a, ·) = f (·), H̃(b, ·) is constant along each W-fiber, and

H̃(b, ·) is totally geodesic along each T n-fiber with respect to the product metric. Since ψ1 is normal,

Theorem 6.2.3 guarantees the existence of a continuous map h : [a,b]×W ×M → N such that its

lift h̃ : [a,b]×W ×M→ N is characterized by property (*) with respect to the maps H̃i(t,w, p̃, x̃) :=

H̃
(
t,w, γ̃i( p̃, x̃)

)
, where Γ̃ = {γ̃1, . . . , γ̃n} is the deck transformation group of ψ1. Arguing exactly as



101

in the proof of Theorem 6.2.8, one may show that each H̃i(b, ·) is constant along each M1-fiber and

totally geodesic along each T k-fiber with respect to the product metric and, consequently, that h̃(b, ·)

has those same properties. Thus h̃(b, ·) is totally geodesic with respect to the pull-back metric, and

h is a homotopy from h(a, ·) = f (·) to the totally geodesic map h(b, ·).

�

Since the map h̃(b, ·) is constant along each M1-fiber, it descends to a map ĥ : W ×T k → N that’s

totally geodesic along each T k-fiber. By Lemma 6.3.1, one may perturb the canonical lift of ĥ to

Ñ[σ1],...,[σk] through a homotopy that remains inside C̃[σ1],...,[σk] for all time. Using the loop map

Υ, one may use this to define a homotopy from ĥ to a smooth map through maps that are totally

geodesic on the T k-fibers at each time. This may be used to define a homotopy from h(b, ·) to a

smooth map through maps that are totally geodesic on the M-fibers at each time. One obtains the

following.

Corollary 6.3.3. Suppose the diagram (6.1) commutes isometrically. Let M be a Riemannian

manifold, ψ1 : M1 × T k → M a finite Riemannian covering map, N a compact Riemannian man-

ifold with no focal points, W a manifold, and f : W × M → N a continuous function. Write

f̃ := f ◦ (id×ψ1) : W ×M1 × T k → N. Endow W ×M with the product metric obtained from any

Riemannian metric on W and the given metric on M. Suppose f̃∗
(
π1({w}×M1×{x̃}, (w, p̃, x̃)

)
=<e>

for any (w, p̃, x̃) ∈ W ×M1 ×T k. Then f is homotopic to a smooth map that’s totally geodesic on

each M-fiber.

Theorem 1.5 follows from Corollary 6.3.3 and Corollary 5.2. In fact, it generalizes with little

additional effort to fiber bundles M → W
π
→ B that are locally isometrically trivial and whose M-

fibers have non-negative Ricci curvature.
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Chapter 7

Energy-minimizing versus totally geodesic

7.1 Energy, length, and intersection

The principal goal of this chapter is to describe when a map f from a compact Riemannian manifold

M with non-negative Ricci curvature into a Riemannian manifold N with no conjugate points is

totally geodesic. This is done in Theorem 7.4.4 and Theorem 7.4.5, which together state that f is

totally geodesic if and only if E( f ) = vol(M)eT , where eT is the energy density of an affine surjection

T : T k → T m, T k is a flat Riemannian torus determined by M, and (T m,‖ · ‖) is a flat semi-Finsler

torus that depends on the homotopy class of f . Furthermore, vol(M)eT is a lower bound for the

energy of maps homotopic to f , one which, by Kleiner’s counterexample to the flat torus theorem

[Kle], may not be realized within that homotopy class, even for compact N. It turns out that this

builds upon work of Croke [Cr1] and Croke–Fathi [CF] about energy and intersection, and some

effort, beyond what’s truly necessary for the larger goal of generalizing the results of Eells–Sampson

and Hartman to manifolds with no focal points, is made to explore that relationship. This occasions

mention of the beta and gamma functions, which appear in results having to do with the volume of

spheres.

A key observation of Croke [Cr1] is that, because the energy density e f of a C1 map between

Riemannian manifolds is a trace, it may be computed at each x ∈ M as an average over the unit

sphere SxM. Specifically, e f (x) = 1
2 tracex(< ·, ·> f −1(TN)) is equal to the average of the length of the

push-forward of vectors in SxM.1

Lemma 7.1.1. (Croke) Let M and N be Riemannian manifolds with n = dim(M) > 0 and f : M→ N

a C1 map. For each x ∈ M, e f (x) = n
2cn−1

∫
S x M ‖ f∗(w)‖2 dµS x M, where cn−1 denotes the volume of

S n−1.

1The result in [Cr1] differs from the one here by a multiplicative factor of n. The presentation here agrees with that in
[CF]. The results in the former were also stated for smooth maps, but the arguments only require C1 regularity.
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By Lemma 7.1.1,

E( f ) =
n

2cn−1

∫
M

∫
S x M
‖ f∗(w)‖2 dµS x M dµM =

n
2cn−1

∫
SM
‖ f∗(w)‖2 dµSM

where µSM denotes the Liouville measure on the unit sphere bundle SM ⊂ TM. The last equality

was used in [CF] and follows from the fact that each SqM, when endowed with the induced metric

it inherits from the canonical flat metric on TqM, is isometric to the standard round sphere S n−1 ⊂

Rn, and with respect to these identifications the Liouville measure is locally the product measure

µSM = µM ×µS n−1 .

Note that the expression in Lemma 7.1.1 depends only on the induced Finsler norm on N, and

therefore may be taken as the definition of the energy density of a map into a Finsler manifold, or

even a semi-Finsler manifold. Here, the definition of a semi-Finsler manifold parallels that of a

Finsler manifold, except it is endowed with a semi-norm, rather than a norm, on each tangent space.

If M is an n-dimensional Riemannian manifold with n = dim(M) > 0, N is a semi-Finsler manifold,

f : M→ N is C1, and x ∈ M, then the energy density of f at x is defined to be

e f (x) :=
n

2cn−1

∫
S x M
‖ f∗(w)‖2 dµS x M

and the energy of f to be E( f ) :=
∫

M e f (x)dµM. In [J3], Jost generalized the notions of energy and

energy density to maps from measure spaces into metric spaces. Centore [Cen] showed that the

above definitions agree with Jost’s in the Finsler setting and yield a sensible notion of energy, in

that its minimizers have vanishing Laplacian.2

In parallel with energy density, the length density of f at x is defined to be

` f (x) :=
√

n
2cn−1

∫
S x M
‖ f∗(w)‖dµS x M

and the length of f to be L( f ) :=
∫

M ` f (x)dµM. One may check that, for M = S 1 and with respect to

the convention c0 = vol({−1,1}) = 2, this agrees with the usual length of a loop in a Finsler manifold.

In general, by the same reasoning as above,

L( f ) =

√
n

2cn−1

∫
M

∫
S x M
‖ f∗(w)‖dµS x M dµM =

√
n

2cn−1

∫
SM
‖ f∗(w)‖dµSM

2The definitions given here are actually special cases of those in [Cen], where M as well as N is allowed to be a Finsler
manifold, but a proper treatment of Centore’s work, including what is meant by the Laplacian of a map between Finsler
manifolds, is beyond the scope of this dissertation.
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By the Cauchy-Schwarz inequality, one has e f ≥
1

cn−1
`2

f and E( f ) ≥ 1
vol(SM) L

2( f ) = 1
cn−1vol(M) L

2( f ).

As an application of Lemma 7.1.1 and Santaló’s formula, Croke [Cr1] characterizes the energy

of a map f : M→ N between Riemannian manifolds, where M is compact and has boundary ∂M , ∅,

as an integral over the inward-pointing portion of the sphere bundle along ∂M. The notation in the

following is the same as in Theorem 2.3.3.

Theorem 7.1.2. (Croke) Let (M,g) be a compact Riemannian manifold with n = dim(M) > 0 and

boundary ∂M , ∅. Let N be a Riemannian manifold and f : M → N a C1 map. Then E( f ) =

n
2cn−1

∫
S+∂M E(ςw)g(w, ν)dµS+∂M.

The proof of Theorem 7.1.2 doesn’t use the Riemannian structure of N in any essential way, so

the conclusions hold when N is only a semi-Finsler manifold. The results should also generalize

to any reasonable notion of a compact manifold M with corners. In the application to come, they

will only be needed when M is a parallelotope in flat Euclidean space, that is, when M is the set

PV := {
∑k

i=1 tivi
∣∣∣0≤ ti ≤ 1} generated by a set of linearly independent vectors V = {v1, . . . ,vk} ⊂R

n. In

that case, by approximating M from within by smooth manifolds with boundary that slightly round

off its corners, one obtains the following.

Corollary 7.1.3. Let PV ⊂ R
n be the parallelotope corresponding to a linearly independent set of

vectors V = {v1, . . . ,vn} ⊂ R
n for n > 0. Let N be a semi-Finsler manifold and f : PV → N a C1 map.

Then E( f ) = n
2cn−1

∫
S+∂PV

E(ςw)g(w, ν)dµS+∂PV .

To be clear, in the statement of Corollary 7.1.3, ν denotes the inward-pointing normal vector field

along each (n−1)-face of ∂PV , and f being C1 means that f∗ exists and is continuous on T+PV :=

{w ∈ T(PV )
∣∣∣γw(t) ∈ PV for some t > 0}. The set S+∂PV and curves ςw have their original definitions

with respect to ν. One may remark that versions of Theorem 7.1.2 and Corollary 7.1.3 hold for

length as well as energy.

Lemma 7.1.1 was used by Croke–Fathi [CF] to give a sufficient condition for when a map

f : M→ N is a homothety, that is, when the image of every geodesic in M is homotopy-minimizing

in N and there exists c ≥ 0 such that f ∗(h) = cg. Note that every homothety is totally geodesic and

that a homothety can be non-constant only when M has no conjugate points. To do this, they first

associate to f a quantity called its intersection. For any w ∈ SM and t ≥ 0, denote by φt(w) the

minimum length of all paths in N basepoint-fixed homotopic to f ◦ γw|[0,t]. Then the intersection
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of f is the non-negative real number I( f ) := inft>0
1
t

∫
SM φt(w)dµSM. Croke–Fathi show that I( f ) =

limt→∞
1
t

∫
SM φt(w)dµSM. They also show that I( f ) depends only on the homotopy class of f . If [F]

is a homotopy class of maps from M to N, then I([F]) will denote the intersection of any map in

[F].

Theorem 7.1.4. (Croke–Fathi) Let M and N be Riemannian manifolds, where M is compact and

has dimension n > 0. Let [F] be a homotopy class of maps from M to N and f ∈ [F] a C1 map. Then

the following hold:

(a) E( f ) ≥ n
2c2

n−1vol(M)
I2([F]); and

(b) If E( f ) = n
2c2

n−1vol(M)
I2([F]), then f is a homothety.

The next sections will build upon Theorem 7.1.4 in the case that M satisfies a diagram of the form

(5.1), which, for instance, is the case when M is compact and has non-negative Ricci curvature.

7.2 Asymptotic norm of a periodic metric on Zm

A key tool used by Burago–Ivanov [BurI] in their proof of the Hopf conjecture was a certain norm

on Rm corresponding to a Zm-equivariant Riemannian metric. This norm, which was introduced

by Burago [Bura], captures the large-scale geometry of the metric and, in fact, approximates its

distance function up to an additive constant. In that sense, viewed from far enough away, Rm

with such a metric is nearly indistinguishable from a normed space. When a metric on Rm is not

necessarily Riemannian, but is at least induced by a length structure, this norm still exists with the

same properties. In fact, a semi-norm on Rm exists corresponding to any Zm-equivariant metric on

Zm. The results in this section are all taken from [BBI].

Theorem 7.2.1. Let d be a metric on Zm that’s equivariant under the natural action of Zm on itself

by addition. Then there exists a unique semi-norm ‖ · ‖ on Rm such that ‖v‖ = limn→∞
d(0,nv)

n for all

v ∈ Zm. This semi-norm has the property that d(0,v)
‖v‖ → 1 uniformly as ‖v‖ →∞.

The semi-norm guaranteed by the above theorem is called the asymptotic semi-norm of d and,

when it’s a norm, the asymptotic norm. This is a norm, for example, whenever d is the orbit metric

of a free and properly discontinuous action, with compact quotient, of Zm on a length space. The

principal application of the asymptotic semi-norm here will be to the orbit metric of the action of
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an Abelian subgroup of the fundamental group of a manifold on its universal cover. Let N be a

Riemannian manifold, y ∈ N, and G a finitely generated, free, and Abelian subgroup of π1(N,y).

Then G may be isomorphically, although not canonically, embedded as the integer lattice in Rm. If

π : N → N is the universal covering map of N, then G acts canonically on N, and one may define

the orbit metric of G, denoted dG : G×G→ [0,∞), by

dG([γ1], [γ2]) := dN([γ1] · y, [γ2] · y)

for any choice of y ∈ π−1(y). Since the action of G on N is by isometries, dG is both G-invariant and,

indeed, independent of the choice of y. With respect to a fixed isomorphism ı : G→ Zm ⊂ Rm, dG

induces a Zm-equivariant orbit metric dZm,ı : Zm ×Zm → [0,∞), defined by dZm,ı
(
ı([γ1]), ı([γ2])

)
=

dG([γ1], [γ2]). By Theorem 7.2.1, the corresponding asymptotic semi-norm ‖ · ‖G,ı exists. Moreover,

for any other isomorphism  : G→ Zm, (Rm,‖ · ‖G,ı) and (Rm,‖ · ‖G, ) are isomorphic. When the group

G and isomorphism ı are understood, they will sometimes be suppressed in the notation. That is,

dZm,ı and ‖ · ‖G,ı will sometimes be written dZm and ‖ · ‖, respectively.

Lemma 7.2.2. Let N be a Riemannian manifold, y1,y2 ∈ N, α : [a,b]→ N a path from y1 to y2, and

[γ] ∈ π1(N,y1). Then

|d(y2,A[α]([γ]) · y2)− d(y1, [γ] · y1)| ≤ 2L(α)

for all y1 ∈ π
−1(y1) and y2 ∈ π

−1(y2).

Proof. Since the deck transformation group of π : N→ N acts by isometries, it suffices to prove the

result for the given y1 ∈ π
−1(y1) and any choice of y2 ∈ π

−1(y2). Let α1 : [a,b]→ N be the lift of α

with α1(a) = y1. Since α1(b) ∈ π−1(y2), one may without loss of generality take y2 = α1(b). Write

β := α−1 · γ ·α, and let β : [0,1]→ N be, up to reparameterization, the lift of β with β(0) = y2. By

definition,

A[α]([γ]) · y2 = [α−1 ·γ ·α] · y2

= [β] · y2

= β(1)

Let γ : [0,1]→ N be, up to reparameterization, the lift of γ with γ(0) = y1. Let α2 : [a,b]→ N be
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the lift of α with α2(0) = [γ] · y1 = γ(1). By construction, α2(b) = β(1). Therefore,

d(y2,A[α]([γ]) · y2) ≤ d(y2,y1) + d(y1, [γ] · y1) + d([γ] · y1,A[α]([γ]) · y2)

= d
(
α1(b),α1(a)

)
+ d(y1, [γ] · y1) + d

(
α2(a),α2(b)

)
≤ d(y1, [γ] · y1) + 2L(α)

Since [γ] = A[α−1]
(
A[α]([γ])

)
, the same argument shows that

d(y1, [γ] · y1) = d
(
y1,A[α−1]

(
A[α]([γ])

)
· y1

)
≤ d(y2,A[α]([γ]) · y2) + 2L(α−1)

= d(y2,A[α]([γ]) · y2) + 2L(α)

These combine to yield the desired inequality.

�

Lemma 7.2.3. Let N be a Riemannian manifold, y1,y2 ∈ N, α : [a,b]→ N a path from y1 to y2, and G

a finitely generated, free, and Abelian subgroup of π1(N,y1). Let ı : G→ Zm be an isomorphism and

 := ı◦A−1
[α]. Then ‖ ◦A[α]([γ])‖A[α](G),  = ‖ı([γ])‖G,ı for all [γ] ∈G. Consequently, ‖ · ‖A[α](G),  = ‖ · ‖G,ı

on Rm.

Proof. Since A[α] : π1(N,y1)→ π1(N,y2) is a group isomorphism, A[α](G) is finitely generated, free,

and Abelian. Since  is a group isomorphism, the semi-norm ‖ · ‖A[α](G),  is well-defined. Let yi ∈

π−1(yi) for each i = 1,2. For each n ∈ N and [γ] ∈G, Lemma 7.2.2 states that

|dN(y2,A[α](n[γ]) · y2)− dN(y1,n[γ] · y1)| ≤ 2L(α)

Therefore,

∣∣∣‖ ◦A[α]([γ])‖A[α](G), −‖ı([γ])‖G,ı
∣∣∣ =

∣∣∣∣ lim
n→∞

dZm, 
(
0,n ◦A[α]([γ])

)
n

− lim
n→∞

dZm,ı
(
0,nı([γ])

)
n

∣∣∣∣
= lim

n→∞

1
n

∣∣∣dA[α](G)
(
[e],A[α](n[γ])

)
− dG([e],n[γ])

∣∣∣
= lim

n→∞

1
n

∣∣∣dN(y2,A[α](n[γ]) · y2)− dN(y1,n[γ] · y1)
∣∣∣

≤ lim
n→∞

2L(α)
n

= 0
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It follows that ‖ ◦A[α]([γ])‖A[α](G),  = ‖ı([γ])‖G,ı. Note that ı◦A−1
[γ] ◦ 

−1 is the identity map on Zm. It

follows that ‖ · ‖A[α](G),  = ‖ · ‖G,ı on Zm, and, consequently, on all of Rm.

�

In other words, if G a finitely generated, free, and Abelian subgroup of π1(N,y), then, with respect

to an isomorphism G→ Zm and up to the identification above, all subgroups equivalent to G define

the same asymptotic semi-norm on Rm.

Lemma 7.2.4. Let N be a Riemannian manifold, y ∈ N, G a finitely generated, free, and Abelian

subgroup of π1(N,y), and ı : G→ Zm an isomorphism. Then dZm,ı(0,v) ≥ ‖v‖G,ı for all v ∈ Zm.

Proof. This follows from the triangle inequality. Since dZm,ı is a metric, dZm,ı(0,nv) ≤ ndZm,ı(0,v)

for all v ∈ Zm. Therefore, ‖v‖G,ı = limn→∞
dZm ,ı(0,nv)

n ≤ limn→∞
ndZm ,ı(0,v)

n = dZm,ı(0,v).

�

7.3 The Finsler torus and affine surjection associated to [F]

As in Chapter 6, it will hereafter be assumed that M0, Rk, T k, and M1×T k have Riemannian metrics,

that the metric h onRk is constant and flat, and that the diagram (6.1) commutes isometrically. Recall

that, by definition, this means that M0 ×R
k has the product metric obtained from M0 and Rk and

that ψ0 and φ are Riemannian covering maps, but not necessarily that M1×T k has a product metric

nor that π1 is a Riemannian submersion. In particular, since φ is a Riemannian covering map, the

metric on T k is flat. It will be assumed that M is a Riemannian manifold of dimension n > 0 and

that ψ1 : M1 × T k → M is a finite Riemannian covering map; the number of sheets of ψ1 will be

denoted by #(ψ1) <∞. The manifolds Mi will be taken to have dimension l ≥ 0, so that n = k + l.

It will also be assumed that M0 is compact, which by Lemma 5.3 forces M1 and M to be compact

as well. According to Corollary 5.2, these assumptions are satisfied when M is compact and has

non-negative Ricci curvature.

Let M be as described above, N a Riemannian manifold, and [F] a homotopy class of maps

from M to N. For each f ∈ [F], let f̃ : M1 × T k → N and f : M0 ×R
k → N be the compositions

f̃ := f ◦ψ1 and f := f̃ ◦ψ0. The homotopy class [F] under consideration will always be supposed to

have the property that ( f̃ ◦ ιx̃)∗
(
π1(M1, p̃)

)
=<e> for any f ∈ [F] and (p̃, x̃) ∈ M1×T k. When M has
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non-negative Ricci curvature, the manifold M0 may be assumed to be simply connected and M1 to

have finite fundamental group, in which case this condition is satisfied whenever the groups π1(N,y)

are torsion-free. By Theorem 3.1.5, this is the case when N is aspherical and, in particular, when N

has no conjugate points. Let 0 ≤ m ≤ k equal the rank of f̃∗
(
π1

(
M1 ×T k, ( p̃, x̃)

))
for all f ∈ [F] and

( p̃, x̃) ∈ M1×T k.

As an application of the asymptotic semi-norm of a Zm-equivariant metric, a semi-Finsler torus

(T m,‖ · ‖) and an affine surjection T : T k → T m will be associated to [F]. This construction is not

canonical, but depends up to affine isometry on a choice of point in M1×T k, representative of [F],

and group isomorphism with Zm. Fix ( p̃, x̃) ∈ M1 ×T k, x ∈ φ−1(x̃), and f0 ∈ [F]. Let p := ψ1( p̃, x̃).

Since h is constant, one may, without loss of generality, suppose that φ is the quotient map induced

by a lattice Γ1 equal to the span, with integer coefficients, of a set of vectors V = {v1, . . . ,vk}. Each

geodesic t 7→ x+ tvi, t ∈ [0,1], descends via φ to a closed geodesic si based at x̃, and {[s1], . . . , [sk]} is

a minimal generating set for π1(T k, x̃). Write y := f0(p) = f̃0(p̃, x̃), G := ( f̃0)∗
(
π1

(
M1×T k, ( p̃, x̃)

))
⊆

π1(N,y), and σi := f̃0 ◦ ι p̃ ◦ si. Since ( f̃0 ◦ ιx̃)∗
(
π1(M1, p̃)

)
=<e>,

G = ( f̃0 ◦ ιx̃)∗
(
π1(M1, p̃)

)
( f̃0 ◦ ι p̃)∗

(
π1(T k, x̃)

)
=< [σ1], . . . , [σm] >

Thus G is an Abelian subgroup of π1(N,y) of rank m. Let H := spanZ{[s1], . . . , [sm]}. For reasons

that will become clear toward the end of the section, I will suppose that V has the following two

properties:

(A) ( f̃0 ◦ ι p̃)∗|H : H→G is an isomorphism; and

(B) [σi] = e for each m + 1 ≤ i ≤ k.

These may be assumed without loss of generality. To attain (A), one need only reorder the vi. Once

(A) holds, one may achieve (B) by replacing each vi, m + 1 ≤ i ≤ k, with vi −
∑m

j=1 di jv j, where the

di j ∈ Z are the unique coefficients such that [σi] =
∑m

j=1 di j[σ j]. One may check that, at the end of

this process, it’s still true that Γ1 = spanZV . Note that (A) and (B) are together equivalent to the

condition that [σi] =
∑m

j=1 δi j[σ j] for each 1 ≤ i ≤ k, where δi j is the Kronecker delta.

Let dG denote the orbit metric on G obtained from the canonical action of G on N. For a

fixed isomorphism ı : G → Zm ⊂ Rm, let dZm denote the orbit metric on Zm corresponding to ı

and ‖ · ‖[F],ı the corresponding asymptotic semi-norm on Rm. Let T m := Rm/Zm be endowed with

the constant semi-Finsler metric ‖ · ‖[F],ı. By (A), {[σ1], . . . , [σm]} is a minimal generating set for
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G; for each 1 ≤ i ≤ m, let wi := ı([σi]) ∈ Zm. Let T [F],ı : Rk → Rm be the affine map satisfying

T [F],ı(x + vi) =
∑m

j=1 δi jw j. Then T [F],ı descends to an affine surjection T[F],ı : T k → T m. One may

check that ‖ · ‖[F],ı and T[F],ı are well-defined, in the sense that they are independent of the choice of

x ∈ φ−1(x̃). Moreover, up to equivalence by isometries in the following sense, they are determined

by the homotopy class [F].

Lemma 7.3.1. Fix (q̃, z̃) ∈M1×T k, g0 ∈ [F], and an isomorphism  : (g̃0)∗
(
π1

(
M1×T k, (q̃, z̃)

))
→Zm.

Denote by ‖ ·‖[F],  and T[F],  the corresponding semi-Finsler metric and affine surjection. Then there

exist isometries Ψ : T k→ T k and Φ : (T m,‖ · ‖[F],ı)→ (T m,‖ · ‖[F], ) such that T[F],  = Φ◦T[F],ı ◦Ψ−1.

Proof. Let Ψ : Rk → Rk be the translation that takes ( p̃, x̃) to (q̃, z̃). Then Ψ descends to the desired

isometry Ψ. Fix any path α̃ : [a,b] → M1 × T k from ( p̃, x̃) to (q̃, z̃) and any homotopy H : M ×

[0,1]→ N from f0 to g0. Denote by H̃ : M1 ×T k × [0,1]→ N the lift H̃(·, t) := H(ψ1(·), t). Then

H̃ is a homotopy from f̃0 to g̃0. Define β : [0,1]→ N by β(t) := H̃(α̃(t), t) and ı0 : (g̃0)∗
(
π1

(
M1 ×

T k, (q̃, z̃)
))
→ Zm by ı0 := ı ◦A−1

[β]. Denote by ‖ · ‖[F],ı0 and T[F],ı0 the semi-Finsler metric and affine

surjection corresponding to (q̃, z̃), g0, and ı0. The composition Φ0 := ı0 ◦A[β] ◦ ı
−1 : Zm→ Zm extends

to a linear isomorphism Φ0 : (Rm,‖ · ‖[F],ı)→ (Rm,‖ · ‖[F],ı0). By Lemma 7.2.3, Φ0 is an isometry,

so Φ0 descends to an isometry Φ0 : (T m,‖ · ‖[F],ı)→ (T m,‖ · ‖[F],ı0). One may check that T[F],ı0 =

Φ0 ◦T[F],ı ◦Ψ−1. The composition Φ1 := ◦ ı−1
0 also extends to a linear isometry (Rm,‖ · ‖[F],ı0)→

(Rm,‖ · ‖[F], ), which in turn descends to an isometry Φ1 : (T m,‖ · ‖[F],ı0)→ (T m,‖ · ‖[F], ) such that

T[F],  = Φ1 ◦T[F],ı0 . The proof is completed by setting Φ := Φ1 ◦Φ0.

�

As the point (p̃, x̃) ∈ M1 × T k, map f0 ∈ [F], and isomorphism ı : ( f̃0)∗
(
π1

(
M1 × T k, ( p̃, x̃)

))
→ Zm

will remain fixed, they will typically be suppressed in the notation. By Lemma 7.3.1, there is little

danger in any confusion, as important geometric quantities associated to T[F], namely eT[F] and `T[F] ,

will not change if any of those are varied. When the homotopy class [F] is understood, it will also

be suppressed. That is, it should be understood that ‖ · ‖ = ‖ · ‖[F] = ‖ · ‖[F],ı and T = T[F] = T[F],ı.

Lemma 7.3.2. Let M, N, and [F] be as above, and denote by (T m,‖ · ‖) and T : T k → T m the

corresponding semi-Finsler torus and affine surjection. Let F0 : M0 ×R
k → N be a lift of f 0 of the

form guaranteed by Lemma 5.11. Then there exists D ≥ 0 such that, for any z̃ ∈ T k, ṽ ∈ Tz̃T k, and

γ : [0,∞)→ M0×R
k satisfying φ◦π0 ◦γ = γṽ, the following hold:
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(a) ‖T∗(tṽ)‖ ≤ dN
(
F0 ◦γ(t),F0 ◦γ(0)

)
+ D for all t ≥ 0; and

(b) ‖T∗(ṽ)‖ = lim
t→∞

dN
(
F0 ◦γ(t),F0 ◦γ(0)

)
t

.

Proof. (a) By Lemma 5.11, there exists D0 ≥ 0 such that

dN
(
F0(q0,z0),F0(q1,z1)

)
≤ D0 (7.1)

whenever dRk (z0,z1) ≤ diam(T k). Fix (p, x) ∈ ψ−1
0 ( p̃, x̃). Since Γ1 is diam(T k)-dense in Rk, so is the

lattice x +Γ1 := {x + u
∣∣∣u ∈ Γ1}. Thus there exist u0,u1 ∈ Γ1 such that

dRk
(
π0 ◦γ(it), x + ui

)
≤ diam(T k) (7.2)

for each i = 0,1. Let α̃i : [0,1]→ M1 ×T k be defined by α̃i(s) :=
(
p̃,φ(x + sui)

)
. Since ui ∈ Γ1 and

φ◦π0 = π1 ◦ψ0, each α̃i is a loop based at (p̃, x̃). Let αi : [0,1]→ M0×R
k be the lift of α̃i along ψ0

satisfying αi(0) = (p, x). Since π0 ◦αi(t) = xui, combining (7.1) and (7.2) yields

dN
(
F0 ◦γ(it),F0 ◦αi(1)

)
≤ D0

Therefore, ∣∣∣dN
(
F0 ◦α1(1),F0 ◦α0(1)

)
− dN

(
F0 ◦γ(t),F0 ◦γ(0)

)∣∣∣ ≤ 2D0 (7.3)

It remains to bound dN
(
F0 ◦α0(1),F0 ◦α1(1)

)
from below in terms of ‖T∗(tṽ)‖.

Since T is affine, it is Lipschitz continuous, with a Lipschitz constant of ‖T‖ := max|w|=1 ‖T (x +

w)‖. Set D1 := ‖T‖ ·diam(T k). Since π1 ◦ α̃i ∈
∑k

j=1 di j[s j], where di j ∈ Z are the unique coefficients

such that ui =
∑k

j=1 di jv j, one has that f̃0 ◦ α̃i ∈
∑k

j=1 di j[σ j] =
∑m

j=1 di j[σ j]. By the definition of dG,

dN
(
F0 ◦α1(1),F0 ◦α0(1)

)
= dG([ f̃0 ◦ α̃1], [ f̃0 ◦ α̃0])

= dG([e], [ f̃0 ◦ α̃1]− [ f̃0 ◦ α̃0])

= dG
(
[e],

m∑
j=1

(d1 j−d0 j)[σ j]
)

= dZm
(
0,

m∑
j=1

(d1 j−d0 j)w j
)

= dZm
(
0,T (x + u1−u0)

)
≥ ‖T (x + u1−u0)‖

(7.4)
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where the equality in the second line is due to the fact that dG is G-equivariant and the final inequal-

ity is from Lemma 7.2.4. Since T is affine, T (x + u1−u0) = T (x + u1)−T (x + u0). Therefore,

∣∣∣‖T (x + u1−u0)‖− ‖T
(
π0 ◦γ(t)

)
−T

(
π0 ◦γ(0)

)
‖
∣∣∣ ≤ 1∑

i=0

‖T
(
π0 ◦γ(it)

)
−T (x + ui)‖

At the same time, T
(
x + π0 ◦ γ(t)− π0 ◦ γ(0)

)
= T

(
π0 ◦ γ(t)

)
− T

(
π0 ◦ γ(0)

)
. Inserting this into the

left-hand side of the previous inequality and applying (7.2) and the Lipschitz continuity of T to the

right-hand side yield

∣∣∣‖T (x + u1−u0)‖− ‖T
(
x +π0 ◦γ(t)−π0 ◦γ(0)

)
‖
∣∣∣ ≤ 2D1

Since the Riemannian metric on T k is constant and T : T k → T m is affine, T∗(tṽ) = T (x + tv) ∈

TT (z̃)T m � Rm, where v ∈ Rk is identified with ṽ under the canonical identification of Tz̃T k with Rk.

The assumption that φ◦π0 ◦γ = γṽ implies that π0 ◦γ(t)−π0 ◦γ(0) = tv. As ‖ · ‖ is a constant Finsler

metric on T m, ‖T∗(tṽ)‖ = ‖T (x + tv)‖. Combining these with the previous inequality yields

∣∣∣‖T (x + u1−u0)‖− ‖T∗(tṽ)‖
∣∣∣ ≤ 2D1 (7.5)

The proof is completed by setting D := 2D0 + 2D1 and combining (7.3), (7.4), and (7.5).

(b) As in the proof of (a), one has that ‖T∗(ṽ)‖ = ‖T (x+v)‖ for (p, x) ∈ ψ−1
0 ( p̃, x̃) and v ∈ Rk. If v = 0,

then π0 ◦γ must be a constant map, and the result follows immediately from Lemma 5.11(b). The

remaining arguments will assume that v , 0. It will be helpful to use conditions (A) and (B). Let

V0 := spanR{v1, . . . ,vm} and V1 := spanR{vm+1, . . . ,vk}. The result will first be proved when v ∈ V0 or

v ∈ V1.

Suppose v ∈ V0. Fix ε > 0. By Theorem 7.2.1, there exists K ≥ 0 such that

∣∣∣dZm(0,w)−‖w‖
∣∣∣ ≤ ε‖w‖ (7.6)

whenever w ∈ Zm satisfies ‖w‖ ≥ K. It follows from (A) that the map v 7→ T (x + v) restricts to an

isomorphism from V0 onto Rm and, consequently, v 7→ ‖T (x+v)‖ defines a norm on V0. Since v , 0,

‖T (x + v)‖ , 0. Therefore, there exists t0 ≥ 0 such that ‖T (x + tv)‖ ≥ K + 2D1 for all t ≥ t0. Fix any

such t. As in part (a), there exist u0,u1 ∈ Γ1 such that, with respect to the corresponding curves αi,

(7.2)-(7.5) hold. By (7.5), ‖T (x + u1−u0)‖ ≥ K. Substituting into (7.6) yields

∣∣∣dZm
(
0,T (x + u1−u0)

)
−‖T (x + u1−u0)‖

∣∣∣ ≤ ε‖T (x + u1−u0)‖ (7.7)
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As in (7.4), dZm
(
0,T (x + u1 − u0)

)
= dN

(
F0 ◦α1(1),F0 ◦α0(1)

)
. Applying this in conjunction with

(7.3), (7.5), and (7.7) yields

∣∣∣dN
(
F0 ◦γ(t),F0 ◦γ(0)

)
−‖T (x + tv)‖

∣∣∣ ≤ ε‖T (x + tv)‖+ 2D0 + 2εD1 + 2D1

Therefore, ∣∣∣∣ dN
(
F0 ◦γ(t),F0 ◦γ(0)

)
t

−‖T (x + v)‖
∣∣∣∣ ≤ ε‖T (x + v)‖+

2D0 + 2εD1 + 2D1

t

Since the choice of ε > 0 was arbitrary, it follows that ‖T (x + v)‖ = limt→∞
dN

(
F0◦γ(t),F0◦γ(0)

)
t .

Suppose v ∈ V1. Fix t ≥ 0. As in the previous case, there exist u0,u1 ∈ Γ1 such that (7.2)-(7.5)

hold with respect to the corresponding curves αi. One may, without loss of generality, suppose that

u1 − u0 =
∑k−m

i=1 divm+i for some di ∈ Z. It follows from (B) that F0 ◦α0(1) = F0 ◦α1(1). It follows

from (7.3) that

dN
(
F0 ◦γ(t),F0 ◦γ(0)

)
≤ 2D0 (7.8)

At the same time, (7.4) and (7.5) imply that

‖T (x + v)‖ ≤ lim
t→∞

2D1

t
= 0

This and (7.8) together imply that ‖T (x + v)‖ = 0 = limt→∞
dN

(
F0◦γ(t),F0◦γ(0)

)
t .

Finally, suppose that v ∈ Rk is arbitrary. As Rk = V0 ⊕V1, there exist ai ∈ R and vi ∈ Vi such

that v = a0v0 +a1v1. Since
∣∣∣‖T (x +v)‖−‖T (x +a0v0)‖

∣∣∣ ≤ ‖T (x +a1v1)‖ = 0, one has that ‖T (x +v)‖ =

‖T (x + a0v0)‖. Let γ0 : [0,∞)→ M0 ×R
k be defined by γ0(t) := (p, x + ta0v0). Applying the first

special case to a0v0 and γ0 shows that

‖T (x + a0v0)‖ = lim
t→∞

dN
(
F0 ◦γ0(t),F0 ◦γ0(0)

)
t

(7.9)

Fix t ≥ 0, and define γ1 : [0, t]→ M0×R
k by γ1(s) := (p, x + ta0v0 + sa1v1). By Lemma 5.11(b),

∣∣∣dN
(
F0 ◦γ(t),F0 ◦γ(0)

)
− dN

(
F0 ◦γ0(t),F0 ◦γ0(0)

)∣∣∣ ≤ dN
(
F0 ◦γ1(t),F0 ◦γ1(0)

)
+ 2D0

Applying (7.8) to a1v1 and γ1 shows that

dN
(
F0 ◦γ1(t),F0 ◦γ1(0)

)
≤ 2D0

Therefore, ∣∣∣dN
(
F0 ◦γ(t),F0 ◦γ(0)

)
− dN

(
F0 ◦γ0(t),F0 ◦γ0(0)

)∣∣∣ ≤ 2D0 + 2D1 (7.10)
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The proof is completed by combining the equality ‖T∗(ṽ)‖ = ‖T (x + a0v0)‖ with (7.9) and (7.10).

�

7.4 Main inequalities

This section continues to use the notation and constructions from the previous section. It begins by

relating the intersection I([F]) to the length density `T of the affine surjection T : T k → T m. Note

that the length density `T : T k→ [0,∞) is constant. Recall that l = dim(M0) and n = dim(M) = k + l,

where, by assumption, n > 0. This latter assumption ensures that I([F]) is well-defined. In any case,

were n to be zero, many of the results to come could be given sensible formulations that would hold

trivially.

In order to relate I([F]) to `T , define constants

dk,l :=


0 if k = 0

ck+l
ck

√
2ck−1

k if k > 0

For the purposes of the following theorem, it turns out that the values of d0,l are irrelevant, because

when k = 0 both `T = 0 and I([F]) = 0.

Theorem 7.4.1. Let M, N, and [F] be as in the previous section, and denote by (T m,‖ · ‖) and

T : T k→ T m the corresponding semi-Finsler torus and affine surjection. Then I([F]) = dk,lvol(M)`T .

Proof. It will help to first establish some general equalities. By Lemma 7.3.1, the length density `T

is independent of the choice of map f ∈ [F] used in the construction of ‖ · ‖ and T . Thus one may,

without loss of generality, suppose that f0 is C1. Since M is compact, there exists C ≥ 0 such that

|( f0)∗(w)| ≤C for all w ∈ SM. Let F0 : M0×R
k→ N be a lift of f 0 of the form guaranteed by Lemma

5.11. For each w ∈ SM, one has, directly from the definition of φt, that

φt(w) = dN
(
F0 ◦γw(t),F0 ◦γw(0)

)
(7.11)

for any w ∈ S(M0×R
k) such that (ψ1 ◦ψ0)∗(w) = w. It follows that φt(w)

t ≤C for all t > 0 and w ∈ SM.

Thus
I([F]) =

∫
SM

lim
t→∞

φt(w)
t

dµSM

=

∫
M

∫
Sq M

lim
t→∞

φt(w)
t

dµSq M dµM

(7.12)
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where the first equality follows from the bounded convergence theorem and the second from the fact

that, up to the isometric identification of each S qM with S n−1, µSM is locally the product measure

µSM = µM ×µS n−1 . For each w ∈ T(M0×R
k), Lemma 7.3.2(b) implies that

‖(T ◦φ◦π0)∗(w)‖ = lim
t→∞

dN
(
F0 ◦γw(t),F0 ◦γw(0)

)
t

Combining this with (7.11) and the fact that ψ1 ◦ψ0 is a local isometry yields∫
Sq M

lim
t→∞

φt(w)
t

dµSq M =

∫
S(q,z)(M0×Rk)

‖(T ◦φ◦π0)∗(w)‖dµS(q,z)(M0×Rk) (7.13)

for each q ∈ M and (q,z) ∈ M0×R
k such that ψ1 ◦ψ0(q,z) = q.

The argument now splits into three cases. If k = 0, then the result holds trivially, as `T = 0,

‖ · ‖ = 0, and, by (7.12) and (7.13), I([F]) = 0. Suppose for the remainder of the proof that k > 0.

Since φ is a local isometry,∫
SzRk
‖(T ◦φ)∗(v)‖dµSzRk =

∫
Sφ(z)T k

‖T∗(ṽ)‖dµSφ(z)T k =

√
2ck−1

k
`T (7.14)

for each z ∈ Rk. If l = 0, then M0×T k � T k and∫
S(q,z)(M0×Rk)

‖(T ◦φ◦π0)∗(w)‖dµS(q,z)(M0×Rk) =

∫
SzRk
‖(T ◦φ)∗(w)‖dµSzRk

for the only q ∈ M0 and each z ∈ Rk. Since dk,l =

√
2ck−1

k , the result follows from (7.12)-(7.14).

Suppose l > 0. Fix (q,z) ∈ M0 ×R
k. Since k > 0, S(q,z)(M0 ×R

k) \ ker(π0)∗ , ∅. Define a smooth

surjection H : S(q,z)(M0 ×R
k) \ ker(π0)∗ → SzR

k by H(w) := (π0)∗(w)
|(π0)∗(w)| . Applying the coarea formula

to H yields∫
S(q,z)(M0×Rk)

‖(T ◦φ◦π0)∗(w)‖dµS(q,z)(M0×Rk) =

∫
SzRk

∫
H−1(v)

|(π0)∗(w)|k−1‖(T ◦φ◦π0)∗(w)‖dµH−1(v) dµSzRk

=

∫
SzRk
‖(T ◦φ)∗(v)‖

∫
H−1(v)

|(π0)∗(w)|k dµH−1(v) dµSzRk

For each fixed v ∈ SzR
k, another application of the coarea formula shows that∫

H−1(v)
|(π0)∗(w)|k dµH−1(v) =

∫ 1

0

∫
Sq(
√

1−r2)

rk

√
1− r2

dµSq(
√

1−r2) dr

= cl−1

∫ 1

0
rk(1− r2)

l
2−1 dr

=
1
2

cl−1

∫ 1

0
t

k−1
2 (1− t)

l
2−1 dt

=
1
2

cl−1B
(k + 1

2
,

l
2

)
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where the sets S q(
√

1− r2) for 0 ≤ r < 1 are non-empty since l > 0. Combining the last two results

yields∫
S(q,z)(M0×Rk)

‖(T ◦φ◦π0)∗(w)‖dµS(q,z)(M0×Rk) =
1
2

cl−1B
(k + 1

2
,

l
2

)∫
SzRk
‖(T ◦φ)∗(v)‖dµSzRk

Combining this with (7.12)-(7.14) shows that

I([F]) = cl−1

√
ck−1

2k
B
(k + 1

2
,

l
2

)
vol(M)`T

= dk,lvol(M)`T

where the latter equality follows from Lemma 2.7.1(c).

�

Two special cases of Theorem 7.4.1 are worth recording explicitly.

Remark 7.4.2. When k > 0, the conclusion of Theorem 7.4.1 takes the form

I([F]) =
cn

ck
vol(M)

∫
S z̃T k
‖T∗(ṽ)‖dµS z̃T k

for any z̃ ∈ T k.

Remark 7.4.3. In the case that l = 0, or equivalently that M1 is a point, Theorem 7.4.1 implies that

I([F]) =

√
2cn−1

n
L(T )
#(ψ1)

In particular, if M = T k, then

I([F]) =

√
2cn−1

n
L(T ) = vol(T k)

∫
S z̃T k
‖T∗(ṽ)‖dµS z̃T k

for any z̃ ∈ T k.

It’s interesting to note that the sequence dk,l is not, in general, monotone in l. For instance, d1,l =
cl+1
π

is strictly increasing until its maximum at l = 5 and strictly decreasing thereafter [BH]. This means

that the intersection of a homotopically non-trivial map T : S 1 → S 1 will, for small values of l,

increase when it’s extended to a map T l+1 = T l×S 1→ S 1 that’s constant along the T l-fibers.

It’s now possible to prove this chapter’s main theorem. Before stating the result, it will help to

dispose of the situation where k = 0. In that case, I([F]) = eT = `T = 0 and E( f ) ≥ 0, with equality

if and only if f is constant. This is the trivial case of the following phenomenon.
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Theorem 7.4.4. Let M, N, and [F] be as in the previous section, and denote by (T m,‖ · ‖) and

T : T k → T m the corresponding semi-Finsler torus and affine surjection. Suppose that k > 0. Let

f ∈ [F] be any C1 map. Then

E( f ) ≥ vol(M)eT ≥
1

ck−1
vol(M)`2

T ≥
nc2

nck−1

kc2
n−1c2

k

vol(M)`2
T

Moreover, each of the following holds:

(a) If E( f ) = vol(M)eT , then f is totally geodesic;

(b) E( f ) = 1
ck−1

vol(M)`2
T if and only if f is constant along each M0-fiber and a homothety along

each Rk-fiber;

(c) E( f ) =
nc2

nck−1

kc2
n−1c2

k
vol(M)`2

T if and only if f is a homothety and either M1 is a point or f is constant.

Proof. By Lemma 7.3.1, the quantities `T and eT are independent of the choice of representative

f0 ∈ [F] used in the construction of ‖ · ‖ and T , so one may, without loss of generality, suppose that

f0 = f . The inequality E( f )≥ vol(M)eT will be proved first. Note that E( f̃ ) = #(ψ1)E( f ). By Lemma

5.3, χ = χx := ρ1 ◦ψ0 ◦ ιx : M0 → M1 is a covering map; denote its number of sheets by #(χ) <∞.

Fix p ∈ χ−1(p̃). Since φ ◦ π0 = π1 ◦ψ0, ψ0(p, x) = ( p̃, x̃), and consequently f (p, x) = y. Fix y ∈ N,

and let F : M0 ×R
k → N be the lift of f guaranteed by Lemma 5.11 that satisfies F(p, x) = y. For

each r ∈ N, define a parallelotope Pr := {
∑k

i=1 tivi
∣∣∣0 ≤ ti ≤ r}. Then Pr differs from a union of rk

fundamental domains of φ by a set of measure zero. It follows from Lemma 5.9 that M0×Pr differs

from a union of #(χ)rk fundamental domains of ψ0 by a set of measure zero. Thus

E( f ) =
1

#(ψ1)#(χ)rk E(F|M0×Pr ) (7.15)

Let {e1, . . . ,ek} be an orthonormal set of vector fields on M0 ×R
k that everywhere spans TRk ⊂

T(M0 ×R
k). If U ⊆ M0 is a connected open set and {ek+1, . . . ,ek+l} is an orthonormal set of vector

fields on U ×Rk that at each point spans TU ⊂ T(U ×Rk), so that {e1, . . . ,ek+l} is an orthonormal

frame for U ×Rk, then on U ×Rk the energy density eF satisfies

eF =

k+l∑
i=1

‖F∗(ei)‖2

≥

k∑
i=1

‖F∗(ei)‖2

= eF◦ιq
◦π0
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with equality on all of U ×Rk if and only if F is constant on each U-fiber. Therefore,

E(F|M0×Pr ) =

∫
M0×Pr

eF dµM0×Rk

≥

∫
M0×Pr

eF◦ιq
◦π0 dµM0×Rk

=

∫
M0

∫
Pr

eF◦ιq
◦π0 dµRk dµM0

=

∫
M0

E(F ◦ ιq|Pr )dµM0

(7.16)

with equality if and only if F is constant along each M0-fiber. For each q ∈ M0 and w ∈ S+∂Pr, let

ςq,w : [0, `(w)]→ N be defined by ςq,w := F ◦ ιq ◦γw. Applying Corollary 7.1.3 to E(F ◦ ιq|Pr ) shows

that

E(F ◦ ιq|Pr ) =
k

2ck−1

∫
S+∂Pr

E(ςq,w)h(w, ν)dµS+∂Pr (7.17)

Combining (7.15)-(7.17) yields

E( f ) ≥
1

#(ψ0)#(χ)rk

∫
M0

k
2ck−1

∫
S+∂Pr

E(ςq,w)h(w, ν)dµS+∂Pr dµM0 (7.18)

with equality if and only if F is constant along each M0-fiber. At the same time, the Cauchy-Schwarz

inequality states that

E(ςq,w) ≥
L2(ςq,w)
`(w)

(7.19)

with equality if and only if ςq,w has constant speed. Note that

L(ςq,w) ≥ dN

(
ςq,w

(
`(w)

)
, ςq,w

(
0
))

By Theorem 7.3.2(a), there exists D ≥ 0, independent of q and w, such that

dN

(
ςq,w

(
`(w)

)
, ςq,w

(
0
))
≥ `(w)‖T ∗(w)‖−D (7.20)

Regardless of the sign of `(w)‖T ∗(w)‖−D, one may conclude that

L2(ςq,w)
`(w)

≥ `(w)‖T ∗(w)‖2−2D‖T ∗(w)‖

Combining results yields

E( f ) ≥
1

#(ψ0)#(χ)rk

∫
M0

k
2ck−1

∫
S+∂Pr

[
`(w)‖T ∗(w)‖2−2D‖T ∗(w)‖

]
h(w, ν)dµS+∂Pr dµM0

≥
vol(M0)

#(ψ0)#(χ)rk

k
2ck−1

∫
S+∂Pr

`(w)‖T ∗(w)‖2h(w, ν)dµS+∂Pr −
D‖T‖vol(M0)

#(ψ0)#(χ)
kvol(S+∂Pr)

ck−1rk

(7.21)
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The two summands will be handled separately. First note that

vol(M) =
vol(M0×Pr)
#(ψ0)#(χ)rk =

vol(M0)vol(Pr)
#(ψ0)#(χ)rk (7.22)

Since T is affine, E(T |Pr ) = vol(Pr)eT . At the same time, applying Corollary 7.1.3 to E(T |Pr ) yields

E(T |Pr ) =
k

2ck−1

∫
S+∂Pr

E(T ◦γw|[0,`(w)])h(w, ν)dµS+∂Pr

=
k

2ck−1

∫
S+∂Pr

[∫ `(w)

0
‖T ∗(w)‖2 dt

]
h(w, ν)dµS+∂Pr

=
k

2ck−1

∫
S+∂Pr

`(w)‖T ∗(w)‖2h(w, ν)dµS+∂Pr

It follows that

eT =
k

2ck−1vol(Pr)

∫
S+∂Pr

`(w)‖T ∗(w)‖2h(w, ν)dµS+∂Pr (7.23)

Taken together, (7.22) and (7.23) imply that

vol(M)eT =
vol(M0)

#(ψ0)#(χ)rk

k
2ck−1

∫
S+∂Pr

`(w)‖T ∗(w)‖2h(w, ν)dµS+∂Pr (7.24)

For each 1 ≤ i ≤ k, let Λi denote the parallelotope in Rk determined by {v1, . . . ,vk} \ {vi}, and let λi

equal the (k−1)-dimensional volume of Λi. Since ∂Pr consists, up to translations, of two copies of

each of rΛi := {rv
∣∣∣v ∈ Λi}, one has that

vol(S+∂Pr) =
ck−1

2
vol(∂Pr)

= ck−1

k∑
i=1

vol(rΛi)

= ck−1rk−1
k∑

i=1

λi

It follows that
D‖T‖vol(M0)

#(ψ0)#(χ)
kvol(S+∂Pr)

ck−1rk =
D‖T‖vol(M0)

#(ψ0)#(χ)
k
∑k

i=1λi

r
→ 0 (7.25)

as r→∞. The inequality E( f ) ≥ vol(M)eT follows from (7.21), (7.24), and (7.25) by letting r→∞.

The remaining inequalities are much simpler. The Cauchy-Schwarz inequality implies that

vol(M)eT ≥
1

ck−1
vol(M)`2

T . The inequality 1
ck−1

vol(M)`2
T ≥

nc2
nck−1

kc2
n−1c2

k
vol(M)`2

T follows from Corollary

2.7.5(a).

(a) Suppose that E( f ) = vol(M)eT . Fix r ∈ N. For each R = (r1, . . . ,rk) ∈ {0, . . . ,r − 1}k, let PR :=

P1 +
∑k

i=1 rivi. Note that any two parallelotopes in
{
PR

∣∣∣R ∈ {0, . . . ,r−1}k
}
, if they intersect at all, do
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so only along boundary faces, and that Pr is the union of all such PR. By Corollary 7.1.3, one has

that ∫
S+∂Pr

E(ςq,w)h(w, ν)dµS+∂Pr = E(F ◦ ιq|Pr )

=
∑

R∈{0,...,r−1}k
E(F ◦ ιq|PR)

for each q ∈ M0. Since φ ◦π0 = π1 ◦ψ0, there exist isometric deck transformations γR : M0 ×R
k →

M0×R
k of ψ0 such that γR(M0×P1) = M0×PR. This implies that∫

M0

E(ςq,w|M0×P1)dµM0 =

∫
M0

E(ςq,w|M0×PR)dµM0

Combining results, one has that∫
M0

∫
S+∂Pr

E(ςq,w)h(w, ν)dµS+∂Pr = rk
∫

M0

∫
S+∂P1

E(ςq,w)h(w, ν)dµS+∂P1 dµM0 (7.26)

for each r ∈ N. Taken together, (7.15)-(7.26) show that

vol(M)eT = E( f )

=
1

#(ψ1)#(χ)
E(F|M0×P1)

≥
1

#(ψ0)#(χ)

∫
M0

k
2ck−1

∫
S+∂P1

E(ςq,w)h(w, ν)dµS+∂P1 dµM0

= liminf
r→∞

1
#(ψ0)#(χ)rk

∫
M0

k
2ck−1

∫
S+∂Pr

E(ςq,w)h(w, ν)dµS+∂Pr dµM0

≥ vol(M)eT

It follows that the above inequalities are all equalities. By the condition for equality in (7.18), F

must be constant along each M0-fiber.

It will next be shown that each ςq,w has constant speed. This will be done using the condition

for equality in (7.19), in an argument similar to the one just employed, but which requires another

inequality be inserted into those above. It will be shown that∫
S+∂Pr

L2(ςq,w)
`(w)

h(w, ν)dµS+∂Pr ≥
1
2k

∫
S+∂P2r

L2(ςq,w)
`(w)

h(w, ν)dµS+∂P2r (7.27)

for each q ∈ M0 and r ∈ N. Fix such q and r. For each S = (s1, . . . , sk) ∈ {0,1}k, let QS := Pr +

r
∑k

i=0 sivi. At the risk of overloading notation, let χS : SRk→ {0,1} denote the indicator function of
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SQS . That is,

χS (w) :=


1 if w ∈ SQS

0 if w < SQS

Define a continuous function `S : SQS → [0,∞) by setting `S (w) equal to the length of the line

segment QS ∩γw(R), and let LS : SQS → [0,∞) be defined by LS (w) :=
∫ ∞
−∞

(χS ◦γ
′
w)‖(F◦ιq◦γw)′‖dt.

In other words, LS (w) is the length of the curve F ◦ ιq|QS∩γw(R). Note that Q0 = Pr, where 0 =

(0, . . . ,0) ∈ {0,1}k, and that `0◦γ
′
w(t) = `(w) and L0◦γ

′
w(t) = L(ςq,w) for all w ∈ S+∂Pr and t ∈ [0, `(w)].

Since F is constant along each M0-fiber, F is Zk-equivariant under the action of Zk on M0×R
k that

translates the second component by elements of Γ0. It follows from this symmetry that∫
SPr

L2
0(w)

`2
0(w)

dµSPr =

∫
SP2r

χS (w)
L2

S (w)

`2
S (w)

dµSP2r

for each S ∈ {0,1}k, where the right-hand integrand is well-defined away from a set of measure zero

under the convention that it equals zero whenever χS does. Thus

2k
∫

S+∂Pr

L2(ςq,w)
`(w)

h(w, ν)dµS+∂Pr = 2k
∫

S+∂Pr

[∫ `(w)

0

L2
0 ◦γ

′
w

`2
0 ◦γ

′
w

dt
]
h(w, ν)dµS+∂Pr

= 2k
∫

SPr

L2
0(w)

`2
0(w)

dµSPr

=

∫
SP2r

[ ∑
S∈{0,1}k

χS (w)
L2

S (w)

`2
S (w)

]
dµSP2r

=

∫
S+∂P2r

[∫ `(w)

0

∑
S∈{0,1}k

(χS ◦γ
′
w)

L2
S ◦γ

′
w

`2
S ◦γ

′
w

dt
]
h(w, ν)dµS+∂Pr

=

∫
S+∂P2r

[ ∑
`S (w),0

L2
S (w)
`S (w)

]
h(w, ν)dµS+∂P2r

(7.28)

where the second and fourth equalities are by Santaló’s formula and the last is obtained by di-

viding [0, `(w)] into subintervals IS := {t ∈ [0, `(w)]
∣∣∣γw(t) ∈ QS }, each of length `S (w) , 0. Since∑

`S (w),0 `S (w) = `(w) and L(w) =
∑
`S (w),0 LS (w) for each w ∈ S+∂P2r, Lemma 2.3.5 implies that

∑
`S (w),0

L2
S (w)
`S (w)

≥
L2(w)
`(w)

(7.29)

The inequality (7.27) follows immediately from (7.28) and (7.29). Combining (7.27) with (7.15)-

(7.25), and taking into account the fact that F is constant along each M0-fiber, one has for each
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q ∈ M0 that

vol(M)eT = E( f )

=
vol(M0)

#(ψ0)#(χ)
k

2ck−1

∫
S+∂P1

E(ςq,w)h(w, ν)dµS+∂P1 dµM0

≥
vol(M0)

#(ψ0)#(χ)
k

2ck−1

∫
S+∂P1

L2(ςq,w)
`(w)

h(w, ν)dµS+∂P1 dµM0

≥ liminf
r→∞

vol(M0)
#(ψ0)#(χ)2kr

k
2ck−1

∫
S+∂P2r

L2(ςq,w)
`(w)

h(w, ν)dµS+∂P2r dµM0

≥ vol(M)eT

(7.30)

All of these inequalities must therefore be equalities, and by the condition for equality in (7.19)

each ςq,w must have constant speed.

It will next be shown that each ςq,w has speed ‖T ∗(w)‖ and then, as a consequence, that each is

a geodesic. It follows from (7.20) that ‖ς′q,w‖ ≥ ‖T ∗(w)‖ for each r ≥ 1 and w ∈ S+∂Pr, since, if one

had ‖ς′q,w‖ = ‖T ∗(w)‖− ε for some ε > 0, then by increasing r and applying a translation in Γ0 one

could without loss of generality suppose that `(w) > D
ε . This would imply that

dN

(
ςq,w

(
`(w)

)
, ςq,w

(
0
))
≤ L(ςq,w)

= `(w)‖ς′q,w‖

= `(w)‖T ∗(w)‖− `(w)ε

< `(w)‖T ∗(w)‖−D

The above contradicts (7.20). On the other hand, assume that ‖ς′q,w‖ > ‖T ∗(w)‖ for some r ≥ 1 and

w ∈ S+∂Pr. Then

vol(M)eT =
vol(M0)

#(ψ0)#(χ)
k

2ck−1

∫
S+∂P1

L2(ςq,w)
`(w)

h(w, ν)dµS+∂P1 dµM0

>
vol(M0)

#(ψ0)#(χ)rk

k
2ck−1

∫
S+∂Pr

`(w)‖T ∗(w)‖2h(w, ν)dµS+∂Pr

= vol(M)eT

where the final equality is (7.24). This is a contradiction. Thus each ςq,w has speed ‖T ∗(w)‖. To see

that each ςq,w is a geodesic, it suffices by the density of rational vectors to prove it for all rational

w ∈ S+∂Pr, that is, those w such that, for some s > 0, γw(s)− γw(0) ∈ Γ0. Assume that ςq,w is not

a geodesic for some such w. As before, one may without loss of generality suppose that `(w) > s.
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Since F is constant along each M0-fiber, π ◦ ςq,w is a loop in N. Following the lines of (7.4), in

particular invoking Lemma 7.2.4, one has

s‖T ∗(w)‖ = L(ςq,w|[0,s])

> d
(
ςq,w(s), ςq,w(0)

)
≥ s‖T ∗(w)‖

This is a contradiction. It follows that F ◦ ιq is totally geodesic for each q ∈ M0. An application of

Lemma 5.10(a) now shows that F is totally geodesic. Consequently, so is f .

(b) If E( f ) = 1
ck−1

vol(M)`2
T , then, by the main inequalities, one also has that E( f ) = vol(M)eT . As

shown in the proof of (a), F must be constant along each M0-fiber, and therefore f is as well. By

the condition for equality in (7.16), one has for each q ∈ M0 that

E( f̃ ) =
1

#(χ)
E(F|M0×P1)

=
vol(M0)

#(χ)
E(F ◦ ιq|P1)

=
vol(M0)

#(χ)
E( f̃ ◦ ιχ(q))

where the domain of the map f̃ ◦ ιχ(q) is T k with its given flat metric. At the same time, by assump-

tion,
1

ck−1
vol(M)`2

T = E( f ) =
1

#(ψ1)
E( f̃ )

Combining results shows that E( f̃ ◦ ιχ(q)) =
#(ψ1)#(χ)

ck−1

vol(M)
vol(M0)`

2
T . Note that vol(M1×T k) = #(ψ1)vol(M)

and, at the same time, vol(M1×T k) = 1
#(χ) vol(M0×P1) = 1

#(χ) vol(M0)vol(T k). It follows that vol(T k) =

#(ψ1)#(χ) vol(M)
vol(M0) . So E( f̃ ◦ ιχ(q)) =

vol(T k)
ck−1

`2
T . By Theorem 7.4.1, the intersection of the homotopy

class [ f̃ ◦ ιχ(q)] is I([ f̃ ◦ ιχ(q)]) =
2ck−1

k vol(T k)`2
T . An application of Theorem 7.1.4(b) now shows that

f̃ ◦ ιχ(q) is a homothety, which is equivalent to f ◦ ιq being a homothety.

On the other hand, if f is constant along each M0-fiber and each f ◦ ιq is a homothety, then as

before one has that E( f ) =
vol(M0)

#(ψ1)#(χ) E( f̃ ◦ ιq̃) =
vol(M)
vol(T k) E( f̃ ◦ ιq̃) for any fixed q̃ ∈ M1. Since f̃ ◦ ιq̃ is

a homothety, there exists a ≥ 0 such that ‖( f̃ ◦ ιq̃)∗(ṽ)‖ = a|ṽ| for any z̃ ∈ T k and ṽ ∈ Tz̃T k. Directly

computing the energy integral shows that E( f̃ ◦ ιq̃) = a2k
2 vol(T k), so E( f ) = a2k

2 vol(M). At the same

time, since the image of each geodesic in T k under f̃ ◦ ιq̃ is homotopy-minimizing in N, Lemma

7.3.2(b) implies that ‖T∗(ṽ)‖ = a|ṽ| for each q̃ ∈ T k and ṽ ∈ Tz̃T k, and another direct computation

shows that `T = a
√

kck−1
2 . Thus 1

ck
vol(M)`2

T = a2k
2 vol(M). This shows that E( f ) = 1

ck
vol(M)`2

T .
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(c) If E( f ) =
nc2

nck−1

kc2
n−1c2

k
vol(M)`2

T , then, by the main inequalities, it’s also the case that E( f ) = 1
ck−1

vol(M)`2
T .

By part (b), f̃ is a homothety along each T k-fiber. If `T = 0, then E( f ) = 0, so f is constant and,

trivially, a homothety. If `T > 0, then
nc2

nc2
k−1

kc2
n−1c2

k
= 1, and it follows from Corollary 2.7.5(b) that k = n.

This implies that M1 is a point and, consequently, that f̃ is a homothety. This is equivalent to f

being a homothety.

Conversely, suppose f is a homothety. If f is constant, then E( f ) = 0 and `T = 0, so one has that

E( f ) =
nc2

nck−1

kc2
n−1c2

k
vol(M)`2

T . If M1 is a point, then k = n, so nc2
nck−1

kc2
n−1c2

k
= 1

ck−1
. It follows from part (b) that

E( f ) =
nc2

nck−1

kc2
n−1c2

k
vol(M)`2

T .

�

When every geodesic in N is minimal, the converse to Theorem 7.4.4(a) also holds, and the equiva-

lence in Theorem 7.4.4(c) can be simplified.

Theorem 7.4.5. Let M, N, and [F] be as in the previous section, and denote by (T m,‖ · ‖) and

T : T k → T m the corresponding semi-Finsler torus and affine surjection. Suppose that k > 0 and

that every geodesic in N is minimal. Let f ∈ [F] be any C1 map. Then the following hold:

(a) If f is totally geodesic, then E( f ) = vol(M)eT ; and

(b) If f is a homothety, then E( f ) =
nc2

nck−1

kc2
n−1c2

k
vol(M)`2

T .

Proof. (a) By Lemma 5.10(b), f̃ is constant along each M1-fiber, and consequently F is constant

along each M0-fiber. Moreover, for each q̃ ∈ M0, f̃ ◦ ιq̃ is totally geodesic. Since N has no conjugate

points, for each w ∈ ST k, ςq,w : R → N must be a minimal geodesic; an application of Lemma

7.4.1(b) thus shows that ςq,w has speed ‖T ∗(w)‖. A direct computation, which may be simplified by

invoking Lemma 7.4.63, now shows that E( f ) = vol(M)eT .

(b) Since every homothety is totally geodesic, Lemma 5.10(b) implies that F is constant along each

M0-fiber. At the same time, there exists a ≥ 0 such that ‖F∗(w)‖ = a|w| for any w ∈ T(M0 ×R
k).

When f is non-constant, this is possible only if each Mi is a point. Thus n = k and, by Corollary

2.7.5(b), nc2
nck−1

kc2
n−1c2

k
= 1

ck−1
. The result now follows from Theorem 7.4.4(b). When f is constant, E( f ) = 0

and `T = 0, which completes the proof.

�

3Should one choose not to use Lemma 7.4.6, one may still compute #(ψ1)#(χ)E( f ) by integrating over S(M0 × P1)
and using the coarea formula, as in the proof of Theorem 7.4.1, to reduce it to an integral over SP1.
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Lemma 7.4.6. Let M, N, and [F] be as in the previous section, and denote by (T m,‖·‖) and T : T k→

T m the corresponding semi-Finsler torus and affine surjection. Suppose that k > 0 and that every

geodesic in N is minimal. If [F] contains a totally geodesic map, then ‖ · ‖ is a semi-Riemannian

norm.

Proof. Let f ∈ [F] be totally geodesic. By Lemma 7.3.1, one may suppose without loss of general-

ity that f0 = f . A consequence of Lemma 5.10(b) is that, for each q ∈ M0, F ◦ ιq is totally geodesic,

which implies that P := F ◦ ιq(Rk) is a totally geodesic and flat m-dimensional submanifold of N.

Since F is also constant along each M0-fiber, both P and the lattice Γ2 := F ◦ ιq(Γ1) ⊆ P are inde-

pendent of the choice of q, and f is Zk-equivariant under the action that translates the Rk-fibers by

elements of Γ1. Recall that y = F(p, x). As in the construction of the loops si in the previous section,

for each u = F(p,v) ∈ Γ2, where v ∈ Γ1, the map t 7→ F(p, x + tv) = y+ tu, t ∈ [0,1], descends via π to

a closed geodesic in G. This identification defines a group isomorphism ℘ : Γ2→G, which in turn

defines an isomorphism  := ı◦℘ : Γ2→ Z
m. Since each ςp,w extends for all time to a geodesic in N,

which by assumption is minimal, an application of Lemma 7.3.2(b) shows that ‖ · ‖  := ‖ (·)‖ agrees

on Γ2 with the Euclidean semi-norm possessed by P. It is now an elementary exercise to show that

‖ · ‖ is induced by a semi-definite bilinear form or, in other words, that ‖ · ‖ is a semi-Riemannian

norm.

�

Remark 7.4.7. Suppose the induced homomorphism of the homotopy class [F] in Theorem 7.4.4

is non-trivial, so that m > 0. If N is compact, then by modifying the proof of Theorem 8.3.19 in

[BBI] one may show that dG is bi-Lipschitz equivalent to a word metric and, as a consequence, that

(T m,‖ · ‖) is a Finsler torus. In particular, for compact N, (T m,‖ · ‖) is a Riemannian torus whenever

[F] contains a totally geodesic map.

Remark 7.4.8. If the induced homomorphism of [F] is non-trivial and N is compact, then eT > 0

and, consequently, every map in [F] has energy bounded below by a positive constant. There are

apparently no known examples of bubbles forming in the heat flow between compact manifolds

when the initial map lies in a homotopy class with that property. When N has no conjugate points,

or more generally is aspherical, such an example of blow-up would be fantastically interesting. On

the other hand, it would also be interesting, albeit somewhat less so, if one could show that the heat
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flow exists for all time and uniformly subconverges when the target is compact and has no conjugate

points. Whether this is true is apparently, and rather surprisingly, an open question.

Remark 7.4.9. The energy of a totally geodesic map T : T m→ T k between flat Riemannian toruses

can be computed using the Gram-Schmidt procedure. The answer is a bit messy and involves a

number of determinants of matrices containing the coefficients of the metrics on T m and T k.

Remark 7.4.10. As discussed in Chapter 2, Corollary 2.7.3 may be deduced from other results in this

chapter. Suppose that n > k > 0, so that l > 0. Let T n have any flat metric, and let ρ : T n = T k×T l→

T k denote projection. Then ρ is constant along each T l-fiber and a homothety along each T k-fiber, so

by Theorem 7.4.4(b), E(ρ) = 1
ck−1

vol(T n)`2
T , where T : T k→ T k in this case is the identity map. Since

ρ is not a homothety, Theorem 7.1.4 and Theorem 7.4.1 imply that E(ρ) > nc2
nck−1

kc2
n−1c2

k
vol(T n)`2

T . Thus

nc2
nc2

k−1 < kc2
n−1c2

k , which, as shown in the proof of Corollary 2.7.5, is equivalent to the inequality

in Corollary 2.7.3. Note that, since Corollary 2.7.3 was only used to prove Corollary 2.7.5, which

in turn was used in the proof of Theorem 7.4.4 only to obtain part (c) and the final inequality, the

potential for circular reasoning has been avoided.

Corollary 7.4.11. Let M and N be Riemannian manifolds, where M is compact with non-negative

Ricci curvature and every geodesic in N is minimal. Let [F] be a homotopy class of maps from M

to N. Then the following hold:

(a) There exists C ≥ 0 such that, for each C1 map f ∈ [F], E( f ) ≥C, with equality if and only if f is

totally geodesic; and

(b) If [F] contains a totally geodesic map, then each C1 map in [F] is energy-minimizing if and only

if it is totally geodesic.

Proof. (a) This follows immediately from the first inequality in Theorem 7.4.4, Theorem 7.4.4(a),

and Theorem 7.4.5(a) by setting C := vol(M)eT .

(b) Let f ∈ [F] be totally geodesic. By Lemma 2.6.2, f is smooth. Part (a) now implies that

E( f ) = C. Since any other C1 map g ∈ [F] satisfies E(g) ≥C, it follows that g is energy-minimizing

if and only if g is totally geodesic.

�
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Corollary 7.4.11 immediately implies Theorem 1.4(b). It’s important to keep in mind that the con-

stant in Corollary 7.4.11 is merely a lower bound for the energy of maps in [F], not necessarily

the infimum. Moreover, not every homotopy class of maps between compact manifolds contains

an energy-minimizing representative. For example, as shown by White [Wh], any compact and

connected manifold M with dim(M) ≥ 2 and trivial first and second fundamental groups has the

property that inf f∈[id] E( f ) = 0, where id : M → M is the identity map. In that case, [id] cannot

contain an energy-minimizing representative. On the other hand, Croke–Fathi [CF] showed that the

identity map is energy-minimizing for any compact manifold with no conjugate points and that any

energy-minimizing map in [id] is an isometry. When N has no conjugate points, Corollary 7.4.11

shows that this lower bound C is realized exactly when [F] contains a totally geodesic representa-

tive. Theorem 4.1.15 shows that [F] may not have that property. However, by Theorem 1.4(c), it

does whenever N has no focal points.
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Chapter 8

Further questions

There are a number of interesting questions related to this work that I’ve been unable to resolve.

Note that Theorem 1.4 is a result about energy-minimizing maps M→ N, rather than all harmonic

maps. It’s unknown whether every such harmonic map must be totally geodesic. By contrast, when

N has non-positive curvature, all harmonic maps are energy-minimizing and totally geodesic by

Theorem 1.2 and Theorem 1.3(c). Moreover, by Theorem 4.1.15, there exist compact manifolds N

with no conjugate points that admit energy-minimizing maps T 2→ N which aren’t totally geodesic.

Question 8.1. Is every harmonic map from a compact Riemannian manifold with non-negative

Ricci curvature into a compact Riemannian manifold with no focal points energy-minimizing? By

Theorem 1.4(b)-(c), this is equivalent to asking whether every such map is totally geodesic. The

essential case is when the domain is a flat torus T k for k ≥ 2.

Question 8.2. Does there exist an energy-minimizing map from a compact Riemannian manifold

with non-negative Ricci curvature into a complete but non-compact Riemannian manifold with no

focal points that’s not totally geodesic? Again, the important case is when the domain is a flat

torus. By the flat strip theorem, this is equivalent to asking whether, whenever min(g) = ∅ for some

g ∈ f∗
(
π1(T k, p)

)
, it’s possible for [ f ] to contain an energy-minimizing representative.

It’s surprising to note that the existence of energy-minimizing, or more generally harmonic, maps

into compact manifolds with no conjugate points is an open question, except in the case of surfaces,

where it follows by combining the work of Eells [Ee], Gordon [Gor], and Schoen–Uhlenbeck [ScU]

with the result of Burns [Burn2] that the universal cover of every complete surface with no conjugate

points is convex-supporting.

Question 8.3. Does every homotopy class of maps from a compact Riemannian manifold with non-

negative Ricci curvature into a compact Riemannian manifold with no conjugate points contain an

energy-minimizing representative?
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It’s also not known whether the heat flow from compact domains exists for all time and uniformly

subconverges into compact manifolds with no conjugate points, except in the case of maps between

surfaces, where the affirmative answer follows from the work of Struwe [St1], Gordon [Gor], and

Burns [Burn2]. As discussed in Remark 7.4.8, a negative answer would be fabulously interesting.

By Theorem 4.2.2, it does when the target has no focal points.

Question 8.4. Does the heat flow from a compact Riemannian manifold exist for all time and uni-

formly subconverge when the target is a compact Riemannian manifold with no conjugate points?

In light of Lemma 7.4.6, one might ask whether, for compact N, the Finsler torus in the statement

of Theorem 7.4.4 must always be Riemannian. By Theorem 1.4(c), it is whenever N has no focal

points. It needn’t be in general, as Bangert [Ba] showed that there exist Riemannian metrics on T 2

whose asymptotic norms in the sense of [Bura] are not Riemannian. If g is such a metric and h

is a flat metric on T 2, then id : (T 2,h)→ (T 2,g) is a map whose corresponding Finsler torus is not

Riemannian. For each k <∞, examples of Ck metrics on high-dimensional toruses T n whose asymp-

totic norms are non-differentiable at almost every irrational vector in S n−1 ⊆ Rn were constructed

by Burago–Ivanov–Kleiner [BIK]. However, if one restricts to target manifolds with no conjugate

points, the solution to the Hopf conjecture by Burago–Ivanov [BurI] precludes counterexamples on

toruses. It would be surprising if the Finsler torus in the case of no conjugate points were always

Riemannian, but to my knowledge there are no known counterexamples.

Question 8.5. If N is compact and has no conjugate points, must the Finsler torus in Theorem 7.4.4

be Riemannian?

Finally, one might note that the results of Chapter 6 nowhere assume that the manifold M0 in the

diagram (6.1) is compact, unlike the results of Chapter 7.

Question 8.6. To what extent do the conclusions of Theorem 7.4.4 and Theorem 7.4.5 hold when

M0 is only assumed to be complete and have finite volume?
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