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ABSTRACT OF THE THESIS

Interaction and External Field Quantum Quenches in the

Lieb-Liniger and Gaudin-Yang model

By STEFAN M. GROHA

Thesis Director:

Natan Andrei

A review of the solution of the Lieb-Liniger is given. Using the wave function, the dynamics after

a quench with a time dependent interaction strength is studied. Directly calculating the overlaps

of wave functions, an interaction strength linear in time is examined. Furthermore utilizing those

overlaps and the so called Yudson representation a time periodic interaction strength is studied.

Moreover the dynamics of the Lieb-Liniger model with an external homogenous field is analyzed.

After giving a review of the solution of the Gaudin-Yang model, an outlook on how the wave function

for the Gaudin-Yang model in an external homogenous field could be obtained is given.
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Chapter 1

Introduction

In the last years experimental progress in trapping ultracold atoms and realizing various models of

one dimensional Bose or Fermi gases in those experiments has led to a renewal of interest in studying

those systems. As most physical processes we observe are dynamical, there is especially an interest

in nonequilibrium behaviour, for example quantum quenches, which will be defined later.

In those experiments, a quasi one dimensional system can be achieved by applying strong confine-

ment in two transverse directions, therefore only allowing movement in the one residual dimension.

This can be realized first and foremost in quantum systems of ultracold atoms, e.g. by means of

optical lattices or on atom chips (cf. [1, 2]).

The experimental results obtained by those experiments, thermodynamical as well as nonequilib-

rium dynamical (cf. [1]), can be very well described by the Lieb-Liniger ([3]) and for higher spin with

the Gaudin-Yang model ([4, 5, 6]) and the exact results obtained for those Bethe Ansatz integrable

models. Those experiments and theoretical solutions therefore provide a better understanding of

the quantum statistical and dynamical effects in quantum many-body physics (cf.[1]).

In the following the Lieb-Liniger and Gaudin-Yang model will be introduced and solved by means

of the Bethe-Ansatz, a particular form of a wave function in one dimension introduced by Bethe in

1931 (cf. [7]). Following the review of the Lieb-Liniger model, quantum dynamics after quenches in

the interaction strength will be examined utilizing the full overlap of the wave function for different

interaction strength and also a different representation for the time evolution of the wave function

of an integrable model, the so called Yudson-representation (cf. [8]). Furthermore the wave function

and quench dynamics of the Lieb-Liniger model in an external homogenous will be studied. After

that the solution of the Gaudin-Yang model will be presented and an outlook on how to solve for
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the wave function of the Gaudin-Yang model in a constant force potential will be given.
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Chapter 2

Lieb-Liniger Model

2.1 Solution of the Lieb-Liniger Model

2.1.1 Preliminaries

The Lieb-Liniger model is a one-dimensional model of a boson gas with point-like interaction of the

particles. The model was solved by Lieb and Liniger in 1963 [3].

The model is characterised (cf. [9]) by the Hamiltonian

H =

∫
R

dx
(
∂xb
†(x, t)∂xb(x, t) + c b†(x, t)b†(x, t)b(x, t)b(x, t)

)
(2.1)

with interaction strength c > 0 and the quantum fields b(x, t) obeying canonical quantum commu-

tation relations

[
b(x, t), b†(y, t)

]
= δ(x− y) (2.2)

[b(x, t), b(y, t)] = 0 (2.3)

[
b†(x, t), b†(y, t)

]
= 0 (2.4)

As in the following the operators will be at specific times, the time argument will be omitted.

Furthermore define the Fock-vacuum |0〉 and adjoint 〈0| by

b(x) |0〉 = 0 〈0| b†(x) = 0 〈0 | 0〉 = 1 (2.5)
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2.1.2 Wave function

To look for the eigenfunctions of (2.1) it is convenient to go to the first quantized version of the

Hamiltonian at a specific number of particles N with the Ansatz (cf. [9])

|ψ (k1, . . . , kN )〉 =
1√
N !

∫
RN

dNx ψN (k1 . . . , kN |x1, . . . xN ) b†(x1) . . . b†(xN ) |0〉 (2.6)

with ψ (k1 . . . , kN |x1, . . . xN ) being symmetric in x1, . . . , xN . The quantum numbers k1, . . . kN are

assumed distinct.

Therefore by acting with (2.1) on (2.6) the first quantized version HN of (2.1) can be found:

H |ψ (k1, . . . , kN )〉 =
1√
N !

∫
R

dy

∫
RN

dNx

−∂2
yb
†(y)

∑
i

δ (y − xi)
∏
j 6=i

b†(xj)ψN ({k}|{x})

+
c√
N !

∫
R

dy

∫
RN

dNx ψN ({k}|{x})b†(y)b†(y)
∑
i6=j

δ (y − xi) δ (y − xj)
∏
k 6=i,j

b†(xk)

 |0〉
=

1√
N !

∫
RN

dNx

−∑
i

∂2

∂x2
i

+ c
∑
i 6=j

δ(xi − xj)

ψN ({k}|{x})
∏
i

b†(xi) |0〉

⇒ HN = −
∑
i

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj) (2.7)

The identities [
b(y),

N∏
i=1

b†(xi)

]
=

N∑
i=1

δ (y − xi)
∏
i6=j

b†(xj) (2.8)

[
b(y)b(y),

N∏
i=1

b†(xi)

]
|0〉 =

∑
i 6=j

δ (y − xi) δ (y − xj)
∏
k 6=i,j

b†(xk) |0〉 (2.9)

have been used. As the wave function ψN (k1, . . . , kN |x1 . . . xN ) is symmetric in x1, . . . , xN it is

sufficient to describe the problem in the domain D: x1 < · · · < xN . In this domain the wave

function is an eigenfunction of the Hamiltonian

H0
N = −

∑
i

∂2

∂x2
i

(2.10)

with eigenvalue EN . It furthermore has to obey certain continuity conditions, which can be obtained

by integrating the Schrödinger equation with the N particle Hamiltonian (2.7) over the relative

coordinates in an infinitesimal region:∫ +ε

−ε
d(xj+1 − xj)HNψN =

∫ +ε

−ε
d(xj+1 − xj)ENψN (2.11)
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with the definitions:

x = xj+1 − xj X =
xj+1 + xj

2
(2.12)

and therefore

∂2

∂x2
j

+
∂2

∂x2
j+1

=
1

2

∂2

∂X2
+ 2

∂2

∂x2
(2.13)

the integrals become:

− 2
∂

∂x
ψN (x,X, x1 . . . xN )

∣∣∣∣ε
−ε

+ 2cψN ({k}|0, X, x1 . . . xN ) = 0

⇒
[(

∂

∂xj+1
− ∂

∂xj

)
− c
]
xj+1=xj+ε

ψN (k1, . . . , kN |x1 . . . xN ) = 0 (2.14)

where the symmetry of the wave function has been used. This condition (2.14) has to be true for

all j ∈ {1, . . . , N − 1}.

Equations (2.10) and (2.14) are equivalent to (2.1). The solution of these two equations in the

domain D can be obtained as follows (cf. [9]). Define the so called Gaudin-operator

Oc =
∏
i>j

[(
∂

∂xi
− ∂

∂xj

)
+ c

]
(2.15)

and the totally antisymmetric wave function of free fermions:

ψf = det
(
eikixj

)
(2.16)

The eigenfunction to (2.10) satisfying (2.14) is then given by

ψ({k}|{x}) = NOcψf (2.17)

where N is the normalization of the wave function. This is true as Oc in (2.15) commutes with

the Hamiltonian H0
N in the domain D, therefore (2.17) is eigenfunction of H0

N . Furthermore (2.17)
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satisfies (2.14):[(
∂

∂xj+1
− ∂

∂xj

)
− c
]
xj+1=xj+ε

Ocψf =

[(
∂

∂xj+1
− ∂

∂xj

)
− c
]
xj+1=xj+ε

[(
∂

∂xj+1
− ∂

∂xj

)
+ c

]

×
∏
i>k

¬(i=j∧k=j+1)

[(
∂

∂xi
− ∂

∂xj

)
+ c

]
ψf

=

[(
∂

∂xj+1
− ∂

∂xj

)2

− c2
] ∏

i>k
¬(i=j∧k=j+1)

[(
∂

∂xi
− ∂

∂xj

)
+ c

]
ψf

∣∣∣∣∣∣∣∣
xj+1=xj+ε

= 0 (2.18)

The last line follows from the fact that ψf and the rest of Oc is totally antisymmetric in xj+1 and

xj and the first part in the second line totally symmetric, so at the point xj+1 = xj the whole

expression is zero.

Therefore the wave function has been obtained. Applying the operator Oc to ψf the wave

function in the domain D can be written as:

ψ({k}|{x}) = N ′
∑
P

A(P )ei(Pk,x) (2.19)

where P is an element of the symmetric group of order N , (Pk, x) =
∑
n kPnxn and

A(P ) =
∏
i<j

(
1 +

ic

kPi − kPj

)
(2.20)

The wave function in the whole domain RN can be obtained by symmetrizing (2.19) or equivalently

changing the operator Oc to (cf. [10])

Oc =
∏
i>j

[(
∂

∂xi
− ∂

∂xj

)
+ c · sgn (xi − xj)

]
(2.21)

where the sign function compensates for a sign change of the partial derivatives after a permutation

of the {xi}. The wave function then can be written as

ψ({k}|{x}) = N ′
∑
P

A(P )s ei(Pk,x) (2.22)

where

A(P )s =
∏
i<j

(
1 +

ic · sgn(xj − xi)
kPi − kPj

)
(2.23)
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The wave function furthermore has to be properly normalized. It can be shown (cf. [10]) that after

correct normalization the wave function can be written as

ψ({k}|{x}) =
1

N !
√

(2π)NG(k)

∑
P

A(P )s ei(Pk,x) (2.24)

with

G(k) =
∏
i<j

(
1 +

c2

(ki − kj)2

)
(2.25)

and furthermore the following identities hold (cf. [10]):

〈ψ({k}) | ψ({k′})〉 =
1

N !

∑
R

∏
j

δ
(
kj − k′Rj

)
(2.26)

∫
RN

dNk ψ({k}|{x})ψ?({k}|{x′}) =
∏
i

δ(xi − yi) for x, y ∈ D (2.27)

2.1.3 Quench dynamics and Yudson-Representation

Motivated by advances in the field of ultracold atomic or molecular gases (cf. [11]), an important

aspect of nonequilibrium dynamics are so-called quantum quenches, where one is interested in the

dynamics of a initially stationary state |ψ0〉 in the presence of a new Hamiltonian H, the so called

quenched Hamiltonian, which is different from the initial Hamiltonian H0 in for example the inter-

action constant. This quench can be instantly, i.e. much shorter than any time scale in the problem,

or time dependent. The time evoultion is described by

|ψ(t)〉 = e−iHt |ψ0〉 (2.28)

If the complete set of eigenstates {|λ〉 = |λ1, . . . , λN 〉} of the Hamiltonian H is known by means of

the Bethe Ansatz this can always be written as:

|ψ(t)〉 =
∑
{λ}

e−iE(λ)t |λ〉 〈λ | ψ0〉 (2.29)

(cf. [8]) where E(λ) are the corresponding eigenvalues to H and the sum goes over all possible

configurations of the {λ}. In general, especially in the case of bound states where one would have to

sum over string configurations, this can be very complicated. A different approach, which is much
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simpler mainly in the case of bound states, is by the use of the Yudson representation ([8]):

|ψ(t)〉 =

∫
Γ

dλ e−iE(λ)t |λ〉 (λ | ψ0〉 (2.30)

or

1 =

∫
Γ

dλ |λ〉 (λ| (2.31)

where Γ is a specific path in the complex plane and (λ| the Yudson state. Note that there is no

sum over the bound states anymore but it is solely an integral representation. For the Lieb-Liniger

model the Yudson state can be shown to be (cf. [8],[12]):

|λ1, . . . , λN ) =
(N !)1/2

(2π)N/2

∫
dNx Θ (x1 < x2 < · · · < xN )

N∏
j=1

eiλjxj b†(xj) |0〉 (2.32)

It is important to state here however, that as the integral is in the complex plane now, the rapidities

in the Bethe states |λ1, . . . , λN 〉 do not satisfy the boundedness condition for the wave function

anymore, that is matrix elements can be divergent. The states are however meaningful when used in

a matrix element 〈F |O |λ〉 with |F 〉 being a state whose configuration space wave function vanishes

or oscillates outside a certain domain sufficiently fast. This is for example true for every physical

initial state. O can be any local operator (cf. [8]). Therefore when writing |λ〉 in e.g. (2.30) or

(2.31) it is implied that those states are subsequently used in a matrix element of the form 〈F |O |λ〉.

Alternatively it is also possible, depending on the integral in question, to choose a path in the

complex plane where the integral does not diverge (e.g. in the Lieb-Liniger model cf. [12]).

This can be used in the Lieb-Liniger model. With |x〉 = 1√
N !

∏
j b
†(xj) |0〉 as initial state for

(2.30) one gets up to normalisation (cf. [12]):

|x, t〉 = Θ(x1 > . . . xN )

∫
Γ

∏
j

dλj
2π

e−iE(λ)t
∏
j

e−iλjxj |λ〉 (2.33)

The integration path Γ can chosen to be on the real line for c > 0 and parallel to the real line with

=(λj − λj−1) for c < 0 where in the latter case the limited support of physical states is important

so that the matrix elements are meaningful.

For two particles the integral can be done analytically for c ∈ R and one gets for both cases (cf.
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[12]):

|x, t〉2 =

∫
y

ei
(y1−x1)2

4t +i
(y2−x2)2

4t

4πit

[
1− c

√
iπtΘ(y1 − y2)e

i
8tα

2

erfc

(
i− 1

4

iα√
t

)]
b†(y1)b†(y2) |0〉 (2.34)

with α = 2ct+ i(y1− x1)− i(y2− x2). For more than two particles (2.33) can be evaluated for large

times with a saddle point approximation (cf. [12]).

2.2 Lieb-Liniger Model with time-dependent interaction

2.2.1 Linear time evolution of interaction strength

One example of a quench which is non-instant is changing the interaction strength parameter of the

Lieb-Liniger model c constant with time over a finite amount of time.

In recent ultracold atom experiments of particles in atomic traps it was possible to engineer

bosons with an effective delta function interaction (cf. [2, 13]). The effective interaction strength

is hereby determined by the geometry and frequency of the optical trap or external applied fields

(cf. [2, 14]). Therefore quenches with generic time dependent interaction strength are potentially

accesible by experiment. This can be of great interest for example in the case where the effective

interaction changes sign and exhibits a transition from the repulsive to attractive interaction with

bound states in the latter. An easy model for that would be a simply linear time evolution of the

interaction strength in the Lieb-Liniger model. The following discussion will be however for a start

be focused on the easiest case of two particles and c > 0.

Overlap of Bethe states with different c

To calculate the overalp of two Bethe eigenstates |k1, k2〉1 and |k′1, k′2〉2 to two different Hamiltonian

H1 and H2 differing in the interaction strength c1 and c2 one identity will be particularly useful:

2πi δ(q1 + q2)
q1 + q2 + 2iε

(q1 + iε)(q2 + iε)
= (2π)2

2∏
k=1

δ(qk) (2.35)

where ε→ 0 is implied. To see this consider for the domain D : x1 < x2 the integral:

∑
P

∫
D

d2x e−i(Pq,x) = 2πi δ(q1 + q2)
q1 + q2 + 2iε

(q1 + iε)(q2 + iε)
(2.36)
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where (q, x) =
∑2
k=1 qkxk. As the integrand is symmetric one also gets:

∑
P

∫
D

d2x e−i(Pq,x) =
1

2

∑
P

∫
R2

d2x e−i(Pq,x) (2.37)

=(2π)2
2∏
k=1

δ(qk) (2.38)

Therefore the identity is proven. This can be easily extended to many particles.

Now with (2.24) and (2.6) the overlap can be written as:

〈k′1k′2 | k1k2〉2 1 =
1

4

1

(2π)2

1√
G11(k)G22(k′)

∫
R2

d2x
∑
P,Q

A∗s 1(P, k) As 2(P, k′)e−i(x,Pk−Qk
′) (2.39)

=
1

2

1

(2π)2

1√
G11(k)G22(k′)

∫
D

d2x
∑
P,Q

A∗1(P, k)A2(P, k′)e−i(x,Pk−Qk
′)

︸ ︷︷ ︸
≡I

(2.40)

with

Gnm(k) = = 1 +
cncm

(k1 − k2)2
= 1− γnγm

(k1 − k2)2
(2.41)

As n(P, k) =1 +
γn sgn(x2 − x1)

kP1 − kP2
(2.42)

An(P, k) =1 +
γn

kP1 − kP2
(2.43)

Therefore one gets:

I =

∫
D

d2x
∑
P,Q

A∗1(P, k)A2(P, k′)e−i(x,Pk−Qk
′)

=2πi δ(k1 + k2 − k′1 − k′2)
∑
P,Q

A∗1(P, k)A2(P, k′)
1

kP1 − k′Q1 + iε

=2πi δ(k1 + k2 − k′1 − k′2)

[
k1 + k2 − k′1 − k′2 + 2iε

(k1 − k′1 + iε)(k2 − k′2 + iε)

(
1− γ1γ2

(k1 − k2)(k′1 − k′2)

)
+

[γ1(k′1 − k′2)− γ2(k1 − k2)] (k1 − k2 − k′1 + k′2)

(k1 − k′1 + iε)(k2 − k′2 + iε)(k′1 − k′2)(k1 − k2)
+

k1 + k2 − k′1 − k′2 + 2iε

(k1 − k′2 + iε)(k2 − k′1 + iε)

×
(

1 +
γ1γ2

(k1 − k2)(k′1 − k′2)

)
+

[γ1(k′1 − k′2) + γ2(k1 − k2)] (k1 − k2 + k′1 − k′2)

(k1 − k′1 + iε)(k2 − k′2 + iε)(k′1 − k′2)(k1 − k2)

]
(2.44)
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Using the identity this becomes:

I =(2π)2G12(k)
∑
P

δ (k1 − k′P1) δ (k2 − k′P2) +

2πi δ(k1 + k2 − k′1 − k′2)

[
[γ1(k′1 − k′2)− γ2(k1 − k2)] (k1 − k2 − k′1 + k′2)

(k1 − k′1 + iε)(k2 − k′2 + iε)(k′1 − k′2)(k1 − k2)
+

[γ1(k′1 − k′2) + γ2(k1 − k2)] (k1 − k2 + k′1 − k′2)

(k1 − k′1 + iε)(k2 − k′2 + iε)(k′1 − k′2)(k1 − k2)

]
=(2π)2G12(k)

∑
P

δ (k1 − k′P1) δ (k2 − k′P2) + I1 (2.45)

where the second part of the sum is defined to be I1. This can be further simplified:

I1 =2πi δ(k1 + k2 − k′1 − k′2)

[
γ1 − γ2

k1 − k2

(
k1 + k2 − k′1 − k′2 + 2iε

(k1 − k′1 + iε)(k2 − k′2 + iε)
+

k1 + k2 − k′1 − k′2 + 2iε

(k1 − k′2 + iε)(k2 − k′1 + iε)

)
+

2(γ1 − γ2)

k1 − k2

(
k′2 − k2 − iε

(k1 − k′1 + iε)(k2 − k′2 + iε)
+

k′1 − k2 − iε
(k1 − k′2 + iε)(k2 − k′1 + iε)

)]
=(2π)2 γ1 − γ2

k1 − k2

∑
P

δ (k1 − k′P1) δ (k2 − k′P2)−

2πi
2(γ1 − γ2)

k1 − k2

(
1

k1 − k′1 + iε
+

1

k1 − k′2 + iε

)
δ(k1 + k2 − k′1 − k′2) (2.46)

Therefore one gets for the overlap of two Bethe functions to different interaction strengths:

〈k′1k′2 | k1k2〉2 1 =

(
1 + γ1

k1−k2

)(
1− γ2

k1−k2

)
√
G11(k)G22(k)

1

2

∑
P

δ(k1 − k′P1)δ(k2 − k′P2)

− i

2π
δ(k1 + k2 − k′1 − k′2)

γ1 − γ2√
G11(k)G22(k′)

1

(k1 − k′1 + iε)(k1 − k′2 + iε)
(2.47)

As both Bethe eigenstates to the two different Hamiltonians are a basis to the same Hilbert space

and form a complete set, the completeness relation

1 =

∫
d2k |k1k2〉c 〈k1k2|c (2.48)
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can be used. This can also be shown explicitly

∫
d2k 〈k′1k′2 | k1k2〉2 1 〈k1k2 | k′′1k′′2 〉1 2

=

∫
d2k


(

1 + γ1
k1−k2

)(
1− γ2

k1−k2

)
√
G11(k)G22(k)

1

2

∑
P

δ(k1 − k′P1)δ(k2 − k′P2)

− i

2π
δ(k1 + k2 − k′1 − k′2)

γ1 − γ2√
G11(k)G22(k′)

1

(k1 − k′1 + iε)(k1 − k′2 + iε)

]

(

1 + γ1
k′′1−k′′2

)(
1− γ2

k′′1−k′′2

)
√
G11(k′′)G22(k′′)

1

2

∑
P

δ(k1 − k′′P1)δ(k2 − k′′P2)

− i

2π
δ(k1 + k2 − k′′1 − k′′2 )

γ1 − γ2√
G11(k)G22(k′′)

1

(k′′1 − k1 + iε)(k′′1 − k2 + iε)

]

=
1

4

1 +

(
1 + γ2

k′′1−k′′2

)2 (
1− γ1

k′′1−k′′2

)2

G11(k′′)G22(k′′)

∑
P

δ(k′1 − k′′P1)δ(k′2 − k′′P2)

− i

2π

γ1 − γ2√
G22(k′′)G22(k′)

δ(k′1 + k′2 − k′′1 − k′′2 )

(
1 + γ2

k′′1−k′′2

)(
1− γ1

k′′1−k′′2

)
G11(k′′)(k′′1 − k′1 + iε)(k′′1 − k′2 + iε)

+
γ1 − γ2

G22(k′′)G22(k′)

(
1 + γ2

k′′1−k′′2

)(
1− γ1

k′′1−k′′2

)
(k′′1 − k′′2 )

1

2

∑
P

δ(k′1 − k′′P1)δ(k′2 − k′′P2)

+
i

2π

γ1 − γ2

G22(k′′)G22(k′)
δ(k′1 + k′2 − k′′1 − k′′2 )

1− γ1γ2
(k′1−k′2)2)

G11(k′′)

1

(k′′1 − k′1 + iε)(k′′1 − k′2 + iε)

− i

2π

(γ1 − γ2)2

G22(k′′)G22(k′)
δ(k′1 + k′2 − k′′1 − k′′2 )

[
4γ1

G11(k′)G11(k′′)(k′1 − k′2)2(k′′1 − k′′2 )2
+

1

G11(k′′)

1

(k′′1 − k′1 + iε)(k′′1 − k′2 + iε)

1

k′′1 − k′′2

]
=

1

2

∑
P

δ(k′1 − k′′P1)δ(k′2 − k′′P2) = 〈k′1k′2 | k′′1k′′2 〉2 2 (2.49)

Time evolution operator

To compute the time evolution of the time dependent Hamilton operator H(t) with time dependent

interaction strength c(t) = c0 + c · t one can divide the time into infinitessimal time slices, during

which the interaction strength cn, where the subscript n means the interaction strength in the nth

time slice, is assumed constant.
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t

c

t

c

c(t) = c0 + c · t
δt

δc = cδt

Therefore the time evolution operator Û(t): |ψ(t)〉 = Û(t) |ψ(0)〉 can be written as:

Û(t) = e−iHNδt · · · e−iH1δt (2.50)

where the time was divided into N time slices with N → ∞, δt → 0 and Nδt → t. Hn is the

Hamilton operator with interaction strength cn. For the linear time evolution the interaction in the

nth time slice cn has to be cn = c0 + n c δt.

With the eigenfunctions for the Hn being the Bethe wave functions to interaction strength cn

one can insert the completeness relation (2.48) with appropriate interaction strenth. Therefore one

gets:

e−iH1t1 · · · e−iHN tN =

∫
k(1)

∫
k(N)

U(k(N), k(1))
∣∣∣k(N)

1 k
(N)
2

〉
N 1

〈
k

(1)
1 k

(1)
2

∣∣∣ (2.51)

with

U(k(N), k(1)) =

∫
k(2)
· · ·
∫
k(N−1)

N−1∏
n=1


(

1 + γn

k
(n)
1 −k

(n)
2

)(
1− γn+1

k
(n)
1 −k

(n)
2

)
√
Gn,n(k)Gn+1,n+1(k)

× 1

2

∑
P

δ(k
(n)
1 − k(n+1)

P1 )δ(k
(n)
2 − k(n+1)

P2 )− i

2π
δ(k

(n)
1 + k

(n)
2 − k(n+1)

1 − k(n+1)
2 )

× γn − γn+1√
Gn,n(k(n))Gn+1,n+1(k(n+1))

1

(k
(n)
1 − k(n+1)

1 + iε)(k
(n)
1 − k(n+1)

2 + iε)

]

× e−i(k
(1) 2
1 +k

(1) 2
2 )δt · · · e−i(k

(N) 2
1 +k

(N) 2
2 )δt (2.52)

and with
∣∣∣k(N)

1 k
(N)
2

〉
N

being the eigenstate to H(t) at time t with c(t) = c0 + ct and
〈
k

(1)
1 k

(1)
2

∣∣∣
1

the

adjoint eigenstate to H(t) at time t = 0 with c(t = 0) = c0.
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Plugging in the cn and expanding every factor of the product to order δt one gets:

U(k(1), k(N)) =

∫
k(2)
· · ·
∫
k(N−1)

N−1∏
n=1

{
1

2

∑
P

δ(k
(n)
1 − k(n+1)

P1 )δ(k
(n+1)
2 − k(n+1)

P2 )

− δt

[
i

(
k

(n) 2
1 + k

(n) 2
2 +

c

k
(n)
1 − k(n)

2

)
1

2

∑
P

δ(k
(n)
1 − k(n+1)

P1 )δ(k
(n)
2 − k(n+1)

P2 )

+
c

2π

δ
(
k

(n)
1 + k

(n)
2 − k(n+1)

1 − k(n+1)
2

)
(k

(n)
1 − k(n+1)

1 + iε)(k
(n)
1 − k(n+1)

2 + iε)

 (2.53)

Expanding every factor to first order in δt is sufficient as in a product of N factors (a+ bδt+ cδt2)N

only a and b are important when taking N →∞ and δt→ 0. However this expansion is only sensible

if the integrals still converge. As will be seen later the expansion of the exponential in (2.52) can

only be done up to a certain order in t, otherwise one has to be more careful with the expansion.

The product in (2.53) can be seen as there being N − 1 places, where each place can either be a

δt0 or a δt1 insertion connecting k(n) and k(n+1)

δt0 δt1

k(n) k(n+1)k(1) k(N)

where represents the summand not proportional to δt in the product of (2.53) and

the summand proportional to δt. There is furthermore an integral over every node between

two lines.

It is now easy to show that

=

and

= =
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as:

∫
k(n)

1

2

∑
P

δ(k
(n−1)
1 − k(n)

P1 )δ(k
(n−1)
2 − k(n)

P2 )

[
i

(
k

(n) 2
1 + k

(n) 2
2 +

c

k
(n)
1 − k(n)

2

)

1

2

∑
P

δ(k
(n)
1 − k(n+1)

P1 )δ(k
(n)
2 − k(n+1)

P2 ) +
c

2π

δ
(
k

(n)
1 + k

(n)
2 − k(n+1)

1 − k(n+1)
2

)
(k

(n)
1 − k(n+1)

1 + iε)(k
(n)
1 − k(n+1)

2 + iε)


=

[
i

(
k

(n−1) 2
1 + k

(n−1) 2
2 +

c

k
(n−1)
1 − k(n−1)

2

)

1

2

∑
P

δ(k
(n−1)
1 − k(n+1)

P1 )δ(k
(n−1)
2 − k(n+1)

P2 ) +
c

2π

δ
(
k

(n−1)
1 + k

(n−1)
2 − k(n+1)

1 − k(n+1)
2

)
(k

(n−1)
1 − k(n+1)

1 + iε)(k
(n−1)
1 − k(n+1)

2 + iε)


(2.54)

and the other way round.

Therefore U can be written as:

U(k(N), k(1)) =
1

2

∑
P

δ(k
(1)
1 − k(N)

P1 )δ(k
(1)
2 − k(N)

P2 )+

N−1∑
m=1

(−δt)m
(
N − 1

m

) m∏
n=1

∫
k(n)

[
i

(
k

(n) 2
1 + k

(n) 2
2 +

c

k
(n)
1 − k(n)

2

)

1

2

∑
P

δ(k
(n)
1 − k(n+1)

P1 )δ(k
(n)
2 − k(n+1)

P2 ) +
c

2π

δ
(
k

(n)
1 + k

(n)
2 − k(n+1)

1 − k(n+1)
2

)
(k

(n)
1 − k(n+1)

1 + iε)(k
(n)
1 − k(n+1)

2 + iε)

 (2.55)

with k(m+1) = k(N). For m = 1 to m = 3 this can be integrated and one gets:

U(k(N), k(1)) =

3∑
m=0

(−δt)m
(
N − 1

m

){[
i

(
k

(1) 2
1 + k

(1) 2
2 − c

k
(1)
1 − k(1)

2

)]m

×1

2

∑
P

δ(k
(1)
1 − k(N)

P1 )δ(k
(1)
2 − k(N)

P2 )

+
c

2π

Am(k(1), k(N))δ
(
k

(1)
1 + k

(1)
2 − k(N)

1 − k(N)
2

)
(k

(1)
1 − k(N)

1 + iε)(k
(1)
1 − k(N)

2 + iε)

 (2.56)

with the Am(k(1), k(N)) satisfying the recursive relation:

Am+1(k(1), k(m+1)) = iAm(k(1), k(m+1))
(
k

(m+1) 2
1 + k

(m+1) 2)
2

)
+

[
i

(
k

(1) 2
1 + k

(1) 2
2 − c

k
(1)
1 − k(1)

2

)]m−1

+Am(k(1), k(1))
ic

k
(1)
1 − k(1)

2

(2.57)
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For the first three Am(k(1), k(m+1)) one gets:

A0(k(1), k) =0 (2.58)

A1(k(1), k) =1 (2.59)

A2(k(1), k) =i
(
k

(1) 2
1 + k

(1) 2
2 + k2

1 + k2
2

)
(2.60)

A3(k(1), k) =−
(
k

(1) 2
1 + k

(1) 2
2 + k2

1 + k2
2

) (
k2

1 + k2
2

)
−
(
k

(1) 2
1 + k

(1) 2
2

)2

− c2(
k

(1)
1 − k(1)

2

)2 (2.61)

Taking the limit N →∞ and δt→ 0 one gets with

(
N − 1

m

)
−−−−→
N→∞

Nm

(
1

m!
+
m2 − 3m

m!N
+O

(
1

N2

))
(2.62)

the time evolution operator to order t3:

U(k(N), k(1)) =

3∑
m=0

1

m!

[
−i

(
k

(1) 2
1 + k

(1) 2
2 − c

k
(1)
1 − k(1)

2

)
t

]m

× 1

2

∑
P

δ(k
(1)
1 − k(N)

P1 )δ(k
(1)
2 − k(N)

P2 )

+
c

2π

δ
(
k

(1)
1 + k

(1)
2 − k(N)

1 − k(N)
2

)
(k

(1)
1 − k(N)

1 + iε)(k
(1)
1 − k(N)

2 + iε)

3∑
m=0

(−t)m

m!
Am(k(1), k(N)) +O

(
t4
)

(2.63)

There is a problem however for 4 or more insertions of δt, as in the formula for U for e.g. m = 4

there is a divergent integral. To see this one can take U for m = 3 and add another insertion of δt.

One part of the integral reads:

c2

(2π)2

∫
d2k(3)

A3(k(1), k(3))δ
(
k

(1)
1 + k

(1)
2 − k(3)

1 − k(3)
2

)
(k

(1)
1 − k(3)

1 + iε)(k
(1)
1 − k(3)

2 + iε)

×
δ
(
k

(3)
1 + k

(3)
2 − k(4)

1 − k(4)
2

)
(k

(3)
1 − k(4)

1 + iε)(k
(3)
1 − k(4)

2 + iε)
(2.64)

which is divergent (compare A3 in the above table). Therefore one has to be more careful with

the expansion of the exponential in (2.52). This can also be seen as the energy of the continuous

Lieb-Liniger gas is not bounded and therefore an expansion of exp (−iEδt) is not valid.

Up to order t3 however it can be shown with the time-dependent Schrödinger equation that the

time evolution operator is correct. As an example the term of order t0 with c0 = 0 will be shown to
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satisfy the time dependent SE:

∂

∂t

∫
k(1)

∫
k(N)

U(k(N), k(1))
∣∣∣k(N)

1 k
(N)
2

〉
N 1

〈
k

(1)
1 k

(1)
2

∣∣∣ =

− iH(t)

∫
k(1)

∫
k(N)

U(k(N), k(1))
∣∣∣k(N)

1 k
(N)
2

〉
N 1

〈
k

(1)
1 k

(1)
2

∣∣∣ (2.65)

where here
∣∣∣k(N)

1 k
(N)
2

〉
N

is the eigenstate to H(t) at time t and
〈
k

(1)
1 k

(1)
2

∣∣∣
1

the adjoint eigenstate

to H(t) at time t = 0. With

|k1k2〉c =

∫
R2

d2x |x1x2〉 〈x1x2 | k1k2〉c

=

∫
D

d2x
√

2 〈x1x2 | k1k2〉c b
†(x1)b†(x2) |0〉

=

∫
D

d2x
1√
2

1

2π

1√
Gc(k)

∑
P

Ac(P )e−i(Pk,x)b†(x1)b†(x2) |0〉 (2.66)

and

H(t)
∣∣∣k(N)

1 k
(N)
2

〉
N

= k
(N) 2
1 + k

(N) 2
2 (2.67)

To order t0 one gets for the derivative on the time dependent parts of the evolution operator:

∂

∂t
U(k(1), k(N)) =− i

(
k

(1) 2
1 + k

(1) 2
2 +

c

k
(1)
1 − k(1)

2

)
1

2

∑
P

δ(k
(1)
1 − k(N)

P1 )δ(k
(1)
2 − k(N)

P2 )

− c

2π

δ(k
(1)
1 + k

(1)
2 − k(N)

1 − k(N)
2 )

(k
(1)
1 + k

(N)
1 + iε)(k

(1)
1 + k

(N)
2 + iε)

(2.68)

∂

∂t

∣∣∣k(N)
1 k

(N)
2

〉
N

=−
∫
D

d2x
1√
2

1

2π

∑
P

ic

k
(N)
P1 − k

(N)
P2

e−i(Pk
(N),x)b†(x1)b†(x2) |0〉 (2.69)
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With that the left side of (2.65) becomes

∂

∂t

∫
k(1)

∫
k(N)

U(k(N), k(1))
∣∣∣k(N)

1 k
(N)
2

〉
N 1

〈
k

(1)
1 k

(1)
2

∣∣∣ =∫
k(1)

∫
k(N)

{
1√
2

1

2π

∫
D

d2x
∑
P

e−i(Pk
N),x)b†(x1)b†(x2)

∣∣∣0〉 〈
k

(1)
1 k

(1)
1

∣∣∣
1

[
−i

(
k

(1) 2
1 + k

(1) 2
2 +

c

k
(1)
1 − k(1)

2

)
1

2

∑
P

δ(k
(1)
1 − k(N)

P1 )δ(k
(1)
2 − k(N)

P2 )− c

2π

δ(k
(1)
1 + k

(1)
2 − k(N)

1 − k(N)
2 )

(k
(1)
1 + k

(N)
1 + iε)(k

(1)
1 + k

(N)
2 + iε)

]

−
∫
D

d2x
1√
2

1

2π

∑
P

ic

k
(N)
P1 − k

(N)
P2

e−i(Pk
(N),x)b†(x1)b†(x2)

∣∣∣0〉 〈
k

(1)
1 k

(1)
1

∣∣∣
1

1

2

∑
P

δ(k
(1)
1 − k(N)

P1 )δ(k
(1)
2 − k(N)

P2 )

=− iH(t)

∫
k(1)

∫
k(N)

U(k(N), k(1))
∣∣∣k(N)

1 k
(N)
2

〉
N 1

〈
k

(1)
1 k

(1)
2

∣∣∣
+

∫
k(1)

∫
D

d2x
1√
2

1

2π

[
− ic

k
(1)
1 − k(1)

2

(
e
−i
(
k
(1)
1 x1+k

(1)
2 x2

)
+ e
−i
(
k
(1)
1 x2+k

(1)
2 x1

))
−

∫
k(N)

ic

k
(N)
1 − k(N)

2

(
e
−i
(
k
(N)
1 x1+k

(N)
2 x2

)
+ e
−i
(
k
(N)
1 x2+k

(N)
2 x1

))
1

2

∑
P

δ(k
(1)
1 − k(N)

P1 )δ(k
(1)
2 − k(N)

P2 )

]

b†(x1)b†(x2)
∣∣∣0〉 〈

k
(1)
1 k

(1)
1

∣∣∣
1

−
∫
k(1)

∫
D

d2x

∫
k(N)

1√
2

1

2π

(
e
−i
(
k
(N)
1 x1+k

(N)
2 x2

)
+

e
−i
(
k
(N)
1 x2+k

(N)
2 x1

))
b†(x1)b†(x2)

∣∣∣0〉 〈
k

(1)
1 k

(1)
1

∣∣∣
1

c

2π

δ(k
(1)
1 + k

(1)
2 − k(N)

1 − k(N)
2 )

(k
(1)
1 + k

(N)
1 + iε)(k

(1)
1 + k

(N)
2 + iε)

=− iH(t)

∫
k(1)

∫
k(N)

U(k(N), k(1))
∣∣∣k(N)

1 k
(N)
2

〉
N 1

〈
k

(1)
1 k

(1)
2

∣∣∣ (2.70)

Therefore satisfying the time dependent Schrödinger equation in order t0.

First order perturbation theory

As stated above however an expansion of the exponential in (2.52) is not valid for order t4 or higher.

Therefore the exponentials in (2.52) have to be kept, the products of the overlaps can be expanded

in δt again. Analogous to above one gets for U(k(1), k(N)):

U(k(1),k(N); t) =

∫
k(2)

. . .

∫
k(N−1)

N−1∏
n=1

[(
1− icδt

k
(n)
1 − k(n)

2

)
1

2

∑
P

δ
(
k

(n)
1 − k(n+1)

P1

)
δ
(
k

(n)
2 − k(n+1)

P2

)
−cδt

2π

δ(k
(n)
1 + k

(n)
2 − k(n+1)

1 − k(n+1)
2 )

(k
(n)
1 − k(n+1)

1 + iε)(k
(n)
1 − k(n+1)

2 + iε)

]
e
−i
(
k
(1) 2
1 +k

(1) 2
2 +···+k(N) 2

1 +k
(N) 2
2

)
δt

(2.71)

As every δt in the product of overlaps comes in a product with the slope of the interaction strength

c every insertion of a δt from the overlaps is equivalent to perturbation theory in c. Therefore one
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gets for order c0:

O(c0) : U(k(1), k(N)) = e
−i
(
k
(1) 2
1 +k

(1) 2
2

)
t 1

2

∑
P

δ
(
k

(1)
1 − k(N)

P1

)
δ
(
k

(1)
2 − k(N)

P2

)
(2.72)

For order c1 one has one insertion of the summands in the product proportional to c in (2.71). Those

insertions can be at the edge of the set of possible k(n) variables, that means they contain k(1) or

k(N)

δt1 δt0

k(n) k(n+1)k(1) k(N)

δt0 δt1

k(n) k(n+1)k(1) k(N)

or in the middle of this set, only containing k(2), . . . , k(N−1):

δt0 δt1

k(n) k(n+1)k(1) k(N)

As there are N − 3 possibilities for insertions in the middle, for N → ∞ the edge terms are

suppressed by 1
N . Therefore one gets:

U(k(1), k(N); t) =

N−2∑
n=2

∫
k(n)

∫
k(n+1)

1

2

∑
P

δ
(
k

(1)
1 − k(n)

P1

)
δ
(
k

(1)
2 − k(n)

P2

)
[
− icδt

k
(n)
1 − k(n)

2

1

2

∑
P

δ
(
k

(n)
1 − k(n+1)

P1

)
δ
(
k

(n)
2 − k(n+1)

P2

)
−cδt

2π

δ(k
(n)
1 + k

(n)
2 − k(n+1)

1 − k(n+1)
2 )

(k
(n)
1 − k(n+1)

1 + iε)(k
(n)
1 − k(n+1)

2 + iε)

]
1

2

∑
P

δ
(
k

(n+1)
1 − k(N)

P1

)
δ
(
k

(n+1)
2 − k(N)

P2

)
e
−in

(
k
(1) 2
1 +k

(1) 2
2

)
δt
e
−i(N−n)

(
k
(N) 2
1 +k

(N) 2
2

)
δt

=

N−2∑
n=2

∫
k(n)

∫
k(n+1)

[
− icδt

k
(n)
1 − k(n)

2

1

2

∑
P

δ
(
k

(1)
1 − k(N)

P1

)
δ
(
k

(1)
2 − k(N)

P2

)
−cδt

2π

δ(k
(1)
1 + k

(1)
2 − k(N)

1 − k(N)
2 )

(k
(1)
1 − k(N)

1 + iε)(k
(1)
1 − k(N)

2 + iε)

]
e
−in

(
k
(1) 2
1 +k

(1) 2
2

)
δt
e
−i(N−n)

(
k
(N) 2
1 +k

(N) 2
2

)
δt
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and therefore for order c1:

O(c1) : U(k(1), k(N); t) = − ict

k
(1)
1 − k(1)

2

e
−i
(
k
(1) 2
1 +k

(1) 2
2

)
t 1

2

∑
P

δ
(
k

(1)
1 − k(N)

P1

)

δ
(
k

(1)
2 − k(N)

P2

)
− ic

2π

e
−i
(
k
(1) 2
1 +k

(1) 2
2

)
t − e−i

(
k
(N) 2
1 +k

(N) 2
2

)
t

k
(1) 2
1 + k

(1) 2
2 − k(N) 2

1 − k(N) 2
2

δ
(
k

(1)
1 + k

(N)
2 − k(N)

1 − k(N)
2

)
(
k

(1)
1 − k(N)

1 + iε
)(

k
(1)
1 − k(N)

2 + iε
) (2.73)

where again the limit N →∞ and δt→ 0 was taken. The same result can be obtained by means of

time dependent perturbation theory in the parameter c:

Starting e.g. from the state |k1k2〉0 with c = 0 at t = 0 the time evolution operator is obtained

with first order perturbation theory to be:

U(t) = e−iH0t − e−iH0t

(
−i
∫ t

0

dt′ VI(t
′)

)
(2.74)

where H0 =
∫
R

dx ∂tb
†(x)∂tb(x) and VI(t) = eiH0t

∫
R

dx c · t b†(x)b†(x)b(x)b(x)e−iH0t. After in-

serting complete sets of states and Fourier transforming the operators as well as inserting e−εt for

convergence (adiabatic) one gets:

Û(t) =

∫
d2k

∫
d2q |q1q2〉N 〈k1k2|0 U(k, q) (2.75)

with U(k, q) to order c1 one gets after some calculation:

U(k, q) =e−i(k
2
1+k22)t 〈q1q2 | k1k2〉N 0 − 〈q1q2|N e−iH0tic

∫ t

0

dt′ t′eiH0t
′

∫
d4p

(2π)3
δ(p1 + p2 − p3 − p4)b†(p1)b†(p2)b(p3)b(p4)e−i(k

2
1+k22)t′e−εt

′
|k1k2〉0

=e−i(k
2
1+k22)t 〈q1q2 | k1k2〉N 0 −

∫
d2p δ(p1 + p2 − k1 − k2) 〈q1q2 | p1p2〉N 0

ic

2π[
t e−i(k

2
1+k22)t

−i(k2
1 + k2

2 − p2
1 − p2

2)− ε
− e−i(k

2
1+k22)t − e−i(p21+p22)t

(−i(k2
1 + k2

2 − p2
1 − p2

2)− ε)2

]

=

(
1− ict

k1 − k2

)
e−i(k

2
1+k22)t 1

2

∑
P

δ(k1 − qP1)δ(k2 − qP2)

− ic

2π

δ(q1 + q2 − k1 − k2)

(k1 − q1 + iε)(k1 − q2 + iε)

e−i(k
2
1+k22)t − e−i(q21+q22)t

k2
1 + k2

2 − q2
1 − q2

2

(2.76)

and therefore the same result.
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The further steps in this problem is trying to get a closed expression for large times and after

that generalisation to many particles. A further interesting problem would be to have the transition

from negative to positive interaction strength c(t) or the other way around to see if a phase transition

from states with bound states to no bound states can be seen.

2.2.2 Time-Periodic interaction strength

Being able to produce a generic time dependent interaction strength in experiments as mentioned

above, a further interest lies in changing the interaction strength periodically. With the overlaps

developed above starting from the general form of the time evolution operator (2.52) it is also possible

to not take an infinitessimal time slice δt but finite times tn for the interaction cn. Therefore a time

periodic interaction can be described with e.g. tn = tnmod 2 and γn = icn = icnmod 2 in

U(k(N), k(1)) =

∫
k(2)
· · ·
∫
k(N−1)

N−1∏
n=1


(

1 + γn

k
(n)
1 −k

(n)
2

)(
1− γn+1

k
(n)
1 −k

(n)
2

)
√
Gn,n(k)Gn+1,n+1(k)

× 1

2

∑
P

δ(k
(n)
1 − k(n+1)

P1 )δ(k
(n)
2 − k(n+1)

P2 )− i

2π
δ(k

(n)
1 + k

(n)
2 − k(n+1)

1 − k(n+1)
2 )

× γn − γn+1√
Gn,n(k(n))Gn+1,n+1(k(n+1))

1

(k
(n)
1 − k(n+1)

1 + iε)(k
(n)
1 − k(n+1)

2 + iε)

]

× e−i(k
(1) 2
1 +k

(1) 2
2 )t1 · · · e−i(k

(N) 2
1 +k

(N) 2
2 )tN (2.77)

which corresponds to a interaction as depicted in Figure 2.1.

t

c

c2

c1

Figure 2.1: time periodic interaction c over time t;

Here it would be interesting to study the behaviour at large times t which is equivalent to large

N . It would be worthwhile to see for example how the effective interaction strength compares to the
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mean interaction strength or if the result corresponds to an infinite temperature independently of

the initial state as described in [15]. However no method of approximation for large times or large

number of cycles in the periodic interaction could be found yet for this expression of U(k(N), k(1)).

Also integrating over k(2) to k(N) and trying to see a series behaviour in N seems to be very hard, as

the gaussian factors in the integral makes it more difficult to close the contour and already after the

first integration one has to deal with special functions like complementary error functions or Meijer

G functions.

Therefore it could be easier to take the Yudson representation and see if any approximations

can be done there. In the following the same conventions for the wave function as in [12] are taken.

That means the eigenstates of the Lieb-Liniger model are different from the eigenstates above by a

phase:

|λ〉 =

∫
x

∏
i<j

Zcij(xi, xj)
∏
j

eiλjxj b†(xj) |0〉 (2.78)

with

Zcij(xi, xj) =
λi − λj − icsgn (xi − xj)

λi − λj − ic
(2.79)

Again for c > 0 and two particles one can insert complete states of the form (2.31). Therefore the

time evolution operator can again be written as:

Û(t) =

∫
µ(1)

. . .

∫
µ(N)

(
µ

(N)
1 µ

(N)
2

∣∣∣ e−iH(cN−1)tN−1

∣∣∣µ(N−1)
1 µ

(N−1)
2

〉
N−1

. . .

(
µ

(2)
1 µ

(2)
2

∣∣∣ e−iH(c1)t1
∣∣∣µ(1)

1 µ
(1)
2

〉
1
e−iH(cN )t

∣∣∣µ(N)
1 µ

(N)
2

〉
N

(
µ

(1)
1 µ

(1)
2

∣∣∣
=

∫
µ(1)

∫
µ(N)

e−iH(cN )t
∣∣∣µ(N)

1 µ
(N)
2

〉
N

(
µ

(1)
1 µ

(1)
2

∣∣∣ UY (µ(1), µ(N)) (2.80)

Then using (2.78) and the Yudson state (2.32) one can either integrate out the spacial or the rapidity

dependence in the matrix elements. Integrating out the rapidities again leads to complementary error

functions right from the first integral. Integrating out the spatial dependency one gets for the matrix
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elements:

(µ1µ2|e−iH(c)t |λ1λ2〉c = e−i(λ
2
1+λ2

2)t

∫
x

[
e−i(λ1−µ1)x1+i(λ2−µ2)x2θ(x1 − x2)+

λ1 − λ2 + ic

λ1 − λ2 − ic
e−i(λ1−µ2)x1+i(λ2−µ1)x2θ(x2 − x1)

]
=e−i(λ

2
1+λ2

2)t2πi δ(λ1 + λ2 − µ1 − µ2)

[
1

λ1 − µ1 + iε
+

1

λ2 − µ1 + iε

λ1 − λ2 + ic

λ1 − λ2 − ic

]
(2.81)

Inserting into (2.80) and integrating out the δ-functions one arrives at the expression:

UY (µ(1), µ(N)) =

∫
dµ

(2)
1 . . .

∫
dµ

(N−1)
1 2πiN−1δ

(
µ

(N)
1 + µ

(N)
2 − µ(1)

1 − µ
(1)
2

)
exp

−iN−1∑
j=1

(
µ

(j)
1

)2

tj − i
N−1∑
j=1

(
µ

(j)
1 − µ

(N)
1 − µ(N)

2

)2

tj


N−1∏
i=1

[
1

µ
(i)
1 − µ

(i+1)
1 + iε

+
1

µ
(N)
1 + µ

(N)
2 − µ(i)

1 − µ
(i+1)
1 + iε

2µ
(i)
1 − µ

(N)
1 − µ(N)

2 + ici

2µ
(i)
1 − µ

(N)
1 − µ(N)

2 − ici

]
(2.82)

However this expression doesn’t seem to be easier for large t approximations. Evaluating one of the

integrals again leads to the special functions.

The goal for the periodic interaction is finding an approximation for large N . After that a

generalisation to many particles, periodicity between only negative or between positive and nega-

tive interaction strengths would be of interest. Having found an expression for that especially the

characteristic function G(u) and a survey of the fluctuation theorems in this problem would be of

interest (cf. [16])

2.3 Lieb-Liniger model with external homogenous field

2.3.1 Wave function in external homogenous field

Ultracold atomic experiments are usually conducted in the presence of the gravitational field of the

earth. An effort has to be made to cancel it out. However it is also interesting to include this field

e.g. in the Lieb-Liniger model as an external linear field. Another interesting application for this

model could be bosons interacting with an external homogenous electric field. The first quantized
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N-particle Hamiltonian for this model is

H = −
∑
i

∂2

∂x2
i

+ 2c
∑

1≤i<j≤N

δ(xi − xj) + α
∑
i

xi (2.83)

where c > 0 is again the interaction strength and α > 0 is the constant force potential. For one

particle the delta function is not present and the solution is the usual solution to a particle in a

constant force field, which is:

ψ1(x) = α−1/3Ai
(
α1/3x− α−2/3E

)
(2.84)

where E is the energy of the solutions and only the wave function decaying to 0 for |x| → ∞ was

taken.

The solution for two and three particles are constructed in [17] by separating into center of mass

and relative coordinates for two particles and for three particles separating into different zones,

effectively reducing it to two particle problems in those regions.

However a more elegant solution was found in [18] by means of the Gaudin operator introduced

in chapter 2.1.2. Utilizing again the bosonic symmetry of the wave function the problem can be

considered only in the domain D : x1 < · · · < xN . The Schrödinger equation in this domain is

Eψ = −
N∑
i=1

∂2ψ

∂x2
i

+ α
∑
i

xiψ (2.85)

with the boundary condition (cusp condition) analogous to chapter 2.1.2

[
1− 1

c

(
∂

∂xj+1
− ∂

∂xj

)]
xj+1=xj

ψ = 0 (2.86)

As in chapter 2.1.2 the solution of the Schrödinger equation with Hamilton operator (2.83) is then

given by

ψ = NcOcψF (2.87)

where N is the normalization. The Gaudin operator Oc

Oc =
∏

1≤i<j≤N

[
sgn (xj − xi) +

1

c

(
∂

∂xj
− ∂

∂xi

)]
(2.88)
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is acting on the antisymmetric wave function ψF , which is the solution to the Schrödinger equation

EψF = −
N∑
i=1

∂2ψF
∂x2

i

+ α

N∑
i=1

xiψF (2.89)

which can be written in the form of a Slater determinant

ψF = α−N/6
1√
N !

det
(

Ai
(
α1/3xj − α−2/3Ei

))
(2.90)

with E =
∑
iEi.

The wave function (2.87) can be shown to be the eigenfunction to (2.83) in the same way as

in chapter 2.1.2. The proof that it obeys the cusp condition is analogous to chapter 2.1.2, as the

operator Oc is equivalent and the wave function ψF is also antisymmetric. It furthermore has to be

shown that it commutes with the Hamilton operator in the domain D:

HD = −
N∑
i=1

∂2

∂x2
i

+ α

N∑
i=1

xi (2.91)

Having in mind that Oc is acting on an antisymmetric ψF the commutator of Oc with ∂2

∂x2
i

is easily

seen to be satisfied. The commutator [∑
i

xi, Oc

]
= 0 (2.92)

is shown in [18]. Therefore the wave function (2.87) satisfies in the same fashion as in chapter 2.1.2

the Schrödinger equation with Hamilton operator (2.83).

It should be mentioned here however that the eigenstates with total energy E are degenerate,

as only the total energy E is conserved, not however the singe particle energies Ei. Therefore it is

for example not easily possible to get the S-matrix and wave function by means of the usual Bethe

Ansatz technique.

2.3.2 Time periodic external homogenous field

Again following [18] the time dependent solutions of the Lieb-Liniger model in an external linear

potential can be constructed in the following way. Starting from the wave function at α = 0, which

is the time dependent solution of the Lieb-Liniger model

i
∂ψα=0

∂t
= −

∑
i

∂2ψα=0

∂x2
i

+ 2c
∑

1≤i<j≤N

δ(xi − xj)ψα=0 (2.93)



26

one can get the wave function for α 6= 0 by:

ψ(x1, . . . , xn; t) = e−iαt
∑N
i=1(xi+at

2/3)ψα=0(x1 + αt2, . . . , xN + αt2; t) (2.94)

This can be easily seen to be the right wave function by plugging it into the time dependent

Schrödinger equation

i
∂ψ

∂t
= −

∑
i

∂2ψ

∂x2
i

+ 2c
∑

1≤i<j≤N

δ(xi − xj)ψ + α
∑
i

xiψ (2.95)

At t = 0 the initial conditions coincide. The solution of the Schrödinger equation with α = 0 can

be calculated as in [12] and one gets:

ψα=0 =

∫
dNλ

(2π)N
G(λ1, . . . , λN )ei

∑N
i=1(λixi−λ2

i t) (2.96)

where G(λ1, . . . , λN ) can be found by comparing with the expression from [12]:

|ψα=0(t)〉 =e−iHt
∫
y

φ(y)
∏
i

b†(yi) |0〉

=N !

∫
y

θ(y)φ(y)

∫
λ

e−i
∑
j λ

2
j t
∏
j

e−iλjyj
∫
x

∏
i<j

Zxij(λi − λj)
∏
j

eiλjxj b†(xj) |0〉

=

∫
x

∫
λ

θ(y)φ(y)N !
∏
k

e−iλkyk
∏
i<j

Zxij(λi − λj)

 ei∑N
i=1(λixi−λ2

i t)
∏
j

b†(xj) (2.97)

with φ(y) being the initial condtions and θ(y) = θ(y1 < y2 < · · · < yN ). Therefore one gets:

G(λ1, . . . , λN ) = θ(y)φ(y)N !
∏
k

e−iλkyk
∏
i<j

Zxij(λi − λj) (2.98)

Because of (2.94) it is now sufficient for the time evolution with α 6= 0 to make the substitution

exp

(
i

N∑
i=1

(λixi − λ2
i t)

)
→ exp

−i N∑
j=1

(
(λj − αt)xj +

(λj − αt)3 − λ3
j

3α

) (2.99)

in (2.96) and therefore get for the time evolution with α 6= 0 of the state |x1, . . . , xN 〉:

e−Hαt |x1, . . . , xN 〉 =

∫
y

θ(x)

∫
λ

∏
k

e−iλkxk
∏
i<j

Zyij(λi − λj)

exp

−i N∑
j=1

(
(λj − αt)xj +

(λj − αt)3 − λ3
j

3α

)∏
j

b†(yj) |0〉 (2.100)

For a time periodic evolution one has to apply different time evolution operators exp (−iHα1t1)

and exp (−iHα2
t2) consecutively. For the following time evolution the current time evolution can
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be seen as initial conditions and therefore one gets for example for the second time evolution:

e−iHα2
t2e−iHα1

t1 |x1, . . . , xN 〉 =

∫
z

∫
µ

∫
y

θ(y)θ(x)
∏
k

e−i(λjxj+µjyj)Sy
∏
i<j

Zyij(λi − λj)Z
z
ij(µi − µj)

exp

−i N∑
j=1

(
(λj − α1t1)yj +

(λj − α1t1)3 − λ3
j

3α1

)
exp

−i N∑
j=1

(
(µj − α2t2)zj +

(µj − α2t2)3 − µ3
j

3α2

)∏
j

b†(zj) |0〉 (2.101)

with Sy being the symmetrizer in y1, . . . , yN . For two particles in particular this can be written

after integrating out the y dependence:

e−iHα2
t2e−iHα1

t1 |x1x2〉 =

∫
µ

∫
λ

∫
z

θ(x)
∏
k

e−iλkxkδ(µ1 + µ2 − λ1 − λ2 + 2α1t1) 2πi

(
1

λ1 − α1t1 − µ1 + iε
+

1

λ2 − α1t1 − µ1 + iε

λ1 − λ2 + ic

λ1 − λ2 − ic

)

exp

i∑
j

(λj − α1t1)3 − λ3
j

3α1

 exp

−i N∑
j=1

(
(µj − α2t2)zj +

(µj − α2t2)3 − µ3
j

3α2

)
Zz12(µ1 − µ2)

∏
k

b†(zk) |0〉 (2.102)

In the delta function the change of total momentum by the accerating constant field can be seen.

The goal for this model would also to get an approximation for large times for two and N particles

for arbitrary interaction strength c to see for example the amount of energy put into or taken out of

the system or to see the behaviour for large t, e.g. if the result corresponds to an infinite temperature

independently of the initial state as described in [15] for periodically driven systems.



28

Chapter 3

Gaudin-Yang Model

3.1 Solution of the Gaudin-Yang Model

When looking at the Lieb-Liniger model the goal was to find a totally symmetric wave function for

indistinguishable bosons with no further degree of freedom. This is however a huge restriction on

the generality, as there is a great interest in higher spin bosons and especially Fermi gases in one

dimension interacting via a two-body delta-function potential (cf. [1]). In order to describe that,

the Hamiltonian in first quantization is exactly the same as defined in Section 2.1.2 as there is no

spin interaction:

HN = −
∑
i

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj) (3.1)

with c > 0. The space of wave function however changed by introducing inner degrees of freedom.

The total wave function now can be either totally antisymmetric (fermionic) or totally symmetric

(bosonic). The orbital wave function however can have a generic symmetry and can be classified

according to a certain young tableau T depending on the other degrees of freedom. For example

in the case of the internal degrees being spin degrees of freedom, a bosonic wave function totally

symmetric in the N particle indices, with a certain total spin, can be written as a sum over products

of a spin function in representation R with a spatial wave function in the same representation R of

the symmetric group SN . A fermionic wave function totally antisymmetric in the N particle indices

can be written as a sum over products of a spin function in representation R with a orbital wave

function in the conjugate representation R̄ of SN (cf. [19]). For example for four particles and a
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specific young tableau:

⊗ = ⊕ . . . (3.2)

⊗ = ⊕ . . . (3.3)

For the case of spin being the internal degree of freedom this can also be seen by considering the

second quantized hamiltonian (cf. [20])

H =

∫
R

dx
∑
a

∂xb†a(x)∂xba(x) + c
∑
a,b

b†a(x)b†b(x)ba(x)bb(x)

 (3.4)

with the Ansatz for the wave function

|ψ({k})〉 =
1√
N !

∑
{a}

∫
RN

dNx Ψa1,...,aN ({k}|{x})b†a1(x1) . . . b†aN (xN ) |0〉 (3.5)

The wave function Ψ{a}({k}|{x}) can then again be seen as the sum of products of spin and orbital

wave functions or their conjugates over irreducible representations of SN as described above with

the Hamiltonian (3.1) acting on the orbital part of the wave function. Therefore it is sufficient to

find the orbital wave function which is either in the same or conjugate representation as the spin

wave function depending on if it is a boson or a fermion. The problem was solved for spin 1/2 by

Yang in 1967 ([4]) and for a general symmetry of the wave function by Sutherland ([6]) in 1968.

3.1.1 Conditions for Wave function

As the Hamiltonian is the same as in 2.1.2 the Schrödinger equation can again be reexpressed as as

the free wave equation in the sector DQ : xQ1 < · · · < xQN with continuity and jump-equation at

the boundaries of the domain DQ (cf.[10, 21]). Assuming the exchange of particles xQa and xQ(a+1)

one gets:

continuity condition:

ψ|xQ(a+1)−xQa=+0 ≡ ψ|xQ(a+1)−xQa=−0 (3.6)
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cusp condition:(
∂ψ

∂xQ(a+1)
− ∂ψ

∂xQa

)∣∣∣∣
xQ(a+1)−xQa=+0

−
(

∂ψ

∂xQ(a+1)
− ∂ψ

∂xQa

)∣∣∣∣
xQ(a+1)−xQa=−0

≡ 2c ψ|xQ(a+1)−xQa=±0 (3.7)

To find a wave function satisfying this, a Bethe Ansatz is made, assuming that in every sector DQ

the wave function is a superposition of plane wave solutions (cf. [10]):

ψ|{x}∈DQ =
∑
P∈SN

〈Q||P 〉ei(P̄ k,Q̄x) (3.8)

with (P̄ k, Q̄x) =
∑
j kPjxQj and P̄ = P−1.

The full wave function can then be written as:

ψ({x}) =
∑
Q∈SN

θ(xQ) ψ|{x}∈DQ (3.9)

where θ(xQ) indicates the ordering of the domain DQ : xQ1 < · · · < xQN .

Applying the conditions (3.6) and (3.7) to the wave function (3.8) in the domain DQ one gets:

continuity condition:

〈Q||P 〉+ 〈Q||P (a a+ 1)〉 = 〈Q(a a+ 1)||P 〉+ 〈Q(a a+ 1)||P (a a+ 1)〉 (3.10)

cusp condition:

i(kP (a+1) − kPa) (〈Q||P 〉 − 〈Q||P (a a+ 1)〉+ 〈Q(a a+ 1)||P 〉 − 〈Q(a a+ 1)||P (a a+ 1)〉)

= 2c(〈Q||P 〉+ 〈Q||P (a a+ 1)〉) (3.11)

where P (a a + 1) indicates that in the permutation P the ath and (a + 1)st element have been

transposed. From those two conditions, a relation for passing from sector Q to Q(a a + 1) can be

inferred (cf. [10]):

〈Q(a a+ 1)||P 〉 = xPa,P (a+1)〈Q||P 〉+ (1 + xPa,p(a+1))〈Q||P (a a+ 1)〉 (3.12)

with

xij =
ic

ki − kj
(3.13)
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which can directly be verified by plugging it into (3.10) and (3.11). As 〈Q||P 〉 has N !2 elements for

the different permutations there now exist (N−1)(N !)2 equations (3.12). It can be shown, that they

are mutually consistent (cf.[4, 10]) for unequal {k}. This can be done by proving that the coefficients

〈Q||P 〉 for every sector P can be uniquely constructed from the N ! coefficients in some chosen initial

sector by means of the relation (3.12). For a sketch of the proof define the ring element:

∣∣P̄〉 =
∑
Q∈SN

Q̄〈Q||P 〉 (3.14)

Relation (3.12) can be written in the so called Yang representation for SN (cf. [4, 10]) as:

|P (a a+ 1)〉 = Ya a+1

∣∣P̄〉 (3.15)

with the operator

Ya a+1 =
(a a+ 1)− xPa,P (a+1)

1 + xPa,P (a+1)
(3.16)

where (a a + 1) acting on the basis Q again stands for the transposition from the sector where

xQ1 < · · · < xQa < xQ(a+1) < . . . xQN to the sector xQ1 < · · · < xQ(a+1) < xQa < . . . xQN . Writing

the vector
∣∣P̄〉 in the form (cf. [4, 10])

∣∣P̄〉 ≡ |P1, P2, . . . , PN 〉 ≡ |ijk . . .〉 (3.17)

one gets the operator as used in [4]:

Y ij12 |ijk . . .〉 = |jik . . .〉 with Y ij12 =
(12)− xij

1 + xij
(3.18)

This operator Y ijaa+1 can now be used to construct every vector
∣∣P̄〉 starting from some arbitrary

initial vector
∣∣Ī〉. The coherence condition for that is that every path from one permutation to

another has to give the same result. It is sufficient to show that:

Y ij12Y
ij
12 =1 (3.19)

Y jk12 Y
ik
23 Y

ij
12 =Y ij23Y

ik
12 Y

jk
23 (3.20)

which can directly be verified [10]. It corresponds to the Permutation

(1 3) = (1 2)(2 3)(1 2) = (2 3)(1 2)(2 3) (3.21)
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of the elements ijk.

|ikj〉 |jki〉

|ijk〉 |jik〉

|kji〉|kij〉

Y jk23

Y ik12

Y ij23

Y ij12

Y ik23

Y jk12

Figure 3.1: Consistency condition on the Y -operators. [22]

Therefore the wave function is entirely determined from the N ! parameters in one initial sector

and there is one wave function for every young tableau.

Furthermore there are symmetry conditions on the wave function depending on the representation

the wave function is in. In the following the case spin 1/2 is going to be discussed. The higher spin

fermion and boson cases essentially boil down to constructing a suitable irreducible representation

of the symmetric group (cf. [6, 10]).

The symmetry condition for a system with N spin 1/2 fermions with total spin S = N
2 −M =

M̄ − N
2 is of interest here. As each fermion is antisymmetric in the two spin variables the symmetry

type of the spin wave function has to be [M̄,N − M̄ ]:

. . .

N − M̄

M̄

As the total wave function is antisymmetric the orbital wave function is in the conjugate repre-

sentation and therefore in the R̄ = [2M , 1N−2M ] representation.
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. . .

M = N − M̄

M̄

Therefore the wave function cannot be antisymmetrized in M̄ + 1 variables and it is separately

antisymmetric in M̄ and N − M̄ variables. Assuming all particles in the subset U of {1, . . . , N} of

order M̄ are downspin, this can be written in terms of the amplitude in (3.8) as (cf. [10]):

〈Q(i, j)||P 〉 = −〈Q||P 〉 ∀(i, j ∈ U) ∨ (i, j ∈ N \ U) (3.22)

This condition can be expressed in the ring defined in (3.14):

(i, j)
∣∣P̄〉 = −

∣∣P̄〉 (i, j ∈ U) ∨ (i, j ∈ N \ U) (3.23)

It simply states, that the element
∣∣P̄〉 belongs to the representation R̄. A representation of R̄ is

obtained by going to the conjugate basis

|P̃ 〉 =
∑
Q

sgn (Q) Q̄〈Q||P 〉 (3.24)

with the permutation operator

(ij) = −1

2
(1 + ~σi~σj) (3.25)

(cf. [10]) acting on the space V N with V = C2, where ~σi is the Pauli-matrices acting on the i-th

spinor.

3.1.2 Periodic boundary conditions

The next step to solve the model is to put the model in a finite volume and impose boundary con-

ditions. By doing so one introduces a volume cutoff and therefore regulates the infrared behaviour.
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Furthermore it is the most convenient way to get the full wave function and is needed if one wants

to study the thermodynamics of the model. In the following periodic boundary conditions of length

L will be imposed. This is equivalent to putting the system on a ring of length L. It will be seen,

that those boundary conditions are compatible with the Bethe-Ansatz type solution.

For the periodic system the domain DQ now has a new condition (cf. [10]):

DQ : xQ1 < xQ2 < · · · < xQN , xQN − xQ1 < L (3.26)

As the wave function should be periodic one gets the condition for the domain DQ (cf. [10])

ψ(xQ1, . . . , xQN ) ≡ ψ(xQ2, . . . , xQN , xQ1 + L) (3.27)

Introducing the Permutation C which is a cycle of length N , the right side of (3.27) is defined in

the domain QC. This again can be stated as conditions on the amplitude of (3.8) (cf. [10]):

〈Q||P 〉 = 〈QC||PC〉eikP1L (3.28)

This can be written in the defined ring as (cf. [10])

∣∣P̄〉 e−ikP1L = C
∣∣PC〉 = CYN−1N . . . Y23Y12

∣∣P̄〉 (3.29)

where the relation (3.15) was used. Due to the fact, that equation (3.29) holds for every P (cf. [21])

one can choose some initial permutation Ij and momentum kj and get the eigenvalue equation (cf.

[10, 21]):

Zj |Ij〉 ≡ Xj+1 jXj+2 j . . . Xj−1 j |Ij〉 = e−ikjL |Ij〉 (3.30)

where the operators Xij were obtained by applying the cycle C on the Y operators (cf. [10, 21]).

They are defined as (cf. [4, 10, 21]):

Xij = (ij)Y ijij =
1− (ij)xij

1 + xij
(3.31)

and as the Y operators satisfy conditions (3.19) and (3.20), which are now called Yang-Baxter

relations.
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It is important here to note that the Zj commute among themselves, which can be inferred from

the fact that the Xij satisfy the Yang-Baxter equation (cf. [10]). Therefore the eigenvectors in (3.30)

can be chosen independently of j (cf. [10]).

Therefore with (3.30) one has an eigenvalue equation for some chosen initial sector of the permu-

tation P . Consequently by solving this equation in the representation discussed in section 3.1.1 one

can get all the amplitudes 〈Q||P 〉 by applying the operators Y or X and imposing the symmetry

conditions. The problem now is to solve this eigenvalue equation in the chosen representation. This

will be done in the next section with the algebraic Bethe Ansatz technique or Quantum Inverse

Scattering developed by Baxter [23] for the eight-vertex lattice model and extended by Faddeev and

Takhtajan [24].

3.1.3 Algebraic Bethe Ansatz

In the represenation chosen in 3.1.1 one gets the operator Zj by choosing a basis (cf. [22]):

(Zj)
b1...bN
a1...aN = (Xjj−1 . . . Xj1XjN . . . Xjj+1)b1...bNa1...aN (3.32)

with the permutation operator (ij)abcd = − 1
2

(
δac δ

b
d + (~σi)

a
c (~σj)

b
d

)
. It will in the following be useful to

introduce the continous variable κ instead of ki − kj in Xij :

Xij(κ) =
κ− ic(ij)
κ+ ic

(3.33)

Futhermore introducing an auxiliary space VA (cf. [22]) the operator X can be defined acting on

the space Vi × VA (cf. [22]):

(XjA(κ))b,va,u =
κ 1b,va,u − ic (ij)b,va,u

κ+ ic
(3.34)

Inspired by the six-vertex model define futhermore the monodromy matrix T (κ) by (cf. [22]):

T (κ)b1...bN ,va1...aN ,u =
∑
{s}

(X1A(κ− k1))b1,s1a1,u (X2A(κ− k2))b2,s2a2,s1 . . . (XNA(κ− kN ))bN ,vaN ,sN−1
(3.35)

Introducing also the transfer matrix τ by taking the trace over the auxiliary variables τ(κ) =

trA (T (κ)) one gets back the Zj by Zj = τ(κ = kj) (cf. [22]).
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Observing now with the aid of the Yang-Baxter equation for X, wich is also satisfied for the

continous parameter with an appropiate shift (cf. [22])

Xkj(κ− λ)Xki(κ)Xij(λ) = Xij(λ)Xki(κ)Xkj(κ− λ) (3.36)

that by multiplying with (kj) and extending this relation into auxiliary space denoted by the indeces

a and b one gets the relation (cf. [25]):

Yab(κ− λ)Xai(κ)Xib(λ) = Xib(λ)Xai(κ)Yab(κ− λ) (3.37)

where Yab(κ−λ) acts totally on the auxiliary space. In the following this Y operator acting only on

the auxiliary space will be called R-matrix:

Ruvst (κ− λ) = (Yab)
uv
st (κ− λ) (3.38)

Therefore, with the fact, that the X operators with different indices commute this can be iterated

and one gets as the so called Yang-Baxter algebra for the monodromy matrix:

R(κ− λ)(T (κ)⊗ T (λ)) = (T (λ)⊗ T (κ))R(κ− λ) (3.39)

Remark

Multiplying with R−1(κ− λ) from the left and taking the trace in the auxiliary spin space one gets

a continous version of the commutation relation of the Zj :

[Z(κ), Z(λ)] = 0 (3.40)

Expanding the Z(κ) in the continous parameters gives an infinete set of charges commuting with

Z(κ) and therefore making the problem integrable.

The R-matrix and the operator XAj can be written as matrices in the auxiliary spin space (cf.
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[22, 25]):

R(κ) =



1 0 0 0

0 b(κ) a(κ) 0

0 a(κ) b(κ) 0

0 0 0 1


(3.41)

XAj(κ) =

(a(κ) + b(κ)/2) + b(κ)/2σzj b(κ)σ−j

b(κ)σ+
j (a(κ) + b(κ)/2)− b(κ)/2σzj

 (3.42)

with a(κ) = κ
κ+ic and b(x) = ic

κ+ic . The monodromy matrix T can also be written as a matrix in

the auxiliary space:

T (κ) =

A(κ) B(κ)

C(κ) D(κ)

 (3.43)

where the operators A,B,C,D act on the space V N and Z(κ) = A(κ) +D(κ). With the help of the

Yang-Baxter Algebra (3.39) one can infer commutation relations for the A,B,C,D (cf. [21, 22, 25]):

B(κ)B(λ) =B(λ)B(κ) (3.44)

A(κ)B(λ) =
1

a(λ− κ)
B(λ)A(κ)− b(λ− κ)

a(λ− κ)
B(κ)A(λ) (3.45)

D(κ)B(λ) =
1

a(κ− λ)
B(λ)D(κ)− b(κ− λ)

a(κ− λ)
B(κ)D(λ) (3.46)

Eigenstates of Z(κ) can now be constructed by starting of with the state |ω〉 = |↑ . . . ↑〉 =
(

1
0

)⊗N
and

applying products of the operator B(κ) on it, playing the role of creation operators of downspins

(cf. [22, 25]). For the state with M down spins, which is the desired eigenstate of Z(κ), one acts M

times with B (cf. [22]):

|I〉 = B(λ1) . . . B(λM ) |ω〉 =
∑

j1,...,jM

〈j1 . . . jM ||I〉 σ−j1 . . . σ
−
jM
|ω〉 (3.47)

where in 〈j1 . . . jM ||I〉 the positions of the down spins are specified. These amplitudes are the ones

needed to get every other amplitude by application of Y or by imposing the symmetry conditions.

It can be shown, that the state |ω〉 is an eigenstate to A(κ) and D(κ) with the eigenvalues 1

and d(κ) =
∏N
j=1

κ−kj
κ−kj+ic respectively (cf. [22, 25]) by applying the operators X in (3.42) according
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to (3.35) on this state. With this and the commutation relations of A,B and D one can apply the

operators A and D to the state |I〉 and one gets (cf. [22, 25]):

A(κ) |I〉 =

M∏
j=1

1

a(λj − κ)
|I〉+B(κ)

M∑
j=1

Fj(λ)

M∏
k=1
k 6=j

B(λk) |0〉 (3.48)

D(κ) |I〉 = d(κ)

M∏
j=1

1

a(κ− λj)
|I〉+B(κ)

M∑
j=1

F̃j(κ)

M∏
k=1
k 6=j

B(λk) |0〉 (3.49)

with the functions Fj and F̃j determined by the permutation relations of A and D with B (cf.

[22, 25]):

Fj(κ) = − b(λj − κ)

a(λj − κ)

M∏
k=1
k 6=j

1

a(λk − λj)
(3.50)

F̃j(κ) = −b(κ− λj)d(λj)

a(κ− λj)

M∏
k=1
k 6=j

1

a(λj − λk)
(3.51)

Therefore for |I〉 to be an eigenstate of Z(κ) = A(κ) + B(κ) a sufficient condition is, that Fj(κ) +

F̃j(κ) = 0 for all j = 1, . . . ,M . This is equivalent to (cf. [22]):

d(λj) =

N∏
l=1

λj − kl
λj − kl + ic

≡
M∏
k=1
k 6=j

λk − λj + ic

λk − λj − ic
(3.52)

With this condition imposed, the state |I〉 is an eigenstate of Z(κ) to the eigenvalue z(κ) (cf. [22]):

z(κ) =

M∏
j=1

1

a(λj − κ)
+ d(κ)

M∏
j=1

1

a(κ− λj)
(3.53)

Going back to the initial problem for the eigenvalues and eigenfunctions of Zj in (3.30) one gets by

inserting κ = kj and with the definition Λj = λj + ic
2 the final conditions on the parameters {Λ}

and {k} coming from the periodic boundary conditions (cf. [22]):

eikjL =

M∏
l=1

Λk − kj − ic/2
Λk − kj + ic/2

(3.54)

∏
j=1
j 6=l

Λj − Λl + ic

Λj − Λl − ic
=

N∏
i=1

Λl − ki − ic/2
Λl − ki + ic/2

(3.55)

Therefore the model is solved completely.



39

3.1.4 Remark: Wave function without periodic boundary conditions

The wave function constructed in 3.1.3 and 3.1.2 is also a valid wave function for the spin 1/2 case

without periodic boundary conditions for arbitrary nonequal k and Λ which one would get in the

L→∞ case. This can be seen as the wave function satisfies the Schrödinger equation and has the

wanted symmetry. Alternatively it can be constructed as a solution to the conditions on the wave

function derived in 3.1.1 as well as the symmetry of the wave function depending on the irreducible

representation (cf. [26]).

3.2 Gaudin-Yang with external homogenous field

Analogous to the Lieb-Liniger model with linear force potential a method to construct the wave

function of the non integrable model with the Hamiltonian:

H = −
∑
i

∂2

∂x2
i

+ 2c
∑

1≤i<j≤N

δ(xi − xj) + α
∑
i

xi (3.56)

could be by studying the Gaudin operator Oc. The operator again has to commute with the Hamil-

tonian. Furthermore, as the symmetry of the orbital wave function now can be determined by an

arbitrary Young tableau, or in the case of spin 1/2 by a Young tableau of the form [2M , 1N−2M ] as

for the Gaudin-Yang model without the external field, the operator has to construct the wanted

symmetry of the orbital wave function. Moreover the wave function constructed by application of

the Gaudin operator Oc has to obey the cusp condition from (3.7). This condition can be also

written as:

[(
∂

∂xQ(j+1)
− ∂

∂xQj

)
1

2
(1 + Pjj+1)− c

]
xQ(j+1)−xQj=+0

ψa1...aN (x1, . . . , xN ) = 0 (3.57)

where the operator Pij flips the coordinates on positions i and j. Alternatively this could be written

as

[(
∂

∂xQ(j+1)
− ∂

∂xQj

)
1

2

(
1 + ξP sQ(j+1)Qj

)
− c
]
xQ(j+1)−xQj=+0

ψa1...aN (x1, . . . , xN ) = 0 (3.58)
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where ξ = −1 for fermions and ξ = 1 for bosons and P sij exchanging ai and aj . The operator for the

totally symmetric wave function of the Lieb Liniger model can be written in the way:

Oc =
∏
i>j

[(
∂

∂xi
− ∂

∂xj

)
1

2
(1 + Pij) + c (sgn(xi − xj))

1
2 (1+Pij)

]
(3.59)

with Pij being in the totally symmetric representation [N ] of the symmetric group, therefore Pij = 1.

This operator acting on a totally antisymmetric wave function constructed by taking the slater

determinant of the single particle solutions gives the wave function of the interacting model, as seen

in chapter 2.1.2 and 2.3.1.

Furthermore when taking the Pij in the totally antisymmetric representation [1N ] with Pij = −1

the operator becomes

Oc = c
N(N−1)

2 (3.60)

and therefore the wave function totally antisymmetric in the coordinates {x} can also be obtained

by applying the operator Oc in the appropriate representation on the totally antisymmetric wave

function obtained by taking the slater determinant of the single particle wave functions.

The idea for an arbitrary symmetry of the spatial wave function would be now to take the Pij in

the appropriate representation or the operator P sij acting on the spin wave function in the conjugate

representation and again let the operator Oc act on the slater determinant of the single particle wave

functions. This however is not yet proven.
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