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ABSTRACT OF THE DISSERTATION

On Erdős-Ko-Rado for Random Hypergraphs

by Arran Hamm

Dissertation Director: Jeff Kahn

Denote by Hk(n, p) the random k-graph in which each k-subset of {1, . . . , n} is present

with probability p, independent of other choices. This dissertation addresses the ques-

tion: for which p0 will Hk(n, p) satisfy the “Erdős-Ko-Rado property” provided that

p > p0? This question was first studied by Balogh, Bohman, and Mubayi where they

dealt mainly with k < n
1
2
−γ (for some γ > 0). Our first main result gives the desired

p0 when k <
√
cn log(n) (for c < 1

4) and indeed contains the main results of Balogh et

al. concerning when Hk(n, p) satisfies EKR a.s. (that is, with probability tending to 1

as n→∞). Additionally, more or less answering a question of Balogh et al., we show:

there is a fixed ε > 0 such that if n = 2k+ 1 and p > 1− ε, then Hk(n, p) has the EKR

property a.s.
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Chapter 1

Introduction

One of the most interesting combinatorial trends of the last couple decades has been

the investigation of “sparse random” versions of some of the classical theorems of the

subject—that is, of the extent to which such results hold in a random setting. This

issue has been the subject some spectacular successes, particularly those related to the

theorems of Ramsey [23], Turán [29] and Szemerédi [28]; see [12, 2, 24, 19] for origins

and, e.g., [9, 27, 10] (or the survey [25]) for a few of the most recent developments.

In this thesis, we are interested in the analogous question for the Erdős-Ko-Rado

Theorem [8], another cornerstone of extremal combinatorics. This natural problem has

already been considered by Balogh, Bohman and Mubayi [4], and we first quickly recall

a few of the notions from that paper.

In what follows k and n are always positive integers with n > 2k. As usual we

write [n] for {1, . . . , n} and
(
V
k

)
for the collection of k-subsets of a set V . A k-graph

(or k-uniform hypergraph) on V is a multisubset, say H, of
(
V
k

)
. Members of V and H

are called vertices and edges respectively. We use Hx for the set of edges containing x

(∈ V ), called the star of x in H. For this thesis we take V = [n] and write K for
(
V
k

)
.

A collection of sets is intersecting, or a clique, if no two of its members are disjoint.

The Erdős-Ko-Rado Theorem says that for any n and k as above, the maximum size

of an intersecting k-graph on V is
(
n−1
k−1

)
and this bound is achieved only by the stars.

Following [4] we say H ⊆ K satisfies (strong) EKR if every largest clique of H is a

star; thus the Erdős-Ko-Rado Theorem says K satisfies EKR.

For the rest of this thesis we use H = Hk(n, p) for the random k-graph on V in

which members of K are present independently, each with probability p.

As suggested above, we are interested in understanding when EKR holds for H; a
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little more formally:

Question 1.0.1. For what p0 = p0(n, k) is it true that H satisfies EKR a.s. provided

p > p0?

(As usual, an event—really a sequence of events parameterized by n—holds almost

surely (a.s.) if its probability tends to 1 as n→∞.)

Notice that EKR is not an increasing property (that is, it is not invariant under

addition of edges) and that, for given n and k,

fn,k(p) := Pr(Hk(n, p) satisfies EKR)

is not increasing in p. For instance, for sufficiently tiny p (depending on n and k) it

will usually be the case that every clique is contained in a star. In view of this non-

monotonicity, it is natural to define a threshold for the property EKR to be the least

p0 = p0(n, k) satisfying

fn,k(p) ≥ 1/2 ∀p ≥ p0. (1.1)

(This follows the usage in [16] (e.g.), which takes the “threshold” for an increasing

property Q to be the unique p for which the “p-measure” of Q is 1/2.)

In general—though we will sometimes do better—we tend to regard determination

of this threshold to within a constant factor as a satisfactory answer to Question 1.0.1.

For the most part we will not review the contents of [4]. The focus there is mainly

on small k; roughly speaking, the authors give fairly complete results for k = o(n1/3)

and more limited information for k up to n1/2−ε with ε > 0 fixed (about which we will

say a little more in Chapter 3).

The nature of the problem changes around k = n1/2, since for k smaller than

this, two random k-sets are typically disjoint, while the opposite is true for larger k.

Heuristically we may say that the problem becomes more interesting/challenging as k

grows and the potential violations of EKR proliferate (though increasing k does narrow

the range of p for which we expect EKR to hold). At any rate, as noted in [4], very little

has been known up to now for k larger than
√
n (or, indeed, k > n1/2−ε). In this thesis

we more or less settle the problem for k in the “smaller” range and a little beyond, and

make some progress for k at the very top of its range.
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In Chapter 3 we will work, not directly with p, but with ϕ := p
(
n−1
k−1

)
, the expected

degree of a vertex (as in [4] where they used ρ); this seems more natural as we are

most interested in situations where p is tiny while the value of ϕ is more reasonable.

Throughout this thesis we take m = E|H| = ϕn/k, ∆ = ∆H (the maximum degree in

H) and

q = Pr(A ∩B 6= ∅), (1.2)

where A and B chosen uniformly and independently from K. The following is the main

result of Chapter 3.

Theorem 1.0.2. For any fixed c < 1/4, if

k <
√
cn log n (1.3)

and ϕ is such that (m
∆

)
q(∆

2) < o(1) a.s., (1.4)

then H satisfies EKR a.s.

(Recall
(
a
b

)
= (a)b/b! := a(a − 1) · · · (a − b + 1)/b! for a ∈ R and b ∈ N.) We will say

more about the meaning and necessity of (1.4) in Chapter 3.

It is not hard to read off threshold information from Theorem 1.0.2 (with “threshold”

as in (1.1), here translated to the corresponding ϕ0); for example, for k =
√
ζn �

√
n

(satisfying (1.3)), we have ϕ0 < (1 + o(1))eζ log n (and ϕ0 ∼ eζ log n according to the

result of Section 3.10). Other special cases include the main positive results on EKR

given in [4] (those in parts (i), (ii) and (iv) of their Theorem 1.1).

We believe Theorem 1.0.2 is true with “c < 1/4” replaced by “c < 1/2.” It is not

true for c > 1/2, roughly because: for k =
√
cn log n (with c > 1/2), (1.4) first occurs

at ϕ ≈ log n/ log(1/q) ∼ nc log n, where it will be the case that (typically) all degrees

are close to ϕ and for each vertex x the number of edges of H \ Hx meeting all edges

of Hx is about ϕ(n/k)qϕ ≈ nc+1/2−1 = nΩ(1), meaning stars are unlikely even to be

maximal cliques.

This is, of course, reminiscent of the Hilton-Milner Theorem [14], which says that

the largest nontrivial cliques in K are those of the form {A} ∪ {B ∈ Kx : B ∩ A 6= ∅}
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(with A ∈ K and x ∈ V \A). It seems not impossible that “generic” and “HM” cliques

are the main obstructions to EKR in general:

Question 1.0.3. Is it true that (for any k) if ϕ satisfies (1.4) and

a.s. every Fx is a maximal clique in F ,

then F satisfies EKR a.s.?

In Chapter 4 (using methods completely different from those used to prove The-

orem 1.0.2) we jump to the other end of the spectrum, taking k to be as large as

possible:

Theorem 1.0.4. There is a fixed ε > 0 such that if n = 2k + 1 and p > 1− ε, then H

satisfies EKR a.s.

This was prompted by Question 1.4 of [4], viz.

Question 1.0.5. Is it true that for k ∈ (n/2 −
√
n, n/2) and p = .99, EKR (or weak

EKR) holds a.s. for H?

Theorem 1.0.4 could presumably be extended to the full range of k covered by Ques-

tion 1.0.5, but this appears to be far short of the truth if n ≥ 2k + 2, so seems of less

interest; we will say more about this in Chapter 4.5.
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Chapter 2

Preliminaries

2.1 Usage

Throughout the thesis we take V = [n], K =
(
V
k

)
, and H = Hk(n, p) (as already noted)

and we let M =
(
n−1
k−1

)
(so ϕ = Mp) and m = |H| (a random variable with mean m).

We use v, w, x, y, z for members of V . For a hypergraph G, we let Gx = G \ Gx (recall

Gx = {A ∈ G : x ∈ A}).

We use dG(x) for the degree of x in G, and dG(x, y) for the codegree of x and y in

G, and, where not otherwise specified, take d to mean dH. (As already stated, we use

∆ for ∆H.)

We use B(m,α) for a random variable with the binomial distribution Bin(m,α), log

for ln and
(
a
≤b
)

for
∑

i≤b
(
a
i

)
. We use standard asymptotic notation (“big Oh” etc.),

but will also sometimes use a � b for a = Θ(b) and a � b for a = o(b). We assume

throughout that n is large enough to support our arguments. Following a standard

abuse we usually pretend large numbers are integers.

2.2 Negative Association and Large Deviations

Some parts of the analysis in Chapter 3 seem most conveniently handled using the theory

of negative association, regarding which we just recall what little we need, in particular

confining ourselves to {0, 1}-valued r.v.’s; see e.g. [22, 7] for further background.

Recall that events A,B in a probability space are negatively correlated (denoted

A ↓ B) if Pr(AB) ≤ Pr(A) Pr(B). Given a set S, set Ω = ΩS = {0, 1}S and recall that

A ⊆ Ω is increasing if x ≥ y ∈ A ⇒ x ∈ A (where “≥” is product order on Ω). Say

i ∈ S affects A ⊆ Ω if there are η ∈ A and ν ∈ Ω \ A with ηj = νj ∀j 6= i, and write
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A ⊥ B if no i ∈ S affects both A and B.

Now suppose (Xi : i ∈ S) is drawn from some probability distribution on Ω. The

Xi’s are said to be negatively associated (NA) if A ↓ B whenever A,B are increasing

and A ⊥ B. If Qi are events whose indicators are NA then we also say that the Qi’s

themselves are NA.

The following observation is surely not news, but as we don’t know a reference we

give the easy proof.

Proposition 2.2.1. Suppose that for some V1, . . . , Vs ⊆ V and `1, . . . , `s, A1, . . . , As

are chosen independently with Aj uniform from
(Vj
`j

)
. Then the r.v.’s Xvj = 1{v∈Aj}

(v ∈ V , j ∈ [s]) are negatively associated.

Proof. (Cf. [7, Prop. 12].) For each j the vector (Xvj : v ∈ V ) is chosen uniformly from

the strings of weight `j in {0, 1}Vj , implying that the r.v.’s Xvj (v ∈ V ) are NA. (This

is standard and easy, though we couldn’t find it in writing. A stronger and far more

interesting statement is the main result of [5].) We may thus apply [7, Proposition 8],

which says that if the collections {Xvj : v ∈ V } (j ∈ [s]) are mutually independent and

each is NA, then the entire collection {Xvj} is also NA.

We will use Proposition 2.2.1 in conjunction with the following trivial observations.

Proposition 2.2.2. If the r.v.’s X1, . . . , Xm are NA, I1, . . . , Ir are disjoint subsets of

[m], and Qj is an increasing event determined by {Xi : i ∈ Ij}, then Q1, . . . , Qr are

NA.

Proposition 2.2.3. If the events Qi are NA, then Pr(∩Qi) ≤
∏

Pr(Qi).

One virtue of negative association lies in the fact that “Chernoff-type” large devia-

tion bounds for random variables X =
∑
Xi, where X1, . . . are independent Bernoullis,

remain valid under the (weaker) assumption that the Xi’s are negatively associated. As

far as we know, this was first observed by Dubhashi and Ranjan [7, Proposition 7]; it is

gotten via the usual argument (Markov’s inequality applied to exp[tX]; see e.g. [15, pp.
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26-28]), with the identity EetX =
∏

EetXi replaced by the inequality EetX ≤
∏

EetXi .

In particular this gives the following bounds (see for example [15, Theorem 2.1 and

Corollary 2.4]).

Theorem 2.2.4. Suppose X1, . . . , Xm are either negatively associated or independent

Ber(p) r.v.’s, X =
∑
Xi, and µ = EX. Then for any λ ≥ 0,

Pr(X > µ+ λ) < exp[− λ2

2(µ+λ/3) ], (2.1)

Pr(X < µ− λ) < exp[−λ2

2µ ],

and for any K > 1,

Pr(X > Kµ) < [eK−1K−K ]µ. (2.2)

Corollary 2.2.5. The inequality (2.2) still holds if instead of EX = µ (in Theo-

rem 2.2.4) we assume only % := EX ≤ µ.

Proof. We have (using (2.2) for the inequality)

Pr(X > Kµ) = Pr(X > (Kµ/%)%)

< [eKµ/%−1(Kµ/%)−Kµ/%]% = eKµ−%K−Kµ(µ/%)−Kµ.

The last expression is equal to the bound in (2.2) when µ = % and is easily seen to be

decreasing in µ ≥ % (provided K ≥ 1).
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Chapter 3

Small k

3.1 Main Result

In this chapter we will prove Theorem 1.0.2, which, for ease of reading, we repeat here.

Theorem 3.1.1. For any fixed c < 1/4, if k <
√
cn log n and ϕ is such that

(m
∆

)
q

(
∆
2

)
< o(1) a.s.

, then H satisfies EKR a.s.

3.2 Remarks

1. When proving Theorem 1.0.2 we may assume m = ω(1); for if m = o(1) then (1.4)

fails (the l.h.s. is a.s. 1; actually in this case H is a.s. empty and does satisfy EKR),

while if m = Θ(1) then with probability Ω(1) we have ∆ = |H| = 1 and the expression

in (1.4) is m (so (1.4) does not hold).

2. The meaning of (1.4) is as follows. We think of q(
t
2) as the ideal value of the

probability that random (independent) k-sets A1, . . . , At form a clique (it would be the

true value if the events {Ai ∩ Aj 6= ∅} were independent). Thus, since |H| is usually

close to m, the left side of (1.4) may be thought of as the expected number of “generic”

∆-cliques in H, and we should perhaps not expect EKR to hold if this number is not

small.

At least for k as in (3.1), this intuition turns out to be correct in that, with a

minor caveat involving instances with ∆ = 2, (1.4) is necessary for the conclusion of

Theorem 1.0.2; the formal statement and a sketch of the (surprisingly nontrivial) proof

are given in Section 3.10.
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The rest of this chapter is organized as follows. The problem is most interesting

when

k > n1/2−o(1). (3.1)

The bulk of our discussion (Sections 3.3 and 3.5-3.8 will deal exclusively with this range,

while Section 3.9 handles smaller k).

In proving Theorem 1.0.2 for k as in (3.1) we will find it better to deal first with ϕ

not too far above the “threshold”—this regime will account for most of our work—and

then treat larger ϕ mostly by a reduction to what we’ve established for smaller. We thus

begin in Section 3.3 with an outline of the argument for small ϕ, in particular deriving

Theorem 1.0.2 in this range from three main assertions, Lemmas 3.3.1-3.3.3. These

are proved in Sections 3.5-3.7 following a bit of preparation in Section 3.4. Section 3.8

then gives the extension to large ϕ and, as noted above, Section 3.9 deals with small k.

Section 3.10 treats the aforementioned necessity of (1.4).

3.3 Main Points

For the rest of this chapter we fix c = 1/4− ε in Theorem 1.0.2. Also, as noted above,

the present section assumes k satisfies (3.1) (as well as (1.3)).

As noted earlier, most of our work will deal with ϕ fairly near the “threshold.”

Though the problem should become easier as ϕ grows, some parts of the main argument

below break down for larger ϕ; this could perhaps be remedied, but we have found it

easier to first deal directly with smaller ϕ and then use what we’ve learned to handle

larger values. (A disadvantage of this approach is that it necessarily gives much weaker

bounds on the probability that EKR fails than one might hope to establish using a more

direct argument.)

We thus begin in this section with an outline of where we are headed in the “small

ϕ” regime. As we will see, the “threshold” ϕ0 (:= Mp0) is around log n/ log(1/q). For

the remainder of the thesis we define

ϕ∗ =
log3 n

log(1/q)
. (3.2)

This will serve as a cutoff for “small”.
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We assume in this section (and again in parts of Section 3.4 and all of Sections 3.5-

3.7) that ϕ ≤ ϕ∗ (a restriction which could be relaxed considerably without invalidating

the present argument). Thus we want to show

for ϕ ≤ ϕ∗ satisfying (1.4), H satisfies EKR a.s. (3.3)

(It is true that in this regime the problem is most delicate when ϕ is more or less at

the “threshold”; in particular it is only here—see the proof of Lemma 3.3.3—that we

must make precise use of (1.4).)

We will make frequent reference to the function in (1.4), so, having specified ϕ (and

therefore m), give it a name:

Λ(t) = Λϕ(t) =

(
m

t

)
q(t2) (3.4)

(with the argument always assumed to lie in N).

Call a clique trivial if it is contained in a star. We will show below that there are

integers α = α(n, ϕ) ≤ β = β(n, ϕ) satisfying, inter alia,

∆ ∈ [α, β] a.s. (3.5)

and

Λ(α) = o(1). (3.6)

Thus Theorem 1.0.2 would follow if we could show that H a.s. does not contain a non-

trivial clique of size α, but this is not quite true; for example, if dx = ∆ is significantly

larger than α—say closer to β than α—then an A ∈ H\Hx typically misses fewer than

∆− α edges of Hx, in which case {A} ∪ {B ∈ Hx : B ∩A 6= ∅} is a nontrivial clique of

size greater than α.

A natural way to address this is to compare each clique possessing a sufficiently

high degree vertex, say x, directly with the star Hx. This idea is implemented in the

first of the following three lemmas; these lemmas will easily yield (3.3) and will also do

most of the work when we come to larger ϕ. (To be clear, the lemmas will depend on

further properties of α and β to be established below.)
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Set

γ = min{α,ϕ∗/3}, (3.7)

τ = (1− ε)γ (3.8)

and

λ = max

{ √
log n

log(1/q)
, 2

√
log n

log(1/q)

}
. (3.9)

(The actual values are not needed in this section. One should think of γ = α; the

technical ϕ∗/3 will be needed for the reduction in Section 3.8.)

Lemma 3.3.1. A.s. there do not exist (in H) a nontrivial clique C and vertex x such

that |C| ≥ d(x), dC(x) ≥ τ , and either |C| ≥ α or |Cx| ≥ 2/ε.

Lemma 3.3.2. A.s. H does not contain a nontrivial clique with two vertices of degree

at least λ.

Lemma 3.3.3. A.s. H does not contain a clique of size γ with at most one vertex of

degree greater than λ and all vertices of degree less than τ .

(For perspective we remark that Lemmas 3.3.1 and 3.3.3 are the main points; Lemma 3.3.2

just makes our lives a little easier when we come to Lemma 3.3.3.)

Lemmas 3.3.1-3.3.3 easily imply (3.3), as follows. Since Pr(∆ < α) = o(1) (see

(3.5)), it is enough to show that H a.s. does not contain a nontrivial clique C with

|C| ≥ ∆ ≥ α. But if ∆ ≥ α and H does contain such a C, then at least one of the

following occurs.

(a) There is an x with dC(x) ≥ τ (and |C| ≥ ∆ ≥ max{α, d(x)}), so x, C are as in

Lemma 3.3.1.

(b) There are two vertices with degree at least λ in C.

(c) There is at most one vertex x with dC(x) ≥ λ and none with dC(x) ≥ τ , so (since

α ≥ γ) C is as in Lemma 3.3.3.

But according to Lemmas 3.3.1-3.3.3, each of (a)-(c) occurs with probability o(1), so

we have (3.3).
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As the reader may have noticed, this derivation would remain valid if we dropped

the alternative “|Cx| ≥ 2/ε” in Lemma 3.3.1 and replaced γ by α in Lemma 3.3.3; the

stated versions of these lemmas will be needed for dealing with larger ϕ in Section 3.8.

3.4 Generics

This section establishes basic properties of some of the parameters we will be dealing

with, in particular showing that H a.s. satisfies a few general properties whose failure

can then be more or less ignored in what follows.

To begin, we should say something about the intersection probability q (defined in

(1.2)). We have q = 1− ϑ with

ϑ = (n−k)k
(n)k

∼ e−k2/n. (3.10)

(The “∼” is valid provided k = o(n2/3).) This gives the asymptotics of q for k = Ω(
√
n);

in particular for k �
√
n we have

log(1/q) ∼ e−k2/n. (3.11)

For k �
√
n we instead have

q ∼ k2/n (3.12)

(since, with Xv = 1{v∈A∩B},

k2/n =
∑

EXv ≥ q ≥
∑

EXv −
∑

EXvXw > k2/n−
(
n
2

)
(k/n)4).

Note that in any case we have

ϕ∗ < n1/4−ε+o(1). (3.13)

We will usually be dealing with situations in which q is slightly perturbed by infor-

mation on how relevant k-sets meet some small subset of V . This negligible effect is

handled by the next observation.
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Proposition 3.4.1. Fix W ⊆ V of size at most w = o(n/ log n) and B ∈
(
V
k

)
, and let

A be uniform from
(
V
k

)
. Then conditioned on any value of A ∩W ,

Pr(A ∩ (B \W ) 6= ∅) < (1 + 2k2w/(qn2))q.

Proof. The probability is largest when |W | = w and B ∩W = A ∩W = ∅, in which

case its value is q = 1− ς, with ς = (n−w−k)k
(n−w)k

. We have

ϑ

ς
=

(n− k)k(n− w)k
(n)k(n− w− k)k

=

k−1∏
i=0

(
1 +

kw

(n− i)(n− w− k − i)

)
= 1 + (1 + o(1))

k2w

n2
;

that is, ϑ/ς − 1 ∼ k2w/n2 (= o(1) because of the bound on w). Thus

q

q
− 1 =

ϑ− ς
1− ϑ

=
1

1− ϑ

(
ϑ

ς
− 1

)
ς

∼ k2wς

(1− ϑ)n2
∼ k2w

(1− ϑ)n2
e−k

2/n.

The lemma follows.

In all that follows we assume ϕ satisfies (1.4). At some (indicated) points in this

section, and again throughout Sections 3.5-3.7, we will also stipulate that ϕ ≤ ϕ∗. From

now until the “coda” at the end of this section we further assume that

ϕ > n−o(1). (3.14)

As we will see in the coda, this is implied by (1.4) if we assume (3.1). Recall (see

following the statement of Theorem 1.0.4) we also assume m = ω(1) and note that in

this section we do not assume (3.1).

Recall m = |H|. Let ψ = ψ(n) be some slowly growing function of n (say ψ = log n).

Theorem 2.2.4 (for independent Bernoullis) says that a.s.

m ∈ (m− ψ
√
m,m + ψ

√
m). (3.15)

From now on we write m0 for m + ψ
√
m.
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We next need to say something about the behavior of ϕ and ∆. Recall that our

default for degrees is H; thus, in addition to ∆ = ∆H, we take dx = d(x) = dH(x) and

d(x, y) = dH(x, y). The properties we need will be given in Proposition 3.4.2 once we

have introduced the parameters α and β mentioned earlier.

Let α1 and β be, respectively, the largest integer with Pr(dv ≥ α1) ≥ ψ/n and the

smallest integer with Pr(dv > β) < 1/(nψ).

Next, notice that Λ(0) = 1 and (since Λ(t)/Λ(t − 1) = ((m − t + 1)/t)qt−1 is

decreasing in t) there is some t0 such that Λ(t) is increasing up to t0 and decreasing

thereafter. Thus (1.4) says that there are ς = ς(n) and υ = υ(n), both o(1), such that

Pr(Λ(∆) > ς) < υ. Set α2 := min{t : Λ(t) ≤ ς} and α = max{α1, α2}.

The promised Proposition 3.4.2 now collects properties of these parameters that we

will use repeatedly in what follows, often without explicit mention.

Proposition 3.4.2. For α, β as above:

α ≤ β; (3.16)

Λ(α) = o(1); (3.17)

∆ ≤ β a.s.; if ϕ ≤ ϕ∗ then ∆ ≥ α a.s.; (3.18)

β/ϕ < no(1); (3.19)

α > (1− o(1)) log n/ log(1/q); (3.20)

if ϕ ≤ ϕ∗ then β < (1 + o(1))ϕ∗ (< n1/4−ε+o(1)). (3.21)

(It is not hard to see that in fact α ∼ β in all cases and β ∼ ϕ if and only if ϕ� log n.

What we actually use for the second part of (3.18) is α1k/n� 1.)

For the rest of this chapter we set P = {m satisfies (3.15)} ∧ {∆ ≤ β}, noting that

(3.18) and our earlier observation that (3.15) holds a.s. give

Pr(P) = 1− o(1). (3.22)

Proof of Proposition 3.4.2. The first assertion in (3.18) is immediate from the definition

of β. From the definition of α2 we have Λ(α2) = o(1) (namely Λ(α2) ≤ ς) and ∆ ≥ α2
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a.s. (since Pr(∆ < α2) = Pr(Λ(∆) > ς) < υ), implying α2 ≤ β. This gives (3.16) and

(3.17).

Let β∗ = dϕ+ηe, with η the positive root of x =
√

2(ϕ+ x/3)(log n+ logψ). Then

Theorem 2.2.4 gives (for any v)

Pr(dv > β∗) < exp[−η2/(2(ϕ+ η/3))] = (nψ)−1, (3.23)

whence β ≤ β∗. (The bound is very crude for smaller values of ϕ, but we have lots

of room in such cases.) In particular, since η = O(max{
√
ϕ log n, log n}), (3.14) now

implies both (3.19) and (3.21) (and β ∼ ϕ if ϕ� log n, but we don’t need this).

For (3.20) we have

Λ(α2) > exp[α2(log(m/α2)− α2−1
2 log(1/q))]

> exp
[
α2
2 ((1− o(1)) log n− α2 log(1/q))

]
(since log(m/α2) > (1/2 − o(1)) log n, as follows from m = ϕn/k, α2 ≤ β and (3.19)),

and combining this with (3.17) gives α2 > (1− o(1)) log n/ log(1/q).

Finally, the second assertion in (3.18) is given by the following more general state-

ment, which we will need again in Section 3.9. Here we assume nothing about n, k, ϕ

(= Mp) and θ ∈ N beyond the very minor p = o(1) and θ = o(M).

Proposition 3.4.3. If Pr(dv ≥ θ) = ω(1/n) and θk/n = o(1) then ∆ ≥ θ a.s.

(For (3.18)—note we already know ∆ ≥ α2 a.s.—the hypothesis α1k/n = o(1) follows

from ϕk/n < n−1/4 and α1/ϕ ≤ β/ϕ < no(1); see (3.13) and (3.19). For k < n1/2−Ω(1)

and a fixed θ, Proposition 3.4.3 is [4, Lemma 3.6].)

Proof of Proposition 3.4.3. Let Xv = 1{dv≥θ} and X =
∑
Xv. We are assuming

EX = ω(1), so to finish via the second moment method just need

EXvXw ∼ E2Xv (3.24)

(for v 6= w). Letting Z = d(v, w) we have

EXvXw <
∑

l≥0 Pr(Z = l) Pr2(dv ≥ θ − l). (3.25)
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(For equality we would replace dv by d(v, w) := |Hv \ Hw|.)

Now, Z is binomial with EZ < ϕk/n, so

Pr(Z = l) (≤ Pr(Z ≥ l)) < (ϕk/n)l. (3.26)

On the other hand, since dv ∼ B(M,p), we have, for each t ≤ θ,

Pr(dv = t− 1)

Pr(dv = t)
=

t(1− p)
(M − t+ 1)p

∼ t/ϕ, (3.27)

implying Pr(dv ≥ t − 1) < (1 + θ/ϕ) Pr(dv ≥ t). Thus (since θk/n = o(1)) the sum in

(3.25) is asymptotic to its zeroth term, and we have (3.24).

(We pickily add—to make sure that ϕk/n = o(1)—that we may assume θ ≥ ϕ:

there is nothing to prove if θ = 0, and ∆ ≥ ϕ is easy if ϕ ≥ 1 (and k = o(1), which

follows from θ > 0 and θk/n = o(1)).)

We will also eventually (in Section 3.7) need the easy

(
m0

α

)
∼
(m
α

)
(3.28)

(The ratio of the left- and right-hand sides is

(m0)α
(m)α

< (m0−α+1
m−α+1 )α < exp[O(ψα/

√
m)]

and ψα/
√
m ≤ ψβ/

√
m < n−ε+o(1) (using m = ϕn/k, (3.14) and (3.21)).)

For x ∈ V , let Wx = {y : d(x, y) ≥ 2} (a random set determined by Hx). Let R be

the intersection of P and the events {∆ ≥ α},

{d(x, y) ≤ 8 ∀x, y}, (3.29)

and

{|Wx| < max{ϕ2k2/n, 6 log n} ∀x}. (3.30)

Though defined here in general, R is only of interest when ϕ is small:

Proposition 3.4.4. If ϕ ≤ ϕ∗, then Pr(R) = 1− o(1).
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Proof. We have already seen (in (3.22) and (3.18)) that P and {∆ ≥ α} hold a.s. That

(3.29) does as well follows (via the union bound) from the fact, already noted in (3.26),

that Pr(d(x, y) ≥ l)� n−l/4. To deal with (3.30), it is enough to show

Claim. If m satisfies (3.15) and A1, . . . , Am are chosen independently (and uniformly)

from K, then (3.30) holds a.s.

(Since (3.15) holds a.s. it is enough to show that (3.30) holds a.s. given any m (= |H|)

satisfying (3.15) (equivalently, given m = m0); but for such an m, (i) A1, . . . , Am as in

the claim are a.s. distinct and (ii) conditioned on this, the law of {A1, . . . , Am} is the

same as that of H given |H| = m.)

Proof of Claim. For a given x we have, for each y 6= x, Pr(y ∈ Wx) <
(
m
2

)
(k/n)4 <

(1/2 + o(1))(ϕk/n)2 (using m ∼ m = ϕn/k), implying E|Wx| < (1 + o(1))ϕ2k2/(2n).

On the other hand, the events {y ∈ Wx} are NA (by Propositions 2.2.1 and 2.2.2),

and a little calculation, with Corollary 2.2.5, bounds the probability that a particular

x violates (3.30) by o(1/n). (In more detail: if µ := ϕ2k2/(2n) ≥ 3 log n, then (2.1)

bounds the probability by exp[−(9/8) log n]; otherwise K := 6 log n/µ > 2, and (2.2)

bounds the probability by (eK−1K−K)µ = (e1−1/KK−1)Kµ ≤ (
√
e/2)6 logn = o(1/n).)

Coda. Finally, we say why the combination of (1.4) and (3.1) implies (3.14). Suppose

instead that the first two conditions hold but ϕ < n−Ω(1). Then ∆ < O(1) a.s. But

if ∆ = O(1), then q > n−o(1) (see (3.12)) implies Λ(∆) = Ω(m∆)n−o(1), so that (1.4)

implies m < no(1) (note ∆ ≥ 1 a.s. since we assume m = ω(1)). But then (since

m = ϕn/k and we assume (3.1)) ϕ < n−1/2+o(1), implying that in fact ∆ ≤ 2 a.s.

Now suppose Λ(2) = o(1). Then k �
√
n (otherwise q = Ω(1) and m = o(1),

contrary to assumption), and Λ(2) � (ϕn/k)2(k2/n) = ϕ2n, implying ϕ � n−1/2 and

∆ = 1 a.s. But Λ(1) = m, so we contradict (1.4) .
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3.5 Proof of Lemma 3.3.1

Here and in the next section we take

w = max{ϕ2k2/n, 6 log n} (3.31)

and

q = (1 + 2k2w/(qn2))q; (3.32)

thus w is the bound on the |Wx|’s in (3.30) (we will use it to bound a related quantity

in Section 3.7) and q is the probability bound in Proposition 3.4.1. We will need to

say that q is close to q; here and in Section 3.6 we could get by with, for example,

log(1/q) ∼ log(1/q), but for the more delicate situation in Section 3.6 will need

q(
α
2) ∼ q(α2) (3.33)

(that is, k2wα2/(qn2) = o(1); in fact, k2wα2/(qn2) < n−4ε+o(1) since α < n1/4−ε+o(1)

(see (3.21)), w < n1/2−2ε+o(1) (see (3.13)) and k2/(qn) < 1 + o(1).)

We will use (a) of the following observation in the present section and the variant

(b) in Section 3.6.

Proposition 3.5.1. (a) Suppose A = {A1, . . . , Ad} ⊆ Kx satisfies

dA(z) ≤ 8 ∀z ∈ V \ {x} and |{z ∈ V \ {x} : dA(z) ≥ 2}| < w. (3.34)

Then for B uniform from Kx,

Pr(B ∩Ai 6= ∅ ∀i ∈ [d]) < (1 + o(1))qd.

(b) The same conclusion holds if A ⊆ {A ∈ Kx : y 6∈ A} satisfies (3.34) and B is

uniform from {A ∈ Ky : x 6∈ A}.

(Of course the “8” in (3.34) is just the value we happen to have below.)

Proof. The proofs of (a) and (b) are essentially identical and we just give the former. Set

W = {z ∈ V \ {x} : dA(z) ≥ 2}. Since the events {z ∈ B} (z ∈ V \ {x}) are negatively

associated (see Proposition 2.2.1), Proposition 2.2.3 and the second condition in (3.34)

give

Pr(|B ∩W | = s) ≤
(w
s

)
(k/n)s < (wk/n)s < n−(2ε−o(1))s. (3.35)
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On the other hand we assert that, with Q = {B ∩Ai 6= ∅ ∀i ∈ [d]}, we have

Pr(Q||B ∩W | = s) < qd−8s. (3.36)

To see this, condition on the value, Z, of B ∩W (with |Z| = s), and let

I = {i ∈ [d] : B ∩Ai ∩W = ∅}.

Then |I| ≥ d − 8s (by the first condition in (3.34)) and B must meet the members

of {Ai : i ∈ I} in V \ W , where they are pairwise disjoint. By Proposition 3.4.1,

Pr(B ∩ (Ai \W ) 6= ∅|B ∩W = Z) < q for each i. But, given RZ := {B ∩W = Z},

B \Z is a uniformly chosen (k− s)-subset of V \W , so by Propositions 2.2.1 and 2.2.2

the events Qi = {B∩ (Ai \W ) 6= ∅} are conditionally NA given RZ (with Q = ∩i∈IQi);

thus Proposition 2.2.3 gives

Pr(Q|RZ) < q|I| ≤ qd−8s,

which implies (3.36).

Finally, combining (3.35) and (3.36), we have

Pr(Q) =
∑
s≥0

Pr(|B ∩W | = s) Pr(Q||B ∩W | = s)

<
∑
s≥0

n−(2ε−o(1))sqd−8s

= qd
∑
s≥0

(n−(2ε−o(1))q−8)s ∼ qd

Corollary 3.5.2. Suppose either A is as in (a) of Proposition 3.5.1 and B is chosen

uniformly from the b-subsets of Kx, or A is as in (b) of the proposition and B is chosen

uniformly from the b-subsets of {A ∈ K : y ∈ A, x 6∈ A}. Then

Pr(B ∩Ai 6= ∅ ∀B ∈ B, i ∈ [d]) < (1 + o(1))bqdb.

Terminology. Recall that A, B (two families of sets) are cross-intersecting if A ∩ B 6=

∅ ∀A ∈ A, B ∈ B.
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Proof. Again we just discuss the first case. We may take B = {B1, . . . , Bb} with Bi

uniform from Kx \ {B1, . . . , Bi−1}. Then, with Qi = {Bi ∩Aj 6= ∅ ∀j ∈ [d]}, we have

Pr(∩Qi) ≤
∏

Pr(Qi) < (1 + o(1))bqdb,

with the second inequality given by Proposition 3.5.1. (The first is obvious: since the

Bi’s are drawn without replacement, the probability that all are drawn from those mem-

bers of Kx that meet all Aj ’s is less than it would be if they were drawn independently.)

Let Q(x, r) be the event that there is some C as in Lemma 3.3.1, with |Cx| (=

|C|−dC(x)) = r, and let Q(x) = ∪r≥1Q(x, r). By Proposition 3.4.4 it is enough to show

that (for any x)

Pr(Q(x) ∧R) = o(1/n). (3.37)

(Recall R was defined in the paragraph containing (3.29) and (3.30).) Let

Rx = {m ≤ m0; d(x) ≤ β; d(x, z) ≤ 8 ∀z ∈ V \ {x}; |Wx| ≤ w}.

Then Rx ⊇ R, so for (3.37) it will be enough to bound

Pr(Q(x) ∧Rx) ≤
∑
r≥1

Pr(Q(x, r) ∧Rx).

Set

S(x, r) =

 {d(x) ≥ τ} if r ≥ 2/ε,

{d(x) ≥ α− r} if r < 2/ε,

and notice that S(x, r) ⊇ Q(x, r). (For r ≥ 2/ε this is contained in the definition of

Q(x, r) (which promises dC(x) ≥ τ), and for smaller r it is given by d(x) ≥ dC(x) =

|C| − r ≥ α− r.) Thus we have

Pr(Q(x, r) ∧Rx) = Pr(Q(x, r) ∧ S(x, r) ∧Rx)

≤ Pr(S(x, r)) Pr(Q(x, r)|Rx ∧ S(x, r)). (3.38)

For all but quite small r, a bound on the second factor in (3.38) will suffice for

our purposes. To bound this factor, we condition on values Hx = {A1, . . . , Ad} and
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|Hx| = t satisfying S(x, r)∧Rx (in particular d ≤ β and t ≤ m0); thus Hx is a uniform

t-subset, say {B1, . . . , Bt}, of Kx. If Q(x, r) holds under this conditioning, then there

are I ⊆ [d] of size at least τ and J ⊆ [t] of size r such that the families {Ai : i ∈ I} and

{Bj : j ∈ J} are cross-intersecting (namely, each of the r members of Cx meets each of

the dC(x) ≥ τ members of Cx).

The probability that this happens for a fixed I and J as above (note the remaining

randomization is in the choice of Bj ’s) is, by Corollary 3.5.2, less than (1 + o(1))rqτr,

and it follows that the probability of Q(x, r) under the present conditioning—so also

under conditioning on S(x, r) ∧Rx—is less than

(
d
≤r
)(
m0

r

)
(1 + o(1))rqτr <

[
(1 + o(1))βm0n

−(1−ε)
]r

< n−(ε−o(1))r. (3.39)

Here the first factor on the left bounds the number of possibilities for the d−dC(x) ≤ r

members of [d] \ I; the first inequality uses d ≤ β; and the second uses βm0 < (1 +

o(1))(ϕ∗)2n/k < n1−2ε+o(1) (see (3.13)).

Thus, as suggested above, the second factor on the r.h.s. of (3.38) is enough for us

unless r is very small; namely,∑
r>2/ε

Pr(Q(x, r)|Rx ∧ S(x, r)) = o(1/n). (3.40)

For smaller r we must use the factor Pr(S(x, r)) from (3.38) (together with (3.39)).

Here (3.27) gives Pr(dv = t)/Pr(dv = t + 1) < no(1) for t ∈ [α − r, α], which, since

r < O(1), implies

Pr(S(x, r)) < no(1) Pr(dx ≥ α+ 1) < n−1+o(1).

Finally, recalling (3.39), we find that (for r ≤ 2/ε) the r.h.s. of (3.38) is less than

n−1+o(1)n−(ε−o(1))r = n−(1+rε−o(1)), yielding

b2/εc∑
r=1

Pr(Q(x, r) ∧Rx) <
∑
r≥1

n−(1+rε−o(1)) = o(1/n),

and combining this with (3.40) gives (3.37).
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3.6 Proof of Lemma 3.3.2

We prove Lemma 3.3.2 in the following equivalent form.

Lemma 3.6.1. A.s. there do not exist x, y ∈ V and F ⊆ Hx, G ⊆ Hy with |F| = |G| =

λ and F , G cross-intersecting.

Proof. Let Q(x, y) be the event described in Lemma 3.6.1 and Q = ∪Q(x, y). We want

Pr(Q) = o(1), for which it is enough to show that (for any x, y)

Pr(Q(x, y) ∧R) < o(n−2). (3.41)

For the proof of (3.41) we condition on values of: m satisfying (3.15) (so may think

of H as {Ai : i ∈ [m]});

Ix := {i ∈ [m] : x ∈ Ai}, Iy := {i ∈ [m] : y ∈ Ai}

with |Ix|, |Iy| ≤ β and |Ix ∩ Iy| ≤ 8 (see (3.29)); and a value of (Ai : i ∈ Ix) for which

|{z ∈ V \ {x} : |{i : v ∈ Ai}| ≥ 2}| < w (see (3.30)). If Q(x, y) holds (under this

conditioning), then there are Jx ⊆ Ix \ Iy and Jy ⊆ Iy \ Ix, each of size λ− 8, with the

families {Ai : i ∈ Jx} and {Aj : j ∈ Jy} cross-intersecting.

The probability that this happens for a given Jx, (Ai : i ∈ Jx) and Jy is, by

Corollary 3.5.2, at most [(1 + o(1))qλ−8]λ−8 = q(1−o(1))λ2
, whence

Pr(Q(x, y) ∧R) <
(
β
λ

)2
q(1−o(1))λ2

< exp[λ(2 log(eβ/λ)− (1− o(1))λ log(1/q))]

< exp[(1− o(1))λ2 log(1/q)] < o(n−3), (3.42)

where the third inequality uses β < (1 + o(1))ϕ∗ and λ ≥
√

log n/ log(1/q) to say

log(eβ/λ) = O(log log n) and the last uses λ ≥ 2
√

log n/ log(1/q).

3.7 Proof of Lemma 3.3.3

Of our main points, Lemma 3.3.3 is the only one requiring the full power of the as-

sumption (1.4), as well as the one requiring the most work: there are several ways to
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handle it, but we (so far) don’t see anything very compact.

We again (as in the proof of Proposition 3.4.4) condition on a value of m satisfying

(3.15) (so H is chosen uniformly from the m-subsets of K), and then, rather than

dealing directly with H, find it easier to work with sets chosen independently from K,

which makes essentially no difference since m is so small compared to |K|. Precisely,

if m satisfies (3.15), B1, . . . , Bm is a uniform m-subset of K, A1, . . . , Am are chosen

uniformly and independently from K, and we set D = {A1, . . . , Am are distinct}, then

for any event B we have

Pr(A1, . . . , Am |= B) ≥ Pr(D) Pr(A1, . . . , Am |= B|D)

= Pr(D) Pr(B1, . . . , Bm |= B),

whence

Pr(B1, . . . , Bm |= B) ≤ Pr(A1, . . . , Am |= B)/Pr(D)

≤ [1−m2/
(
n
k

)
]−1 Pr(A1, . . . , Am |= B)

= (1 + o(1)) Pr(A1, . . . , Am |= B).

It is thus enough to prove the following statement.

Lemma 3.7.1. Suppose A1, . . . , Aγ are drawn uniformly and independently from K,

and let Q be the event that {A1, . . . , Aγ} is a clique with at most one vertex of degree

greater than λ and none of degree at least τ . Then

Pr(Q) = o
((

m
γ

)−1
)
.

Given A = (A1, . . . , Aγ) ∈ Kγ we define several related quantities. Write di(v) for

the degree of v in the multiset {A1, . . . , Ai} and set dv = dγ(v). (We no longer default

to dv = dH(v), since H plays no further role in this section.) Note that we regard A as

given and sometimes (not always) suppress it in our notation; for example di(v) could

also be written (say) dA,i(v).

We will need to distinguish two possibilities, depending on whether there is or

is not an x with dA(x) > λ. We treat these in parallel, the analysis in the second
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case eventually being more or less contained in that for the first. To this end we let

V ′ = V \ {x} if we have specified such a high-degree x and V ′ = V otherwise.

Set Wi = {v ∈ V ′ : di(v) = 2}, Zi = {v ∈ V ′ : di(v) ≥ 3}, Ui = Wi ∪ Zi, W = Wγ ,

Z = Zγ and U = Uγ (= W ∪Z). In addition—now, for reasons which will appear below

(see (3.49)-(3.52)), retaining A in the notation—set

si(A) = |Ai ∩Wi−1|, ri(A) = |Ai ∩ Zi−1| for i ∈ [γ]

(with W0 = Z0 = ∅), σ(A) = (s1(A), . . . , sγ(A)), ρ(A) = (r1(A), . . . , rγ(A)), s(A) =∑
si(A) and r(A) =

∑
ri(A). Notice that

s(A) = |Z| and r(A) =
∑
v∈Z

(dv − 3). (3.43)

Finally, set

Ψ =
∑
v∈Z

[(
dv
2

)
− 1
]

(3.44)

and notice that

Ψ = 2|Z|+
∑
v∈Z

[(
dv
2

)
− 3
]

= 2|Z|+ 1
2

∑
v∈Z

(dv − 3)(dv + 2).

We will only use this when dv ≤ λ for all v ∈ V ′, in which case, in view of (3.43), we

have

Ψ ≤ 2s(A) + (λ+ 2)r(A)/2. (3.45)

From this point we take A = (A1, . . . , Aγ) with the Ai’s as in Lemma 3.7.1 (so

chosen uniformly and independently from K); thus the quantities defined above (di(v)

through Ψ) become random variables determined by A.

Proposition 3.7.2. With probability 1− o
((

m
γ

)−1
)

,

(a) |U | < max{ϕ2k2/n, log6 n} =: w and

(b) |Z| < γ/ε =: z.

Proof. Notice first that

(
m
γ

)
< exp[γ log(em/γ)] < exp[(1/2 + o(1))γ log n], (3.46)
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since m/γ ≤ 3m/ϕ ∼ 3n/k < n1/2+o(1).

Since each dv has the binomial distribution B(γ, k/n), we have (for all v, `) Pr(dv ≥

`) < (kγ/n)`/`!, whence E|U | < k2γ2/(2n) and E|Z| < (kγ)3/(6n2) < n−(2ε−o(1))γ.

On the other hand, by Propositions 2.2.1 and 2.2.2, the events {dv ≥ `} are neg-

atively associated for any `; so the probabilities in question may be bounded using

Corollary 2.2.5. For (b), we have

Pr(|Z| > z) < n−(2ε−o(1))γ/ε < n−γ = o
((

m
γ

)−1
)
.

The calculations for (a) are more annoying. Here we set k =
√
ζn and µ =

k2γ2/(2n) = ζγ2/2 (our upper bound on E|U |). The desired inequality is

Pr(|U | ≥ w) = o
((

m
γ

)−1
)
.

We first observe that this is true provided

γ > 3 log n/ζ, (3.47)

since then (using (2.1) with λ = µ) we have (cf. (3.46))

Pr(|U | ≥ w) ≤ Pr(|U | ≥ 2µ) < exp[−3µ
8 ] = exp[−3ζγ2

16 ] < exp[− 9
16γ log n].

In particular (3.47) holds if (e.g.) ζ ≥ 2, since then (according to (3.20)) we have

γ > (1− o(1)) logn
− log(1−e−ζ)

> 3 log n/ζ. So we may assume

γ ≤ 3 log n/ζ and ζ ≤ 2.

We then have log6 n > 2µ, since log6 n ≤ 2µ = ζγ2 ≤ 9 log2 n/ζ implies ζ < o(1),

yielding log(1/q) = ω(1) and 2µ = ζγ2 = o((ϕ∗)2) = o(log6 n), a contradiction. Thus,

again using Corollary 2.2.5, we have

Pr(|U | > w) ≤ Pr(|U | > log6 n) < exp[−Ω(log6 n)] < o
((

m
γ

)−1
)

(the last inequality holding since ζ ≤ 2 implies γ (< ϕ∗) = O(log3 n)).
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Set

S = {|W | ≤ w, |Z| ≤ z}.

By Proposition 3.7.2, Lemma 3.7.1 will follow from

Pr(Q∧ S) = o
((

m
γ

)−1
)
. (3.48)

For the proof of (3.48) we will bound the probabilities of various events whose union

contains Q. Set θ = b(nε log(1/q))−1c and

A = {{A1, . . . , Aγ} is a clique}.

(Note θ need not be large—e.g. it will be zero for k less than about
√
εn log n—so for

once we do need the floor symbols. The parts of the following argument involving θ

could be avoided when θ is small, but there seems no point in treating this separately.)

For x ∈ V , d ∈ (λ, τ ], and σ, ρ ∈ Nγ , let

A(x, d, ρ, σ) = A ∧ {dx = d; dv ≤ λ ∀v 6= x; ρ(A) = ρ; σ(A) = σ}, (3.49)

A(x, d, ρ) = A ∧ {dx = d; dv ≤ λ ∀v 6= x; ρ(A) = ρ; s(A) ≤ θ}, (3.50)

A(ρ, σ) = A ∧ {dv ≤ λ ∀v; ρ(A) = ρ; σ(A) = σ} (3.51)

and

A(ρ) = A ∧ {dv ≤ λ ∀v; ρ(A) = ρ; s(A) ≤ θ}. (3.52)

For r, s ∈ N, let X(r, s) = (λ+2)r/2+2s (the value in (3.45)), and, for % = (%1, . . . , %γ),

set |%| =
∑
%i.

Lemma 3.7.3. For any x, d, ρ, σ as above with |ρ| = r and |σ| = s,

Pr(A(x, d, ρ, σ) ∧ S) <

(
γ

d

)(
k

n

)d(zk

n

)r (wk

n

)s
q

(
γ
2

)
−
(
d
2

)
−X(r,s) (3.53)

and

Pr(A(ρ, σ) ∧ S) <

(
zk

n

)r (wk

n

)s
q

(
γ
2

)
−X(r,s). (3.54)
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For any x, d, ρ as above with |ρ| = r,

Pr(A(x, d, ρ) ∧ S) <

(
γ

d

)(
k

n

)d(zk

n

)r
q

(
γ
2

)
−
(
d
2

)
−X(r,θ) (3.55)

and

Pr(A(ρ) ∧ S) <

(
zk

n

)r
q

(
γ
2

)
−X(r,θ). (3.56)

(We will only use (3.53) and (3.54) with s > θ.)

Before proving Lemma 3.7.3 we show that it implies (3.48). Notice that Q is the

(disjoint) union of the events

A(x, d, ρ, σ), A(x, d, ρ), A(ρ, σ) and A(ρ), (3.57)

where x ∈ V , d ∈ (λ, τ ], ρ ∈ Nγ and σ ∈ {(s1, . . . , sγ) ∈ Nγ :
∑
si > θ}. Thus

Pr(Q∧ S) ≤
∑

Pr(E ∧ S), (3.58)

where E ranges over the events in (3.57).

It’s now convenient to separate the contributions involving x, ρ and σ. Set

f(d) = n

(
γ

d

)(
k

n

)d
q−(d2),

g(r) =

(
γ + r − 1

r

)(
zk

n

)r
q−(λ+2)r/2,

h(s) =

(
γ + s− 1

s

)(
wk

n

)s
q−2s

and

h∗ = q−2θ.

Then, noting that (e.g.) |{ρ ∈ Nγ : |ρ| = r}| =
(
γ+r−1

r

)
and using (3.53)-(3.56), we

find that Pr(Q∧ S) (or the r.h.s. of (3.58)) is less than

q(
γ
2)

∑
d,r,s

f(d)g(r)h(s) + h∗
∑
d,r

f(d)g(r) +
∑
r,s

g(r)h(s) + h∗
∑
r

g(r)

 ,
where d, r and s range over (λ, τ ], N and (θ,∞) respectively. Thus, since q(

γ
2) =

o
((

m
γ

)−1
)

(by (3.17), (3.28) and (3.33) if γ = α, and with plenty of room if γ = ϕ∗/3),

it is enough to show that each of

∑
r≥0 g(r),

∑
s>θ h(s) and h∗
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is O(1) and that, with F =
∑

d∈(λ,τ ] f(d),

q(
γ
2)F
(
m
γ

)−1
(= Λ(γ)F ) = o(1). (3.59)

These are all easy calculations, as follows.

First,

g(r) ≤
[
eγ(zk/n)no(1)

]r
<
[
γ2n−1/2+o(1)

]r
< n−(2ε−o(1))r

(where the first inequality uses k > n1/2−o(1) ⇒ q > n−o(1) ⇒ log(1/q) = o(log n) ⇒

λ log(1/q) = o(log n)), implying
∑

r≥0 g(r) = 1 + o(1).

Second, since (
γ+s−1

s

)1/s
< e(γ+s)

s < e(γ+θ)
θ < nε+o(1)

(for s > θ), wk
n < n−2ε+o(1) and q = 1− o(1), we have

∑
s>θ h(s) <

∑
s>θ n

−(ε−o(1))s = o(1).

Third, h∗ = o(1) is immediate from our choice of θ.

The fourth calculation requires a little more care. Notice first that

f(d) < n((eγ/d)(k/n))d q−(d2)

< n · n−(1/2−o(1))dq−(d2) < n ·
[
n−(1−o(1))q−d

]d/2
(3.60)

(where the second inequality uses γ/d < (1 + o(1))ϕ∗/λ < no(1)). Here we may confine

ourselves to

d > (1− o(1)) log n/ log(1/q), (3.61)

since for smaller d the expression in square brackets in (3.60) is less than n−Ω(1) (and

the exponent d/2 is at least λ/2 = ω(1)), so that the contribution of such d to F is

o(1).

For d as in (3.61) the bound in (3.60) is (rapidly) increasing in d (passing from d to

d+1 multiplies it by roughly
√
n); so the contribution of such d to Λ(γ)F is dominated by
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that of d = τ . For this term we have γ = (1−ε)−1τ = (1−ε)−1d > (1+ε) log n/ log(1/q)

and

Λ(γ)f(τ) < n−(1/2−o(1))τ+γ/2q(γ−τ)(γ+τ−1)/2

< n[ε/2−(1+ε)ε(1−ε/2)+o(1)]γ

= n−(ε−ε2/2−o(1))γ .

Thus we have (3.59).

For the proof of Lemma 3.7.3, we need the following easy observation.

Proposition 3.7.4. Let Y1, . . . , Y` be r.v.’s (not necessarily real-valued) and write yi

for a possible value of Yi. Let Z be a set of (“bad”) prefixes (y1, . . . , yi) closed under

extension (i.e. i < ` and (y1, . . . , yi) ∈ Z imply (y1, . . . , yi, yi+1) ∈ Z for every choice

of yi+1). Set

Pr((Y1, . . . , Yi) ∈ Z|y1, . . . , yi−1) = 1− ξ(y1, . . . , yi−1),

where the conditioning has the obvious meaning and when i = 1 the l.h.s. is Pr((Y1) ∈

Z). Then

Pr((Y1, . . . , Y`) 6∈ Z) ≤ max
(y1,...,y`)6∈Z

∏̀
i=1

ξ(y1, . . . , yi−1) =: ξ.

Proof. Define an auxiliary sequence (X0, . . . , X`) with X0 ≡ 1 and, for i ∈ [`],

Xi =

 0 if (Y1, . . . , Yi) ∈ Z,

ξ(Y1, . . . , Yi−1)−1Xi−1 otherwise.

Then EX` = X0 = 1 (since (X0, . . . , X`) is a martingale), while X` ≥ ξ−1 whenever

(Y1, . . . , Y`) 6∈ Z (using the fact that Z is closed under extensions). The conclusion

follows.
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We now turn to the proof of Lemma 3.7.3, beginning with the simpler (3.54) and

(3.56); the arguments for (3.53) and (3.55) are similar, and when we come to these we

will mainly just point out the necessary modifications.

For both (3.54) and (3.56) we will apply Proposition 3.7.4 to the sequence (Y1, . . . , Y2γ),

where

Y2j−1 = Aj ∩ Uj−1 and Y2j = Aj \ Uj−1. (3.62)

We first prove (3.54) and then discuss the changes needed for (3.56).

Proof of (3.54). Here we say (Y1, . . . , Yi) ∈ Z (recall this is the set of “bad” prefixes)

if the associated Aj ’s (or parts of Aj ’s) satisfy at least one of:

{A1, . . . , Abi/2c} is not a clique; (3.63)

for some j ≤ di/2e, |Aj ∩ Zj−1| 6= rj or |Aj ∩Wj−1| 6= sj ; (3.64)

|Zdi/2e| > z, |Wdi/2e| > w or ddi/2e(v) > λ for some v. (3.65)

Then A(ρ, σ) ∧ S = {(Y1, . . . , Y2γ) 6∈ Z}.

We next need to say something about the quantities

ξ(y1, . . . , yi−1) = Pr(Y1, . . . , Yi 6∈ Z|y1, . . . , yi−1)

appearing in Proposition 3.7.4, where (we may assume) (y1, . . . , yi−1) 6∈ Z.

If i = 2j − 1 then

ξ(y1, . . . , yi−1) ≤ Pr(|Ai ∩ Zi−1| ≥ ri, |Ai ∩Wi−1| ≥ si|y1, . . . , yi−1)

≤ (zk/n)ri(wk/n)si . (3.66)

Here we again use Propositions 2.2.1 and 2.2.3, which, since (y1, . . . , yi−1) 6∈ Z implies

|Zi−1| ≤ z and |Wi−1| ≤ w, bound the probability in (3.66) by

(z
ri

)(w
si

)
(k/n)ri(k/n)si .

The case i = 2j is more interesting. Here, conditioning on the event {(Y1, . . . , Yi−1) =

(y1, . . . , yi−1)}, we set

βj =
∑
{dj−1(v) : v ∈ Aj ∩ Uj−1}. (3.67)
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(Notice that this is determined by (y1, . . . , yi−1), which includes specification of Y2j−1 =

Aj ∩ Uj−1.) We will show

ξ(y1, . . . , yi−1) ≤ qj−1−βj . (3.68)

Here we only consider (3.63); that is, we we ignore the requirements in (3.65) (those

in (3.64) are not affected by Yi) and show that (given our conditioning) the r.h.s. of

(3.68) bounds the probability that Aj meets all of A1, . . . , Aj−1. Now Aj meets at most

βj members of {A1, . . . , Aj−1} in Uj−1, so to avoid (3.63) must meet the j − 1− βj or

more remaining members—say those indexed by I—in V \Uj−1, where they are pairwise

disjoint. This gives (3.68) since the events Qh = {Aj ∩ (Ah \Uj−1) 6= ∅} (h ∈ I) satisfy

Pr(Qh) < q (by Proposition 3.4.1) and are NA (by Propositions 2.2.1 and 2.2.2), so by

Proposition 2.2.3 we have

Pr(∩h∈IQh) ≤
∏
h∈I Pr(Qh) < qj−1−βj .

The last thing to notice here is that, provided dγ(v) ≤ λ ∀v—which in particular is

true whenever (Y1, . . . , Y2γ) 6∈ Z; see (3.65))—we have

∑
βj = Ψ ≤ X(r, s) (3.69)

(see (3.44) for Ψ and (3.45) for the inequality). Finally, combining (3.66), (3.68) and

(3.69) (and
∑

j∈[γ](j − 1) =
(
γ
2

)
) and applying Proposition 3.7.4 gives (3.54).

Proof of (3.56). We now take (Y1, . . . , Yi) ∈ Z if the associated Aj ’s satisfy at least one

of:

{A1, . . . , Abi/2c} is not a clique; (3.70)∑
j≤di/2e sj(A) > θ , or for some j ≤ di/2e, |Aj ∩ Zj−1| 6= rj ; (3.71)

|Zdi/2e| > z, |Wdi/2e| > w or ddi/2e(v) > λ for some v. (3.72)

Then A(ρ) ∧ S ⊆ {(Y1, . . . , Y2γ) 6∈ Z}.
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The arguments bounding the quantities

ξ(y1, . . . , yi−1) = Pr(Y1, . . . , Yi 6∈ Z|y1, . . . , yi−1)

(again, for (y1, . . . , yi−1) 6∈ Z) are essentially identical to those above. For i = 2j − 1

the bound

ξ(y1, . . . , yi−1) ≤ Pr(|Ai ∩ Zi−1| ≥ ri|y1, . . . , yi−1) ≤ (zk/n)ri (3.73)

is justified in the same way as (3.66). For i = 2j we again define βj as in (3.67), and

(3.68) follows as before. (Note that our only reason for retaining the constraint on

|Wdi/2e| in (3.72) is to enforce Pr(Aj ∩ (Ah \ Uj−1) 6= ∅) < q in the proof of (3.68).

Finally, (3.69) again holds provided (Y1, . . . , Y2γ) 6∈ Z (this is where we use the first

condition in (3.71)), and combining this with (3.73) and (3.68) we obtain (3.56) via

Proposition 3.7.4.

We now turn to the parts of Lemma 3.7.3 involving x. For D ∈
([γ]
d

)
let

A(x,D, ρ, σ) = A ∧ {x ∈ Ai ⇔ i ∈ D; dv ≤ λ ∀v 6= x; ρ(A) = ρ; σ(A) = σ},

A(x,D, ρ) = A ∧ {x ∈ Ai ⇔ i ∈ D; dv ≤ λ ∀v 6= x; ρ(A) = ρ; s(A) ≤ θ}.

Since Pr(A(x, d, ρ, σ) is the sum of the Pr(A(x,D, ρ, σ))’s (and similarly for Pr(A(x, d, ρ)),

(3.53) and (3.55) will follow from (respectively)

Pr(A(x,D, ρ, σ)) <

(
k

n

)d(zk

n

)r (wk

n

)s
q

(
t
2

)
−
(
d
2

)
−X(r,s) (3.74)

and

Pr(A(x,D, ρ)) <

(
k

n

)d(zk

n

)r
q

(
t
2

)
−
(
d
2

)
−X(r,θ). (3.75)

As the proofs of these closely track those of (3.54) and (3.56) (respectively), with exactly

the same modifications, we confine ourselves to indicating what changes to the proof of

(3.54) are needed for (3.74).
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We again apply Proposition 3.7.4, in this case to the sequence (Y1, . . . , Y2γ) given

by

Y2j−1 = Aj ∩ (Uj−1 ∪ {x}) and Y2j = Aj \ (Uj−1 ∪ {x})

(which differs from (3.62) in the addition of {x} to the Uj−1’s). We say (Y1, . . . , Yi) ∈ Z

if the associated Aj ’s satisfy at least one of (3.63), (3.64) (we recall for ease of reading

that these were

{A1, . . . , Abi/2c} is not a clique

and

for some j ≤ di/2e, |Aj ∩ Zj−1| 6= rj or |Aj ∩Wj−1| 6= sj),

|Zdi/2e > z, |Wdi/2e| > w or ddi/2e(v) > λ for some v 6= x (3.76)

(which differs from (3.65) in the stipulation v 6= x) and

for some j ≤ di/2e either j ∈ D and x 6∈ Aj or j 6∈ D and x ∈ Aj . (3.77)

Then A(x,D, ρ, σ) ∧ S = {(Y1, . . . , Y2γ) 6∈ Z}.

The bounds on the quantities

ξ(y1, . . . , yi−1) = Pr(Y1, . . . , Yi 6∈ Z|y1, . . . , yi−1)

(again, for (y1, . . . , yi−1) 6∈ Z) are modified as follows. For i = 2j − 1 we use

ξ(y1, . . . , yi−1) ≤

 (k/n)(zk/n)ri(wk/n)si if j ∈ D,

(zk/n)ri(wk/n)si otherwise;
(3.78)

this is justified (via Propositions 2.2.1 and 2.2.3) in the same way as (3.66).

For i = 2j we define βj as before (βj =
∑
{dj−1(v) : v ∈ Aj ∩ Uj−1}) and set

cj = [j − 1] \D (again, a function of (y1, . . . , yi−1)). We then have

ξ(y1, . . . , yi−1) ≤

 qcj−βj if j ∈ D,

qj−1−βj otherwise.
(3.79)

The proof is essentially the same as that for (3.68), the only difference being that when

j ∈ D, there is no requirement that Aj meet those earlier Al’s for which l ∈ D. (On the
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other hand, the second bound in (3.79) uses the fact that x 6∈ Aj (for j 6∈ D), which

follows from (y1, . . . , yi−1) 6∈ Z; see (3.77).)

Finally, applying Proposition 3.7.4 with the combination of (3.78), (3.79) and
∑
βj =

Ψ ≤ X(r, s) (noted earlier in (3.69)) gives (3.74), once we observe that∑
j 6∈D

(j − 1) +
∑
j∈D

cj =
∑
j

(j − 1)−
∑
j∈D
|[j − 1] ∩D| =

(
γ

2

)
−
(
d

2

)
.

3.8 Large ϕ

Here we complete the proof of Theorem 1.0.2 by showing

for ϕ > ϕ∗, H satisfies EKR a.s. (3.80)

As already mentioned, this is mostly a matter of reducing to ϕ∗ and applying Lem-

mas 3.3.1-3.3.3. (While there ought to be other ways to handle this, our main argument

runs into difficulties when ϕ is large, since the sets Wx, W , Z used in the proofs of

Lemmas 3.3.1-3.3.3 are no longer small.)

For the rest of this section we take ϕ > ϕ∗. We use the following natural reduction

(coupling). Setting ρ = ϕ∗/ϕ, we let G be the random subhypergraph of H gotten

by retaining edges independently, each with probability ρ; thus G ∼ Hk(n, p∗), with

p∗ = ϕ∗/M .

We would like to say that if EKR fails for H, say at the nontrivial clique C, then

there is a decent chance that the clique D := C ∩ G satisfies one of the unlikely sce-

narios described in Lemmas 3.3.1-3.3.3; but this is not always true, since if C is too

close to a star, then D is likely to actually be a star. This special situation is han-

dled by Lemma 3.8.1, and in other cases the desired reduction is given by the routine

Proposition 3.8.2.

Set r0 = ξϕ with ξ = log(1/q)/(2 log n) (as elsewhere, just a convenient value).

Lemma 3.8.1. A.s. there do not exist (in H) a nontrivial clique C and vertex x such

that |C| ≥ max{ϕ/2, d(x)} and |Cx| ≤ r0.
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Proposition 3.8.2. Suppose C is a nontrivial clique of H with |C| ≥ ∆ ≥ ϕ/2 and

∆C ≤ |C| − r0, and let x be a maximum degree vertex of C. Then with probability at

least 1/2− o(1), D := C ∩ G satisfies:

(a) |D| ≥ max{dG(x), γ};

(b) |Dx| > 2/ε;

(c) either ∆D < τ or dD(x) > λ.

(Note that γ—which was defined in (3.7)—is now just ϕ∗/3.)

Before proving these assertions we show that they (with Lemmas 3.3.1-3.3.3) give

(3.80). Since ∆ ≥ ϕ/2 a.s. (really, dv ≥ ϕ/2 ∀v a.s. by Theorem 2.2.4), Lemma 3.8.1

says it is enough to show that H is unlikely to contain a nontrivial clique C with

|C| ≥ ∆ ≥ ϕ/2 and ∆C < |C| − r0. So we suppose this does happen, let x be some

maximum degree vertex of C, and observe that D and x are then fairly likely (that is,

with probability at least 1/2−o(1)) to exhibit one of the improbable behaviors described

in Lemmas 3.3.1-3.3.3; namely this is true if the conclusions of Proposition 3.8.2 hold:

(i) ifD has at least two vertices of degree at least λ, then Lemma 3.3.2 applies; otherwise:

(ii) if ∆D < τ then we are in the situation of Lemma 3.3.3 (since (a) of Proposition 3.8.2

gives |D| ≥ γ and we assume D has at most one vertex of degree at least λ);

(iii) if ∆D ≥ τ then in fact dD(x) ≥ τ (by (c), since we assume D has at most one

vertex of degree at least λ (< τ)); so in view of (a) and (b) we are in the situation of

Lemma 3.3.1.

Proof of Lemma 3.8.1. We need one preliminary observation. For given x and B ⊆ Kx,

let g(B) be the probability that A chosen uniformly from Kx meets all members of B.

Suppose that, for some s, B is a uniform s-subset of Kx and A is uniform from Kx

(these choices made independently). Then

Eg(B) = Pr(A ∩B 6= ∅ ∀B ∈ B) < qs, (3.81)
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the inequality holding because (i) Pr(A ∩ B 6= ∅) < q for A and B uniform from Kx

and Kx respectively, and (ii) the probability in (3.81) is no more than it would be if

the members of B were chosen independently. Markov’s Inequality thus gives (for any

a ≤ s)

Pr(g(B) > qa) < qs−a.

Now let S = P∧{d(x) ≥ ϕ/2 ∀x} (recall P was defined in the paragraph containing

(3.22)), noting that (by (3.22) and Theorem 2.2.4) Pr(S) = o(1). Let

Q(x) = {∃B ⊆ Hx : |B| = d(x)− r0 and g(B) > qϕ/4}

and Q = ∪Q(x). Then

Pr(Q∧ S) < n
(
β
r0

)
qϕ/4−r0

< n exp[r0 log(eβ/r0)− (ϕ/4− r0) log(1/q)]. (3.82)

Recalling that ϕ ∼ β we have

r0 log(eβ/r0) ∼ ξϕ log(1/ξ) < (1/8)ϕ log(1/q)

(since log(1/q) > n−1/4+Ω(1) implies log(1/ξ) < (1/4) log n); so, noting that q > n−o(1)

implies r0 = o(ϕ) and recalling that ϕ > ϕ∗, we find that the r.h.s. of (3.82) is o(1).

Thus, with T the event in Lemma 3.8.1, the lemma will follow from

Pr(T ∧ Q ∧ S) = o(1). (3.83)

We show

Pr(T ∧ Q ∧ S) ≤ n
r0∑
r=1

(βm0q
ϕ/4)r (3.84)

(and then observe that the r.h.s. is small).

Proof of (3.84) and (3.83) . We consider occurrence of T at a given x, writing T (x)

for this event. Since

Pr(T ∧ Q ∧ S) ≤ Pr(T |Q ∧ {d(x) ≤ β,m ≤ m0})

(the conditioning event contains Q∧ S), it is enough to show

Pr∗(T (x)) < (βm0q
ϕ/4)r,



37

where Pr∗ denotes probability under conditioning on some Hx of size at most β satis-

fying Q(x), together with a value m ≤ m0 of |H|.

If, under this conditioning, T (x) occurs at C with |C \Hx| = r (∈ [1, r0]), then, since

dC(x) = |C| − r ≥ ϕ/2 − r and |Hx \ C| ≤ r, there are B ⊆ Hx and D ⊆ Hx (namely

B = Cx, D = Cx) with

|B| = |C| − r ≥ max{d(x)− r, ϕ/2− r},

|D| = r, B and D cross-intersecting, and g(B) ≤ qϕ/4 (the last property implied by

Q(x); of course if |B| ≥ d(x)−r and g(B) > qϕ/4, then g(B′) > qϕ/4 for any (d(x)−r0)-

subset B′ of B). But the probability that this occurs given Hx and m as above is at

most
(d(x)
≤r
)(
m−d(x)

r

)
qϕr/4 < (βm0q

ϕ/4)r (which gives (3.84)).

Finally (now for (3.83)), we have βm0q
ϕ/4 < ϕ2n1/2+o(1)qϕ/4 = o(1/n), where the

first inequality uses β ∼ ϕ and m0 ∼ ϕn/k, and the second holds because ϕ2qϕ/4 is

decreasing in ϕ > ϕ∗ and is o(1/n) when ϕ = ϕ∗.

Proof of Proposition 3.8.2. Of course Pr(|D| ≥ dG(x)) ≥ 1/2, so it’s enough to show that

each of the other requirements (namely, |D| ≥ γ and those in (b), (c)) holds a.s. These

are all routine applications of Theorem 2.2.4 (or Corollary 2.2.5): First, |D| is binomial

with mean |C|ρ ≥ (ϕ/2)ρ = ϕ∗/2 = 3γ/2, implying Pr(|D| < γ) < exp[−Ω(γ)]. Second,

E|Dx| ≥ r0ρ = ξϕ∗ = ω(1), so Pr(|Dx| < 2/ε) < exp[−ω(1)]. Third, since τ � λ we

have either ∆Cρ (= EdD(x))) > 2λ, implying Pr(dD(x) < λ) = o(1), or ∆Cρ < τ/2,

implying Pr(∆D ≥ τ) < n exp[−Ω(τ)] = o(1); thus (c) also holds a.s.

3.9 Small k

Finally, we turn to the proof of Theorem 1.0.2 for k < n1/2−Ω(1), say

k ≤ n1/2−ε (3.85)
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with ε > 0 fixed. This is, as noted earlier, easier than what we’ve already done, one

reason being the absence of the issue discussed following (3.6): there will now always

be an α such that ∆ ≥ α a.s. and there is a.s. no nontrivial clique of size at least α.

This will mean that here we only need Proposition 3.4.3 (which for k as in (3.85) and

fixed α was proved in [4]) and a simpler version of Lemma 3.3.3. Since most of this

consists of simpler versions of earlier arguments, parts of the discussion will be a bit

sketchy.

It will be helpful to think of three regimes: (i) ϕ < n−Ω(1); (ii) n−o(1) < ϕ � 1;

and (iii) ϕ = Ω(1). The last of these is treated in [4, Theorem 1.1(iv)], so we may

concentrate on the first two.

We first need to specify α. If we are in regime (ii) then we take α as in Section 3.4

(recall this assumed ϕ > n−o(1) but not (3.1), noting that, in addition to ∆ ≥ α a.s.

(see (3.18)) and Λ(α) = o(1) (see (3.17)), we have α = ω(1). (Remark: here α = α1.)

If we are in regime (i) then α is the least integer satisfying ϕ � n−1/α, for which

(since Pr(dv ≥ α) � ϕα) Proposition 3.4.3 gives ∆ ≥ α a.s. Note that here too we have

Λ(α) = o(1), which is given by (1.4) once we observe that, by Harris’ Inequality [13],

Pr(∆ ≤ α) = Pr(dv ≤ α ∀v)

≥
∏
v

Pr(dv ≤ α) = (1−O(1/n))n = Ω(1). (3.86)

(Of course if ϕ � n−1/(α+1), then ∆ = α a.s., and it is not hard to see that if ϕ �

n−1/(α+1), then ∆ ∈ {α, α+ 1} a.s. and each possibility occurs with probability Ω(1).)

For regime (i) we will usually use c in place of α to remind ourselves that the value

is a constant. Note that we may assume c ≥ 3, since if c ≤ 2 then ϕ2n � Λ(2) = o(1)

gives ϕ� 1 and ∆H ≤ 1 a.s.

In either case we need to show that H is unlikely to contain a nontrivial α-clique.

The arguments for the two regimes are similar and we treat them in parallel. In each

case we will avoid some complications by first disposing of C’s with very large degrees

(cf. Lemma 3.3.1).

If H contains a nontrivial clique of maximum degree at least d then it contains a
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“Hilton-Milner” family of size d+ 1, that is, A0, . . . , Ad such that ∩di=1Ai \A0 6= ∅ and

Ai ∩A0 6= 0 ∀i ∈ [d]. The probability that this occurs is less than

( m
d+1

)
(d+ 1)n(k/n)dqd < ϕd+1k2d−1n−(d−1) (3.87)

(where the factor n on the l.h.s. is for a choice of x ∈ ∩di=1Ai \ A0 and the inequality

uses m = ϕn/k). We then need to show that the r.h.s. of (3.87) is o(1) for suitable d.

For regime (i) we take d = c− 1. We have

Λ(c) � (ϕn/k)c(k2/n)(
c
2) =

[
ϕkc−2n−(c−3)/2

]c/2
,

so Λ(c) = o(1) implies kc−2 � n(c−3)/2/ϕ. Thus (for typographical reasons considering

the (c− 2)nd power of the r.h.s. of (3.87))[
ϕck2c−3n−(c−3)

]c−2
� ϕc(c−2)n(2c−3)(c−3)/2

n(c−2)(c−3)ϕ2c−3
=
[
ϕc−1n1/2

]c−3

= O(n−(c−1)/(c+1)+1/2)c−3

= O(n−(c−3)2/(2(c+1))) = o(1),

where (in the third step) we used ϕ = O(n−1/(c+1)). Thus the r.h.s. of (3.87) is o(1).

For regime (ii) we take d = bα/2c (say) and find that, since k < n1/2−ε, the r.h.s.

of (3.87) is less than n−Ω(α).

So (in either case) we just need to show that H is unlikely to contain a nontrivial α-

clique with maximum degree at most d− 1 (d as above). The reduction to independent

Ai’s preceding Lemma 3.7.1 of course remains valid here, so the following analogue of

Lemma 3.3.3 finishes it.

Lemma 3.9.1. Let α be as above, suppose A1, . . . , Ac are drawn uniformly and inde-

pendently from K, and let Q be the event that the multiset C := {A1, . . . , Ac} is a

nontrivial clique with ∆C ≤ d− 1. Then Pr(Q) = o
((

m
α

)−1
)
.

Proof. This is a (much) simpler version of the proof of Lemma 4.4.4. We retain the

definitions of di(v) and dv from that argument, but now set Wi = {v : di(v) ≥ 2},

W = Wc, si(A) = |Ai ∩Wi−1|,

s(A) =
∑

si(A) =
∑
v∈W

(dv − 2)
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and

Ψ =
∑
v∈Z

[(
dv
2

)
− 1
]

= 1
2

∑
v∈Z

(dv + 1)(dv − 2),

noting that if all dv’s are at most d then

Ψ ≤ (d+ 1)s(A)/2. (3.88)

For a counterpart of Proposition 3.7.2, with w = (α/ε) (ε as in (3.85)) and S =

{|W | ≤ w}, we have

Pr(S) = o(m−α)

(since E|W | < (ϕk)2/n < n−2ε implies Pr(|W | ≥ w) < n−2εw < n−2α, while mα < nα).

So we need Pr(Q∧ S) = o
((

m
α

)−1
)

.

We again let A = {C is a clique} and for σ = (s1, . . . , sα) ∈ Nα set

A(σ) = A ∧ {∆C ≤ d− 1} ∧ S ∧ {σ(A) = σ}.

We have Q∧ S = ∪σA(σ) so, finally, just need to show

∑
σ Pr(A(σ)) < o

((m
α

)−1
)

; (3.89)

with q as in (3.32) (with the present w), this will follow from

Lemma 3.9.2. For any σ as above with
∑
si = s,

Pr(A(σ)) ≤ min{(wk/n)sq(
α
2)−(d+1)s/2, (wk/n)s}. (3.90)

Before sketching the proof of this, we show that it implies (3.89), beginning with regime

(i) (so α = c and d = c − 2 and
(m
α

)
� mc). We use the first bound in (3.90) for

s := |σ| < c and the second for s ≥ c. For the latter we find that the contribution to

mc
∑
|σ|≥c Pr(A(σ)) is at most

∑
s≥c

(
s+c−1
c−1

)
(ϕn/k)c(wk/n)s <

∑
s≥c

((s+ c)ϕw)c(wk/n)s−c = o(1).

For the former, the product of mc and the first bound in (3.90) is

(ϕn/k)c(wk/n)sq(c−1)(c−s)/2 ∼ (ϕn/k)c(wk/n)s(k2/n)(c−1)(c−s)/2

= ϕcws
[
(n/k)(k2/n)(c−1)/2

]c−s
.
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If the expression in brackets is at most 1, then we have

mc
∑
s<c

Pr(A(σ)) = O(ϕc) (3.91)

(since w and
(
s+c−1
c−1

)
are O(1), as is the number of terms in the sum), and otherwise

the sum in (3.91) is on the order of

ϕc
[
(n/k)(k2/n)(c−1)/2

]c
� Λ(c) = o(1).

For regime (ii), we use the second bound in (3.90) for s ≥ 3α/2, yielding(m
α

) ∑
|σ|≥3α/2c

Pr(A(σ)) <
∑

s≥3α/2

(
s+α−1
α−1

)
(ϕn/k)α(wk/n)s

<
∑

s≥3α/2

((s+ α)ϕw)α(wk/n)s−α = o(1)

(since α ≤ ϕ∗ < no(1); see (3.21), (3.2)). On the other hand, the first bound in (3.90)

gives (with d as above)(m
α

) ∑
|σ|<3α/2

Pr(A(σ)) <
(m
α

) ∑
s≥3α/2

(wk/n)sq(
α
2)−(d+1)s/2 = o(1)

(because:
(m
α

)
and the number of terms in the sum are each at most exp[O(α log n)],

the q-term is less than exp[−Ω(α2 log n)] (since q < n−Ω(1); see (3.12)), and, as noted

above, α = ω(1).)

Proof of Lemma 3.9.2. This is similar to the proof of Lemma 4.4.4 and we just indicate

the little changes. For the first bound in (3.90) we follow the proof of (3.54) (beginning

with the paragraph containing (3.62)), with changes: replace the γ’s by c’s and the U ’s

by W ’s; in (3.64) and (3.65) omit the condition involving Z and replace λ by d− 1 in

(3.65); omit the first factor in (3.66) (the proof doesn’t change); and replace X(r, s) in

(3.69) by (d+ 1)s(A)/2 (see (3.88)).

For the second bound we use the same modifications and simply sacrifice the con-

tributions of the terms with i = 2j (so for these we can just say ξ(y1, . . . , yi−1) ≤ 1;

thus the clique condition (3.63) could be omitted here).
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3.10 Necessity

In combination with Theorem 1.0.2, the next result says that (for k as in (1.3)) (1.4)

actually characterizes the situations in which EKR holds a.s. To say this properly we

should remove ∆ = 2 from the discussion. (Since there is no such thing as a nontrivial

clique of size 2, failure of (1.4) at ∆ = 2 should not suggest failure of EKR.) Thus

(given ϕ) we define Λ′ = Λ′ϕ by Λ′(2) = 0 and Λ′(t) = Λ(t) if t 6= 2.

Theorem 3.10.1. For any fixed δ > 0, if k is as in Theorem 1.0.2 and

Pr(Λ′(∆) > δ) > δ, (3.92)

then with probability Ω(1), H does not satisfy EKR.

(It is easy to see that Theorem 1.0.2 remains true with (1.4) replaced by “Λ′(∆) <

o(1) a.s.” Note that, while the switch to Λ′—or some substitute—is needed to make

Theorem 3.10.1 correct, the change is irrelevant in the situations that usually interest

us, where at least ∆ = ω(1) a.s.; in particular, as this will be true in what follows, we

continue to write Λ rather than Λ′.)

We believe Theorem 3.10.1 does not require the restriction on k, but our proof

doesn’t give this.

Notes on the proof of Theorem 3.10.1. This seems not entirely straightforward. It

becomes easier (still not immediate) if we retreat to, say, k = O(
√
n). At any rate we

give only a sketch of the argument, restricting to k as in (3.1) to avoid some annoyances,

with details—such as they are—mostly restricted to the more interesting points. (Some

instances of failure of EKR for smaller k are given in [4].)

Set α = max{t ∈ N : Λ(t) > δ} and A = {∆H ≤ α}; thus (3.92) is

Pr(A) > δ. (3.93)

It is easy to check (cf. (3.20)) that

α ∼ log n

log(1/q)
(< n1/4−ε+o(1)), (3.94)
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and we observe that (for any v)

Pr(dv > α) = O(1/n), (3.95)

since otherwise Proposition 3.4.3 gives ∆ > α a.s., contradicting (3.93).

Here we do (finally) need some concrete notion of a “generic” clique: taking z = α/ε

(cf. Proposition 3.7.2(b)), say a clique—possibly with repeated edges—is generic if it

has maximum degree at most 3 and at most z vertices with degree equal to 3. Then

with

B = {H contains a generic clique of size α},

Theorem 3.10.1 will follow if we show that (assuming (3.93))

Pr(AB) = Ω(1). (3.96)

(The negative results of [4] are achieved by showing (probable) existence of ∆-cliques

of maximum degree 2.)

Here, as in some earlier instances, we first observe that it is enough to prove (3.96)

with H = Hk(n, p) replaced by H consisting of m independent Ai’s for suitable m;

specifically, Theorem 3.10.1 will follow from:

Lemma 3.10.2. For any m satisfying (3.15) and H = {A1, . . . , Am}, with the Ai’s

chosen uniformly and independently from K,

P(AB) = Ω(1). (3.97)

(So we are using “P” for probabilities in this model. Note H may now—in principle,

though in reality essentially never—have repeated edges.)

We first assert that

P(A) = Ω(1). (3.98)

This actually requires a little argument, but we just point out the difficulty. The

combination of (3.93) and Proposition 3.4.3 give Pr(dv > α) = O(1/n), which easily

implies the corresponding statement for P, the change in the distribution of dv from

Bin(M,p) to Bin(m, k/n) having almost no effect. But getting from this to (3.98)—an



44

implication which for Hk(n, p) is given by Harris’ Inequality; see (3.86)—is no longer

immediate, since negative association now works against us.

One way to handle this is to compare the present H with H′ = Hk(n, p′), with p′ > p

chosen so that, writing Pr′ for the corresponding probabilities, we have Pr′(dv > α) =

O(1/n) and |H′| ≥ m a.s. (We can then couple so that H′ ⊃ H a.s.—note H a.s. avoids

repeats—yielding P(∆ ≤ α) > Pr′(∆ ≤ α) − o(1) = Ω(1). Of course one must show

there is such a p′, but we omit this easy arithmetic.)

For the proof of (3.97) we use the second moment method. Set M = [m] and

S =
(
M
α

)
. We now use G for the set of generic α-cliques (again, with repeated edges

allowed). For S ⊆ M write AS for the multiset {Ai : i ∈ S} and ∆S for ∆AS (so

∆ = ∆M ). In addition, set BS = {AS ∈ G} and XS = 1BS (these are only of interest if

S ∈ S) and X =
∑

S∈S XS .

We actually need estimates for the quantities EXS and EXSXT (for S, T ∈ S)

conditioned on A, but will get these by first dealing with the unconditional versions

and then showing that the conditioning has little effect. Thus we show (for any S, T )

EXS ∼ q(α2); (3.99)

EXSXT < (1 + o(1))q2(α2)−(|S∩T |2 ); (3.100)

E[XS |A] ∼ EXS and E[XSXT |A] ∼ EXSXT . (3.101)

We will say a little about the proofs of these main points below. Once they are

established we have, setting Ẽ[·] = E[·|A],

µ := ẼX ∼
(
m
α

)
q

(
α
2

)
∼ Λ(α) = Ω(1)

(using (3.15) for “∼”) and an easy calculation gives

ẼX2 =
∑
S

∑
T

ẼXSXT

< (1 + o(1))
(
m
α

)
q2
(
α
2

) α∑
i=0

(
α
i

)(
m−α
α−i
)
q−
(
i
2

)
∼ µ2 + µ,

whence

P(X 6= 0) ≥ µ2/ẼX2 = Ω(1),
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which is what we want.

The proofs of (3.100) and EXS < (1 + o(1))q(α2) (for (3.99)) are like that of

Lemma 3.7.1 and we will not pursue them here.

The proof of the reverse inequality in (3.99) is similar in spirit, if less so in details.

We again think of choosing A1, . . . , Aα in order and use di for degrees in {A1, . . . , Ai}.

Set Zi = {v : di(v) ≥ 3}, Qi = {|Zi| ≤ z}, Ri = {Ai ∩ Zi−1 = ∅}, Ti = {Ai ∩ Aj 6=

∅ ∀j ∈ [i− 1]} and

Bi = {{A1, . . . , Ai} is a generic clique}.

Then Bi = Bi−1RiTiQi and

P(Bi) ≥ P(Bi−1)P(RiTi|Bi−1)− P(Qi). (3.102)

Setting δi = in−1/4, we show by induction on i (with i = 1 trivial)

P(Bi) ≥ (1− δi)q(i2) (3.103)

(which suffices because of (3.94)).

The relevant probabilities are bounded as follows. First, the proof of Proposi-

tion 3.7.2(b) gives

P(Qi) < η (3.104)

for some η <
(
m
α

)−2+o(1)
. Second, trivially,

P(Ri|Bi−1) ≥ 1− zk/n (3.105)

(this just uses Bi−1 ⊆ Qi−1). Third,

P(Ti|RiBi−1) ≥ ((1− 2ξ)q)i−1, (3.106)

where ξ = 2k2z/(qn2); this is mostly given by the next two observations, the first of

which is an easy calculation along the lines of Proposition 3.4.1. (Here “mostly” refers

to a small detail we’re omitting: in (3.106) we use, for example,

P(Ti|RiBi−1) > (1− ξ)i−1
∏
j<i P(Ai ∩Aj 6= ∅|RiBi−1),

which requires a proof since the events in question are (slightly) negatively correlated.)
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Proposition 3.10.3. For Z ⊆ V of size at most z, B ∈ K and A uniform from
(V \Z

k

)
,

Pr(A ∩B) > (1− ξ)q.

Proposition 3.10.4. If C1, . . . , Cs, D1, . . . , Ds are subsets of V with |Ci| = |Di| ∀i and

the Di’s pairwise disjoint, and A is uniform from
(
V
k

)
, then

Pr(A ∩ Ci 6= ∅ ∀i) ≥ Pr(A ∩Di 6= ∅ ∀i). (3.107)

This follows via induction from the fact—an easy coupling argument—that (3.107)

holds when x ∈ Ci ∩Cj (i 6= j), Di = Ci \ {x}∪{y} for some y ∈ V \∪C`, and D` = C`

for ` 6= i.

By (3.104)-(3.106) and (3.103) for i− 1, the r.h.s. of (3.102) is at least

(1− δi−1)q(i−1
2 )[(1− zk/n)(1− ξ)i−1 − η′]qi−1

> (1− δi−1)[1− {zk/n+ (i− 1)ξ + η′}]q(i2),

where we set η′ = η[(1 − δi)q(i2)]−1. This gives (3.103) since the expression in { }’s

(whose dominant term is zk/n) is easily seen to be less than n−1/4.

Finally we turn to (3.101), for which we need the following observation.

Proposition 3.10.5. Let s ∈ [m] and t = m − s. Suppose S ∈
(
M
s

)
and D is an

s-multisubset of K with ∆D ≤ C. If P(B(t, k/n) ≥ α− C) = ρ/n then

|P(∆ ≤ α|AS = D)− P(∆ ≤ α)| ≤ stρ/n. (3.108)

Proof. With T = M \ S, the assertion is given by

P(∆T ≤ α) ≥ P(∆ ≤ α|AS = D)

≥ P(∆T ≤ α)− skρ/n ≥ P(∆ ≤ α)− skρ/n.

The first and third inequalities are trivial. For the second, setting V (D) = {v : dD(v) >

0} and using our assumption on D, we find that on {AS = D},

{∆T ≤ α} \ {∆ ≤ α} ⊆ {∃v ∈ V (D), dT (v) ≥ α− C}.

But the probability of the latter event is at most |V (D)|ρ/n ≤ skρ/n.
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The arguments for the two statements in (3.101) are similar and we only discuss the

first. This is equivalent to P(A|BS) ∼ P(A) or, in view of (3.98), P(A|BS) = P(A)±o(1),

which will follow if we show that, for any generic α-clique D,

P(A|AS = D) = P(A)± o(1).

This is, of course, an instance of Proposition 3.10.5, for which we just have to make

sure that, with s = α, C = 3 and ρ as in the proposition, the bound in (3.108) is o(1);

but this follows from (3.94), t ≤ m < (1 + o(1))αn/k and α/ϕ < no(1), the latter given

by (3.27) and (3.19).
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Chapter 4

n = 2k + 1

4.1 Main Result

We again recall the statement to be proved:

Theorem 4.1.1. There is a fixed ε > 0 such that if n = 2k + 1 and p > 1− ε, then H

satisfies EKR a.s.

Note that for n, k as in Theorem 1.0.4, EKR is unlikely unless p is large, since a simple

calculation shows that for p less than about 3/4 stars are unlikely even to be maximal

cliques. We will elaborate on this in Section 4.5.

We haven’t thought very hard about whether the ε in Theorem 1.0.4 could be

pushed to .01, since this seems somewhat beside the point (and since it seems not

wildly unethical to regard “.99” as really meaning “1− ε for some fixed ε > 0”).

4.2 Preliminaries

4.2.1 Usage

Recall that we use M =
(

2k
k−1

)
and let N =

(
2k
k

)
. As usual, 2S is the power set of S.

For graphs, xy is an edge joining vertices x and y; N(x) is, as usual, the neigh-

borhood of x (and N(X) = ∪x∈XN(x)); and ∇(X,Y ) is the set of edges joining the

disjoint vertex sets X,Y .

In this chapter we take F to be a member ofM, the collection of nontrivial maximal

intersecting families in K. We now take p = 1 − ε, with ε > 0 fixed but small enough

to support our arguments. (We make no attempt to optimize.)
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4.2.2 Isoperimetry and Degree

For A ⊆
([2k]
k

)
let δ(A) = (|∇A| − |A|)/|A|, where ∇A = {y ∈

( [2k]
k+1

)
: ∃x ∈ A, y ⊃ x}

(the upper shadow of A). We will use the following consequence of the Kruskal-Katona

Theorem ([20], [17] or e.g. [6]).

Proposition 4.2.1. For A ⊆
([2k]
k

)
with |A| ≤ N/2,

δ(A) ≥ log 2
k log2

(
N

2|A|

)
. (4.1)

(Notice that N/2 =
(

2k−1
k

)
. The log 2 in (4.1) can probably be replaced by 1, but cannot

be replaced by k/(k − 1).)

Proof. We use Lovász’ version [21, Problem 13.31] of Kruskal-Katona, which in the

present situation says that if |A| =
(
x
k

)
, then |∇(A)| ≥

(
x
k−1

)
. (This is ordinarily stated

for the lower shadow, which is equivalent here since our universe is of size 2k.)

Let |A| =
(

2k−t
k

)
, noting that |A| ≤ N/2 implies t ≥ 1, and ψ = k−1 log 2. Then

N
2|A| = (2k)k

2(2k−t)k and, from Kruskal-Katona (Lovász),

δ(A) ≥
(

2k−t
k−1

)
/
(

2k−t
k

)
− 1 =

t− 1

k − t+ 1
.

Thus (4.1) will follow from

f(t) :=
t− 1

k − t+ 1
− ψ log2

[
(2k)k

2(2k − t)k

]
≥ 0 for t ≥ 1,

so (since f(1) = 0) from f ′(t) ≥ 0 . But, recalling the value of ψ, we have

f ′(t) =
k

(k − t+ 1)2
− 1

k

k−1∑
i=0

1

2k − t− i
≥ k

(k − t+ 1)2
− 1

k − t+ 1
≥ 0.

The following result of P. Frankl [11] will also be helpful in getting things started.

(We give the result for general k, n and i, but will only use it with n = 2k + 1 and

i = 3.) Given k and n > 2k, set, for each i ∈ {3, . . . , k + 1},

Gi = {A ∈ K : 1 ∈ A,A ∩ {2, . . . , i} 6= ∅} ∪ {A ∈ K : A ⊇ {2, . . . , i}}. (4.2)

Theorem 4.2.2 ([11]). For any k, n and i as above, if G ⊆ K is a clique with |G| > |Gi|,

then ∆G > ∆Gi.
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4.2.3 Graphs

Two special graph-theoretic notions will be relevant in what follows. First, for a bigraph

Σ with bipartition Γ1 ∪ Γ2, say X ⊆ Γi is said to be closed if N(x) ⊆ N(X)⇒ x ∈ X.

Second, for a (general) graph Σ and positive integer j, W ⊆ V (Σ) is j-linked if for

all u, v ∈ W there are u = u0, u1, , . . . , , ul = v with ui ∈ W (∀i) and ρ(ui−1, ui) ≤ j

for i ∈ [l], where ρ is graph-theoretic distance. We will eventually need the following

observation from [26].

Proposition 4.2.3. Let Σ be a graph and suppose A and T are subsets of V (Σ) with

T ⊆ N(A), A ⊆ N(T ) and A j-linked. Then T is (j + 2)-linked.

Proof. Given u, v ∈ T , choose x, y ∈ A with x ∼ u, y ∼ v, and then x = x0, . . . , x` = y

with xi ∈ A and ρ(xi−1, xi) ≤ j (i ∈ [`]). If we now let u0 = u, u` = v and xi ∼ ui ∈ T

for i ∈ [`−1], then ρ(ui−1, ui) ≤ 1+ρ(xi−1, xi)+1 ≤ j+2 (for i ∈ [`]). The proposition

follows.

We also find some use for the following standard bound.

Proposition 4.2.4. In any graph with all degrees at most d, the number of trees of

size u rooted at some specified vertex is at most (ed)u−1.

Proof. This follows easily from the fact (see e.g. [18, p.396, Ex.11]) that the infinite

d-branching rooted tree contains precisely 1
(d−1)u+1

(
Du
u

)
≤ (ed)u−1 rooted subtrees of

size u.

4.2.4 Etc.

We make repeated use of the fact that for positive integers a, b with a ≤ b/2,(
b

≤ a

)
≤ exp[a log(eb/a)]. (4.3)
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4.3 Setting Up

The statement we are to prove is

maxF∈M |H ∩ F| < maxx |H ∩ Kx| a.s., (4.4)

but we will find it better to work with a variant, (4.7) below. This requires a little

preparation.

For x ∈ [n] and 0 ≤ ` ≤ n−1, let Γx` denote the collection of `-subsets of [n]\{x}. Let

Σx be the usual bigraph on Γxk∪Γxk+1 (that is, with adjacency given by set containment),

and write Nx for neighborhood in Σx. For A ⊆ Γxk set δx(A) = (|Nx(A)| − |A|)/|A|

(so Nx(A) is the upper shadow of A in 2[n]\{x} and our usage here follows that in

Proposition 4.2.1).

For F ∈ M (and x ∈ [n]), let Ax(F) = F \ Kx, Jx(F) = Kx \ F and Gx(F) =

Nx(Ax(F)); thus Ax(F) and Gx(F) are subsets of Γxk and Γxk+1 respectively. Note that

|H ∩Ax(F)| − |H ∩ Jx(F)| = |H ∩ F| − |H ∩ Kx|. (4.5)

For B ⊆ 2[n] set Bc = {[n] \ T : T ∈ B}. It is easy to see that maximality of F

implies that (for any x) Ax(F) is closed in Σx and Gx(F) = Jx(F)c. The converse is

also true (and similarly easy): if x ∈ [n] and A is a nonempty closed subset of Γxk (in

Σx), then (Kx \Nx(A)c)∪A ∈M. (If A = ∅ then (Kx \Nx(A)c)∪A = Kx is maximal

intersecting but not in M, which does not contain stars.)

Let Q be the event that there are F ∈ M and x ∈ [n] for which Ax(F) is 2-linked

(in Σx),

δx(Ax(F)) > 1/(3k), (4.6)

and |H ∩ F| ≥ |H ∩ Kx|. Our main point, the aforementioned variant of (4.4), is

Pr(Q) = o(1). (4.7)

Before proving this (in Section 4.4), we show that it implies (4.4), by showing that

failure of (4.4) implies Q. Supposing (4.4) fails, choose F ∈M with |H∩F| maximum
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and fix x with dF (x) = ∆(F). Let A = Ax(F) and J = Jx(F). By (4.5) (and our

assumption that |H ∩ F| ≥ |H ∩ Ky| ∀y) we have

|H ∩A| ≥ |H ∩ J |. (4.8)

Note also that

|A| ≤ (k + 1)|F|/n < (k + 1)M/n, (4.9)

since (|F \A| =) ∆(F) ≥ k|F|/n (as is true for any F ⊆ K).

Suppose first that A is 2-linked in Σx. In this case we claim that (F , x) itself satisfies

Q, i.e. that (4.6) holds. Take G3 as in (4.2). If |F| > |G3|, then Theorem 4.2.2 gives

∆(F) > ∆(G3) ∼ 3M/4, whence |A| < (1 + o(1))M/4 and (4.6) (actually a little more)

is given by (4.1). If, on the other hand, |F| ≤ |G3|, then, noting that M−|G3| ∼M/(4k),

we have, using (4.5) and (4.9),

δx(A) = (M − |F|)/|A| > (2− o(1))(M − |G3|)/M ∼ 1/(2k).

Now suppose A is not 2-linked. Let A1, . . . , As be the 2-linked components (defined

in the obvious way) of A, and Ji = Nx(Ai)
c. Then Ji ∪ · · · ∪ Js is a partition of J .

Moreover, each Ai is closed, so that (see the paragraph following (4.5)) Fi := (Kx \

Ji)∪Ai ∈M for each i. Suppose w.l.o.g. that |A1| = maxi |Ai|. Then for i ≥ 2 we have

|Ai| ≤ |A/2| < (1/4 + o(1))M , implying (again using (4.1)) δx(Ai) > (log 2 − o(1))/k.

So we have Q if |H ∩ Ai| ≥ |H ∩ Ji| for some i ≥ 2; but if this is not the case then

(again using (4.5))

|H ∩ F1| − |H ∩ Kx| = |H ∩A1| − |H ∩ J1|

= |H ∩A| − |H ∩ J | −
∑
i≥2

(|H ∩Ai| − |H ∩ Ji|)

> |H ∩A| − |H ∩ J | = |H ∩ F| − |H ∩ Kx|,

contradicting the assumed maximality of |H ∩ F|.
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4.4 Main Point

4.4.1 More Set-Up

For the remainder of our discussion we work with a fixed x ∈ [n] and drop the super-

and subscripts x from our notation; so to begin, we set Σx = Σ and Γx` = Γ`. We will

use GA for the neighborhood of A ⊆ Γk in Σ and

δ(A) =
|GA|
|A|
− 1 (= δx(A)).

We extend H to Γk+1 by declaring that T ∈ H if and only if [n]\T ∈ H (so here T is

a (k+1)-set off x and [n]\T is a k-set on x); we may then forget about J(F) (= Jx(F))

and regard H as a subset of Γk ∪ Γk+1. Note that (cf. (4.5)) “|H ∩ F| ≥ |H ∩ Kx|” in

the definition of Q is then the same as “|H ∩ GA| ≥ |H ∩ A|” with A = F \ Kx and

(thus) GA = Jx(F)c.

For the proof of (4.7) we will bound the probability that Q occurs at our given x

with specified sizes of A and GA, and then sum over possibilities for these sizes. (Of

course we need a bound o(1/n) since we must eventually sum over x.) Thus we assume

throughout that we have fixed a, g with

δ :=
g − a
a

>
1

3k
, (4.10)

and write A = A(a, g) for the set of A’s satisfying

A is closed and 2-linked, |A| = a and |GA| = g. (4.11)

Notice that for A ∈ A we have

|∇(GA,Γk \A)| = (k + 1)g − ka

= (k + 1)(1 + δ)a− ka = (1 + (k + 1)δ)a.

Let Q(a, g) (= Qx(a, g)) be the event that there is some A ∈ A(a, g) with

|H ∩GA| ≤ |H ∩A|. (4.12)
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We show ∑
a,g

Pr(Q(a, g)) = o(1/n), (4.13)

which, since the union of the Q(a, g)’s is occurrence of Q at x, gives (4.7).

The bound (4.13) is (of course) the heart of the matter, and the rest of our discussion

is devoted to its proof. This turns out to be rather delicate, and a rough indication of

where we are headed may be helpful.

For A ∈ A we have

E|H ∩GA| − E|H ∩A| = δap,

so can rule out (4.12) if we can say that the quantities |H ∩GA| and |H ∩A| are close

to their expectations, where “close” means somewhat small relative to δap (≈ δa). The

problem (of course) is that though each of these individual events is likely, there are

too many of them to allow a simple union bound.

Our remedy for this is to exploit similarities among the A’s (and similarly GA’s,

but for this very rough description we stick to A’s) to avoid paying repeatedly for the

same unlikely events. To do this we specify each A ∈ A via several “approximations,”

beginning with a set SA for which A∆SA is fairly small, and then adding and subtracting

lesser pieces. It will then follow that |H ∩A| is close to its expectation provided this is

true of |H ∩B| for each of the relevant pieces B.

Thus we will want to say that, with B ranging over some to-be-specified collection of

subsets of Γk, it is likely that all |H∩B|’s are close to their expectations. Of course the

probability that this fails for a particular B grows with |B| (since the benchmark δap

does not change), so we would like to arrange that the larger B’s are not too numerous.

For example, the aforementioned SA’s will necessarily be large (of size roughly a), but

there will be relatively few of them, reflecting the fact that a single S will typically be

SA for many A’s. We may think of A as consisting of a large number of variations on a

relatively small number of themes, though as we will see, controlling these themes and

variations turns out to be not very straightforward.

Our approach has its roots in the beautiful ideas of A.A. Sapozhenko [26], which

were originally developed to deal with “Dedekind’s Problem” and related questions in
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asymptotic enumeration.

Proof of (4.13). As our fixed x plays no further role in what follows, we will feel free

to recycle and use “x” (along with u, v, y, z) to denote a general member of our ground

set, which we may now think of as [2k].

We divide the proof of (4.13) into two cases, large and small δ, beginning with the

second, which is by far the more interesting. (Our treatment of this case can be adapted

to work in general—actually with most of the contortions below becoming unnecessary

and/or vacuous—but this seems pointless given how much simpler the proof is for large

δ.)

4.4.2 Small δ

Assume then that δ ≤ 1 (say), and note that in this case (4.1) gives a > (4/e)k (which

is pretty far from the truth but we have plenty of room here). Before dealing with H

we will spend some time developing the aforementioned approximations to A and G.

For R ⊆ V := V (Σ), let N i(R) = {u ∈ V : ρ(u,R) ≤ i} (where, recall, ρ is graph-

theoretic distance). For A ∈ A (= A(a, g)), say a path is A-good if it is of the form

vx1yx2 with x1, x2 ∈ A (so in particular has length 3), and for v ∈ Γk+1, let f(v,A)

denote the number of A-good paths beginning with v. Fix a small ζ > 0, and set

ϑ = ζ/2 and

G0
A = {v ∈ GA : f(v,A) ≥ (1/4)k3−ζ}.

For T ⊆ Γk set WT = N3(T ) ∩ Γk+1 and

ST = {x : dWT
(x) ≥ k/2} (⊆ Γk). (4.14)

For T ⊆ A ∈ A, let FA,T = ∇(N(T ),Γk \A) and ZA,T = N(N2(T ) ∩A) ⊆WT . Notice

that w ∈ ZA,T if and only if either w ∈ N(T ) or there is a path xyzw with x ∈ T and

yz 6∈ FA,T (equivalently an A-good path from w to T ); in particular ZA,T is determined

by T and FA,T .

Lemma 4.4.1. There is a fixed K such that for each A ∈ A there is a T ⊆ A satisfying
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(T1) |T | ≤ Kak−3+ζ log k,

(T2) |FA,T | ≤ Kδak−1+ζ log k,

(T3) |G0
A \ ZA,T | ≤ Kak−2,

(T4) |WT \GA| < Kδakζ log k, and

(T5) |A \ ST | < Kδak−ϑ.

The following auxiliary definitions and lemma will be helpful in the proof of Lemma 4.4.1

and again later in the proof of Lemma 4.4.4. Fix A ∈ A, set GA = G and G0
A = G0,

and define

H = {y ∈ G : dA(y) < k1−ϑ},

B = {x ∈ A : dH(x) > k/2},

I = {y ∈ G \H : dA\B(y) < k1−ϑ/2}

and

C = {x ∈ A \B : dH∪I(x) > k/4}.

Lemma 4.4.2. With the above definitions, |H ∪ I| < O(δa), |C| < O(δak−ϑ) and

G \G0 ⊆ H ∪ I.

Proof. We have

(k + 1− k1−ϑ)|H| ≤ |∇(H,Γk \A)| ≤ |∇(G,Γk \A)| = (1 + (k + 1)δ)a,

(k/2)|B| < |∇(B,H)| < k1−ϑ|H|,

(k1−ϑ/2)|I| < |∇(I,B)| < k|B|/2

and

(k/4)|C| < |∇(C,H ∪ I)| < |H ∪ I|k1−ϑ,

implying |H| < (4 +o(1))δa (using (4.6)), |B| < (8 +o(1))δak−ϑ, |I| < (8 +o(1))δa and

|C| < (48 + o(1))δak−ϑ. This gives the first two assertions in the lemma. The third

is given by the observation that for y ∈ G \ (H ∪ I) the number of paths ywzx with

(w, z, x) ∈ (A \B)× (G \H)×A is at least (k1−ϑ/2)(k/2)k1−ϑ.
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Proof of Lemma 4.4.1. Here we will find it more convenient to use “big Oh” notation;

that is, we will prove the lemma with each of the bounds K ·X appearing in (T1)-(T5)

replaced by O(X). We first show existence of T satisfying (T1)-(T3) and then observe

that any such T also satisfies (T4) and (T5).

Let q = 16k−3+ζ log k and T = Aq. To show that there is a T satisfying (T1)-(T3),

it is enough to show that the stated bounds (again, in their “big Oh” forms) hold

for the expectations of the set sizes in question, since Markov’s Inequality then implies

existence of a T for which each of these quantities is at most three times its expectation.

This is of course true for E|T| = aq. For (T2) we have

E|FA,T| =
∑
x∈G

Pr(x ∈ N(T))dΓk\A(x)

≤ q
∑
x∈G

dA(x)dΓk\A(x)

≤ qk|∇(G,Γk \A)| < O(δak−1+ζ log k).

To bound the expectation for (T3), notice that for v ∈ G0, there are at least

(1/8)k3−ζ vertices x ∈ A for which x ∈ T implies v ∈ ZA,T . (This is true of any x

for which there is an A-good path from v to x and, since two vertices at distance 3

are connected by exactly two paths of length 3 in Σ, the number of such x’s is at least

f(v,A)/2.) The probability that such a v does not belong to ZA,T is thus at most

(1 − q)(1/8)k3−ζ
< k−2, so that E|G0 \ ZA,T| < gk−2 (which gives the bound in (T3)

since we assume g = O(a); of course the assumption isn’t really needed here, as we

could instead have arranged E|G0 \ ZA,T| < gk−3).

This completes the discussion of (T1)-(T3) and we turn to the last two properties

requested of T . We first observe that (T4) follows from (T2), since in fact

|WT \G| ≤ k|FA,T |.

To see this just notice that if w ∈ WT \G, then (since w ∈ WT ) there is a path xyzw

with x ∈ T and (therefore) y ∈ N(T ), but z 6∈ A (since w 6∈ G), so that yz ∈ FA,T (and

each such yz gives rise to at most k such w’s).
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For (T5), note that (according to the definition of ST in (4.14)) any x ∈ A \ ST

has at least k/4 neighbors in one of G \G0, G0 \WT . By Lemma 4.4.2, x’s of the first

type belong to B∪C and number at most O(δak−ϑ). On the other hand, by (T3) (and

(4.6)), the number of the second type is at most

(4/k)|G0 \WT |(k + 1) < O(ak−2) < o(δak−ϑ).

We think of WT in Lemma 4.4.1 as a first approximation to GA, and ZA,T as a

second approximation satisfying

ZA,T ⊆WT ∩GA (4.15)

that discards vertices that got into WT on spurious grounds. Similarly, the next lemma

prunes our first approximation, ST , of A to get a better second approximation.

Lemma 4.4.3. There is a fixed K such that for any A ∈ A and T ⊆ A satisfying (T4),

there is some U ⊆WT \GA with

(U1) |U | ≤ Kδak−1+ζ log2 k and

(U2) |(ST \A) \N(U)| ≤ Kδa.

The second approximation mentioned above is then ST \ N(U), which in particular

satisfies

ST ⊇ ST \N(U) ⊇ ST ∩A. (4.16)

Proof of Lemma 4.4.3. Here we again (as in the proof of Lemma 4.4.1) switch to

“big Oh” notation. Set G = GA, W = WT and S = ST . Let q = 4k−1 log k and

U = (W \G)q. By the definition of S = ST , each x ∈ S \A has at least k/4 neighbors

in one of W \G, G. Let

L = {x ∈ S \A : dW\G(x) ≥ k/4}.

Then |L| ≤ (4/k)|W \ G|(k + 1) = O(δakζ log k) (by (T4)). On the other hand, for

x ∈ L we have Pr(x 6∈ N(U)) ≤ (1− q)k/4 < k−1, so there is some U with

|L \N(U)| ≤ E|L \N(U)| < |L|/k = o(δa).
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Finally, since x ∈ (S \A) \ L implies dG(x) > k/4, we have

|(S \A) \ L| ≤ (4/k)|∇(G,Γk \A)| = 4(1 + (k + 1)δ)a/k = O(δa).

The lemma follows.

Now write K for the larger of the constants appearing in Lemmas 4.4.1 and 4.4.3.

For each A ∈ A fix some T = TA ⊆ A satisfying (T1)-(T5) and then some U = UA ⊆

WT \GA satisfying (U1)-(U2), and set: WA = WT , SA = ST , FA = FA,T , ZA = ZA,T ,

S′A = ST \N(U) and RA = R(A) = (TA, FA, UA). (We prefer RA but will use R(A) to

avoid double subscripts.) We may think of TA, FA, UA as “primary” objects, which we

will need to specify, and WA, SA, ZA, S
′
A as “secondary” objects, which are functions of

the primary objects.

Let R = {RA : A ∈ A}. For each R ∈ R fix some A∗ = A∗R ∈ A with RA∗ = R,

and let G∗R = GA∗ . If R = RA then we also set WR = WA (which is the same for all

A with RA = R), and similarly for the other objects subscripted by A in the preceding

paragraph. Now suppose A ∈ A, G = GA, R = RA, A∗ = A∗R and G∗ = G∗R. Notice

that, given A∗ and G∗,

A is determined by A \A∗ and G ∩G∗. (4.17)

Actually A is determined by B, GB, A \B and G∩GB whenever A,B ⊆ Γk are closed

with G = GA, since

A ∩B = {x ∈ B : N(x) ⊆ G ∩GB}

(namely, x ∈ A if and only if N(x) ⊆ G, which for x ∈ B is the same as N(x) ⊆ G∩GB).

We now turn to H. Note that in what follows we assume the constant ε (= 1 − p)

is small enough to support our argument, making no attempt to optimize.

For η > 0 and B ⊆ Γk, set

EB,η = {||H ∩B| − |B|p| > ηδap}. (4.18)
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(The second p on the right-hand side is unnecessary but we keep it as a reminder of

where we are: if p were smaller, then this factor would be relevant.) Say a collection of

sets, B, is η-nice if

Pr(∪B∈BEB,η) < exp[−Ω(ak−2)]. (4.19)

Fix a smallish η; for concreteness, say η = 0.08 (we need 6η < 0.5). The next,

regrettably (but as far as we can see unavoidably) elaborate statement is most of the

story.

Lemma 4.4.4. The following collections are η-nice:

(a) {WR : R ∈ R};

(b) {SR : R ∈ R};

(c) {WR \ ZR : R ∈ R};

(d) {SR \ S′R : R ∈ R};

(e) {S′R \A∗R : R ∈ R};

(f) {A∗R \ S′R : R ∈ R};

(g) {G∗R \ ZR : R ∈ R};

(h) {A \A∗R(A) : A ∈ A};

(i) {A∗R(A) \A : A ∈ A};

(j) {GA \G∗R(A) : A ∈ A};

(k) {GA ∩ (G∗R(A) \ ZR(A)) : A ∈ A}.

Before proving this, we show that it supports (4.13):

Corollary 4.4.5. The collections A and {GA : A ∈ A} are (6η)-nice.

Of course this gives the relevant portion of (4.13), since Q(a, g) implies that for some

A ∈ A either |H ∩ A| ≥ |A|p+ δap/2 or |H ∩GA| ≤ |GA|p− δap/2, each of which (by

Corollary 4.4.5) occurs with probability exp[−Ω(ak−2)] and∑
a>(4/e)k

∑
g≤2a

exp[−Ω(ak−2)] = o(1/n).
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Proof of Corollary 4.4.5. This is just a matter of building the relevant sets, starting

from the collections in Lemma 4.4.4 and applying the (trivial) observations:

if {KB : B ∈ B} is α-nice, {LB : B ∈ B} is β-nice and KB ∩ LB = ∅ ∀B ∈ B, then

{KB ∪ LB : B ∈ B} is (α+ β)-nice;

if {KB : B ∈ B} is α-nice, {LB : B ∈ B} is β-nice and KB ⊇ LB ∀B ∈ B, then

{KB \ LB : B ∈ B} is (α+ β)-nice.

Using these (in combination with Lemma 4.4.4), we find that:

{ZR = WR \ (WR \ ZR) : R ∈ R} is (2η)-nice;

{S′R = SR \ (SR \ S′R) : R ∈ R} is (2η)-nice;

{A∗R = (S′R \ (S′R \A∗R)) ∪ (A∗R \ S′R) : R ∈ R} is (4η)-nice;

{A = (A \A∗R(A)) ∪ (A∗R(A) \ (A∗R(A) \A)) : A ∈ A} = A is (6η)-nice;

{GA = (GA \G∗R(A)) ∪ (GA ∩ (G∗R(A) \ ZR(A))) ∪ ZR(A)) : A ∈ A}

= {GA : A ∈ A} is (4η)-nice.

Proof of Lemma 4.4.4. For the rest of this discussion we write EB for EB,η. We want

to show that (4.19) holds for each of the collections B appearing in (a)-(k). This is

all based on the union bound: in each case we bound the size of the B in question

and show, using what we know about the sizes of members of B, that Pr(EB) is much

smaller than |B|−1 for each B ∈ B.

We are interested in bounding probabilities of the type

Pr(||H ∩B| − |B|p| > ηδp)

using Theorem 2.2.4; but, since p = 1 − ε ≈ 1, we can do a little better by applying

these theorems with ξ = |B \H| (which has the distribution B(|B|, ε)), using the trivial

observation that, for any λ > 0 (always equal to ηδap in what follows),

Pr(||H ∩B| − |B|p| > λ) = Pr(||B \ H| − |B|ε| > λ). (4.20)
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(For most of the argument this change will make little difference, but it will be crucial

when we come to items (h)-(k).)

Items (a) and (b). To make things easier to read, set β = Kak−3+ζ log k (the bound in

(T1) of Lemma 4.4.1). The number of possibilities for each of WR, SR is bounded by

the number of possible TR’s, which (by (4.3)) is at most

exp[β log(eN/β)] < exp[β · 4k] (4.21)

(recall N =
(

2k
k

)
). On the other hand (T4) and |ST | ≤ 2(k + 1)|WT |/k (see (4.14))

imply that, for any T ,

|WT |, |ST | < O(δakζ log k) + g = O(δakζ log k + a), (4.22)

so that Theorem 2.2.4 gives (for any T )

max{Pr(EWT
),Pr(EST )} < exp[−Ω(η2δ2a/max{δkζ log k, 1})]. (4.23)

(In a little more detail: we apply the theorem—using (4.20) if desired though, as noted

above, it is not really needed here—with λ = ηδap and m = O(δakζ log k+a) to bound

the left side of (4.23) by exp[−Ω(λ2/max{mε, λ})], and observe that λ2/max{mε, λ} =

Ω(η2δ2a/max{δkζ log k, 1}).)

That the collections in (a) and (b) are η-nice now follows upon multiplying the

bounds in (4.21) and (4.23) (and using (4.6)).

Item (c). Since each of ZR, WR is determined by TR and FR, the number of possibilities

for WR \ ZR is at most the product of the bound in (4.21) (which will be negligible

here) and the number of possibilities for FR given T = TR. The latter is at most the

number of subsets of ∇(N(T ),Γk) of size less than c := Kδak−1+ζ log k (the bound in

(T2)), which, since

|∇(N(T ),Γk)| ≤ k2|T | < Kak−1+ζ log k =: λ (4.24)

(see (T1)), is less than

exp[c log(eλ/c)] = exp[O(δak−1+ζ log k log(e/δ))]

= exp[O(δak−1+ζ log2 k)]. (4.25)
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(Here we again use (4.3) (for the initial bound) and (4.6) (for the second line). Strictly

speaking, the application of (4.3) is only justified when δ ≤ 1/2; but for larger δ we can

just use the trivial bound 2λ, which for such δ is smaller than the expression in (4.25).)

On the other hand, using (T2), we have

|WR \ ZR| ≤ k|FR| = O(δakζ log k).

(For the first inequality, fix A with R(A) = R and note that for any w ∈ WR \ ZR

(= WA \ ZA) there is a path xyzw with x ∈ T (= TA)—such a path exists since

w ∈WA—and yz ∈ FA (since otherwise y ∈ A and w ∈ ZA).)

Thus (for any R)

Pr(EWR\ZR) < exp[−Ω(η2δ2a2/(δakζ log k))]

= exp[−Ω(η2δa/(kζ log k))],

which, combined with the (relatively insignificant) bounds in (4.21) and (4.25), gives

∑
R Pr(EWR\ZR) = exp[−Ω(η2δa/(kζ log k))].

Items (d)-(g). For each of these the number of sets in question is |R|, the number

of possibilities for (TR, FR, UR). As already observed, the number of (TR, FR)’s is

at most the product of the bounds in (4.21) and (4.25). On the other hand, with

c = Kδak−1+ζ log2 k (the bound on |U | in (U1)) and λ = Kδakζ log k (the bound on

|WT \GA| in (T4))—so c and λ have changed from what they were above—the number

of possibilities for UR given TR is at most

exp[c log(eλ/c)] = exp[O(δak−1+ζ log3 k)] (4.26)

(which dominates the bounds from (4.21) and (4.25)).

We next need to bound the sizes of the various sets under discussion. We have

|SR \ S′R| ≤ (k + 1)c = O(δakζ log2 k) (4.27)

(again, from (U1))

|S′R \A∗R| = O(δa) (4.28)
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(using (U2));

|A∗R \ S′R| = O(δak−ζ) (4.29)

(using (T5) and the fact—see (4.16)—that A∗R \ S′R = A∗R \ SR); and

|G∗R \ ZR| ≤ |(G∗R)0 \ ZR|+ |G∗R \ (G∗R)0| = O(ak−2 + δa) = O(δa) (4.30)

(using (T3), Lemma 4.4.2 and (4.6); note that this bound actually applies to |GA \ZR|

for any A with R(A) = R).

The largest of the preceding bounds is the O(δakζ log2 k) in (4.27); so for each of

the sets B appearing in (d)-(g) (i.e. B = SR \ S′R in (d) and so on), we have

Pr(EB) < exp[−Ω(η2δ2a2/(δakζ log2 k)]

= exp[−Ω(η2δa/(kζ log2 k))]; (4.31)

and, since η2δa/(kζ log2 k) (from the exponent in (4.31)) is much larger than the expo-

nent in (4.26), it follows that each of the collections in (d)-(g) is nice.

Items (h)-(k). Here we first dispose of the sizes of the individual sets, before turning

to the more interesting problem of bounding the sizes of the collections in question.

For (h) and (i), notice that for any A,A′ ∈ A with R(A) = R(A′) we have

|A \A′| ≤ |A ∩ (S′R \A′)|+ |A \ S′R| = O(δa+ δak−ζ) = O(δa)

(using (U2) and (T5), as earlier in (4.28) and (4.29)); in particular this bounds the sizes

of the sets in (h), (i) (namely |A \ A∗R| and |A∗R \ A| where R = R(A)) by O(δa). For

(j) and (k), a similar bound—that is,

max{|GA \G∗R|, |GA ∩ (G∗R \ ZR)|} = O(δa)

(again, for A with R(A) = R) follows from (4.30) (which, as noted there, is valid with

G∗R replaced by any GA with R(A) = R) and the fact (see (4.15)) that GA ⊇ ZR

whenever R(A) = R.

We now turn to the sizes of the collections in (h)-(k), each of which is at most |A|.

We will show

|A| < exp[O(δa)]. (4.32)
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Before doing so we observe that this is enough to show that the collections in (h)-(k)

are η-nice; namely, for B belonging to any of these collections (so |B| = O(δa)) and

small enough ε, Theorem 2.2.4 (applied with m = O(δa) and q = ε—and now really

using (4.20)—gives

Pr(EB) < exp[−Ω(ηδa log(η/ε)].

(Here |H \B| < |B|ε− ηδap is simply impossible, so we are just using

Pr(|H \B| > |B|ε+ ηδap) < Pr(|H \B| > ηδap) < exp[−ηδap log(ηδapemε )].)

Proof of (4.32). According to (4.17), we may bound |A| by the number of possibilities

for the pair (A\A∗R, GA∩G∗R), so by our earlier bound on |R|—essentially (4.26)—times

the number of possibilities for (A\A∗R, GA∩G∗R) given R. So it is enough to show that,

once we know R—and therefore A∗R and G∗R—the number of choices for each of A\A∗R,

GA ∩G∗R is less than exp[O(δa)].

The second of these is easy: since (by (4.15)) each of GA, G
∗
R contains ZR (which is

determined by R), the number of possibilities for G ∩G∗R given R (and therefore G∗R)

is at most exp2[|G∗R \ZR|], and we have already seen in (4.30) that |G∗R \ZR| = O(δa).

The case of A \A∗R is more interesting. Here we may decompose

A \A∗R = (A ∩ (S′R \A∗R)) ∪ (A \ (S′R ∪A∗R))

and consider the two terms on the right-hand side separately. The number of possibil-

ities for the first term is at most exp2[|S′R \A∗R|] (again, given R, which determines S′R

and A∗R), while (U2) (or (4.28)) gives |S′R \A∗R| = O(δa).

So it is enough to show that the number of possibilities for A\(S′R∪A∗R) is exp[o(δa)].

In fact, it is enough to prove such a bound on the number of possibilities for A \ S′R
which determines A \ (S′R ∪ A∗R) since we know A∗R. Here we recall that (4.16) gives

A\S′R = A\SR (so we may use these interchangeably, and similarly for A∩S′R = A∩SR),

and that—crucially—(T5) gives

|A \ SR| = O(δak−ϑ). (4.33)
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Note that this final point differs from its earlier counterparts in the present argument

in that we now have less control over the size of the universe from which the set in

question (i.e. A \SR) is being drawn (in contrast to, for example, FR in (c), which was

drawn from ∇(N(T ),Γk \T ), whose size was bounded in (4.24), or, in the present case,

A∩ (S′R \A∗R), which is drawn from the quite small S′R \A∗R). Thus, for example, if we

try to apply (4.3) with α the bound in (4.33) and β = N (=
(

2k
k

)
), then we can only say

that the number of possibilities for A \ SR is less than exp[O(δak−ϑ) log(eN/δak−ϑ)],

which for somewhat small a may be far larger than the desired exp[O(δa)]. This little

difficulty will be handled by Proposition 4.2.4.

Write t (= O(δak−ζ)) for the bound on |A \ SR| given in (4.33). Denote by Λ the

(“Johnson”) graph on Γk in which two vertices (a.k.a. k-sets) are adjacent if they are

at distance 2 in Σ, and set d = k2 (so Λ is d-regular). Since our A’s induce connected

subgraphs of Λ (another way of saying they are 2-linked), there is, for each A under

discussion, a rooted forest with roots in SR ∩ A = S′R ∩ A, set of non-roots equal to

A \ SR, at least one non-root in each component, and at most t vertices overall; thus

we just need to bound the number of such forests.

(Note that existence of said forest requires SR ∩ A 6= ∅, which, since we assume δ

is not too large, holds because the bound in (T5) is less than a. If SR ∩ A = ∅—as

can happen for large δ—then the forest has a single root, the number of possibilities

for which we can only bound by N (in place of the bound for (ii) below). This change

would cause trouble in the present regime, but not for large δ, where, as will appear

below, our probability bounds improve.)

For the desired bound we may think of specifying a forest as above by specifying:

(i) the number, say q ≤ t (or q ≤ t/2, but this doesn’t matter), of roots;

(ii) the actual roots, x1, . . . , xq ∈ S′R ∩A;

(iii) for each i ∈ [q], the size, say αi, of the component (tree) rooted at xi; and

(iv) the components themselves.

We may bound the numbers of possibilities in (ii), (iii) and (iv) by
(

(1+O(δ))a
q

)
,
(
t
q

)
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and (ed)t (respectively). The first of these derives from (U2), according to which we

have |S′R| < a + O(δa); the second is the number of sequences (α1, . . . , αq) of positive

integers summing to at most t (a slight overcount since our αi’s are all at least 2); and

the third follows from Proposition 4.2.4. Thus the number of forests is at most

∑
q≤t
(

(1+O(δ))a
q

)(
t
q

)
(ed)t = exp[O(t log k)] = exp[o(δa)]. (4.34)

4.4.3 Big δ

Finally we turn to the case of large δ (δ > 1), showing (for any a, g with δ = (g−a)/a >

1)

Pr(Q(a, g)) < εg/3, (4.35)

which, with the trivial g ≥ k, bounds the contribution to (4.13) of the terms under

discussion by ∑
g≥k

∑
a<g

εg/3 = o(1/n).

To begin, notice that in the present situation Theorem 2.2.4 bounds the probability

of (4.12) (for a given A ∈ A(a, g)) by

Pr(|GA \ H| > g/2) < (2eε)g/2. (4.36)

On the other hand, to bound the number of possibilities for A (i.e. the size of

A(a, g)), we may think of specifying A via the following steps.

(i) Choose T ⊆ G = GA of size C(g/k) log k such that, with

S = ST = {x ∈ Γk : dT (x) > (C/2) log k},

we have

|A \ S| < k−2a (4.37)

and, with Z = Z(G) = {x : dG(x) ≥ k/4}

|S \ Z| < k−1g (4.38)
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(The proof of the existence of such a T is similar to—easier than—the proof of Lemma 4.4.1,

and we omit the details, just noting that, since S \ Z ⊆ N(G), fewer than gk vertices

are relevant to (4.38).)

Notice that by (4.38) (and the definition of Z), we have

|S| ≤ (4/k)g(k + 1) + g/k = O(g). (4.39)

(ii) For each x ∈ A \ S, choose some neighbor of x (necessarily in G) and let T ′ be

the collection of these neighbors; thus (recalling (4.37)) we have |T ′| ≤ |A \ S| < k−2a.

Notice also that T ∪ T ′ is 4-linked (by Proposition 4.2.3, using the fact that A is 2-

linked).

(iii) Finally, choose A from S ∪N(T ′).

We should then bound the number of ways in which these steps can be carried out:

(i) Since T ∪T ′ is 4-linked Proposition 4.2.4) (applied to the graph on Γk with adjacency

meaning distance in Σ at most 4, a regular graph of degree d < k4) bounds the number

of choices for T ∪ T ′ by

N exp[O((g/k) log k) log d] < N exp[C(g/k) log2 k]

(where the N is for a choice of some vertex of T ∪ T ′).

(ii) The number of choices for T ′ \ T given T ∪ T ′ is exp[O(k−2a log(gk/a)]. Note that

once we know T ∪ T ′ and T \ T ′, we also know T and thus S.

(iii) Given S, there are exp[O(a log(g/a)] choices for A ⊆ S ∪N(T ′).

Of course for sufficiently (not very) small ε, all of these bounds are dominated by

the one in (4.36), so we have (4.35).

4.5 p > 3/4

Here we justify the assertion following Theorem 1.0.4, showing that for fixed p < 3/4

(say p = 3/4− ε), a.s. no Hx is a maximal clique (so H is not EKR). This is a simple

application of the second moment method, as follows.
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Fix x and for A ∈ Kx set E(A) = {Hx ∪ {A} is a clique of H} and XA = 1E(A).

Set X =
∑
{XA : A ∈ Kx}. Then

µ := EX =

(
2k

k

)
p(1− p)k > (1 + 4ε− o(1))k.

On the other hand, writing A ∼ B if |A ∩B| = k − 1, we have

EXAXB =

 p2(1− p)2k−1 if A ∼ B,

EXAEXB if A 6∼ B 6= A,

which, with A,B running over Kx, yields

Var(X) =
∑
A

∑
B

cov(XA, XB)

≤
∑
A

EXA +
∑
A

∑
B∼A

EXAXB

= µ[1 + k2p(1− p)k−1].

Thus

Pr(Hx is a maximal clique of H) = Pr(X 6= 0)

≤ Var(X)

µ2
< (1 + 4ε− o(1))−k

and (now letting x vary)

Pr(some Hx is a maximal clique of H) < n(1 + 4ε− o(1))−k = o(1).

A similar discussion explains the comment following Theorem 1.0.4 (that a positive

answer to Question 1.0.5 is not very satisfactory for n ≥ 2k + 2). For example for

n = 2k+2, arguing as above—now with special treatment for A,B ∈ Kx with |A∩B| ∈

{k − 1, k − 2}—shows that a.s. no Hx is a maximal clique if p < C/k for a suitable

constant C.
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