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ABSTRACT OF THE DISSERTATION

Non-contiguous Spectrum Access and Small Cell Network

Design

By MUHAMMAD NAZMUL ISLAM

Dissertation Director:

Dr. Narayan B. Mandayam

The explosive demand for high data rate wireless services cannot be sustained through

improvements in the PHY layer technologies alone. Opportunistic use of additional

bandwidth through dynamic spectrum access and densification of wireless networks

are necessary to meet this increasing demand, and this dissertation covers both these

aspects.

The first part of the thesis focuses on a cooperative spectrum access scenario where

nodes exchange non-contiguous spectrum chunks as incentives for cooperative forward-

ing. An autonomous network is considered where each node receives an initial amount

of bandwidth, and uses this bandwidth as a flexible incentive for two hop relaying.

This dissertation proposes an incentivized forwarding based resource allocation algo-

rithm which maximizes the global utility of the network while preserving the initial

utility of each cooperative node. The second part of thesis studies power optimal non-

contiguous spectrum access. Non-Contiguous Orthogonal Frequency Division Multiple

Access (NC-OFDMA), a popular technique in software defined radio research, accesses

non-contiguous spectrum chunks by nulling intermediate spectrum. However, nulling

subcarriers increases the sampling rate (spectrum span) which, in turn, increases the

ii



power consumption of radio front ends. This dissertation characterizes this trade-off

from a cross-layer perspective, specifically by showing how the slope of ADC/DAC’s

power consumption versus sampling rate curve influences scheduling decisions in a

multi-hop network.

The final part of the thesis focuses on two aspects of small cell network design:

(i) a prototype wireless channel measurement system that allows network operators

to measure path loss and multipath fading characteristics between multiple candidate

small cell locations and their potential users; and (ii) the placement of aggregator

nodes which would aggregate multiple small cells data and transport it to macrocell,

specifically joint cost optimal aggregator node placement, power allocation, channel

scheduling and routing for the wireless backhaul network.
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Chapter 1

Introduction

The demand for wireless services is becoming much greater than that can be accommo-

dated by the currently available spectrum. Some experts predict a 1000 fold increase in

data traffic by 2020 [11]. Improvements at the physical layer alone cannot sustain such

high data rates [12]. Extreme densification of wireless networks [13] (e.g. small cells)

and the use of additional bandwidth (e.g. TV white space [14], 3.5 GHz [15], microwave

and millimeter wave [16]) are necessary to meet this increasing demand. This thesis

focuses on both these aspects.

The first two chapters of this thesis design efficient algorithms to utilize these ad-

ditional spectrum chunks in a cooperative and non-cooperative manner. The last two

chapters focus on designing different aspects of small cell networks [15].

1.1 Bandwidth exchange based cooperative forwarding

We start our work by investigating how efficient exchange of bandwidth increases per-

formance in a cooperative network. The benefits of cooperative forwarding have been

well documented in wireless communications literature [17, 18]. However, forwarding

always incurs additional costs, e.g., power and/or delay. A forwarder node’s data rate

may drop if it has to relay the sender node’s data. Existing cooperative communications

literature includes several incentive based mechanisms to encourage forwarder nodes to

cooperate. These techniques include pricing [19], reputation [20] and credit [21] based

cooperative forwarding. However, these mechanisms require a stable economy or a

shared understanding of what things are worth, which might not be realizable in a

dynamic wireless network.
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In light of this, the authors of [22] developed a bandwidth exchange (BE) enabled

incentive mechanism where nodes offer a portion of their allocated bandwidths to other

nodes as immediate incentives for relaying. The authors assumed that nodes can ex-

change non-contiguous spectrum chunks with each other and thereby improve perfor-

mance through cooperative forwarding. They used a Nash bargaining solution based

resource allocation and a heuristic relay selection policy in their work.

We use the BE mechanism as a starting point, and in this part of our work, we fo-

cus on the distributed joint relay selection and resource allocation in the α-fair network

utility maximization and outage probability reduction of the BE enabled network. We

consider an N node autonomous network where each node receives an initial amount

(equal, optimal based on direct path transmission or arbitrary) of bandwidth and con-

nects directly to an access point (AP) / base station (BS). We focus on a two-hop

incentivized cooperative forwarding scheme where a sender node provides bandwidth

as an incentive to a forwarder node for relaying its data to an AP/BS. In this con-

text, we design algorithms for optimal bandwidth exchange and sender-forwarder pair

selection in the network. We also implement time exchange algorithms among four

software defined radios of ORBIT [23] testbed. In this setup, we implement algorithms

for optimal time slot exchange and sender-forwarder pair selection among these four

nodes.

1.1.1 Related Work and Our Contributions

Our contributions can be summarized as follows. First, we consider incentivized relaying

in a network setting where each node has been allocated an initial amount of bandwidth.

Previously, the authors of [24] and [25] considered incentivized forwarding in a cognitive

radio network where only the primary users initially receive resources and later transfer

some of their resources to the secondary users as incentives for relaying. In contrast, our

work focuses on distributed incentivized two-hop relaying in an autonomous network

where a centralized algorithm might be infeasible due to the associated long estimation

delay and high complexity.
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Second, our proposed decode & forward (DF) BE enabled resource allocation maxi-

mizes the summation of the utilities while preserving the initial utilities of the individual

nodes. Previously, the authors of [26] proposed a similar half duplex DF relaying ap-

proach. However, they considered a commercial relay network where the relay does not

have its own data [26]. To the best of our knowledge, our proposed BE based resource

allocation algorithm has not been investigated before.

Third, our definition of link weight in the use of MWM is different from that of

existing literature. Inspired by the seminal work on maximum weighted scheduling [27],

most of the work on MWM based scheduling have defined link weights as the differential

backlog size of that particular link [28, 29]. Based on this definition and using the

network layer capacity perspective, the MWM algorithm of these works finds the set

of links that will be activated at each slot [30, 31]. However, we adopt an information

theoretic capacity perspective in our work. We define the link weights of the MWM

graph as the utility gain that a DF relaying enabled cooperative pair offers to the system.

Therefore, the ‘matched’ nodes of the MWM algorithm communicate with the AP using

a DF cooperation strategy whereas, the ‘unmatched’ nodes transmit to the AP without

cooperating with any other node. In this regards, our relay selection approach is closer

to the work of [32] where the authors defined link weights of each cooperative pair as the

energy savings of cooperation over non-cooperation. However, [32] considered energy

minimization from a bit error rate (BER) perspective whereas, we focus on α-fair NUM

from capacity perspective.

If two nodes exchange their originally allotted bandwidth slots to implement co-

operative forwarding, they have to utilize non-contiguous spectrum chunks to trans-

mit or receive data. This leads us to the following question: how do nodes access

non-contiguous spectrum chunks? What are the advantages and pitfalls of the popular

mechanisms that are commonly used in non-contiguous spectrum access? While finding

answers to the two questions mentioned above, we realize that non-contiguous spectrum

access is useful not only in a cooperative forwarding setup, but also in most dynamic

spectrum access scenarios.
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Figure 1.1: Left subfigure shows the number of available TV channels [2] in seven fastest growing
cities of USA [3]. Right subfigure shows the number of non-contiguous spectrum chunks among
these TV channels in these cities.

1.2 Power Optimal Non-contiguous Spectrum Access

The FCC has opened up 300 MHz in TV bands [14] and plans to open up an addi-

tional 500 MHz by 2020 [15] to meet the increasing wireless demand. These channels

will be license-by-rule; i.e., any radio can use these channels if it abides by the FCC

specifications [15]. If uncoordinated networks (e.g. different broadband wireless service

providers) use these channels, they will have to adjust spectrum usage according to

their individual traffic demands. As a result, the available spectrum will become par-

titioned into a set of non-contiguous segments. For some bands, like white space [14],

the available spectrum itself is non-contiguous. Fig. 1.1 shows how the number of

non-contiguous spectrum chunks varies across seven fastest growing cities of USA [3].

Multi-Channel Multi-Radio (MC-MR) technology allows nodes to simultaneously

access multiple fragmented spectrum chunks [33, 34]. However, MC-MR suffers from

its traditional hardware based technology. The number of non-contiguous spectrum

chunks that a fixed MC-MR radio can access is limited by the number of available

radio front ends. In contrast, software defined radio based Non-Contiguous Orthogonal

Frequency Division Multiple Access (NC-OFDMA) technology allows nodes to transmit
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Figure 1.2: Advantages and drawbacks of NC-OFDMA in multi-hop networks

in these non-contiguous spectrum chunks with a single radio front end. Nodes can

null interference-limited channels in NC-OFDMA networks. NC-OFDMA also reduces

transmission power of the nodes by enabling them to select better channels. Hence, NC-

OFDMA has received significant attention in cognitive radio research [35–40]. However,

nulling unwanted subcarriers increases the spectrum span and the sampling rate of

nodes, since the sampling rate should be at least twice the spectrum span. This, in

turn, increases the circuit power consumption of the network.

Fig. 1.2 illustrates the benefits and this inherent challenge of NC-OFDMA in a two-

hop network. Node A transmits to the AP via node B. Node B transmits directly to

the AP. There are three channels: 1, 2 and 3. Node X, an external interferer, transmits

in channel 2. Node B can use NC-OFDMA, transmit in channel 1 and 3 (node A

transmits in channel 2) and place null subcarrier in interference limited channel 2. In

this scenario, Node B spans 3 channels, instead of 2.

It is well known that the circuit power consumptions of ADC and DAC increase

linearly and exponentially with sampling rate and the number of quantization bits

respectively [5, 41]. As software defined radios continue to go for higher quantization

resolution, the ADC and DAC that are used in the radio circuits will dominate the

amount of power consumed. A comparison between Table 1.1 and Table 1.2 shows

that power consumption of some commercial ADCs is more than 10 dB higher than
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Device Device Max. Sampling Power
Name Type Rate (MS/s) Dissipation (mW)

AD 9777 [7] DAC 150 1056

ADS62P4 [9] ADC 125 908

ADC 9467B [42] ADC 250 1333

Table 1.1: (Maximum Sampling Rates and Power Dissipation of Different Commercial ADC
and DAC)

Device Allowed Operating
Type Power (mW) Frequency (MHz)

Fixed 4000 54 - 698

Portable 100 512-698

Table 1.2: Maximum Allowed Power and Operating Frequencies in IEEE 802.22 standard [1]

the maximum allowed transmission power for portable devices in the 802.22 standard.

On the one side, NC-OFDMA reduces transmission power by selecting channels with

better link gains, while on the other side, this increased spectrum span increases circuit

power consumptions of the transceiver. Besides, each ADC/DAC has its maximum

sampling rate. A single front end radio might not even be able to occupy two non-

contiguous channels that are far apart from each other. We investigate this trade-

off between transmission power reduction and circuit power increase and additional

hardware constraints in the context of cross-layer optimization of NC-OFDMA based

wireless networks.

Specifically, we ask the following question in this work: How can single front end

radio based nodes of a multi-hop network access non-contiguous spectrum chunks? We

investigate this question from a system power perspective and find that scheduling a

small subset of channels may outperform traditional transmit power minimization based

approaches since it consumes lesser circuit power. Our algorithm selects scheduling

variables based on the slope of the ADC & DAC’s power consumption versus sampling

rate curves. We show two special sub-cases of this finding. We find that if the slopes

of ADC and DAC’s power consumption curves are almost flat, our algorithm converges

to transmission power minimization based scheduling algorithms. If the slopes of ADC

& DAC’s power consumption versus sampling rate curves are very high, our algorithm
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selects the channel with the highest link gain. For commercial ADC & DACs whose

slopes lie between these two extreme cases, our algorithm selects channels that minimize

the summation of transmit and circuit powers of the network.

Our findings regarding the influence of NC-OFDMA on ADC & DAC’s circuit power

consumption leads us to investigate system power consumption in MC-MR platforms.

In the second part of this chapter, we focus on a point-to-point link where both the

transmitter and the receiver are equipped with multiple front ends. In this context, we

perform joint optimal power allocation and scheduling in each front end of the trans-

mitter and the receiver to minimize the system power of the whole network. Theoretical

analysis and simulation results suggest that, in a practical setting, each front end of an

MC-MR enabled node should access “nearby” non-contiguous spectrum chunks using

NC-OFDMA.

1.2.1 Related Work

The authors of [33, 34] characterized the capacity region of an MC-MR based multi-

hop network. The authors of [43, 44] focused on software defined radio based multi-

hop networks and performed cross layer optimization using a protocol and signal-to-

interference-plus-noise-ratio model respectively. Shi and Hou extended the work of [43]

and provided a distributed algorithm in [45]. However, none of these works focused on

total system power, i.e., summation of transmit and circuit power, and addressed how

spectrum fragmentation influences cross-layer decisions.

Consideration of system power has been gaining attention in energy efficient wire-

less communications literature [46]. Cui et. al. focused on system energy constrained

modulation optimization in [5]. Sahai et. al. investigated system power consumption,

especially decoder power consumption, in [47]. Isheden and Fettweis assumed circuit

power to be a linear function of the data rate [48]. All these works focused on single

transceiver pair. Our approach differs from these works in the following way: in NC-

OFDMA technology, ADC and DAC consume power not only for the used channels (i.e.

transmitted data) but also for the nulled channels. Our work considers the power con-

sumption related with spectrum span and investigates the performance of NC-OFDMA
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based multi-hop networks.

The impact of hardware constraints on the performance of NC-OFDMA networks

was previously studied in [49, 50]. The authors of [49] performed cross-layer resource

allocation when each node’s maximum spectrum span is limited by its ADC/DAC.

The authors of [50] investigated how guardband, a requirement to reduce cross-band

interference, affects the performance of NC-OFDMA based distributed transceiver pairs.

Our work incorporates the bundle constraint and uses system power to investigate the

performance of NC-OFDMA based multi-hop networks.

Time and frequency mismatch affect NC-OFDMA networks more severely due to

their use of a large number of nulled sub-carriers. Therefore, several researchers have

implemented different techniques to reduce interference between unsynchronised NC-

OFDMA nodes. The authors of [37] have used adaptive multi-bank stop-band filters

to reduce interference of unwanted channels. The authors of [36] have used wider

guard bands to reduce leakage power into neighbouring channels. We do not focus

on synchronization techniques and testbed implementation of NC-OFDMA nodes in

our work. What we focus on, instead, is the cross-layer resource allocation of an NC-

OFDMA network with a system power perspective. Interested readers are suggested to

go through [35–37, 51] to understand the implementation and synchronization details

of NC-OFDMA technology.

Up to now, we have focused on the efficient use of additional bandwidth to im-

prove perforamce – both in terms of bandwidth exchange in cooperative networks and

non-contiguous spectrum access in non-cooperative networks. Apart from looking for

additional spectrum, future network designers will have to focus their efforts on reduc-

ing cell sizes to improve the signal-to-noise-ratio between base station and users and to

allow more frequency reuse in the system design [12]. This leads us to investigate two

different aspects of small cell network design. We introduce these aspects of our work

in the following two sections.
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Figure 1.3: Necessity of wireless backhaul in urban small cell networks. This figure is reproduced
from [4]

1.3 Wireless Backhaul Node Placement for Small Cell Networks

This part of the thesis focuses on the backhaul design for small cell networks. Small

cells come with a significant challenge of providing backhaul to transport data to(from)

a gateway node (i.e., a node with existing fiber point, often co-located with a macrocell)

in the core network. Fiber based backhaul offers the high data rates needed to meet this

requirement, but is costly [52] and time-consuming to deploy, if not already available.

Wireless backhaul can be a valuable option in this regard. One needs to utilize

the available bands judiciously to attain the maximum advantage of wireless backhaul.

There are multiple candidate bands for wireless backhaul: first, sub-6 GHz band that

is useful in non-line-of-sight (NLOS) point-to-multipoint scenarios, microwave band

(6−42 GHz) that is useful in line-of-sight (LOS) point-to-point scenarios and is currently

going through experimental research in NLOS scenarios [53], and millimetre wave band

(60, 70 and 80 GHz) that is recently being considered for commercial use in LOS

scenarios [16,52]. Small cells that are located at lamp posts, street corners, low rooftops,

etc., may not have line-of-sight (LOS) path to the gateway nodes. An effective way to

utilize the available bands for wireless backhaul is to place aggregator nodes on top of

tall buildings that are located close to small cells. Aggregator nodes can provide high

data rate to multiple small cells in NLOS paths, sustain the same data rate to gateway

nodes using LOS paths and take advantage of all available bands.

Fig. 1.3 shows the importance of aggregator nodes. The macrocell is located at the

second building from the left and it has access to a fiber connection. The red bubbles
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denote coverage of the small cells. The small cells located on the left side can directly

communicate with the macrocell. The small cells located on the right side do not have

good one-hop wireless links with the macrocell and require routing through backhaul

nodes to reach the macrocell.

Deployment of aggregator nodes on roof tops of tall buildings consume operational

leasing cost. The network operator wants to minimize the operational expenses while

ensuring the network connectivity between the small cell and the gateway node. Hence,

optimal aggregator node deployment and network connectivity design to minimize the

operational expenses is essential for small cell networks. We focus on these two problems

in this part of our work. This requires joint cost optimal aggregator node placement,

power control, channel scheduling and routing in order to minimize operational expenses

of the overall network, which is the focus of this work.

1.3.1 Related work

Relay or aggregator node placement problems have appeared in different scenarios, such

as wireless sensor networks (WSN) [54, 55], wireless local area networks (WLAN) [56]

and IEEE 802.16j WiMAX networks [57,58].

In [54], the authors assume a radius coverage based propagation model, and deploy

sensor and relay nodes optimally among unconstrained number of candidate locations

to solve the connectivity and routing problem. The authors of [55] deploy sensor and

relay nodes among a constrained set of candidate locations but assume a radius cover-

age based propagation model. The authors of [56] solve the relay placement problem

in WLAN with uniformly distributed mobile users. In [58], the authors solve relay

placement problem in IEEE 802.16j networks while assuming an arbitrary user distri-

bution and distance based propagation. The authors of [57] also focus on IEEE 802.16j

networks. They assume nomadic relay nodes and place relays for time varying user

demand.

Backhaul node placement in urban small cell networks differs from the mentioned

relay placement problems in the following aspects. First, link gain between a candidate
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aggregator location and two nearby small cells in a metropolitan setting can vary signif-

icantly because of difference in diffraction angles. Coverage radius based backhaul node

placement becomes inapplicable. Second, a large subset of relay placement algorithms

that assume an unconstrained number of candidate locations cannot be applied here,

since only a subset of building rooftops can be leased. Third, both sub-6 GHz and mi-

crowave bands are candidate spectrum for future generation small cells. The nature of

interference pattern and spatial multiplexing capability varies between the two scenarios

and leads to different network optimization problems. Our work encapsulates all these

features. We assume an interference free region and time/frequency division multiple

access while considering microwave band, and protocol interference model with space

division multiple access while considering sub-6 GHz band. Using these assumptions,

we optimize the wireless backhaul network in a metropolitan scenario.

Our aggregator node placement module relies heavily on the reliability of the es-

timated link gains between different nodes of the backhaul network. This leads us to

investigate whether existing channel models for dense urban networks can be reliably

used in modeling wireless backhaul networks.

1.4 Wireless Channel Measurement Platform Design for Small Cell

Networks

There are numerous path loss and delay spread models based on measurements made

in a variety of environments, using different transmitter heights and carrier frequen-

cies [59–64]. However, most models have substantial errors when compared to real-

ity [65], due to the complicated nature of wireless propagation through complex en-

vironments. Radio propagation measurement, in general, is essential for developing

propagation models [66]. A new environment to deploy wireless systems (e.g., small

cell systems with base stations that are located at low heights in urban areas) often

requires a measurement campaign to determine if existing models can be adapted to it,

and if so, what parameters must be changed.

In deployment of small cells in complex, high-value locations (such as dense urban
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areas, or unique and complex buildings), propagation modeling or even ray-tracing

prediction tools may not account for important and unpredictable realities of target

locations. At least spot verification of the modeling outputs and calibrations, by means

of a small measurement campaign, may be required. In addition, sophisticated modeling

approaches [63,64] may require 3D models of the environment or the associated material

properties, which may be difficult and expensive to obtain and yet may not account

for hidden metal structures or openings. As a result, a flexible rapid wireless channel

measurement approach becomes essential for a small cell network design.

1.4.1 Essential features

We believe that a channel measurement system for designing small cell networks should

have the following essential features:

(i) Multiple transmitter single receiver channel sounding

A network designer may have several candidate locations to place small cell base sta-

tions. Hence, a multiple transmitter single receiver based channel sounding is desirable

since it allows network designers to measure channel propagation characteristics from

multiple transmitters during a single run of measurement.

(ii) Small form factor

To further ease the preparation and measurement, the transmitters and the receivers

should be reasonably small and light so that they can be quickly and safely placed or

mounted on desired locations.

(iii) Low cost

The cost of an individual unit should be low since we will have to use multiple trans-

mitters and receivers.
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(iv) Flexibility

The frequency of interests for small cells may vary from one network operator to the

other. Hence, the experimental approach should be flexible enough to support channel

measurement across a wide frequency region.

1.4.2 Our contributions

To meet the essential features of a channel sounder, we use USRP [67], an inexpensive

software defined radio, as our measurement platform. Our approach incorporates the

simultaneous measurement of channel propagation characteristics from multiple trans-

mitter locations. Previous works in the related literature [63, 66, 68–71] focused on

channel sounding measurements from a single transmitter location. To the best of our

knowledge, ours is the only work in the literature that measures channel propagation

characteristics simultaneously from multiple transmitter locations.

Traditional channel sounding systems use expensive measurement equipment like

vector network analyzers [68,69], vector signal generators [65], spread spectrum channel

sounders [63] etc. Due to the open source GNU Radio software [72] and inexpensive

USRP radios, our proposed channel sounding system costs only around $1500 per radio

and we anticipate reduced costs as SDRs become more popular.

The carrier frequency of the USRP daughterboards can be varied from 1 megahertz

(MHz) to 6 gigahertz (GHz). Therefore, our approach can perform channel measure-

ments in this wide frequency range. We expect that the proposed approach, with a few

further refinements, can transform the task of propagation measurement for small cell

networks as a routine part of day-to-day wireless network engineering.

1.5 Publications

I have published the findings of my PhD thesis in the following conference publications

and journal articles:

• Wireless Backhaul Node Placement for Small Cell Networks, M. N. Islam, A.

Sampath, A. Maharshi, O. Koymen and N. B. Mandayam. Invited paper at



14

Conference on Information Science & Systems 2014, pp. 1-6, March 2014 [73].

• A Wireless Channel Sounding System for Rapid Propagation Measurements, M.

N. Islam, B. J. Kim, P. S. Henry and E. Rozner. Proc. International Conference

on Communications (ICC) 2013, pp. 5720-5725, June 2013 [74].
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Chapter 2

Bandwidth Exchange based Cooperative Forwarding

2.1 Introduction

This part focuses on our work in bandwidth exchange based cooperative forwarding

where non-contiguous spectrum chunks are used as incentives for relaying. We consider

an N node autonomous network where each node receives an initial amount (equal,

optimal based on direct path transmission or arbitrary) of bandwidth and connects

directly to the access point (AP) / base station (BS). We consider a frequency division

multiple access system where all nodes transmit at the same time with different band-

width slots. In this context, we focus on a two-hop incentivized cooperative forwarding

scheme where a sender node provides bandwidth as an incentive to a forwarder node for

relaying its data to the AP/BS. We first prove the concavity of the resource allocation

problem and then show that the optimal relay selection problem in α-fair network utility

maximization (NUM) reduces to the classical non-bipartite maximum weighted match-

ing (MWM) algorithm [81]. Using the distributed local greedy MWM [82], we propose

a simple distributed BE enabled incentivized forwarding protocol. We also show that

the outage probability reduction problem reduces to the bipartite maximum matching

algorithm in this context. Numerical simulations show that the proposed algorithm

provides 20-25% spectrum efficiency gain and 90-98% outage probability reduction in

a 20 node network.

2.2 System Model

We consider the uplink of an N node single cell FDMA network. Let V = {1, 2, · · · , N}

denote the set of N nodes that transmit data to the BS (node 0). Each node uses the
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Figure 2.1: Direct Transmission and BE enabled Incentivized Forwarding

total time slot. Node i ∈ V is initially allotted a bandwidth of W in
i . Let ρij and Rij

denote the link gain and achievable rate of the ij path respectively. For a given node

i ∈ [1, N ] with W in
i bandwidth and direct link gain ρi0, the achievable throughput is:

Rini = Ri0 = W in
i log2

(
1 +

ρijPi,max
W in
i

)
(2.1)

Here, Pi,max denotes the maximum transmission power of node i and Rini is expressed

in bit per second (bps).

In BE, nodes perform two hop half duplex DF cooperative relaying. The forwarder

node hears the sender nodes’ data and relays some of that data along with transmitting

its own data to the AP. Since each node is a power constrained device, the forwarder

nodes’ data rate may drop if it continues to transmit with the same bandwidth. There-

fore, the sender node delegates some of its bandwidth to the forwarder node as incentives

for relaying. We consider one forwarder for one sender and vice versa to reduce the relay

searching complexity. Let SF = {SF1, · · · ,SFK} = {(s1, f1), (s2, f2), · · · , (sK , fK)}

denote the sender-forwarder pair set, i.e., fi relays si’s data along with transmitting

fi’s own data. Let D = d1, d2, · · · , dL denote the direct set, i.e., the set of remaining

nodes that transmit data without cooperation. Note that, K and L are variables and

further, 2 ∗K + L = N . We assume pairwise bandwidth constraint in this work.

The left and right sides of Fig. 2.1 show the considered direct transmission model
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Figure 2.2: BE Enabled Forwarding in a 3 Node Network

Table 2.1: Summary of used notations

Notation Meaning

N Total number of users

P Maximum transmission power

ρij Gain of the ij link

W in
i Initial bandwidth of node i

W be
i Node i’s bandwidth in BE

Rini Initial rate of node i

Rbei Node i’s rate in BE

Rij Achievable rate in the ij link

V Set of all nodes

D Set of nodes that transmit without cooperation

SF Set of sender-forwarder pairs

SFi ith sender-forwarder pair (si, fi)

and the proposed BE model. In BE, node 2 relays data for node 3. Node 3 delegates

α amount of bandwidth to node 2 as incentive for relaying. Let W be
i represent the

bandwidth of node i in the BE scenario. Now, W be
2 = W in

2 + α and W be
3 = W in

3 − α.

Node 4 and 5 operate in the same manner.

Nodes don’t do power allocation among different streams in our framework. Since

capacity is a non-decreasing function of transmission power, each node utilizes the

maximum transmission power in its allotted bandwidth slot. Without loss of generality,

we assume Pi,max = P ∀ i ∈ V in the subsequent analysis.
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Rate analysis in the BE scenario:

Let Rbei represent the achievable rate of node i in the BE scenario. The right side of

Fig. 2.2 shows the interaction between a sender node s and a forwarder node f . If

node s transmits to node f and the BS separately using W be
s bandwidth, the achievable

throughput in the respective paths are:

Rsf = W be
s log2

(
1 +

ρsfP

W be
s

)
(2.2)

Rs0 = W be
s log2

(
1 +

ρs0P

W be
s

)
(2.3)

If f transmits to the BS using W be
f bandwidth,

Rf0 = W be
f log2

(
1 +

ρf0P

W be
f

)
(2.4)

Assuming ρsf ≥ ρs0, it is easily seen that Rsf ≥ Rs0. Due to the nature of the wireless

environment, when sender s transmits, both f and BS hear it. If node s transmits at

rate Rsf , node f can decode it properly. The BS also receives the same signal but can’t

decode it properly since Rsf ≥ Rs0. However, node f can forward Rc bits to the BS

to resolve the BS’s uncertainty about node s’s data. Node f also transmits its own

data, Rbef , to the BS. The information theoretic generalization of the maximum-flow-

minimum-cut-theorem [83] provides the following relationship between these achievable

rates,

Rbes ≤ min(Rsf , Rs0 +Rc) (2.5)

Rc +Rbef ≤ Rf0 (2.6)

The codebook design procedure to achieve these rates is summarized in Appendix B.1.

A detailed description can be found in [83,84].

Using this rate analysis, we focus on the distributed joint optimal bandwidth al-

location and relay selection in maximizing the summation of the α-fair utilities of the

network.
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α-fair utility: The α-fair utility is defined for any α ∈ [0,∞), as [85],

Uα(R) =


R1−α

1−α , if α 6= 1

log(R), if α = 1

(2.7)

where R represents the rate of the user. Summation of α-fair utility functions takes

the form of different well known utility functions, e.g., sum rate maximization (α = 0),

proportional fairness (α = 1) and minimum rate maximization (α =∞).

2.3 Design Objective

We begin with a focus on α-fair NUM of the overall network through optimal bandwidth

and rate allocation for all possible sender-forwarder pairing sets.

Problem I

max .
∑
d∈D

Uα(Rbed ) +
∑

(s, f)∈SF

(
Uα(Rbef ) + Uα(Rbes )

)
(2.8a)

s.t. (Rbef , R
be
s ) ∈ conv(W be

f ,W
be
s ) ∀ (s, f) ∈ SF (2.8b)

Rbef ≥ Rinf , Rbes ≥ Rins ∀ (s, f) ∈ SF (2.8c)

W be
f +W be

s ≤ W in
f +W in

s ∀ (s, f) ∈ SF (2.8d)

W be
f , W

be
s ≥ 0 ∀ (s, f) ∈ SF (2.8e)

D ⊆ V , SF ∈ V × V , SF i ∩ SF j = ∅ ∀i 6= j (2.8f)

SF i ∩ D = ∅ ∀ i ∈ [1,K] (2.8g)

SF1 ∪ SF2 · · · ∪ SFK ∪ D = V (2.8h)

V ariables D,SF , Rbes , Rbef ,W be
s ,W

be
f

Here, Rbed = Rind ∀ d ∈ D. Therefore, the rates of the direct node set are not opti-

mization variables. Equation (2.8b) denotes that the rate of the sender and forwarder
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lie in the convex hull of the allocated bandwidth. The details of this convex hull has

already been explained in the system model. It will also be mentioned in the next

section. Eq. (2.8c) represents that the sender and the forwarders’ rate cannot drop

below their initial rates. Equation (2.8d) shows that the total bandwidth used by the

cooperative pair is constrained by the summation of the initial bandwidths allocated to

the individual nodes. Equation (2.8f)- (2.8h) represent the relay selection constraints.

Equation (2.8f) shows that the direct and sender-forwarder sets are all subsets of the

overall set. Eq. (2.8g) denotes that the sender-forwarder pairs and direct set cannot

have any common nodes. Eq. (2.8h) represents that the union of the pairs and the

direct set form the overall set V.

The solution of the above optimization problem depends on the selected sender-

forwarder and direct node set and the corresponding bandwidth and rate allocations.

Hence, it involves an exponential number of variables and constraints. In the rest of

the chapter, we focus on solving this problem.

2.4 Optimization Problem Solution

2.4.1 Modified Optimization Problem

Let Uα(Rtot) =
∑

i∈V U
α(Rini ) denote the summation of the initial utilities of the nodes.

For a fixed SF , Uα(Rtot) can be expressed in the following form:

Uα(Rtot)

=
∑
i∈V

Uα(Rini )

=
∑
d∈D

Uα(Rind ) +
∑

(s, f)∈SF

(
Uα(Rinf ) + Uα(Rins )

)
(2.9)

=
∑
d∈D

Uα(Rbed ) +
∑

(s, f)∈SF

(
Uα(Rinf ) + Uα(Rins )

)
(2.10)

Equation (2.9) follows from eq. (2.8h). Equation (2.10) uses the fact that Rbed =

Rind ∀ d ∈ D. Subtracting Uα(Rtot) from the objective function of I, we find the following

optimization problem:
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Problem II ∑
(s, f)∈SF

(
Uα(Rbef ) + Uα(Rbes )− Uα(Rinf ) + Uα(Rins )

)
(2.11a)

s.t. (Rbef , R
be
s ) ∈ conv(W be

f ,W
be
s ) ∀ (s, f) ∈ SF (2.11b)

Rbef ≥ Rinf , Rbes ≥ Rins ∀ (s, f) ∈ SF (2.11c)

W be
f +W be

s ≤ W in
f +W in

s ∀ (s, f) ∈ SF (2.11d)

W be
f , W

be
s ≥ 0 ∀ (s, f) ∈ SF (2.11e)

D ⊆ V , SF ∈ V × V , SF i ∩ SF j = ∅ ∀i 6= j (2.11f)

SF i ∩ D = ∅ ∀ i ∈ [1,K] (2.11g)

SF1 ∪ SF2 · · · ∪ SFK ∪ D = V (2.11h)

V ariables D,SF , Rbes , Rbef ,W be
s ,W

be
f

The inclusion of constant terms in the objective function does not change the optimal

variables of an optimization problem [86]. As a result, the same set of sender-forwarder

pairs maximize both problem I and II. We will focus on solving problem II in the

subsequent analysis. The optimal variables of problem II will directly lead to the

optimal solution of problem I.

Problem II depends on both relay selection and resource allocation. The very nature

of the design objective allows us to split the optimization formulation into the following

two parts:

• For any fixed set of sender-forwarder pairs, perform DF based optimal rate and

bandwidth allocation.

• Choose the relay set that maximizes the summation of the α-fair utility of the

nodes.

We, at first, focus on resource allocation in a fixed sender-forwarder pair set SF and
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direct node set D. Later, we will show the optimal sender-forwarder pair selection

policy.

2.4.2 Optimal bandwidth and rate allocation for a fixed sender-forwarder

set

The optimal resource allocation problem for fixed SF and D takes the following form:

Problem III ∑
(s, f)∈SF

(
Uα(Rbef ) + Uα(Rbes )− Uα(Rinf )− Uα(Rins )

)
(2.12a)

s.t. (Rbef , R
be
s ) ∈ conv(W be

f ,W
be
s ) ∀ (s, f) ∈ SF (2.12b)

Rbef ≥ Rinf , Rbes ≥ Rins ∀ (s, f) ∈ SF (2.12c)

W be
f +W be

s ≤ W in
f +W in

s , W be
f , W

be
s ≥ 0 ∀ (s, f) ∈ SF (2.12d)

V ariables Rbes , R
be
f , W

be
s , W

be
f (2.12e)

Now, due to the pairwise bandwidth constraint of (2.12d), the bandwidth allocation

in one cooperative pair does not affect other nodes. Therefore, problem III is just the

summation of K independent three node (sender, forwarder and BS) resource alloca-

tion problems and can be decomposed into the subproblems. Hence, we now focus on

an arbitrary sender-forwarder pair (s, f) and describe the resource allocation problem

formulation in this pair.

Problem IV

max . Uα(Rbef ) + Uα(Rbes )− Uα(Rinf )− Uα(Rins ) (2.13a)

s.t. Rsf ≤W be
s log2

(
1 +

P ∗ ρsf
W be
s

)
Rs0 ≤W be

s log2

(
1 +

P ∗ ρs0
W be
s

)
Rc +Rbef ≤W be

f log2

(
1 +

P ∗ ρf0

W be
f

)
(2.13b)
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Rbes ≤ min(Rsf , Rs0 +Rc) , R
be
f ≥ Rinf , Rbes ≥ Rins (2.13c)

W be
f +W be

s ≤ W in
f +W in

s , W be
f , W

be
s ≥ 0 ∀ (s, f) ∈ SF (2.13d)

V ariables Rbes , R
be
f ,W

be
s ,W

be
f , Rc

Equation (2.13b) and (2.13c) show the convex hull of the allotted bandwidths and the

achievable rates. They have also already been described in the system model.

Lemmma 1: Problem IV is a concave maximization problem.

Proof: Uα(Rinf ) and Uα(Rins ) are the utilites of the initial data rates and constants,

in terms of the optimization variables. The concavity of α-fair utility functions and

the capacity expressions can be easily shown [86]. The minimum of linear (concave)

functions is concave. Thus, the objective function is concave and the constraints are

convex or linear in terms of the optimization variables. This proves the concavity of

Problem IV. �.

Problem IV can be solved using standard convex optimization algorithms, e.g.,

interior point methods [86].

Lemma 2: (Rbes , R
be
f ,W

be
s ,W

be
f , Rc) = (Rins , R

in
f ,W

in
s ,W

in
f , 0) is a feasible set of vari-

ables of Problem IV.

Proof: Let W be
f = W in

f , W be
s = W in

s , Rc = 0. Then,

Rsf = W in
s log2

(
1 +

P ∗ ρsf
W in
s

)
Rs0 = W in

s log2

(
1 +

P ∗ ρs0
W in
s

)
= Rins (2.14)

Rbef = W in
f log2

(
1 +

P ∗ ρf0

W in
f

)
= Rinf

Rbes = min(Rsf , Rs0 +Rc) = min(Rsf , Rs0) = Rins

This is a feasible solution of problem IV. �

Thus, if Node s and f use their initial bandwidths and if the forwarder f does not

relay any data of the sender s, both sender and forwarder will continue to transmit at
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Figure 2.3: MWM in BE Enabled Relay Network

their initial rates. The corresponding feasible solution for these variables can be found

as follows,

Uα(Rbef ) + Uα(Rbes )− Uα(Rinf )− Uα(Rins )

= Uα(Rinf ) + Uα(Rins )− Uα(Rinf )− Uα(Rins ) = 0

Since, problem IV is a concave maximization probelm, the optimal solution will not drop

below 0 [86]. Hence, the proposed BE enabled relaying scheme will perform at least as

good as the initial allocation and seek to maximize the global utility while preserving

the initial rates of the individual nodes.

Lemma 3: Problem III is a concave maximization problem.

Proof: Problem III is the combination of K disjoint concave maximization problems

and hence it’s concave. �

2.4.3 Optimal sender-forwarder set selection

Let g∗sf denote the solution of problem IV, i.e., the optimal gain obtained through

cooperation of (s, f). Let, U∗D,SF represent the optimal solution of problem III, i.e.,

the optimal cooperation gain for the selected sender-forwarder pair set SF . Then,

U∗D,SF =
∑

(s, f)∈SF g
∗
sf . Therefore, the sender-forwarder pairing set selection part of

problem II is equivalent to finding the set of pairs that maximize the gain in utility

through cooperation, over noncooperation. It can be written in the following form:
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Problem V

arg max
SF

∑
(s, f)∈SF

g∗sf (2.15a)

SF ∈ V × V , SF i ∩ SF j = ∅ ∀i 6= j , (2.15b)

Now, consider a graph G = (V, E) where the vertices V represent the set of N

nodes under consideration and E denote the edges between these nodes. Define the

edge weight of any (i, j) pair by Uα(Rbei ) + Uα(Rbej ) − Uα(Rini ) − Uα(Rinj ), i.e., the

difference, in terms of utility, between the cooperation and non-cooperation scenario.

The optimal sender-forwarder pairing set selection of problem V is equivalent to finding

the set of pairs that maximize the difference between cooperation and noncooperation

utility. Hence, the optimal sender-forwarder pair selection problem can be reduced

to the problem of finding the set of pairs that maximizes the link weights mentioned

above. Thus, the optimal relay selection converges to the classical nonbipartite MWM

problem. The nonbipartite MWM algorithm has been summarized in Appendix B.2.

A detailed description can be found in [81].

Fig. 2.3 illustrates the application of MWM in the sender-forwarder pairing selec-

tion. The left figure of Fig. 2.3 denote the initial scenario where node a, b and c transmit

through the direct path and transmit 6, 3 and 7 bits respectively. The three figures in

the middle show the obtained rates for different sender-forwarder pair selection. The

second figure from the left shows that b and c transmit 4 and 9 bits respectively through

BE enabled DF cooperation. Thus, the utility gain of cooperation, over noncoopera-

tion, is 3 bits. The middle figure and the 2nd figure from the right represent the

cooperation scenarios of (a, b) and (a, c) respectively. The rightmost figure represents

the edge weights of each cooperative pair in terms of the utility gain of cooperation,

over noncooperation. The MWM algorithm will select node (b, c) as the cooperative

pair and node a will transmit without cooperation.

Centralized nonbipartite MWM can be solved optimally in O(N3) time [81]. Our

proposed distributed incentivized forwarding is based on the distributed local greedy

MWM [82] (O(N2)) and is described below. The distributed MWM algorithm [82] is

summarized in Appendix B.3.
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2.4.4 Distributed BE incentivized forwarding protocol

• Focus on an arbitrary node, node v. Node v sends training symbols to the AP

and obtains its own direct channel, ρv0, through feedback. Node v is initially

allocated W in
v bandwidth and transmits at Rinv rate.

• Let node u be a neighbouring node of v. Due to the nature of wireless channels,

node u receives node v’s channel estimation training symbols and finds the inter-

node channel gain, ρuv.

• v sends an omnidirectional signal containing ρv0, W in
v and Rinv to the neighbouring

nodes.

• Node umay relay node v’s data if min(ρuv, ρu0) ≥ ρv0. Thus, v knows its potential

forwarders or senders.

• v solves problem IV for the suitable neighbours. Thus, each node knows its

adjacent link weights.

• v solves the distributed local greedy MWM algorithm of [82].

• The ‘matched pairs’ allocate resources among themselves. The ‘unmatched’ nodes

transmit without cooperation.

2.4.5 Outage probability reduction in BE

We define outage probability as the ratio of the number of nodes that do not get

minimum data rate to the total number of nodes. We assume that each node in the

network starts with an initial amount of resource. Depending on the resource and link

gains, nodes fall in the following two groups:

• Outage group: Node that cannot meet the minimum required rate with initially

allocated resources.

• Non-Outage group: Node that can meet the minimum rate with initially allocated

resources.
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The outage probability reduction problem can be defined as providing minimum

data rate to the most number of users in the outage group, while maintaining the

minimum data rate of the nodes, in the non-outage group. MWM based matching

and pairwise resource allocation based incentivized two-hop forwarding can help in this

case. We propose the following scheme in this regard:

• Each node in the outage group solves the pairwise sumrate maximization, with

minimum rate constraints, for each of its neighbouring node. Nodes can solve

sumrate maximization by plugging α = 0 in the α-fair utility function.

• If the node in outage can maintain minimum data rate by pairing with the for-

warder, i.e., the non-outage node, we assume that an edge exists between these

nodes.

• The relay selection problem in outage probability reduction becomes maximizing

the number of edges in the network. This reduces to the maximum matching

(MM) algorithm in a bipartite graph [87].

Our focus here is to maximize the number of users that receive minimum data rate,

not to maximize any utility function. That’s why, we use MM, instead of MWM, in

this part of the work. Besides, cooperation between two nodes in the non-outage group

do not change the outage probability of the network. Therefore, we consider a bipartite

graph by dividing the graph into outage and non-outage group.

2.5 Numerical Simulations

We assume equal initial bandwidth allocation in all of our simulations, i.e., nodes start

with equal bandwidth. However, our work is readily applicable to the scenario where

nodes start with optimal bandwidth allocation (based on direct path transmission) and

then use bandwidth as incentives for two hop relaying.

Fig. 2.4 and Fig. 2.5 compare the performance of BE relaying with that of direct

path transmission in the sumrate maximization and minimum rate maximization of a

3 node network (sender, forwarder and BS). Both sender and forwarder initially receive
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Figure 2.4: Sumrate Maximization in a 3 Node Network, 10 MHz per Node, P = 100 mW, Near
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Figure 2.5: Minimum Rate Maximization in a 3 Node Network, 10 MHz per Node, P = 100
mW, Near node-AP distance = 150m

10 MHz bandwidth and transmit uplink data to the BS. The forwarder node is placed

in the straight line that connects the BS and the sender node. The distance between

the forwarder node and the BS is kept fixed at 150m, whereas, the distance between the

BS & the sender node is varied. In these two simulations, we assumed the link gains to

take the form, ρij = kd−3
ij where dij is the distance between the ith and jth node. k is

the proportionality constant that also captures the noise spectral density and is set to

k = 6× 106MHz ∗m3/mW [22].
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Figure 2.7: Outage Probability in an N Node Network, 1 MHz per Node, P = 20 dBm

The sumrate maximization objective based plot of Fig. 2.4 shows that BE relaying

improves the rate of the forwarder (near user) while ensuring that the sender’s (far

user) rate does not drop below its initial value. This increase in the forwarders’ rate

gets reflected in the sumrate gain of the network. On the other hand, the minimum

rate maximization objective based plot of Fig. 2.5 shows that BE relaying improves the

senders’ (far user) rate while ensuring that the forwarders’ (near user) rate does not

drop. This diverse contribution of BE relaying comes from the problem objectives of the

respective simulations; sumrate maximization (α = 0) is the most efficient allocation

whereas minimum rate maximization (α =∞) is the most fair one. Therefore, the use

of any α ∈ (0,∞) would have increased both users’ rates in this simulation scenario.
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Figure 2.8: Orbit Testbed

Fig. 2.6 and Fig. 2.7 show the performance of BE relaying in an N node network.

In these simulations, we assumed that links are under independent Rayleigh fading and

the link gain in each slot is an independent realization of Rayleigh random variable.

This means that the link gain, ρij , is exponentially distributed, p(ρij) = 1
ρ̄ij
exp
(
−ρij
ρ̄ij

)
where ρ̄ij = kd−3

ij and k = 6× 106MHz ∗m3/mW . We consider a circular cell of 800m

radius. The AP is located at the center, whereas, the nodes are placed randomly in

the cell. We considered transmission scheme much like the one used in mobile Wimax.

Each node is preassigned 20 dBm transmit power and 1 MHz bandwidth. We used the

matching code of [88] to implement the MWM algorithm in Matlab.

We showed the performance of both centralized and distributed algorithms in Fig. 2.6

and Fig. 2.7. In the simulation of the distributed algorithm, we assumed that each node

can only talk to its neighbours that are located within 500m from the sender node.

Fig. 2.6 shows that the centralized and decentralized algorithm improves the spectral

efficiency by 25% and 20% respectively. The performance of the distributed algorithm

will improve if we allow each node to talk to neighbours with greater distances.

Fig. 2.7 shows that BE enabled relaying provides cooperative diversity and signifi-

cantly reduces the outage probability (90-98%). Thus, BE can be used to extend the

coverage in an autonomous network.
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Figure 2.9: USRP Daughterboards

2.6 Experimental Setup

Inspired by the simulation results of bandwidth exchange, we investigate the influence

of resource exchange in an experimental setup. Due to experimental constraints, we

implement time exchange to observe the advantages of incentive based cooperative

forwarding. In time exchange protocol, sender node offers a portion of its own allotted

time slot to the forwarder node as an incentive of relaying.

2.6.1 ORBIT Testbed & USRP Nodes

We implement the proposed TE based incentivized algorithm among the USRP nodes

of ORBIT, an indoor wireless testbed of Wireless Information Network Laboratory

(WINLAB), Rutgers University. ORBIT has 400 nodes, overall, in a 20m×20m square

grid. Fig. 2.8 shows a snapshot of the ORBIT testbed.

ORBIT has 28 USRP nodes that can be used in software defined radio based ex-

periments. Fig. 2.9 shows the snapshots of two USRP daughter boards. We use the

GNU radio software toolkil [72] to run experiments in these USRP nodes. Specifically,

we use the benchmark-tx.py and benchmark-rx.py codes to transmit and receive pack-

ets between two USRP nodes [72]. The flexibility of GNUradio allows us to change

the transmission power level and packet sizes through software. This variable power

capability of GNUradio, along with the spatial separation among the nodes, allow us

to create links with different strengths between different node pairs.

As shown in the top left subfigure of Fig. 2.10, we use four USRP nodes of the
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ORBIT testbed to conduct the TE based cooperative forwarding experiments. Node 1,

2 and 3 constitute the user set V and node 0 serves as the BS. The ORBIT grid is used

as a global control plane to exchange the control information between the nodes.

2.6.2 Selection of Parameters

The benchmark-tx.py and benchmark-rx.py codes of GNUradio allow the following four

modulation schemes: a) GMSK, b) differential binary phase shift keying (DBPSK), c)

differential quadrature phase shift keying (DQPSK) and d) differential 8 phase shift

keying (D8PSK). DBPSK, DQPSK and D8PSK are found to be very sensitive to peak

power clippings due to their variable envelope waveform. Therefore, we use a fixed

modulation scheme, GMSK, in our experiments.

Each node transmits at 1 Mbps and each packet contains 1500 bytes. As a result,

it takes (1500 ∗ 8)/(1 ∗ 106), i.e., 0.012 second to transmit one packet. We assume each

time slot to be 0.012 second long, i.e., one packet is transmitted in each slot.

The total transmission time is assumed to be 3 second. Each node is initially allotted

1 second transmission time, i.e., 1/0.012 or 83 time slots. We approximate the number

of time slots since fractional packet transmission is not considered.

We also add 32 bit CRC sequence in each packet and make it similar to the Ethernet

packet structure [89]. Note that, we do not use error control coding in these experiments.

Therefore, the presence of a single bit error leads to the ‘loss’ of the whole packet due

to CRC.

2.7 Experimental Evaluation

2.7.1 Illustration of MWM in Relay Selection

Fig. 2.10 shows the use of MWM in the optimal sender-forwarder pair selection among 3

testbed nodes. The left figure of the top row shows the packet loss probability between

the inter-node pairs. These packet error probabilities were based on 1500 byte packet

length, GMSK modulation, some fixed power level and CRC checking. The middle

figure of the top row focuses on the direct transmission scenario and shows the goodput
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Figure 2.10: Illustration of MWM in sender-forwarder pair selection

(in packet/3 second) of each node. Each node initially receives 83 time slots and

transmits one packet at each slot through the direct path. The packet error probability

in link 30 is 0%. Therefore, all transmitted packets of node 3 reach the BS. Node 1 and

2’s goodputs are considerably lower due to the high packet error probability in link 10

and 20 respectively.

The top right, the bottom left and the bottom middle figure show the goodput (in

packet/3 second) of different sender-forwarder cooperation scenarios. The top right

figure focuses on the TE based cooperation between node 1 and 3. Here, node 1 and

3 solve the two node time slot allocation optimization of problem III. The cooperation

allows node 3 to achieve a goodput of 132 packets and ensures that node 1’s goodput

does not drop below 18 packets, its initial value. Therefore, the overall goodput gain

obtained through the cooperation of node 1 and 3 is 49 packets. As a result, the 13

link of the MWM graph, shown in the bottom right figure, is assigned a weight of 49.

The bottom left and bottom middle figures demonstrate the cooperation scenario

in node 1–2 and 2–3 respectively. The bottom right figure shows the link weight of

the corresponding cooperation pairs. The distributed local greedy MWM selects link
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Figure 2.11: Sum Goodput Maximization in 3 node (Packet length = 1500 bytes, CRC checking,
GMSK modulation)

13. Therefore, node 1 and 3 cooperate using TE, whereas, node 2 transmits without

cooperation.

2.7.2 Sum Goodput Maximization

Fig. 2.11 compares the sum goodput (in kilo bit per second (kbps)) of TE and direct

path transmission. Fig. 2.10 shows that node 1 and 3 get selected as the cooperative

pair due to the MWM algorithm. Therefore, node 1 and 3 solve problem III to find

the optimal time slot transfers. Due to the sum goodput maximization objective, the

benefits of cooperation go to node 3, i.e., the node with the better channel. Node 3’s

goodput increases by 70%. Our optimization formulation ensures that node 1 gets its

initial goodput, at least. On the other hand, node 2 transmits without cooperation and

its goodput does not change from the initial value.

2.7.3 Proportional Fair Maximization of Goodput

Fig. 2.12 compares the proportional fair maximization performance of direct transmis-

sion and TE. Here, the selected cooperative nodes, s and f , solve a modified version

of problem III. In this modified problem, s and f maximize (Rtes − Rins ) ∗ (Rtef − Rinf )

instead of maximizing (Rtes + Rtef ). Hence, the goodput of both nodes increase due to

cooperation. Fig. 2.12 shows that the goodputs of node 1 and 3 increase by 70% and

30% respectively.



36

Node 1 Node 2 Node 3 Total
0

100

200

300

400

500

600

700

800

G
o
o

d
p

u
t 

(k
b

p
s)

 

 

Direct

TE

Figure 2.12: Proportional Fair Maximization of Goodput (Packet length = 1500 bytes, CRC
checking, GMSK modulation)

2.8 Chapter Summary

This part of our work considered joint optimal relay selection and resource allocation

in the α-fair network utility maximization and outage probability reduction of a BE

network. Our proposed resource allocation formulation maximized the global utility of

the cooperative pair while preserving the initial utilities of each individual node. We

showed that the relay selection part of the α-fair NUM problem reduced to the non-

bipartite matching algorithm. Numerical simulations suggested that the proposed BE

enabled relaying provided 20-25% spectrum efficiency gain and 90-98% outage proba-

bility reduction in a 20 node network.

We also designed and implemented time exchange based cooperative forwarding

among four USRP nodes of ORBIT indoor wireless testbed. We solved the joint time

slot allocation and sender-forwarder pair selection problem in this setup. Our proposed

algorithm maximized the global goodput of the network while ensuring that no node’s

goodput drops below its initial value. The ORBIT grid was used as a global control

plane to exchange the control information between USRP nodes. Experimental results

suggested that resource delegation based cooperative forwarding could significantly im-

prove the sum goodput and proportional fair goodput performance of the network.



37

Chapter 3

Power Optimal Non-contiguous Spectrum Access

3.1 Introduction

This chapter focuses on system power minimization in non-contiguous spectrum access.

We investigate two different systems in this chapter. The first (and the major) part

focuses on a multi-hop network where each node is equipped with a single front end

and access non-contiguous spectrum chunks using NC-OFDMA. In this context, we

perform joint optimal power control, scheduling, spectrum span selection and routing

in the network to minimize the system power consumption of the overall network.

We develop a mixed integer non-linear program to attain our objective and provide a

branch and bound algorithm based solution. We also provide a low complexity greedy

algorithm that runs in (O(E2M2)) time where E and M denote the number of edges

and channels in the network.

The second part of this chapter focuses on a point-to-point link where both nodes

are equipped with multiple front end radios and access non-contiguous spectrum chunks

using NC-OFDMA. In this setting, we perform joint optimal power control and channel

scheduling across each front end of the radio to minimize the system power of the

point-to-point link. We develop a mixed integer non-linear program and provide a low

complexity algorithm (O(M2I) where M and I denote the number of available channels

and front ends respectively.

This chapter is organized as follows: Section 3.2-3.8 focus on our first system model,

i.e., a multi-hop network where nodes have single radio front ends. Section 3.2 presents

system power and multi-hop network model. Section 3.3 relates spectrum span and

sampling rate with channel scheduling decisions. Section 3.4 provides a feasible solution
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Figure 3.1: Radio front end circuit blocks (reproduced from [5])

of the optimization problem. We present a low complexity greedy algorithm to minimize

system power in Section 3.7. We present numerical results for this setting in section 3.8.

Sec. 3.9- 3.9.6 focuses on our second system model, i.e., a point-to-point link where

nodes have multiple radio front ends, and presents system model, theoretical insights,

low complexity algorithm and simulation results.

3.2 System Model

3.2.1 System Power Model

We assume that baseband signal processing techniques like multi-user detection and

iterative decoding are not employed in the circuit. In this context, power consumption in

the baseband is negligible compared with that in the radio frequency (RF) circuitry [90].

Each radio node has two front ends: one for transmission and the other for reception.

Nodes are half-duplex, i.e., they can simultaneously transmit and receive using these

two front ends but not in the same channel.

Fig. 3.1 shows signal level blocks in the transmit and receiver. At the transmitter,

the baseband digital signal goes through DAC, filters, mixer (where it gets multiplied

by the local oscillator (LO)) and programmable amplifier (PA) and reaches transmitter

antenna. The received signal at the antenna goes through low noise amplifiers (LNA),

filters, mixer, intermediate frequency amplifier (IFA) and ADC to reach the baseband
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circuit [5].

Typically, transceiver circuits work on a multi-mode basis. When there is a signal

to transmit, all RF circuits work in active mode; when there is no signal to transmit,

all RF circuits remain in sleep mode; circuits switch from sleep to active mode through

transient mode [5].

In this work, we focus on system power minimization of all RF circuits in the active

mode. Let pt, pr and p denote active mode power consumption of the transmitter and

receiver, and transmitter’s emitted power at radio frequency respectively. Now

pt =
PAPR

η
p+ ptc (3.1)

pr = prc , (3.2)

where PAPR and η denote the peak-to-average-power-ratio and drain efficiency of

the programmable amplifier. PAPR
η p denotes the total power consumption at the pro-

grammable amplifier [5]. Also, ptc and prc are the circuit (analog and digital) power

consumption of the transmitter (excluding programmable amplifier’s power consump-

tion) and the receiver, respectively.

The power consumption of almost all the blocks of the radio front end, except ADC

and DAC, does not depend on the sampling rate [5, 91]. The power consumption of

ADC and DAC are affine functions of the sampling rate [5,41]. Denoting kpa = PAPR
η ,

system power consumption in the transmitter and receiver front end (in the active

mode) can be denoted as:

pt = α1 + α2fst + kpap (3.3)

pr = β1 + β2fsr (3.4)

In the above, fst and fsr are sampling rates of the transmitter and receiver path. α1,

α2, β1 and β2 are constants that depend on the power consumption of different blocks.

We use appendix A.1 to describe power consumption of each block in details.
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Notation Description

N Set of nodes

N Total number of nodes

(s(l), d(l)) Source and destination of session l

r(l) Rate requirements of session l

W Bandwidth of each channel

N0 Noise spectral density

fmij (l) Flow on link ij in channel m for session l

cmij Capacity on link ij in channel m

smij Signal-to-noise ratio on link ij in channel m

M Set of all available channels across all nodes

Mi Set of available channels in node i

PI Interference threshold

Mij Set of available channels between node i and j

M Total number of available channels

gmij Link gain of ij in channel m

pij,m Allocated power between i and j in channel m

xmij If link ij uses channel m

xt,mi If node i uses channel m for transmission

xr,mi If node i uses channel m for reception

qt,i Spectrum span of the transmitter path of node i

qr,i Spectrum span of the receiver path of node i

fst,i Sampling rate of node i’s transmitter path

fsr,i Sampling rate of node i’s receiver path

fs,max Maximum allowed sampling rate of the nodes

Ps,max Maximum allowed system power consumption

A An arbitrary large number

Table 3.1: List of Notations
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3.2.2 Multi-hop cross-layer model

We consider a multi-hop network with a set of N cognitive radio nodes, |N | = N . Let

M denote the set of all available channels. Bandwidth of each channel is W .

Power Control and Scheduling Constraints

We focus on frequency scheduling. Denote the binary scheduling decision xmij as follows:

xmij =


1, if node i transmits to node j using channel m.

0, otherwise.

(3.5)

Due to self-interference, node i can use channel m only for receiving from node k or

transmitting to node j. In other words:

∑
j∈N ,j 6=i

xmij +
∑

k∈N ,k 6=i
xmki ≤ 1 ∀ i ∈ N , ∀m ∈M (3.6)

A node can allocate power in a link only if it is scheduled, i.e.

pmij ≤ Axmij (i , j ∈ N ) , m ∈M (3.7)

Here, A is a big number that couples power control and scheduling variables. We select

A in such a way so that it remains higher than the possible maximum transmission

power of any node.

We use the protocol interference model. Assume that node i transmits to node j

in channel m, i.e., xmij = 1. Let pmij and gmij denote the transmission power and channel

gain in channel m of link ij. Let PI denote the interference threshold. PI should be

chosen in such a way so that it is negligible compared to the noise power N0W where

N0 is the noise spectral density. Another node k can transmit to node h in channel m

if pmkh causes negligible interference in node j. Now,

xmij = 1 =⇒ pmkh ≤
PI
gmkj
∀(k, h) ∈ N , k 6= i, h 6= j (3.8)
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If xmij = 0, then node k’s transmission power is bounded by A. In other words,

xmij = 0 =⇒ pmkh ≤ A∀(k, h) ∈ N , k 6= i, h 6= j (3.9)

Equation (3.8) and (3.9) can be combined to the following:

pmkh + (A− PI
gmkj

)xmij ≤ A∀ k ∈ N , h ∈ N , k 6= h (3.10)

Note that, our algorithm can be easily extended to signal-to-interference-plus-noise-

ratio model [44], too.

Routing and Link Capacity Constraints

Assume that L is the set of active sessions and |L| = L. Let s(l), d(l) and r(l) denote

the source node, destination node, and minimum rate requirements of session l. Let

fmij (l) denote the flow from node i to node j in channel m for session l. If i is the source

(destination) node of session l, the total outgoing (incoming) flow from (to) node i

should exceed the minimum rate requirements of session l, i.e.,

∑
j∈N

∑
m∈M

fmij (l) ≥ r(l) (l ∈ L , i = s(l)) (3.11)

∑
k∈N

∑
m∈M

fmki (l) ≥ r(l) (l ∈ L , i = d(l)) (3.12)

If i is an intermediate node of session l, the incoming flow of session l should match

with the outgoing flow:

j 6=s(l)∑
j∈N

∑
m∈M

fmij (l) =

k 6=d(l)∑
k∈N

∑
m∈M

fmki (l) ∀ (l ∈ L, i ∈ N , i 6= s(l), d(l)) (3.13)

Additionally, the aggregated flows of all sessions in a particular link should not exceed

the capacity of the link. Therefore,

∑
l∈L

fmij (l) ≤ cmij (i , j ∈ N , i 6= j ,M 6= ∅) (3.14)
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where

cmij ≤ W log(1 + smij ) (i , j ∈ N , i 6= j) (3.15)

smij =
gmij p

m
ij

N0W
, (i , j ∈ N , i 6= j). (3.16)

In the above, cmij and smij denote the capacity and signal-to-noise-ratio in link ij of

channel m. The denominator of smij only contains N0W because (3.8) ensures that the

interference from other nodes is negligible compared to the noise power.

The constraints described above resemble previous works that focus on transmission

power based cross-layer optimization (i.e., power control, scheduling and routing). The

novelty of the work here is in relating the hardware constraints imposed by the radio

front-end to the above cross-layer optimization as we describe next.

3.2.3 System Power Constraints

Let pt,i and pr,i denote the system power consumption in the transmitter and receiver

path of node i. The total system power consumption, Ptot, is:

Ptot =
∑
i∈N

(
pt,i + pr,i

)
(3.17)

We also assume that a radio node consumes analog power if it transmits or receives in

a channel. Denoting α1i and β1i as the analog power consumption of node i’s transmit

and receive path respectively, we find,

α1i ≥ α1x
m
ij ∀m ∈M, j ∈ N , i ∈ N (3.18)

β1i ≥ β1x
m
ki ∀m ∈M, k ∈ N , i ∈ N . (3.19)

Using (3.3), (3.4), (3.17), (3.18) and (3.19),

∑
i∈N

(α1 + α2fst,i +
∑
j∈N

∑
m∈M

kpap
m
ij + β1 + β2fsr,i) = Ptot (3.20)

where fst,i and fsr,i denote the sampling rates in the transmitter and receiver of node
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i.

3.2.4 Main Optimization Problem

In this work, we minimize the total system power subject to minimum rate requirements

and solve the following problem:

Problem I

minPtot (3.21a)

∑
i∈N

(α1 + α2fst,i +
∑
j∈N

∑
m∈M

kpap
m
ij + β1 + β2fsr,i) ≤ Ptot (3.21b)

s.t. constraints in (3.28j), (4.4), (3.28b) - (3.16), (3.18) - (3.19)

xmij ∈ {0, 1} , smij ≥ 0 (i, j ∈ N , i 6= j,m ∈M) (3.21c)

Ptot , f
m
ij (l) ≥ 0 (l ∈ L, m ∈M, i, j ∈ N , i 6= j) (3.21d)

3.3 Relation between Channel Scheduling and System Power

The sampling rate at a transceiver depends on the spectrum span, which in turn is

determined by the choice of channels (subcarriers) selected for its intended transmission.

We now formally relate channel scheduling decisions with the spectrum span and the

sampling rate of the nodes.

Let xt,mi and xr,mi denote the following:

xt,mi =


1, if i transmits to any node j ∈ N in channel m.

0, otherwise.

xr,mi =


1, if i receives from any node j ∈ N in channel m.

0, otherwise.
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Figure 3.2: Spectrum span, occupied subcarrier and nulled subcarrier in an NC-OFDMA based
multi-hop network.

In other words,

xt,mi ≥ xmij ∀ j ∈ N ,

xr,mi ≥ xmki ∀ k ∈ N , (3.22)

Using this notation, analog power equations of (3.18) and (3.19) are redefined as,

α1i ≥ α1x
t,m
i , β1i ≥ β1x

r,m
i , ∀m ∈M, ∀i ∈ N (3.23)

We define spectrum span as the gap between the furthest edge of the used channels.

Node i’s uppermost used channel index in the transmitter path is:

max
m∈M

m · xt,mi . (3.24)

Node i’s lowermost used channel index in the transmitter path is:

min
m∈M

(m · xt,mi + |M | · (1− xt,mi )). (3.25)

The second term of (3.25) ensures that we do not consider the index i’s for which

xt,mi = 0. Let qt,i and qr,i denote the spectrum spans of the transmitter and receiver

path of node i.
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Node Mode of Used Channel Spectrum Span
Operation

1 Transmitter 2, 4, 5 (5− 2 + 1) ·W = 4W
Receiver {∅} 0

2 Transmitter 1, 3 (3− 1 + 1) ·W = 3W
Receiver 2, 4, 5 (5− 2 + 1) ·W = 4W

3 Transmitter 1, 3 (3− 1 + 1) ·W = 3W
Receiver {∅} 0

4 Transmitter 2, 4, 5 (5− 2 + 1) ·W = 4W
Receiver 1, 3 (3− 1 + 1) ·W = 3W

5 Transmitter {∅} 0
Receiver 1, 2, 3, 4, 5 (5− 1 + 1) ·W = 5W

Table 3.2: Spectrum Span Calculation of Different Nodes of Fig. 3.2

qt,i = W ·max
((

max
m∈M

(
m · xt,mi

)
− min
m∈M

(
m · xt,mi + |M | · (1− xt,mi )

)
+ 1
)
, 0
)

(3.26)

qr,i = W ·max
((

max
m∈M

(
m · xr,mi

)
− min
m∈M

(
m · xr,mi + |M | · (1− xr,mi )

)
+ 1
)
, 0
)

(3.27)

Using above equations, we modify (3.21b) to the following:

qt,i ≥W ·max
((

max
m∈M

(
m · xt,mi

)
− min
m∈M

(
m · xt,mi + |M | · (1− xt,mi )

)
+ 1
)
, 0
)

(3.29)

qr,i ≥W ·max
((

max
m∈M

(
m · xr,mi

)
− min
m∈M

(
m · xr,mi + |M | · (1− xr,mi )

)
+ 1
)
, 0
)

(3.30)

∑
i∈N

(α1i + 2α2qt,i +
∑
j∈N

∑
m∈M

pmij + β1i + 2β2qr,i) ≤ Ptot (3.31)

We replace (3.21b) with the above set of equations.

Fig. 3.2 shows spectrum span in a multi-hop network. Here, black solid, lined

ash and white boxes denote occupied, nulled and un-spanned subcarriers respectively.

Spectrum span is the summation of occupied and nulled subcarriers. Table. 3.2 shows

transmit and receive spectrum spans of Fig. 3.2.
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min Ptot (3.28a)

∑
j∈N

∑
m∈M

fmij (l) ≥ r(l) (l ∈ L , i = s(l)) ,
∑
k∈N

∑
m∈M

fmki (l) ≥ r(l) (l ∈ L , i = d(l)) (3.28b)

j 6=s(l)∑
j∈N

∑
m∈M

fmij (l) =

k 6=d(l)∑
k∈N

∑
m∈M

fmki (l) (l ∈ L, i ∈ N , i 6= s(l), d(l)) (3.28c)

∑
l∈L

fmij (l) ≤ cmij (i , j ∈ N , i 6= j ,M 6= ∅) (3.28d)

cmij ≤W log(1 + smij ) (i , j ∈ N , i 6= j) , smij =
pmij
N0W

, (i , j ∈ N , i 6= j) (3.28e)

pmkh + (A− PI

gkj
)xmij ≤ A∀ k ∈ N , h ∈ N , k 6= h , pmij ≤ Axmij (i , j ∈ N ) , m ∈M (3.28f)

qt,i ≥W ·
(

max
m∈M

(
m · xt,mi

)
− min

m∈M

(
m · xt,mi + |M | · (1− xt,mi )

)
+ 1
)

(3.28g)

qr,i ≥W ·
(

max
m∈M

(
m · xr,mi

)
− min

m∈M

(
m · xr,mi + |M | · (1− xr,mi )

)
+ 1
)

(3.28h)

α1i ≥ α1x
t,m
i , β1i ≥ β1x

r,m
i ∀m ∈M∀i ∈ N , qt,i ≤ qmax , qr,i ≤ qmax ∀i ∈ N (3.28i)

∑
j∈N ,j 6=i

xmij +
∑

k∈N ,k 6=i

xmki ≤ 1 ∀ i ∈ N , ∀m ∈M (3.28j)

∑
i∈N

(
α1i + 2α2qt,i +

∑
j∈N

∑
m∈M

pmij + β1i + 2β2qr,i
)
≤ Ptot (3.28k)

xmij ∈ {0, 1} , smij ≥ 0 (i, j ∈ N , i 6= j, m ∈M) , qt,i ≥ 0, qr,i ≥ 0 ∀i ∈ N (3.28l)

Ptot , f
m
ij (l) ≥ 0

(
l ∈ L,m ∈M, i, j ∈ N , i 6= j, i 6= d(l), j 6= s(l),M 6= ∅

)
(3.28m)

Figure 3.3: Optimization problem based on spectrum span
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Figure 3.4: A convex hull for cmij = ln(1 + smij )

3.3.1 Bundle Constraint

A comparison between table 1.1 and table 1.2 suggests that commercially available

ADC and DAC’s cannot capture all available channels in TV white space. Hence, the

transmit and receive spectrum span of each node is limited by the maximum span of

the ADC and DAC. Without loss of generality, we assume that the maximum spectrum

span of all nodes’s ADC and DAC is equal and denoted by qmax.

qt,i ≤ qmax , qr,i ≤ qmax ∀i ∈ N (3.32)

We show our modified optimization problem in Fig 3.3.

3.4 Solution Overview

3.4.1 Linearization of the Optimization Problem

The optimization problem of Fig. 3.3 is a mixed integer non-linear programming (MINLP)

problem. We modify logarithm and max-min functions to transform the MINLP into

a mixed integer linear programming (MILP) problem.

We use reformulation-linearization techniques [92] and provide a linear relaxation

of the non-linear term ln(1 + smij ). Assume that the signal-to-noise-ratio is bounded by

(smij )L ≤ smij ≤ (smij )U . We assume (smij )L and (smij )U to be zero and a very high number
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respectively. Assume, cmij = ln(1 + smij ). Now, cmij can be bounded by four segments.

Fig. 3.4 shows these segments: I, II, III and IV. Segment I, II and III are tangential

supports at
((
smij
)
L
, ln
(
1 +

(
smij
)
L

))
,
(
β, ln

(
1 + β

)
) and

((
smij
)
U
, ln
(
1 +

(
smij
)
U

))
, where

β =
[1 +

(
smij )L][1 +

(
smij )U ][ln(1 + (smij )U )− ln(1 + (smij )L)

(smij )U − (smij )L
− 1 (3.33)

is the intersection of segment I and II. Segment IV joins
((
smij
)
L
, ln
(
1 +

(
smij
)
L

))
and((

smij
)
U
, ln
(
1 +

(
smij
)
U

))
. Using these segments, the convex region of cmij can be defined

by:

(1 + (smij )L) · cmij − smij ≤ (1 + (smij )L)(ln(1 + (smij )L)− 1) + 1 (3.34)

[1 + β] · cmij − smij ≤ [1 + β][ln(1 + β)− 1] + 1 (3.35)

[1 + (smij )U ] · cmij − smij ≤ [1 + (smij )U ][ln(1 + (smij )U )− 1] + 1 (3.36)

[(smij )U−(smij )L]·cmij+[ln(1+(smij )U )−ln(1+(smij )L)]·smi ≥ (smij )U ln(1+(smij )U )−(smij )Lln(1+(smij )L)

(3.37)

The linear equations of (3.34)-(3.37) can replace the non-linear equation of cmij ≤

W log(1 + smij ) in Fig. 3.3. The spectrum span equations of (3.29) and (3.30) are

linearized in the following way:

qt,i+W
(
m2·xt,m2

i +|M |·(1−xt,m2
i )

)
≥W

(
m1·xt,m1

i +1
)
∀(m1,m2) ∈M , ∀i ∈ N (3.38)

qr,i +W
(
m2 · xr,m2

i + |M | · (1− xr,m2
i )

)
≥W

(
m1 · xr,m1

i + 1
)
∀(m1,m2) ∈M , ∀i ∈ N

(3.39)

qt,i ≥ 0 , qr,i ≥ 0 ∀i ∈ N (3.40)

The optimization problem of Fig. 3.3 with these reformulated linear equations can be

directly solved in CVX [93] (with MOSEK [94]) software. This problem is an MILP.

CVX uses branch-and-bound algorithm [92] to solve this problem.
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3.4.2 Feasible Solution

CVX outputs flow variables fmij (l), scheduling decisions xmij and power variables pmij(
l ∈ L,m ∈ M, i, j ∈ N , i 6= j,

)
. Since we relaxed flow capacity equations to get

this output, the resultant flow rates may exceed the capacity of the links. We keep

flow variables and scheduling decisions unperturbed and increase power variables to get

feasible solutions. We use the following set of equations for flows and powers:

∑
i∈L

fmij (l) = Wlog(1 +
pmij g

m
ij

N0W
)

pmij =
N0W

gmij

[
exp{

∑
l∈L f

m
ij (l)

W
} − 1

]
∀m ∈M, i, j ∈ N , i 6= j. (3.41)

These power variables along with flow and scheduling decisions of the CVX output form

a feasible solution. We refer to this solution as “BnBSysPowerMin”.

3.5 Theoretical Insights

This section focuses on a point-to-point link and shows how the system power con-

straints imposed due to hardware characteristics influence the cross-layer decisions.

3.5.1 Influence of System Power on Scheduling

Let us focus on power allocation and scheduling in a point-to-point link. The optimiza-

tion problem of Fig. 3.3 takes the following form:

min
(
Ptx(p1, · · · , p|M |) + Pckt(q, x

1, · · · , x|M |)
)

(3.42a)

s.t. q ≥W
(

max
m∈M

(m·xm)−min
m∈M

(m·xm+|M |(1−xm))+1
)
, xm ∈ {0, 1} , ∀m ∈M , q ≥ 0

(3.42b)

∑
m∈M

W log2

(
1 +

pmgm

N0W

)
≥ r , pm ≥ 0, ∀m ∈M (3.42c)
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pm ≤ Axm ∀m ∈M (3.42d)

In the above, pm and gm denote the allotted power and link gain in channel m,

respectively. Rate requirement and spectrum span are denoted by r and q, respectively.

Also, Ptx(p1, · · · , p|M |) =
∑

mM pm denotes the transmit power and Pckt(q, x
1, · · · , x|M |) =

α1 + 2α2q + β + 2β2q denotes the circuit power consumption.

The above optimization is in essence the combination of two separate optimization

problems. The objective is to minimize the summation of transmit and circuit power.

Eq. 3.42c denotes the constraints associated with transmit power minimization problem

and it only involves power variables. Eq. 3.42b denotes the constraints associated with

circuit power minimization problem and it only involves spectrum span and scheduling

variables. Eq. 3.42d relates the power and scheduling variables and couples these two

optimization problems.

The above optimization problem suggests two sub-cases of our overall problem.

These sub-cases depend on the values of α2 and β2, i.e., the slope of ADC & DAC’s

power consumption versus sampling rate curves (Appendix shows power consumption

versus sampling rate curves of some commercial ADC’s and DAC’s).

Case I: Transmit Power Minimization

When α2 and β2 are very small, i.e., the slope of ADC and DAC’s power consumption

versus sampling rate curves are very flat, the impact of spectrum span on system power

becomes negligible. In this case, scheduling decisions do not influence system power that

much and we can concentrate on minimizing transmit power. Then the optimization

problem gets reduced to the following form:

min
∑
m∈M

pm (3.43a)
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∑
m∈M

W log2

(
1 +

pmgm

N0W

)
≥ r , pm ≤ Axm , pm ≥ 0, xm ∈ {0, 1} ∀m ∈M (3.43b)

Since xm’s are not present in the objective function, we can just solve the problem

with pm variables and then enforce xm = 1 for every positive pm.

The above problem is similar to the classical waterfilling [84] problem, which max-

imizes rate subject to a total power constraint. In the remainder of the chapter, we

refer to the above problem as the transmit power minimization problem. The solution

to this problem selects the “good” channels in the network and spreads power across

the whole spectrum [84]. We denote this solution using the term ‘TxPowerMin’ in the

remainder of the chapter.

Case II: Circuit Power Minimization

When α2 and β2 are very large, i.e., the slope of ADC and DAC’s power consumption

are very steep, circuit power consumption dominates system power. Transmit power

variables do not influence system power that much and we can just concentrate on

minimizing system power. The optimization problem in this case reduces to,

min α1 + 2α2q + β + 2β2q (3.44a)

s.t. q ≥W
(

max
m∈M

(m·xm)−min
m∈M

(m·xm+|M |(1−xm))+1
)
, xm ∈ {0, 1} , ∀m ∈M , q ≥ 0

(3.44b)

∑
m∈M

W log2

(
1 +

pmgm

N0W

)
≥ r , pm ≥ 0, ∀m ∈M , pm ≤ Axm ∀m ∈M (3.44c)

The objective of the optimization problem increases with spectrum span q. Hence,

the minimum circuit power occurs if we schedule only one channel in the network and
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allocate enough power in that channel so that it can carry the required data rate.

Scheduling any channel leads to same circuit power in the above optimization prob-

lem. Since the original system power minimization problem contains both transmit and

circuit powers, it is prudent to select the channel with the best link gain. This greedy

channel assignment will require less transmit power to meet rate requirement.

Trade-off between transmit and circuit power minimization

If the slope of ADC and DAC power consumption versus sampling rate curves are

very flat, our algorithm converges to transmit power minimization based approaches

and selects all good channels in the network. If the slope of ADC and DAC’s power

consumption vs. sampling rate curves are very steep, our algorithm selects the channel

with the best link gain in a greedy manner.

Power consumption vs. sampling rate curves of commercial ADC and DAC’s fall

between these two extreme cases. Hence, in practical settings, our algorithm selects

a subset of channels where the spectrum span is determined by the trade-off between

transmit power and circuit power. Simulation results illustrate these scenarios.

3.6 Low Complexity Algorithm for point-to-point link

We have focused on a multi-hop network thus far in this chapter and developed a branch-

and-bound algorithm based mixed integer linear programming solution to minimize

the system power of the overall network in Sec. 3.4. Although the branch-and-bound

algorithm can converge to a solution with any predefined optimality gap, it suffers from

exponential computational complexity in the worst case scenario. Using the insights of

sec. 3.5, we develop a low complexity greedy algorithms to minimize system power in a

simplified network scenario of a single point-to-point link.

Our greedy algorithm can be explained simply as follows: Pick the channel with the

highest link gain at the first iteration. In each subsequent iteration, pick exactly one

channel, where the assignment is determined as the feasible assignment that minimizes

total system power. Table 3.9 is the pseudo-code of our algorithm.
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The input to the algorithm is the available channel set M, demand r, channel

bandwidth W , noise power spectral density N0 and link gain gm across all channels

(∀m ∈ M). The output of the algorithm is total system power Ptot, scheduled channel

indices set Y (selected iteratively in each iteration), overall scheduling variables xm,

and power variables pm across all channels (∀m ∈M).

At first, we select the channel with the best link gain, store this channel in Y and find

the associated total power with this assignment (line 2−3). Then at each iteration (line

5), we look at all channels (line 6) and find the spectrum span if the current channel

and the previously selected channel set are scheduled together (line 7 − 8). Circuit

power consumption is fixed if the spectrum span is fixed. Based upon this fixed circuit

power, we optimize the minimum transmit power (line 11− 12) and find the associated

system power (line 13). We select the channel that minimizes the system power in the

current iteration and include it in Y (line 16). We run this iteration successively unless

the obtained power of the current loop increases from the previous loop (line 17− 20).

Based on the selected channel indices, we find the overall scheduling channel variables

in line 21− 25 and power variables in 26− 28.

In an M channel network, the outer loop of line 5 will run at most M times since

each iteration will either select a better channel or the loop will break. The inner loop

runs M times, too. Hence, in the worst case scenario, the greedy algorithm consists of

O(M2) number of convex optimization programs. Each convex optimization program

has O(M) constraints and can be solved in O(M logM) time using barrier methods [86].

Once “good” channels are selected, power allocation across the channels can be solved

through a one-shot convex optimization procedure like line 26− 28.

3.7 Polynomial Time Algorithm for a Multihop Networks

Using the insights from the point-to-point link case, we develop a low complexity greedy

algorithm here. Our greedy algorithm can be explained simply as follows:

• Find the initial route between each sender and receiver using shortest path algo-

rithm [95].
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Input: M, r, W , N0, gm ∀m ∈M
Output: xm, pm∀m ∈M , Ptot , Y

Line Operation
1 ind = arg maxm(gm) , val = maxm(gm).
2 xind = 1, Y = {ind}.
3 Ptot = kpa

(
e
r
W − 1

)
N0
val + α1 + 2α2W + β1 + 2β2W

4 count = 1
5 while count == 1
6 ∀m ∈M
7 if m ∈ Y
8 MaxInd = max{Y,m} , MinInd = min{Y,m}
9 q = MaxInd−MinInd+ 1

10 solve
11 min

∑
n∈{m,Y} Pnew

n

12 s.t.
∑

n∈{m,Y}Wlog
(
1 + Pnewngn

N0W

)
≥ r , Pnewn ≥ 0 ∀n ∈ {m,Y}

13 IterPm = kpa
∑

n∈{m,Y} Pnew
n + α1 + 2α2q + β1 + 2β2q

14 else
15 IterPm =∞
16 MinP = minm(IterPm) , ind = arg minm(IterPm)
17 if MinP < Ptot
18 Y = {Y, ind} , Ptot = MinP
19 else
20 count = 0.
21 ∀m ∈M
22 if m ∈ Y
23 xm = 1.
24 else
25 xm = 0.
26 solve
27 min

∑
m∈M pm

28 s.t.
∑

m∈MWlog(1 + pmgm

N0W
) ≥ r, pm ≥ 0 ∀m ∈ Y, pm == 0 ∀m /∈ Y

Table 3.3: Greedy Algorithm to Minimize System Power in a point-to-point link
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• Assign the best channel to each link unless the current assignment interferes with

previously assigned channels.

• For each active link, check if any other channel assignment reduces system power.

• Once channels are scheduled, determine power allocation and routing through a

convex optimization program.

Our greedy system power minimization algorithm consists of the central program

of Table 3.4 and the sub-routines of Table 3.5 and Table 3.6. Next three sub-sections

describe the central program and sub-routines. We analyze the complexity of our

algorithm in Sec. 3.7.4.

3.7.1 Central Program

Table 3.4 shows the pseudocode of our greedy polynomial time algorithm. Line 1 finds

large scale gains of all links by averaging small scale fading in time or frequency domain.

Line 2 assigns weight to each link. Line 3 finds the shortest path between each sender

and forwarder based on the assigned weights of link 2. Line 5 finds the active links. Line

6 calculates the flow requirement among these links. Line 7 initiates total power (Ptot),

power allocation (pmij ) and scheduling (xmij ) variables to zero for the greedy channel

scheduling algorithm. We initiate an outer loop in line 8. Line 9 sorts the active links

in each outer loop. Line 10-12 calls the subroutine of Table 3.5 and checks if any link

should be assigned a channel. The outer loop breaks at line 12 if none of the active

links becomes suitable to be assigned a channel. This outer loop determines the channel

scheduling (xmij ) variables.

We obtain power allocation (pmij ) and routing path (fij(l) variables from the opti-

mization problem of Fig. 3.3 where scheduling variables (xmij ) are constants. Since we

fix the integer variables of Fig. 3.3, the total power minimization problem becomes a

convex minimization program and can be solved in polynomial time [86].

We assume one path (shortest path), i.e., no flow splitting, per session during the

initial routing topology design of line 1-3. This allows us to easily calculate the flow re-

quirement of each link which we later use in the greedy scheduling algorithm. However,
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Input: M, r, W , N0, gm ∀m ∈M
Output: xm, pm∀m ∈M , Ptot , Y

Line Operation

1 Denote gij as the average gain (e.g. path loss plus shadowing) of link ij.

2 Assign weight wij to each link, wij = 1
gij

.

3 Find shortest path between between source (s(l)) and destination (d(l)) of
every session l ∈ L based on the link weights of line 2.

4 bij(l) = 1 if link ij falls in the routing path of any session l ∈ L.

5 A link is active if it falls in the routing path of any session, i.e., xij = 1 if
∃l ∈ L s.t. bij(l) = 1. Define A to be set of active links.

6 Flow in each link, fij =
∑

l∈L bij(l)r(l).

7 Ptot =∞, xmij = pmij = 0∀ (i, j) ∈ E , ∀m ∈ M
8 while (true)

9 flag = 0 ; A = randsort(A).

10 ∀(a, b) ∈ A
11

(
flag, xmij , p

m
ij ∀m ∈ M (i, j) ∈ E

)
=

GreedyAlgo
(
M, (a, b), fab, r,W,N0, f lag, Ptot, x

m
ij , p

m
ij , g

m
ij ∀m ∈ M (i, j) ∈ E

)
12 if flag = |A|, break.

13 Solve the optimization problem of Fig. 3.3 where scheduling variables
(xmij ∀m ∈ M∀ (i, j) ∈ E) are constants, not variables (obtained from the loop of

line 8-12). Find power allocation, scheduling and routing variables and
total power, Ptot

Table 3.4: Polynomial Time Algorithm to Minimize System Power in a Multi-hop Network

we consider optimal flow splitting in the final optimization of line 13 of Table 3.4.

3.7.2 Greedy Scheduling Algorithm

The greedy scheduling algorithm of Table 3.5 is a sub-routine that’s called from line

11 of the central program of Table 3.4. The sub-routine receives previously assigned

scheduling and power allocation variables from the central program. The central con-

troller also asks the sub-routine to focus on a particular link (a, b). The sub-routine

iterates through all available channels and finds the best available channel for (a, b).

Line 1 of Table 3.5 starts the iteration for all channels. Line 2 stores the global

scheduling (xmij ) and power allocation (pmij ) variables in local dummy variables xmnew,ij

and pmnew,ij respectively. Line 3 assigns the current channel to the focus link (a, b). Line

4-7 calculates the transmit schedule (xt,mi ), receiver schedule (xr,mi ), transmit span

(qt,i) and receiver span (qr,i) for all nodes i ∈ N . Line 8 assumes equal flow allocation
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Input: M, Link (a, b), fab, r, W , N0, flag, xmij , p
m
ij , g

m
ij ∀ (i, j) ∈ E , ∀m ∈ M

Output: flag, xmij , ∀ (i, j) ∈ E , ∀m ∈ M
Line Operation

1 ∀m ∈M where xmab 6= 1

2 xmnew,ij = xmij , p
m
new,ij = pmij ,∀ (i, j) ∈ E , ∀m ∈ M

3 xmnew,ab = 1

4 ∀ i ∈ N , xt,mi = 1 if ∃ j s.t. xmnew,ij = 1. ∀ j ∈ N , xr,mj = 1 if ∃ i s.t. xmnew,ij = 1

5 ∀ i ∈ N , α1i = α1 if ∃m ∈ M s.t. xt,mi = 1 and β1i = β1 if ∃m ∈ M s.t. xr,mi = 1

6 qt,i = W ·
(
maxm∈M

(
m · xt,mi

)
−minm∈M

(
m · xt,mi + |M | · (1− xt,mi )

)
+ 1
)
∀ i ∈ N

7 qr,i = W ·
(
maxm∈M

(
m · xr,mi

)
−minm∈M

(
m · xr,mi + |M | · (1− xr,mi )

)
+ 1
)
∀ i ∈ N

8 fmnew,ab = fab∑
m∈M xmnew,ab

· xmnew,ab , pmnew,ab = N0W
gmab
·
(
2
f
W − 1

)
xmnew,ab ∀m ∈ M.

9 IntF lag = IntCheck
(
xmnew,ab, p

m
new,ab,M,A,W,N0, x

m
ij , p

m
ij ∀ (i, j) ∈ E

)
10 if IntCheck(·) = 1, Pmnew,tot =∞
11 else, Pmnew,tot =

∑
i∈N
(
α1i + 2α2qt,i +

∑
j∈N

∑
m∈M pmnew,ij + β1i + 2β2qr,i

)
12 Ptot,new = minm∈M Pmtot,new. ind = arg minm∈M Pmtot,new
13 if Ptot,new < Ptot,

14 xindab = 1.

15 fmab = fab∑
m∈M xmab

· xmab , pmab = N0W
gmab
·
(
2
f
W − 1

)
xmab ∀m ∈ M

16 else, flag = flag + 1

17 Return.

Table 3.5: Greedy Scheduling Algorithm

among the selected channels and finds the power allocation in link (a, b) to meet rate

requirement. Line 9 calls the sub-routine of Table 3.6 and checks if current channel

assignment causes interference to other links. Line 11 calculates total system power of

the current iteration. Line 12 comes out of the loop and finds the minimum system

power (Ptot,new) among all channels. Line 13 compares (Ptot,new) with global system

power (Ptot) and updates scheduling and power variables accordingly.

We assume equal flow per channel in each link in line 9 of Table 3.5. This simplifies

the calculation of transmission power per channel and avoids the computation of a

convex optimization program in each loop. However, we consider optimal flow and

power allocation in our final optimization problem of line 13 of Table 3.4.
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Input: xmnew,ab, p
m
new,ab, M, A, W , N0, xmij , p

m
ij ∀(i, j) ∈ A

Output: Intflag

Line Operation
1 count = 0. Intflag = 0

2 ∀(i, j) ∈ A , i 6= a , j 6= b

3 if
(
(pmnew,abg

m
aj ≥ 0.1N0Wxmij )||(pmij gmib ≥ 0.1N0Wxmnew,ab)

)
4 count = count+ 1

5 if
(
xmia + xmab + xmbj > 0

)
, count = count+ 1.

6 if count ≥ 0, Intflag = 1.

7 Return

Table 3.6: Primary and Secondary Interference Checking Algorithm

3.7.3 Interference Checking Algorithm

The sub-routine of Table 3.6 gets called from line 9 of the greedy scheduling algorithm

of Table 3.5. This sub-routine checks if the scheduling and power allocation of link ab

in channel m, calculated in Table 3.5, interferes with other links. Line 3 of Table 3.6

checks if transmitted power in link ab causes interference to any non-adjacent link that

uses channel m. Line 5 checks if link ab maintains half duplex relationships with its

adjacent links. Line 6 updates IntF lag and returns this value to the greedy scheduling

sub-routine of Table 3.5.

3.7.4 Computational Complexity

Global system power minimization algorithm of Table 3.4 contains three major parts:

1) Initial routing path selection (line 1-3 of Table 3.4), 2) channel scheduling (line 8-12

of Table 3.4 along with Table 3.5 and Table 3.6) , and 3) optimal power control and

routing path design (line 13 of Table 3.4).

Initial routing path selection involves computing link weights (O(E)) and shortest

path (O(E + N logN)) for L sessions. Therefore, the overall complexity for this part

is: O
(
L(E +N logN)

)
.

The greedy scheduling algorithm starts with a while loop. The while loop iterates

through all active links (O(E)). Each link calls the sub-routine of Table 3.5, iterates

through M channels. Inside each channel, the code calls the sub-routine of Table 3.6.
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Table 3.6 checks if the current channel assignment interferes with other links (O(E)).

The global while loop of Table 3.4 can iterate at most O(M) times since each iteration

will either select a channel for a link or the loop will break. Therefore, the greedy

scheduling algorithm runs in O(E2M2) time.

The optimal power allocation and routing path selection problem of line 13 of

Table 3.4 is a convex optimization program. Barrier method [86] can solve this in

O(R log(R)) steps where R is the number of inequality constraints. From Fig. 3.3, we

find the complexity to be O(EM log(EM).

The greedy scheduling part dominates the overall complexity (O(E2M2)) of Ta-

ble 3.4. We term this algorithm “GreedySysPowerMin”. We compare the performance

of both “GreedySysPowerMin” and “BnBSysPowerMin” with that of “TxPowerMin”

in Sec. 3.8.

3.8 Simulation Results

3.8.1 System Power Minimization in a Single Point-to-Point Link

We focus on an NC-OFDMA based single transceiver pair. Here, N = {1, 2}. There is

only one session in the network. s(1) = 1, d(1) = 2. There are 20 channels available for

transmission. Each channel is 3 MHz wide. Minimum data rate requirement is 18 Mbps.

The left sub-plot of Fig. 3.5 shows the link gains across these channels. We designed

the link gains so that every other channel has better link gain – by approximately 10

dB – than its adjacent neighbours.

The second subplot (from the left) of Fig. 3.5 shows the power allocation and

scheduling variables of TxPowerMin approach. This approach minimizes transmit

power subject to the rate constraint. Similar to the concept of “waterfilling” algo-

rithm [84], this approach spreads power across all ten “good” channels of the network.

The third and fourth subplot (from the left) of Fig. 3.5 shows the scheduling and

power variables of our greedy algorithm (GreedySysMin). We use two different types

of ADC and DAC models to investigate the influence of ADC/DAC slopes on our

algorithm. We use the high slope ADC and DAC models – ADC 9777 and ADS 62P4
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Figure 3.5: Power allocation across 20 channels in a single transceiver pair.
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Figure 3.6: Comparison of our algorithms with the ‘TxPowerMin’ approach with the high slope
ADC/DAC’s of Fig. A.1 and Fig. A.2.

(see Fig. A.1 and Fig. A.2) – in the third subplot of Fig. 3.5 and the low slope ADC

and DAC model – DAC 3162 and ADS 4249 (see Fig. A.1 and Fig. A.2) – in the fourth

subplot (the rightmost one) of Fig. 3.5. Compared to the low slope ADC and DAC,

the circuit power consumption increases more rapidly with high slope ADC and DAC’s.

With high slope ADC & DAC’s of Fig. A.1 and Fig. A.2, our algorithm focuses more

on minimizing circuit power and selects only four channels. With low slope ADC &

DAC’s of Fig. A.1 and Fig. A.2, our approach finds a trade-off between transmit &

circuit power and selects seven channels.

Fig. 3.6 compares the system power consumptions of our algorithms with that of
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Figure 3.7: Comparison of our algorithms with the ’TxPowerMin’ approach with the low slope
ADC/DAC’s of ig. A.1 and Fig. A.2.

TxPowerMin approach. We use the high slope ADC and DAC models of Fig. A.1 and

Fig. A.2 to generate this figure.

Fig. 3.6 compares the performance of our algorithm with that of TxPowerMin ap-

proach in a high ADC/DAC slope setting. “TxPowerMin” approach minimizes transmit

power by spreading data across all “good” channels of the network. Both of our algo-

rithms consume more transmit power than the “TxPowerMin” approach since selecting

a subset of available good channels is a sub-optimal policy in terms of transmit power.

Our algorithms consume less circuit power due to the reduced spectrum span. Our algo-

rithms reduce system power – summation of transmit and circuit power – consumption

by almost 30− 40% in the high slope ADC/DAC scenario. Note that, the lower bound

of the system power consumption (obtained from the mixed integer linear programming

relaxation), was 0.63 watts in this scenario. Hence, both of our algorithms gave feasible

results with roughly 15% optimality gap.

Fig. 3.7 compares the performance of our algorithm with that of TxPowerMin ap-

proach in a low ADC/DAC slope setting. We use the same link gain, bandwidth and

traffic demands of Fig. 3.6 but we use the low power consumption ADC and DAC’s

– DAC 3162 and ADS 4249 ((see Fig. A.1 and Fig. A.2)) – to generate these new

figures. As predicted in Sec. 3.5, our algorithm performs almost similar to the ’Tx-

PowerMin’approach in this scenario because the power consumption of ADC & DAC is

negligible compared to the transmit power requirement in this scenario.

Fig. 3.6 and fig. 3.7 suggest that our algorithms can adapt the power allocation and
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Figure 3.8: 12 node 3 session multi-hop network. Node 1, 2 and 3 transmit to node 12, 11 and
10 respectively. Both “TxPowerMin” and our approach select the same routes for both sessions.

Channel Index 2 5 6 17 23 24 47

Center Freq. (MHz) 57 79 85 491 527 533 671

Table 3.7: Available TV channels for fixed devices in Wichita, Kansas.

scheduling variables according to ADC/DAC slope, link gain and traffic demand.

3.8.2 System power minimization in a multi-hop network

To illustrate the influence of system power minimization in a practical setting of non-

contiguous spectrum access, we consider an exemplary scenario of multi-hop networking

among fixed devices in the TV white space channels of Wichita, Kansas, USA. We

use standard spectrum databases [2] to find the available TV channels in Wichita,

Kansas. Fig. 3.8 shows the network topology. Each session requires 10 Mbps data

rate. Table 3.10 shows the available channel indexes. Each channel is 6 MHz wide.

We consider both large scale fading (with path loss exponent 3) and small scale fading

(with 12 dB random fluctuation) in each channel. Maximum transmission power per

node is 4 watts for fixed devices that access TV white space [?]. We impose this

constraint in both traditional transmit power minimization algorithm and our system

power minimization algorithms to obtains the results of this simulation.
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Node Mode TxPowerMin BnBSysPowerMin

Channel Spectrum Channel Spectrum
Index Span Index Span

(MHz) (MHz)

1 Tx {23, 47} 150 {17, 23} 42
Rx {∅} 0 {∅} 0

2 Tx {17} 6 {23} 6
Rx {∅} 0 {∅} 0

3 Tx {6, 47} 592 {5, 6} 12
Rx {∅} 0 {∅} 0

4 Tx {17} 6 {6} 6
Rx {23, 47} 150 {17, 23} 42

8 Tx {2, 23} 476 {2, 47} 620
Rx {5, 24} 460 {17, 23, 24} 48

10 Tx {∅} 0 {∅} 0
Rx {23} 6 {47} 6

11 Tx {5, 24} 460 {17, 24} 48
Rx {2, 6, 47} 620 {2, 5, 6} 34

12 Tx {∅} 0 {∅} 0
Rx {17} 6 {6} 6

Table 3.8: Comparison between the spectrum span of ‘TxPowerMin’ and our ‘BnBSysPowerMin’
algorithm in the network of Fig. 3.8. ‘TxPowerMin’ selects the channels with higher gain in
most links and spans wider spectrum. Our algorithm spans less spectrum than ‘TxPowerMin’
in most of the links.

Channel Indexing Notations in Optimization Formulation

The difference between channel’s carrier frequencies in TV bands are not always pro-

portional to the index differences. Channel 17’s center frequency is ((23 − 17) ∗ 6) 36

MHz far from that of channel 23 but not ((17− 6) ∗ 6) 66 MHz far from that of channel

6. The spectrum span calculation of our optimization formulations depends heavily

on the coherence of channel indexing differences. Therefore, we use an index set of

{9, 13, 14, 81, 87, 88, 111} to denote the channel list of {2, 5, 6, 17, 23, 24, 47} in the opti-

mization formulations. We use the original channel list to show the numerical results.

Comparison of “waterfilling” algorithm and our approach

In these simulations, we use the low slope ADC and DAC models of Fig. A.2 and

Fig. A.1 to model system power consumption. We use Hou and Shi’s algorithm [43]
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Figure 3.9: Performance comparison of “TxPowerMin” approach and our algorithm (“BnB-
SysPowerMin”) in the network of Fig. 3.8, based on the low slope ADC and DAC models of
Fig. A.2 and A.1. Our approach reduces system power by 30% percent.

to illustrate the scheduling and power control decisions of ‘TxPowerMin’ approach. In

this approach, nodes consume following amount of power:

Channel m = 2: p2
8,11 = 0.2411

Channel m = 5: p5
11,8 = 0.1054

Channel m = 6: p6
3,11 = 0.4066

Channel m = 17: p17
2,8 = 0.0743, p17

4,12 = 0.038.

Channel m = 23: p23
1,4 = 0.1543, p23

8,10 = 0.2316

Channel m = 24: p24
11,8 = 0.0958.

Channel m = 47: p47
1,4 = 0.1233, p47

3,11 = 0.3683

Our algorithm selects the following power consumption variables:

Channel m = 2: p2
8,11 = 0.2411

Channel m = 5: p5
3,11 = 0.5466

Channel m = 6: p6
3,11 = 0.4066 , p6

4,12 = 0.0476

Channel m = 17: p17
1,4 = 0.166, p17

11,8 = 0.0892.

Channel m = 23: p23
1,4 = 0.1543, p23

2,8 = 0.1346.

Channel m = 24: p24
11,8 = 0.0958

Channel m = 47: p47
8,10 = 0.2215.

Table. 3.8 compares the channel scheduling decisions and spectrum spans of “Tx-

PowerMin” approach and our algorithm. Although “TxPowerMin” minimizes transmit
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power by selecting channels with better quality, it increases radio front end power by

selecting channels that are too far apart. Our approach spans narrow spectrum and

reduces circuit power consumption. Fig. 3.9 shows that our algorithm reduces system

power by 30% in this scenario.

The lower bound of system power consumption is 24 watts in this scenario. Our

algorithm provides a feasible solution (29 watts) with 20% optimality gap.

3.9 A case for NC-OFDMA in Multi-Channel-Multi-Radio platforms

This chapter has shown that both MC-MR and NC-OFDMA bring benefits and pitfalls

in non-contiguous spectrum access. MC-MR accesses multiple non-contiguous spectrum

chunks by activating multiple radio front ends where each front end captures a contigu-

ous portion of available spectrum and, hence, activates the circuit power consumption

of each front end. NC-OFDM accesses non-contiguous spectrum chunks with a sin-

gle front end radio by nulling intermediate spectrum and, hence, increases spectrum

span [79] which, in turn, increases the power consumption of ADC and DAC.

Fig. 3.10 shows the advantages and pitfalls of MC-MR and NC-OFDM. Here, chan-

nel 1, 3, 7 and 9 are available channels. One radio front end (shown at the top) accesses

channel 1 & 3 and nulls channel 2 using NC-OFDM. Other radio front end (shown at

the bottom) accesses channel 7 & 9 and nulls channel 8 using NC-OFDM. Due to the

use of two front ends, the circuit power consumption of different components inside

modulation block - e.g. filters, mixers, etc. – increases by a factor of 2. Due to the

nulling of intermediate spectrum, each front end spans three channels (instead of two)

and the circuit power consumption of ADC and DAC increase by a factor of 1.5.

This part of the chapter performs optimal power control and scheduling to minimize

the system power – summation of transmit and circuit power – of a point-to-point

link where both nodes are equipped with MC-MR and NC-OFDM technology. Given

an available list of non-contiguous spectrum chunks, we find the optimal spectrum

fragmentation in each radio front end using a greedy algorithm (O(M2I)) where M

and I denote the number of channels and radio front ends respectively.
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Figure 3.10: Multi-Channel Multi-Radio based Non-Contiguous Orthogonal Frequency Division
Multiplexing operation

3.9.1 System Model

We focus on a point-to-point link where both transmitter and receiver are equipped

with a set of front ends I. Nodes access a set of available channelsM to meet demand

r. Let, M = |M| and I = |I|. Let gm denote the link gain at channel m ∈ M. Let

pmi and xmi represent the power control and scheduling decision variables in channel

m ∈M at front end i ∈ I.

We assume that baseband signal processing techniques like multiuser detection and

iterative decoding are not employed. Baseband power consumption is negligible in this

scenario [5]. We focus on system power minimization during active mode (when the

link is transmitting data) [5]. The authors of [5] show the following system power

consumption model of transmitter (pt) and receiver (pr):

pt = α1 + α2fs + kpap , pr = β1 + β2fs (3.45)

Here, p is the emitted power at radio frequency, kpa = PAPR
η , kpap is the power con-

sumption of programmable amplifier, PAPR is the peak-to-average-power-ratio of the

modulation scheme, η is the efficiency of the programmable amplifier and fs is sampling
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rate. α2 and β2 are the slopes of DAC and ADC’s power consumption versus sampling

rate curves. α1 (β1) is the power consumption of all blocks of transmitter (receiver) -

e.g. filter, mixer, etc. - excluding DAC (ADC) and programmable amplifier [5].

The total power consumption of a transmitter and receiver equipped with I front

ends and M available channels can be written as:

∑
i∈I

(
kpa

∑
m∈M

pmi + α1,i + α2fs,i + β1,i + β2fs,i
)

(3.46)

where α1,i (β1,i) is the power consumption of all blocks of transmitter’s (receiver’s) i-th

front end excluding DAC (ADC) and programmable amplifier. The sampling rate fs,i

of i-th front end depends on its spectrum span, which in turn is determined by the

choice of channels (subcarriers) selected for its intended transmission. Spectrum span

is defined as the gap between the furthest edges of the used channels. Let qi denote the

spectrum span of the transmitter’s and receiver’s i-th front end. Using the analysis

of [79],

qi = W ·max
((

max
m∈M

(
m · xmi

)
− min
m∈M

(
m · xmi + |M | · (1− xmi )

)
+ 1
)
, 0
)

(3.47)

Sampling rate should be at least twice the amount of spectrum span. We assume,

fs,i = 2qi. Our overall optimization problem is shown below:

Problem I

min
∑
i∈I

(
kpa

∑
m∈M

pmi + α1,i + 2α2qi + β1,i + 2β2qi
)

(3.48a)

s.t.

qi ≥W ·max
((

max
m∈M

(
m · xmi

)
− min
m∈M

(
m · xmi + |M | · (1− xmi )

)
+ 1
)
, 0
)

(3.48b)

α1,i ≥ α1,ix
m
i , β1,i ≥ β1,ix

m
i ∀m ∈M∀i ∈ I (3.48c)
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∑
m∈M

∑
i∈I

W log2

(
1 +

pmi g
m

N0W

)
≥ r (3.48d)

pmi ≤ Axmi ∀m ∈M , ∀i ∈ I (3.48e)

∑
i∈I

xmi ≤ 1∀m ∈M (3.48f)

xmij ∈ {0, 1} , pmi ≥ 0 , qi ≥ 0 , α1,i ≥ 0 , β1,i ≥ 0 ∀i ∈ I, ∀m ∈M , (3.48g)

Here, Eq. (3.48c) denote that blocks like filter, mixer, etc. of i-th front end consume

power only if the node activates i-th front end. Eq. (3.48d) denotes that summation of

capacities across different channels and front ends must exceed demand r where N0 is

noise spectral density. Eq. (3.48e) couples power control and scheduling variables using

a pre-defined big number A. Eq. (3.48f) represents that each channel can only be used

by one of the front ends.

3.9.2 Theoretical Insights

The objective of problem I is linear. The constraints are convex. MI scheduling decision

variables are binary. Problem I is a mixed integer convex program and can be solved

optimally by solving 2MI convex optimization programs. This section designs a low

complexity algorithm by analyzing the characteristics of problem I.

Problem I is in essence the combination of two separate optimization problems. The

objective is to minimize the summation of transmit and circuit power. Eq. 3.48d shows

the constraints associated with transmit power. Eq. (3.48b) and (3.48f) denote the

constraints circuit power. Eq. 3.48e couples power and scheduling variables. Hence,

depending on the values of α1, α2, β1 and β2, problem I can have three sub-cases.
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Case I: Contiguous Spectrum Access

When α1, α2, β1 and β2 are very large, circuit power completely dominates system

power. Ignoring the contribution of transmit power kpa
∑

m∈M pm from Eq. (3.48a),

problem I gets reduced to the following:

min
∑
i∈I

(
α1,i + 2α2qi + β1,i + 2β2qi

)
(3.49)

s.t. Eq. (3.48b),(3.48d), (3.48c), (3.48f), (3.48e) and (3.48g)

The objective of the optimization problem is an affine function of qi, αi and βi

for all i ∈ I. Minimum circuit power occurs if we use only one radio front end and

one channel. Since link gain of a channel does not vary across radio front ends, we

can arbitrarily select a front end. Since original system power minimization problem

contains both transmit and circuit power, it is prudent to select the channel with the

best link gain.

Use of MC-MR over NC-OFDM

If α2 >> α1 and β2 >> β1, power consumption of ADC & DAC dominate that of

filters, mixers, etc.. Here, problem I gets reduced to the following:

min
∑
i∈I

(
kpa

∑
m∈M

pmi + 2α2qi + 2β2qi
)

(3.50)

s.t. Eq. (3.48b),(3.48d), (3.48f), (3.48e) and (3.48g)

If number of radio front ends matches the number of non-contiguous spectrum

chunks, the optimal solution of above problem activates multiple front ends but ac-

cesses contiguous spectrum chunks in each front end.

Use of NC-OFDM over MC-MR

If α2 << α1 and β2 << β1, power consumption of filters, mixers, etc.. dominate that

of ADC & DAC. In this context, problem I gets reduced to the following:
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min
∑
i∈I

(
kpa

∑
m∈M

pmi + α1,i + β1,i

)
(3.51)

(3.48d), (3.48c), (3.48f), (3.48e) and (3.48g)

The optimal solution to this problem selects only one radio front end and accesses

non-contiguous spectrum chunks through NC-OFDM to meet rate requirement. In

a practical setting, the values of α1, α2, β1 and β2 fall between the extreme cases

mentioned above. In those cases, our algorithm selects a subset of channels and assign

them to different front ends to minimize system power.

3.9.3 Low Complexity Algorithm

Using the insights of Sec, 3.9.2, we develop a greedy algorithm here. Our algorithm can

be explained simply as follows: Pick the channel with the highest link gain at the first

iteration. In each subsequent iteration, select exactly one channel and assign it to one

front end, where both selection and assignment operations are the feasible operations

that minimize total system power during the current iteration. Table 3.9 is the pseudo-

code of our algorithm. Here, Yi ∀ i ∈ I, is the set of channel indexes used by i-th front

end.

At first, we select the channel with the best link gain (line 1). Without loss of

generality, we assign this channel to first front end (line 2) and find associated total

power (line 3). Thereafter, an infinite while loop starts (line 5) where each loop looks at

all possible combinations of channel and front end assignment (line 6-7) and selects the

channel-front end combination that minimizes system power during current iteration.

For each channel-front end combination, we calculate spectrum span (line 9-10), flow

allocation (line 12), power allocation (line 13) and total power (line 14). Line 15

compares total power values among all channel-front end combinations and finds the

channel and front end combination that leads to minimum at the current iteration. If

the current value of minimum total power is less than our previously stored value (line

16), we update total power, scheduling and spectrum span to accommodate current

assignment (line 17-20). Otherwise, infinite loop breaks (line 21-22). The infinite while
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loop of line 4-22 provides scheduling variables, spectrum span and circuit power for

all channels and front ends. Line 23-25 allocates optimal power across these scheduled

channels and front ends. We assume equal flow per channel (line 12) during the inside

iterations of while loop to reduce complexity but our final solution contains optimal

flow and power allocation across channels and front ends (line 23-25).

3.9.4 Computational Complexity

Overall complexity comes from the while loop of line 5-22 and the convex minimization

program of line 23-25. The loops of line 6 and 7 run M and I times respectively. The

outer while loop of line 5 runs at most M times since each iteration will either select a

better channel or the loop will break. Hence, the while loop of line 5-22 runs at most

(O(M2I)) times. The convex optimization program of line 23-25 contains MI number

of constraints and can be solved in (O(MI log(MI))) time [86]. If number of available

channels is much higher than the number of available front ends, then M ≥ log(MI).

Based on this assumption, overall complexity is (O(M2I)).

3.9.5 Other Algorithms

We compare our algorithm with two other algorithms. First algorithm only focuses on

MC-MR platforms and accesses contiguous spectrum chunks in each of its radio front

end [33]. This algorithm puts enough power in contiguous spectrum chunks of each

front end to meet rate requirement. We term this approach ’MC-MR’. Second algorithm

only focuses on NC-OFDM technology, spreads power across all “good” channels and

accesses multiple non-contiguous spectrum chunks with one front end [79]. We term

this approach ’NC-OFDM’. Both these approaches try to minimize the transmitted

power at radio frequency. We compare the performance of both these algorithms with

our algorithm in next section.

3.9.6 Simulation Results

Table 3.10 shows the indexes and center frequencies of available channels. Here, M =

{23, 24, 26, 28, 33, 48, 50}, M = 7. We assume the remaining channels (not shown in
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Figure 3.11: Power allocation among available channels (Demand = 75 Mbps)

Table 3.10) in set 20 − 50 to belong to incumbent users, i.e., those channels cannot

be accessed by both transmitter and receiver. We assume that both transmitter and

receiver are equipped with two front ends, i.e., I = {1, 2} and I = 2. Table 3.11 shows

the values of different parameters that we used in this section. A detailed explanation

of these values can be found in [79].

The left subfigure of Fig. 3.11 shows the link gain across these channels. We as-

sumed 500m distance between two nodes, path loss with exponent 3 and 15 dB random

variation to generate link gain across these channels. We assume 75 Mbps demand (r)

for this simulation scenario. The 2nd and 3rd subfigures (from left) of Fig. 3.11 show

power allocation variables of our algorithm across both front ends. Our algorithm se-

lects “better” channels - in terms of link gain - among the whole list, accesses “nearby”

non-contiguous spectrum chunks in each front end and allocates transmit power to meet

demand requirement.

‘MC-MR’ algorithm can only access contiguous spectrum chunks in each of its front

end. Since channel 23 & 24 - the only contiguous chunk with two channels - have poor

link gain, this algorithm selects channel 26 and 28 in each of its radio front end. Since

demand is much higher than used bandwidth, the 4th and 5th subfigures (from left) of
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Figure 3.12: Power allocation among available channels (Demand = 10 Mbps)

Fig. 3.11 shows that MC-MR algorithm allocates very high amount of power in each

channel and meets rate requirement. The rightmost sub-figure of Fig. 3.11 shows that

‘NC-OFDM’ algorithm spreads power across all ‘good’ channels, accesses multiple non-

contiguous spectrum chunks with one front end and spans a wide amount of spectrum.

As a result, ‘NC-OFDM’ algorithm consumes high power in ADC/DAC circuits [79].

Fig. 3.13 shows that our algorithm consumes less system power than ‘MC-MR’ by

accessing multiple non-contiguous channels in each front end and than ‘NC-OFDMA’

by spanning lesser spectrum in this scenario.

Fig. 3.12 uses same link gain across the channels but assumes 10 Mbps demand

between the transmitter and the receiver. ‘NC-OFDM’ algorithm selects all ‘good’

channels in the network to meet rate requirement. As a results, ‘NC-OFDM’ spans

a wide amount of spectrum, accesses multiple non-contiguous spectrum chunks and

consumes high power in ADC/DAC circuits. ‘MC-MR’ algorithm selects one channel in

each front end and consumes circuit power at the mixers, filters, etc. in each radio front

end. Our algorithm trades off between transmit power and circuit power consumption

and selects the channel with the highest gain in one radio front end. Fig. 3.13 shows

that our algorithm consumes less system power than ‘MC-MR’ by deactivating one

radio front end and ‘NC-OFDMA’ by spanning lesser spectrum in this scenario.
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Figure 3.13: Comparison of system power consumption among different approaches

Fig. 3.13 compares the total power consumption of our algorithm with that of ‘MC-

MR’ and ‘NC-OFDM’ algorithm for different demand values. As evident from Fig. 3.11,

‘MC-MR’ algorithm consumes a high amount of transmit power for high demand. When

demand is low (e.g. 20-30 Mbps), both our algorithm and ‘MC-MR’ approach access two

channels using two front ends and consume equal system power. ‘NC-OFDM’ approach

spans wider amount of spectrum and, hence, consumes excessive circuit power in ADC

and DAC. Our algorithm reaps the inherent benefits of ‘MC-MR’ and ‘NC-OFDM’

approach and combines them to minimize system power across all scenarios.

3.10 Chapter Summary

MC-MR and NC-OFDMA are the two commercially viable choices to access these non-

contiguous spectrum chunks. Fixed MC-MR’s do not scale with increasing number of

non-contiguous spectrum chunks due to their fixed set of supporting ends. MC-MR

also increases circuit power by activating multiple front ends. NC-OFDMA, on the

other hand, accesses non-contiguous spectrum chunks with a single front end by nulling

the channels where incumbent users are present. NC-OFDMA reduces transmit power

consumption by selecting channels with higher link gain but increases circuit power

consumption by spanning wider spectrum.

We characterized this trade-off from two perspectives. First, we focused on a multi-

hop network where each node is equipped with single front end radio and can employ
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NC-OFDMA to access non-contiguous spectrum chunks. We performed joint power con-

trol, channel scheduling, spectrum span selection and routing to minimize system power

consumption of this multi-hop network. Our algorithm showed how the slopes of ADC

and DAC’s power consumption versus sampling rate curve influenced the scheduling

decisions of a multi-hop network. We developed a mixed integer non-linear program to

attain our objective and provided a low complexity greedy algorithm. Numerical results

suggested that our algorithm could save 40% system power over classical transmission

power based cross-layer algorithms.

Secondly, we focused on a point-to-point link where both nodes are equipped with

multiple front ends and can employ NC-OFDMA to access non-contiguous spectrum

chunks. We performed optimal power control and channel scheduling across both front

ends to minimize the system power of this point-to-point link. We designed a mixed

integer non-linear program and provided a low complexity greedy algorithm (O(M2I))

where M and I denote the number of channels and radio front ends respectively. Our

algorithm showed that, in a practical setting, each front end of a radio should capture

“near-by” non-contiguous spectrum chunks.



77

Input: M, r, W , N0, gm ∀m ∈M
Output: xmi , p

m
i , α1,i, β1,i, qi ,Yi∀m ∈M,∀i ∈ Y

Line Operation

1 ind = arg maxm(gm) , val = maxm(gm).

2 xind1 = 1, Y1 = {ind}, q1 = W , α1,1 = α1, β1,1 = β1

3 Ptot = kpa
(
2
r
W − 1

)
N0
val + α1 + 2α2W + β1 + 2β2W

4 while (true)

5 ∀m ∈M
6 ∀i ∈ I
7 α̃1,i = α1, β̃1,i = βi , q̃i = qi, x̃

m
i = xmi

8 if m /∈ Yi ∀ i ∈ I
9 MaxInd = max{Yi,m} , MinInd = min{Yi,m}

10 q̃i = W (MaxInd−MinInd+ 1) , x̃mi = 1

11 α̃1,i = α1 , β̃1,i = β1.

12 f̃nj = r∑
j∈I

∑
n∈M x̃nj

x̃nj ∀j ∈ I, ∀n ∈M

13 p̃nj = (2
f̃nj
W − 1)N0W

gn ∀j ∈ I , ∀n ∈M
14 P̃mi =

∑
j∈I
(
α1,j + α2qj + β1,j + β2qj+

kpa
∑

n∈M x̃nj
)

15 [minP,minC,minI] = minm mini(P̃
m
i )

16 if minP ≤ Ptot,
17 Ptot = minP , xminCminI = 1, α1,minI = α1, β1,minI = β1.

18 YminI = {YminI ,minC}.
19 MaxInd = max{YminI}. MinInd = min{YminI}.
20 qi = W (MaxInd−MinInd+ 1).

21 else

22 break

23 min
∑

i∈I
∑

m∈M pmi
24 s.t.

∑
i∈I
∑

m∈MWlog(1 +
pmi g

m

N0W
) ≥ r,

25 pmi ≤ Axmi , pmi ≥ 0 ∀m ∈M , ∀i ∈ I.

Table 3.9: Greedy Algorithm to Minimize System Power in a Multi-front end radio enabled
point-to-point link

Channel Index 23 24 26 28 33 48 50

Center Freq. (MHz) 527 533 545 557 587 677 689

Table 3.10: Available channels for the point-to-point link

Parameters α1 α2 β1 β2 kpa W

Values 45.4 7.2 282.3 5.5 10.67 6
mW mW/MSPS mW mW/MSPS MHz

Table 3.11: Values of different parameters used in Sec. 3.9.6
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Chapter 4

Wireless Backhaul Node Placement for Small Cell

Networks

4.1 Introduction

We perform joint cost optimal aggregator node placement, power control, channel

scheduling and routing to minimize operational expenses of the overall network in this

part of our work. We develop a mixed integer non-linear programming (MINLP) for-

mulation and then reformulate the MINLP to a mixed integer linear program (MILP)

using linear relaxation techniques. We use branch-and-bound algorithm to solve the

MILP. We also develop a greedy algorithm with polynomial complexity to solve the

MINLP. We apply our solution methodologies to design the wireless backhaul network

in an example downtown Manhattan scenario. We use a ray tracing tool, consisting

of actual building locations and heights in Manhattan, to investigate the impact of

aggregator node placement in wireless backhaul networks.

This chapter is organized in the following way: Section 4.2 discusses interference

patterns in different bands. Section 4.3 and 4.4 show the network optimization problems

in microwave band based backhaul and sub-6 GHz band based backhaul respectively.

Section 4.5 presents how we solve the network optimization problems through linear

relaxation techniques and branch-and-bound algorithm. In section 4.6, we show a

polynomial time greedy algorithm to place aggregator nodes in an interference limited

network. We show the simulation results in section 4.7.



79

Figure 4.1: An example wireless backhaul network in downtown Manhattan scenario. Figure
taken from [6]

4.2 Interference Models

Throughout this work, we denote small cells by edge nodes (EN) and backhaul nodes by

aggregator nodes (AN). We assume that aggregator nodes communicate with gateway

nodes in millimeter band using LOS path. Edge nodes can connect with aggregator or

gateway nodes in microwave band or sub-6 GHz band using NLOS path. We use 5.8

GHz band, 28 GHz band and 60 GHz as representatives of sub-6 GHz, microwave and

millimeter wave band respectively.

4.2.1 Interference limited versus interference free setting between edge

and aggregator/gateway nodes

Typically, the antennas that operate at 28 GHz have high gain and very narrow beam

width. We assume that aggregator nodes perform switched beams and cannot commu-

nicate with multiple edge nodes at the same time slot. On the other hand, due to the

narrow beam width at both transmitter and receiver antennas, substantial interference

suppression is achieved between non-adjacent links, i.e., two links that do not share

a common node. We consider time/frequency division multiple access and interfer-

ence free regime while considering microwave band between edge nodes and aggregator

nodes.

The antennas that operate at sub-6 GHz typically come with wide beam width.

An aggregator node can communicate with different small cells simultaneously using
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space division multiple access (SDMA) techniques. However, edge nodes that intend to

communicate with a particular aggregator node generate interference to neighbouring

aggregator nodes. We consider the spatial multiplexing capability of aggregator nodes

and use a power control based protocol interference model to capture the interference

pattern in sub-6 GHz band.

4.2.2 Interference free setting between aggregator and gateway nodes

We assume that aggregator nodes - located at the roof tops of tall buildings - get

LOS paths to gateway nodes and can use millimeter band for communications to/from

the gateway nodes. Typically, the antennas that operate at millimeter wave band have

narrow beam width. We assume that non-adjacent links do not interfere with each other

and nodes cannot perform space division multiple access due to the complexity of multi-

beam operation. Hence, similar to the microwave band, we assume an interference free

setting and time/frequency division multiple access based fractional resource allocation

in the links that connect aggregator and gateway nodes.

The next two sections provide the network optimization formulations in the following

two scenarios: first, edge nodes communicating to aggregator or gateway nodes using

microwave band in NLOS path and second, edge nodes communicating to aggregator or

gateway nodes using sub-6 GHz band in NLOS path. In both these scenarios, aggregator

nodes connect to gateway nodes using interference free millimeter wave band in LOS

path.

4.3 Network optimization with microwave band in NLOS paths and

mm wave band in LOS path

We consider a two-hop network with EN set of edge nodes and GN set of gateway

nodes. Edge nodes act as sources (sinks) and gateway nodes act as sinks (sources) of

data traffic in the uplink (downlink). Let AN denote the set of possible node locations

of aggregator nodes. Aggregator nodes just relay data between sources and sinks.

Fig. 4.1 shows an example wireless backhaul network in downtown Manhattan. Blue,
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Notation Description

N Set of all nodes

EN Set of edge nodes

AN Set of candidate locations for aggregator nodes

GN Set of gateway nodes

E Number of edge nodes

A Number of candidate aggregator node locations

G Number of gateway nodes

yj Binary decision variable for aggregator node deployment

cyj Operational expense of deployment at node j

M5.8 Set of channels at 5.8 GHz

M Number of channels

fij Flow in link ij

Wij Allotted bandwidth in link ij

di Demand of edge node i

W Bandwidth of discrete channels at 5.8 GHz

N0 Noise spectral density

B Maximum no. of edge nodes that can be spatially multiplexed

pmij Allotted power between node i and j in channel m

gmij Link gain between node i and j in channel m

xmij If node i and j communicate in channel m

xmj If node j uses channel m

xm If channel m is used

Tj Maximum number of radios at node j

PI Interference threshold in protocol interference model

Cpi,Wj Capacity of link evaluated at power pi and bandwidth Wj

Table 4.1: List of Notations
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min
∑
j∈AN

cyjyj (4.1a)

∑
j∈AN

fij +
∑
k∈GN

fij = di ∀i ∈ EN (4.1b)

∑
i∈EN

fij =
∑
k∈GN

fjk ∀j ∈ AN (4.1c)

fij ≤Wij log2

(
1 +

pijgij,28

N0Wij

)
∀i ∈ EN , ∀j ∈ AN ,GN (4.1d)

fij ≤Wij log2

(
1 +

pijgij,60

N0Wij

)
∀i ∈ AN , ∀j ∈ GN (4.1e)∑

j∈AN ,GN
Wij ≤Wmax,28 ,

∑
j∈AN ,GN

pij ≤ pmax,28 ∀i ∈ EN (4.1f)

∑
i∈EN

Wij ≤ yj · TjWmax,28 ∀j ∈ AN (4.1g)

∑
i∈EN

Wij ≤ Tj ·Wmax,28 ∀j ∈ GN (4.1h)

∑
k∈GN

Wjk ≤Wmax,60 ,
∑
k∈GN

pjk ≤ pmax,60 ∀j ∈ AN (4.1i)

fij ,Wij , pij ≥ 0∀ (i, j) ∈ E , yj ∈ {0, 1} ∀j ∈ AN (4.1j)

Figure 4.2: Network optimization formulation when edge and aggregator nodes communicate
in an interference free setting

green balloons and red markers denote edge, gateway and candidate aggregator node

locations respectively. Our objective is to minimize the aggregator node deployment

cost while ensuring the network connectivity between edge and gateway nodes.

Let us focus on the uplink of the backhaul network. Assume that di denotes the

demand of each small cell. Let Wij , pij and fij denote the allotted bandwidth, power

and flow of link ij respectively. Let yj denote a binary decision variable at node j, i.e.,

it represents whether one should place an aggregator node at the candidate location j.

Let Wmax,b and pmax,b denote the maximum allowed bandwidth and power per radio in

band b. Node j can deploy up to Tj number of radios.

Fig. 4.2 shows the network optimization formulation for this scenario. Eq. (4.1a)

denotes the objective function where we minimize the aggregator node deployment

cost. Eq. (4.1b) and (4.1c) denote the flow conservation constraints. First, each edge

node’s outgoing data traffic to the aggregator nodes and gateway nodes should equal
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min
∑
j∈AN

cyjyj (4.2a)

Equations (4.1b), (4.1c), (4.1i), (4.1e).

fij ≤
∑

m∈M5.8

W log2

(
1 +

pmij g
m
ij

N0W

)
∀i ∈ EN , ∀j ∈ AN ,GN (4.2b)

pmkh + (pmax −
PI
gkj

)xmij ≤ pmax ∀k ∈ EN , h ∈ AN ,GN , k 6= i, h 6= j (4.2c)∑
i∈EN

xmij ≤ Byj , ∀m ∈M5.8 , ∀j ∈ AN (4.2d)

∑
i∈EN

xmij ≤ B , ∀m ∈M5.8 , ∀j ∈ GN (4.2e)

∑
j∈AN ,GN

∑
m∈M5.8

xmij ≤ Tj ∀i ∈ EN (4.2f)

∑
m∈M

xmj ≤ Tj ∀j ∈ AN ,GN (4.2g)

pmij ≤ pmaxxmij ∀(i, j) ∈ E , ∀m ∈M5.8 (4.2h)

xmij ≤ xmj ∀i ∈ EN , j ∈ AN ,GN , m ∈M5.8 (4.2i)

pmij , fij ≥ 0, xmij , yj , x
m
j ∈ {0, 1}, ∀i ∈ EN , j ∈ AN ,GN , m ∈M5.8 (4.2j)

fjk, pjk,60, Wjk,60 ≥ 0, ∀j ∈ AN , k ∈ GN (4.2k)

Figure 4.3: Network optimization formulation when edge and aggregator nodes communicate
using a protocol interference model

the edge node’s demand. Second, each aggregator node’s incoming flow should equal

its outgoing flow. Eq. (4.1d) and (4.1e) couple the flow, bandwidth and power variables

at each link. It is assumed that edge nodes and aggregator nodes communicate in the

28 GHz and 60 GHz bands, respectively. Equations (4.1f)-(4.1i) denote the maximum

available bandwidth and power constraints at each node. Equation (4.1g) couples all

other constraints with the the aggregator node deployment variable of the optimization

objective. Equation (4.1j) describes the variables of the optimization problem.

The optimization problem of Fig. 4.2 is a mixed integer non-linear program (MINLP).

It contains |AN | number of binary decision variables. Next, we describe the optimiza-

tion formulation of sub-6 GHz transmission based networks since it is another MINLP.

Thereafter, we provide the solution methodology for solving these MINLP’s.
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4.4 Network optimization with sub-6 GHz in NLOS paths and mm-

wave in LOS paths

Due to the wide beam width of antennas at sub-6 GHz, non-adjacent links can interfere

with each other. To tackle this interference, we split the overall bandwidth at sub-6

GHz into a set of discrete channels. The edge nodes use these channels to communicate

with aggregator or gateway nodes. Our goal is to schedule and allocate power in these

channels optimally so that non-adjacent links do not interfere with each other.

Let xmij , p
m
ij and gmij denote the binary scheduling variables, power allocation and

gain for link ij in channel m respectively.

xmij =


1, if node i transmits to node j using channel m.

0, otherwise.

(4.3)

We use protocol interference model in our work. Our work can be extended to SINR

interference model, too. Assume that node i transmits to node j in channel m, i.e.,

xmij = 1. Another node k can transmit to node h in channel m if pmkh causes negligible

interference in node j.

pmkh + (pmax −
PI
gmkj

)xmij ≤ pmax ∀ k ∈ N , h ∈ N , k 6= h (4.4)

where PI is the interference threshold.

Due to the wide beam width of sub-6GHz antennas, an aggregator or gateway node

can cover multiple edge nodes using SDMA technology. Hence,

∑
i∈EN

xmij ≤ B , ∀m ∈M5.8 , ∀j ∈ AN ,GN (4.5)

where M5.8 is the set of discrete channels at 5.8 GHz and B is the maximum

number of edge nodes that one radio of aggregator/gateway node can cover using SDMA

technology. For simplicity, we assume that the aggregator or gateway node can employ

very large number of antennas at their end and fully suppress the interference among
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covered edge nodes by using a minimum-mean-squared-error decoder when the ratio of

number of antennas to number of edge nodes becomes very high [96]. The value of B

depends on the the number of antennas at the aggregator/gateway node. Our model can

accommodate the case of imperfect interference suppression as a gap to capacity. We

relate the value of B, the number of aggregator node antennas and desired interference

suppression in the numerical simulations section.

Fig. 4.3 shows the network optimization formulation with the protocol interference

and spatial multiplexing constraints. The optimization objective of (4.1a), flow conser-

vation constraints of (4.1b), (4.1c) are same as in Fig. 4.2. Also, power and bandwidth

allocation equations between aggregator and gateway nodes (equation (4.1i) and (4.1e))

re-appear in Fig. 4.3.

Equation (4.2d) couples the aggregator node deployment decision variables to all

other constraints by ensuring that a candidate location must be selected for deploy-

ment if it uses any channel. Power control based protocol interference model appears

at (4.2c). Spatial multiplexing capability of aggregator and gateway nodes appear

at (4.2d) and (4.2e). Eq. (4.2f) shows that the number of channels that an edge node

can use is limited by the maximum number of allowed radios in that node. Eq. (4.2g)

denotes that an aggregator or gateway node j can place up to Tj number of radios.

Eq. (4.2h) couples the power allocation and scheduling variables. Eq. (4.2i) couples

the link scheduling and node scheduling variables. Eq. (4.2j) and (4.2k) describe the

variables of the optimization program.

The optimization problem of Fig. 4.3 is also a MINLP. It contains |AN | + |EN | ∗

|M| ∗
(
|AN | + |GN |

)
number of binary variables. The number of integer variables

(both scheduling variable xmij and aggregator node deployment variable yj) in this sce-

nario is much higher than that of Fig. 4.2 which only contains deployment variable yj .

Section 4.5 shows how we solve these MINLP’s.
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Figure 4.4: Linear relaxation of the capacity function. First order Taylor approximation at
points p1,pi and pmax provide an upper bound of the log function.

4.5 Solution of the Optimization Problem

We reformulate the MINLP’s to mixed integer linear programs (MILP) to speed up the

optimization convergence and to be able to use free solvers. We relax the log functions

of the capacity equations into a set of linear functions, solve the resultant MILP using

branch-and-bound algorithm and find a feasible solution of the optimization problem

from the relaxed solution. We describe these steps in the next three sub-sections.

4.5.1 Linear relaxation of the capacity function

The capacity functions of (4.1d), (4.1e) and (4.2b) are concave functions with respect

to the allotted power p and bandwidth W [86]. Hence, each capacity function can be

upper bounded into a set of linear functions by taking slopes at different points [44].

Let us define a set of power variables PI = {p1, ·, pi, ·, pmax} and bandwidth variables

WJ = {W1, ·,Wj , ·,Wmax} for a link with gain g. Let C = W log2(1 + pg
N0W

) denote

the capacity function and Cpi,Wj = Wj log2(1 + pig
Wj

) represent the capacity with power

pi and bandwidth Wj . We bound the flow f in the link by taking first order Taylor

approximation in each of the power-bandwidth pairs:

f ≤ Cpi,Wj +mpi · (p− pi) +mWj (W −Wj)

∀pi ∈ PI , ∀Wj ∈ WJ (4.6)
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Figure 4.5: Branch and bound algorithm of an optimization problem that contains three binary
variables (x4, x5 and x6).

where,

mpi =
∂C

∂p

∣∣∣∣
p=pi

, mWj =
∂C

∂W

∣∣∣∣
W=Wj

(4.7)

f ≤ c
∣∣∣∣
p=pi,W=Wi

+
[∂c
∂p

∣∣∣∣
p=pi

,
∂c

∂W

∣∣∣∣
W=Wj

][
(p− pi), (c− cj)

]T
∀pi ∈ PI , ∀Wj ∈ WJ . (4.8)

Here, ∂c∂p

∣∣∣∣
p=pi

and ∂c
∂W

∣∣∣∣
W=Wj

denote the partial derivatives of the capacity c with respect

to the power and bandwidth variables, evaluated at p = pi and w = wj respectively.

The capacity of the link with pi power and Wj bandwidth is represented by cij .

Fig. 4.4 shows our linear relaxation procedure. We relax the non-linear equations

of (4.1d), (4.1e) and (4.2b) in this way and the MINLPs of Fig. 4.2 and 4.3 reformulate

to MILPs.

4.5.2 Branch-and-bound algorithm

A brute force solution of the MILP requires exponential number of searches. We use

YALMIP [97] and GNU Linear Programming Kit (GLPK) [98] to solve the MILPs.

GLPK uses branch-and-bound algorithm to solve the MILP, which operates as follows:

branch-and-bound algorithm branches in each binary variable, as shown in Fig. 4.5.

In each branch, the algorithm calculates a lower bound using continuous relaxation of

the binary variables and an upper bound by finding a feasible solution. The algorithm
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updates the global lower and upper bound and stops when their difference becomes

smaller than the pre-defined optimality gap [99].

Fig. 4.5 shows how branch-and-bound reduces the search complexity by pruning

branches that are not useful. At the beginning, the algorithm calculates lower bound

(LB) and upper bound (UB)of the overall problem. The algorithm branches on x6 and

calculates the lower and upper bound for x6 = 0 (LB1,UB1) and x6 = 1 (LB2, UB2)

respectively. If LB2 ≥ UB1, the algorithm prunes x6 = 1 branch and continues further

on x6 = 0 branch.

In standard branch-and-bound procedure, partitioning is done by choosing the vari-

able with the largest relaxation error [44]. The reason for this partitioning is that such

a variable could lead to a large gap between the upper and the lower bound. However,

such standard procedures do not exploit the specific properties of the problem.

Our partitioning approach to speed up the convergence of the branch-and-bound

algorithm is based on the fact that the aggregator node placement decision variables (yj)

are more important than scheduling variables (xmij ). Hence, aggregator node placement

decision variables are branched before scheduling variables.

4.5.3 Feasible solution

Any feasible solution of MILP may not be a feasible solution of the original MINLP

since we relaxed the capacity function into a set of linear functions. This is because

some edge nodes’ flow may exceed the capacity of their links with the allotted power

and bandwidth. Therefore, we find a feasible solution in the following ways.

• Tightening the relaxation gap: We increase the granularity of piecewise linear

approximation.

• Checking for spare bandwidth: We ensure that each aggregator node uses its

entire allocated bandwidth before declaring infeasibility. We find this by fixing

the scheduling and deployment variables of the MILP output, and running the

MINLP for bandwidth, power and flow variables which is a convex optimization

problem [86].
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• Iterate the process: If previous step does not provide a feasible solution, we iterate

the whole process by re-formulating the MINLP where the currently infeasible

edge nodes form the new set of edge nodes and unselected aggregator nodes form

the new set of aggregator nodes.

4.5.4 Algorithm running time

The only integer variables of Fig. 4.2, i.e., network optimization with microwave in

NLOS and mm-wave in LOS, are deployment decision variables. Due to the low

number of deployment decision variables, the branch-and-bound algorithm converges

quickly. Using GLPK [98] and branch-and-bound algorithm, we ran a problem instance

of Fig. 4.2 that consisted of 18 edge nodes, 16 candidate aggregator node locations and

3 gateway nodes. The solution converged in 30 seconds with 0% optimality gap. Such

time complexity is acceptable, since aggregator node deployment is an offline planning

task.

The integer variables of Fig. 4.8, i.e., network optimization with sub-6 GHz in

NLOS and mm-wave in LOS, come from both deployment decision variables and binary

scheduling variables. The number of binary scheduling variables is proportional to the

product of the number of edge nodes, number of candidate aggregator node locations

and number of channels at 5.8 GHz. In a scenario containing 18 edge node, 16 candidate

aggregator node, 3 gateway node and 6 discrete channels, there are roughly (18 · 16 ·

6 + 18 · 3 · 6) = 2052 scheduling variables. Using GLPK [98] and branch-and-bound

method, we solved this problem instance in 30 minutes with 0.5 optimality gap. This

running time is also acceptable since this is an offline planning algorithm. However,

due to the exponential worst case complexity, this running time could be much higher

for a higher number of edge nodes and candidate aggregator nodes. This prompted us

to develop a polynomial time algorithm for the network optimization with sub-6 GHz

in NLOS and mm-wave in LOS path.
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Line Operation

1 Assume each edge node (EN) uses its maximum power
and one discrete channel.

2 Using the assumption of line 1, calculate the
capacity between each edge node to all aggregator
nodes (AN) and gateway nodes (GN).

3 A link between between EN and AN/GN exists only
if it can sustain the demand of the EN.

4 Each AN and GN is associated with a set whose elements
are the edge nodes that it can cover.

5 Select the GN set with the highest set size

6 Assign all adjacent EN’s to this GN.

7 Assign channel to the sets in such a way so that the EN’s of
the newly selected set do not interfere with the previously
selected AN’s/GN’s and the newly selected AN/GN do not
get interfered by the previously selected EN’s.

8 Remove the selected EN’s and GN from available set. Go to
line 5. Iterate until all GN are selected or all EN’s are covered.

9 If all EN’s are covered, stop. Else, proceed.

10 Select the AN with the maximum coverage.

11 Assign all adjacent EN’s to this AN.

12 Maintain the channel assignment condition of line 8.

13 Remove the selected EN’s and AN from available set. Go to
line 9. Iterate until all EN’s are covered

Table 4.2: Greedy Set Covering based Network Optimization with sub-6 GHz in NLOS Paths
and mm-wave band in LOS paths

4.6 Greedy Set Covering based Network Optimization with sub-6

GHz in NLOS Path and mm-wave band in LOS path

In this section, we develop a greedy polynomial time algorithm for the network op-

timization problem of Fig. 4.3. We make the following assumption in our algorithm:

an edge node can only use one channel and talk to one aggregator or gateway node.

Table 4.2 summarizes our greedy algorithm. We describe the complexity of the greedy

algorithm below. Throughout the complexity analysis, we use E, G, A and M to denote

the number of edge nodes, gateway nodes, candidate locations of aggregator nodes and

discrete channels respectively.

Lines 1−3 of table 4.2 find out if an edge node can sustain its demand to aggregator

and gateway nodes. This provides the connectivity between every edge node to all
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other aggregator and gateway nodes in the network (O(AE + GE)). We end up with

a number of sets where each set is associated with an aggregator or gateway node and

the elements of the sets are the edge nodes that can be covered by that particular

aggregator or gateway node. The union of all sets represent the edge nodes that can

be covered by these aggregator or gateway nodes.

Our objective is to cover all edge nodes while minimizing the deployment cost of the

selected sets. Gateway nodes have already been deployed. Our optimization variables

are aggregator node deployment decision variables. Hence, we first select the gateway

node affiliated sets and cover as many edge nodes as possible. If gateway nodes cannot

cover all edge nodes, we keep selecting aggregator nodes one after the other until all edge

nodes are covered. We employ the greedy set covering algorithm to select the gateway

and aggregator nodes [100]. Line 5− 8 and 10− 13 show gateway and aggregator node

selection procedure using the greedy set covering approach.

In each outer loop, greedy set covering algorithm selects a set by performing three

steps: first, counting size of each set; second, finding the set with the highest set size;

and third, removing the edge nodes of the newly selected from other sets. There can be

at most E edge nodes in each set and there can be at most A+G sets, in total. Hence,

counting set size at each loop can take at most (A + G)E operations. Finding the set

with the highest size takes at most (A+G) operations. Removing elements from other

sets involve at most (A + G)E operations. The outer loop can run at most (A + G)

times. Hence, the overall complexity of our covering algorithm is: O((A+G)(A+G)E).

We employ greedy coloring algorithm [100] to assign channels to the newly selected

sets. Line 7 of Table 4.2 shows how we color, i.e., assign channels to, newly selected sets.

The edge nodes of a newly selected set cannot interfere with the aggregator or gateway

nodes of the previously selected sets [101]. There can be at most (A+G) newly selected

sets and each set can contain at most E edge nodes. Each set can interfere with at most

(A+G) previous sets and this interference can happen for at most M channels. Hence,

the overall complexity associated with greedy coloring is O((A+G)(A+G)EM).

The above analysis suggests that the total complexity of the overall algorithm is

dominated by the greedy coloring algorithm O((A+G)(A+G)EM). Let’s assume that
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Features 5.8 GHz 28 GHz 60 GHz

Rain Attenuation (dB) [103] 0 2.5 10

Oxygen Absorption (dB) [103] 0 0.5 15

Antenna gain (dB) 17 [53] 38 [53] 38 [104]

Maximum transmit power (dBm) 19 [53] 19 [53] 25

Fading margin (dB) 15 25 25

Channel width (MHz) 40 [53] 56 [53] 160 [104]

Number of channels 6 6 6

Table 4.3: Backhaul features at different bands

the number of edge nodes is roughly equal to the number of candidate aggregator node

locations. Also assume that the number of gateway nodes is much smaller than both

number of edge nodes and aggregator nodes. That means, G << E ≈ A. With this

assumption, our proposed greedy algorithm has a complexity of O(E3M).

4.6.1 Performance bound

Greedy weighted set covering guarantees an optimality gap of at most ln(K) where K

is the size of the set that contains the highest number of edge nodes [102].

Our greedy coloring algorithm does not guarantee that the available channels will

be sufficient to color all elements of the graph. This happens since graph coloring is an

NP-hard problem in general [100].

Simulation results suggest that our algorithm performs similar to the branch-and-

bound based algorithm in terms of aggregator node deployment cost and edge node

coverage.

4.7 Numerical results

We consider an example wireless backhaul network in downtown Manhattan and obtain

channel gains using ray tracing tools. We place edge nodes at street levels, aggrega-

tor nodes at the top of nearby tall buildings and gateway nodes at the top of the

tallest buildings of downtown Manhattan. Fig. 4.6 shows the example wireless back-

haul network. Our ray tracing tool uses actual building locations and building heights

of downtown Manhattan and a diffraction based propagation model to generate link
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Figure 4.6: A realistic network scenario in downtown Manhattan. Orange and light blue markers
denote locations of edge nodes and gateway nodes. Green markers denote candidate locations
of aggregator node deployment.

gains. These link gains are incorporated with the backhaul features of Table 4.3. We

assume equal deployment cost for all aggregator nodes’ locations and 100 Mbps demand

from edge nodes.

4.7.1 Network connectivity with microwave band

At first, we use the 28 GHz link gains between the edge and aggregator/gateway nodes

and 60 GHz link gains between aggregator and gateway node. We run the network op-

timization problem of Fig. 4.2. Fig. 4.7 shows the network connectivity in this scenario.

Two candidate aggregator locations – highlighted with green rectangle marker around

them – get selected for aggregator node deployment. The optimality gap is 0% in this

scenario.

Our resultant network is free of primary interference. Adjacent links use different

bandwidth in the network scenario of Fig. 4.7. However, non-adjacent nearby links

are allowed to share bandwidth. This happens since we assumed an interference free

regime in the network optimization formulations of microwave band. We now check the

validity of our assumptions. Assuming that antennas have no side lobes, we find that
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Figure 4.7: Network connectivity when edge nodes (orange markers) transmit in 28 GHz (red
lines) to aggregator nodes (green markers) and gateway nodes (highlighted with light blue
rectangle around it). Aggregator nodes transmit in 60 GHz (dashed blue lines) to gateway
nodes. Figure taken from [6]

the maximum interference among non-adjacent links that use the microwave band falls

19 dB below the noise threshold.

4.7.2 Network connectivity with sub-6 GHz band

In this setup, we use the 5.8 GHz link gains between edge and aggregator/gateway

nodes and 60 GHz links gains between aggregator and gateway nodes. Using these link

gains, we run the optimization problem of Fig. 4.3. We assume an aggregator/gateway

node can cover up to four edge nodes in the same channel using SDMA at 5.8 GHz.

Fig. 4.8 shows the associated network connectivity. Each solid colored line represents

a discrete channel from the 5.8 GHz channel set. Some aggregator/gateway nodes

communicate with multiple edge nodes in the same discrete channel using the spatial

multiplexing capability. Two non-adjacent nearby links perform power allocation and

get colored in such a way that no edge interferes with each other. One Edge node

(highlighted with orange rectangle marker around it) does not have good enough link

gain with any aggregator or gateway node to sustain its demand. Therefore, it becomes
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Figure 4.8: Network connectivity when edge nodes transmit in 5.8 GHz and aggregator nodes
transmit in 60 GHz. Figure taken from [6]

an infeasible edge node. The rest of the edge nodes require the deployment of five

aggregator nodes – highlighted with green rectangle marker around them – to meet

their demand. The optimality gap is 40% in this case. We ran MILP of both sub-6

GHz and microwave band for 30 minutes. Optimization problem of Fig. 4.3 contains

higher number of binary variables (both scheduling and node placement variables) than

that of Fig. 4.2 (only node placement variables). Hence, sub-6 GHz based network

optimization converges slowly.

It should be noted that we have not modeled many practical aspects such as antenna

alignment, material reflectivity, etc. that affect the link gain at 28 GHz. Our intention

was not to compare sub-6 GHz and 28 GHz band. We just contrast their respective

optimization problems.

Performance of greedy algorithm with sub-6 GHz in NLOS and mm-wave

band in LOS path

Network connectivity results of Fig. 4.8 were obtained with the branch-and-bound so-

lution procedure. Recall that we provided a greedy algorithm with polynomial time
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Demand Branch-and-bound Greedy
(Mbps) Covered EN Selected AN Covered EN Selected AN

50 18 4 18 4

100 17 5 16 5

150 16 5 16 5

200 16 6 16 6

250 15 7 15 7

Table 4.4: Performance comparison between branch-and-bound and greedy algorithm in network
optimization with sub-6 GHz in NLOS and mm-wave band in LOS

complexity in Sec. 4.6 to design a wireless backhaul network that uses sub-6 GHz in

NLOS and mm-wave band in LOS path. Now, we compare the performance of branch-

and-bound based solution and greedy algorithm in this scenario.

Table 4.4 compares the performance of branch-and-bound and greedy algorithm.

Each row of Table 4.4 represents a network scenario of Fig. 4.6 where the first column

denotes the demand across edge nodes of the network. We observe how branch-and-

bound based solution and the greedy algorithm perform in terms of edge node coverage

and aggregator node deployment.

Table 4.4 shows that the number of covered edge nodes decrease and the required

number of aggregator node deployments increases with increasing demand. This is not

surprising since some edge nodes may not have adequate link gain with any aggregator

or gateway node to sustain higher demand. Due to per node bandwidth and power con-

straint, these nodes cannot be covered with higher demand. Also, as demand increases,

link gains between edge nodes and gateway nodes do not remain good enough to sustain

high data rate. This increases the required number of aggregator node deployment in

the network.

Table 4.4 shows that the greedy algorithm performs exactly the same as the branch-

and-bound methodology in all these scenarios. The branch-and-bound algorithm was

run for roughly 20 minutes in each scenario and the resulting optimality gaps ranged

between 0.4 to 0.6. Branch-and-bound algorithm might have performed better if we

ran it for much longer period.

Also, our current greedy algorithm only applies to the scenario where each edge node
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can use one channel. Our future work will extend this algorithm to a general scenario

where each edge node can use multiple discrete channels at 5.8 GHz to communicate

with the aggregator and gateway nodes.

Unlike branch-and-bound, greedy algorithm has polynomial time complexity. Our

greedy algorithm code only required a few seconds to converge. Due to its equal perfor-

mance and low complexity, greedy algorithm can be used to design wireless backhaul

networks that consist of higher number of nodes.

4.7.3 Relationship between Interference Suppression and the number

of spatially multiplexed edge nodes

This section focuses on the scenario where one aggregator node (AN) supports multiple

edge nodes (EN) at the same channel. Fig. 4.9 shows how the number of edge nodes

influences the SINR that the edge nodes experience.

Channel between the aggregator node and each edge node undergoes a combination

of large scale and small scale fading. We assume that each edge node sees 20 dB

signal-to-noise-ratio (SNR) due to large scale fading. Instantaneous values of random

small scale fading parameters differ between edge nodes, and follow Winner II B5d

channels [105]. Winner II B5d channels provide small scale fading coefficients between

two non-line-of-sight stationary feeders that are located at rooftop and street level.

The aggregator node contains eight antennas and employs minimum-mean-squred-

error algorithm to suppress interference among edge nodes. Fig. 4.9 shows that the

cumulative probability of SINR decreases as the number of supported edge nodes in-

creases.

We use an SNR based equation, not SINR based equation, in (4.2b) to describe the

capacity of multiple edge nodes that are connected to the same aggregator node. Fig. 4.9

shows how one can use a SNR based equation by properly selecting the maximum

number of supported edge nodes and desired outage probability. For example, the

aggregator node can support four edge nodes simultaneously with 20 dB SINR and

10% outage probability. If the aggregator node wants to support six edge nodes with

10% outage probability, the supported edge nodes will experience 17 dB SINR which
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Figure 4.9: CDF of SINR curves

is 3 dB below from the SNR of their individual links.

Network operator can select different number of maximum supported edge nodes

and capacity gap (coming from the difference between SINR and SNR of the link) and

employ them in the optimization problem of Fig. 4.3.

4.8 Chapter Summary

Small cells can keep up with the increasing demand of wireless networks; but require

backhaul to transport data to (from) a gateway node. Wireless backhaul can provide

an inexpensive option to small cells. Aggregator nodes, located at roof tops of tall

buildings near small cells, can provide high data rate to multiple small cells in NLOS

paths, sustain the same data rate to gateway nodes in LOS paths and take advantage

of all available bands for wireless backhaul.

This part of our work performed joint cost optimal aggregator node placement,

power allocation, channel scheduling and routing to optimize the wireless backhaul net-

work. We investigated wireless backhaul network using both sub-6 GHz and microwave

bands. We considered the different interference patterns and multiple access features in

these bands and incorporated them in backhaul network optimization. We developed

two solution methodologies - branch-and-bound and greedy - to solve these network
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optimization problems. Simulation results showed that aggregator nodes can play a

significant role in transporting traffic between small cells and gateway nodes.
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Chapter 5

A Wireless Channel Sounding System for Small Cell

Networks

5.1 Introduction

In this chapter, we describe our effort in designing a rapid wireless channel sounding

system for small cell networks. This system uses the Universal Software Radio Pe-

ripheral (USRP) and GNU Radio software. Our design measures channel propagation

characteristics simultaneously from multiple transmitter locations. The system also

accommodates multiple battery-powered transmitters and receivers. Therefore, we can

set-up the channel sounder rapidly at a field location and measure expeditiously by

analyzing different transmitters’ signals during a single walk or drive through the envi-

ronment. Our design can be used for both indoor and outdoor channel measurements

in the frequency range of 1 MHz to 6 GHz. We expect that the proposed approach,

with a few further refinements, can transform the task of propagation measurement as

a routine part of day-to-day wireless network engineering.

5.2 Measurement System

We use GNU Radio software and USRP daughterboards in the channel sounding ex-

periments. The top and bottom parts of Fig. 5.1 show the transmit and receive block

diagrams of the USRP respectively. On the transmitter side, the host processor sends

complex baseband samples to the field programmable gate array (FPGA) through an

ethernet cable. The FPGA board low pass filters and up-converts the signal to a

higher sampling rate. Thereafter, the signal goes through the digital-to-analog con-

verter (DAC) and the passband frequency conversion stage to the transmitter antenna.
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Figure 5.1: USRP block diagram

The receiver side operates exactly in the opposite manner.

The host processor views these complex baseband samples as floating point numbers.

GNU Radio is an open source software that allows the use of digital signal processing

algorithms on these floating point numbers.

We use USRP networked (N) and embedded (E) series radios in our experiments.

The N series and E series softwares allow up to 50 MS/s and 8 MS/s data transfer rate

respectively from the host processor. The temporal resolution of the sliding correlator

channel sounding experiments depend on the maximum sampling rate of the radio.

Therefore, we use the N series radios in sliding correlator channel sounding experiments.

Note that, the N series radios require external laptops for each transmitter and receiver.

Due to the availability of external power source in office building, we use the N series

radio based sliding correlator channel sounding in indoor experiments.

On the other hand, the use of an external laptop in outdoor environment is incon-

venient due to its heavy weight and limited battery lifetime. An E series radio contains

an embedded processor and can work as a stand-alone pre-programmed transceiver.

Hence, we use USRP E series transmitters in outdoor experiments. The embedded pro-

cessor of E series radios can provide sampling rates up to 8 MS/s (4 Mega Symbols per

second with 2 samples per symbol). In a sliding correlator channel sounding system,

this sampling rate limits the temporal resolution to 250 ns. This resolution is too low

to handle the rich multipath delay spread of an outdoor environment. Therefore, we
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perform frequency domain channel sounding in outdoor experiments.

5.3 Sliding Correlator Channel Sounding

5.3.1 Methodology

In the sliding correlator approach, the transmitters send a pseudo-noise (PN) sequence

with a 60 nanosecond (ns) pulse duration and the receiver obtains the wideband path

loss and multipath delay profile. The upper and lower parts of Fig. 5.2 use a sin-

gle transmitter and receiver to show the transmit and receive diagrams of the sliding

correlator system respectively .

Transmission

The transmitter sends x, a Galois linear feedback shift register (GLFSR) maximal

length PN sequence of degree 10. We can write x as follows:

x[n] =
∑
r

c[n− rN ] (5.1)

where, N = 1023 and c is a chip sequence of length 1023, c = [c0, · · · , c1022]. Here,

ci ∀ i ∈ [0, 1022] takes the value of either +1 or −1. Defining Rcx as the correlation

output of c and x and using the properties of PN sequence,

Rcx[n] =

 1 n = 0, N,−N, 2N,−2N, · · ·

− 1
N otherwise

 (5.2)

The signal x is passed through a root raised cosine (RRC) filter and then sent to the

real input of the USRP transmitter module. The imaginary input comes from a null

source. The USRP transmitter module sends the complex baseband samples to the

USRP transmit path and establishes the transmit frequency and sampling rate. The

baseband equivalent transmitted signal is given by:

x(t) =
∑
n

x[n]p(t− nTs) (5.3)



103

Figure 5.2: Sliding Correlator Channel Sounder System

Parameter Value

Pathloss dynamic range 45-105 dB

Temporal resolution 60 ns

Maximum multipath delay 61 ms

Table 5.1: (Sliding correlator channel sounder system parameters)

where Ts is the period of the RRC generated pulse.

Multipath Channel

The impulse response of the multipath channel can be written as:

h(t) =

L−1∑
l=0

αlδ(t− τl) (5.4)

Here, L is the number of multipaths in the channel, αl is the complex gain of each

multipath and τl is the associated delay. We assume τ0 = 0 since we focus on relative

delay.

Reception

The baseband equivalent received signal, in time domain, is obtained by:

y(t) = (x ∗ h)(t) =

L−1∑
l=0

αlx(t− τl) (5.5)
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Figure 5.3: Frequency Domain Channel Sounder System

Parameter Value

Pathloss dynamic range 45-120 dB

Frequency resolution (∆f) 2 MHz

Number of steps (N) 10

Temporal resolution 27.8 ns

Table 5.2: (Frequency domain channel sounder system parameters)

y(t) goes through the USRP receive path, gets sampled and arrives at the USRP

receiver module of Fig. 5.2. The time synchronizer block finds the proper phase of the

RRC pulses. A detailed theoretical description of the time synchronizer can be found

in [106] and the open source code description can be found in [107]. Proper timing

synchronization leads to the following discrete received signal y,

y[j] = y[jTs] =
L−1∑
l=0

αl
∑
n

x[n]p[(j − n)Ts − τl] (5.6)

Equation (5.6) follows from (5.3) and (5.5). Assume that the multipath delay τl is

an integer multiple of the pulse period Ts. With this assumption, τl = clTs where cl

is a non-negative integer. The properties of the RRC filter suggest that p(nTs) = 0 if

n 6= 0 [108]. Therefore,

y[j] =
L−1∑
l=0

αl
∑
n

x[n]p[(j − n− cl)Ts]

=

L−1∑
l=0

αlx[j − cl] (5.7)
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Now, the correlator block produces,

Rcy[n] = corr(c,y) =
L−1∑
l=0

αlRcx[n− cl] (5.8)

where, Rcx = corr(c,x). Using (5.2) in (5.8), one can easily find the complex multipath

gain αl at delay, τl = clTs. For example, Rcy[0], Rcy[N ], · · · lead to the calculation of

α0 whereas, Rcy[1], Rcy[N + 1], · · · lead to α1. The multipath power-delay profile can

be obtained from the powers of the individual multipath components |αl|2. The path

loss can be found from the difference of the known transmit power and the total power

in the multipath components (
∑L−1

l=0 |αl|2).

Note that, path loss calculation does not require time synchronization. On the other

hand, the correct estimate of multipath power delay profile requires time synchroniza-

tion. The time synchronization algorithm [107] only operates at moderate and high

signal-to-noise-ratio. Therefore, although we had a path loss dynamic range of 45 to

105 dB, we could measure multipath delay profile only from 45 to 80 dB path loss range.

5.3.2 Multiple transmitter sliding correlator channel sounding algo-

rithm

Different transmitters repeatedly access their allotted time slots and transmit the

GLFSR PN sequence. The receiver captures the PN sequences from each transmit-

ter and finds the path loss and delay profile for each of them. The overall algorithm is

summarized below:

1. Assume there areN transmitters. Transmitter i transmits in the desired frequency

band during the time slot [ti−1 + r ∗ Tp , ti + r ∗ Tp]∀ r ∈ [0, 1, · · · ,M ]. Here,

ti− ti−1 = ∆t is the allotted time slot length of each transmitter during each time

period Tp and Tp = ∆t×N . Also, M × Tp is the total experiment duration.

2. The user opens the floor map image in the receiver laptop and clicks a point that

corresponds to the present location. The receiver flow graph is initiated at time

p× Tp where p is the nearest integer.
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Figure 5.4: Path loss data for indoor transmitter 1

3. The receiver captures the samples during the time slot [pTp, (p+ 1)Tp], splits the

floating point numbers into N segments and uses the ith segment to calculate the

path loss and delay profile of the ith transmitter.

4. The wideband path loss, delay profile and X & Y coordinates of the location are

stored in the laptop.

5.3.3 Challenges of multiple transmitter channel sounding in the slid-

ing correlator method

Time synchronization

We use the USRP N series radios, controlled by external laptops, in the sliding correlator

channel sounding method. The clock timing of these laptops is synchronized in advance

through network time protocol (NTP) servers [109]. The synchronized laptops control

the TDMA operation of the multiple transmitters.

Near-far effect

In an ideal N transmitter TDMA system, N − 1 transmitters remain silent when one

transmits. In order to implement this method in our setup, the N − 1 USRP radios

have to either turn off or transmit null source during the active transmission period
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of the other radio. The frequent turn on-and-off leads to the freezing up of USRP

radios. On the other hand, USRP radios leak a small amount of power while trans-

mitting a null source. This leakage power leads to the classical near-far problem in

a multiple transmitter scenario, i.e., the channel measurements of the far transmitter

get overwhelmed by the leakage from the near transmitter, due to the large difference

of path loss among the transmitters. In order to avoid these two problems, we take

the following approach: when transmitter i transmits, transmitter j ∀ ∈ [1, N ] , j 6= i

transmits in the industrial, scientific and medical radio band at the lowest power pos-

sible. The receiver receives samples in the desired frequency band and therefore, the

channel measurements of different transmitters remain independent of each other.

The design parameters of the sliding correlator channel sounder are given in Ta-

ble 5.1.

5.4 Frequency Domain Channel Sounding

5.4.1 Methodology

In the frequency domain channel sounding method, the transmitters and the receiver

synchronously sweep a given frequency band in Q discrete steps of ∆f . By sweeping

a large frequency band, one can obtain a very fine temporal resolution [68]. The top

and bottom parts of Fig. 5.3 show the transmitter and receiver block diagrams of a

frequency domain channel sounder using a single transmitter and receiver.

5.4.2 Multiple transmitter frequency domain channel sounding algo-

rithm

Assume that there are Q carrier frequency steps and K transmitters. There is a

predefined list of carrier frequencies, Fc = [Fc1 , · · · , FcQ ] and sinusoidal frequencies,

f = [f1, · · · , fK ]. The algorithm can be described as follows:

1. The USRP clocks of the transmitters and the receiver are time synchronized on-

the-fly through global positioning system (GPS) [110].
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Figure 5.5: Path loss data for indoor transmitter 2

2. Transmitter k steps through the carrier frequency list and transmits a sinusoidal

tone at [Fc1 + fk, · · · , FcQ + fk] frequencies in Q steps.

3. The receiver synchronously steps through the carrier frequency list with sampling

rate Sr and performs an FFT of length L on the received samples.

4. Transmitter k’s signal falls in the L×fk
Sr

bin of the FFT. The narrowband path

loss of the kth transmitter at frequencies [Fc1 + fk, · · · , FcQ + fk] is found based

on the power in the corresponding bin.

5.4.3 Challenges of multiple transmitter channel sounding in the fre-

quency domain method

Theoretically, a large number of complex sine waves can be accommodated in the

Nyquist transmission band [−Sr
2 ,+

Sr
2 ]. However, some of the power in a tone from

a given transmitter can leak into adjacent frequency regions due to phase noise and

other imperfections. Hence, the transmitters’ sinusoidal tones need to be separated by

a guard band so that the path loss calculations of different transmitters remain inde-

pendent of each other. We used 400 kHz guard band to separate the sinusoids. This

guard band, along with the maximum sampling rate of the receiver, limit the maxi-

mum number of transmitters to 5 − 6 in our experiments. However, separation of the

transmitters in both time and frequency domain, can accommodate a large number of
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Figure 5.6: Path loss data for outdoor transmitter 1

transmitters in the frequency domain channel sounding method.

5.4.4 Mean wideband path loss

The frequency domain approach provides narrowband path losses in the frequency range

[Fc1 +fk, · · · , FcQ +fk]. The wideband path loss in this frequency band can be obtained

by taking the average of the individual path losses. The time domain power delay profile

can be obtained by taking the inverse discrete Fourier transform of the frequency domain

coefficients.

The design parameters of the frequency domain channel sounder are given in Ta-

ble 5.2.

5.5 Experimental Results

5.5.1 Sliding correlator channel sounding results

The indoor channel measurements using the sliding correlator system, were performed

in the frequency band near 800 MHz. The experiment was set up in the 5th floor of

Building A of AT&T’s Middletown facility. Three transmitters were set up in different

parts of a wing and the receiver moved through the wing. A total of 200 simultaneous

channel sounding measurements for the three transmitters were made. The wideband

path loss and the multipath delay profile of each transmitter were stored for each loca-

tion. The X & Y coordinates of the floor map image, corresponding to the measurement
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location, were saved, as well.

Fig. 5.4 and Fig. 5.5 plot the wideband path loss of two transmitters as a heat

map on the floor plan layout of the wing. The X & Y ticks in Fig. 5.4-5.7 denote

distances in meters. In all these figures, the star and the circles show the transmitter

and measurement locations respectively. The height of the indoor transmitter 1, 2 and

the receiver were 45, 94 and 47 inches from the 5th floor level.

Fig. 5.4 and 5.5 show that the path loss increases as the receiver moves away from

the transmitter. Fig. 5.4 suggests that the path loss in the two parallel hallways is

significantly lower than that inside the rooms. Transmitter’s signal in 5.4 does not

see a line-of-sight path to the measurement points inside the hallway. The low values

of path loss - i.e., high signal strength - at these measurement points suggest that the

strongest multipath component is not coming through the shortest path where it has to

penetrate multiple walls. Instead, the strongest multipath component at these points is

coming through the corridor where it does not face any wall.

Since transmitter 2 of Fig. 5.5 is placed in the central location of the wing, the

mean path loss from transmitter 2 is lower than that from transmitter 1 of Fig. 5.4.

Therefore, transmitter 2 will require less power than transmitter 1 to cover the whole

wing.

The RMS delay spreads, averaged across all the measurement points in the wing,

were found to be 69 ns and 72 ns for transmitter 1 and 2 respectively.

5.5.2 Frequency domain channel sounding results

The outdoor channel measurements were performed in ten discrete steps of 2 MHz and

in the frequency band near 700 MHz. The experiment was set up in the courtyard

of Building A of AT&T’s Middletown facility. Two transmitters were set up in two

different corners of the courtyard. In total, 50 channel sounding measurements were

taken simultaneously for each transmitter in different locations of this courtyard. The

heights of the outdoor transmitter 1, 2 and the receiver were 6, 12 & 3 feet respectively

from the ground level. The ten narrowband path loss measurements of each transmitter

were stored for each location. The GPS location [110] and the X & Y coordinates in
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Figure 5.7: Path loss for outdoor transmitter 2
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Figure 5.8: Path loss data of outdoor transmitter 3

the satellite image view were saved, as well.

Fig. 5.6 and 5.7 plot the mean wideband path loss of outdoor transmitters 1 and

2 as a heat map on the satellite image view of the courtyard. Similar to the indoor

result plots, the star and the circle represent the transmitter and the receiver locations.

The mean wideband path loss was calculated by taking the average of 10 narrowband

path loss data in the corresponding locations. A comparison between Fig. 5.4 and 5.5,

and Fig. 5.6 and 5.7 reveals that the outdoor path losses decrease less rapidly than the

indoor ones. This happens because the outdoor signal does not get attenuated through

walls.

In a separate run of experiment, we placed one transmitter by a courtyard-facing

window of the 5th floor of building A. We took measurements at different points along

the courtyard. The height of the transmitter and the receiver were 53 feet and 3 feet
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Figure 5.9: Location of the transmitters and the measurement point

respectively from the ground level. Fig. 5.8 plots the mean wideband path loss of this

transmitter as a heat map in the court yard image. Compared to the figures in 5.6

and 5.7, Fig. 5.8 shows two noticable differences. In Fig. 5.8, the 4 − 5 measurement

locations that are nearest to the transmitter show higher path loss than the ones that

are slightly further. This happens since these measurement locations are too close to

the building to have a line of sight with the transmitter that is located behind the

window of the 5th floor. The signal has to penetrate the building walls to reach the

receiver at these locations, and therefore faces higher path loss.

We now focus on variation in the narrowband path losses across the frequency band.

The star and the diamond shapes in Fig. 5.9 show the locations of outdoor transmitter

1 and 2 respectively. The circle shape denotes the receiver location for a particular

measurement. Fig. 5.10 shows the path loss spectrum of transmitter 1 and 2 at the

receiver location. The path loss from transmitter 2 varies only by 5 dB in the 18

MHz band. This happens since the receiver is located very close to transmitter 2 and

therefore, it does not experience much multipath from transmitter 2. On the other

hand, the receiver is located in a far and non-line-of-sight location from transmitter 1.

Therefore, it experiences rich multipath from transmitter 1 due to the nearby buildings

and foliage. Fig. 5.10 shows that the path loss from transmitter 1 varies by 20 dB across

the frequency band.
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Figure 5.10: Narrowband path loss (at co-ordinate (200, 130) of Fig. 8) of transmitter 1 and 2

5.5.3 Chapter Summary

We designed and implemented rapid wireless channel sounding systems for small cell

networks, using both sliding correlator and frequency domain approaches. Our design

measured the channel propagation characteristics simultaneously from multiple trans-

mitter locations. Thus, the proposed design allows researchers to quickly verify channel

models with real data. It also assists engineers to compare the coverage of multiple small

cell base stations with a single run of measurements.

We implemented both time domain (spread spectrum) and frequency domain chan-

nel sounding in the vicinity of 700 MHz frequency region. Our time domain channel

sounding system provided 45-105 dB path loss range and 60 ns temporal resolution

in multi-path delay profile. Our frequency domain channel sounding system provided

45-120 dB path loss range and 2 MHz frequency resolution. We measured channel

propagation characteristics both in indoor and outdoor environments.

We designed our channel sounder on USRP platform [67] and used GNUradio [72]

to program these radios. Due to the flexibility and programmability of GNUradio

codes, our designed channel sounder can measure channel propagation characteristics

anywhere in the region of 100 MHz to 6 GHz.
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Chapter 6

Conclusion & Future Work

6.1 Thesis Summary

Demand of wireless traffic is increasing rapidly. CISCO, a telecommunication equipment

manufacturer, predicts 61% annual traffic growth rate till 2018 [111]. Improvement in

physical layer alone cannot meet this increasing traffic growth. Martin Coopers, one of

the fathers of cellular telephony, investigated the increase in wireless throughout since

1957 [12]. Breaking down the gains, he found that the major constituents are 25-fold

increase through wider spectrum, 1600-fold increase through reduced cell size and 5-

fold increase through physical layer improvements [12]. Hence, additional spectrum

usage and small cell network design may allow network designers to meet increasing

wireless traffic demand in the upcoming years. However, unlike the improvements

in physical layer, wider spectrum and reduced cell size increase the deployment and

operational expenses of the network. Network designers must focus on minimizing cost

while accessing wider spectrum and reducing cell sizes. This realization forms the basis

of this PhD thesis.

This PhD thesis focused on different methodologies to increase bandwidth utilization

in wireless links and design small cell networks. Among our work on bandwidth uti-

lization, we focused on both cooperative forwarding and non-cooperative transmission

scenarios. We investigated how one can access additional bandwidth that is already

available in other links of the network or in other non-contiguous chunks of the fre-

quency band. Among our work on small cell networks, we designed wireless backhaul

solutions between small cells and gateway nodes for a given set of link gains. There-

after, we designed a channel measurement system that allowed the network designers
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to verify the validity of these link gains in both indoor and outdoor networks.

Chapter 2 considered a resource delegation based cooperative forwarding scenario

where nodes exchanged bandwidth among each other as incentives for relaying. In

this context, we onsidered joint optimal relay selection and resource allocation in the

α-fair network utility maximization and outage probability reduction of a bandwidth

exchange network. Our proposed resource allocation formulation maximized the global

utility of the cooperative pair while preserving the initial utilities of each individual

node. We showed that the relay selection part of the α-fair NUM problem reduced

to the nonbipartite matching algorithm. Numerical simulations suggested that the

proposed BE enabled relaying provided 20-25% spectrum efficiency gain and 90-98%

outage probability reduction in a 20 node network.

We also designed and implemented resource (time slot) delegation based coopera-

tive forwarding among four USRP nodes of ORBIT indoor wireless testbed. We solved

the joint time slot allocation and sender-forwarder pair selection problem in this setup.

Our proposed algorithm maximized the global goodput of the network while ensuring

that no node’s goodput drops below its initial value. The ORBIT grid was used as a

global control plane to exchange the control information between USRP nodes. Exper-

imental results suggested that resource delegation based cooperative forwarding could

significantly improve the sum goodput and proportional fair goodput performance of

the network.

If two nodes exchange their originally allotted bandwidth slots to implement coop-

erative forwarding, they have to utilize non-contiguous spectrum chunks to transmit or

receive data. Hence, the investigation of bandwidth exchange led us to the following

question: how do nodes access non-contiguous spectrum chunks? What are the advan-

tages and pitfalls of the popular mechanisms that are commonly used in non-contiguous

spectrum access? While finding answers to the two questions mentioned above, we

found that non-contiguous spectrum access is useful not only in a cooperative forward-

ing setup, but also in most dynamic spectrum access scenarios. We realized that there is

a lot of additional bandwidth available in many non-contiguous parts of the spectrum.

Wireless links can increase their efficiency by accessing these non-contiguous spectrum
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chunks.

MC-MR and NC-OFDMA are the two commercially viable choices to access these

non-contiguous spectrum chunks. Fixed MC-MR’s do not scale with increasing number

of non-contiguous spectrum chunks due to their fixed set of supporting ends. MC-MR

also increases circuit power by activating multiple front ends. NC-OFDMA, on the

other hand, accesses non-contiguous spectrum chunks with a single front end by nulling

the channels where incumbent users are present. NC-OFDMA reduces transmit power

consumption by selecting channels with higher link gain but increases circuit power

consumption by spanning wider spectrum.

Chapter 3 characterized this trade-off from two perspectives. First, chapter 3 fo-

cused on a multi-hop network where each node is equipped with single front end radio

and can employ NC-OFDMA to access non-contiguous spectrum chunks. We performed

joint power control, channel scheduling, spectrum span selection and routing to mini-

mize system power consumption of this multi-hop network. Our algorithm showed how

the slopes of ADC and DAC’s power consumption versus sampling rate curve influ-

enced the scheduling decisions of a multi-hop network. We developed a mixed integer

non-linear program to attain our objective and provided a low complexity greedy algo-

rithm. Numerical results suggested that our algorithm could save 40% system power

over classical transmission power based cross-layer algorithms.

Secondly, chapter 3 focused on a point-to-point link where both nodes are equipped

with multiple front ends and can employ NC-OFDMA to access non-contiguous spec-

trum chunks. We performed optimal power control and channel scheduling across both

front ends to minimize the system power of this point-to-point link. We designed a

mixed integer non-linear program and provided a low complexity greedy algorithm

(O(M2I)) where M and I denote the number of channels and radio front ends respec-

tively. Our algorithm showed that, in a practical setting, each front end of a radio

should capture “near-by” non-contiguous spectrum chunks.

Chapter 2 and 3 focused on the efficient use of additional bandwidth to improve
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performance – both in terms of bandwidth exchange in cooperative networks and non-

contiguous spectrum access in non-cooperative networks. Apart from looking for addi-

tional spectrum, future network designers will have to focus their efforts on reducing

cell sizes to improve the signal-to-noise-ratio between base station and users, and to

allow more frequency reuse in the system design [12]. This led us to investigate two

different aspects of small cell network design in chapter 4 and 5 of the PhD thesis.

Chapter 4 focused on designing wireless backhaul solutions for small cell networks.

Small cells can keep up with the increasing demand of wireless networks; but require

backhaul to transport data to (from) a gateway node. Wireless backhaul can provide

an inexpensive option to small cells. Aggregator nodes, located at roof tops of tall

buildings near small cells, can provide high data rate to multiple small cells in NLOS

paths, sustain the same data rate to gateway nodes in LOS paths and take advantage

of all available bands for wireless backhaul.

This part of our work performed joint cost optimal aggregator node placement,

power allocation, channel scheduling and routing to optimize the wireless backhaul net-

work. We investigated wireless backhaul network using both sub-6 GHz and microwave

bands. We considered the different interference patterns and multiple access features in

these bands and incorporated them in backhaul network optimization. We developed

two solution methodologies - branch-and-bound and greedy - to solve these network

optimization problems.

The wireless backhaul network design module relied heavily on the reliability of the

estimated link gains between different nodes of the backhaul network. This led us to

design and implement a wireless channel measurement system that could be used to

verify existing channel models for small cell networks.

Chapter 5 of the PhD thesis described our efforts in designing and implementing a

rapid wireless channel sounding system. We used both sliding correlator and frequency

domain approaches in our work. Our design measured the channel propagation charac-

teristics simultaneously from multiple transmitter locations. Thus, the proposed design

would allow researchers to quickly verify channel models for small cell networks with

real data. It would also assist engineers to compare the coverage of multiple small cell
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base stations with a single run of measurements.

6.2 Future Works

Our work can be extended in many possible directions to improve non-contiguous spec-

trum access and small cell network design algorithms.

Chapter 2 of this thesis focused on bandwidth exchange based cooperative forward-

ing and considered one forwarder for one sender and vice versa. The generalization of

this algorithm to the multiple sender-forwarder scenario is an area of future research.

Chapter 2 also described the implementation of time slot exchange based cooperative

forwarding in an indoor wireless testbed. Future works should implement bandwidth

exchange based cooperative forwarding in wireless testbeds.

The optimal non-contiguous spectrum algorithms presented in chapter 3 only ac-

counted for the radio front end power and transmitters’ emitted power. Recently, there

has been significant interest in modeling baseband power consumption, specially, de-

coders’ power consumption [47]. Future research can extend our work to minimize the

summation of baseband power, radio front end power and transmitters’ emitted power.

Chapter 3’s algorithms to minimize system power in multi-front end radio focused

only on a point-to-point link. Future work can extend it to multi-front end radio and

NC-OFDMA enabled multi-hop networks.

The number of available TV white space channels and corresponding non-contiguous

spectrum chunks vary across different regions within USA [2]. Hence, our work in non-

contiguous spectrum access can be extended to investigate how a radio with limited

number of front ends performs in non-contiguous spectrum access across different re-

gions within USA.

Our algorithms in non-contiguous spectrum access focused on two different method-

ologies: multi-channel multi-radio platforms and NC-OFDMA. Recently, Fettweis et.

al. has proposed a new technique, namely Generalized Frequency Division Multiplex-

ing [112], that implements classic multi-bank filter techniques in a digital manner. This

allows GFDM to access non-contiguous spectrum chunks with a single radio front end
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without using NC-OFDM. Our work can be extended to investigate the system power

consumption of GFDM based networks.

Chapter 4 of this thesis deployed aggregator nodes while assuming fixed traffic

demand pattern from each small cell. However, traffic pattern of small cells vary sig-

nificantly throughout the day. Peak traffic at ‘quiet periods’ can be up to seven times

higher than mean traffic at ‘busy periods’ [113]. Future work could extend our algo-

rithm to deploy aggregator nodes while considering these different types of variable

traffic patterns from small cells.

We focused on wireless backhaul network design in chapter 4 of this thesis. In a

metropolitan setting, some edge nodes may not have any nearby tall buildings whose

roof tops can be leased. These edge nodes need to be connected through fiber from the

gateway node. Network optimization with mixed wired-wireless backhaul remains an

area of future research.

We implement the algorithms of our channel measurement system, shown in chapter

5 of the PhD thesis, in software. Hence, the temporal resolution (60 ns) of the channel

sounder is limited by the data transfer rate of the ethernet interface that connects the

laptop and the USRP radio. By implementing channel measurement algorithms directly

on the USRP FPGA, one could avoid this bottleneck and obtain a temporal resolution

of 10 ns. This extension remains an area of future research.

Our channel measurement design did not include explicit coordination between

transmitters and receivers. Future work could focus on such coordination through

explicit communication to dynamically change power, timing, frequency, and other as-

pects of the system.



120

Appendix A

Power Consumption of Different Blocks in the

Transmitter and Receiver

A.1 Power Consumption of Different Blocks in the Transmitter and

the Receiver

Based on Fig. 3.1, the power consumptions of transmitter and receiver can be divided

into the following parameters:

ptc = pdac + ptfilt + pmix + ppa (A.1)

prc = padc + prfilt + pmix + pifa + plna. (A.2)

In the above, pdac, pmix, ppa, padc, pifa and plna denote the circuit power consumption

in the DAC, mixer, PA, ADC, IFA and LNA respectively. The parameters ptfilt and

prfilt represent the summation of circuit powers in the filters of transmitter and receiver

respectively.

The power consumption in the mixer, LNA and IFA are constants with respect to

the sampling rate [91]. Baseband filter power depends on sampling rate but we assume

it to be constant due to its low power consumption [5]. Let us assume,

ptfilt + pmix = kt (A.3)

prfilt + pmix + pifa + plna = kr (A.4)

The DAC and ADC power consumptions are affine functions of the sampling rate [5,91].
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Hence,

pdac = k1 + k2fs (A.5)

padc = k3 + k4fs (A.6)

Now, using (A.5),(A.6),(A.3) and (A.4) in (A.7) and (A.8).

ptc = k1 + k2fs+ kt = α1 + α2fs (A.7)

prc = k3 + k4fs+ kr = β1 + β2f (A.8)

In the above, α1 = k1 + kt , β1 = k3 + kr, α2 = k2 and β2 = k4.

Due to its dependence on transmit power, we do not include programmable am-

plifier’s circuit power consumption term ppa in the overall circuit power consumption

equations of (A.7) and (A.8). Instead, we couple it with the transmit power consump-

tion p and include it in the total power equations of (3.3) and (3.4).

We now describe the specific power consumption values that we used in numerical

simulations.

A.1.1 Power consumption of analog blocks

We assume low power consumption at these blocks and use the following values [5]:

ptfilt = 5 mW, pmix = 30.3 mW, prfilt = 7.5 mW, pifa = 3 mW, plna = 20 mW.

A.1.2 Power consumption of programmable amplifier

Power consumption of the programmable amplifier depends on the drain efficiency,

peak-to-average-power ratio and transmit power of the system. Specifically, ppa =

PAPR
η p = kpap where kpa = PAPR

η and p is the emitted power at RF. We assume a

class-B or a higher class (C, D or E) amplifier with η = 0.75 [5].

We consider OFDM to be our inherent modulation scheme. There have been many

works in the literature that analytically relate PAPR with the number of subcarriers

of an OFDM system. Readers are suggested to go through [114, 115] for a detailed
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survey on this topic. In the presence of large number of subcarriers, [116] provides the

following analytical expression of PAPR:

Prob{PAPR > γ} ≈ 1− exp{−Ne−γ
√
π

3
γ} (A.9)

where N is the number of subcarriers in the system and γ is the probability that PAPR

will be greater than this value.

Our algorithm optimizes the scheduling variables, i.e., the number of subcarriers

used by the transceiver. In [116], the authors suggest that the statistical distribution

of the PAPR of the OFDM signals is not very sensitive to the increase in the number

of subcarriers. Hence, we consider the worst case PAPR (corresponding to the highest

number of subcarriers) and assume it to be constant throughout the simulations.

Our system power minimization based multi-hop NC-OFDMA algorithm is mostly

applicable in the opportunistic use of TV channels for fixed devices. The available TV

channels for fixed devices range from 54 MHz to 698 MHz [1]. IEEE 802.22 employs

2048 subcarriers per 6 MHz TV channel [117]. The number of subcarriers used in our

algorithm is upper bounded by 2000 × 698−54
6 . Plugging this in (A.9) and assuming

γ = 0.005, we find PAPR to be around 12.5dB. Intelligent use of coding schemes can

reduce PAPR by 3− 4 dB [115]. Hence, we assume PAPR to be 9 dB in our numerical

simulations.

A.1.3 Power consumption of ADC and DAC

The specific values of k1, k2, k3 and k4 vary from one DAC/ADC to the other. Fig. A.1

plots the power consumption vs. sampling rate curve of AD 9777 [7] (DAC of USRP

radio) and DAC 3162 [8] (termed as “low power DAC” by texas instruments). Fig. A.2

plots the power consumption vs. sampling rate curve of ADS62P4 [9] (ADC of USRP

radio) and ADS4249 [10] (termed as “low power ADC” by texas instruments).
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Figure A.1: Power consumption of AD 9777 (digital-to-analog-converter of USRP radio) and
DAC 3162 (low power DAC for software defined radios). The rectangular [7] and the circular [8]
dots are taken from the data sheets; the straight lines are the linear interpolations of the dots.
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Figure A.2: Power consumption of ADS 62P4 (ADC of USRP radio) and ADS 4249 (low power
ADC of TI). The rectangular [9] and the circular [10] dots are taken from the data sheets; the
straight lines are the linear interpolations of the dots.
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Appendix B

Codebook Design and Matching Algorithms in Bandwidth

Exchange

B.1 Codebook Design in Proposed DF Relaying

Let’s consider two codebooks W and C that consist of 2Rsf and 2Rc codewords respec-

tively. Assume, W = {w1, w2, · · · , w2
Rsf } and C = {c1, c2, · · · , c2Rc}. Here Rsf ≥ Rc.

Consider a partition S = {S1, S2, · · · , S2Rc} of W, i.e., W has been partitioned into

2Rc cells. Each cell Si contains 2Rsf−Rc codewords of W. Assume a one-to-one corre-

spondence between C and S, i.e., each codeword of C represents one particular cell of

S.

The BS (node 0), sender s and forwarder f get the codebooks off-line. At the

beginning of the transmission, sender s sends a codeword wi from W using Rsf bits.

The forwarder node decodes the codeword correctly. However, since Rsf ≥ Rs0, the BS

cannot decode it correctly. The BS has a list of possible codewords of size 2Rsf−Rs0 .

Now, the forwarder f finds the cell Si where wi lies and sends ci using Rc bits. The BS

receives ci and intersects Si with the list of possible codewords. If Rc ≥ Rsf −Rs0 and

Rc ≤ Rf0, this half duplex DF cooperation completely removes the BS’s uncertainty

about wi [83, 84].

Thus, the achievable rates of node s and f are governed by this information theoretic

generalization of the max-flow-min-cut theorem:

Rbes ≤ min(Rsf , Rs0 +Rc)

Rc +Rbef ≤ Rf0
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B.2 Matching and nonbipartite MWM algorithm

Consider an undirected graph G = (V, E) where V denotes the set of vertices and E

denotes the set of edges. A matching M is a subset of E such that e1 ∩ e2 = ∅ for

e1, e2 ∈M if e1 6= e2 [87].

Let xe denote whether an edge e ∈ E will be selected in the matching, i.e., xe can

be 0 or 1. Let re represent the edge weights. The maximum weighted matching in a

non-bipartite graph takes the following form [87]:

max
∑
e∈E

rexe (B.1a)

s.t.
∑
e∈δ(v)

xe ≤ 1 ∀ v ∈ V (B.1b)

∑
e∈E(U)

xe ≤ b
|U|
2
c ∀ odd sets U ⊂ V (B.1c)

xe ∈ Bn (B.1d)

In (B.1b), δ(v) denotes the edges connected with node v. In (B.1c), E(U) represents

the edges contained in the set U. Equation (B.1d) shows that xe takes Boolean values.

However, Edmonds [81] showed that the we can replace xe ∈ Bn by xe ∈ Rn+ and still

obtain integral optimal solutions. Thus the combinatorial optimization problem can be

converted to a linear program.

B.3 Distributed Local Greedy MWM

• Each node i knows its adjacent link weights. Node i picks the “candidate” node

j, based on the heaviest link weight and sends an “add” request.

• Wait for the response from node j.

• If node i receives an “add” request from node j, i and j pick each other as the

cooperative pair. i sends “drop” request to its other neighbouring nodes.

• If node i receives a “drop” request from node j, node i removes the (i, j) link from
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its adjacent edge set. Node i goes to the state of step 1.

The distributed local greedy MWM provides at least 50% performance of centralized

optimal matching. Distributed local greedy MWM requires O(N2) amount of message

passing.
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