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Adi Ben-Israel

This thesis develops a deepened understanding of insurance and its benefits, fo-

cusing on practical aspects of insurance coverage and risk reduction. It is easy

to see that the purchase of insurance increases the expected loss suffered by the

insured, otherwise the insurer’s expected profit would be negative. In view of

this, we show that insurance is a variance-reducing mechanism. We first prove

that the customer’s variance is less than the variance that would be experienced

if insurance was not purchased, and further show that the variance of an insured

loss X is equal to the sum of the covariances of the insured and insurer losses

with X.

As insurance increases the insured’s expected loss and decreases the variance,

we develop a mean-variance model of insurance demand, showing how the re-

lationship between the premium and the insured’s risk preference defines the

demand for insurance. We verify Arrow’s classical (utility-based) result that the

optimal policy has full coverage above a non-zero deductible and consider the

insurer’s perspective, showing that the customer can be induced to purchase the

insurer’s optimal policy.

Next, we consider different forms of coinsurance. We show that the optimal

straight coinsurance policy is inferior to the optimal deductible policy, while coin-

surance combined with either a stop-loss limit or a deductible is equivalent to a

deductible policy (in the optimum). We also show that, in each of the coinsur-

ance cases, the optimal policy involves partial coverage if the premium exceeds
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the expected reimbursement.

Finally, we consider the system composed of the insured and insurer, discussing

how certain customers may receive discounted premiums that are subsidized by

other customers and showing how the customer and the company share in the

variance. We then discuss a benefit of insurance; in the case of a single insurer and

a single customer, the sum of their individual variances is less than the variance

in the uninsured case, and in the case of a single insurer and multiple insured,

the variance of this system is smaller than the sum of the individual uninsured

variances if the insurer reimbursements are sufficiently uncorrelated.
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1 Introduction

The theory of optimal insurance coverage has been studied for over 50 years.

While considerable attention has been paid to the expected benefit of insurance

in terms of utility theory and its generalizations, little attention has been paid to

the practical benefits of insurance in terms of variance reduction. In this thesis

we study these benefits and how the major components of deductible insurance

(premium, coverage level, deductible) relate to each other and to the reduction

of risk.

When an insurance contract is being negotiated, both sides of the agreement

(insured and insurer) have their own self-interest to protect. The insured wishes

to minimize shocks from large losses while incurring as small of an upfront ex-

pense (i.e., premium) as possible. Conversely, the insurer wishes to maximize

profit while (perhaps) maintaining a standard of low variance. Central to these

conflicting concerns is the deductible D and the coverage limit C, which together

determine a premium, set by the insurance company, which gives a price for the

(C,D) pairs that may be chosen by the insured.

There are several objectives used in determining the optimal insurance plan.

The bulk of the literature considers the problem as one of maximizing the ex-

pected utility of final wealth, while some contemporary approaches consider non-

expected utility preferences such as stochastic dominance. Under a wide variety

of circumstances, partial insurance coverage in the form of a deductible is shown

to be the optimal insurance plan. We consider the problem from a Markowitzian

mean-variance perspective, and also explore various forms of coinsurance.

Insurance can be thought of as a zero-sum game - the insured and the insurer

share in the value of a random loss. It is simple to see that, for the insured, the

purchase of insurance increases the insured’s expected loss; otherwise the insurer

would have no motive to offer insurance. The insured and insurer also share the

variance of the random variable, and so we explore the question of whether or not
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insurance can be thought of as a zero-sum game in this context. We also show

that insurance reduces the variance of the customer and thus, insurance creates

a loss-increasing, but risk-reducing system.

1.1 Terminology and Assumptions

We begin by describing some commonly used terms in insurance theory. The

insured or the customer is the person or entity purchasing insurance protection

from the insurer or insurance company. The uninsured case refers to the situation

that the customer would experience if he did not purchase insurance. The reim-

bursement or indemnity paid from the insurer to the insured is the compensation

paid for a loss. Full coverage provides reimbursement for the entire loss of the

insured, while partial coverage provides reimbursement for only a portion of the

insured’s loss.

Deductible insurance is a form of partial insurance where the deductible is the

value D for which any loss greater than D results in a reimbursement from the

insurer. Any loss less than D is not covered under the insurance plan, and so

is the responsibility of the insured. For example, suppose that a loss x occurs.

If x ≤ D, then there is no reimbursement, but if x > D the insurer provides a

reimbursement of x−D. Insurers typically offer plans with an upper limit C on

coverage, so that the maximum reimbursement that will be made is C −D. We

sometimes refer to full coverage above the deductible, meaning that the insured

pays D, and the insurer pays any remaining loss.

Coinsurance is another form of partial coverage, where the reimbursement

is a fixed percentage of some portion of the loss. When reimbursement occurs

as a percentage of the entire loss we refer to the policy as straight coinsurance.

Coinsurance is often combined with a stop-loss, a level of loss above which the

insurer provides full reimbursement. Coinsurance can also be combined with

deductible insurance to form a policy where the insurer pays a percentage of the
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loss above a deductible.

The actuarial or actuarially fair value of an insurance policy is the expected

value of the payment made by the insurer to the insured as a reimbursement for

loss. An insurer that sets the premium equal to the actuarial value of the policy

would therefore have an expected profit of zero. An insurance premium is said

to be loaded if it is computed as a fixed percentage of the actuarial value of the

policy. Loaded premiums are widely found in the literature, for example, in [2],

[14], [41], and [46].

Our model is set in a single period, single risk environment, where the random

loss variable X is assumed to be nonnegative with no upper bound. To simplify

matters, we assume that X is modeled by an absolutely continuous probability

distribution with density f(x) and cumulative distribution F (x), and that its

variance is finite. In many of the calculations we make use of Leibniz’s rule for

differentiation under the integral sign: If F (x) =
∫ b(x)

a(x)
f(x, t) dt, then

d

dx
F (x) = f(x, b(x)) b′(x)− f(x, a(x)) a′(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t) dt.

Many of the figures show contour plots of various functions. In all of these figures,

darker shading represents a higher function value and lighter shading (i.e, white)

represents smaller function values.

We do not consider the problem of modeling the distribution of the loss vari-

able. See, for example, [23], for a discussion on insurance event modeling. We

also do not consider common difficulties associated with insurance such as moral

hazard and adverse selection. See Chapters 6 and 7 in [17] for a discussion of

these matters.
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1.2 Literature Review

The modern literature on optimal insurance coverage began in the 1960’s with

the work of Arrow [1], Mossin [46], and Smith [59]. The work of these authors,

and the bulk of the subsequent literature on optimal insurance, is done from

a von Neumann-Morgenstern [63] utility perspective, where the insured seeks

to maximize the expected utility of final wealth. Utility functions are usually

assumed to display risk aversion in the sense of Arrow [2] and Pratt [50]. Frequent

use of this approach persists to this day in the insurance literature.

The initial results focused on determining when full or partial coverage is

preferable. As insurance premiums are generally priced above the expected re-

imbursement provided by the insurance company, partial coverage is generally

optimal. A further determination concerning the form of partial coverage (e.g.,

deductible, coinsurance, or a combination of the two) was then necessary, and

deductible insurance has been shown to be the optimal structure in many cases.

In particular, Mossin [46] and Smith [59] independently published similar re-

sults concerning the optimal insurance structure. The major result is a corner-

stone of modern insurance theory, and is known as Mossin’s Theorem:

If the premium is actuarially fair or discounted, then a risk averse expected

utility maximizer will purchase full coverage. If the premium is unfair then partial

coverage is optimal.

Mossin’s theorem is generalized in Schlesinger [57] for upper limit policies and in

Hong et. al. [29] to account for random initial wealth levels.

Arrow [1], [2], [3] also showed that partial insurance coverage is optimal. In

particular, he proved the second cornerstone of modern insurance theory:

If the premium is a fixed percentage (> 100%) of the expected reimburse-

ment,then the policy that maximizes a risk averse customer’s expected utility of

final wealth is full coverage above a nonzero deductible

The intuition behind Arrow’s result is as follows: An insurance purchase consti-
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tutes a trade-off in expected utility - there is a decrease in expected utility due to

the premium and an increase due to the indemnity paid by the insurer to cover

losses. Large losses correspond with the lowest utility of final wealth, and due

to the concavity of the utility curve, avoiding these losses provides the greatest

benefit to utility. Therefore, large loss values should be insured first. Because

the premium is unfair there is a point where the added utility from insurance is

less than the utility lost from paying the premium, and so full coverage cannot

be optimal, i.e., there is a point D where coverage should cease.

The next major area is optimal deductible levels. Schlesinger [55] provided

key results in this area, providing optimality conditions for expected utility max-

imizers and proving that the optimal deductible level decreases as risk aversion

increases.

After these early important works, many papers consider cases where standard

assumptions do not hold. For instance, Lian and Schlesinger [39] consider the case

of asymmetric information on loss size (in the insurer’s favor) under the expected

utility framework, while Bond and Crocker [8] consider the case when the insured

is privy to extra information. Background risks are considered by Eeckhoudt and

Kimball [20], while Meyer and Meyer [45] consider cases where certain types of

losses are excluded from reimbursement. Dreze and Schokkaert [21] consider the

affects of health insurance with ex post moral hazard on Arrow’s theorem.

Arrow’s theorem showed that coverage limits below the full value of the loss

variable are not optimal, and so these limits have received a relatively small

amount of attention in the literature. Doherty et. al. [19] show that deductible

policies with a coverage limit are the optimal contracts when losses are not ver-

ifiable. Cummins and Mahul [14] also considered an upper limit on coverage,

proving the optimality of deductible policies, while Zhou et. al. [64] consider

a similar problem, an upper limit on insurer reimbursement. The optimality of

overage limits is shown in cases where third party insurance exists (Huberman et.
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al. [30]) and as a response to moral hazard in property insurance (Garratt and

Marshall [25]).

In the late 1980s through the 1990s the research program focused on the

robustness of the results of Arrow and Mossin under less restrictive non-expected

utility preferences such as stochastic dominance (see [37] and [54]). Machina [41]

extends Mossin’s theorem and the first order optimality conditions of Schlesinger

to non-expected utility preferences. Gollier and Schlesinger [26] and [56] prove

that Arrow’s theorem holds under risk aversion within any decision theoretic

framework that satisfies second order stochastic dominance.

The insurance literature is dominated by expected utility theory and general-

izations such as stochastic dominance, however, there are a host of other measures

that may be appropriate for insurance decisions. Krokhmal et. al. [35] sum-

marize risk measurement, emphasizing mean-risk measures (e.g., mean-variance

and semivariance) as well as utility theory and stochastic dominance. Steinbach

[61] provides a detailed review of mean-variance analysis, discussing among other

things, downside risk measures and multiperiod models.

Markowitzian mean-variance models [42] [43] have long been used in finan-

cial portfolio modeling, and offer a clear delineation between risk and reward.

Levy [37] provides a discussion of stochastic dominance that points out its rela-

tion with mean-variance models, while, in a portfolio theory context, Levy and

Markowitz [38] and Kroll et. al. [36] compare utility maximizing portfolios with

mean-variance efficient portfolios, showing that the utility maximizing, mean-

variance efficient, portfolio produces a near-optimal (with respect to expected

utility) portfolio.

Within insurance, mean-variance models have been used to investigate the

robustness of Mossin’s Theorem in Hong et. al. [29], while Doherty [18] con-

siders Arrow’s results in a mean-variance context for a portfolio of risky assets,

considering the role that uninsurable risks play in optimal insurance protection.
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The portfolio context is also examined in [44], and [58], although the insurance

plans discussed are limited to coinsurance. Another mean-variance approach is

found in [33], however, the discussion focuses on premium pricing of reinsurance

contracts.

Our results differ from the literature on mean-variance insurance models in

several ways. Because the literature considers mean-variance approaches in a

portfolio context, the chief concern lies in the relation between the portfolio risks,

while the particulars of the actual policy (i.e., the optimality conditions for cov-

erage and deductible) are not examined. We provide such an analysis, and we

also discuss the importance of the insurer’s choice of premium loading and the

insured’s risk tolerance, pointing out how their relation determines whether or

not insurance will be demanded.

An alternative to mean-variance or mean-standard deviation approaches is to

consider the downside measures, where the full range of a random variable Z is not

taken into consideration, instead only the disagreeable portion of Z is considered.

Before discussing two such approaches, we first note that, in our framework there

is no “upside”, i.e., the random variable X considered here refers only to loss

values. Nonetheless, downside measures do have an appeal, as it is likely that

customers are more concerned with large losses than with small.

The most common downside measure is Value at Risk (VaR) (see, for example,

[4] or [16]), which is heavily used in finance. A similar, but coherent measure

of risk (in the sense of [4]), is conditional value at risk (CVaR) (see [53]). In

an insurance setting both of these measures would give a value based on the

probability that a loss exceeds a given threshold. In Chi and Tan [12] both

VaR and CVaR are used to determine, from the insurer’s perspective, optimal

reinsurance, while a practical application of CVaR in insurance is given by Liu et.

al. [40]. Consiglio et. al. [13] provide a model that optimizes CVaR for insurance

policies that offer a guaranteed rate of return. A related measure with applications
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to insurance is the optimized or recourse certainty equivalent introduced by Ben-

Tal et. al. ([5], [6]).

Ogryczak and Ruszczynski [48] [49] introduce a mean-semideviation model for

decisions under uncertainty, and show how such a model can serve as a bridge

between mean-risk and stochastic dominance approaches. It was shown that

mean-semideviation is consistent with stochastic dominance, i.e, if a pair (C,D)

minimizes the mean-semideviation, then it cannot be inferior, in a stochastic

dominance sense, to another policy. Due to the wealth of stochastic dominance

results in the insurance literature, the application of this measure to insurance

may provide interesting results. For further discussion of deviation measures see

Rockafellar et. al. [52].

Several other methodologies have been used in assessing insurance polices.

For example, Bernard et. al. [7] consider optimal insurance coverage under rank-

dependent expected utility, showing, in contrast to classical results, that there

are cases where small losses should be insured. Harel and Harpaz [27] discuss

fair actuarial values in the case of insurer’s with parameter uncertainty that is

updated through Bayesian learning. Sung et. al. [62] apply cumulative prospect

theory [34] to explain the prevalence of (relatively) low coverage policies.

Another route taken in determining optimal policies is to consider Pareto

Optimality. Studies of this type began with the early work of Borch [9] and

Arrow [1], and were generalized by Raviv [51]. The main results show that the

Pareto optimal policy involves full coverage above a nonzero deductible if the

insurer is risk neutral, and coinsurance above a nonzero deductible if the insurer

is risk averse. Contemporary work also makes use of this conception, for example,

Dana and Scarsini [15] consider the case of background risk, while Jouini et. al.

[32] define an optimal risk sharing by an allocation of risk that is both Pareto

optimal and individually rational (there is no loss of utility by entering into the

allocation), and discuss such allocations for various value at risk formulations.
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With the passage of the Affordable Care Act in the United States, government

intervention in insurance markets has become a heavily debated topic. The RAND

corporation recently published a research report [22] investigating this law and its

effects on insurance premiums. Due to tax incentives and the presumed inclusion

of a higher number of healthy customers, they predict that average insurance

premiums will see little change with the implementation of the law. A discussion

of government intervention for catastrophe markets can be found in [11], where

the avoidance of insurer insolvency is the primary goal.

The portions of this work concerning separable premiums, optimality condi-

tions for expected loss minimization, and the reduction of variance for the insured

have been published in [24].

1.3 Outline

We begin in Chapter 2 by describing the deductible insurance model and dis-

cussing the insurance premium, focusing the discussion on real-world insurance

situations. The insured loss, insurer profit, indemnity, and premium are all given

as functions of the coverage and deductible. As the model does not include ex-

pected or non-expected utility, the final wealth level need not be the objective.

Instead, we first focus on minimizing the magnitude of expected loss.

We note that, in most practical situations, the purchase of insurance will result

in an increase to expected loss for the insured (relative to the uninsured case).

As such, we consider the insured’s variance, and show that it is smaller than

the variance in the uninsured case. Conversely, the insurer’s variance increases

by entering into an insurance contract. We also show that the loss variable’s

variance, Var X, is equal to the sum of the covariance of the insured’s loss with

X and the covariance of the insurer’s loss with X.

In Chapter 3 we discuss a mean-variance approach to determine the insured’s

optimal policy. We confirm the classical utility-based results of Arrow and Mossin
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for mean-variance minimizers, showing that full coverage above a non-zero de-

ductible is optimal if the premium is priced above the policy’s actuarial value,

while a 0 deductible and full coverage is optimal for premiums at or below the

policy’s actuarial value. We also give a condition that must be satisfied in order

for the insured’s mean-variance to decrease from the uninsured case. This condi-

tion provides a specific inequality relating the premium loading and risk tolerance

with the coverage and deductible.

We next consider mean-variance preferences for the insurer, and show that the

insured’s optimal policy differs from the insurer’s. We show through an example

that there exists a specific set of (C,D) policies where the mutually optimal

(C,D) pair is the insurer’s optimal policy. Finally, we show that our mean-

variance results also hold for a mean-standard deviation framework. Chapter 3

concludes with a discussion showing that the mean-variance results will also hold

under a mean-standard deviation model.

Chapter 4 discusses coinsurance policies in the mean-variance framework. We

begin by considering a straight coinsurance policy, and then extend the model

to include an upper stop-loss limit and a deductible. Optimality conditions for

these three cases are derived, and we show that partial coverage is optimal when

the premium is priced above the policy’s actuarial value. If the premium is

priced below the policy’s actuarial value, then full coverage is optimal. We then

show that the optimal coinsurance with stop-loss and the optimal coinsurance

with deductible policies are both equivalent to the optimal deductible policy of

Chapter 3, and furthermore, we prove that these policies are superior to the

optimal straight coinsurance policy.

Chapter 5 discusses the insurance system defined by the insurer and the in-

sured. We first discuss how the insurer might respond to the situation where new,

risky, customers are introduced to the system. Such responses can include raising

the premiums of those currently insured or adding new, less risky, customers.
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We then discuss the variances experienced in the insurance system, specifically

showing that, in a single customer, single insurer framework, the sum of the in-

sured variance and the insurer variance is always less than the uninsured variance

Var X. This result shows that insurance reduces the risk that is actually experi-

enced in the world, and expresses a social benefit of insurance. We then consider

a multiple insured - single insurer situation, and show that the sum of these vari-

ances is reduced from the uninsured case if the covariances among the insurer

reimbursements are sufficiently low.
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2 The Insurance Model

We present a deductible insurance model and investigate the connections between

coverage, deductible, and premium on the one hand, and expectation and variance

on the other. In section 2.1 we describe the insurance model and consider the

problem of minimizing the insured’s expected loss. We discuss the insurance

premium in 2.2, considering the commonly used conception of a loaded premium

as well as a more general premium function that we fit to real-world insurance

data. Section 2.4 discuss the purchase of insurance under budgetary constraints.

We discuss the effect of insurance on loss variance in 2.5, showing that, rel-

ative to the uninsured case, insurance decreases the variance of the insured and

increases the insurer variance. Additionally, we show that the variance of the loss

variable X (the asset being insured) is equal to the sum of the two covariances

relating the insured and the insurer to X.

2.1 The Model

We offer a straightforward model of deductible insurance with a (potentially infi-

nite) coverage limit and a premium depending on the coverage and the deductible.

Upon the execution of an insurance contract, a loss-sharing system is created. The

insured seeks to control his loss level, while the insurer hopes to generate profit.

When a loss occurs, its value is shared between the two entities. Let X be the

random variable describing the value of the loss that is being insured and x be

a particular realization of X. The coverage and deductible are given by C and

D, respectively, and the insurance premium is a function of C and D, denoted

p(C,D). For a given loss x, the reimbursement, I(x|C,D), paid from the insurer

to the insured is given by
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I(x|C,D) =


0, if 0 ≤ x < D;

x−D, if D ≤ x < C;

C −D, if C ≤ x.

(2.1)

The loss of the insured is

L(x|C,D) = p(C,D)+x−I(x|C,D) = p(C,D)+


x, if 0 ≤ x < D;

D, if D ≤ x < C;

x+D − C, if C ≤ x,

(2.2)

and the corresponding profit of the insurer is

R(x|C,D) = p(C,D)− I(x|C,D) = p(C,D)−


0, if x < D;

x−D, if D ≤ x < C;

C −D, if C ≤ x.

(2.3)

In particular, we see that, when C = D (the case of no insurance coverage),

I(x|C,D) = 0. If, additionally, p(k, k) = 0 for all k ≥ 0, then we also have

L(x|C,D) = x and R(x|C,D) = 0.

The expected loss of the insured is by (2.2),

EL(X|C,D) = p(C,D)+EX+

∫ C

D

(D−x) f(x) dx+(D−C)

∫ ∞

C

f(x) dx. (2.4)

Similarly, the expected profit of the insurer is,

ER(X|C,D) = p(C,D)−
∫ C

D

(x−D) f(x) dx− (C −D)

∫ ∞

C

f(x) dx. (2.5)

Going forward, we assume that C and D are given, and do not write them if

they are not needed explicitly, thus L(X|C,D) is abbreviated L(X) andR(X|C,D)

is written R(X).
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It follows from (2.2) and (2.3) that

L(x) = x+R(x), for all x ≥ 0, (2.6)

and consequently, the expected loss of the insured equals the (uninsured) expected

loss plus the expected profit of the insurance company,

EL(X) = EX+ ER(X), (2.7)

as can be seen also from (2.4) and (2.5). Equation (2.7) gives the intuitive result

that the insured pays (in expectation) both the value of the random loss variable

and the insurer’s profit.

If the insurance company is profitable, as is generally the case, an insurance

policy as above does not reduce the expected cost to the insured. Indeed, under

the assumption that ER(X) > 0, we obtain EL(X) > EX, i.e., that the purchase

of insurance increases the expected loss of the insured.

Figure 2.1 shows the loss of the insured and the insurer as a function of a

random loss x. The insured is responsible for the loss x as it increases from 0

to D. The insurer profit in this region is constant, and equal to the premium

p(C,D). For losses between D and C, the insured pays D, with the remaining

x−D paid by the insurer. The insurer profit decreases in this region, while the

insured loss is constant. For losses larger than C, the insurer pays C−D and the

remaining loss, D + x− C is paid by the insured.

2.2 Premium

The premium p(C,D) is set by the insurer and chosen by the insured. The

insurer typically offers a menu of coverage-deductible pairs that the insured can

chose from (see Table 2.1 and Example 2.1 below). At the most general level we
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(a) The insured loss L(x|C,D) (b) The insurer loss −R(x|C,D)

Figure 2.1: Insured and Insurer Loss

assume that p(C,D) is monotonically increasing in C and decreasing in D. Thus,

the premium increases as the range of covered losses expands.

For each (C,D) pair there is a corresponding premium that is actuarially fair,

where the insurer’s expected profit is 0 and the insured’s expected loss is equal

to the expected value of the loss variable being insured. We expect that most

premiums are unfair, so as to ensure that the insured’s expected profit is positive.

2.2.1 Loaded Premium

One type of premium that fits our general conception is the loaded premium,

which is given by:

p(C,D) = λE I(X) for C > D ≥ 0, (2.8)

where λ > 0 is the loading factor. The dependence on C and D is a result of the

dependence of I(X) on C and D. Due to its intuitive appeal, loaded premiums

are the most common form of premiums found in the literature.

2.2.2 Separable Premium

Although the loaded premium will be the focus of this work, we will now briefly

introduce a second type of premium which allows for greater flexibility in the

premium function.
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Coverage (C) Premium (%) Deductible (D) Premium (%)
$1 million 134%
$250,000 100% $250 100%
$150,000 97% $500 87%
$75,000 95% $1,000 80%
$50,000 92% $2,000 77%
$15,000 87% $2,500 74%

Table 2.1: PIP premium as function of coverage and deductible, Source: NJ Auto
Insurance Buyer’s Guide, [47]

p(C,D) =

 0, if C = D;

α(D)β(C), if 0 ≤ D < C,
(2.9)

where α(D) is a positive, monotonely decreasing function of D, and β(C) is

positive and monotonely increasing in C. In this way we ensure that higher

coverage levels give higher premiums, while premiums decrease as deductibles

increase.

The following example from auto–insurance in New Jersey shows the premium

as a function of C and D. Note that not all values are permissible, in particular

there are minimum coverage and deductible.

Example 2.1. (Auto–insurance). Standard auto insurance policies in the State

of New Jersey contain Personal Injury Protection (PIP), with premiums depend-

ing on the deductible D and coverage C as shown in Table 2.1. The table lists 6

possible coverages and 5 deductibles; with minimum values of C = $15,000, and

D = $250. The standard premium (100% in Table 2.1 is for C = $250,000 and

D = $250, and changes depending on the insurance company. There is also a

20% co–payment for losses between the deductible selected (by the buyer) and

$5,000. See [47] for details.

For example, Jane chose the minimum coverage C = $15,000 (resulting in a

reduction of 13% from the premium for the standard coverage C = $250,000) and

a deductible D = $2,500 (getting a 26% reduction from the standard premium
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for D = $250). She pays 0.87 · 0.74 = 0.64 times the standard premium.

If Jane has an accident resulting in $10,000 of medical expenses, she pays the

first $2,500 as deductible, and an additional $500 copayment (20% of the $2,500

that is left of the first $5,000). The insurance pays the remaining $7,000.

Analyzing the data of Table 2.1, we approximate the premium p(C,D) by

(2.9). The data suggests that the cost of coverage β(C) is affine in C, say

β(C) = β(0) +mC, for some β(0) ≥ 0, m > 0,

and the premium is therefore

p(C,D) = α(D) (β(0) +mC).

Zero coverage is typically not allowed, (for example, in New Jersey the min-

imum coverage for auto–insurance is $15,000, see Table 2.1), and therefore the

term β(0) is just a device for expressing β(C) in its domain. The data of Table

2.1 is interpolated by (2.9) with

α(D) = aD−b, a = 1.94, b = 0.123, (250 ≤ D ≤ 2500), (2.10a)

β(C) = β(0) +mC, β(0) = 0.9, m = 4.5 · 10−7, (15, 000 ≤ C ≤ 106), (2.10b)

up to a multiplicative constant, and plotted in Figure 2.2, where darker color

indicates higher premium. The error of the interpolations (2.10a)–(2.10b) at the

given points is O(10−2).
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Figure 2.2: Contour plot of the PIP premium in Table 2.1 (Darker shading for
higher premiums)

2.2.3 Actuarial Fairness

Recall that a (C,D) policy is called actuarially fair if the insurer’s expected profit,

ER(X), is zero. By (2.3), this means that a policy is actuarially fair if

E I(X) = p(C,D).

If p(C,D) > E I(X) we say the premium is unfair, while if p(C,D) < E I(X) we

say the premium is discounted.

With the standard loaded premium function, p(C,D) = λE I(X), and within

a single insurer single insured framework, it is simple to see that the insurer can

only achieve a positive expectation if λ > 1. We now generalize this result for

any premium depending on C and D.

Theorem 2.1. For any pair (C,D), an insurance plan is actuarially fair if the

premium p(C,D) satisfies

p(C,D) =

∫ C

D

(1− F (x)) dx. (2.11)
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Proof. Using integration by parts we obtain

∫ C

D

(1− F (x))dx = C −D −
∫ C

D

F (x)dx

= C −D +

∫ C

D

xf(x)dx− xF (x)
]C
D

=

∫ C

D

xf(x)dx+ C(1− F (C))−D(1− F (D))

=

∫ C

D

(x−D)f(x)dx+

∫ ∞

C

(C −D)f(x)dx. (2.12)

For ER(X) = 0 we need, by (2.5),

p(C,D) =

∫ C

D

(x−D)f(x)dx+

∫ ∞

C

(C −D)f(x)dx, (2.13)

and the proof follows by noting that the right sides of (2.12) and (2.13) are

equal.

Remark 2.1. Assuming the expected profit to the insurer is nonnegative, it

follows from Theorem 2.1 that, for any pair (C,D), we must have

p(C,D) ≥
∫ C

D

(1− F (x)) dx, (2.14)

a condition that the premium must satisfy in order to guarantee an expected

profit (or break-even) for the insurer. For the case of a loaded premium, equation

(2.14) becomes

λE I(X) ≥
∫ C

D

(1− F (x)) dx.

Using equations (2.1) and (2.12), this is equivalent to

λE I(X) ≥
∫ C

D

(x−D)f(x)dx+

∫ ∞

C

(C −D)f(x)dx = E I(X),

which holds if λ ≥ 1.
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Although we usually expect premiums to be priced above their actuarial value,

i.e., we expect unfair premiums, where p(C,D) > E I(X), there are cases where

one may obtain an actuarially fair or even discounted premium. We discuss this

in section 5.1.

2.3 The Insurance Budget

The budget B available for buying insurance imposes conditions on the coverage C

and deductible D. In this section we discuss the conditions for both the general-

ized premium p(C,D) = α(D)β(C) and the loaded premium p(C,D) = λE I(X).

2.3.1 Separable Premium

For the case where p(C,D) = α(D)β(C), we first assume that the entire budget

is spent. We then have

α(D) β(C) = B, (2.15)

an equation that can be solved for D as a function of C,

D = α−1(B/β(C)), (2.16)

an increasing function, i.e. buying, with a fixed budget, more coverage makes

it necessary to increase the deductible. Because D is nonnegative, the smallest

possible coverage corresponds to D = 0 in (2.15), i.e., C must satisfy,

C ≥ β−1(B/α(0)), (2.17)

the right–hand side is the smallest possible coverage (corresponding to zero de-

ductible) for the given budget B.

Example 2.2. (α(·) exponential). In the exponential case α(D) = α(0)e−δD,
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the deductible (2.16) becomes

D = −1

δ
log

(
B

α(0) β(C)

)
, (2.18)

where D ≥ 0 if (2.17) holds, with D = 0 if B = α(0) β(C). Some of the curves

(2.18) are shown in Figure 2.3 for β(C) = C, α(0) = 0.6 and δ = 0.005. Higher

curves (i.e. greater deductible) correspond to lower budgets B.

Figure 2.3: Illustration of Example 2.2

2.3.2 Loaded Premium

We next consider the case of the loaded premium. The assumption that the entire

budget is spent means that

E I(X) =
B

λ
. (2.19)

It is difficult to obtain an analytic expression for D or C from (2.19), however,

we can use the derivatives of E I(X) to gain insight into (2.19).

∂

∂C
E I(X) =

∫ ∞

C

f(x) dx > 0

∂

∂D
E I(X) = −

∫ ∞

D

f(x) dx < 0

Therefore, for fixed λ, the budget must increase to accommodate an increase in

coverage or a decrease in deductible, while a decreased budget can be accommo-
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dated by either a decrease in coverage or an increase in deductible.

Example 2.3. Figure 2.4 shows possible (C,D) pairs for various budget lines for

an exponentially distributed loss with mean 100 and a loading factor λ = 1.25.

The curves are similar to those in Example 2.2, with low deductibles correspond-

ing to high premiums. We note that the contours flatten out quickly along the

horizontal axis, while there is a larger differentiation among different values of D.

Figure 2.4: Illustration of Example 2.3

2.4 First Order Optimality Conditions

We derive optimality conditions for the problem of minimizing the insured’s ex-

pected loss. In contrast to the expected utility based results of Arrow [2], we

show that a policy with a 0 deductible can be optimal. Since EL(X) is the sum

of ER(X) and a constant EX, these conditions also hold for the insurer. We

assume throughout that the support of the distribution F is not contained in

[D,C], i.e., ∫ C

D

f(x) dx < 1. (2.20)

Indeed if
∫ C

D
f(x) dx = 1 then by (2.4) the insured cost L(x) = p(C,D)+D with

certainty. The expected value (2.4) is unchanged if there is a positive probability

that no loss occurs (i.e. x = 0). Indeed, EX requires then a Stieltjes integral,

but the contribution of the value x = 0 is zero.
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The respective derivatives of E L(X) give rise to the first order optimality

conditions

∂

∂C
E L(X) =

∂

∂C
p(C,D)−

∫ ∞

C

f(x) dx = 0 (2.21a)

∂

∂D
E L(X) =

∂

∂D
p(C,D) +

∫ ∞

D

f(x) dx = 0, if D > 0, (2.21b)

∂

∂D
E L(X) =

∂

∂C
p(C,D) +

∫ ∞

D

f(x) dx ≥ 0, if D = 0. (2.21c)

2.4.1 Insured Optimality Conditions for the Separable Premium

If the premium is given by p(C,D) = α(D)β(C) conditions (2.21a), (2.21b), and

(2.21c) become

∂

∂C
E L(X) = α(D) β′(C)−

∫ ∞

C

f(x) dx = 0 (2.22a)

∂

∂D
E L(X) = α′(D) β(C) +

∫ ∞

D

f(x) dx = 0, if D > 0, (2.22b)

∂

∂D
E L(X) = α′(D) β(C) +

∫ ∞

D

f(x) dx ≥ 0, if D = 0. (2.22c)

To provide a more detailed analysis, we further assume that β(C) = β(0) +mC

as in Example 2.1.

Remark 2.2. Writing (2.22a) as

∫ ∞

C

f(x) dx = mα(D), (2.23)

we note that the left side of (2.23) is decreasing in C, and for fixed C, the right

side is decreasing in D, by the assumption on α(·). It follows that C and D move

in the same direction, a higher deductible D corresponds to a higher coverage C.

If D is a differentiable function of C we can use implicit differentiation and
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(2.22a) to obtain

dD

dC
= −

∂2L(X)

∂C2

∂2L(X)

∂D ∂C

= − f(C)

mα′(D)
,

which is positive by the assumptions on the premium function α(·) .

Remark 2.3. The first–order optimality conditions (2.22a)–(2.22b),

Prob {X ≥ C} =

∫ ∞

C

f(x) dx = mα(D) (2.24a)

Prob {X ≥ D} =

∫ ∞

D

f(x) dx = − α′(D) β(C) (2.24b)

can be solved for D and C. For D = 0 the optimality condition (2.22c) gives the

inequality

α′(0) β(C) + 1 ≥ 0

or by (2.10)

C(0) ≤ − 1

m

(
1

α′(0)
+ β(0)

)
, (2.25)

an upper bound on the coverage, corresponding to a zero deductible. There may

be an external upper bound Cmax on coverage, say

C ≤ Cmax. (2.26)

For example, in the auto–insurance data of Example 2.1, Cmax = $1 million.

Corollary 2.1. A sufficient condition for a positive deductible is

∫ ∞

− 1
m

(
1

α′(0)+β(0)
) f(x) dx > mα(0). (2.27)
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Proof. It follows from Remark 2.2 that the lowest possibly optimal coverage C(0)

corresponds to D = 0. C(0) is determined from (2.24a),

∫ ∞

C(0)

f(x) dx = mα(0),

and in addition must satisfy (2.25). These two conditions are satisfied only if

∫ ∞

− 1
m

(
1

α′(0)+β(0)
) f(x) dx ≤ mα(0), (2.28)

which is then a necessary condition for D = 0. The reverse inequality, (2.27), is

therefore sufficient for a positive deductible.

The next example illustrates, for the commonly occurring Gamma distribution

(see [10], [28], [31], and [60]), the calculation of C and D satisfying the necessary

optimality conditions.

Example 2.4. Let the random variable X have the Gamma distribution with

scale 1/λ and shape k ≥ 1,

f(x) =
λk

Γ(k)
xk−1 e−λx, x ≥ 0, (2.29)

in particular,

Γ(k) = (k − 1)!,

if k is integer, in which case (2.29) is the Erlang distribution. Let α(D) be

given by,

α(D) = α(0) e−δD, D ≥ 0.
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Zero deductible. For D = 0 to be optimal we must have, by (2.28),

∫ ∞

S

f(x) dx =
λk

Γ(k)

∫ ∞

S

xk−1 e−λx dx = e−λS

k−1∑
i=0

(i!)−1(λS)i ≤ mα(0),

where

S = − 1

m

(
1

α′(0)
+ β(0)

)
. (2.30)

Positive deductible. Equations (2.24a)–(2.24b) become

e−λC

k−1∑
i=0

(i!)−1(λC)i = mα(0) e−δD,

e−λD

k−1∑
i=0

(i!)−1(λD)i = α(0) β(C) δ e−δ D

or,

eδD−λC =
mα(0)∑k−1

i=0 (i!)
−1(λC)i

, (2.32a)

e(δ−λ)D =
α(0) β(C) δ∑k−1
i=0 (i!)

−1(λD)i
. (2.32b)

From (2.32a) we get D as a function of C,

D =
1

δ

(
log

(
mα(0)∑k−1

i=0 (i!)
−1(λC)i

)
+ λC

)

which can be substituted in (2.32b) to give an equation for C.

We show in Figure 2.5 the contour lines of the expected loss (2.4) for the

Gamma distribution with k = 2 and λ = 10−3. For the premium (2.10a, 2.10b)

we use δ = 10−2 and α(0) = 0.5, and β(0) = 50. In Figure 2.5(a) the slope is

m = 0.25, and in Figure 2.5(b), m = 0.125.

In these figures, lighter shading corresponds with lower costs, and the optimal

pair (C,D) is indicated by the brightest spot. Figure 2.5(b) illustrates that a zero
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deductible may be optimal, since the unconstrained minimum gives a negative

deductible. The optimal deductible D = 0 lies on the closest contour (where

D ≥ 0) to the theoretical optimum.

(a) Example with optimal deductible: positive (b) zero.

Figure 2.5: Contour lines of (2.4), the expected cost

2.4.2 Insured Optimality Conditions for a Loaded Premium

If the premium is loaded, p(C,D) = λE I(X), the optimality conditions become

∂

∂C
E L(X) = λ(E I(X))′ −

∫ ∞

C

f(x) dx = λ

∫ ∞

C

f(x) dx−
∫ ∞

C

f(x) dx

= (λ− 1)

∫ ∞

C

f(x) dx = 0, (2.33a)

∂

∂D
E L(X) = λ(E I(X))′ +

∫ ∞

D

f(x) dx = −λ

∫ ∞

D

f(x) dx+

∫ ∞

D

f(x) dx

= (1− λ)

∫ ∞

D

f(x) dx = 0 if D > 0, (2.33b)

∂

∂D
E L(X) = (1− λ)

∫ ∞

D

f(x) dx ≥ 0, if D = 0. (2.33c)

To solve for the optimal levels of C and D we set the left sides of (2.33a) and

(2.33b) equal to each other:

(λ− 1)

∫ ∞

C

f(x) dx = (1− λ)

∫ ∞

D

f(x) dx,

which has no solution if λ ̸= 1 and no unique solution if λ = 1. For λ = 1 (the ac-
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tuarially fair case), the premium is exactly equal to the expected reimbursement,

and so every policy is equivalent to the uninsured case.

Remark 2.4. If λ > 1, then p(C,D) > E I(X), and so the optimal decision is

to remain uninsured. On the other hand, if λ < 1, then p(C,D) < E I(X). In

this case ∂
∂C

E L(X) < 0 and ∂
∂D

E L(X) > 0, therefore the optimal decision is to

increase C and decrease D as much as possible, i.e., to purchase full coverage.

2.4.3 Optimality Conditions for the Insurer

It follows from (2.7) that the insurer’s first order optimality conditions are the

same as those of the insured, which is to be expected since this is a zero–sum

game, and the best outcome for one player is the worst for the other. Indeed, the

derivatives of E R(X) with respect to C and D are

∂

∂C
E R(X) =

∂

∂C
E L(X) =

∂

∂C
p(C,D)−

∫ ∞

C

f(x) dx (2.34a)

∂

∂D
E R(X) =

∂

∂D
E L(X) =

∂

∂D
p(C,D) +

∫ ∞

D

f(x) dx (2.34b)

It follows that the insurer may not offer the optimal policy desired by the insured,

who must then settle for a non–optimal plan.

2.5 Variance

Because the purchase of insurance results in an increase expected loss to the

insured, we consider variance reduction as the primary incentive for insurance. In

this section we show that insurance decreases the variance of the insured, while

increasing the insurer’s variance.
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2.5.1 Insured Variance

Applying (2.6), the variance for the insured is given by

VarL(X) = VarX+VarR(X) + 2Cov [R(X),X]

= VarX+Var I(X)− 2Cov [I(X),X]. (2.35)

The second line follows from the first because, by (2.3),

Var R(X) = E R(X)2 − (E R(X))2

= p(C,D)2 − 2p(C,D)E I(X) + E I(X)2 − (p(C,D)− E I(X))2

= E I(X)2 − (E I(X))2 = Var I(X) (2.36)

and

Cov [R(X),X] = E (R(X) ·X)− E R(X) · E X

= E (p(C,D) ·X)− E (I(X) ·X)− E (p(C,D) ·X) + E I(X) · E X

= −Cov [I(X),X] (2.37)

Remark 2.5. We note that the variance can be calculated without reference to

the premium, as p(C,D) appears in E L(X) and E R(X), but not in E I(X).

This is expected, as p(C,D) acts as a constant after C and D are chosen, and the

addition of a constant to a random variable does not change its variance.

In the uninsured case, C = D, E I(X) and Var I(X) are identically 0. We

therefore obtain from (2.35) that

Var L(X|k, k) = Var X for all k ≥ 0. (2.38)

The following theorem relates the variance VarL(X) to the coverage C and
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deductible D.

Theorem 2.2. Let F,C,D satisfy (2.20),
∫ C

D
f(x) dx < 1. Then

∂

∂C
Var L(X|C,D) < 0, (2.39)

and

∂

∂D
Var L(X|C,D) > 0. (2.40)

See Appendix A for the proof.

The variance VarL(X|C,D) is thus a decreasing function of C (for fixed D)

and an increasing function of D (for fixed C). We illustrate this in Figure 2.6.

(a) Var L(X) as a function of C (fixed D) (b) Var L(X) as a function of D
(fixed C)

Line Color (a) (b)
Black D = 0 C = 100
Blue 100 200
Green 200 300
Red 300 600

(c) Key

Figure 2.6: Var L(X) as a function of (a) C and (b) D

The following result establishes that insurance acts as a variance reducing

mechanism, i.e., that the purchase of insurance provides a decrease in variance

from the uninsured case.
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Corollary 2.2.

(a) Let 0 < D < C1 < C2, and let
∫ C2

D
f(x) dx < 1. Then

Var L(X|C2, D) < Var L(X|C1, D) < Var X. (2.41)

(b) Let 0 < D1 < D2 < C, and let

∫ C

D1

f(x) dx < 1.

Then

Var L(X|C,D1) < Var L(X|C,D2) < Var X. (2.42)

Proof. It follows from (2.38) that for C = D,

Var L(X|D,D) = Var X. (2.43)

(a) The left inequality in (2.41) follows from (2.39) and the right inequality from

(2.43), writing Var X as Var L(X|D,D). (b) is similarly proved.

Corollary 2.3. To minimize variance, it is optimal to purchase full coverage,

D = 0 and C = ∞.

Proof. From Theorem 2.2, variance is decreasing in C and increasing in D. It is

therefore optimal to increase C as much as possible and decrease D as much as

possible.

Example 2.5. Consider the Gamma distribution (2.29) with k = 2 and λ = 10−3.

Figure 2.7 shows contour lines of VarL(X) in the (C,D)–plane. For convenience

we represent these contour lines as the curves β−VarL(X) = 0 for several values

of β. The red line is D = C, corresponding to the uninsured case (where the

variance is VarX). Lower curves correspond to lower values of VarL(X). These

contour lines illustrate the flattening out of the variance, and the fact that above
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a certain threshold value, increasing the coverage C has a negligible effect on the

variance.

Figure 2.7: Contour lines of L(X|C,D), the insured variance

2.5.2 Insurer Variance

We derive similar results for the insurer as were found for the insured. The insurer

variance is, by (2.36),

Var R(X) = Var I(X), (2.44)

In the uninsured case the insurer’s variance is 0. We show that the insurer’s

variance increases by entering into an insurance contract, but it cannot exceed

the variance of the random variable that is being insured.

Theorem 2.3. Let F,C,D satisfy (2.20),
∫ C

D
f(x) dx < 1. Then

∂

∂C
Var R(X) > 0, (2.45)

and

∂

∂D
Var R(X) < 0. (2.46)

See Appendix B for the proof.
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Corollary 2.4.

(a) Let 0 < D < C1 < C2, and let
∫ C2

D
f(x) dx < 1. Then

0 < Var R(X|C1, D) < Var R(X|C2, D) < Var X. (2.47)

(b) Let 0 < D1 < D2 < C, and let
∫ C

D1
f(x) dx < 1. Then

0 < Var R(X|C,D2) < Var R(X|C,D1) < Var X. (2.48)

Proof. It follows from (2.3) that R(X|∞, 0) − p(∞, 0) = X, and from Remark

(2.5) that Var [R(X) − p(C,D)] = Var R(X). Therefore, the middle and right

inequalities in (2.47) follow from (2.45). The left inequality is trivial. (b) is

similarly proved.

The following result establishes the relationship between the loss variable X’s

variance and the insured and insurer.

Theorem 2.4. Var X = Cov [L(X), X] + Cov [−R(X), X]

Proof.

Cov [L(X),X] + Cov [−R(X),X] = E [L(X) ·X)− E L(X)E X

+ E [−R(X) ·X]− E [−R(X)]E X

= E [X(L(X)−R(X))]− E X [E L(X)

− E R(X)]

Substituting X+R(X) for L(X), we have

Cov [L(X),X]− Cov [R(X),X] = E X2 − (E X)2 = Var X
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Remark 2.6. We have established that the insured’s variance ranges from 0 (full

coverage) to Var X (no coverage) and the insurer’s variance increases from 0

(no coverage) to Var X (full coverage). The variances Var L(X) and Var R(X)

are equal if the associated losses covary with X equally. To see this, recall that

L(X) = X+R(X). Then Var L(X) = Var R(X) if

Var [X+R(X)] = Var R(X).

For two random variables Z1 and Z2, Var (Z1 + Z2) = Var Z1 + Var Z2 +

2Cov (Z1,Z2). The insured and insurer variances are then equal if Var X +

Var R(X)+2Cov (R(X),X) = Var R(X). Simplifying, we obtain that Var L(X) =

Var R(X) if Var X+ 2Cov (R(X),X) = 0, or equivalently, by (5.3a) below,

Cov [L(X),X] = −Cov (R(X),X). (2.49)

Applying Theorem 2.4 to equation (2.49), the insured and insurer have equal

variances if

Cov [L(X),X] =
1

2
Var X.
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3 Mean-Variance Optimization

Because insurance reduces the variance of the costs incurred by the insured, while

increasing their expected value, a Markowitzian mean–variance model, [42]–[43]

is natural. The insured seeks to compensate for the increased value of their ex-

pected loss with the decrease in variance. The mean-variance approach is used

here because it provides a simple, understandable, and tractable objective that is

grounded in the fact that insurance is a mean-increasing and variance-reducing

mechanism. Furthermore, mean-variance optimization provides a specific formula

to determine the optimal coverage and deductible, and it clearly shows the in-

teraction between the insurer’s attitude (expressed by the loading parameter λ)

and the insured’s attitude (expressed by the risk parameter δ discussed below).

Mean-variance also has a fundamental relationship with many other measures

(e.g., standard and semi-deviation measures), and serves as a logical starting

point for mean-risk approaches in insurance theory.

A major criticism of mean-variance approaches questions the use of variance

as a risk measure. Put simply, variance similarly penalizes both gains and losses.

This criticism is questionable in our framework, however, since the “gains” are

really just the small values of L(X), and the “losses” are the larger values of L(X).

In this case, we have the less egregious situation where large and small losses are

being similarly penalized. Nonetheless, future work would do well to consider the

various downside risk measures (e.g., semi-deviation and value-at-risk measures)

to determine if the results derived below for mean-variance models, and in the

literature for utility and non-expected utility models, still hold.

In 3.1 we describe the mean-variance model. Of particular interest here is

the parameter δ, which is an indication of the insured’s risk tolerance. We show

how the demand for insurance is affected by the insured’s choice of δ and its

relationship to a critical level δ∗.

Arrow’s classical result on optimal insurance coverage showed that full cover-
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age above a nonzero deductible is the optimal policy for a risk averse insured with

expected utility preferences and an actuarially unfair premium. If the premium is

actuarially fair or discounted, then full coverage with a zero deductible is optimal.

In section 3.2 we verify that these results also hold for a mean-variance minimizer

paying a loaded premium. We then show that the insurer’s optimal policy does

not match the insured’s, i.e., we show that there is no pair (C,D) that minimizes

both the insured’s and the insurer’s mean-variance, however, the insurer may be

able to induce the insured to purchase the insurer’s optimal policy. Section 3.3

shows that the results of 3.2 are also valid for a mean-standard deviation model.

3.1 The Mean-Variance Model and Insurance Demand

We utilize a mean-variance model where the customer seeks to minimize the sum

of the expected insured loss and a multiple of the variance. In Figure 3.1 we

graph the insured’s mean and variance as a function of (a) C and (b) D. In

this, and all other figures and examples of this chapter, we use a loaded premium

with λ = 1.25 and an exponentially distributed loss with mean 100 and variance

10, 000. We observe that the range of values taken by the variance is much larger

than the range of values taken by the expected insured loss. A mean-variance

minimizer is thus likely to accept an increase in expected loss for the potentially

large decrease in variance.

3.1.1 General Principles

For a random loss Z, the objective of the insured is:

min
C,D:C>D

[EL(Z) + δVar L(Z)]. (3.1)

The parameter δ expresses the tradeoff between the mean (expected loss) and

variance, and represents the decision maker’s attitude towards risk. As δ increases
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The insured mean (blue) and variance (red) as a function of (a) C for D = 50
and (b) D for C = 200

Figure 3.1: The insured mean and variance as a function of (a) C and (b) D

the insured places greater weight on the variance term, and so a decision maker

with a large δ value is likely to demand more insurance coverage than a decision

maker with a smaller δ.

There is a critical value δ∗ where a Markowitzian decision maker would be

indifferent between buying or not buying insurance. δ∗ is found by setting the

uninsured mean-variance equal to the insured mean-variance:

EL(X) + δ∗ VarL(X) = EX+ δ∗ VarX.

Rearranging this equation we obtain a direct expression for δ∗,

δ∗ =
EL(X)− EX

VarX− VarL(X)
. (3.2)

The numerator of (3.2) reflects the increase in the insured’s expected loss due to

the purchase of insurance, while the denominator reflects the decrease in variance

due to the purchase of insurance. δ∗ is thus the cost-benefit ratio of a given (C,D)

policy. As the insured variance and expected loss are dependent on C and D, so

to is δ∗, and it may then be written as δ∗(C,D).

Note that δ∗ is implicitly defined by the insurer. Indeed, the value E L(X)−

EX, is a direct result of (the insurer’s choice of) the premium, and therefore when
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setting the premium, the value δ∗ is also defined. On the other hand, δ is chosen

by the insured, and so the relationship between δ and δ∗ is key to determining

whether or not insurance will be demanded. It is possible that some decision

makers will refuse insurance coverage if this relationship is unfavorable.

For δ > δ∗ it is optimal to buy insurance. To see this, rewrite (3.2) as

δ∗(Var X− Var L(X)) = EL(X)− EX. (3.3)

Since Var X > Var L(X), the left side of (3.3) is positive, and we have for δ > δ∗

that

δ(Var X− Var L(X)) > δ∗(Var X− Var L(X)) = EL(X)− EX,

which gives

EL(X) + δVarL(X) < EX+ δVarX.

Thus, the mean-variance is smaller in the insured case than in the uninsured

case. Conversely, for δ < δ∗ insurance cannot be justified in the Markowitz

model, although in may cases it is required by law.

In general, δ∗ will change as C and D change. Thus, a decision maker (with

a constant risk preference δ) may demand insurance for some (C,D) policies but

not for others.

3.1.2 Loaded Premium

Suppose the premium is loaded, p(C,D) = λE I(X), where λ > 0. Then by (2.4),

E L(X)− E X = λE I(X) +

∫ C

D

(D − x) f(x) dx+ (D − C)

∫ ∞

C

f(x) dx

= λE I(X)− E I(X) = (λ− 1)E I(X),
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therefore equation (3.2) becomes

δ∗ =
(λ− 1)E I(X)

Var X− Var L(X)
.

Insurance will be demanded if the δ of the potential insured is greater than

δ∗:

δ ≥ (λ− 1)E I(X)

Var X− Var L(X)
(3.4)

In Figure 3.2 we give the contour lines of δ∗, showing that it decreases as

C and D increase. The demand for low deductible/low coverage policies should

then be lower than the demand for higher coverage and deductible policies, as the

higher coverage/higher deductible policies serve a greater range of δ′s.

Figure 3.2: Contour lines of δ∗

We rewrite (3.4) with the fixed values δ and λ on one side of the inequality

and the variable values C and D on the other:

λ− 1

δ
≤ Var X− Var L(X)

E I(X)
(3.5)

The choice of whether or not to purchase insurance is determined by (3.5) for

all possible policies (C,D). Note that the left side of (3.5) is dependent on the

attitudes of both the insured (δ) and the insurer (λ).

Example 3.1. Consider an exponentially distributed loss X with parameter κ.
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Then

Var X = κ−2,

Var L(X) = 2κ−2(1−e−κD+e−κC)+2Dκ−1(e−κC−e−κD)−κ−2(1−e−κD+e−κC)2,

and

E I(X) = κ−1(e−κD − e−κC).

Therefore, equation (3.5) becomes

λ− 1

δ
≤ 2D + κ−1(e−κD − e−κC)

In Tables 3.1 and 3.2 we show the values of 2D + κ−1(e−κD − e−κC) and λ−1
δ

for κ = 0.2 and several values of C, D, δ, and λ. It is apparent that, unless the

risk preference δ is very small or the premium loading λ is very high, (3.5) is

satisfied, and thus insurance will be demanded.

For example, suppose the insurer holds a risk preference δ = 0.001 and pays

a loading factor λ = 1.25. The left side of (3.5) is then equal to 250, and is less

than the right side if any of the policies (500, 250), (1000, 250), or (1000, 500) are

chosen. Increasing δ from 0.001 will allow for a greater variety of possible (C,D)

pairs.

If κ is decreased from 0.2 (thus increasing the expected loss and variance),

the values of table 3.1 are increased, thus making (3.5) more easily satisfied.

Therefore, in this example, a person’s demand for insurance increases with their

expected loss.

3.2 Optimality Conditions for the Mean-Variance Prob-

lem

We now derive the optimality conditions for the mean-variance minimization

problem (3.1). We begin by developing general conditions that hold for any
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D=0 10 25 50 100 250 500
C=25 19.7 30.6 - - - - -
50 31.6 42.5 61.9 - - - -
100 43.2 54.2 73.6 111.6 - - -
250 49.7 60.6 80.0 118.1 206.4 - -
500 50.0 60.9 80.3 118.4 206.8 500.3 -
1000 50.0 60.9 80.3 118.4 206.8 500.3 1000.0

Table 3.1: Values of 2D + κ−1(e−κD − e−κC) for assorted values of C and D

λ=1 1.1 1.25 1.5 2
δ=0.001 0 100 250 500 1000
0.01 0 10 25 50 100
0.05 0 2 5 10 20
0.1 0 1 2.5 5 10
0.25 0 0.4 1 2 4
0.5 0 0.2 0.5 1 2
1 0 0.1 0.25 0.5 1
2 0 0.05 0.125 0.25 0.5

Table 3.2: Values of λ−1
δ

for assorted values of λ and δ

premium, and then derive specific conditions for the case of a loaded premium.

3.2.1 General Principles

To determine first-order optimality conditions for the mean-variance minimiza-

tion problem (3.1) we calculate, with respect to C and D, the derivatives of the

expected loss and variance. The derivatives of the expected loss are

∂

∂C
E L(X) =

∂

∂C
p(C,D)−

∫ ∞

C

f(x) dx (3.6)

∂

∂D
E L(X) =

∂

∂D
p(C,D) +

∫ ∞

D

f(x) dx, (3.7)
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and the variance derivatives are (see Appendix A for the derivation of these

derivatives):

∂

∂C
Var L(X) = 2

∫ ∞

C

f(x) dx

∫ D

0

(x−D) f(x) dx

+ 2

∫ C

0

f(x) dx

∫ ∞

C

(C − x) f(x) dx

(3.8)

∂

∂D
Var L(X) = 2

∫ D

0

f(x) dx

∫ ∞

C

(x− C)f(x) dx

+ 2

∫ D

0

(D − x) f(x) dx

∫ ∞

D

f(x) dx.

(3.9)

The first-order optimality conditions are determined by setting the derivatives

∂
∂C

[EL(X)+ δVar L(X)] and ∂
∂D

[EL(X)+ δVar L(X)] to zero. Moving the terms

∂
∂C

EL(X) and ∂
∂D

EL(X) to the opposite sides of the equations, we obtain the

optimality conditions

− ∂

∂C
p(C,D) +

∫ ∞

C

f(x) dx = 2δ

∫ ∞

C

f(x) dx

∫ D

0

(x−D) f(x) dx

+ 2δ

∫ C

0

f(x) dx

∫ ∞

C

(C − x) f(x) dx

(3.10a)

− ∂

∂D
p(C,D)−

∫ ∞

D

f(x) dx = 2δ

∫ D

0

f(x) dx

∫ ∞

C

(x− C)f(x) dx

+ 2δ

∫ D

0

(D − x) f(x) dx

∫ ∞

D

f(x) dx

(3.10b)

Equations (3.10a) and (3.10b) can be simultaneously solved to determine the

optimal coverage and deductible for the mean-variance minimizing insured.

Proposition 3.1.

(a) A sufficient condition for infinite coverage is

∂

∂C
p(C,D) ≤ Prob(X > C) for all C. (3.11)



43

(b) A sufficient condition for a zero deductible is

− ∂

∂D
p(C,D) ≤ Prob(X > D) for all D. (3.12)

Proof. (a) Infinite coverage is optimal if ∂
∂C

(E L(X)+δVar L(X)) = ∂
∂C

E L(X)+

δ ∂
∂C

Var L(X) ≤ 0 for all C. By Theorem 2.2 we have that δ ∂
∂C

Var L(X) <

0. Using equation (3.6), ∂
∂C

E L(X) ≤ 0 if ∂
∂C

p(C,D) ≤
∫∞
C

f(x) dx, which is

equivalent to (3.11).

(b) Similarly, a 0-deductible is optimal if ∂
∂D

E L(X) + δ ∂
∂D

Var L(X) ≥ 0 for all

D ≥ 0. Applying Theorem 2.2 and equation (3.7), ∂
∂D

E L(X) ≥ 0 if− ∂
∂D

p(C,D) ≤∫∞
D

f(x) dx, which is equivalent to (3.12).

3.2.2 Loaded Premium

Consider the loaded premium p(C,D) = λE I(X). The mean loss in this case is

E L(X) = (λ− 1)E I(X) + E X

and the variance is given by (2.35).

In Figure 3.3 we plot the mean-variance as a function of (a) C for several

values of D, and (b) D for several values of C. The figure uses the risk preference

δ = 0.01. In (a) it is apparent that increasing C beyond a certain threshold does

very little in decreasing the mean-variance. Figure (b) shows the mean-variance

as convex in D with a nonzero minimum.

The mean-variance derivatives for a loaded premium policy are, by (2.33a),
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(a) Fixed D (b) Fixed C

Line Color (a) (b)
Black D = 0 C = 50
Blue 25 100
Green 50 250
Red 100 500

(c) Key

Figure 3.3: Plot of MV (X) = E L(X) + δVar L(X)

(2.33b), (3.8), and (3.9),

∂

∂C
[E L(X) + δVar L(X)] = (λ− 1)

∫ ∞

C

f(x) dx

+ 2δ

∫ ∞

C

f(x) dx

∫ D

0

(x−D) f(x) dx

+ 2δ

∫ C

0

f(x) dx

∫ ∞

C

(C − x) f(x) dx

(3.13a)

∂

∂D
[E L(X) + δVar L(X)] = (1− λ)

∫ ∞

D

f(x) dx

+ 2δ

∫ D

0

f(x) dx

∫ ∞

C

(x− C)f(x) dx

+ 2δ

∫ D

0

(D − x) f(x) dx

∫ ∞

D

f(x) dx,

(3.13b)
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and the optimality conditions (3.10a) and (3.10b) become

(1− λ)

∫ ∞

C

f(x) dx

= 2δ

(∫ ∞

C

f(x) dx

∫ D

0

(x−D) f(x) dx+

∫ C

0

f(x) dx

∫ ∞

C

(C − x) f(x) dx

)
(3.14a)

(λ− 1)

∫ ∞

D

f(x) dx

= 2δ

(∫ D

0

f(x) dx

∫ ∞

C

(x− C)f(x) dx+

∫ D

0

(D − x) f(x) dx

∫ ∞

D

f(x) dx

)
(3.14b)

We now show that the classical insurance results, full coverage for fair or

discounted premiums and full coverage above a nonzero deductible for unfair

premiums, are valid in the mean-variance framework.

Theorem 3.1. If λ ≤ 1, i.e., if the insurance premium is fair or discounted, then

the optimal insurance policy has a zero deductible and full (infinite) coverage.

Proof. Suppose λ ≤ 1. Then

∂

∂C
p(C,D) = λ

∫ ∞

C

f(x) dx ≤
∫ ∞

C

f(x) dx = Prob{X > C}

− ∂

∂D
p(C,D) = λ

∫ ∞

D

f(x) dx ≤
∫ ∞

D

f(x) dx = Prob{X > D}.

The sufficient conditions of Proposition 3.1 are therefore satisfied and full coverage

(D = 0 and C = ∞) is optimal.

Theorem 3.2. Suppose that δ > 0 and λ > 1 satisfy (3.4) (i.e, that insurance

will be demanded). Then the optimal policy for the mean-variance minimizer is

C = ∞ and D satisfying equation (3.17).



46

Proof. If D is infinite we are in the uninsured case, therefore, by the assumption

that (3.4) is satisfied, we know that D is finite. We further assume, for the

time-being, that C is finite. Then, dividing the optimality conditions (3.14a)

and (3.14b) by −2δ
∫∞
C

f(x) dx and 2δ
∫∞
D

f(x) dx, respectively, we obtain the

equivalent conditions

λ− 1

2δ
=

F (C)

1− F (C)

∫ ∞

C

(x− C) f(x) dx+

∫ D

0

(D − x) f(x) dx (3.15a)

λ− 1

2δ
=

F (D)

1− F (D)

∫ ∞

C

(x− C)f(x) dx+

∫ D

0

(D − x) f(x) dx (3.15b)

Combining (3.15a) and (3.15b) we obtain the condition

F (C)

1− F (C)
=

F (D)

1− F (D)
(3.16)

Since C ≥ D, it follows that F (C) ≥ F (D) and 1 − F (C) ≤ 1 − F (D).

Therefore the numerator of the left side of (3.16) is greater than or equal to the

numerator of the right side, and the denominator of the left side is less than

or equal to the denominator of the right side, so F (C)
1−F (C)

≥ F (D)
1−F (D)

. Hence, the

only solutions to equations (3.15a) and (3.15b) are the points C = D, i.e., the

uninsured case.

We next consider the cases where C or D take on endpoint values.

i) If either C = 0 or D = ∞, then we are in the uninsured case, which is non-

optimal by the assumption that (3.4) is satisfied.

ii) If C = ∞ then we optimize with respect to D, i.e., we let C = ∞ in (3.15b).

Applying L’Hospital’s rule, we obtain the condition for D

λ− 1

2δ
=

∫ D

0

(D − x) f(x) dx (3.17)

iii) If D = 0 then we optimize with respect to C, i.e., we choose C so that

(3.15a) is satisfied with D = 0. However, if (3.15a) is satisfied, then, because
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F (C)
1−F (C)

> F (D)
1−F (D)

for C > D, we have that the relationship in (3.15b) is “ > ”,

which means that ∂
∂D

[E L(X)+δVar L(X)] < 0 for all D. Hence, the point D = 0

is not optimal.

Assuming that (3.4) is satisfied, the optimal policy is therefore given by case

ii), C = ∞ and D satisfying (3.17).

Corollary 3.1. Let the optimal deductible be given by D∗. Then for any λ ≥ 0,

D∗ can be found by solving

Max

(
λ− 1

2δ
, 0

)
=

∫ D

0

(D − x) f(x) dx. (3.18)

If λ > 1 we also have that D∗ > 0.

Proof. If λ ≤ 1, then Max (λ−1
2δ

, 0) = 0, and the only solution to 0 =
∫ D

0
(D −

x) f(x) dx is D = 0, which by Theorem 3.1 is optimal for λ ≤ 1. If λ > 1, then

Max (λ−1
2δ

, 0) = λ−1
2δ

, and so (3.18) becomes (3.17) from Theorem 3.2. Further-

more, if D = 0, then the right side of (3.18) is equal to 0, but since λ > 1 and

δ > 0, the left side is positive, and so we cannot have D = 0. Therefore, we must

have D∗ > 0.

Assuming that δ and λ are such that there exists points (C,D) that satisfy

(3.5), the combination of Theorem 3.2 and Corollary 3.1 replicates the classical

insurance result of Arrow and Mossin that, in the case of an unfair premium,

partial coverage (non-zero deductible with infinite coverage) is optimal.

Example 3.2. Figure 3.4 illustrates Theorem 3.2 and Corollary 3.1 for the ex-

ponential example, using a risk preference δ = 0.01.

From Corollary 3.1, the optimal value D is the D that satisfies

λ− 1

2δ
=

∫ D

0

(D − x) f(x) dx.
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Figure 3.4: Contour lines of E L(X) + δVar L(X)

Letting λ = 1.25 and δ = 0.01 in the above equation, we obtain the (positive)

solution D = 54.54. The mean-variance of an infinite coverage, 54.54-deductible

policy, E L(X|∞, 54.54) + δVar L(X|∞, 54.54), is 117.67.

The mean-variance in the uninsured case, E L(X|C = D)+δVar L(X|C = D),

is 200, and thus the purchase of insurance is optimal in this example.

3.2.3 Insurer Mean-Variance

We now consider the insurer’s perspective. We assume for the insurer a mean-

variance minimization problem

min(C,D):C>D MVR(X) = min(C,D):C>D[E [−R(X)] + δRVar R(X)],

where δR is the parameter describing the insurer’s risk tolerance. Recall that

R(X) is the insurer’s profit, so −R(X) represents the insurer loss and is given by

−R(X) = −p(C,D) + I(X). We also have that Var R(X) = Var I(X), and we

assume a loaded premium with λ > 1. The insurer mean-variance problem can

then be written as:

min(C,D):C>D MVR(X) = min(C,D):C>D[(1− λ)E I(X) + δRVar I(X)] (3.19)

If δR = 0 we say that the insurer is Risk Neutral, and if δR > 0 the insurer is
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Risk Averse. We first establish that policies exist that reduce the insurer’s mean-

variance. In the uninsured case, the insurer’s mean and variance are both 0, and

so the insurer has incentive to offer insurance if there exists a (C,D) for which

MVR(X|C,D) < 0. In the risk neutral case (δR = 0) the insurer’s mean-variance

is

MVR(X) = (1− λ)E I(X).

Since λ > 1, it follows that the mean-variance is always less then 0, and the

insurer’s mean-variance is therefore decreased for all policies. To find the optimal

policy we consider the insurer loss derivatives, which are given by

∂

∂C
[−R(X)] = (1− λ)

∫ ∞

C

f(x) dx,

and

∂

∂D
[−R(X)] = (λ− 1)

∫ ∞

D

f(x) dx.

For λ > 1, the insurer’s mean loss is thus decreasing in C and increasing in

D. Therefore, the optimal policy from the insurer’s perspective is full coverage,

whereas the insured will seek a non-zero deductible.

Next consider the risk averse (δR > 0) case. MVR(X) < 0 if

λ− 1

δR
>

Var I(X)

E I(X)
, (3.20)

i.e., the insurer’s mean-variance will decrease for any (C,D) pair for which (3.20)

holds. To determine the insurer’s optimal policy we consider the mean-variance

derivatives. The insurer loss derivatives were computed above, and the variance

derivatives are given by (B5) and (B6) in Appendix B:

∂

∂C
Var I(X) = 2

(
C

∫ C

0

f(x) dx−D

∫ D

0

f(x) dx−
∫ C

D

x f(x) dx

)∫ ∞

C

f(x) dx
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∂

∂D
Var I(X) = 2

(
D

∫ ∞

D

f(x) dx−
∫ C

D

x f(x) dx− C

∫ ∞

C

f(x) dx

)∫ D

0

f(x) dx

The mean-variance derivatives are then

∂

∂C
MVR(X) = (1− λ)

∫ ∞

C

f(x) dx

+ 2δR

(
C

∫ C

0

f(x) dx−D

∫ D

0

f(x) dx−
∫ C

D

x f(x) dx

)∫ ∞

C

f(x) dx

(3.21a)
∂

∂D
MVR(X) = (λ− 1)

∫ ∞

D

f(x) dx

+ 2δR

(
D

∫ ∞

D

f(x) dx−
∫ C

D

x f(x) dx− C

∫ ∞

C

f(x) dx

)∫ D

0

f(x) dx

(3.21b)

Setting (3.21a) and (3.21b) equal to 0, we obtain the first order optimality con-

ditions

λ− 1

2δR
= C

∫ C

0

f(x) dx−D

∫ D

0

f(x) dx−
∫ C

D

x f(x) dx

= (C −D)

∫ D

0

f(x) dx+

∫ C

D

(C − x) f(x) dx (3.22a)

λ− 1

2δR
=

∫ D

0
f(x) dx∫∞

D
f(x) dx

(
C

∫ ∞

C

f(x) dx+

∫ C

D

x f(x) dx−D

∫ ∞

D

f(x) dx

)
=

∫ D

0
f(x) dx∫∞

D
f(x) dx

(
(C −D)

∫ ∞

C

f(x) dx+

∫ C

D

(x−D) f(x) dx

)
(3.22b)

We again assume that C and D are finite (the case of infinite C is addressed

below, infinite D corresponds with the uninsured case). Combining the right

sides of (3.22a) and (3.22b) we obtain the optimality condition

∫ ∞

D

f(x) dx

(
(C −D)

∫ D

0

f(x) dx+

∫ C

D

(C − x) f(x) dx

)
=

∫ D

0

f(x) dx

(
(C −D)

∫ ∞

C

f(x) dx+

∫ C

D

(x−D) f(x) dx

)
.
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Simplifying, we have the equivalent condition

C

∫ C

D

f(x) dx =

∫ C

D

x f(x) dx,

which has no solution unless C = D. Therefore, there is no finite C, C > D ≥ 0,

where both mean-variance derivatives are equal to 0. Assuming that there exists

a (C,D) for which MVR(X) < 0, the optimal policy for the insurer must then

have either C = ∞ and ∂
∂D

MVR(X) = 0, or D = 0 and ∂
∂C

MVR(X) = 0.

Our focus here is not on determining the particulars of the insurer’s optimal

policy; instead we wish to analyze the behavior of the insurer’s mean-variance in

the context of the insured’s decisions. We note that ∂
∂C

MVR(X) > 0 if and only

if

λ− 1

2δR
< C

∫ C

0

f(x) dx−D

∫ D

0

f(x) dx−
∫ C

D

x f(x) dx, (3.23)

and observe that, for C > D,

C

∫ C

0

f(x) dx−D

∫ D

0

f(x) dx−
∫ C

D

x f(x) dx

> C

∫ C

0

f(x) dx− C

∫ D

0

f(x) dx− C

∫ C

D

f(x) dx = 0.

The right side of (3.23) is therefore always positive, but since

limD→C−

(
C

∫ C

0

f(x) dx−D

∫ D

0

f(x) dx−
∫ C

D

x f(x) dx

)
= 0,

it can be made arbitrarily close to 0.

Suppose D is fixed. Then, because λ−1
2δR

> 0, there is always a C̄ for which

(3.23) does not hold for any C < C̄ and for which (3.23) does hold for all C > C̄.

Therefore, the mean-variance derivative with respect to C has both negative and



52

positive values:

∂

∂C
MVR(X) < 0 for all C < C̄ (3.24a)

∂

∂C
MVR(X) > 0 for all C > C̄ (3.24b)

In particular, let D be given by (3.18), i.e. let D be optimal for the insured.

Then we can find a finite C̄, for which (3.24b) holds. Raising the coverage above

C̄ is unfavorable for the insurer, but by Theorem 3.2, the insured prefers C →

∞. The optimal policies of the insured and the risk averse insurer are therefore

different.

We have shown that for both risk neutral and risk averse insurers, there is an

inherent disparity between the preferred policies of the insured and the insurer if

they each hold mean-variance preferences. There is, however, a balance of power

between the insured and the insurer.

In the insurer’s favor is i) it can chose the policies, i.e., the (C,D) pairs, that it

offers and ii) individuals are often forced by law to obtain insurance (e.g., health

and automobile insurance in the United States), thus allowing insurer’s to only

offer sub-optimal (from the insured’s perspective) policies.

On the other hand, the insured is free to choose from a number of differ-

ent insurers, thus creating competition among insurance companies, and perhaps

forcing particular insurers to offer sub-optimal (from their perspective) policies.

The case i) deserves special attention. Although there is no “natural” point

(C,D) where the insured and insurer’s mean-variances are both minimal, the

fact that the insurer chooses the policies to be offered opens the possibility of a

mutually optimal solution in this insurer defined restricted (C,D) space.

The following example considers the set of policies offered by the insurer, show-

ing how the insurer may induce the insured to choose the policy that minimizes

the insurer’s mean-variance.
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Example 3.3. In Example 3.2 we considered an exponential loss with a mean

of 100, and showed that the insured’s optimal policy is infinite coverage and a

deductible of 54.54. As discussed above, the insurer’s optimal solution has either

infinite coverage or a zero deductible. Assuming that the insurer’s risk preference

is δR = 0.0005, we investigate the two possibilities.

Suppose the coverage is infinite, then letting C = ∞ in (3.21b) we obtain

∂

∂D
MVR(X)|C=∞ = (λ− 1)

∫ ∞

D

f(x) dx+ 2δR

∫ ∞

D

(D − x) f(x) dx

∫ D

0

f(x) dx.

Setting this equation to 0 we find that there is no solution with D ≥ 0, and so

the insurer’s optimal policy must have a deductible D = 0. To find the optimal

coverage C we let D = 0 in (3.21a):

∂

∂C
MVR(X)|D=0 = (1− λ)

∫ ∞

C

f(x) dx+ 2δR

∫ C

0

(C − x) f(x) dx

∫ ∞

C

f(x) dx,

Setting this equation to 0, we obtain the optimal coverage of C = 346.89.

To attain it’s optimal policy, the insurer must carefully choose the policies

that it offers the insured. Let Ψ be the set of policies that the insured finds

inferior to the insurer’s optimal policy:

Ψ ={(C,D) : MV (X|C,D) > MV (X|346.89, 0)}

= {(C,D) : MV (X|C,D) > 130.35}

The set of policies that the insurer should offer then takes the form {(346.89, 0)}∪

Φ, where Φ ⊆ Ψ. In Figure 3.5 we show the contour line of MV (X) = 130.35.

The colored area represents Ψ, the points where MV (X) > 130.35, and the white

part is the set of policies that the insured would prefer to the optimal insurer

policy.

The insurer may, for example, offer only two policies: (346.89, 0) and (2000, 200).
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Figure 3.5: Contour line of MV (X) for the insurer’s optimal policy

If the insurer correctly estimated the insured’s risk preference δ, then the insured

will prefer the (346.89, 0) policy to the (2000, 200) policy, and the insurer will

attain its optimal policy. We note that the point (346.89, 0) satisfies (3.5), i.e.,

the insured’s mean-variance at this point is smaller than his mean-variance in the

uninsured case.

Remark 3.1. In example 3.3 we considered the case where the insurer has mean-

variance preferences, however, the lesson remains the same no matter what type

of preferences the insurer holds - if the insurer can properly estimate the insured’s

risk preference, it can determine a set of policies to offer that will result in the

insured selecting the insurer’s optimal policy.

3.3 A Mean-Standard Deviation Formulation

In this section we consider an alternative mean-risk formulation, using the stan-

dard deviation as a risk measure instead of the variance. We assume throughout

this section a loaded premium, p(C,D) = λE I(X), for λ > 0.

The standard deviation, σ(X) =
√
Var X, has as its main advantage that it is

in the same unit scale as the mean (as opposed to the variance, where the units

are squared). The value of the expected loss is not affected by the risk measure,
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and so it is the same as above. The standard deviation is

σ[L(X)] = [Var L(X)]1/2 (3.25)

with derivatives

∂

∂C
σ[L(X)] =

1

2
[Var L(X)]−1/2 ∂

∂C
Var L(X)

=
1

2

∂
∂C

Var L(X)

σ[L(X)]
(3.26)

∂

∂D
σ[L(X)] =

1

2

∂
∂D

Var L(X)

σ[L(X)]
(3.27)

Since σ[L(X)] ≥ 0, the standard-deviation derivatives have the same signs as the

variance derivatives. Therefore, Proposition 3.1 and Theorem 3.1 remain valid,

and so for fair or discounted premiums, full coverage is optimal.

The mean-standard deviation derivatives are,

∂

∂C
[E L(X) + δσ[L(X)]] = (λ− 1)

∫ ∞

C

f(x) dx

+ δ

∫∞
C

f(x) dx
∫ D

0
(x−D) f(x) dx+

∫ C

0
f(x) dx

∫∞
C

(C − x) f(x) dx

σ[L(X)]

∂

∂D
[E L(X) + δσ[L(X)]] = (1− λ)

∫ ∞

D

f(x) dx

+ δ

∫ D

0
f(x) dx

∫∞
C

(x− C)f(x) dx+
∫ D

0
(D − x) f(x) dx

∫∞
D

f(x) dx

σ[L(X)]
,

and the first-order optimality conditions can be written as

λ− 1

δ
σ[L(X)] =

F (C)

1− F (C)

∫ ∞

C

(x− C) f(x) dx+

∫ D

0

(D − x) f(x) dx

λ− 1

δ
σ[L(X)] =

F (D)

1− F (D)

∫ ∞

C

(x− C)f(x) dx+

∫ D

0

(D − x) f(x) dx.

The right sides of these equations are equal to the right sides of (3.15a) and

(3.15b), and the left sides differ by a positive multiple. Similar results as those
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of Theorem 3.2 and Corollary 3.1 are then valid for the mean-standard devi-

ation case, with the optimal policy having infinite coverage and D satisfying

λ−1
δ
σ[L(X)] =

∫ D

0
(D − x) f(x) dx, i.e., we have that, for an unfair premium, the

optimal policy has full coverage above a nonzero deductible.
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4 Coinsurance

In this chapter we discuss coinsurance policies in a mean-variance framework

for the insured. In section 4.1 we consider straight coinsurance and derive the

mean-variance minimizing policy. Section 4.2 introduces a stop-loss limit to the

coinsurance model, and proves that the optimal coinsurance with stop-loss pol-

icy is equivalent to the optimal deductible policy. We consider a coinsurance

policy with a deductible in 4.3, and show that it too is equivalent to the opti-

mal deductible policy. Additionally, we show that the optimal straight coinsur-

ance policy is inferior to the optimal deductible policy (and by extension, the

optimal coinsurance with stop-loss or deductible policies). We assume through-

out a loaded premium, p(C,D) = λE I(X| · ) and a mean-variance expression

MV (X| · ) = E L(X| · ) + δVar L(X| · ), for some δ > 0.

4.1 Straight Coinsurance

We define Straight Coinsurance as a policy where the insurer pays a fixed per-

centage of the insured loss, and the insured pays the remaining portion of the

loss. Let the coinsurance parameter be given by α, where 0 ≤ α ≤ 1. Then for

any loss random loss x, the insured pays αx and the insurer pays (1− α)x. The

case where α = 1 corresponds with being uninsured, while if α = 0, the insured

is fully covered for any loss. The expected insurer reimbursement is then

E I(X|α) = (1− α)

∫ ∞

0

x f(x) dx = (1− α)E X

with derivative

d

dα
E I(X|α) = −E X.
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The expected insured loss is

E L(X|α) = λE I(X|α) + α

∫ ∞

0

x f(x) dx

= λ(1− α)E X+ αE X

= (λ+ (1− λ)α)E X,

with derivative

d

dα
E L(X|α) = (1− λ)E X.

The insured variance is

Var L(X|α) = α2Var X

with derivative

d

dα
Var L(X|α) = 2αVar X.

The derivative of the mean-variance MV (α) = E L(X|α) + δVar L(X|α) is then

d

dα
MV (X|α) = (1− λ)E X+ 2αδVar X,

and so d
dα
MV (X|α) = 0 if

α =
(λ− 1)E X

2δVar X
. (4.1)

If λ > 1, (4.1) will give a positive value. To verify that the minimal value of

MV (X|α) occurs here, we compute its value at this critical point and compare

to its value at the endpoint α = 0.

MV (X|0) = λE X,

MV

(
X|(λ− 1)E X

2δVar X

)
= λE X− 1

4

(1− λ)2(E X)2

δVar X
.

The mean-variance minimizer thus prefers α given by (4.1) to α = 0. If

α = 1 we are in the uninsured case, and so MV (X|1) = E X + δVar X. A
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straight coinsurance policy will then provide a reduction in mean-variance from

the uninsured case if λE X− 1
4
(1−λ)2(E X)2

δVar X
< E X+ δVarX, or

(λ− 1)E X < δVarX+
1

4

(1− λ)2(E X)2

δVar X
.

For the case of a fair or discounted premium, λ ≤ 1, note that d
dα
MV (α)|α=0 =

(1 − λ)E X ≥ 0. Therefore, the insured never wants to increase α, and so we

must have that full coverage (α = 0) is optimal.

Example 4.1. Figure 4.1 plots the mean-variance for 0 ≤ α ≤ 1 for an expo-

nentially distributed loss with mean 100, loading λ = 1.25, and risk preference

δ = 0.01. Inserting the parameters λ and δ into equation (4.1) we obtain α = 0.125

Figure 4.1: Plot of E L(X|α) + δVar L(X|α)

as the optimal point. MV (0.125) = (1.25+ (1− 1.25) · 0.125) · 100+0.01 · 0.1252 ·

10, 000 = 123.44.

Note that the parameters in this example are the same as those in example

3.2, where the minimum mean-variance value was 117.67. In this case then,

the optimal deductible policy provides a smaller mean-variance than the optimal

straight coinsurance policy.
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4.2 Coinsurance with a Stop-Loss Limit

We now add a stop-loss limit S to the coinsurance model. Losses x between 0

and S are partially paid by the insurer at the level (1 − α)x, with the insured

responsible for the remaining αx. The insurer pays the entirety of any losses over

the stop-loss limit S so that the insured is only responsible for αS. The premium

is dependent on α and S, and is given by p(α, S). In Figure 4.2 we provide an

illustration of the insured loss as a function of the total loss x (with α = 0.25 and

S = 100). Notice that the slope of the loss is 0.25 for x < 100 and 0 otherwise.

Figure 4.2: Plot of the insured loss, L(X|α, S), for α = 0.25 and S = 100.

Straight Stop-Loss Before we fully describe the coinsurance with stop-loss

model, it will be helpful to consider a straight stop-loss model, where losses below

S are paid entirely by the insured and losses above S are fully paid by the insurer.

This is the same as having the coinsurance parameter α = 1 in the coinsurance

with stop-loss model. The expected reimbursement is

E I(X|S) =
∫ ∞

S

(x− S) f(x) dx,

= E X−
∫ S

0

x f(x) dx− S

∫ ∞

S

f(x) dx
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and the expected insured loss is

E L(X|S) = λE I(X|S) +
∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

= λE X− λ

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
+

∫ S

0

x f(x) dx (4.2)

+ S

∫ ∞

S

f(x) dx

= λE X+ (1− λ)

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
.

Note that, if λ > 1, then E L(X|S) > E X. Indeed, E L(X|S) − E X = (λ −

1)E X+(1−λ)
(∫ S

0
x f(x) dx+ S

∫∞
S

f(x) dx
)
= (λ− 1)

∫∞
S
(x−S) f(x) dx > 0

if λ > 1.

The insured variance for a straight stop-loss policy is

Var L(X|S) =
∫ S

0

x2 f(x) dx+ S2

∫ ∞

S

f(x) dx

−
(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)2

.

(4.3)

We observe that for S = 0, we have Var L(X|0) = 0. Also, note that this model

is equivalent to a deductible policy with D = S and infinite coverage.

Coinsurance with Stop-Loss Returning to the coinsurance with stop-loss

model, the reimbursement I(α, S) paid by the insurer to the insured is given by

I(x|α, S) =

 (1− α)x, if 0 ≤ x < S;

(1− α)S + x− S, if S ≤ x

and the insured loss is

L(x|α, S) = p(α, S) +

 αx, if 0 ≤ x < S;

αS, if S ≤ x.

Remark 4.1. In the coinsurance with stop-loss model, the cases S = 0 and
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α = 0 are both equivalent to having full insurance coverage for any loss. The case

S = ∞ is equivalent to straight coinsurance, while the case α = 1 is equivalent

to the straight stop-loss model. If we have both S = ∞ and α = 1 we are in the

uninsured case.

The expected insured loss is

EL(X|α, S) = p(α, S) + α

∫ S

0

x f(x) dx+ αS

∫ ∞

S

f(x) dx

= λ

(
(1− α)

∫ S

0

x f(x) dx+

∫ ∞

S

(x− αS) f(x) dx

)
+ α

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)

and the insured variance is

Var L(X|α, S) = α2

∫ S

0

x2 f(x) dx+ α2 S2

∫ ∞

S

f(x) dx

−
(
α

∫ S

0

x f(x) dx+ αS

∫ ∞

S

f(x) dx

)2

= α2Var L(X|S)

The mean-variance is given by MV (α, S) = E L(X|α, S) + δVar L(X|α, S),

and insurance will be demanded if it provides an improvement to the uninsured

case, i.e., if

MV (X|α, S) ≤ E X+ δVar X = MV (X|1,∞). (4.4)

Figure 4.3 plots the mean-variance as (a) a function of α for fixed S and (b)

a function of S for fixed α. We see in both figures that the curves for different

fixed values of α and S often cross, and notice that as both S and α increase (the

gray line in each figure), the mean-variance experiences heavy growth. When

α is maximal (α = 1) and S → ∞, we approach the uninsured case, and thus

it appears that insurance is always optimal in this example. The lowest mean-
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variance occurs in both figures at the point (1, 50).

(a) Fixed S (b) Fixed α

Line Color (a) (b)

Black S = 0 α = 0

Blue 25 0.25

Green 50 0.50

Red 100 0.75

Gray 250 1

(c) Key

Figure 4.3: Plot of MV (α, S) = E L(X|α, S) + δVar L(X|α, S)

To assist in determining the minimal policy, we first calculate the derivatives

of E L(X|α, S), Var L(X|α, S), and MV (X|α, S) with respect to α and S:

∂

∂α
E L(X|α, S) = (1− λ)

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)

∂

∂α
Var L(X|α, S) = 2αVar L(X|S)

The mean-variance derivative with respect to α is then

∂

∂α
MV (X|α, S) = (1− λ)

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
+ 2δαVar L(X|S)

(4.5)



64

The critical value of α is given by ∂
∂α
MV (X|α, S) = 0, with solution

α =
(λ− 1)

(∫ S

0
x f(x) dx+ S

∫∞
S

f(x) dx
)

2δVar L(X|S)
for S > 0. (4.6)

If S = 0, then ∂
∂α
MV (X|α, S) = 0 for any α.

We also have

∂

∂S
E L(X|α, S) = α(1− λ)

∫ ∞

S

f(x) dx

and

∂

∂S
Var L(X|α, S) = 2α2S

∫ ∞

S

f(x) dx

− 2α2

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)∫ ∞

S

f(x) dx

= 2α2

∫ ∞

S

f(x) dx

∫ S

0

(S − x) f(x) dx.

Therefore,

∂

∂S
MV (X|α, S) = α

∫ ∞

S

f(x) dx

(
1− λ+ 2αδ

∫ S

0

(S − x)f(x) dx

)

and ∂
∂S
MV (X|α, S) = 0 if either

λ− 1

2δ
= α

∫ S

0

(S − x) f(x) dx. (4.7)

or

α = 0. (4.8)

The objective of the insured is to minimize the mean-variance: MV (X|α, S) =

E L(X|α, S)+δVar L(X|α, S), where 0 ≤ α ≤ 1. To solve this optimization prob-

lem we form the Karush-Kuhn-Tucker (KKT) conditions. The only constraint,
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α ≤ 1, is linear, and so the constraint qualification is met. Let µ be the multiplier

associated with this constraint, the KKT conditions are then:

(1)
∂

∂α
MV (X|α, S) + µ = 0

(2)
∂

∂S
MV (X|α, S) = 0

(3) µ(α− 1) = 0

(4) α ≤ 1

(5) α, µ, S ≥ 0

To solve the KKT conditions we consider the complementary slackness con-

dition (3), µ(α − 1) = 0, and the two associated possibilities; 1) µ ̸= 0 and 2)

µ = 0.

1) µ ̸= 0 :

If µ ̸= 0, then α = 1. The KKT conditions become

(1′)
∂

∂α
MV (X|α, S)|α=1 + µ = 0

(2′)
∂

∂S
MV (X|α, S)|α=1 = 0

(3′) µ, S ≥ 0,

We first consider condition (1′). Letting α = 1 in (4.5) we have

∂

∂α
MV (X|α, S)|α=1 = (1−λ)

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
+2δVar L(X|S),

which is less than 0 if

λ− 1

2δ
>

Var L(X|S)∫ S

0
x f(x) dx+ S

∫∞
S

f(x) dx
and S > 0, (4.9)

and equal to 0 if (4.9) holds with equality or if S = 0.
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If (4.9) does not hold, then from (1′) we must have µ ≤ 0. In this case the

system (1′)− (3′) cannot be solved, as either the nonnegativity constraint (3′) is

violated or the assumption of this case, µ ̸= 0, is violated. We now show that if

(2′) holds then (4.9) must also hold.

Lemma 4.1. If ∂
∂S
MV (X|α, S)|α=1 = 0 then ∂

∂α
MV (X|α, S)|α=1 < 0

Proof. Suppose that ∂
∂S
MV (α, S)|α=1 = 0. By (4.7), we have the following equa-

tion that can be solved for S.

λ− 1

2δ
=

∫ S

0

(S − x) f(x) dx (4.10)

Combining (4.9) and (4.10) and writing the variance term as in (4.3), we have

that ∂
∂α
MV (X|α, S)|α=1 < 0 if

∫ S

0

(S − x) f(x) dx

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
≥
∫ S

0

x2 f(x) dx+ S2

∫ ∞

S

f(x) dx−
(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)2

Expanding each side of the inequality and canceling like terms, we obtain

S

∫ S

0

f(x) dx

∫ S

0

x f(x) dx ≥
∫ S

0

x2 f(x) dx− S

∫ S

0

x f(x) dx

∫ ∞

S

f(x) dx

(4.11)

Inequality (4.11) always holds since

S

∫ S

0

f(x) dx

∫ S

0

x f(x) dx = S

∫ S

0

x f(x) dx

(
1−

∫ ∞

S

f(x) dx

)
>

∫ S

0

x2 f(x) dx− S

∫ S

0

x f(x) dx

∫ ∞

S

f(x) dx.

and so we have ∂
∂α
MV (X|α, S)|α=1 ≤ 0.

Lemma 4.1 ensures that, µ ≥ 0 when α = 1, and so the case µ ̸= 0, α = 1, and



67

S given by (4.10) is feasible. The right side of (4.10) is equal to 0 when S = 0,

and increases continuously with S. Since the left side is constant, there will be a

unique nonnegative solution to (4.10) if λ > 1.

The mean-variance for this case is given by

MV (X|1, S) = E L(X|S) + δVar L(X|S)

= λE X+ (1− λ)

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
+ δVar L(X|S)

(4.12)

2) µ = 0 :

We now consider the second possibility for the complementary slackness condition,

µ = 0. The KKT conditions become

(1′′)
∂

∂α
MV (α, S) = 0

(2′′)
∂

∂S
MV (α, S) = 0

(3′′) α ≤ 1

(4′′) α, S ≥ 0,

and so (4.6) and (4.7) must both be satisfied. If S = 0 (the case of full coverage),

then (4.6) is satisfied, and if, in addition, α = 0, then (4.7) is satisfied. Conditions

(1”)-(4”) are thus satisfied, and the full coverage case is feasible.

For the case S > 0 we use α from (4.6) in (4.7) to obtain

Var L(X|S) =
∫ S

0

(S − x) f(x) dx

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
, (4.13)
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which has no solution with S > 0. To see this, note that

Var L(X|S) =
∫ S

0

x2 f(x) dx+ S2

∫ ∞

S

f(x) dx

−
(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)2

.

Adding the second term of this equation to both sides of (4.13) we have

∫ S

0

x2 f(x) dx+ S2

∫ ∞

S

f(x) dx

=

∫ S

0

x f(x) dx

(∫ S

0

(S − x) f(x) dx+

∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
+ S

∫ ∞

S

f(x) dx

(∫ S

0

(S − x) f(x) dx+

∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
= S

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
.

The solution to (4.13) is therefore given by

∫ S

0

x2 f(x) dx = S

∫ S

0

x f(x) dx,

where the only solution is S = 0. The case S > 0 is therefore infeasible.

The optimal coinsurance with stop loss policy in this case is therefore full

coverage. The mean-variance is

MV (X|α, 0) = λE X (4.14)

We therefore have two potential solutions to the mean-variance problem; (1, S),

where S is given by (4.7), and (α, 0), where the value of α is irrelevant since

all losses are fully covered in this case. The following theorem describes the

circumstances under which one or the other is optimal.

Theorem 4.1. Suppose that there is an α and S such that (4.4) holds, i.e., that
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there is a coinsurance with stop-loss policy for which the mean-variance is reduced

from the uninsured case. Then

a) If the premium is fair or discounted, λ ≤ 1, then the optimal coinsurance with

stop-loss policy is full coverage, S = 0.

b) If the premium is unfair, λ > 1, then the optimal policy is (α, S) = (1, S),

where S is the solution to (4.10): λ−1
2δ

=
∫ S

0
(S − x) f(x) dx

Proof. In the discussion of the KKT conditions we showed that the two possi-

bly optimal polices are (1, S) and (α, 0). By (4.12) and (4.14), we have that

MV (X|1, S) > MV (X|α, 0) if

(1− λ)

(∫ S

0

x f(x) dx+ S

∫ ∞

S

f(x) dx

)
+ δVar L(X|S) > 0, (4.15)

where S is given by (4.10). Additionally, we note that the solution to (4.10)

has S > 0 and that, since (4.10) holds, Lemma 4.1 applies and therefore (4.9) is

satisfied.

a) If λ ≤ 1, then inequality (4.15) is immediately satisfied, and we obtain an

optimal policy of (α, 0).

b) Suppose that λ > 1. Since S > 0 we can rewrite (4.15) as

λ− 1

δ
<

Var L(X|S)∫ S

0
x f(x) dx+ S

∫∞
S

f(x) dx
(4.16)

From (4.10) we have λ−1
2δ

=
∫ S

0
(S − x) f(x) dx, and so (4.16) becomes

2

∫ S

0

(S − x) f(x) dx ≤ Var L(X|S)∫ S

0
x f(x) dx+ S

∫∞
S

f(x) dx
.

From (4.9) and (4.10) we also have

∫ S

0

(S − x) f(x) dx ≥ Var L(X|S)∫ S

0
x f(x) dx+ S

∫∞
S

f(x) dx
,
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and so (4.16) is not satisfied, which implies that MV (X|1, S) < MV (X|α, 0).

Figure 4.4: Plot of (4.10)

We have again shown that partial coverage is optimal for unfair premiums

and full coverage is optimal for fair or discounted premiums. Indeed, if λ > 1,

the optimal coverage for a coinsurance with stop-loss policy has the coinsurance

parameter α = 1, i.e., fractional coverage below a particular level is never optimal.

This policy, (1, S), is equivalent to a deductible policy with infinite coverage, as

the insured pays all losses up to a certain level (S here, D in a deductible policy)

and nothing for losses above that level. Figure 4.4 is an illustration of equation

(4.10). The horizontal axis gives the optimal values of S corresponding to λ−1
2δ

(the vertical axis).

For the case λ ≤ 1, we again have that full coverage, S = 0, is optimal.

Example 4.2. In Figure 4.5 we show the mean-variance contour lines for coin-

surance policies with stop loss, where the same parameters as Example 4.1 are

used - exponentially distributed loss with mean 100, δ = 0.01, and λ = 1.25. The

optimal point has α = 1 and S = 54.54. Note that this is the same solution as

given in Example 3.2, where the problem was to minimize the mean-variance of

a deductible policy.
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Figure 4.5: Plot of E L(X|α, S) + δVar L(X|α, S)

4.3 Coinsurance with a Deductible

In the previous section we showed that fractional coverage (0 < α < 1) is never

optimal when it is applied to losses that are lower than a given level. We now

consider the opposite problem, where fractional coverage is allowed above a given

level. To this end, we develop a mean-variance model for policies that include

both coinsurance and deductibles.

Let the deductible be given by D ≥ 0, and the parameter α as above. The

insured pays all losses up to D, while losses above D are partially paid by the

insurer at the rate (1− α). The insurer reimbursement is therefore

I(x|α,D) =

 0, if 0 ≤ x ≤ D;

(1− α)(x−D), if D < x

and the insured loss is

L(x|α,D) = p(α,D) +

 x, if 0 ≤ x ≤ D;

D + α(x−D), if D < x.

In Figure 4.6 we give an example of the insured loss as a function of the total loss

x. The insured loss is piecewise linear in x, with the slope reduced at the point

x = D.

The premium is p(α,D) = λE I(X) = λ(1 − α)
∫∞
D

(x −D) f(x) dx, and the
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Figure 4.6: Plot of the insured loss, L(X|α,D), for α = 0.25 and D = 100.

expected insured loss and insured variance are:

E L(X|α,D) = λ(1− α)

∫ ∞

D

(x−D) f(x) dx+

∫ D

0

x f(x) dx

+D

∫ ∞

D

f(x) dx+ α

∫ ∞

D

(x−D) f(x) dx

=

∫ D

0

x f(x) dx+D

∫ ∞

D

f(x) dx

+ (λ(1− α) + α)

∫ ∞

D

(x−D) f(x) dx

Var L(X|α,D) =

∫ D

0

x2 f(x) dx+

∫ ∞

D

(D + α(x−D))2 f(x) dx

−
(∫ D

0

x f(x) dx+D

∫ ∞

D

f(x) dx+ α

∫ ∞

D

(x−D) f(x) dx

)2

The mean-variance is given byMV (X|α,D) = E L(X|α,D)+δVar L(X|α,D).

Before we determine the optimal (α,D) pair, we first consider the behavior of the

mean-variance as a function of a single variable. Figure 4.7 plots the mean-

variance as (a) a function of α for fixed values of D and (b) a function of D for

fixed values of α. In this figure we use δ = 0.01, λ = 1.25, and f(x) an exponential

distribution with parameter 0.01.

It is apparent from (a) that, as α approaches 1, the value of D becomes incon-

sequential. This is consistent with expectations, as the case α = 1 corresponds

with the uninsured case. We also observe that MV (X|α,D) generally appears to

increase with α, although for small values of D the mean-variance is decreasing
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(a) Fixed D (b) Fixed α

Line Color (a) (b)
Black D = 0 α = 0
Blue 25 0.25
Green 50 0.50
Red 100 0.75
Gray 250 1

(c) Key

Figure 4.7: Plot of E L(X|α,D) + δVar L(X|α,D)

in α when α is small. The minimal value of MV (α,D) occurs when D = 50 and

α = 0.

Figure 4.7(b) shows a greater separation in mean-variance values. It is consis-

tent that raising D above a particular level will always raise the mean-variance,

and we also note that raising the deductible above 0 provides a mean-variance

reduction.

To determine the mean-variance minimizing (α,D) pair, we first calculate the

mean-variance derivatives. The derivatives with respect to α are

∂

∂α
E L(X|α,D) = (1− λ)

∫ ∞

D

(x−D) f(x) dx
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and

∂

∂α
Var L(X|α,D) = 2α

∫ ∞

D

(x−D)2 f(x) dx+ 2D

∫ ∞

D

(x−D) f(x) dx

− 2 v(α,D)

∫ ∞

D

(x−D) f(x) dx,

where

v(α,D) =

∫ D

0

x f(x) dx+D

∫ ∞

D

f(x) dx+ α

∫ ∞

D

(x−D) f(x) dx. (4.17)

The mean-variance derivative with respect to α, ∂
∂α
MV (X|α,D)

= ∂
∂α
E L(X|α,D) + δ ∂

∂α
Var L(X|α,D), is then

∂

∂α
MV (α,D) = (1− λ)

∫ ∞

D

(x−D) f(x) dx+ 2δα

∫ ∞

D

(x−D)2 f(x) dx

+ 2δ(D − v(α,D))

∫ ∞

D

(x−D) f(x) dx

(4.18)

The derivatives with respect to D are

∂

∂D
E L(X|α,D) = (1− λ)(1− α)

∫ ∞

D

f(x) dx

and

∂

∂D
Var L(X|α,D) = 2D(α− 1)2

∫ ∞

D

f(x) dx+ 2α(1− α)

∫ ∞

D

x f(x) dx

− 2(1− α) v(α,D)

∫ ∞

D

f(x) dx.

The mean-variance derivative with respect to D is then

∂

∂D
MV (X|α,D) = (1− λ)(1− α)

∫ ∞

D

f(x) dx+ 2δα(1− α)

∫ ∞

D

x f(x) dx

+ 2δ
(
D(α− 1)2 − (1− α)v(α,D)

) ∫ ∞

D

f(x) dx

(4.19)
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with v(α,D) as in (4.17).

To minimize the mean-variance, we again form the KKT conditions. The only

constraints in the problem are α ≤ 1 and nonnegativity, so if we let µ be the

constraint multiplier, the KKT conditions are:

(1)
∂

∂α
MV (X|α,D) + µ = 0

(2)
∂

∂D
MV (X|α,D) = 0

(3) µ(α− 1) = 0

(4) α ≤ 1

(5) α, µ,D ≥ 0

We again begin by considering the two possibilities for the complementary slack-

ness condition (3), 1)µ ̸= 0 and 2)µ = 0.

1) µ ̸= 0 :

First, suppose that µ ̸= 0. Then α = 1, and the situation is equivalent to

the uninsured case, as the insured pays everything both below and above the

deductible.

The mean-variance in this case is

MV (X|1, D) = E X+ δVar X (4.20)

2) µ = 0 :

Next, consider the case µ = 0. Furthermore, assume that D is finite (if it is not
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we are in the uninsured case). The KKT conditions become

(1′)
∂

∂α
MV (α,D) = 0

(2′)
∂

∂D
MV (α,D) = 0

(3′) α ≤ 1

(4′) α, S ≥ 0

The first condition is satisfied when

λ− 1

2δ
=

α
∫∞
D

(x−D)2 f(x) dx∫∞
D

(x−D) f(x) dx
+D − v(α,D), (4.21)

and the second condition is satisfied when α = 1 or

λ− 1

2δ
=

α
∫∞
D

x f(x) dx∫∞
D

f(x) dx
+D − v(α,D)− αD, α < 1. (4.22)

If α = 1, we are in the uninsured case as discussed in 1) above. We therefore

consider 0 ≤ α < 1, and the two subcases λ ≤ 1 and λ > 1.

2.1) µ = 0 and λ ≤ 1 :

Suppose that λ ≤ 1. Since D − v(α,D) =
∫ D

0
(D − x) f(x) dx − α

∫∞
D

(x −

D) f(x) dx, (4.21) is equivalent to

λ− 1

2δ
=

α
(∫∞

D
(x−D)2 f(x) dx−

(∫∞
D

(x−D) f(x) dx
)2)∫∞

D
(x−D) f(x) dx

+

∫ D

0

(D−x) f(x) dx

(4.23)
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and (4.22) can be written as

λ− 1

2δ
=

α
∫∞
D

(x−D) f(x) dx∫∞
D

f(x) dx
+

αD
∫∞
D

f(x) dx∫∞
D

f(x) dx
+

∫ D

0

(D − x) f(x) dx

− α

∫ ∞

D

(x−D) f(x) dx− αD

=
α
∫∞
D

(x−D) f(x) dx
∫ D

0
f(x) dx∫∞

D
f(x) dx

+

∫ D

0

(D − x) f(x) dx. (4.24)

By inspection, we see that the right sides of (4.23) and (4.24) are strictly positive.

Therefore, neither (4.21) nor (4.22) have a solution if λ ≤ 1, since the left sides

of (4.21) and (4.22) are both negative in this case. In other words, we have

∂
∂α
MV (X|α,D) > 0 and ∂

∂D
MV (X|α,D) > 0, and it is therefore optimal to

decrease α and D as much as possible – to the point (0, 0).

2.2) µ = 0 and λ > 1 :

We now consider the case λ > 1. Combining (4.21) and (4.22), we obtain the

necessary condition

α
∫∞
D

(x−D)2 f(x) dx∫∞
D

(x−D) f(x) dx
=

α
∫∞
D

x f(x) dx∫∞
D

f(x) dx
− αD (4.25)

We consider the two cases α = 0 and 0 < α < 1.

2.2.1) µ = 0, λ > 1, and α = 0 :

If α = 0, then equation (4.25) reduces to 0 = 0. To find D we let α = 0 in (4.22)

to obtain the equation

λ− 1

2δ
= D − v(0, D) =

∫ D

0

(D − x) f(x) dx. (4.26)

This equation is equivalent to (4.10) from the previous section. This is expected

because α = 0 is the same as a stop-loss coinsurance policy that has α = 1, which

was the case used to derive (4.10).

2.2.2) µ = 0, λ > 1, and 0 < α < 1 :
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If 0 < α < 1, we divide each side of (4.25) by α and form a common denomi-

nator on the right side to obtain the condition

∫∞
D

(x−D)2 f(x) dx∫∞
D

(x−D) f(x) dx
=

∫∞
D

(x−D) f(x) dx∫∞
D

f(x) dx
,

which can be simplified to

∫ ∞

D

f(x) dx

∫ ∞

D

x2 f(x) dx−
(∫ ∞

D

x f(x) dx

)2

= 0. (4.27)

Recall the Cauchy Schwarz inequality, which can be written in the form

(∫ b

a

u(x)v(x) dx

)2

≤
∫ b

a

u2(x) dx

∫ b

a

v2(x) dx.

Suppose the limits of integration are b = ∞ and a = D, and let u(x) = x
√

f(x)

and v(x) =
√

f(x). Then we obtain

(∫ ∞

D

x f(x) dx

)2

≤
∫ ∞

D

x2 f(x) dx

∫ ∞

D

f(x) dx,

with equality only holding in the limiting case D → ∞. Thus, there is no finite

solution to (4.27), and so this case is infeasible.

To summarize, the KKT conditions have four terminal cases that are depen-

dent on the values of λ, µ, and α. In Table 4.1 we provide a summary of these

cases.

Case µ λ α D Description

1 ̸= 0 Any 1 Undefined
The uninsured

case
2.1 0 ≤ 1 0 0 Full coverage

2.2.1 0 > 1 0 Solve (4.26)
Equivalent to

optimal stop-loss
coinsurance policy

2.2.2 0 > 1 > 0 Finite Infeasible

Table 4.1: Terminal cases for the KKT conditions
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Assuming that λ and δ are such that the insured case is preferable to the

uninsured case, the optimal policy for λ ≤ 1 is full coverage, α = D = 0. If λ > 1

the optimal policy has α = 0 and D satisfying λ−1
2δ

=
∫ D

0
(D − x) f(x) dx. The

optimal mean-variance in this case is

MV (X|0, D) =

∫ D

0

x f(x) dx+D

∫ ∞

D

f(x) dx+ λ

∫ ∞

D

(x−D) f(x) dx

+ δ

(∫ D

0

x2 f(x) dx+D2

∫ ∞

D

f(x) dx− v(0, D)2
)
.

Corollary 4.1. Let λ > 1. Then the optimal straight coinsurance policy has a

greater mean-variance than the optimal deductible policy. Moreover, the mean-

variance in the optimal deductible policy is equal to the mean-variance of both the

optimal coinsurance with stop-loss and the optimal coinsurance with deductible

policies.

Proof. Let MV ∗(C,D), MV ∗(α), MV ∗(α, S), and MV ∗(α,D) denote the min-

imal mean-variance values for a deductible, straight coinsurance, coinsurance

with stop-loss, and coinsurance with deductible policy, respectively. By Theo-

rem 4.1 we have that, MV ∗(C,D) = MV ∗(α, S). It also must be the case that

MV ∗(α, S) < MV ∗(α), since a straight coinsurance policy is equivalent to an

(α,∞) policy, but we have S finite in MV ∗(α, S). Thus, MV ∗(C,D) < MV ∗(α).

To complete the proof, note that the KKT discussion above showed that the op-

timal coinsurance with deductible policy has α = 0, so there is no coinsurance,

and D found by equation (4.26), which is precisely the equation used to find D

in the deductible case. Thus MV ∗(α,D) = MV (C,D).
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Figure 4.8: Plot of E L(X|α,D) + δVar L(X|α,D)

Example 4.3. We again consider an exponential distribution with mean 100,

a loading factor λ = 1.25, and a risk preference δ = 0.01. Figure 4.8 shows

the contour lines of the mean-variance, with the optimal point (0, 54.53765), the

same as in the prior examples for deductible policies and coinsurance with stop-

loss policies. This was expected, as the equation (4.26) that is solved to find D

is the same as the equations to find D and S in the deductible and coinsurance

with stop-loss policies, respectively.
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5 The Insurance System

When considering an insurance purchaser’s optimal coverage it is natural to con-

sider the one-to-one relationship between the insured and insurer. However, from

the insurer’s perspective, the profit and variance from a single customer is only

a piece of a larger group of customers. In this way, we can consider an insurance

system consisting of the single insurer and a group of insured customers.

In the first section we introduce the insurance system and describe the insur-

ance company’s options in setting individual premiums in a group setting. Section

5.2 discusses some properties of the covariances between X, L(X), and R(X), and

the following section considers the sum of variances within the system, i.e, the

sum of the variances experienced by the insurance customers and the insurer. We

show that this sum of variances is smaller then the uninsured sum of variances -

a possible social benefit of insurance. Section 5.4 extends this concept to the case

of multiple customers and a single insured, showing that the sum of variances

is less then the sum of uninsured variances if the insurer reimbursements have

sufficiently low covariances. We conclude by discussing the interpretation of the

sum of variances measure.

5.1 Premium

Under a system framework, the insurer no longer needs to price each individual

loan above its actuarial value. Instead, the insurer can place customers in groups

and set premiums so that the total premium for the group exceeds the expected

indemnity that it will be paid. This allows the insurer flexibility to price policies

to meet governmental obligations or other enterprise considerations.

In particular, suppose that there are k insured, purchasing insurance to cover

random variables Xi, i = 1...k, with a corresponding premium pi(C,D). In order

to guarantee an expected profit, the insurance company must set the premiums
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so that the total of all premiums is greater than the total of all expected payouts:

k∑
i=1

pi(C,D) >
k∑

i=1

E I(Xi) (5.1)

Suppose that the premium is loaded, p(C,D) = λE I(X). Then a sufficient

condition for the satisfaction of (5.1) is that λi > 1 for each customer i. The

system viewpoint allows for this condition to be weakened. Some loading factors

may be discounted (λi < 1) as long as the loading factors of the other customers

is large enough to compensate for the expected loss induced by the discounted

customers. In particular, the expected profit from the customers paying a loading

λ > 1 must outweigh the expected loss from the customers paying a loading λ < 1:

∑
i:λi>1

λi E I(Xi) >
∑

j:λj<1

λj E I(Xj)

Consider an insurer whose current customer base exclusively pays premiums

with λ > 1. If the insurer has reason to introduce new customers to the system

who pay discounted premiums, there are options for the insurer to ensure contin-

ued profitability. For example, the premium loadings of existing customers can

be raised, or new customers with loadings greater than one can be introduced.

Example 5.1. Suppose that an insurer has 10 customers in a group, each with

a loading factor λ = 1.20 and an expected payout $400. The insurer’s expected

profit is therefore (λ − 1)$4, 000 = $800. An additional 10 customers are to be

added to the group with loadings λ = 0.95 and expected payouts of $2, 000. The

insurer then faces an expected loss of (1−0.95)·$20, 000+(1−1.20)·$4, 000 = $200.

If the insurer chooses to equally increase the loading of each of the existing

customers, it must do so by at least z, where z satisfies (1.20 − 1 + z) · $4000 −

(1 − 0.95) · $20, 000 ≥ 0, i.e., the new loading must increase by z = 0.05, from

1.20 to 1.25.
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Alternatively, suppose the insurer instead wishes to add a group of t customers,

and that there are three such groups, t1, t2, and t3 to choose from. The total

expected payouts for these groups are $2, 000, $4, 000, and $8, 000, respectively.

The minimum required average loadings are:

λt1 = 1 +
1

$2, 000
· $200 = 1.10

λt2 = 1 +
1

$4, 000
· $200 = 1.05

λt3 = 1 +
1

$8, 000
· $200 = 1.025

As a final possibility, suppose that the insurer will add a group of customers with

a mean loss of $250 and one of three loadings: λ1 = 1.10, λ2 = 1.20, or λ3 = 1.30.

The number k of customers needed for each loading must satisfy

λ1 = 1.10: k >
1

$250(1.10− 1)
· $200 = 8

λ1 = 1.20: k >
1

$250(1.20− 1)
· $200 = 4

λ1 = 1.30: k >
1

$250(1.30− 1)
· $200 = 2

2

3

These cases are analogous to the current situation in the United States with

the Affordable Care Act. Indeed, if insurer’s are required to offer coverage to all

people, then the insurance system will be a mix of those with higher expected

loss levels (e.g., those with pre-existing conditions) and those with lower expected

losses (e.g., healthy individuals).

5.2 Covariance

In this section we provide some useful properties of the covariances among L(X),

R(X), and X. It is intuitively clear that L(X) and X increase and decrease

together, while R(X) moves in the opposite direction. The following results for-
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malize these intuitions. First, we establish a general property of random variables.

Lemma 5.1. Let X, Y, and Z be random variables. Then

a) Cov (X+Y,Z) = Cov (X,Z) + Cov (Y,Z)

b) Cov (X−Y,Z) = Cov (X,Z)− Cov (Y,Z)

Proof.

a) Cov(X+Y,Z) = E [(X+Y)Z])− E(X+Y)EZ

= EXZ+ EYZ− EXEZ− EYEZ

= Cov(X,Z) + Cov(Y,Z)

b) Cov(X−Y,Z) = E [(X−Y)Z]− E(X−Y)EZ

= EXZ− EYZ− EXEZ+ EYEZ

= Cov(X,Z)− Cov(Y,Z)

An immediate consequence of Lemma 5.1 is that

Cov (X+Y,Y) = Cov (X,Y) + Cov (Y,Y) = Cov (X,Y) + Var Y (5.2a)

Cov (X−Y,Y) = Cov (X,Y)− Cov (Y,Y) = Cov (X,Y)− Var Y, (5.2b)

Equations (2.6), (5.2a), and (5.2b) therefore give:

Cov [L(X),X] = Cov [R(X),X] + Var X (5.3a)

Cov [R(X),X] = Cov [L(X),X]− Var X (5.3b)

Cov [L(X), R(X)] = Cov [R(X),X] + Var R(X), (5.3c)
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which can be used to show the following covariance relations in our model:

Corollary 5.1.

Cov [R(X),X] ≤ Cov [L(X), R(X)] ≤ Cov [L(X),X] (5.4)

Proof. Since 0 ≤ Var R(X), the left inequality of (5.4) is immediate from (5.3c).

Substituting (5.3b) into (5.3c) we obtain

Cov[L(X), R(X)] = Cov [L(X),X] + Var R(X)− Var X

The right inequality of (5.4) follows since Var R(X) ≤ Var X (Corollary 2.4).

(a) Fixed C (b) Fixed D

Figure 5.1: Plot of Cov (L(X),X) [Black], Cov (R(X),X) [Red],
Cov (L(X), R(X)) [Blue] for (a) C = 250 and (b) D = 100.

Figure 5.1 illustrates Corollary 5.1 for an exponential distribution with mean

100. In (a) C is set to 250 and D varies, and so the case D = 250 corre-

sponds with the uninsured case. At this point Cov [L(X),X] = Var X = 10, 000,

while Cov [R(X),X] and Cov [L(X), R(X)] are both equal to zero. We note that

Cov [L(X),X] and Cov [R(X),X] are parallel, whereas Cov [L(X), R(X)] has a

slightly parabolic shape. We observe similar phenomena in figure (b).

Corollary 5.2. Cov[R(X),X] < 0 if and only if Cov[L(X),X] < Var X
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Proof. Follows directly from 5.3a

Theorem 5.1. Cov [L(X), R(X)] < 0

The proof is given in Appendix D.

Figure 5.2 gives the contour plot for Cov [L(X), R(X)] for an exponential

distribution with mean 100. The plot identifies a minimum value of the covariance

at the approximate point (C,D) = (251, 102). We note that the contours flatten

as C increases, while changes to D result in changing covariance values.

Figure 5.2: Contour plot of Cov [L(X), R(X)].

Corollary 5.3. Cov [R(X),X] < 0

Proof. Follows from Corollary 5.1 and Theorem 5.1.

Corollary 5.4. Cov [L(X),X] > 0

Proof. By the Cauchy-Schwarz inequality we have

|Cov [R(X),X]| <
√
Var R(X) · Var X

From Corollary 2.4 we have that Var R(X) < Var X, and so we can write

|Cov [R(X),X]| <
√
Var X · Var X = Var X.
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Therefore, −Cov [R(X),X] < Var X, or equivalently

Cov [−R(X),X] < Var X (5.5)

From Theorem 2.4 we have that Var X = Cov [L(X),X] + Cov [−R(X),X], and

so

Cov [L(X),X] = Var X− Cov [−R(X),X] > 0,

where the inequality follows from (5.5).

Figure 5.3 gives the contour plots of Cov [L(X),X] and Cov [R(X),X] for an

exponentially distributed loss. Both covariances are minimized when D = 0 and

C → ∞, however, all values in (a) are nonnegative, with a minimal value of 0,

while in (b) all values are non-positive, with a minimal value of −10, 000.

(a) Cov [L(X),X] (b) Cov [R(X),X]

Figure 5.3: Contour plots of Cov [L(X),X] and Cov [R(X),X].

5.3 System Sum of Variances

In this section we provide evidence that insurance may provide a social benefit by

reducing the overall level of risk experienced by the insured and insurer. We have

established that the purchase of insurance creates a risk-sharing system, where

the insurer takes on a portion of a random loss variable’s variance in exchange for
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a premium. Equation (2.7) established the relationship between expected insured

loss, expected insurer profit, and the expectation of the random loss variable:

EL(X) =ER(X)+EX. Using this equation we can equivalently express the

insurance relationship as

EL(X) + E[−R(X)] = EX (5.6)

Note that −R(X) is the loss of the insurer. The insurance system is thus the

individual losses experienced by the insured and the insurer.

We now consider the variances in the insurance system and compare to the

variance of the random loss variable, looking for a counterpart to equation (5.6).

We will first consider the case of a single insured and single insurer, and then

extend to the case of multiple insured in section 5.4.

The system sum of variances (SSV) is defined as the sum of the insured and

insurer variances, Var L(X)+Var [−R(X)]. Because L(X) and R(X) are depen-

dent random variables, the SSV is not a variance. Nonetheless, we believe that

it is a meaningful measure in an economic or social sense (see Section 5.5 for a

discussion of this) We now show that the SSV is less than the uninsured variance:

Theorem 5.2. The system sum of variances is less than the uninsured variance:

Var L(X) + Var [−R(X)] < Var X (5.7)

Proof. First, recall that the variance of the sum of two random variables X and Y

is given by Var (X+Y) = Var X+Var Y+2Cov (X,Y). Since L(X) = X+R(X),

we have

Var L(X) = Var X+Var R(X) + 2Cov [R(X),X]. (5.8)
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Using (5.8) and the fact that Var [−R(X)] = Var R(X), we obtain

Var L(X) + Var [−R(X)] = Var L(X) + Var R(X)

= Var X+ 2 (Var R(X) + Cov [R(X),X])

From (5.3c), we have that Cov [R(X),X] = Cov [L(X), R(X)] − Var R(X), and

so

Var L(X) + Var [−R(X)] = Var X+ 2Cov [L(X), R(X)] (5.9)

Since Var X > 0, it follows that the SSV is less than the uninsured variance if

Cov [L(X), R(X)] < 0, which is guaranteed by Theorem 5.1.

This theorem shows that the variance experienced by the insured and the

insurer is less than the variance that would be experienced in the uninsured case.

As can be seen from equation (5.9), the remainder of the uninsured variance,

Var X − Var L(X) − Var [−R(X)], is made up of the covariance between the

insured and the insurer.

We next derive the first order optimality conditions for system variance min-

imization. In equation (5.9) it was shown that the system variance is comprised

of the variance of X and the covariance of L(X) and R(X). The system variance

is therefore minimized when Cov [L(X), R(X)] is minimized. Figure 5.4 shows

the System Variance contour lines. We note that this figure is identical to Figure

5.2, with the values of the contour lines shifted.

The derivatives of Cov [L(X), R(X)] are given by (see Appendix D for the
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Figure 5.4: Contour plot of the SSV, Var L(X) + Var [−R(X)].

calculation):

∂

∂C
Cov [L(X), R(X)] = −

∫ D

0

f(x) dx

∫ ∞

C

(x+D − C) f(x) dx

+ (C −D)

∫ D

0

f(x) dx

∫ ∞

C

f(x) dx

+

∫ D

0

x f(x) dx

∫ ∞

C

f(x) dx

+

∫ C

D

f(x) dx

∫ ∞

C

(C − x) f(x) dx

+

∫ C

D

(C − x) f(x) dx

∫ ∞

C

f(x) dx

and

∂

∂D
Cov [L(X), R(X)] =

∫ D

0

f(x) dx

∫ ∞

C

(x+D − C) f(x) dx

+

∫ ∞

C

f(x) dx

∫ D

0

(D − C − x) f(x) dx

+

∫ C

D

f(x) dx

∫ D

0

(D − x) f(x) dx

+

∫ C

D

(D − x) f(x) dx

∫ D

0

f(x) dx.
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Setting these derivatives equal to 0 we obtain the first-order optimality conditions:

∫ ∞

C

f(x) dx

(
2(C −D)

∫ D

0

f(x) dx+

∫ D

0

x f(x) dx

)
−
∫ D

0

f(x) dx

∫ ∞

C

x f(x) dx

=

∫ C

D

f(x) dx

∫ ∞

C

(x− C) f(x) dx−
∫ C

D

(C − x) f(x) dx

∫ ∞

C

f(x) dx

(5.10)

and

∫ ∞

C

f(x) dx

(
2(C −D)

∫ D

0

f(x) dx+

∫ D

0

x f(x) dx

)
−
∫ D

0

f(x) dx

∫ ∞

C

x f(x) dx

=

∫ C

D

f(x) dx

∫ D

0

(D − x) f(x) dx−
∫ C

D

(x−D) f(x) dx

∫ D

0

f(x) dx

(5.11)

Notice that the left sides of (5.10) and (5.11) are equal. We then have the neces-

sary condition

∫ C

D

f(x) dx

∫ ∞

C

(x− C) f(x) dx−
∫ C

D

(C − x) f(x) dx

∫ ∞

C

f(x) dx

=

∫ C

D

f(x) dx

∫ D

0

(D − x) f(x) dx−
∫ C

D

(x−D) f(x) dx

∫ D

0

f(x) dx,

which can be solved for C and D to find potentially optimal solutions.

5.4 SSV with Multiple Customers

We now consider the case of an insurance system with a single insurer and multiple

insured. The SSV in this case is the sum of the individual variances of each

customer and the insurer variance. If the total number of customers is n, then

we can write the insurer variance as Var (
∑n

i=1 [−R(Xi)]). The multi-customer
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SSV is then given by

n∑
i=1

Var L(Xi) + Var

(
n∑

i=1

[−R(Xi)]

)
(5.12)

Proposition 5.1. Suppose there are n customers with insured losses L(Xi),

i = 1...n, and that the insurer loss is
∑n

i=1 [−R(Xi)]. Then the multiple customer

SSV (5.12) is less than the sum of uninsured variances,
∑n

i=1 Var Xi if and only

if ∑
1≤i<j≤n

Cov [R(Xi), R(Xj)] <
n∑

i=1

Cov [L(Xi),−R(Xi)] (5.13)

Proof. The multiple customer system variance is less than the total uninsured

variance if

n∑
i=1

Var L(Xi) + Var

(
n∑

i=1

[−R(Xi)]

)
<

n∑
i=1

Var Xi (5.14)

The insurer variance can be written as

Var
n∑

i=1

[−R(Xi)] =
n∑

i=1

Var [−R(Xi)] + 2
∑

1≤i<j≤n

Cov [−R(Xi),−R(Xj)],

=
n∑

i=1

Var [−R(Xi)] + 2
∑

1≤i<j≤n

Cov [R(Xi), R(Xj)]

and so (5.14) becomes

2
∑

1≤i<j≤n

Cov [R(Xi), R(Xj)] <
n∑

i=1

(Var Xi − Var L(Xi)− Var [−R(Xi)])

(5.15)

From (5.9), we have that, for any customer j,

Var Xj − Var L(Xj)− Var [−R(Xj)] = −2Cov [L(Xj), R(Xj)]. (5.16)

The result (5.13) follows by combining (5.15) with (5.16).
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Note that, by Theorem 5.1, the right side of (5.13) is positive. Therefore, if

the customer set is chosen so that
∑

1≤i<j≤n Cov [R(Xi), R(Xj)] ≤ 0, the SSV

is guaranteed to be less than the sum of the uninsured variances. The require-

ment that Cov [R(Xi), R(Xj)] is small (relative to Cov [L(Xi),−R(Xi)]) fits with

a likely goal of the insurer; keeping the correlations between the customer reim-

bursements small (or negative) is consistent with the insurer avoiding large shocks

and maintaining solvency.

5.5 Interpretation

Our conception of the system sum of variances should not be taken as a variance

in the statistical sense. Indeed, when computing the variance of a collection

of dependent random variables one considers the sum of these variables. For

example, let X and Y be dependent random variables. The variance of their sum

is given by

Var (X+Y) = Var X+Var Y + 2Cov (X,Y). (5.17)

The relationship between X and Y is thus taken into consideration; if they tend

to move in the same direction then Var (X+Y) > Var X+Var Y, while if they

tend to move in different directions Var (X + Y) < Var X + Var Y. In other

words, Var X + Var Y is a sort of baseline for Var (X + Y), adjusted by the

covariance of the random variables.

In the case of the random variables L(X|C,D) and −R(X|C,D), equation

(5.17) becomes

Var [L(X)−R(X)] = Var [X+R(X)−R(X)] = Var X.

The variance of L(X|C,D) plus R(X|C,D) is thus equal to the variance of the
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random variable being insured. This is expected since the insured and insurer

losses make up the entire random variable loss. However, the insured and insurer

variances do not make up the entire random variable variance - this is shown by

Theorems 2.4 and 5.2.

The SSV, Var L(X) + Var [−R(X)], considers the addition of the variances

of dependent random variables. We argue that this measure is meaningful in

an economic sense. When dealing with uncertainty one should examine if it

makes sense to consider covariance as a relevant component of variability. The

covariance is certainly relevant in cases where two dependent random variables

X and Y are experienced together or by the same agent. In such cases the

agent is really producing a new random variable, Z, that is made up of X and

Y. The relationship between X and Y is clearly vital to the variation involved

in Z. On the other hand, if X and Y are not experienced together as a single

random variable, i.e., if they are experienced separately by two agents AX and

AY , then Cov (X,Y) is relevant to neither AX nor AY , as they only experience

the individual variances of X and Y, respectively.

The intuition behind the sum of the variances being less than the uninsured

variance is that the support of the loss distribution shrinks. Prior to the purchase

of insurance the insured’s liability spanned the entire loss distribution, while upon

the purchase of insurance the liability is limited to the tails of the distribution

with the insurer assuming liability for mid-distribution losses. Although the entire

loss distribution is still covered, by splitting it among two agents the potential

losses are contracted, and the overall variability is reduced.

The key idea is that the conception of SSV considers the variance experienced

by all participants in the loss (the insured and the insurer). The fact that the

SSV is less than the uninsured variance means that less variance is actually expe-

rienced in the world, and as such, points toward a socially beneficial conception

of insurance.
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6 Conclusion

6.1 Summary

We introduced a model of deductible insurance with a coverage limit, establishing

the intuitive idea that insurance provides a benefit to the insured by reducing

his variance at a cost of an increased expected loss. This leads naturally to a

mean-variance model, which we considered in detail, showing that full coverage is

optimal if the premium is fair or discounted, while in the case of unfair premiums,

full coverage above a non-zero deductible is optimal. We also showed that the

insurer can offer to the insured a set of (C,D) policies that will result in the

insured choosing the insurer’s optimal policy.

The next set of results concerned mean-variance optimization of coinsurance

policies. Optimality conditions for straight coinsurance, coinsurance with a stop-

loss limit, and coinsurance with a deductible were derived, and it was shown

that the optimal coinsurance with stop-loss policy and the optimal coinsurance

with deductible policies are equivalent to the optimal deductible policy. The

optimal straight coinsurance policy is inferior to all of these policies. We also

showed that in all of these coinsurance cases, the optimal policy has full coverage

if premiums are actuarially fair or discounted, and partial coverage in the case of

unfair premiums.

Finally, we discussed the insurance system. We demonstrated how one sub-

set of insurance customers can subsidize the premiums of another subset, and

provided several results relating the insurer, the insured, and the random loss

variable X. We then discussed the system sum of variances, showing that, in

a single insurer single insured framework, the total of the insured and insurer

variances is less than the variance that would be experienced in the uninsured

case. This relation also holds in the case of multiple customers if the covariances

relating the customer reimbursements are sufficiently low.
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6.2 Recommendations for Future Research

Within the deductible model that we presented there are some further avenues

that can be considered. For one, we can consider the quantity of insurance, C−D,

and the differences to mean, variance, and mean-variance that result from changes

to the quantity of insurance or from changes in the location of insurance (i.e., the

difference between a (100, 0) policy and a (200, 100) policy. We also would like

to investigate the possibility of insurer-insured equilibria, perhaps following the

optimal risk sharing conception from [15].

In our model we considered the risk of a single random variable to the insured.

A complete mean-variance treatment of insurance should consider the entire set

of risks that one faces, as correlations between risks can affect insurance choices.

As such, an analysis of background risks building on [18] is recommended.

We also plan to elaborate on the comparative results relating the optimal

deductible, coinsurance, coinsurance with stop-loss, and coinsurance with de-

ductible polices. In particular, we will investigate the robustness of the idea

that straight coinsurance is inferior to deductible policies and coinsurance with

stop-loss/deductible policies, considering non-optimal points.

Further consideration of optimal insurance under different mean-risk measures

is also recommended. Prior to doing so, it would be appropriate to consider

exactly what is desired from insurance. In the mean-variance case modeled here

we considered the entire range of potential losses, while the various shortfall risk

measures (e.g., CVaR and mean-semideviation) would be useful in describing

insurance coverage when we are mostly concerned with large losses. Given its

relation to stochastic dominance, an adaption of the mean-semideviation approach

as given in [48] and [49] may provide insightful results.



97

7 Appendix

A Proof of Theorem 2.2

We prove (2.39)

∂

∂C
Var L(X) < 0

and (2.40),

∂

∂D
Var L(X) > 0

given that (2.20) holds, ∫ C

D
f(x) dx < 1. (A1)

From (2.1)

E I(X) =

∫ C

D
(x−D)f(x) dx+ (C −D)

∫ ∞

C
f(x) dx. (A2)

By (2.35), the insured variance is

Var L(X) = Var X+Var I(X)− 2Cov [I(X),X]

= E X2 − (E X)2 + E I(X)2 − (E I(X))2 − 2E I(X) ·X+ 2E I(X) E X

= E (X− I(X))2 − (E X− E I(X))2

=

∫ D

0
x2 f(x) dx+D2

∫ C

D
f(x) dx+

∫ ∞

C
(x+D − C)2 f(x) dx

−
(
E X−

∫ C

D
(x−D) f(x) dx− (C −D)

∫ ∞

C
f(x) dx

)2

(A3)

Differentiating with respect to C we have

∂

∂C
Var L(X) = 2

∫ ∞

C
(C − x−D) f(x) dx

+ 2

∫ ∞

C
f(x) dx

(
E X−

∫ C

D
(x−D) f(x) dx− (C −D)

∫ ∞

C
f(x) dx

)
,
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which can be rearranged to obtain

∂

∂C
Var L(X) = 2

∫ ∞

C
f(x) dx

(
(C −D)

∫ D

0
f(x) dx+

∫ C

D
(C − x) f(x) dx

)
+ 2

(
EX

∫ ∞

C
f(x) dx−

∫ ∞

C
x f(x) dx

)
. (A4)

Since

EX

∫ ∞

C
f(x) dx−

∫ ∞

C
x f(x) dx =

∫ ∞

C
f(x) dx

(
E X−

∫ ∞

C
x f(x) dx

)
−
∫ C

0
f(x) dx

∫ ∞

C
x f(x) dx

=

∫ ∞

C
f(x) dx

∫ C

0
x f(x) dx

−
∫ C

0
f(x) dx

∫ ∞

C
x f(x) dx,

∂
∂CVar L(X) can be rewritten as

∂

∂C
Var L(X) = 2

∫ ∞

C
f(x) dx

(∫ D

0
(x+ C −D) f(x) dx+ C

∫ C

D
f(x) dx

)
− 2

∫ C

0
f(x) dx

∫ ∞

C
x f(x) dx

= 2

(∫ ∞

C
f(x) dx

∫ D

0
(x−D) f(x) dx+ C

∫ C

0
f(x) dx

∫ ∞

C
f(x) dx

)
− 2

∫ C

0
f(x) dx

∫ ∞

C
x f(x) dx

= 2

∫ ∞

C
f(x) dx

∫ D

0
(x−D) f(x) dx

+ 2

∫ C

0
f(x) dx

∫ ∞

C
(C − x) f(x) dx (A5)

If (A1) holds, then we have
∫ D
0 (x − D) f(x) dx ≤ 0 and

∫∞
C (C − x) f(x) dx ≤ 0

with at least one of the inequalities strict. The result ∂
∂CVar L(X) < 0 then follows.

Remark A.1. If (A1) does not hold, then
∫ D
0 (x − D) f(x) dx = 0 and

∫∞
C (C −

x) f(x) dx = 0, and so ∂
∂CVar L(X) = 0.

We next show that ∂
∂DVar L(X) > 0. Using (A3) we calculate the derivative with

respect to D:
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∂

∂D
Var L(X) = 2D

∫ ∞

D
f(x) dx+ 2

∫ ∞

C
(x− C) f(x) dx

− 2

∫ ∞

D
f(x) dx

(
E X−

∫ C

D
(x−D) f(x) dx− (C −D)

∫ ∞

C
f(x) dx

)
= 2

∫ ∞

D
f(x) dx

(
D −D

∫ ∞

D
f(x) dx

)
+ 2

∫ ∞

C
x f(x) dx

+ 2C

∫ ∞

C
f(x) dx

(
−1 +

∫ ∞

D
f(x) dx

)
− 2

∫ ∞

D
f(x) dx

(∫ D

0
x f(x) dx+

∫ ∞

C
x f(x) dx

)
= 2

∫ D

0
f(x) dx

(
D

∫ ∞

D
f(x) dx− C

∫ ∞

C
f(x) dx

)
+ 2

∫ ∞

C
x f(x) dx

(
1−

∫ ∞

D
f(x) dx

)
− 2

∫ D

0
x f(x) dx

∫ ∞

D
f(x) dx

= 2

∫ D

0
f(x) dx

∫ ∞

C
(x− C)f(x) dx

+ 2

∫ D

0
(D − x) f(x) dx

∫ ∞

D
f(x) dx (A6)

If (A1) holds, then we have
∫ D
0 (D − x) f(x) dx ≥ 0 and

∫∞
C (x − C) f(x) dx ≤ 0

with at least one of the inequalities strict. The result ∂
∂DVar L(X) > 0 then follows.

Remark A.2. If (A1) does not hold, then
∫ D
0 (D − x) f(x) dx = 0 and

∫∞
C (x −

C) f(x) dx = 0, and so ∂
∂DVar L(X) = 0.

�

B Proof of Theorem 2.3

We prove (2.45)

∂

∂C
Var R(X) > 0, (B1)

and (2.46)

∂

∂D
Var R(X) < 0. (B2)
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given that (2.20) holds, ∫ C

D
f(x) dx < 1. (B3)

From (2.36), we have that Var R(X) = Var I(X), and

Var I(X) = E [I(X)]2 − (E [I(X)])2

=

∫ C

D
(x−D)2f(x) dx+ (C −D)2

∫ ∞

C
f(x) dx

−
(∫ C

D
(x−D)f(x) dx+ (C −D)

∫ ∞

C
f(x) dx

)2

. (B4)

The derivative of Var I(X) with respect to C is

∂

∂C
Var I(X) = 2(C −D)

∫ ∞

C
f(x) dx− 2

∫ C

D
(x−D)f(x) dx

∫ ∞

C
f(x) dx

− 2(C −D)

(∫ ∞

C
f(x) dx

)2

= 2

∫ ∞

C
f(x) dx

(
C −D −

∫ C

D
(x−D)− (C −D)

∫ ∞

C
f(x) dx

)
= 2

∫ ∞

C
f(x) dx

(
C

∫ C

0
f(x) dx−D

∫ D

0
f(x) dx−

∫ C

D
xf(x) dx

)
(B5)

Since

C

∫ C

0
f(x) dx−D

∫ D

0
f(x) dx−

∫ C

D
xf(x) dx

> C

∫ C

0
f(x) dx− C

∫ D

0
f(x) dx−

∫ C

D
C f(x) dx = 0,

we obtain ∂
∂CVar I(X) > 0.
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We next differentiate with respect to D:

∂

∂D
Var I(X) = 2

∫ C

D
(D − x) f(x) dx− 2(C −D)

∫ ∞

C
f(x) dx

+ 2

∫ ∞

D
f(x) dx

(∫ C

D
(x−D) f(x) dx+ (C −D)

∫ ∞

C
f(x) dx

)
= 2

∫ C

D
(x−D) f(x) dx

(
−1 +

∫ ∞

D
f(x) dx

)
+ 2(C −D)

∫ ∞

C
f(x) dx

(
−1 +

∫ ∞

D
f(x) dx

)
= −2

∫ D

0
f(x) dx

(∫ C

D
(x−D) f(x) dx+ (C −D)

∫ ∞

C
f(x) dx

)
(B6)

Therefore ∂
∂DVar I(X) < 0.

�

C Proof of Theorem 5.1

We prove Theorem 5.1, Cov (L(X), R(X)) < 0. We have that

Cov (L(X), R(X)) = Var R(X) + Cov (R(X),X)

= E R(X)2 − (E R(X))2 + E (X ·R(X))− E XE R(X). (C1)

To derive an expression for Cov (L(X), R(X)), we consider the term pairs E R(X)2 +

E (X ·R(X)) and −(E R(X))2 − E XE R(X).

E R(X)2 + E X ·R(X) = E (R(X)((R(X) +X)

= D

∫ C

D
(D − x) f(x) dx+ (D − C)

∫ ∞

C
(x+D − C) f(x) dx

− (E R(X))2 − E XE R(X) = −E R(X)(E R(X) + E X)

= −E R(X)

(∫ D

0
x f(x) dx+D

∫ C

D
f(x) dx+

∫ ∞

C
(x+D − C) f(x) dx

)
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Therefore,

Cov (L(X), R(X)) =D

∫ C

D
(D − x) f(x) dx− ER

(∫ D

0
xf(x) dx+D

∫ C

D
f(x) dx

)
+ (D − C − E R(X))

∫ ∞

C
(x+D − C)f(x) dx.

(C2)

Because

D − C − ER =

∫ D

0
(D − C) f(x) +

∫ C

D
(D − C − (D − x))f(x) dx

+

∫ ∞

C
(D − C − (D − C))f(x) dx

= (D − C)

∫ D

0
f(x) dx+

∫ C

D
(x− C)f(x) dx,

the second term of (C2) becomes

(D−C)

∫ D

0
f(x) dx

∫ ∞

C
(x+D−C) f(x) dx+

∫ C

D
(x−C) f(x) dx

∫ ∞

C
(x+D−C) f(x) dx.

(C3)

Writing E R(X) as
∫ C
D (D− x) f(x) dx+(D−C)

∫∞
C f(x) dx in the third term of (C2)

and multiplying through we obtain

∫ C

D
(x−D) f(x) dx

∫ D

0
x f(x) dx+D

∫ C

D
(x−D) f(x) dx

∫ C

D
f(x) dx

+ (C −D)

∫ ∞

C
f(x) dx

∫ D

0
x f(x) dx+D(C −D)

∫ ∞

C
f(x) dx

∫ C

D
f(x) dx.

(C4)

The covariance can then be written as

Cov (L(X), R(X)) = P1 + P2 + P3 + P4, (C5)
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where

P1 = (D − C)

∫ D

0
f(x) dx

∫ ∞

C
(x+D − C) f(x) dx

+ (C −D)

∫ ∞

C
f(x) dx

∫ D

0
x f(x) dx,

P2 = D

∫ C

D
(D − x)f(x) dx+D

∫ C

D
(x−D)f(x) dx

∫ C

D
f(x) dx

P3 = D(C −D)

∫ ∞

C
f(x) dx

∫ C

D
f(x) dx

P4 =

∫ C

D
(x−D) f(x) dx

∫ D

0
x f(x) dx+

∫ C

D
(x− C) f(x) dx

∫ ∞

C
(x+D − C) f(x) dx

To carry out the proof we show that P1 < 0 and P2 + P3 + P4 < 0.

Factoring out (D − C) in P1 we obtain

P1 = (D − C)

(∫ D

0
f(x) dx

∫ ∞

C
(x+D − C) f(x) dx−

∫ ∞

C
f(x) dx

∫ D

0
x f(x) dx

)

= (D − C)

∫ ∞

C
(D − C) f(x) dx

∫ D

0
f(x) dx (C6a)

+ (D − C)

(∫ ∞

C
x f(x) dx

∫ D

0
f(x) dx−

∫ ∞

C
f(x) dx

∫ D

0
x f(x) dx

)
. (C6b)

Since

(D − C)

(∫ ∞

C
xf(x) dx

∫ D

0
f(x) dx

)
< (D − C)

(
C

∫ ∞

C
f(x) dx

∫ D

0
f(x) dx

)

and

(D − C)

(
−
∫ ∞

C
f(x) dx

∫ D

0
xf(x) dx

)
< (D − C)

(
−D

∫ ∞

C
f(x) dx

∫ D

0
f(x) dx

)
,

expression (C6b) is less than

−(D − C)2
∫ ∞

C
f(x) dx

∫ D

0
f(x) dx.
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Therefore

P1 < (D−C)

∫ ∞

C
(D−C) f(x) dx

∫ D

0
f(x) dx−(D−C)2

∫ ∞

C
f(x) dx

∫ D

0
f(x) dx = 0

We now show that P2 + P3 + P4 < 0. We have

P2 = D

(∫ C

D
(D − x)f(x) dx+

∫ C

D
(x−D)f(x) dx

∫ C

D
f(x) dx

)
= D

(
D

∫ C

D
f(x) dx

(
1−

∫ C

D
f(x) dx

)
+

∫ C

D
xf(x) dx

(∫ C

D
f(x) dx− 1

))
(C7)

Adding P3 to (C7) we obtain

P3 + P6 + P7 = D

(
D

∫ C

D
f(x) dx

∫ D

0
f(x) dx−

∫ C

D
xf(x) dx

∫ D

0
f(x) dx

)
(C8a)

+D

(
D

∫ C

D
f(x) dx

∫ ∞

C
f(x) dx−

∫ C

D
xf(x) dx

∫ ∞

C
f(x) dx

)
+D(C −D)

∫ C

D
f(x) dx

∫ ∞

C
f(x) dx (C8b)

Line (C8a) can be rewritten as

D

∫ D

0
f(x) dx

∫ C

D
(D − x)f(x) dx (C9)

and line (C8b) is equal to

D

∫ ∞

C
f(x) dx

∫ C

D
(D−x+C−D)f(x) dx = D

∫ ∞

C
f(x) dx

∫ C

D
(C−x)f(x) dx (C10)
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Adding lines (C9) and (C10) to P4 we obtain:

P2 + P3 + P4 (C11)

=

∫ C

D
(x− C)f(x) dx

∫ ∞

C
(x+D − C −D) f(x)

+

∫ C

D
(x−D)f(x) dx

∫ D

0
(x−D)f(x) dx

=

∫ C

D
(x− C)f(x) dx

∫ ∞

C
(x− C) f(x) +

∫ C

D
(x−D)f(x) dx

∫ D

0
(x−D)f(x) dx < 0,

(C12)

since the first and fourth integrals of line (C12) are negative and the second and third

integrals are positive. Therefore, we have Cov (L(X), R(X)) =
∑4

i=1 pi < 0, and the

proof is complete.

D Calculation of the Derivatives of Cov [L(X), R(X)]

Writing Cov [L(X), R(X)] = P1 +P2 +P3 +P4 as in (C5), we calculate the derivatives

as follows:

∂

∂D
P1 =

∫ D

0
f(x) dx

∫ ∞

C
(x+D − C) f(x) dx+ (C −D)f(D)

∫ ∞

C
(C − x) f(x) dx

+

∫ ∞

C
f(x) dx

∫ D

0
(D − C − x) f(x) dx

∂

∂D
(P2 + P3 + P4) =

∫ C

D
f(x) dx

∫ D

0
(D − x) f(x) dx+

∫ C

D
(D − x) f(x) dx

∫ D

0
f(x) dx

− (C −D)f(D)

∫ ∞

C
(C − x) f(x) dx
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Therefore,

∂

∂D
Cov [L(X), R(X)] =

∫ D

0
f(x) dx

∫ ∞

C
(x+D − C) f(x) dx

+

∫ ∞

C
f(x) dx

∫ D

0
(D − C − x) f(x) dx

+

∫ C

D
f(x) dx

∫ D

0
(D − x) f(x) dx

+

∫ C

D
(D − x) f(x) dx

∫ D

0
f(x) dx

(D1)

Similarly,

∂

∂C
P1 = −

∫ D

0
f(x) dx

∫ ∞

C
(x+D − C) f(x) dx+ (C −D)

∫ D

0
f(x) dx

∫ ∞

C
f(x) dx

+

∫ D

0
x f(x) dx

∫ ∞

C
f(x) dx+ (C −D)f(C)

∫ D

0
(D − x) f(x) dx

∂

∂C
(P2 + P3 + P4) = (C −D)f(C)

∫ D

0
(x−D) f(x) dx+

∫ C

D
f(x) dx

∫ ∞

C
(C − x) f(x) dx∫ C

D
(C − x) f(x) dx

∫ ∞

C
f(x) dx

Therefore,

∂

∂C
Cov [L(X), R(X)] = −

∫ D

0
f(x) dx

∫ ∞

C
(x+D − C) f(x) dx

+ (C −D)

∫ D

0
f(x) dx

∫ ∞

C
f(x) dx

+

∫ D

0
x f(x) dx

∫ ∞

C
f(x) dx+

∫ C

D
f(x) dx

∫ ∞

C
(C − x) f(x) dx

+

∫ C

D
(C − x) f(x) dx

∫ ∞

C
f(x) dx
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