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Traumatic Brain Injury (TBI) is a leading cause of disability with many different types of 

forces. Because the brain is made of up interconnected nerve cells, injury from one area of 

brain can easily spread throughout the rest of the brain. In order to study this effect in this 

paper, we use hippocampal organotypic cell cultures. To analyze how secondary and further 

injury is spread in the brain due to TBI, specific regions of interest are outlined using bright-

field microscopy images and analyzed for cell death through fluorescent images. Because of 

the bias in segmenting these specific regions, and the darkening of bright-field images from 

necrosis, there is a need for the development of an automatic cell viability analysis method. 

We first create silhouette masks identifying the area of the hippocampus within the bright-

field images. Then, we align these masks of these images between two time points – one 
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before experimentation and another 24 hours after lab experimentation - using Mattes 

Mutual Information registration to help analyze corresponding regions between time points. 

We also use relative intensity gradients and contrast enhancement to help isolate the specific 

regions of interest within the hippocampus, and then aligned the regions of interest between 

time points using the transformation discovered through the registration process. Finally, we 

look within these extracted regions for cell viability in fluorescent images taken after 

experimentation and calculate the ratio between the area of the fluorescent region extracted 

and the area of the segmented region. Comparing the results from this method with manual 

segmentation by experienced users, we discover an average of 12% error in segmentation 

and 2% error in registration. The overall method took an average of 7 minutes per image, 

which compared to the time it takes complete manually, allows users to conserve time and 

prevent user-to-user bias in segmentation.  
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Introduction 

Traumatic Brain Injury (TBI) is a leading cause of disability and can be triggered by 

various events such as through impact forces, penetration forces, or deceleration forces 

during a vehicular accident or fall (reviewed in Laurer et al., 2000). By replicating different 

brain damage scenarios, in vivo models can help us understand how initial brain tissue injury 

leads to further brain damage. Unfortunately, the majority of current trauma in vivo models 

are induced by injury through impact or penetration, despite over 50% of trauma accidents 

occurring from deceleration forces of automotive accidents (Sosin et al., 1979; Bruns and 

Hauser, 2003). Additionally, the brain consists of networks/neural circuits that are 

interconnected so damage from one area easily spreads to others (Faden et al., 1989). 

Because organotypic hippocampal slice cultures consist of similar networks of neurons and 

glia, they can be used to understand the complex cascade of events following brain damage 

(Morrison III, B et al. 2005)  

TBI can lead to different 

neurological and cognitive problems, 

such as those related to the function of 

the hippocampus (Bramlett et al., 1997; 

Levin, 1998). The hippocampus is an 

organ which plays a huge role in memory 

and spatial navigation, and is located in the medial temporal lobe of the brain. Damage to 

this area can cause memory loss and disorientation. The main layers of the hippocampus are 

the dentate gyrus (DG), and two cornu ammonis (CA) layers, identified as CA3 and CA1, as 

shown in Figure [1]. Because the flow of information signals in a hippocampus involves 

Figure [1]. The regions of a rat hippocampus, include the dentate 
gyrus (shown as DG), CA3, CA1. Taken under bright-field 
microscope. 
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interaction of cells starting from the dentate gyrus, followed by the CA3 layer, and then 

through the CA1 layer, it is key to keep track of the cell viability during experimentation of 

the these regions. To track damage to the organ, scientists stain the organ slices with 

fluorescent markers, such as propidium iodide, during experimentation (Morrison III, B et 

al. 2005).  Based on the level of fluorescence, scientists can use imaging techniques to view 

the fluorescence images and measure cell viability between different time points. Bright-field 

images, before experimentation, can help us identify the location of these regions, which can 

then be transposed onto fluorescent images to calculate the cell viability in those areas alone. 

Unfortunately, because of the tissue’s molecular interactions with the slide surface and small 

stresses applied during experimentation, slice images are not necessarily aligned in the same 

way between time points. Molecular interactions may cause edges of tissue to contract or 

expand making it appear slightly smaller or larger, while stresses slightly deform the tissue. 

Because of this, images need to be aligned before layers can be transposed and 

measurements can be taken on the fluorescent images. Once the three regions of interest – 

CA1, CA2, and DG layer – are segmented, image registration methods can help align the 

images between time points and facilitate identifying the location of the layers between time 

points. 

Rationale  

Segmentation algorithms is an important step to analyzing medical images. There are 

three main types of segmentation, defined by the level of user interaction. Supervised 

segmentation, or manual segmentation, involves the user, usually a trained expert, delineating 

the regions of interest and applying analysis. Metamorph and ImageJ are computer programs 

that include software allowing for manual segmentation and definition of regions of interest 

for further analysis. Results from this segmentation are referred to as ground truth, but 
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unfortunately can be prone to variability and bias, leading to less reproducible analysis and 

diagnosis, as well as time consuming. Semi-supervised and unsupervised hippocampus 

segmentation algorithms, involving little or no user input, were created with MRI images 

(Minjeong et. al 2013; Kai-kai et. al 2011) using deep unsupervised learning and shape 

models, respectively. Additionally, automatic cell segmentation algorithms for bright-field 

images (Rehan Ali et. al 2010; Tscherepanow M 2008) exist, using image gradients and other 

features. Using different imaging programs and functions, i.e Digital Image Correlation 

(DIC) technique (Wang et al., 2002), regions of interests (ROI), such as the hippocampus 

layers in this paper, are outlined and relevant measurements are taken, such as area, range of 

intensities, etc. Despite there being previous works related to segmentation of the 

hippocampus in brain MRI slice images and of individual cells from bright-field images, 

there isn’t any work related to the segmentation of the particular structures within the 

hippocampus from bright-field images. 

Unfortunately, due to necrosis, or the death of cells in an organ due to forces 

external to cells such as injury or blood supply failure, parts of the image under bright-field 

microscopy darken. This makes it harder to locate the layers on images during or after 

experimentation to calculate feature values, such as cell viability. Occasionally, the tissue’s 

interaction with the slide surface and stresses applied during experimentation induce small 

deformations in the image in the tissues that must be taken into account for precise analysis. 

Therefore using only segmentation algorithms will not help provide enough information for 

analysis. We need to use the segmentation method from images taken before segmentation 

and use it to finding the corresponding regions in the image of the hippocampus taken after 

experimentation. Just like segmentation algorithms vary based on level of user input, 

registration algorithms are also different for different levels of user input. Aligning and 
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outlining layers manually presents person-to-person bias as well as consuming large amounts 

of time with large data sets. Therefore it is important to create an automatic method that can 

help save time as well as align the images and identify the specific layers between different 

time points to precisely calculate the desired features, such as cell viability, within the regions 

of interest.    

Aims and Objectives  

Our main objective is to measure the level of cell death within the three layers of the 

hippocampus. Once image pairs are registered, or aligned, and hippocampal layers are 

identified, we can better identify the layers on the 24-hour time stamped image and quantify 

cell viability based on how the images were transformed, or aligned, between the initial and 

24-hour time points. Registration is based on coordinate transformations including 

translations and rotations, due to changes in frame of reference and other factors such as 

dilation or scaling due to tissue spreading/contracting. The specific types, monomodal and 

multimodal, refer to how the images are acquired: monomodal methods register images 

acquired by same scanner/sensor type while multimodal methods register images acquired 

by different scanner/sensor types. (Fitzpatrick). Multimodal registrations also can be used 

when images differ widely in intensities. Segmentation is based on pre-processing techniques 

such as contrast limited adaptive histogram equalization and intensity based features. After 

applying a threshold on the intensities of the fluorescent images after experimentation, cell 

viability will be measured based on the ratio of the number of colored pixels to the area of 

the segmented area. 

The first aim will be to register, or align the hippocampus from the image taken 

before experimentation to the hippocampus of image taken 24 hours after experimentation. 
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To do this, we prevent background image information from affecting the registration, it is 

necessary to isolate the hippocampus in the image from its background so we can clearly 

lineate the hippocampus for registration. A binary silhouette of the hippocampus image is 

extracted where all parts of the hippocampus are colored with white pixels and the 

background is colored in black pixels. Once we can clearly see the shape of the 

hippocampus, we would test out different methods of using the multimodal registration 

metrics to see which best aligns the initial and 24-hour image of the hippocampus with each 

other, based on precision and time-efficiency. Finally after finding the best methods for the 

image registration, we would compare this method with manual alignment of images done 

using Metamorph program currently. 

The next aim involves finding an optimum algorithm for segmenting the layers 

within the hippocampus and identifying them as either CA1, CA3, or DG layer. We take 

advantage of the intensity based information given by the bright-field microscopy images 

taken before experimentation to identify these layers. We then apply the effective 

transformation extracted from the registration phase to transform these extracted layers to 

their corresponding locations of the layers in the image taken 24 hours after 

experimentation.  

Finally, we will measure the cell death within these extracted and appropriately 

aligned layers of the hippocampus from the fluorescent images taken 24 hours after 

experimentation. Because these images are of organ slices, the images are pre-processed by 

applying a threshold on the relative intensities of the fluorescent images, measuring the total 

number of pixels within the segmented regions, and calculating the ratio between the sum 

and the area of the segmented region. 
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Since manual registration and delineation of hippocampi layers for each initial and 

24-hour image consumes time with variable outcomes due to errors like person-to-person 

and image-to-image bias in determining how aligned a pair of images are, an automatic 

registration and cell viability quantification method is necessary to align images with higher 

precision and accuracy and time-efficiency.    

Methods  

Data set  

Our data set consists of bright-field hippocampal slice images to help us identify the 

location of the hippocampal layers, and fluorescent hippocampal slice images to help us 

calculate cell viability. Each set of images are divided into two groups of 45 hippocampal 

image samples each, representing two time points: the initial images taken before 

experimentation and the final images taken 24 hours after the start of the experiment. In this 

paper, images taken before experimentation will be referred to as the pre set, while the 

images taken 24 hours after experimentation will be referred to as the post set.  

REGISTRATION PHASE 

 

Segmentation of the Hippocampus from Background  

 To prepare for the registration process and remove noise from the differences in relative 

intensities of the pixels between the pre and post hippocampus image sets, the hippocampus 

in each bright-field image is isolated, or segmented, from its background. 
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 To 

accomplish this, 

we first created 

and fine-tuned a 

binary mask. 

FIGURE [2a] 

shows a typical 

bright-field image 

before 

experimentation. 

Noting the 

difference 

between the intensities of pixels that outlines and covers the area of the hippocampus and 

the background outside the area of the hippocampus, we used a built in edge method with 

the Sobel operator. This method created edges, by drawing line segments on the image 

where there was a high intensity gradient, according to a threshold calculated based on the 

distribution of pixel intensities. Edges whose gradients are not stronger than this threshold 

value are not displayed. Since the intensities of pixels within the borders of the hippocampus 

vary as well, we fine-tuned the gradient-based image by applying a new threshold that is half 

of the initial threshold to account for more edges of the hippocampal slice in the image, 

while including a minimal number of edges outside the area of the hippocampus. Edges 

extracted from the background due to shadows will be removed in later steps. This step 

produces a binary gradient mask of the hippocampus image as shown in FIGURE [2b].  

   e  f  g  h 

original image

binary gradient

mask

dilated gradient

mask

binary image

with filled holes

Segmented image

with largest area

Smoothing

segmented image

outlined

on original image

Possible points to use

for control on border

Figure [2]. This shows the process of extracting the hippocampus from image.  [a]. 

Original image [b]. Binary gradient mask [c]. mask after dilation [d]. filling in the mask’s 

holes [e]. segemented with largest area [f]. smoothing segmented image [g]. Outlining 

points from the border of segmented image on original image [h]. outlining points from 

border of segmented image 

   a  b  c  d 
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Despite decreasing the threshold value and increasing the number of edges within 

the area of the hippocampus, a clear outline of the hippocampus is not clear from the given 

image result. There are gaps between the lines denoted as edges in the binary gradient mask. 

This problem is solved by dilating the binary gradient mask using linear structuring elements 

which join edges that are at a certain angle and distant from each other. In FIGURE [2c], 

edges are connected using vertical structuring elements (edges facing 90 degrees 

counterclockwise from the positive horizontal axis) followed by a horizontal structuring 

element (facing zero degrees from the positive horizontal axis) another edge, in addition to 

being 3 pixels away from each other. The outline of the possible hippocampus becomes 

clearer from the dilation. To cover the entire portion of these regions, we fill in the holes of 

each detected closed region as shown in FIGURE [2d].   

Based on observation of all the images, the hippocampus can be clearly differentiated 

by the estimated area it covers. To segment the hippocampus from other displayed noisy 

regions, we removed all regions of interest that have fewer than 80,000 pixels. This value was 

tested to be the general number of minimum pixels to separate it from the noisy objects in 

all of the images from the bright-field data set. By filtering out the noisy objects, the 

hippocampus is segmented from the background as shown in FIGURE [2e]. Finally to make 

the image look smoother, the image is eroded twice with a diamond structuring element. The 

resulting image is shown in FIGURE [2f] and labeled as the final binary silhouette used for 

registration.   

FIGURES [2g] and [2h] show how closely the outline of the segmented area 

overlaps with the original image and how these points give an overall idea of the 

hippocampus shape.  
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Comparing Mono-model vs Multi-Model Metrics  

In this paper, we used an intensity-based automatic image registration algorithm. 

Image registration requires four 

main types of inputs: a pair of 

images, a metric, an optimizer and 

a transformation type. The metric 

helps define a similarity metric that 

informs the program about how 

similar images are for registration 

accuracy. The optimizer defines a 

method to maximize or minimize 

the similarity metric, and checks 

for a stop condition – when the process has reached a specific number of iterations or a 

point of diminishing returns. The transformation type defines the type of 2-D 

transformation that brings the misaligned image (called the moving image) into alignment 

with the reference image (called the fixed image) (Shi et. al 2014). The overall registration 

process is outlined in FIGURE [3].   

There are two different metrics, each suited for a specific type of registration mode. 

The Mean-Squares metric works for mono-modal images, which are captured from the same 

scanner/source, and computes the element-wise difference between two input images 

(Ulssys et. al 2010).  The Mattes mutual information metric works for multi-modal images, 

whose sources are from different scanners/sources, and uses “information theoretic 

techniques for measuring how related two variables are. These algorithms use the joint 

probability distribution to measure how likely a sample of pixels from one image match the 

Figure [3]. This diagram describes how one cycle/step/iteration of the 
registration process. Starting with a type of transformation (affine, rigid, etc), 
and the moving image to be registered, the metric and optimizer work 
together to estimate the registered image. Changing the metric’s properties 
will change the registered image. This cycle is repeated until the stop 
condition is met. 
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same sample in another image (Ulssys et. al 2010). To define the stop condition as the 

number of maximum iterations and control the registration step-wise, the multi-modal is 

chosen as more preferable for this paper.  

Registration: Progression vs Binary Branch and Order   

As FIGURE 

[4] shows, the tested 

set methods are 

broken into different 

groups – the type of 

algorithm, the type of 

transformation, the 

image that controls 

the registration per 

step, and the image 

that is chosen as the 

reference (fixed image). A Progression algorithm is defined as a parent (moving) image being 

registered to a reference image by incrementing one of the metric’s property 

MaximumIteration#, defined by the number of maximum cycles, described by Figure [3] 

previously, the registration process takes the parent image to align with the fixed reference 

image.  

Progression

Algorithm

Affine 
Transformation

Rigid 
Transformation

Similarity 
Transformation

Binary Branch

Algorithm

Affine 
Transformation

Rigid 
Transformation

Similarity 
Transformation

Figure [4]. The chart shown above shows the breakdown of the experiments. To run an 
experiment, an algorithm, a transformation type and a set of images for reference in 
registration should be picked. The two main algorithms used are called Progression and 
Binary Branch. The transformation types chosen are affine, rigid and similarity  
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Due to some 

sharp differences 

between transformed 

images during 

registration, a new 

algorithm, 

incorporating a 

similar methodology 

of the Means-Square 

metric, is created to 

control the 

differences between images per registration step from changing sharply. The Binary Branch 

algorithm is defined by a parent (moving) image being registered to a final (fixed) image, 

where the parent image changes based on the result of the previous registration step. 

Suppose that P represents the moving image to be registered (parent), C represents the 

image that results from P’s registration, after one iteration, and F represents the fixed 

reference image. If |C-F| < |P-F|, or the absolute value of the element-wise difference 

between the registered image and final image is less the absolute value of the difference 

between the parent image and the final image, then C is the new parent and becomes P for 

the next registration step, and the MaximumIteration# property is set back to 1. If |C-F| > 

|P-F|, then P stays as the parent image for the next registration step and the 

MaximumIteration# parameter is incremented by 1.  
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Figure [5]. The following graph shows the % difference between the 
registered and the final image for 200 steps in intervals of 20 steps to 
help understand how the multimodal metric works.  Steps also define 
the number of iterations or cycles (from Figure [2]) the process went 
through. This number is defined in the property MaximumIteration#. 
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Affine Progression   

To cover all the aspects of transformations, we begin with the most general types of 

transformations – affine. The affine transformation accounts for translation, rotation, scale 

and shear. To better understand how the registration metric works, 5 pairs of image 

silhouettes are tested for a maximum of 80 steps. This value is based on Figure [5] where 200 

iterations, in intervals of 20 iterations, were tested. All the main information in the precision 

and efficiency of the registration are given within the first 80 steps. Any additional steps 

would increase the cost of time in comparison to precision of the registered results.  

Affine Binary Bank 

To prevent large differences from step to step, it was necessary to understand how 

the transformation matrix for the image is created. Unfortunately, due to privacy, the code 

for the transformation matrix calculation was unavailable. Therefore, to try and control the 

sharp changes in difference between silhouettes, the Binary Branch algorithm was applied 

with Affine Transformation.  

Rigid Progression/ Binary Bank   

Due to the large amount of time the affine transformation methods consumed, and 

the large differences between silhouettes of the parent and final image, a simpler type of 

transformation is tested. This would also match the method lab members use to manually 

align the images – through pure translation and rotation - more. For similar reasons as 

above, the Binary Branch algorithm was also attempted with rigid transformation.  
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Similarity Progression/Binary Bank 

To account for possible tissue contracting/expansion, we decided to attempt using 

the similarity transformation type which accounts for the translation, rotation and scaling of 

the image. The progression and Binary Branch algorithms were tested as described before.  

SEGMENTATION PHASE 

The next phase of the project is to identify the layers within the hippocampus slices. 

We identify them using the bright-field images of hippocampus slices before 

experimentation because the layers are clearly visible, as opposed to the slices after 

experimentation. The first step in the segmentation process involves extracting the region of 

the hippocampus that surrounds the layers we are interested in. One clear feature in most of 

the bright-field microscopy images is the dark region shaped like a curvy T between the CA1 

and DG layers, associated with the hippocampal sulcus (FIGURE [2a]), and the thin dark 

region appearing as an outer perimeter around the CA1,CA3,and DG layer. Inverting the 

original image allows the dark regions to become bright regions. By inverting around 20 

bright-field images, we discover in order to obtain a more precise border of the layers, we 

need to keep at least the top 30% of the intensities of the inverted images.  By extracting the 

top 30% of the intensities, and taking the convex hull of the extract, we are able to create a 

mask that, once applied on the original bright-field image, will help identify a more precise 

estimate of where the layers of interest are located. The image resulting from this process is 

referred to as the concentrated region in Figure 6.  

Once we have this concentrated region, we apply a second order Butterworth filter, with a 

cutoff frequency of 10 Hz, on the original image to get a smoothened image of hippocampi 

that results in a relative contour map image for groups of gradually increasing intensities 
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from the center of the hippocampus. This cutoff frequency was determined to provide the 

best difference between the dark center of the hippocampus and the light gray regions of 

interest, after testing out several different cut off frequencies from 5Hz to 20Hz. After 

10Hz, the bright-field image began to show unnecessary noise that affected the identification 

of the inner boundary of the layers. We obtain a difference image by taking the absolute 

integer difference between the Butterworth filtered image and the concentrated region. The 

gradual increase in the Butterworth filter image scale intensities within each contour region 

of the Butterworth filter, identifying pixels with higher probabilities of being within the 

regions of interest (hippocampus layers). After this, we increase the contrast such that 1% of 

data is saturated at low and high intensities followed by a contrast limited adaptive histogram 

equalization to enhance the areas with highest probability of being located in the regions of 

interest. While histogram equalization increases global contrast by spreading out the most 

frequent intensity values in the image, adaptive histogram equalization applies histogram 

equalization to each distinct section of an image. Unfortunately, these methods over amplify 

noise in homogenous sections of an image, and therefore we will use an adaptive histogram 

equalization that limits the contrast enhancement based on the transformation function used 

to change the intensities of the image before and after contrast enhancement (CLAHE). To 

clearly visualize each region identified by this method, we apply a 20x20 median filter on this 

result and then erode the image to separate loosely connected regions. Any eroded region 

that has an area below 40,000 pixels will be removed. The 40,000 value was discovered by 

experimentation with over 20 image samples, and used to remove noisy object that would be 

too small to be considered an object of interest. We then dilate it again so that we can attain 

a similar size of the region before erosion.  A visual explanation of the process is shown in 

FIGURE 6. 
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 Finally to help transition to the next aim, we need to apply the transformation we 

concluded with from the registration phase on the segmented mask extracted from the 

previous step of the segmentation phase, so that the segmented region now is aligned with 

the corresponding regions in the images taken 24 hours after experimentation. 

CALCULATING CELL DEATH 

 Now that we have masks representing the estimated segmentation of the layers for 

the hippocampus 24 hours after experimentation, our final step would involve calculating 

the cell death within these regions. The current method used to measure cell viability in the 

lab is to use an imaging program, like Metamorph or ImageJ, and apply a lower limit 

threshold. The fluorescence images are all 16-bit images. A lower threshold value of 500 is 

applied on the fluorescence image as a pre-processing step, and cell death is measured. Cell 

death is measured as ratio of fluoresced pixels to pixel area of extracted region.  We will use 

a similar method in measuring fluorescence in this paper, with a threshold of 500 for the set 

of 14 slices.  Figure 7 shows the steps described above before quantitative measurements are 

Figure 6 Segmentation Process 

Original Image Complement of original Concentrated Area

10 Hz Butterworth Filter on

2x2 Median Filtered Image

Absolute integer difference between

Filtered and Concentrated Area

1% Saturation contrast enhancement

of Difference image

CLAHE enhancement on Concentrated,

region of Adjusted Difference image Scaled CLAHE

1% Saturation contrast enhancement after

20x20 Median Filter on Scaled CLAHE Eroded to try finding individual layers Labeled erosion Passed area criteria

Final comparison
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extracted. The raw 16-bit fluorescence image of hippocampus slice is taken after experiment 

(Figure 7 Top Left). A threshold with a lower limit of 500 to remove fluoresced areas with 

less probability of major cell death is applied on the raw image (Figure 7 Top Right). The 

manually outlined regions is applied on the processed fluorescence image. (Figure 7 Bottom 

Left). Automatic segmented region is applied on the processed fluorescence image (Figure 7 

Bottom Right). 

  

Results/Discussion  

REGISTRATION RESULTS 

Out of the 45 hippocampal samples, five samples were used for testing the different 

methods described in the previous section. To compare efficiency of methods, the same five 

samples were used for each of the methods. Precision is measured based on the element-

Figure 7 Fluorescence Measurement Process Shown. Raw Fluorescence image (Top Left). After threshold (Top 
Right). Within bottom left and right images, pink shows manually delineated regions without cell death. 
White shows area of cell death captured by manually delineated (Bottom Left) or automatically segmented 
(Bottom Right) regions. Green shows area of cell death not captured by manually delineated (Bottom Left) or 
automatically segmented (Bottom Right) regions. The red bar (Top Left, Right) and green bar (bottom left, 
right) of the images do not count as dead cells. 

Raw Fluorescence Image

after Experiment

Intensity-Thresholded

Image: 500

Overlap of Manually Outlined

Areas and Thresholded Fluorescence
Overlap of Segmented

Areas and Thresholded Fluorescence
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wise difference between the binary silhouettes of the pre and post image. The first six 

following methods described refer to the pre set of images as the moving images and the 

post set of images as the reference images to prevent losing any information related to the 

morphology of the hippocampus. 

Affine Progression  

The first experiment involved the affine transformation type, which allows translation, 

rotation, scaling, and shearing of the image. According to data shown in Figure [8], the 

registration is not consistently improving. Because the Mattes Mutual Information 

registration tends to 

Figure [8]. Results from tests on Affine Progression method for 5 images (Top) The percent difference 
between the registered image and the reference image.  . (Bottom) Time passed after each step in 
minutes, per image. (24-hour image silhouette), per image. 
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overestimate or underestimate the transformation based on the previous cycle’s result, the 

differences tend to be sinusoidal. Image 2’s registration worsens the most out of the five 

images, as seen in Figure [9e-h]. Because affine transformation allows for shear and scaling, 

the moving image shrinks to match the curvature of the silhouette towards the top of the 

image. Additionally, this method takes 40 minutes for completion and still does not 

significantly decrease the percent difference between the images. 

 

 

 

 

 

 

Figure [9].  Overlapping registered image on reference image for Affine Progression Method at various time 
points. The part of the registered image that is not overlapped by the reference image is shown in green. 
The part of the reference image that is not overlapped by the registered image is shown in pink. The parts 
of each image that do overlap are shown in white, for inside the hippocampus, and black, outside the 
hippocampus.  The initial overlap before registration for Images 1-5 are shown in (a,e,i,m,q). The last step 
of the registration for Images 1-5 are shown in (d,h,l,p,t). Various in-between time points are shown for 
Image 1 (b,c), Image 2 (f,g), Image 3 (j-k), Image 4 (n,o) and Image 5 (r,s). 
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Affine Binary Branch 

To counter the drastically sharp increases in percent difference, the binary branch method 

was created and 

tested with affine 

transformation. As 

shown in Figure [10], 

this method was 

successful in avoiding 

drastically sharp 

increases because of 

the significant 

reduction of a 20% 

difference to one of 

Figure [10]. Results from tests on Affine Binary Branch method for 5 images. (Left) Time passed after 
each step in minutes, per image. (Right) The percent difference between the registered image and 
the reference image.  (24-hour image silhouette), per image. 
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Figure [11]. Overlapping registered image on reference image for Affine Binary Branch Method 
at various time points. The part of the registered image that is not overlapped by the reference 
image is shown in green. The part of the reference image that is not overlapped by the 
registered image is shown in pink. The parts of each image that do overlap are shown in white, 
for inside the hippocampus, and black, outside the hippocampus.  The initial overlap before 
registration for Images 1-5 are shown in (a,e,i,m,q). The last step of the registration for Images 
1-5 are shown in (d,h,l,p,t). Various in-between time points are shown for Image 1 (b,c), Image 2 
(f,g), Image 3 (j-k), Image 4 (n,o) and Image 5 (r,s). 
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6%, at most. Image 1’s registration, though still sinusoidal, gradually improves as the percent 

difference between the registered image and the reference image gradually decreases. 

Unfortunately, out of the 5 images tested, this is the only registration that gradually 

improves. In addition, this image registration took one hour for completion, a non-ideal 

amount of time for the registration process. Further, it is shown in Figure [11 I,j ; m,n; r,s ] 

that the reason why some images, such as Image 3 through Image 5, do not improve is 

because the silhouette is stretched or shrunk due the combination of shear and scaling 

factors, that is allowed in affine transformations.  

Rigid Progression  

Next, to prevent images from shearing and counter the increase in percent difference for 

images like Image 3 through Image 5, we change the transformation type to rigid, allowing 

only translation and rotation of the moving image. The progression algorithm is tested again 

to understand how the multimodal registration method transforms the image under this new 

transformation type. Figure [12] shows how all the image’s registrations overall improve until 

Figure [10]. Results from tests on Rigid Progression method for 5 images. (Left) Time passed after 
each step in minutes, per image. (Right) The percent difference between the registered image and 
the reference image.  (24-hour image silhouette), per image. 
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they reach a 

plateau, even 

though some of 

the image’s 

registration 

worsens for a 

couple of steps. 

The plateau is 

reached on 

average 10 

minutes after the 

registration 

begins, which is a drastic decrease from 40 minutes or 60 minutes in previous methods. 

Figure [13] shows how the registered image is aligned with the reference image using the 

rigid progression method. 

a b c d
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Figure [11 ]. Overlapping registered image on reference image for Rigid Progression Method at 
various time points. The part of the registered image that is not overlapped by the reference 
image is shown in green. The part of the reference image that is not overlapped by the 
registered image is shown in pink. The parts of each image that do overlap are shown in white, 
for inside the hippocampus, and black, outside the hippocampus.  The initial overlap before 
registration for Images 1-5 are shown in (a,e,i,m,q). The last step of the registration for Images 
1-5 are shown in (d,h,l,p,t). Various in-between time points are shown for Image 1 (b,c), Image 
2 (f,g), Image 3 (j-k), Image 4 (n,o) and Image 5 (r,s). 
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Rigid Binary Branch  

  

 

 

 

 

 

 

 

 

Figure [14]. Results from tests on Rigid Binary Branch method for 5 images. (Left) Time 
passed after each step in minutes, per image. (Right) The percent difference between 
the registered image and the reference image.  (24-hour image silhouette), per image. 
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Figure [15]. Overlapping registered image on reference image for Rigid Binary Branch Method at 
various time points. The part of the registered image that is not overlapped by the reference image 
is shown in green. The part of the reference image that is not overlapped by the registered image is 
shown in pink. The parts of each image that do overlap are shown in white, for inside the 
hippocampus, and black, outside the hippocampus.  The initial overlap before registration for 
Images 1-5 are shown in (a,e,i,m,q). The last step of the registration for Images 1-5 are shown in 
(d,h,l,p,t). Various in-between time points are shown for Image 1 (b,c), Image 2 (f,g), Image 3 (j-k), 
Image 4 (n,o) and Image 5 (r,s). 
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To try and improve these results and remove the temporary sharp increase or 

decrease in percent difference, the binary branch algorithm is combined with the rigid 

transformation type. According to Figure [14], registration of all images, except Image 5, 

improve greatly. According to Figure [15 r-t], in attempt to match both the top and the 

bottom of the extracted silhouette to that of the reference image, the registered image is 

mostly translated up and down abruptly. Because it is unable to accomplish this, the method 

shuffles between one image where the top of the silhouettes are aligned to another image, 

where the bottom of the silhouettes are aligned. 
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Similarity Progression  

  

The similarity transformation type was attempted to account for tissue expansion 

between the time before experimentation and 24 hours after experimentation. This is also 

accounted by the fact that the areas of silhouettes are slightly different between time points, 

Figure [13]. Overlapping registered image on reference image for Similarity Progression Method at various time 
points. The initial overlap before registration for bright-field Images 1-5 are shown in (a,e,i,m,q). The last step of 
the registration for Images 1-5 are shown in (d,h,l,p,t). Various in-between time points are shown for Image 1 (b,c), 
Image 2 (f,g), Image 3 (j-k), Image 4 (n,o) and Image 5 (r,s). For the similarity transformation methods, respective 
bright-field images undergo the same transformation as the silhouettes to show how the actual image will appear 
after registration. 
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Figure [12]. ]. Results from tests on Similarity Progression method for 5 images. (Left) 
Time passed after each step in minutes, per image. (Right) The percent difference 
between the registered image and the reference image.  (24-hour image silhouette), 
per image. 
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causing the abrupt translations like in Figure [15 r-t]. As previous progression algorithm 

results have shown, there are large percent difference spikes in the image registrations, but 

the percent differences of the images using similarity transformation are equal or less than 

the percent differences of the previous methods. Furthermore, this method sharply 

decreases the time it takes to reach these values – at longest, 3 minutes. 
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Similarity Binary Branch 

 

 Now that we have a method that performs faster, the binary branch algorithm is 

applied to a similarity transform type, in hope of removing the sharp increases in percent 

Figure [14]. Results from tests on Similarity Binary Branch method for 5 images. (Left) Time 
passed after each step in minutes, per image. (Right) The percent difference between the 
registered image and the reference image.  (24-hour image silhouette), per image 

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

step

T
o
ta

l 
T

im
e
 T

a
k
e
n
 P

a
s
s
e
d
 (

m
in

)

Total Time Passed for 

Similarity Binary Branch Algorithm 

 

 

0 10 20 30 40 50 60 70 80
2

3

4

5

6

7

8

9

step

%
 d

if
fe

re
n
c
e
 b

e
tw

e
e
n
 i
m

a
g
e

Percent Difference Between Images for 

Similarity Binary Branch Algorithm 

 

 
Image 1

Image 2

Image 3

Image 4

Image 5

Image 1

Image 2

Image 3

Image 4

Image 5

Figure [15]. Overlapping registered image on reference image for Similarity Binary Branch Method at various 
time points. The initial overlap before registration for bright-field Images 1-5 are shown in (a,e,i,m,q). The last 
step of the registration for Images 1-5 are shown in (d,h,l,p,t). Various in-between time points are shown for 
Image 1 (b,c), Image 2 (f,g), Image 3 (j-k), Image 4 (n,o) and Image 5 (r,s). For the similarity transformation 
methods, respective bright-field images undergo the same transformation as the silhouettes to show how the 
actual image will appear after registration. 
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difference between the registered and reference image. Figure [19 r-t] shows how Image 5’s 

spikes from the similarity progression method are controlled, and the percent difference for 

Image 5 gradually decreases in this method after a sharp decrease. The total time for this 

process is also equal or less than the similarity progression method, proving relatively 

effective.  
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SEGMENTATION PHASE: 

Figure 20 Raw Bright-field Images of 14 slices from 4 different rat brains 

Figure 21 “Concentrated” Region of 14 slices from Figure 20. Raw images are 16-bit and their intensities are 
inverted so that dark regions have higher intensity. A convex hull of the top 30% of the inverted image’s 
intensities are extracted and applied as a mask on the raw images, giving the “concentrated” region. The 
background is given an intensity of the average intensity along the border of the concentrated region. 
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Out of the 45 hippocampal samples, fourteen samples were used for testing the accuracy of 

the segmentation method. Precision is measured based on the element-wise difference 

between the regions manually outlined and filled by an experienced user, and the regions 

extracted by the segmentation method. Figures 20-28 show the key steps in the segmentation 

process on fourteen slices. 

Figure 22 10 Hz Butterworth Filter and 2x2 Median Filter applied on Original Slices from Figure 20. 

Figure 23 Images result from difference between Figure 21 and Figure 22 are extracted. The resulting 
images are contrast enhanced such that 1% of values are saturated at high and low intensities.  
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Figure 25 Scale result from CLAHE to maximum intensity 

Figure 24 CLAHE contrast enhancement on resulting images of Figure 23. All regions outside the 
concentrated region are ignored 
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Figure 26 20x20 Median Filter to fill in small gaps in extracted regions. A 10 pixel radius disk structuring element 
is then used to separate loosely connected regions 

Figure 27 Different Connected Components Labeled. Segmentation process has identified DG separately 
from CA1,CA3 (Slice 1,7,9,10,14) while others are identify the layers all together (Slice 3,4,11). 
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Figure 28 After removing connected components whose area were too small to be identified as a separate region, 
the extracted regions are shown against the regions outlined by experts, representing the standard of 
comparison. White areas represent regions that are covered by segmentation algorithm and standard of 
comparison. Pink regions represent regions the segmentation algorithm missed but are considered to be part of 
the ROI according the standard of comparison, and green are regions extracted by the segmentation algorithm, 
that are not part of the outlined regions from the standard. 
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Combining Segmentation and Registration 

 Now that we have our segmented regions from images of slices taken before 

experimentation, we need to use the transformation obtained from the registration phase for 

each slice to locate the corresponding regions on the images taken of slices after 

experimentation to provide a more accurate measurement. Out of all the tested registration 

methods, we decided to use the Similarity Progression method as it provides the best in both 

precision and efficiency over tested images. The transformation resulting from the Similarity 

Progression method is applied on the segmented regions obtained from raw bright-field 

images of slices before experimentation. An expert manually delineated the regions on the 

images of slices taken before experimentation and manually moved them to corresponding 

regions in the images taken after experimentation. The results for 14 slices on this step are 

shown in Figure 29. 

Slice #1

Before and After

Slice #2

Before and After

Slice #3

Before and After

Slice #4

Before and After

Slice #5

Before and After

Slice #6

Before and After

Slice #7

Before and After

Slice #8

Before and After

Slice #9

Before and After

Slice #10

Before and After

Slice #11

Before and After

Slice #12

Before and After

Slice #13

Before and After

Slice #14

Before and After

Figure 29 Target registration error. Each subplot represents a hippocampus slice showing comparison of 
manually outlined regions on image of slice before and after experimentation with extracted region before and 
after registration of hippocampus. This shows that for most of the images, with the exception of slice 7, the 
hippocampus regions extracted from images of slices taken after experimentation correspond to similar regions 
of those extracted before experimentation. Pink regions represent regions the segmentation algorithm missed 
but are considered to be part of the ROI according the standard of comparison, and green are regions extracted 
by the segmentation algorithm, that are not part of the outlined regions from the standard of comparison. 
White represents properly identified regions. 
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Fluorescence measurements 

 Based on the segmentation masks created from automatically extracted regions, we 

measure cell death using images of slices taken after experimentation. Cell death in this 

context is calculated as the ratio between the number of fluorescent pixels within the 

extracted region and the pixel area of the extracted region. Results of cell death 

measurements are shown in Figure 30. Slices 1-4 have a minor level of injury, but because 

segmentation area is underestimated, important areas of minor cell death are not included in 

the measurement, therefore underestimating the overall cell death percentage. On the other 

hand, slices 5-14 have overall high level of injury, and because areas are generally 

underestimated, the overall cell death percentage is overestimated. Figure 31 shows overlap 

of fluorescence image after threshold with automatically segmented regions, while Figure 32 

shows overlap of fluorescence image after threshold with manually delineated regions. Slice 

7 and slice 10’s automatically extracted region are underestimated greatly, and exclude 

 
Figure 30 Cell Death Measurements for 14 slices from 4 different rat hippocampi. Values measured using 
Metamorph program and manually outlined regions are shown in blue. Values measured by automatic 
segmentation method are shown in red. 
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regions with no cell death that are clearly labeled as either CA1, CA3, or DG, and therefore 

have automatic cell death percentage measurements at or near 100%. The boundaries of the 

layers can also be prone to bias, even under manual delineation, as shown with the green 

areas of Figure 32 (Slice 7-10).  

  

Figure 32 Overlap of Fluorescence Image after threshold and binary step and manually segmented regions. 
Green represents area of cell death not designated as part of CA1,CA3, or DG layers. White represents area 
of cell death within CA1,CA3, and DG layers and Pink represents CA1,CA3 and DG region with no cell death. 
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Figure 31 Overlap of Fluorescence Image after threshold and binary step and automatically segmented 
regions. Green represents area of cell death not picked up by segmented regions. White represents area of 
cell death picked up by segmented region and Pink represents region of no cell death. Regions within Slice 
7 and Slice 10 are largely  
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 Despite the overall process, including alignment of hippocampus between time 

points, segmentation of hippocampus layers, and fluorescent measurements, being the same, 

there can be a huge difference in the cell viability measurements. This case is shown in 

Figure 33 which shows the results for cell death measurements from the automatic method 

and 2 manual experts, one using Metamorph and other using ImageJ. The huge difference in 

cell viability measurements between experts is due to the combination of differences in 

alignment and segmentation of bright-field images, along with the threshold value applied 

fluorescence images. For example, the main reason why the automatic method’s results are 

closer to the manual method using Metamorph for slices 5-14 is because the threshold value 

applied on the images in automatic method are closer to the threshold used by the 

Metamorph user. Fluorescence measurements are highly susceptible to variability for images 

of highly injured slices. On the other hand, the automatic method’s results are closer to the 

manual method using ImageJ for slices 1-4 because the area segmented from the images 

automatically are closer to the areas segmented by the ImageJ user. As stated before, for 

slices with little injury, it is important to segment out the regions properly or parts of the 

hippocampal slice that are not classified as CA1, CA3 or DG, and yet contain dead cells, will 

be ignored. The automatic method will provide a standard for comparison and further 

analysis of these slices to help come up with better ways of protecting neurons from 

secondary and tertiary injury. 
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Now that we have taken a look at the precision of the registration, segmentation and 

fluorescence phase of the project, we need to validate the efficiency of this method. Figure 

31 shows the time taken for the entire process from registration through fluorescence phase 

for the 14 test slices. The entire process was repeated five times for each image. Mean and 

standard deviation times are shown in Figure 34. Overall, the entire process takes an average 

Figure 34 Efficiency of automated process from beginning of registration phase until end of cell viability 
measurement phase.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

3

4

5

6

7

8

9

10
Overall Efficiency

Slice #

T
im

e
 (

m
in

Figure 33 Cell Death Measurements for 14 slices resulting from novel automatic method and 2 
manual methods, one using Metamorph, and other using ImageJ. 
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of 7 minutes to finish per image, and is comparable to the time it manually outline the layers 

and measure cell viability manually. 

Conclusion: 

 Based on the total of 6 registration methods discussed above on five images, the 

method that was the most precise and efficient is the Similarity Progression because the 

percent difference between the registered and reference image gradually decreases for four 

out of the five images to 2-3% within 3 minutes. When adding a stopping condition for 

diminishing returns, the efficiency increased to around 1-2 minutes. When comparing to the 

Metamorph user, the segmentation method underestimates the area of the regions of interest 

by an average of 12%, and takes an average of 3 minutes to complete. The fluorescence 

phase takes only about 1 minute to complete on average, therefore leading towards the 7 

minutes per average overall. This is around the same amount of time for experts to use the 

current method per image, by manually delineating the regions of interest on the image of 

slice taken before experimentation, transposing it to corresponding region in images taken 

after experimentation, and measuring cell viability using Metamorph or ImageJ. Though 

there is room for improvement in efficiency, this will allow the users to save time by working 

on other experiments while data on cell viability is being collected. It will also prevent 

expert-to-expert bias when segmenting regions and measuring fluorescence. 

 The reason why bright-field images of slices are taken, is to help the user identify 

where the regions are within the hippocampus. Because of this, the bright-field images like 

slice 7 and 10 which have a much darker region overall even before experimentation are 

harder to work with it, and therefore allow for more bias when identifying layers. Because of 

the overall darker CA1, CA3 and DG layers, it is harder to identify by using pure intensity 
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gradients as the segmentation method in this paper depends on. Users can identify images 

that have poor quality in terms of identifying regions of interest like Slice 7 and 10 and 

identify regions on manually for these while having the automatic process collect cell death 

data on the rest of the images that are clearer. Contrast enhancement helped identify parts of 

the regions, but specific regions of interest were lost due to the higher difficulty in discerning 

layers within these images.  

 Because the efficiency and accuracy are dependent on the quality of the images, and 

how the image was taken, there are also several steps that researchers can take in order to 

help increase the efficiency and accuracy of the automatic method. During the experiment 

four slices from one hippocampus are placed in one well together. Currently the orientation 

of slices all differ based on how they are placed in the well. If the researcher were take 

images of the slices such that they were in the same orientation, or the slices were all 

oriented in the same direction in the well, that would allow the registration phase to apply 

the same transformation for every four slices, reducing the time it takes to register the 

images to a quarter of the current time. Considering that the registration phase is the limiting 

step in terms of efficiency, this would decrease the time needed for the entire process over 

multiple images drastically. 

 Our next step will be to identify and differentiate the specific layers in a 

hippocampus from each other, so we can further study how secondary and tertiary injury is 

caused and propagates, and how susceptible cells of specific regions of the hippocampus are 

to these types of injury. At the moment, it is possible to identify the CA1 and CA3 regions 

apart from the DG, but further improvement can be made to make it more robust and 

specific so that we can differentiate CA1 from CA3 as well. 
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