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ABSTRACT OF THE DISSERTATION

Change Point Detection in Univariate and Multivariate Processes

By JINHO KIM
Dissertation Directors:

Dr. Elsayed A. Elsayed and Dr. Myong K. Jeong

In this dissertation, we present several methodologies for detecting the mean
changes in univariate and multivariate processes, identifying fault variables in
multivariate processes, and detecting the mean changes in multistage processes. We first
propose an adaptive runs rule, which is motivated by the concept of supplementary runs
rule, in order to make control charts more sensitive to small mean shifts. The adaptive
runs rule assigns scores to consecutive runs based on the estimated shift size of the mean.
We supplement the adaptive CUSUM (ACUSUM) chart with the adaptive runs rule to
enhance its sensitivity in detecting small mean shifts.

We propose two new SPC procedures, MASC and AMASC, for detecting mean
shift vectors based on the approximate sequential c¢* test. Similar to the univariate

CUSUM chart, a multivariate CUSUM chart can be designed to detect a specific size of

the mean shift optimally based on a sequential likelihood ratio test for noncentrality.



However, in multivariate case, the probability ratio of a sequential test is intractable
mathematically and the test statistic based on the ratio does not have a closed form

expression which makes it impractical for real application. We drive an approximate log-
likelihood ratio and propose a multivariate SPC chart based on the sequential ¢? test.

We propose an adaptive step-down procedure using conditional “Y statistics for
the identification of fault variables. In a process with massive process, identifying which
variable or a subset of variables causes an out-of-control signal is a challenging issue for
quality engineers. The proposed adaptive step-down procedure selects a variable having
no significant evidence of a change at each step based on the variables that are selected in
previous steps.

Finally, we represent an autocorrelated multistage process as VAR(1) model and
derive the propagation models of mean shifts to subsequent stages under the state space
model. Further, we propose a new conditional CMEWMA chart to detect the shift of
mean in a multistage process by incorporating unchanged stage information. The
simulation results show that the proposed CMEWMA chart is efficient in detecting a

wide range of small mean shifts compared with other MEWMA charts.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The recent advances in instrumentation, data communication and sensors have
resulted in significant improvements in product quality. The proper quality improvement
strategy has emerged as a critical factor in the successful design, construction and
operation and controlling the quality in a wide range of industries. A well-engineered and
correctly specified modern control system will minimize the process variability, improve
the process efficiency, avoid unexpected failure rates, keep operating and maintenance
costs as low as possible.

Quality improvement can be defined as the reduction of the proportion to
variability (Montgomery 2005). Process variability normally consists of both common
causes and special (assignable) causes. The common causes are inherent variability
naturally embedded in the process so that they cannot be removed from the process. On
the other hand, the special causes occur at random times due to some assignable causes
during the process. The assignable causes usually change process characteristics from the
target and can be removed from the process when detected.

The action of monitoring the process with the assignable causes is performed by
process charts such as Shewhart, CUSUM, and EWMA to detect whether the process

level is changed from the target. These actions of process monitoring are called the



Statistical Process Control (SPC). SPC is often part of an organization’s strategic thrust to
improve quality and it is the activity to monitor processes with emphasis on methods and
procedures. The main objective of SPC is to detect process changes quickly and remove
causes of process disturbances. Control charts are widely used to monitor process
characteristics to detect process changes. Control charts plot values of test statistics
against time or the sample number of process outputs collected constantly and randomly.
Shewhart (1931) introduces the concept of a SPC chart to monitor the mean of a
process with single parameter (univariate process). Since the development of the
Shewhart chart, numerous control charts for univariate processes have been proposed
(Page 1954, Roberts 1959, Lucas and Saccucci 1990, Sparks 2000, Shu and Jiang 2006,

Jiang et al. 2008, Wu et al. 2009). Further research has been conducted to investigate

multivariate SPC (MSPC) for multiple quality characteristics such as Hotelling’s T?,
MCUSUM and MEWMA (Healy 1987, Crosier 1988, Pignatiello and Runger 1990,
Lowry et al. 1992, Sullivan and Jones 2002, Hawkins and Maboudou-Tchao 2008, Jiang
and Tsui 2008). In this dissertation, we propose efficient and effective approaches to
detect changes in the process parameters as quickly as they occur for both univariate and
multivariate processes.

In high-dimensional processes, which have massive process variables, identifying
which variable or a subset of variables causes an out-of-control signal is a challenging
issue for quality engineers. The proposed MSPC chart focuses on detecting mean shifts in
multiple process parameters based on “Y statistics. However, it has difficulty in

identifying variables which cause the out-of-control signal when the mean shift is



detected. We propose an adaptive step-down procedure that can identify the source of
changes efficiently.

Most of the research on univariate/multivariate quality characteristics has been
limited to single-stage production processes. Several investigators have proposed SPC
procedures for monitoring and controlling processes with autocorrelated data for a single
stage process (Schmid 1995, Lu and Reynolds 2001, Kramer and Schmid 1997,
Rosotowski and Schmid 2006). In summary, SPC processes that deal with autocorrelated
observations are limited to a single-stage process. However, as manufacturing industries
become more sophisticated, it is common to find a production process involving multiple
stages such as those found in pharmaceutical manufacturing, chemical industry and
semiconductor manufacturing. In order to develop advanced SPC methodologies for an
autocorrelated multistage process, there are a number of challenges that must be
addressed. First, due to the complexity of multistage processes and autocorrelations of
observations, the relationship between the output variables and input variables is
complicated. Multistage processes have a unique cascading property, i.e., outputs from
operations at upstream stages may affect the quality of downstream stages, and product
variation may propagate throughout the production stages (Hawkins 1993, Li and Tsung
2011). In case of an autocorrelated multistage process, this cascading property may
produce more complex consequences because the variation propagation could be more
time-dependent than usual discrete multistage processes. Consequently, identifying the
faulty stages and the change time will be difficult. Our preliminary study in chapter 5

shows that conventional multistage control charts do not work well when the quality



characteristic exhibits even low levels of correlation over time and gives misleading

results in the form of excessive false alarms when the data are positively correlated.

1.2 Dissertation outline

This dissertation is organized as follows. Chapter 2 presents an adaptive runs
rule, which is motivated by the concept of supplementary runs rule, in order to develop
control charts more sensitive to small mean shifts than existing approaches. Chapter 3
proposes a multivariate SPC chart based on a sequential test having an optimal property
for testing shift vectors with a specific noncentrality parameter. Chapter 4 presents an
adaptive step-down procedure using conditional Y statistics for fault variable
identification. Chapter 5 proposes an SPC procedure for monitoring autocorrelated

multistage processes. Finally, chapter 6 summarizes the research results and future work.



CHAPTER 2

UNIVARIATE SPC WITH ADAPTIVE RUNS RULE

2.1 Introduction

In this chapter, we assume that a process has a single quality characteristic X
whose measurements follow a normal distribution X ~N(m £), and a sequence of
measurements {Xt} is independently and identically distributed (i.i.d.). When the process
is in control, its mean and standard deviation are m= gand s = g respectively,
otherwise the mean of the process is shifted to /77, where /7, g. Let d=| m- Jh,
represent the magnitude of the unknown shift. For simplicity, we assume that /77 =0 and
S, =1. The cumulative sum (CUSUM) chart proposed by Page (1954) is widely used to
detect small mean shifts efficiently. The conventional upper and lower-sided mean
CUSUM statistics (Page 1954) can be written as

C =max[0, X, -k €’]and C, =min[0, X, + &], (2.2)
where k > 0 and C; =G, #®. An out-of-control (OC) signal is triggered as soon as

G >hor G < -hwhere his a predetermined control limit. Comprehensive investigations
of the properties and the average run length (ARL) of the CUSUM charts are given in
(Brook and Evans 1972, Woodall and Adams 1993, Nishina and Nishiyuki 2003). A main
advantage of the conventional CUSUM chart is that it provides good detection

performance when a particular shift level is known beforehand. In practice, the shift level



is usually unknown. Therefore the CUSUM chart may not perform well when the actual
mean shift is different from the particular shift level.

An adaptive CUSUM (ACUSUM) chart (Sparks 2000, Shu and Jiang 2006) and
its variants (Jiang et al. 2008, Wu et al. 2009) have been proposed for detecting a range
of mean shifts efficiently. The ACUSUM chart adjusts the reference value of the
conventional CUSUM chart dynamically based on the shift size estimation. The ARL
performance of ACUSUM is analyzed by a two-dimensional Markov chain (MC) model
(Shu and Jiang 2006). Simulation and MC analysis reveal that the ACUSUM chart is
more robust and efficient in detecting a range of mean shifts than the conventional
CUSUM chart. On the other hand, a drawback of the ACUSUM chart occurs when the
range 1§ , Where] 1 , of mean shifts is wide. The ACUSUM chart is
often insensitive to mean shifts close tof , since the ACUSUM chart is designed to
provide a very good perfomance when the shift size is close to the initial value of shift
size estimation (Shu and Jiang 2006). In general, the initial value is set to the midpoint of
the region to balance the efficiency in detecting overall mean shifts within the region.

In some environments, the process is very sensitive to even small variations of the
air ambient temperature and such small changes may lead to a direct impact on the
quality of processed gas (Bakker 2006). Thus, it is critical to detect small changes in the
process parameters or product characteristics since small changes may significantly result
in deterioration of product quality (Park et al 2012, Jeong et al 2006). In this chapter,
we incorporate a runs rule with the ACUSUM chart to improve its sensitivity in detecting

smaller mean shifts within the range.



Incorporating supplementary runs rule with Shewhart and CUSUM control charts
have been explored to improve the ability of the charts in detecting small mean shifts
(Champ and Woodall 1987, Koutras et al. 2007, Riaz et al. 2010). Champ and Woodall

(1987) introduce a general form of supplementary runs rules, T(n, m a B, indicating that

an OC signal is triggered if n of the last m statistics fall within the interval (a,b) as

Ruleno. 1: R ={T(L1 - =3)TLL3, )}m=
Ruleno. 2: R, ={T(2,3, 3, 2),T(2,32,3)},
Ruleno. 3: R, ={T(4,5, 3, 1), T(4,513)},
Rule no. 4: R, ={T(8,8, 3,0), T(8,8,0,3)}.

Rule no. 1 represents the Shewhart control charts with 3-sigma control limits and Rule
no. 4 is the consecutive runs rule. These rules can be combined to form several composite

rules. For example, Rules no. 1, no. 2 and no. 3 can be combined to form
R,s =R CR CR. Champ and Woodall (1987) conclude that, when the power of the

control chart increases, the false alarm rate also increases. Khoo (2003) and Zhang and
Wu (2005) propose an optimal design of the supplementary runs rules to setup the control
limits to maintain a desired in-control (IC) ARL (ARLg). Among several supplementary
runs rules, runs rule 4, “eight consecutive points on the same side of the center line,” is
effective in detecting small mean shifts (Champ and Woodall 1987). Acosta-Mejia (2007)
and Lim and Cho (2009) suggest a general form of runs rule 4, m-of-m runs rule which
signals if m consecutive points fall beyond a predefined threshold level, called a warning
limit, and combine the m-of-m runs rule with the Shewhart chart. Riaz et al (2010)
propose 2-of-2 and 2-of-3 runs rules to improve the performance of CUSUM charts.
However, the performance of the CUSUM charts supplemented with two runs rules

illustrates just a small improvement compared to the conventional CUSUM charts.



In existing control charts incorporating m-of-m runs rule, the control chart
generates an OC signal either when an observation falls outside the control limits or when
m consecutive observations fall on the same side of the center line. However, when the
mean shift is known, the optimal number of consecutive runs on the same side of the
center line may be different depending on both the level of mean shift and a specified
ARLg as shown in Lim and Cho (2009). When the actual mean shift size is unknown, one
may consider incorporating an ACUSUM chart with m-of-m runs rule by changing the
number of consecutive runs adaptively through the estimation of mean shift level.
However, changing the number of consecutive runs adaptively depending on the shift
level of the mean can cause difficulty in setting up the control limits of the integrated
control chart to maintain a desired ARLy under IC process. Also, the MC analysis of the
integrated control chart to study the ARL; performance under different shift scenarios is
difficult to perform.

In order to overcome these challenges, we propose a new incremental scoring
procedure which adjusts a score adaptively depending on the estimated shift level of the
mean rather than changing the number of consecutive runs, by adopting the concept in a
zone control chart (Jaehn 1987). In this way, we change the number of consecutive runs
indirectly based on the estimated shift level. In the proposed scoring procedure, we assign
a score to a consecutive run using the estimated shift size and accumulate the scores until
the total score reaches a threshold score limit. This procedure signals an OC condition
when the total score exceeds the threshold value or when the point falls outside the
control limits. Further, we provide some guidelines for the design the proposed adaptive

runs rule.



The chapter is organized as follows. In section 2.2, the ACUSUM chart is
reviewed and an initial value of shift size estimation is discussed. In section 2.3, the
ACUSUM chart with the adaptive runs rule (ACUSUM-ACR) is presented with the
discussion of a proposed adaptive runs rule, followed by an example to illustrate the
implementation. In section 2.4, the performance of the proposed chart is compared with
other control charts including CUSUM, Spark’s ACUSUM, AEWMA, and ACUSUM-C

charts. Finally, concluding remarks are given as well as suggestions for future research.
2.2 ACUSUM chart

2.2.1 ACUSUM chart based on EWMA estimator

The ACUSUM chart proposed by Sparks (2000) adjusts the reference value k of

the conventional CUSUM chart using an estimate g of the current mean size. We

illustrate this by considering the upper-sided CUSUM chart in equation (2.1). Let
k' =d*/2, where g is the current estimate of a positive mean shift available at time t.
The upper Sparks’ ACUSUM chart can be defined as

' =mad0,25 €% k) HKF 2.2)
where h(K) is an operating function that defines the control limit of the upper CUSUM
statistic. Shu and Jiang (2006) obtain an approximation of h(k) as follows;

§In(l+2k? ARL, 2.332K/2 k 1166, if k 0,
h(k) =] F\1/2 i ' (2.3)
T (ARL)™ - 1.166, if kK 9 '
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where ARL; is a pre-specified ARL of the upper ACUSUM chart. Similarly, the lower-
sided ACUSUM statistic is z, =min{0,Z., {X k)/Hk)}. An OC signal is

triggered when Z >hor Z; < h, where his a predetermined control limit.

Although different schemes can be used to estimate shift size, the EWMA statistic

is widely used to estimate the process mean due to its simplicity and efficiency as

L
1
x
&
1
N
’_'\

-1, (2.4)
where 0¢/ @ is a smoothing parameter. A small value of a-is efficient in detecting
small shifts but less efficient in detecting relatively larger shifts. However, the traditional
EWMA statistic suffers from the “inertia problem” when the difference between the
value of EWMA statistic and the target value is large before a change occurs (Yashchin
1987, Capizzi and Masarotto 2003, Woodall and Mahmoud 2005). If the value of the
EWMA statistic is far below the target value and the mean of a process is shifted in the
opposite direction, then it may take much longer for the EWMA estimator to react to the

mean shifts. To overcome this, Sparks (2000) recommends using the upper EWMA

statistic with a minimum positive value g, >0 for improving the sensitivity to shifts
az g, as

étﬁ =max{ qn’ )qt -(1 ') Atll}v‘
where g is the initial value for positive shifts, and o, = g when the shift range
1 d is of interest. Although Sparks (2000) and Shu and Jiang (2006) do not

define o

max !

it is reasonable to choose df, = g for the purpose of improving the

sensitivity to shifts ¢ g . Thus, the upper EWMA estimator can be derived as
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g =min{max{ d,, X, € -)/}d.} 2.5)

where d... = ¢, and d,

m

= g, are pre-specified minimum and maximum positive

ax

shifts for improving the sensitivity in detecting shifts larger than o and smaller than

d; .. . Similarly, for negative mean shifts, the lower EWMA estimator is defined as
g =max{min{ @, X € -) /[ }dwuk (2.6)
where g = - g is the initial value for negative shifts, and o, = - g, and o = - @,

. In this section, we focus our discussion on the ACUSUM chart based on the estimators

defined in equations (2.5) and (2.6). In addition, we reset g = @ when Z; ¢0 and

a = @when Z; 2 0, as suggested by Sparks (2000).

2.2 Initial value setting for the EWMA estimator

The initial estimate of a shift size has a considerable effect on the ARL

performance of the ACUSUM charts. In general, ACUSUM charts are sensitive in

detecting mean shifts close to g, . For the detection efficiency over a range of mean

shifts, the midpoint of the range [d,., @], i.e., d =05(d,

in

+ @), is commonly used
as an initial value (Shu and Jiang 2006). For positive and negative shift estimators, we set

d = gand g, = -, respectively. Since we can consider the term 0.5 as a certain weight

assigned to and] , the initial value can be generalized as
0h=( W)y, + W, 2.7)
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wheret 0 p. When w = 0.5, the intial value is equal to the midpoint suggested by
Shu and Jiang (2006). Table 2.1 shows the zero-state and steady-state ARL performance
of ACUSUM charts with different values of w = 0, 0.25, 0.5, 0.75, 1.0 for various mean

shifts when &= 0.2 and [d,,,, @,]=[0.5,4.0]. The zero-state ARL (ZARL) is the ARL

obtained with an assumption that a process change occurs at the initial stage, while the
steady-state ARL (SARL) is the ARL computed assuming a process change take places
after the process has been in control for some time (Lucas and Saccucci 1990). The zero-
state and steady-state ARLS are obtained from extensive simulation experiments with
100,000 replications.

It is observed that the minimum ARL value for each U occurs when the initial

value of the shift is around U When w = 0, the initial value is set to d_. , while it is set to

d.., when w = 1.0. In general, a small value of w enhances the sensitivity of ACUSUM

charts to small shifts, and a large value of O improves the sensitivity to large shifts.

However, choosing w = 0 or 1.0 considerably deteriorates the performance of detecting

either large or small shifts. Therefore, Shu and Jiang (2006) recommend choosing d, as

the midpoint of [d],,, @], i.e. w=0.5 for balancing the efficiency in detecting both

in?

small and large shifts.

2.3 ACUSUM chart with adaptive runs rule

The ACUSUM with g, =0.5(d.,, + ) is insensitive to shifts close to d,, when

min

the range [d,,,, @] of mean shifts is wide. Specifically, whenj @, the ARL = 135

in?

for the range [0.5, 6.0] and 63 for the range [0.5, 4.0] as shown in Table 2.4. In order to
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improve the efficiency in detecting a wide range of shifts, we propose an adaptive runs

rule in this section.

2.3.1 Adaptive runs rule

An adaptive runs rule is based on the shift size estimation used in ACUSUM
charts. We assign scores to consecutive runs using the estimated shift size and add these
scores until the total score reaches a limit similar to the score function of a zone control
chart (Jaehn 1987). We propose a new scoring function using the value of the current
observation and the estimated shift size of the mean. For the upper adaptive runs rule for

positive mean shift detection, we define the cumulative score as

N, =

t

Pmax{0. NIy +7( ', X))}, if Z, 70 2.8)

70, ifZ' =0
where N, =0 and 7(«) is a score function of the value of the current observation and

the value of the current mean shift estimate. The score is added when the value of current
statistic Z; is positive, otherwise the previous total score Z;, is reset to zero.

When the mean changes and the magnitude of the change is known, the log-
likelihood ratio (motivated by the log-likelihood ratio test) can be used as a good scoring

function. Assume that X, has a probability density function f, ~N(0,1) from an IC
process, while X, has a probability density function f, ~ N(g",1) from an OC process.

The log-likelihood ratio of X, can be defined as

n f.(X,) gy .
f( @4,X)=log=—% Ho > = -12). 2.9
(@X) 9T x) 9w T -2 (2.9)
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Table 2.1 Zero- and steady-state ARLs of ACUSUM charts with different values of w

when A = 0.2 for detecting shifts within the range [0.5, 4.0]

w = 0.0, w =0.25, w =0.5, w =0.75, w=1.0,
h=0.927 h=1.000 h=1.025 h=1.058 h=1.040

o ZARL SARL ZARL SARL ZARL SARL ZARL SARL ZARL SARL

0.0500.39 493.19 501.45 496.79 500.43 499.90 501.68 500.46 499.83 499.35
0.5 34.08 31.81 3951 37.88 6353 6273 126.88 126.58 179.68 179.64
1.0 1091 988 11.00 1040 1333 13.00 2158 2142 37.69 37.63
15 616 555 558 530 582 567 732 724 10.64 10.60
20 430 388 364 348 346 337 381 376 462 461
25 337 304 273 263 243 238 245 243 269 2.68
30 281 25 224 217 189 186 181 1.79 186 185
35 242 222 193 187 155 153 144 143 143 142
40 217 202 172 167 132 131 122 122 121 120

If X, >d’ /2, then the cumulative score is increased by 7(-). Otherwise, N, is
not changed or decreased by 7(+). The adaptive runs rule triggers an OC signal
whenever N;” >1, where | is the limit of the accumulated score. Analogously, the

cumulative score of the lower adaptive runs rule for negative mean shifts is defined as

N = Fmax{0. Nz, +7 (e X)) i Z, 7 0
‘o, itz =0

(2.10)
where N, =0.

It is interesting to study the effect of | on the ARL performance of ACUSUM.
Table 2.2 compares the zero-state ARL values of ACUSUM-ACR with different values

of awhen w = 0.5, _ &, and [d,,,, £ ]1=[0.1,4.0]. When & Hb, the adaptive runs
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rule could not generate OC signals so that ACUSUM-ACR provides the same ARL
performance with Spark’s ACUSUM, while only adaptive runs rule is responsible for OC
signals when "Q Ho Note that both charts use the same EWMA estimator to estimate the
process mean.

Table 2.2 also reports the proportions of OC signals generated by the adaptive
runs rule. For instance, when | = 6.04 and U = 0.5, about 70% of detections are from the
runs rule; this indicates that the adaptive runs rule plays an important role in detecting the
small mean shift. In general, the proposed adaptive runs rule with smaller | is more
sensitive in detecting small shifts. However, when the value of | is too small, it is difficult
to maintain 0 "9 to a specific value regardless of the value of h. In Table 2.2, for
0 ¥ =500, the minimum value of | is 6.03. It is thus reasonable to choose | and h with
the proportion of false alarms equal to 50% in order to improve sensitivity to small shifts.
Table 2.3 shows the parameters | and h for various shift regions when w = 0.5 and

T@®. The corresponding 0 ™4 is equal to 500 and the proportion of false alarm by the
adaptive runs rule is 50%.

Table 2.4 compares the zero- and steady-state ARL values of ACUSUM-ACR
and ACUSUM for different values of when w = 0.5,_ T1®&, and 0.5. The
ACUSUM is inefficient in detecting shifts around when is large, and the
adaptive runs rule makes the ACUSUM more sensitive to small shifts.  Specifically,
when the range is [0.5, 6.0], ACUSUM-ACR is more sensitive to shifts 2.0 than
ACUSUM. On the other hand, when the range is small like [0.5, 2.0], the adaptive runs

rule improves the performance of ACUSUM in a small region.
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Table 2.2 Zero-state ARL comparisons of ACUSUM using adaptive runs rule with

different | and h (w=0.5)

ACUSUM with adaptive runs rule Spark’s
. ACUSU
m@hld,;,, A.]1=[0.1,4.0]
M
| =6.03, | =6.04, | =6.45, | =8.2, [ =H,
h=H> h=1.12 h=1.06 h=1.03 h=1.014

Prop Prop Prop
i ARL (%) ARL (%) ARLProp(%) ARL (%) ARL
0.0 501.14 100 500.90 50.12 499.51 25.39 500.30 9.72 501.18

0.1 380.69 100 380.13 55.04 383.62 32.11 391.73 16.25 418.75
0.5 4551 100 4551 69.16 46.49 5257 49.24 3140 52.98
1.0 1175 100 11.75 4943 1201 2708 1246 549 1244
1.5 571 100 571 2403 573 713 571 0.35 5.63
2.0 3.61 100 3.59 1084 355 138 349 0.01 3.45
3.0 203 100 201 645 199 0.06 195 0.00 1.93
4.0 142 100 140 698 141 0.00 138 0.00 1.36

* Prop is the proportion of signals detected by the adaptive runs rule.

Table 2.3 Parameters of ACUSUM-ACR with various shift ranges when Prop = 50 %

ACUSUM-ACR ACUSUM
1 1 h L h
2.0 1.09 6.92 0.996
0.50 4.0 1.12 5.78 1.025
6.0 1.20 5.25 1.060
2.0 1.10 8.34 1.130
0.25 4.0 1.13 5.94 1.017

6.0 1.19 5.32 1.060




Table 2.4 Zero-state and steady-state ARL comparisons of ACUSUM-ACR and
ACUSUM with different ., whenw = 0.5 and &= 0.2

ACUSUM-ACR ACUSUM
U ZARL  Prop (%) SARL Prop (%) ZARL SARL
T T Frp8t
0 500.23 50.46 499.79 50.61 500.49 499.46
0.5 118.91 57.08 118.55 57.12 135.87 135.56
1.0 20.79 58.55 20.63 58.69 23.18  23.04
1.5 6.99 49.56 6.91 49.83 765  7.56
2.0 3.69 34.49 3.64 34.98 3.88  3.84
3.0 1.80 13.98 1.79 14.39 1.79 178
4.0 1.23 5.91 1.22 6.04 122 121
5.0 1.04 1.54 1.04 1.58 1.04  1.04
6.0 1.00 0.20 1.00 0.21 1.00  1.00
T A T 8t
0.0 502.84 50.13 499.12 50.38 501.54 500.86
0.5 54.88 68.63 53.81 68.96 63.89  62.87
1.0 12.21 55.65 11.84 56.47 13.30  12.98
1.5 5.67 33.85 5.47 35.20 578  5.62
2.0 3.50 18.43 3.39 20.03 345  3.37
3.0 1.94 9.27 1.89 10.85 1.88  1.85
4.0 1.34 7.42 1.32 8.55 132 131
T H T@he 8t
0.0 501.92 50.16 495.30 50.985 501.27 496.82
0.5 33.89 63.15 31.72 64.975 38.23 36,51
1.0 11.28 25.48 10.44 30.225 10.94  10.31
1.5 6.04 6.67 5.62 12.87 563  5.33
2.0 3.98 2.54 3.72 8.96 371 353

2.3.2 Parameter selections
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The design of an ACUSUM-ACR chart involves the choice of parameters

d,

min ?

., &l and h. In this section, we provide guidelines for the choice of the

parameters of ACUSUM-ACR charts. Suppose [d], ¢ is the range of potential mean

shifts to be detected. Based on Sparks (2000) and Shu and Jiang (2006), we recommend

the following guidelines for designing ACUSUM-ACR charts.

T

Set [dmin1 gx]:[ 17d2]’and dmin = Qn = _mlq and dmax = ﬂx = hy'

Choose d, =(d,,,+ .)/2 to balance the efficiency in detecting shifts over the

range. Set g = ¢and g = - for positive and negative shift estimators,
respectively.

Choose a EWMA parameter _ in the range [0.05,0.25] . In general,_ T1®
and _ 1@ result in good performance of the chart

Reset d, = @ N =0 when Z', ¢0, and ¢, = ¢ N; =0 when Z;,2 0.
When Z/,¢0or 2z, 20, the previous process is very unlikely to have
positive or negative shifts so that it is reasonable to reset the mean estimation
and the cumulative score to its initial value for the following observations.

Select "Qand | to achieve the desired ARLO with the proportion of false alarm

generated by an adaptive runs rule equivalent to 50%.

Note that the above parameter selections are not intended to optimize detection

for any particular range of shifts. In section 4, we show that these guidelines improve

detection performance over the specified range [d,,,, ]

2.3.3 An illustrative example
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To illustrate an adaptive runs rule scheme with ACUSUM, we use a data set of
simulated observations taken from Lucas and Saccucci (1990). The data set is shown in
Table 2.5 and contains 19 observations from normal distribution. The target value of the
first 10 observations is 0 and the target value of the last 9 observations is shifted to one
standard deviation. The parameters of the ACUSUM-ACR are chosen to be w = 0.5, &=
0.2, h=0.862and | =5.0witho ™ ¢ T for detecting mean shifts within [0.5, 4.0].

Also in Table 2.5, the third and fourth columns show the values of ACUSUM
statistics, & and & , and the fifth and sixth columns contain the values of positive and
negative estimates of mean shifts, respectively. The final two columns contain the values
of the cumulative scores. For example, the score of the 11th observation for positive

shifts is calculated as 7( &, X,)= ;O0X, -,,/2) 204(1.2 204/2) 0.3872. As

0 1T, we obtain 0 @ @ X As shown in Figure 2.1, which plots the values of &
and 0 for detecting positive shifts, the proposed adaptive runs rule gives an OC signal

at the 16th observation, whereas the ACUSUM signals at the 17th observation.



Table 2.5 Example of an ACUSUM and adaptive runs rule using data (Lucas and

Saccucci 1990)

T Observed Value (%) (%) 1 1 0 0
0 0 0 0 0
1 1 0 0 2.25 -2.25 0 0
2 -0.5 0 0 225  -2.25 0 0
3 0 0 0 2.25 -2.25 0 0
4 -0.8 0 0 2.25 -2.25 0 0
5 -0.8 0 0 225  -2.25 0 0
6 -1.2 0 -0.0324 2.25 -2.04 0 0
7 1.5 0.1618 0 2.10 -2.25 0.945 0
8 -0.6 0 0 2.25 -2.25 0 0
9 1 0 0 2.25 -2.25 0 0
10 -0.9 0 0 225  -2.25 0 0
11 1.2 0.0324 0 2.04 -2.25 0.3672 0
12 0.5 0 0 2.25 -2.25 0 0
13 2.6 0.6365 0 2.32 -2.25 3.3408 0
14 0.7 0.4310 0 2.00 -2.25 2.7460 0
15 11 0.4696 0 1.82 -2.25 3.0941 0
16 2 0.8444 0 1.85 -2.25 5.0834 0
17 14 1.0102 0 1.76 -2.25 5.9976 0
18 1.9 1.3493 0 1.79 -2.25 7.7965 0
19 0.8 1.3171 0 1.59 -2.25 7.8028 0

20
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Figure 2.1 ACUSUM and ACUSUM-ACR charts. The solid and dashed horizontal

lines indicate control limits of ACUSUM-ACR and ACUSUM, respectively.

2.4 Performance comparisons

In the previous section, we compare ARL performance of the proposed
ACUSUM-ACR charts with that of ACUSUM charts for different ranges of mean shifts.
In this section, we compare the effectiveness of the ACUSUM-ACR in detecting both
small and large mean shifts with the conventional CUSUM and recent variants of
adaptive charts including AEWMA (Capizzi and Masarotto 2003) and ACUSUM-C
(Jiang et al. 2008).

MC approximations of the ACUSUM and the ACUSUM-ACR are described in

Appendix A. The ACUSUM chart can be represented by the two-dimensional Markov

random vector (g, Z,”) to evaluate the ARL. The two-dimensional MC approaches (Shu
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and Jiang 2006, Jiang et al. 2008) are extensions of existing univariate MC approaches
(Brook and Evans 1972, Lucas and Saccucci 1990, Capizzi and Masarotto 2003).
Similarly, the ACUSUM-ACR chart can be represented by the three-dimensional Markov

random vector (d",Z,* N, by extending the two-dimensional MC approach of the

improved ACUSUM. The MC analysis of the ARL provides approximate results of

Monte Carlo simulations.

2.4.1 Comparisons with CUSUM and ACUSUM charts
Figure 2.2 contrasts the (a) zero-state and (b) steady-state ARL values of

ACUSUM-ACR chart and CUSUM charts with k =q/},, /2 and k=d/_, /2 for detecting

shifts within the range[dl);,, ,.]1=[0.5,4.0]. The ACUSUM-ACR chart is designed for

providing good detection performance over a range of mean shifts [0.5, 4]. The zero-state
0 "6 values for both charts are maintained at 500. Both zero-state and steady-state ARL
curves of the ACUSUM-ACR chart are almost always at the bottom. Similar

observations are made for ACUSUM-ACR charts designed for moderate and small

ranges of shifts.

2.4.2 Comparisons with recent variants of ACUSUM charts

In Figure 2.3, the zero-state and steady-state ARLs of ACUSUM-ACR are
compared with AEWMA (Capizzi and Masarotto 2003) and ACUSUM-C (Jiang et al.
2008) charts. In order to detect shifts between 0.5 and 4.0 efficiently, we set

a

min

=0.5and g, .0, and select &= 0.2. The parameters h =1.12 and | = 5.78 of the

ACUSUM-ACR chart are selected to satisfy an ARLy= 500. The zero-state and steady-
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state  ARLs are obtained from extensive simulation experiments with 100,000

replications.

T T T T T T

—&— CUSUM (k=0.25)
500 —+t— CUSUM (k=2.0)
—©— ACUSUM-ACR

T
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Figure 2.2 (a) Zero-state and (b) steady-state ARL comparisons between ACUSUM-ACR

and CUSUM with k=0.25and 2.0
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Figure 2.3 (a) Zero-state and (b) steady-state ARL comparisons between AEWMA,

ACUSUM-C, and ACUSUM-ACR for the range [0.5, 4.0]
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Yashchin (1995) suggests the generalization of the EWMA (EWMA-C) statistic
based on Huber’s score function. The AEWMA chart proposed by Capizzi and Masarotto
(2003) is an adaptive version of EWMA chart based on the EWMA-C statistic. Capizzi
and Masarotto (2003) show that the AEWMA chart is more effective than the EWMA
chart for detecting a wide range of mean shifts. The AEWMA chart with &= 0.0398, 2=

2.899, h =0.4309 and df;,, =0.5 in Figure 2.3 is optimized for detecting mean shifts over

[0.5, 4]. Compared with the AEWMA chart, the detection performance of the ACUSUM-
ACR chart is more effective for mean shifts when 1.0¢d ®.0.

Another adaptive chart based on the EWMA-C statistic for detecting a wide range
of mean shifts is the ACUSUM-C chart, which was proposed by Jiang et al. (2008). The
ACUSUM-C chart is an extension of Sparks’ ACUSUM chart based on the EWMA-C
statistic. According to Jiang et al. (2008), the ACUSUM-C chart with &= 0.2, 9 = 2.5,

a,

I, =05, and h=6.13 provides an overall good performance in detecting mean shifts
over the range [0.5, 4.0]. Interestingly, the ACUSUM-ACR is more sensitive than the

ACUSUM-C chart in detecting mean shifts when1.0¢ d ®.5.

2.5 Conclusions

Traditionally, SPC charts are used to monitor processes in order to reduce process
variability and improve product quality. Although the ACUSUM chart is more efficient
in detecting a wider range of mean shifts than the conventional CUSUM chart, the
ACUSUM is often insensitive to mean shifts close to the minimum level of the range
when the range of the shift is relatively large. Some runs rules have been widely used
with control charts to improve the performance in detecting small mean shifts. However,

there is no efficient runs rule for supplementing the ACUSUM chart.
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In this chapter, we propose a new adaptive runs rule and supplement the
ACUSUM chart to improve its sensitivity for small mean shifts. The proposed adaptive
runs rule is based on a score function from the estimated shift in consecutive runs. The
performance of the ACUSUM-ACR is investigated and compared with CUSUM and
variants of adaptive charts such as ACUSUM, AEWMA and ACUSUM-C charts. The
comparisons reveal the effectiveness of the proposed adaptive runs rule in shift detection
for a wide range of shift magnitudes.

The proposed adaptive runs rule can be designed to detect linear shifts of the
process mean efficiently in future research. In addition, the rule can be extended to a

multivariate control chart.
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CHAPTER 3

MULTIVARI ATE STATISTICAL PROCESS CONTROL
CHARTS BASED ON THE APPROXIMATE SEQUENTIAL

F TEST

3.1Introduction

Multivariate statistical process control (MSPC) charts have been widely used to
detect process changes by monitoring multiple quality characteristics and/or process
parameters. In this chapter, we assume that a process has p quality characteristics and

measurements, X,,X,,..., are independently and identically distributed random vectors
following a multivariate normal distribution with a mean vector £ and a covariance

matrix g, thatis, X ~ N (g, ). Itis assumed that the first X;,X,,» ,X, are from an in-

control (IC) process with the process mean € =€, while X,,;,X ,,,» are from an out-

of-control (OC) process with € | €,. The covariance matrix E =F, is assumed to be

known and fixed over time, and the change time ¢ is unknown. For successive
observations, multivariate control chart approaches for monitoring the mean of a
multivariate normal process can be interpreted as repeated tests of significance of the

form

H,:€ =g, versus H,:e , g, (3.1)



28

where € represents a multivariate normal process mean. The Hotelling’s T? statistic is
the classical test statistic for the hypotheses. It is defined as T2 =(X €,) &' (X &),

which follows a ¢? distribution with p degrees of freedom (df). The average runs

length (ARL) performance of control charts based on the T? statistic is dependent only

on the distance of £ from g, (Lowry and Montgomery 1995), where distance is defined

as the square root of the noncentrality parameter /2(e) of a c? distribution given by

1%(e)=(e <,) B'(e &)
In this chapter, distance / (¢,) is used to represent the shift size of a mean vector ¢, from
€,

The Hotelling’s T? statistic is an optimal test statistic in detecting a mean change
based on a single multivariate observation (Lowry and Montgomery 1995). However,
with sequential observations, the T? statistic is not efficient in detecting small and
moderate shifts of the mean vector, as it uses only the most recent observation. As
alternatives to the Hotelling’s control chart, control charts using information given by the
entire sequence of observations like multivariate EWMA (MEWMA) (Lowry et al.1992)
and multivariate CUSUM (MCUSUM) (Alwan 1986, Healy 1987, Crosier 1988,
Pignatiello and Runger 1990) have been proposed to detect small mean shifts efficiently.
In MEWMA charts, test statistics are T2 values of weighted sum of observations similar
to a univariate EWMA scheme.

Woodall and Ncube (1985) suggest using p univariate CUSUM charts

simultaneously to monitor p variables. This scheme generates an OC signal whenever

any chart signals. Crosier (1988) proposes two multivariate CUSUM charts: cumulative
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sum of T values (COT) and MCUSUM. The COT is based on the univariate CUSUM
statistics of T values, and the MCUSUM s obtained by replacing the scalar values of a
univariate CUSUM by vectors. Pignatiello and Runger (1990) also propose two
multivariate CUSUM charts, MC1 and MC2. The MC2 chart accumulates the squared
distance from an observation vector to the target mean vector similar to the univariate

CUSUM chart. The MC1 chart accumulates the deviation vectors, X - €, rather than

accumulate the squared distance. The MCUSUM chart provides similar ARL
performance but is more complicated than the MCL1 chart. Further, it is known that the
MC1 chart shows the best zero-state ARL performance among multivariate CUSUM
charts when processes are initially in OC state (Golosnoy et al. 2009). However, the
MC1 chart shows poor steady-state ARL performance when p is large. The zero-state
ARL is the ARL obtained with an assumption that a process change occurs at the initial
stage, while the steady-state ARL is the computed ARL assuming a process change takes
place after the process has been in control for some time (Lucas and Saccucci 1990).
Sequential tests, based on likelihood ratios, have been used in statistical process
control (SPC) successfully (Page 1954, Healy 1987, Jiang and Tsui 2008, Mahmoud et
al. 2008, Reynolds and Lou 2010, Ou et al. 2012, Tsui et al. 2012). The univariate
CUSUM (Page 1954) is one of the most popular charts, which consists of a set of
sequential probability ratio tests (SPRT) (Wald 1947). It is known that the CUSUM chart
has certain optimality properties in terms of ARL (Lorden 1971, Pollack 1985,
Moustakides 1986). Healy (1987) proposes a multivariate CUSUM chart using
sequential log-likelihood ratios (log-LR), and the statistic accumulates a linear

combination of the p normal random variables. It is well known that the test statistic
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based on the SPRT is optimal for detecting a shift mean ¢, in terms of ARL when ¢, is
known (Moustakides 1986).

A drawback of Healy’s chart, which solves a simple hypothesis test as H,:e =¢,
versus H,:e =€, where g, , €., is that it is designed to detect a specific mean vector
e,. When pis large, it becomes difficult to specify a meaningful single alternative since
there are infinitely many points in p-space. When only a few components of the real
shifted mean are different from those of ¢,, Healy’s chart (1987) may perform far from

optimal (Lowry and Montgomery 1995). Based on the drawback of Healy’s scheme, it is
natural to consider other procedures that operate within the surfaces of p-dimensional

ellipsoids. For instance, the statement € =g, is equivalent to / (¢)=0. Similarly, the

alternative hypothesis would be of the same form but equal to a scalar value as
/ (g,)= {when g, , g,. The hypotheses become

H,:/ =0 versus H,:/ = |/, (3.2)
where /, . 0. Alwan (1986) proposes a multivariate CUSUM chart using SPRT scheme
based on the above hypotheses as a simple extension of univariate CUSUM. However, a
certain optimality property of the SPRT is not satisfied under the hypotheses of equation

(3.2) as the SPRT is designed for testing parameters, not for testing functions of

parameters such as / (s) , which is a function of the unknown parameter p (Lai 1981).

Although the SPRT for testing the hypotheses in equation (3.1) is used in SPC
charts effectively, there is no MSPC chart based on a sequential ... test (Jackson and
Bradley 1961) for testing the hypothesis in equation (3.2). A sequential ... test is based

on a probability ratio for the detection of a change in noncentrality parameter of a ...
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distribution. The sequential ... test has an asymptotic optimality property (Lai 1981).
However, as Crosier (1988) points out, the probability ratio of a sequential test for the
noncentrality parameter is intractable mathematically, and the test statistic based on the
ratio is not clear as it has no closed form expression. Thus, even though an existing
sequential ¢? test can be used for developing an MSPC chart, it may not be appropriate
for the on-line process monitoring if a closed form expression of the test statistic is not
obtained.

In this chapter, we develop a closed form expression of approximate sequential
G test based on the approximation to a noncentral ¢? distribution. The approximation
provides a closed form of the test statistic for testing the hypotheses in equation (3.2). By
adapting the approximate test statistic, we propose a novel multivariate approximate

sequential chi-square (MASC) chart for monitoring a specific shift size /,. The test

statistic of the MASC chart is based on the cumulative moving average and its T2 value
with a reference used in CUSUM-type control charts. Then, we propose an adaptive
MASC (AMASC) chart for detecting a wide range of shift by adjusting the reference
value of the proposed chart dynamically motivated by the concepts of the adaptive
CUSUM (ACUSUM) (Sparks 2000, Shu and Jiang 2006). By using an EWMA estimator
of mean shift rather than the pre-specified reference value, we can adjust the reference

value dynamically.

3.2 Approximate sequential ¢* test
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In this section, we construct the approximate sequential ¢ test statistic which has

a closed-form expression. A sequential statistical test is used for solving hypotheses

testing problems when the sample number is not fixed a priori but depends on the data
that have been already observed. The sequential ¢ test is a multivariate sequential test

based on the two simple hypotheses H, and H, in equation (3.2). After n data are
observed, we obtain H)_(n- SOHZ()_(n -80)' ' (X, &), where X, =(X, + »X,)/nis
a sample mean vector based on n observations. Under H,, nH>_(n- SOH follows a

noncentral ¢? distribution ¢*(p,n f) ; while under under H,, it follows a central ¢?

distribution. The test statistic based on the log-likelihood ratio is defined as

Fn[X,- €17 = 0
f(n”)‘(n- 80H|/ =0)

s, =log (3.3)

where f(-) is a pdf of ¢? distribution. The test statistic S , consists of a generalized

hypergeometric function defined in the form of infinite hypergeometric series (Jackson
and Bradley 1961).

A closed form of s, may be useful in practice for repeated tests. To obtain a
closed form of s, we may approximate the generalized hypergeometric function using

a specified number of hypergeometric series of the function. However, the error of the
approximation can be large when the selected number of terms is small, while the
computational overhead may be high and on-line monitoring may not be possible when

the selected number of terms is large. To overcome this problem, several researchers

have proposed various approximations to the noncentral ¢ distribution (Patnaik 1949,
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Cox and Reid 1987). Different schemes can be used to approximate a noncentral ¢?

distribution. In this section, we use Patnaik’s approximation due to its computational

efficiency (Cox and Reid 1987). It is known that the error of Patnaik’s approximation to
noncentral chi-squared cdf is O(/?) as /- 0, O(/ Y?) as /- o for a fixed p
(Johnson and Kotz 1970).

Using Patnaik’s approximation and rescaling, S, can be approximated by (see

Appendix B for details)

én :Wnlog(nH)_(n_ E’OH)- kn’ (34)
where
_4 _Ap+w, 60,4 p R/ ~ap ¢
k,=a, 1092 Rloglg—" @52at09 = |0@Ua=§ ¢ (3.5)
C ¢ 2 T ¢ pt/; c2 -
f4
and w, :ﬁ’ /,=~In {, and @(-) is a gamma function. When n =1, /, is equal
p+el,
to /.

Note that the proposed statistic may be asymptotically optimal in testing a

noncentrality parameter / = { + due to the error of the proposed approximation s _ to
s ,. Figure 3.1 compares the expected values of s . and s, as functions of n with _ =
1.0, when p =2 and 20. For simplicity, we set €, =0. The solid line represents the
expected values of s , for different n values, and the dashed, dotted, and dash-dot lines
are the expected values of s for e = 0, 0.5, and 1.0, respectively. Since the

noncentrality parameter of n|| X - &,| is a linearly increasing function of n, the
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difference between s _ and s , increases as n increases when e = 0. When e =1.0, the

difference becomes very large. The varying and large differences can cause difficulty in

setting up decision regions of sequential tests and result in significant test errors.

Interestingly, when e = 0.5, the expected values of s . provides similar patterns with

those of s , for both small and large p, and the differences between s  and s , appear

to be unvarying. In this section, we select e = 0.5 such that the test statistics for testing a

noncentrality parameter /, is based on

I,=n({ ©5)
The proposed approximate sequential ¢* test has three decision rules: (i) Accept H,
when s, ¢ 0; (ii) Accept H, when s >h; and (iii) continue by observing X,,, when

0<s, ¢h,where (0,h) is called a continuation region.

30

25 |
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(b)
Figure 3.1 Expected values of s , and s . with various e when (a) p=2and (b) p=20

3.3 MSPC using the approximate sequentia¢® test

3.3.1 Multivariate approximate sequential chisquare (MASC) chart

As described in the previous section, we are interested in testing H,:/ =0 versus
H,:/ = [ based on the approximate sequential ¢’ test in the MSPC testing problem. In
sequential tests, we accept H, or H, based on the test statistic value. However, ina SPC
testing problem, we accept H, or restart a sequential test when the previously taken
decision is to accept H,. When we accept H, for the first time, we stop observation and

do not restart a new cycle of the sequential test. For instance, the test statistic proposed
by Healy (1987) is reset to zero and the SPRT is restarted when the value of the test

statistic is less than zero. When the value of the test statistic is greater than a threshold
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value (control limit), it alarms an OC signal by accepting H,. Using this concept, we can

integrate a sequential test into an MSPC chart.
To introduce the proposed MASC chart, we consider the cumulative moving

average as

1
Mr‘r\,tzﬁ(xt—nq 1 + »>Q_t)! (36)

where m is the number of observations starting from the recent sequential test. As

shown in the approximate sequential ¢ test based on the logarithm of the likelihood

ratio, the test statistic of the proposed chart is defined as

MA:wnIog(mHM m.t'SOH) L (3.7)
where Kk, >0 is a reference value defined in equation (3.5). Since M _ - g, represents
the difference between the accumulated sample average and the target mean, the norm
HMW- SOH:(MM- so)' Eg)l(M .t -so) is considered a measure of the difference of

our estimate of the mean of the process from the target mean. Based on the value of MA

, the procedure of the proposed MASC chart is as follows:

1 Stop and alarm an OC signal when MA > h;
1 Update m,, =m 4 when 0<MA ¢ h;
1 Update m,, =1 when MA ¢ 0,
where h>0 is a control limit for an OC signal, respectively. As long as MA <h, we

update the cumulative moving average as

:M‘M .ix . (3.9)
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When m,, =1, the previous moving average M, is cancelled out so that

t

X, .. For simplicity, the value of MA defined in equation (3.7) can be set to

Mag, 41

zero whenever MA ¢ 0. Hence the proposed MASC can be expressed as follows

MA :max{w,1 Iog(mHM ot SOH) kFO} (3.9)
and

_em, +1 if MA,

m=l if MA_, ¢0’ (3.10)

where m, =1and MA) =0. The proposed MASC chart signals when MA > h.

Remarks: If we set m,; =1 when MA ¢ h for all t >0, then the moving average M, ,
is equal to X, . Since k, and w, are constants, by rescaling and transforming
log(m [|[M,, .- €,1) , the test statistic can be equivalent to the test statistic of the

Hotelling’s ¢ control chart. Appendix B describes the relationship between the popular

MC1 chart (Pignatiello and Runger 1990) and the proposed chart in detail.

3.32 Design of parameters

The design of an MASC chart involves the choice of parameters hand _ . The
basic design strategy is to select the shift size _ to be detected quickly and choose h for
satisfying the desired 0 "0 . This approach produces MASC charts with good ARL
performance when the size of the mean shift is close to _ . Using Tables 3.1 and 3.2, we
can obtain the MASC parameters that result in the minimum OC ARL for mean shifts of
the specified size _ . Table 3.1 provides the zero-state ARLs of the proposed MASC

charts with different values of _ when p = 2, 5, 10. The numerical results show that the
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MASC charts with _ = 0.5, 1.0, and 1.5 have the minimum ARLSs in detecting shifts of
sizes &= 0.5, 1.0, and 1.5, respectively. These results are similar to those obtained in
univariate CUSUM charts so that smaller and larger values of _ are more sensitive in
detecting smaller and larger shifts, respectively. Table 3.2 provides h and the minimum
OC ARL 0 'Y for detecting mean shifts of size _= 1.0 with various 0 "6 = 200,
500, 700, and 1000. We choose _ = 1.0 because this value provides good ARL
performance in detecting small shifts in the mean vector. All ARL values are obtained

using 20,000 simulations.

Table 3.1 Zero-state ARLs of MASC charts with different values of _ whenp=2,5, 10

— =05 _ =1.0 _ =15
p=2 p=5 p=10 p=2 p=5 p=10 p=2 p=5 p=10
h=6.3 h=552 h=481 h=739 h=6.67 h=6.03 h=8.05h=7.39 h=6.81

0.0 199.52 199.70 200.67 200.67 201.01 200.4 200.30 199.61 201.02
05 2827 36.45 44.44 3446 4584 55.66 4447 59.29 70.92
1.0 1049 1337 1641 9.76 12.4€ 15.23 10.82 13.87 17.08
1.5 7.16 9.17 1140 5.64 7.13 8.71 5.24 6.55 8.01
2.0 5.90 7.58 9.43 4.28 5.39 6.64 3.63 4.49 5.51
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Table 3.2 Optimal parameters of MASC charts in detecting mean shifts of Size _=1.0

with different 6 "6 when p =2, 5, 10, 20

In-control ARL

P 200 500 700 1000
h 7.39 9.15 9.82 10.53
0" 9.76 11.75 12.50 13.29
5 h 6.67 8.42 9.07 9.82
0" 12.46 14.84 15.77 16.74
10 h 6.03 7.84 8.51 9.19
0% 15.23 18.34 19.43 20.49
20 h 5.37 7.15 7.80 8.53
09 18.90 22.90 24.22 25.62

3.3.3Properties of the proposed test statistic

The test statistic defined in equation (3.8) is based on the log transformation of

¢® distribution, since m M, .- €| follows a c¢? distribution with p degrees of

freedom when a process is in control. The log ¢ distribution is considerably close to the
normal distribution for the following reasons: (i) it provides closer approximation to
normality based on the Kullback-Leibler information number, which is a measure of the
difference between two probability distributions (Hawkins and Wixley 1986); (ii) it can
be considered as truly normal, because the transformed variable of a positive-valued
variable from c¢? distribution is defined over the whole range from -2 to @ (Keene
1995); and (iii) the log transformation is widely used for converting right-skewed

distributions with heavy right tails to be symmetric.
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Suppose that Y is a random variable from log ¢? distribution with p degrees of

freedom. Then the pdf f, is given as
1 .
f e — (p/Z 2) e 2 .
oY) 2720 (p/2)
The mean and variance of the log ¢* distribution can be obtained using Taylor series
approximation (Casella and Berger 2002), where the mean and variance of Y are log p

and 2p™*, respectively. Interestingly, the variance decreases as p is increases. Figure 3.2

compares log ¢? distributions when p=5, 10, 20. It is clear that a log ¢* distribution with

larger p is closer to normality and has smaller variance.
14 T T T T T T T
p=5
——— p:10 A
1.2 ! _
1
1
1
1
1k ! 4
]
1
1
1
0.8 _ ,.' i
]
v
0.6} [ -
0.4+ -
0.2+ -
5 6

o

-2

Figure 3.2 Probability density functions of log ¢ distributions with p=5, 10, 20
Figure 3.3 compares the expected values of w, log(m|/M, .- €,[l) and o)
P8t The expected values of w, log(m|[|M, - €,) under IC

when p = 10 and _
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and OC processes approximate to w,, log pand w, log(p+ m/ %), respectively. It is
clear that the test statistic MA is often reset to zero since the expected value of MA,
which approximates to w, log(p)- k,, becomes negative as & increases under an IC

process (&= 0). However, when the process is out of control with &= 1.0, a signaling

probability becomes larger since the expected value w, log(p+ m/;’) -k, increases as

G increases.
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Figure 3.3 Expected valuesof 0 | T&€ss { t s andQ whenp=10and
— P8t

3.3.4 An illustrative example

To illustrate the use of the MASC chart, we utilize a set of simulated observations
taken from Crosier (1988). The data set in Table 3.3 contains 10 observations from
bivariate normal distribution with a correlation coefficient of 0.5 and unit variances. The

process mean vector of the first 5 observations is [0, 0], while the mean vector of the last
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5 observations is shifted to [1, 2]. The parameters of the MASC chart are chosen to be

_ =10andh=7.39 with 0 ¥

C TLTT

Table 3.3 An example of an MASC chart using data from Crosier (1988)

<,

Observations E 0 hD
t © ® o 0 0 ) 0 Q 00
1 -1.19 0.59 1 -1.19 0.59 1.19 0.78 -0.55 1.47
2 012 0.90 2 -0.54 0.75 1.20 1.84 0.16 2.04
3 -1.69 0.40 3 -0.92 0.63 199 294 142 4.42
4 0.30 0.46 4 -0.62 0.59 1.76 405 3.04 4.06
5 0.89 -0.75 5 -0.31 0.32 0.70 517 4.9 0.00
6 0.82 0.98 1 0.82 0.98 0.10 0.78 -0.55 0.63
7 -0.30 2.28 2 0.26 1.63 181 1.84 0.16 3.18
8 0.63 1.75 3 0.38 1.67 222 294 142 5.10
9 156 1.58 4 0.68 1.65 240 4.05 3.04 6.66
10 1.46 3.05 5 0.83 1.93 293 517 494 10.19

Charting Statistics

12

10

Observation Number

10

Figure 3.4 Plot of a MASC chart using data from Table 3.7
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In Table 3.3, the fourth column contains the number of observations used for

computing cumulative moving average M ., and the fifth and sixth columns show the

values of M, =[M,, M,]. The seventh, eighth and ninth columns contain the values of
Y, =log(m|IM,, .- €I), 0 , and'Q for computing O 6 , respectively. The final

column shows the values of the test statistic 0 © . As shown in Figure 3.4, which plots
the values of the MASC statistic, the proposed MASC chart gives an OC signal at the
10th observation. The Crosier’s MCUSUM chart (1988) with k = 0.5 also signals at the
10th observation when! 2 ¢ Tt.TiNote that the MASC vector elements, 0 and 0

provide some clues to diagnose the direction of the shift when the MASC signals.

3.4 Adaptive MASC chart based on the estimated shift size

The MASC chart can be optimized when we have accurate information on the
shift size / . In practice, the magnitude of the mean shift is unknown. When a specified
/, is different from the magnitude / of a real changed mean, the control charts based on
the likelihood ratio methods can perform poorly. In the univariate case, adaptive
schemes (Sparks 2000, Capizzi and Masarotto 2003, Shu and Jiang 2006, Jiang et al
2008, Shu et al. 2008, Wu et al.2009) have been widely used to overcome this problem.
In this section, we introduce the adaptive version of the MASC chart.

The univariate ACUSUM chart proposed by Sparks (2000) adjusts the reference

value of the conventional CUSUM chart using an estimate of the current mean shift size.

When / can be efficiently estimated at time t, say /At, then we can obtain the reference

value k, (/At) at each time t. In this case, the AMASC statistic can be written as
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AMS :max{ W, Iog( mHM it SOH) - Igv(/At),O}, (3.11)

where /Af is the estimator of the noncentrality parameter. It signals whenever AMS > h,
where h is the control limit of the AMASC chart. For estimating a noncentrality

parameter / >, we adopt the maximum likelihood estimator (MLE) in terms of the mean

squared error (MSE) proposed by Saxena and Alam (1982) as
y,=max(0,[x, €,]- p). (3.12)
where ||x, - €, || *x, &,) B,'(X, €4). Analogous to the ACUSUM charts (Sparks

2000; Shu and Jiang 2006), the EWMA scheme, which is one of the most popular

schemes in practice due to its simplicity, can be a good estimate of _ as

[o=rJx € )4, where r is an EWMA parameter with m 1 p. When

[/ ins fax] 1S the range of shift sizes of interests, we define the EWMA statistic as

o= min(max( fior W4 B ) ], (3.13)
where /., and /., are minimum and a maximum values for improving the sensitivity

to shiftsizes / ,, ¢ /¢ [ .

3.4.1 Parameter selections

The design of an AMASC chart involves the determination of the parameters /

! rand h. In this section, we provide guidelines for the parameters of AMASC

max !

charts. Suppose [a, b] is the range of potential mean shift sizes to be detected. Based on
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Sparks (2000) and Shu and Jiang (2006), we recommend the following guidelines for
designing AMASC charts.

0 ot Umns had=[20]

1 Choose r in the range [0.05, 0.2] (Shu and Jiang 2006). In general, r =0.1
and r =0.2 result in good performance of the chart.

1 Reset /,, = § when AMS ¢0. When AMS ¢ 0, the current process is very
likely to be in control so that it is reasonable to reset the process variables to
their initial values for the following observations.

1 Choose /,=( [, + .L)/2 to balance the efficiency in detecting shifts over
the range.

1 Select h to achieve the desired ARL,.

Note that the above parameter selections are not intended for optimizing detection
performance for any particular range of shifts. Next, we show that these guidelines can
provide a reasonably good detection performance over the specified range [/, ful-
The ARL performance of the proposed AMASC chart is slightly less than that of the
MASC chart when the size of a mean shift is around _ , otherwise, the AMASC chart

considerably outperforms the MASC.
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Table 3.4 Zero-state and steady-state ARLs of an AMASC chart with different regions

when r=0.2and_ =1.0

p=2 p=5 p=10 p=20
A ZARL SARL ZARL SARL ZARL SARL ZARL SARL

A [0.5, 3.0]

0.0 199.01 196.01 200.90 198.13 200.25 195.26 201.79 197.34
05 3432 3431 49.09 4883 6422 6402 8206 8159
1.0 9.86 10.10 1265 1324 16.08 1691 21.11 2199
1.5 5.17 5.54 6.47 7.07 7.88 8.65 9.76  10.71
2.0 3.40 3.77 4.19 4.74 5.08 5.76 6.33 7.15
2.5 2.61 2.96 3.12 3.61 3.75 4.32 4.65 5.32
3.0 2.15 2.46 2.53 2.99 2.99 3.50 3.70 4.29
4.0 1.69 1.93 2.00 2.31 2.23 2.64 2.65 3.13
5.0 1.29 1.57 1.72 1.96 1.98 2.26 2.15 2.54

h =[0.5, 4.0]

0.0 200.92 19885 200.87 198.06 20195 198.36 201.89 197.64
05 3738 3725 5220 5206 6733 66.87 8486 84.30
1.0 1014 1040 1319 1364 1659 1719 2176 2257
1.5 5.18 5.46 6.50 7.03 7.90 8.58 981 10.72
2.0 3.36 3.68 411 4.62 4.96 5.62 6.21 7.01
2.5 2.52 2.82 3.02 3.49 3.60 4.17 4.48 5.17
3.0 2.07 2.37 2.44 2.87 2.85 3.36 3.51 4.13
4.0 1.52 1.78 1.89 2.20 2.14 2.54 2.50 2.99
5.0 1.17 1.44 1.51 1.80 1.87 2.16 2.08 2.48

h =[0.5, 5.0]

0.0 200.61 19858 200.36 198.19 200.65 197.95 199.92 196.15
0.5 4041 40.07 56.36 5599 7194 7181 8757  86.87
1.0 1061 10.74 1383 1414 1744 1792 2256  23.15
1.5 5.27 5.47 6.60 7.03 8.04 8.64 992 10.73
2.0 3.34 3.57 4.09 4.52 4.92 5.53 6.13 6.92
2.5 2.46 2.70 2.95 3.36 3.51 4.04 4.34 5.02
3.0 1.97 2.22 2.35 2.74 2.75 3.24 3.36 3.99
4.0 1.40 1.64 1.76 2.06 2.06 2.44 2.39 2.88
5.0 1.10 1.35 1.35 1.66 1.72 2.03 2.02 2.40

ZARL is zero-state ARL; SARL is steady-state ARL.
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Table 3.4 compares the zero-state and steady-state ARLs of an AMASC chart for
different shiftrange _ h_ whenr=0.2and 0 "Y0O 200. When the range is [0.5,
3.0], control limits for p = 2, 5, 10, 20 are h = 8.25, 7.41, 6.76, 6.13, respectively. With
the range [0.5, 4.0] and [0.5, 5.0], h=8.79, 7.93, 7.19, 6.47 and h = 9.2, 8.4, 7.67, 6.86
for p =2, 5, 10, 20, respectively. These comparisons show that the AMASC chart with

larger _ is more effective in detecting shifts with large a; but insensitive to small & .

3.5Performance comparisons

All control charts compared in this section are directional invariant. The ARL
performance of a directionally invariant control chart depends only on the distance, not
on the particular direction of the mean vector (Pignatiello and Runger 1990). Shifts in

the process mean are based on the distance / from the IC mean €, =0 which are of the

form € =(a,0, »,0). For simplicity, we assume that the covariance matrix is the
identity matrix. In each independent simulation, the run length is recorded as the number
of simulations observed until the control chart issues an OC signal. The estimated ARL
is the average of the independent run lengths. We use ARL, =200 and repeat 20,000
simulations to obtain ARLs. For simulating steady-state ARLS, the true shift location T is

fixed at 51, and any simulation in which shift signals occur before 1 is discarded.

3.5.1 Comparisons of MASC charts with MCUSUM and MC1 charts

We now compare both zero-state and steady-state ARL performance of the
proposed MASC chart with those of two multivariate CUSUM charts: Crosier’s
MCUSUM (1988) and MC1 (Pignatiello and Runger 1990) charts. All charts are

optimally designed to detect shifts of size _  p8t and these charts also provide good
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ARL performance in detecting small shifts in the mean vector. Table 3.5 shows ARL
comparisons for p = 2, 10, 20, and 50, respectively. Control limits of the MCUSUM
charts are h = 5.5, 14.9, 24.7, 49.95 and those of the MC1 are h = 4.77, 9.55, 14.58,
28.72, for p= 2, 10, 20, 50, respectively.

It is clear from Table 3.5 that the MC1 chart provides the smallest zero-state
ARL value for all p, but has poor steady-state ARL performance when p is large due to
an inertia problem, which can refer to the resistance of a chart in signaling a process
change (Yashchin 1987). The MC1 chart can build up a considerably large amount of
inertia when the chart has run some time before a mean shift occurs (Woodall and
Mahmoud 2005), which results in a lengthy delay in detecting the mean shift. For
example, if a number of positive deviations from the target value in one variable are
accumulated before a negative mean shift occurs, there is a delay in the signal. The
inertia from the positive deviations needs to be canceled by sufficient negative deviations
to either restart the chart or generate a negative sum that eventually grows beyond the
control limit.

It is observed that the Crosier’s MCUSUM chart provides relatively larger zero-
state ARLSs than the other charts, but smaller steady-state ARLs than the MC1 chart. One
drawback of Crosier’s MCUSUM chart is that the steady-state © "0 is considerably
smaller than the zero-state when p is large. Thus, the MCUSUM chart in a steady-state
process can cause more false alarms than that in a zero-state process. To maintain the
steady-state 0 ¥ to a specific level, the MCUSUM control limit must be increased and

the increased control limit results in larger ARLS.
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Table 3.5 ARL comparisons between MASC, MCUSUM and MC1 charts (_  p8)
MASC MCUSUM MC1
A ZARL SARL ZARL SARL ZARL SARL
p=2
0.0 200.67 197.49 203.52 197.22 197.74 193.99
0.5 34.46 33.97 29.97 28.62 31.39 31.34
1.0 9.76 9.81 9.87 9.41 9.31 9.78
1.5 5.64 5.68 5.79 5.54 5.26 5.70
2.0 4.28 4.24 4.14 3.98 3.70 4.08
2.5 3.59 3.50 3.25 3.14 2.89 3.24
3.0 3.21 3.05 2.70 2.62 2.41 2.72
p=10
0.0 199.90 193.88 199.33 176.05 199.59 202.77
0.5 55.66 54.26 42.71 36.09 43.52 51.72
1.0 15.23 15.28 18.59 15.59 12.53 17.90
1.5 8.71 8.77 11.92 9.92 7.68 10.98
2.0 6.64 6.47 8.80 7.34 5.67 7.97
2.5 5.64 5.29 7.02 5.86 4.56 6.31
3.0 5.08 4.58 5.87 4.92 3.84 5.28
p=20
0.0 202.03 194.17 198.62 160.56 200.89 212.36
0.5 66.96 64.58 56.06 43.61 47.71 74.68
1.0 18.90 18.99 27.17 20.79 15.26 29.26
15 11.03 11.00 17.97 13.60 10.05 17.72
2.0 8.48 8.11 13.49 10.23 7.64 12.76
2.5 7.24 6.67 10.79 8.20 6.21 10.04
3.0 6.47 5.73 9.04 6.83 5.26 8.31
p =50
0.0 199.37 186.59 199.05 149.17 199.64 225.76
0.5 81.01 76.75 86.11 63.80 48.04 120.38
1.0 25.66 25.17 47.56 34.88 23.28 29.37
1.5 15.36 14.93 32.72 23.89 16.59 17.81
2.0 12.00 11.23 24.95 18.19 13.00 13.28
2.5 10.23 9.16 20.21 14.73 10.75 10.69
3.0 9.15 7.86 16.99 12.38 9.18 8.93

* ZARL is zero-state ARL; SARL is steady-state ARL.
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Contrary to the MCUSUM and the MC1 charts, which have considerably different
values between zero-state and steady-state ARLsS when p is large, the proposed MASC
chart provides similar zero-state and steady-state ARLs in detecting small shifts in the
mean vector for all p. In addition, the MASC chart has the smallest steady-state ARLS
when p is larger than 10 and _ p8t Therefore the proposed MASC chart is most
effective in detecting process mean shifts both when the process is initially out of control

and when it is initially in control and a shift occurs later.

3.5.2 Comparisons of AMASC charts with MASC charts
In Figure 3.5, the zero-state ARLs of AMASC charts are compared with MASC
charts when p =2 and 10. In order to detect shifts between 0.5 and 3.0 efficiently, we set

/., =05and /., 3.0 and select &= 0.2. The parameters h = 8.25 and 6.76 of the

AMASC are selected to satisfy the zero-state © "0 = 200 when p = 2 and 10,

respectively. The target shift sizes for MASC charts are chosenas /, = [..and /, = [
, respectively. The two MASC charts have nearly the minimum ARL at shift sizes /.
and /.. Figure 3.5 shows overall ARL values of the three charts. It is observed that the

zero-state ARL curves of the AMASC charts are close to the bottom in wide range when

p=2and 10.
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Figure 3.5 Zero-state ARL comparisons between MASC and AMASC charts for

detecting shifts within the range [0.5 3.0] when (a) p=2 and (b) p =10
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3.5.3 Comparisons of AMASC charts with AMCUSUM charts

For detecting a wide range of mean shifts efficiently, Dai et al (2011) propose an
adaptive MCUSUM (AMCUSUM) chart based on Crosier’s MCUSUM chart. Figures
3.6 and 3.7 compare the zero-state and steady-state ARL values of the AMASC charts
and the AMCUSUM charts for detecting shifts of sizes within the range [0.5, 6.0]. Both
charts use the same EWMA parameter r = 0.2. The zero-state © "4 for both charts is
maintained at 200. The control limits of AMCUSUM are h = 1.083 and h = 1.117 when
p=5 and 10, respectively. The control limits of AMASC charts are h = 8.8 and 8.1 when
p =5 and 10, respectively. As shown in Figures 3.6 and 3.7, AMASC is more sensitive
to small shifts of sizes _ 1.0 but less sensitive to shift sizes_  p8t

The steady-state comparisons shown in Figure 3.6 (b) and 3.7 (b) indicate that the
steady-state © "0 of AMCUSUM charts are significantly smaller than 200, similar to
Crosier’s MCUSUM chart.  Specifically, when p=10, the steady-state 0 "6 of the
AMCUSUM chart is 160, while that of the AMASC chart is 199. Thus, to make the

steady-state 0 "% close to 200, the control limits of AMCUSM charts must be increased.
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AMASC charts when p=10
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3.6 Conclusion
In this chapter, we present two new MSPC charts, MASC and AMASC, for

detecting general mean shift vectors based on the approximate sequential ¢ test, which
uses an approximate likelihood ratio of a central and a noncentral ¢? distribution.

Because of the properties of the sequential ¢ test, the proposed MASC chart provides
good zero-state and steady-state ARL performance for detecting shifts in the mean vector

that have a specific shift size /, regardless of the dimension of measurements p, unlike

the MCUSUM (Crosier 1988) and the MC1 (Pignatiello and Runger 1990), which have
considerably different values between zero-state and steady-state ARL when p is large.
Due to this robustness property of the MASC chart, it can quickly detect process mean
shifts both when the process is initially out of control and when it is initially in control
but shift occurs later.

We also propose an AMASC chart, which is an adaptive version of an MASC
chart for detecting general mean shifts. The concept of the AMASC chart is to adaptively
adjust the reference value of the proposed MASC chart by estimating the noncentrality
parameter of the current process mean vector. The experimental results show that the
proposed AMASC chart is efficient in detecting a wide range of mean shifts compared
with the MASC chart and the AMCUSUM (Dai, et al 2011), which is an adaptive
version of Crosier’s MCUSUM chart.

When a shift in the mean vector is detected, we may need to identify the variables
that cause an out-of-control signal. In future work, we intend to explore diagnostic

procedures to identify the out-of-control variables in both MASC and AMASC charts.
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CHAPTER 4

FAULT VARIABLE IDENTIFICATION USING ADAPTIVE

STEP-DOWN PROCEDURE

4.1 Introduction

MSPC has received considerable attention for monitoring multiple quality
characteristics and/or process parameters. The primary objectives of MSPC are to detect
a change in the process mean vector and to identify which variables are responsible for
the change. MSPC charts alarm an OC signal when a shift is detected, but have difficulty
identifying the variables which cause the OC signal. A variable whose mean is shifted is
defined as a faulty variable.

Identifying the cause of an OC signal is a challenging problem for quality
engineers in high-dimensional processes when an MSPC control chart detects a shifted
process mean. Since control charts based on “Y statistics have difficulty identifying
variables that cause an OC signal, a variety of diagnostic procedures have been developed
(Alt 1985, Doganaksoy et al. 1991, Hawkins 1991, 1993, Mason et al. 1995, Sullivan et
al. 2007, Li et al. 2008). One popular approach for fault diagnosis is based on testing
each individual variable. It identifies faulty variables that are significant (Alt 1985,
Doganaksoy et al.1991). A main drawback of this approach is that it ignores correlations

among variables. In a highly-correlated structure, values of test statistics can be large,
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even though there is no change in the mean vector. Another approach is based on testing
every possible subset of variables (Murphy 1987, Chua and Montgomery 1992, Sullivan
et al. 2007). Although this approach incorporates the correlation information among
variables, it may be impractical due to intensive computations in a high-dimensional
process.

Hawkins (1991, 1993) proposes a monitoring and diagnostic procedure under the
assumption that only single variable is shifted in the mean vector. The procedure is based
on regression-adjusted variables using the correlations among variables. Hawkins’
regression-adjusted approach is effective in detecting and identifying a shift of single
variable in the mean vector. When the maximum of the absolute values of regression-
adjusted variables is significant, it signals and identifies the variable associated with the
maximum as a changed variable. However, when the number of changed variables is
unknown, one may select all significant regression-adjusted variables, which may result
in poor identification performance when the means of several variables are
simultaneously shifted or even when the mean of single variable that is highly correlated
with other variables is shifted (Das and Prakash 2008).

Mason et al (1995, 1997) propose a decomposition procedure based on all
possible partitioning of “Y statistic into independent unconditional and conditional Y
terms defined in equation (4.2). This approach is referred to MYT decomposition (Mason
et al. 1997). While the MYT decomposition is theoretically sound, it may not be
practical when the number of variables, 1), is large, since it needs to examine nA
decompositions. To reduce the number of computations in the MYT decomposition,

Mason et al. (1997) propose a shortened sequential procedure. In a worst-case scenario,
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however, the procedure still requires the same computations with the original MYT
approach. Furthermore, the MYT approach has a concern about diagnostic capability (Li
et al 2008). Assuming the mean shifts of variables and no changes in the variable
relationships, it is not clear which variable or a subset of variables is responsible for a
significant conditional term. Since it examines all possible decompositions, an extremely
large number of terms of all decompositions can be significant and all related variables
can be identified as being changed. In this case, these terms and variables need to be
evaluated and interpreted by process engineers. Mason et al. (1995, 1997) suggest using
unconditional "Y statistics for the identification of mean shifts of individual variables.
However, their suggested method ignores correlation structures among variables, so it is
equivalent with the procedures based on testing individual variables (Alt 1985,
Doganaksoy et al.1991).

A main issue based on MYT decomposition is to find a meaningful
decomposition containing information on identifying which variable or a subset of
variables are responsible for the process mean shift among different rjAdecompositions.
Recently, Li et al (2008) propose a causation-based decomposition by integrating the
traditional MYT decomposition with a Bayesian causal network that defines the causal
relationship between variables. Tan and Shi (2012) propose a Bayesian approach based
on Bayesian hierarchical model to determine the shifted means and the directions of the
shifts. Based on some prior knowledge and experience to specific processes that have
known causal or Bayesian hierarchical property, one can investigate a smaller number of

decompositions than the MYT approach. While these approaches are effective in some
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process control situations, they are often not proper in certain processes that do not have
known causal or Bayesian hierarchical property.

In high-dimensional processes, it is reasonable to assume that shifts in the mean
vector occur in only a few variables, which is called the sparsity property (Zou and Qiu
2009). Wang and Jiang (2009) and Zou and Qiu (2009) propose process monitoring and
diagnosis schemes based on variable selection methods and the sparsity assumption.
Although both schemes provide diagnosis capability, they basically focus on the
monitoring task.

In this chapter, we propose an adaptive step-down procedure for identifying
variables whose means are shifted, under the assumption that a shift in the mean vector
occurs in only a few variables and a multivariate SPC chart based on chi-square statistic
like Hotelling’s “Y chart signals after detecting the shift. The proposed procedure selects
a variable that has the strongest evidence of no mean change at each step. The variable
selection is based on the variables that are selected in previous steps, where the
previously selected variables have strong evidence of no change. The proposed procedure
first searches for the group of variables that are not changed with strong evidence, and
then identifies the variables that are responsible for the OC signal based on conditional
"Y statistics given the selected (or unchanged) variables. Our approach adopts a
projection scheme (Runger 1996) and constructs conditional ™Y statistics. The proposed
procedure yields a less computational complexity in a high-dimensional process, since it
is based on the polynomial time algorithm. Thus it can be an effective diagnostic tool for

the real time faulty variable identification in a high-dimensional process.
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4.2 ConditionaIJl| statistics with known group of unchanged variable

Assume that a process has p quality characteristics and the measurement,
R O dn follows a multivariate normal distribution, 5 R ). When the process

is in-control (IC), the mean vector is € =€, where “ B H ,and the covariance

matrix , Where " P is known and fixed over time. When the process

is out-of-control, the process mean vector is changed to €, , €,. The Hotelling’s T?

statistic is decomposed to identify the fault variables when the control charts generate an

out-of-control signal, and it is defined as

T2=(X €,) B (X &), (4.1)
where T? statistic follows a ¢ distribution with p degrees of freedom (df) when the
process is in control. With a given false alarm rate| , it signals if Y  ...; . Although

T? is the optimal test statistic for a general multivariate shift of mean vector, it is not
optimal when some variables are known to be unchanged in high-dimensional processes
(Lowry and Montgomery 1995).

Suppose that | ) , where mand 3 are index sets of two partitions of .

Then the mean vector and covariance matrix can be partitioned as h and

¢

respectively. Without loss of generality, a shift of the mean vector occurs only in a subset
of variables mand there are no changes in all variables of 3, Runger (1996) propose a
projection chart based on the conditional Y given 3 defined as

~

s Y YR (4.2)
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where”Y 4 is the "Y of all variables in 3. Under the null
hypothesis, “Y follows the chi-square distribution with gmsdf. It is shown that using
Y statistic is more powerful than using overall Y or "Y, which is the "Y of all
variables in m (Runger 1996). However, the "Y, statistic also do not provide which
variable or a group of variables in mare changed.

After a mean shift is detected by control charts based on Runger’s "Y statistics,
we propose a new conditional Y -based diagnosis to specify the shifted variables by
choosing regression-adjusted variables, which are regressed on the variables in 3, with
significantly different from the target value. For a variable i in i the test statistic is based
on the square of a regression adjusted variable “Y5, which is adjusted by the mean and

standard deviation of the conditional distribution of & givenn] as

Y5 o1 { (4.3)

I
D

where 5 is a column vector of the regression coefficients of ¢ on & for all '@ 3,

which are obtained as 5 , Where is the ith column vector of
(Anderson (1984)). As shown in Mason et al. (1995), Y- Y 'Y, so that we can
simply obtain the square of Y5 as

Yy Y. "Yh (4.4)
where “Y- s the Y of all variables in3° "Q The distribution of Y, follows a chi-
square distribution with one degree of freedom. With a given significant level | , we can

choose a control limit ..., for “Y; and determine shifted variables in mif Y, ...; for

all @ m
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Proposition 1. Suppose that 3 is a subset of unchanged variables and 3 is known in

advance. Then for '@ m

00Y, .. 0i’Y .5 8 (4.5)
WhenO&  * , both Y, and "Y follow a central chi-square distribution with one
degree of freedom. In this case, 0 OY,  ...; 01"Y .5 .WhenO® °

1 , where] ™, the distributions of Y5 and “Y depend on the noncentrality parameters,
_ and _, of chi-square distributions, respectively. Since_ _, 0 OYy ...
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For instance, when p = 2, the correlation coefficient of two variables is .5 . For
simplicity, we also assume that , and ,, p for 'Q phc. Without loss of

generality, we assume thatmp p andw ¢, then

Y, ———8
p
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Since ” p, if @ isclose to target value, then Pr("Y5 Y @ ©
pwiw © 1 Thus "Y, can be significant, although Y is not significant. The power
functions of a shift] can be defined as

[ 0 Yy ..z N
where | is a significant level. The functionT 7 is continuous in] , andf |,
when] T When” Tt the distribution of “Y4 is equivalent with that of “Y. The slope
of power functions with larger ” is steeper than those with smaller ” .

As a special case, whenY Qand @ pMB AQ phQ pf8 i , the conditional
“Y, statistic is closely related to Hawkins’ regression-adjusted variable. Hawkins (1991,
1993) shows that the test static “Y, is based on the optimal test statistic when a shift

occurs only in the jth component of X. However, the conditional statistic is often far

from optimal when $¢  p.

4.3 Adaptive step-down procedure

In practice, the subset of variables that are not affected by assignable causes is
often unknown. In this case, the step-down procedure (Sullivan et al. (2007)) and the
MYT decomposition (Mason et al (1995, 1997)) have been shown to be effective in the
interpretation of the OC signal. However, interpretation eaorts based on these approaches
may require numerous computations. From the point of view of computational
complexity, they depend on exponential-time algorithms, and this fact might discourage
quality practitioners.

In this section, we propose an adaptive step-down procedure based on conditional

“Y statistics on a group of selected variables, 3. In each step, the proposed adaptive
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procedure selects a variable with strong evidence of no change given previously selected
variables. The variable at “@h step is selected as

' AOGCI.E¥h (4.6)
wheres [ i B H is a group of variables selected by the previous step. When
‘Q p, the set 3 is empty. In this case, we set “Y; Y, where Y is the unconditional "Y
of an individual variable.

The procedure has two decision rules. The first rule is to detect fault variables. If
the conditional Y 5 is larger than a threshold value ..., , where| are a significance
level for fault variables, then the conditional "Y, for all @ 3 exceeds ...;; . In this case,
we can conclude all variables not in 3 are fault variables.

The second decision rule is to keep from selecting a fault variable and adding it

into3. If"Y, ..§ , where| is a significance level for the group of unchanged

variables and "Y,  follows a chi-square distribution with i df, then the selected
variable at the ith step can be a fault variable. To provide early notification if a fault
variable is selected, we suggest choosing| with relatively larger value than the Type |
error of the control chart used for mean shift detection. In this case, the procedure stops

and identifies which variables not in 3 are fault variables. As commented in the previous

section, the conditional "Y, for all @ 3 can be powerful test statistics for identifying
which variables not in 3 are fault variables. When both "Y , ... and ", o

are satisfied, then adds [ into 3 and move to the next step. In this section, we set

| | for simplicity.

4.3.1 Initial variable selection
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The proposed procedure begins with selecting a variable with statistically
strongest evidence of no change. Although different schemes can be used for the initial
variable selection, it seems reasonable to select a variable based on correlation
information between variables as

r AOCIH &k "Yorr & ®rh 4.7)
where “Yoxn 5 ®p 1S the conditional “Y value of jth variable on the remainingr, p
variables, pf8 RQ phQ pMB i) . The conditional value can be easily obtained as

Youi v owr Y Yer r wmn o Where "Ygr 5 mp IS the "Y of the

g(

remaining | p variables. When the mean of each variable is on-target, "Yogr 7 ®H
follows a ... distribution with one df. When™Y ... , we stop and conclude that all

variables whose "Y  ...; for’Q pFB h) are fault variables.

4.3.2 Design of prameters

The design of an adaptive step-down procedure involves the choice of parameters
| and| . The significance level | is to test whether the mean of a variable is changed
and | is to maintain 3 having no fault variables. The choices of | and | are
considered in Table 4.1. This compare the identification performance with various| and

| when p=10. Let Ttand " , Where ,, pand, " . Diagnostic

h
analysis is executed 10,000 times whenever the Hotelling’s "Y chart witho ™ ¢ m
detects a shift of the mean vector. The shifted mean vector is defined as ,

where 1 A 8 When the mean of the jth variable is shifted, 11, while

1 mtwhen the mean is not changed. The performance measure is the relative frequency
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that the proposed procedure identifies fault variables exactly, which means no fault
variables are missed and all fault variables are identified.

It is expected that the corresponding variable with large] can be easily identified
as a fault variable even with smaller| , but may not falsely identify unchanged variables
with high probability. So smaller| may provide better correct identification rate when
single variable is changed. However, when the means of multiple variables are changed,
smaller | can often miss fault variables, while larger | can identify unchanged
variables as fault with higher probability.

The basic strategy of selecting| , which is a significance level for the group of
unchanged variables, is to choose | | as large as the detection performance of the
adaptive step-down procedure is not affected, since larger| can stop the procedure
earlier. However, | is too large, the procedure can stop at the first step and then use p

unconditional “Y for identification. Suppose that the procedure is at ith step after

selecting/ with™Y 5 ... . If the selected one is a fault variable and | | ,thena
fault variable[ can be added into 3 since "YZ Y Y5 .. . However, when
| | , it can be "YZ ..f even”Y 5 ... . In this case, instead adding the

variablel into 3, it stops the procedure and tests using conditional “Y given 3, a group
of variables having no significant evidence of a change. Table 4.1 shows that the
procedure with | T8t v provides slightly bad performance than those with | T8t p
and 0.005, while the procedures with | T3t @and 0.005 provides the same results.

Hence we suggest using | |  for the group of unchanged variables.
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Table 4.1 Relative frequencies identifying fault variables exactly with different| and
| when” 0.75,0.5,and 0.25
| TSI L | 31 p | T8t T v

| 0.05 0.01 0.005 0.05 0.01 0.005 0.05 0.01 0.005
Shifts " 0.75

1 = 021 021 0.21 054 054 054 0.61 0.61 0.61

1 = 050 051 051 0.84 0.85 0.85 091 091 091

1 = 063 0.63 0.63 091 091 091 095 095 0.95

=17 = 0.27 0.27 0.27 032 032 0.32 025 0.25 0.25

=21 = 0.62 0.62 0.62 0.78 0.78 0.78 0.77 0.77 0.77

=31 = 0.70 0.70 0.70 092 092 0.92 0.96 0.96 0.96
" 0.50

1 =1 011 011 0.11 0.36 0.37 0.36 043 042 042

1 =2 0.33 0.33 0.33 0.70 0.71 0.71 0.80 0.80 0.80

1 =3 0.52 0.53 0.53 0.86 0.86 0.86 0.92 0.92 0.92

=17 =1 0.14 0.14 0.14 0.17 0.17 0.17 0.12 0.12 0.12

=2 =2 046 046 0.46 0.55 0.55 0.55 0.47 047 047

=3, =3 064 0.64 0.64 084 0.84 0.84 0.83 0.83 0.83
" 0.25

1 =1 0.08 0.08 0.08 029 0.29 0.29 0.34 034 034

1 =2 024 0.25 0.25 0.62 0.63 0.63 0.71 0.71 0.71

1 =3 042 042 042 081 0.81 0.81 0.88 0.88 0.88

=17 =1 0.10 0.10 0.10 0.10 0.10 0.10 0.07 0.07 0.07

=21 =2 035 035 035 042 042 042 0.33 0.33 0.33

=31 =3 0.57 0.57 0.57 0.70 0.70 0.70 0.64 0.64 0.64
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4.3.3Implementation of the adaptive step-down procedure

Practitioners who wish to apply the proposed procedure can follow the steps
below. The decision threshold values ...; and ..;; for'Q p8 ) can be obtained prior
from a ... distribution with i degree of freedoms with pre-specified significant level |
and |

Let"Y pH8 hy,andset™Q pands ».

(1) Computef AOCIHEYy:  ®mr8
(2) Repeat step a - d until Y, -
a. Seta 3" |
b. Increase “by 1, Q "Q p.
c. Computer AOCGCI.EY,.
d. Stop repetition and move to (3) if 'Y 5 ...5 .
(3) Stop and declare variables whose Y, ...; forall ' 3 as fault variables.

The proposed procedure reduces the computation complexity dramatically
compared with the approximation procedure of the MTY decomposition (1997). The
procedure does not investigate all decompositions to alleviate fault variable
identification. In worst case, the number of test statistics is 0 1 nn p g When
all variables are independent, the proposed test statistics are equivalent with individual

“Y test statistics (Doganaksoy et al.1991).
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4.3.4Relationship with MYT decomposition
Suppose that the proposed procedure stops at (p-1)th step. Then the proposed
procedure computes all conditional terms of one MYT decomposition (Mason et al
1995) as
Y Y Y5 E "Yogp 8 (4.8)
Note that the diagnostic procedure starts after Hotelling’s “Y chart signals since the value
of "Y statistic is significantly large. In this case, since a group of variables
R OB has no evidence of a change, the final variable[ is a fault variable with

high probability.

4.4. An xample

We illustrate our proposed procedure using dataset of switch drums from Flury
and Riedwyl (1988) and Hawkins (1991). The dataset contains five variables (p = 5): ®
is the inside diameter of the drum, and &, @, @, & are distances from the head to the
edges of four sectors cut in the drum. The target mean of X is (17.96, 10.30,
11.08, 8.26) and the standard deviation is (1.8622, 1.7053, 1.7090, 1.8718, 2.2114). The
covariance matrix of standardized variables is defined as

1 0.1388 0.3496 0.0829 0.2652

0.1388 1 0.7324 0.9130 0.6932
0.3496 0.7324 1 0.6824 0.8214
0.0829 0.9130 0.6824 1 0.7640
0.2652 0.6932 0.8214 0.7640 1

A sequence of 50 observations is presented in the dataset. After first 35 observations, the
marginal standard deviation of @ is increased by 0.5 and an upward shift of 0.25

standard deviation is given to & . All other correlations and means are left unchanged. At
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48th observation, X = (13.065, 11.625, 14.923, 12.589, 12.446), Hotelling’s Y control
chart signalsas™Y p @ & ...; = 15.09, where | T8t ignificnat level. In step 1,
the 3th variable has provides strongest evidence of no change, where “Yo555 = 0.80.
Thent oso thata o in step 1. In step 2, the conditional “Y values given & are
evaluated, and select ¢ since "Y, has the smallest value among {"Y,, "Y5, Y5 SO
thata  ¢ho . Similarly, we selectf T sothat 3  ¢hoft in step 3. After step 3,
the step-down procedure stops since both “Y5r and “Yo; are significantly large, and
identify both @ and @ are fault variables. The identification of & and @ as the
variables contributing significantly to the signal is similar to the conclusions reached by
Hawkins (1991). Mason et al. (1995) show that 31 terms are significant, and & , @ , ®
are identified as changed variables when the shortened sequential procedure (Mason et al.
1997) are used. When we test only unconditional "Y for individual variables, & is

identified as changed variable.

Table 4.2 Conditional and unconditional “Y values of all steps in the proposed procedure

Step Test Statistics
1 Yopun =10.77  Yoppi =144 4 55rn=080 "Yornn =2.98 “Yopnp =8.30
2 Y5 9.36 1 5 =017 “Y5 =0.22 Yo =5.47
3 Yor 922 4 55 =005 Yo =532
4 "Yapp =920 Yo =6.73
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4.3 Performance omparisons

We now compare the proposed diagnostic procedure with the existing procedures
such as step-down procedure (Sullivan et al. (2007)) and LASSO-based procedure (ZOU
et al. (2011)). In this study, only mean shifts are presented to the variables and there are
no changes in the variable relationships, that is, correlations between variables. For
performance comparisons, the relative frequency that the diagnostic procedures identify
fault variables exactly (CR) is used to evaluate the performances of a diagnostic
procedure.

The diagnostic procedures are executed 10,000 times after Hotelling’s “Y chart
witho ™ ¢ msignals. Significance level for step-down procedures is set to 0.05,
where Sullivan et al. (2007) use the value about optimal. For compositions, the
significance level is set to 0.005 for the proposed adaptive step-down (ASD) procedure.

In this simulations, we set and » P where ,, p and

, », for simplicity. The shifted mean vector is , Where 1 Bh 8
For performance comparisons, relative frequencies are considered to evaluate the
performances of diagnostic procedures. A diagnostic procedure performs better if relative
frequency is larger. We assume that a Hotelling’s SPC detects a shift at time “Y and then

the diagnosis procedures start.

4.3.1 Performance comparisons using onlythe last observationresponsible for the
OC signal
Figure 4.2 compares relative frequencies of the adaptive step-down (ASD) and

MYT procedures using only the last point | that generate an OC signal. Two fault
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scenarios are used for comparisons: (@) m v and (b)m  plv . Because we assume
only mean shifts, unconditional "Y statistics for individual variables in the MYT
procedure are evaluated for identifying mean shifts as suggested by Mason et al. (1995,
1997). For both procedures, we use 0.005 as the Type | error probability. When shift size
is small, performances of both procedures are poor in Figure 4.2 (a) with single fault
variable. However, the CR of ASD increases fast with the shift size increased by 5.0. In
most situations, the ASD procedure outperforms the MYT procedure by a large

difference, especially when shift sizes are between 1.0 and 4.0.

4.3.2 Performancecomparisonsusing OC observations based on estimated change
point

As shown in Zou et al. (2011), the performance of LASSO-based approach
strongly depends on the number of OC observations. The LASSO-based procedures (Zou
and Qui (2009) and Zou et al (2011)) estimates the shift location first, and then do
diagnostic procedures using the mean of all observations after that the location. For fair
comparisons, we follow the change point estimation based on the MLE-based
multivariate change point estimator (Zamba and Hawkins (2006)). The location of change
point 1 is defined as
HUAOCIT ETY 0 N4 N :

where T is the time that a SPC chart detects a shift and ] ¢ J|—<B4l <« N In this

comparison, the mean Rds used for fault identification, instead of ﬁ4|.
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Figure 4.2 Performance comparisons with various fault variables when only the last

observation isused with (@) m v and () m  ph

Figure 4.3 compare relative frequencies of the adaptive step-down (ASD), the

step-down, and LASSO procedures with various shift sizes when the mean of the 5
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variable is changed. Compared with Table 4.2, the simulation results show that relative
frequencies of both procedures are increasing when shift sizes are less than 4.0. When
sift size is large, the SPC detects the shift immediately, so that the last observation can be
used for diagnosis in most case. Because of estimation error, the performances of the
ASD in (a) and (b) of Figure 4.3 are slightly worse than those of Figure 4.2 when sift size
is large. As expected, the performance of LASSO procedure is improved when the shift is
detected later.

For performance comparisons, we also compare the expected error rates in mean

shift decisions (EER) defined as

%%2 O OB sO. 'O, s,
where number of errors is the number of missed fault variables and falsely identified
variables. When a diagnostic procedure identifies fault variables exactly, CR = 1 and
EER = 0, while CR=0 and EER = 1 when all identified fault variables are false and all
fault variables are missed. Thus a diagnostic procedure performs better if its value in
column “CR” is larger and its value in column “EER” is smaller. The results in Table 4.3
and 4.4 show that the proposed approach has comparable diagnostic ability to other

procedures.
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Table 4.3 shows the effects of the locations and the number of fault variables.
Overall performance decreases as the number of fault variables increases. The
performance of step-down and ASD procedure are more improved than LASSO when the

locations of fault variables are closer (more correlated) in both 2 and 3 fault variables.

Table 4.3 Performance comparisons of ASD, step-down, and LASSO procedures with

various location of shifts when o8t for'Q R

Step-down LASSO ASD

m CR EER CR EER CR EER

{1} 0.881 0.017(0.052) 0760 0.035(0.074) 0.906  0.013 (0.050)

{5} 0.901 0.014(0.048) 0.756  0.035(0.074)  0.915 0.012 (0.046)
{1,10} 0581 0.051(0.070) 0577 0.062(0.087) 0.697  0.038 (0.066)
{56} 0.794 0.032(0.077) 0.611  0.059(0.089) 0.839 0.026 (0.077)
{156} 0410 0.093(0.099) 0.463 0.087 (0.101) 0.508  0.079 (0.098)
{456} 0570 0.076(0.113) 0.452 0.091(0.105)  0.590 0.097 (0.158)

Table 4.4 Performance comparisons of ASD, step-down, and LASSO procedures with

"R b v

Step-down LASSO ASD
" CR EER CR EER CR EER
0.25 0.294 0.100 (0.087)  0.434  0.087 (0.095) 0.372 0.098 (0.094)
0.50 0.410 0.093(0.099) 0.463 0.087(0.101) 0.508  0.079 (0.098)
0.75 0.774 0.038 (0.090) 0.534 0.082(0.118) 0.854 0.029 (0.089)
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Table 4.4 shows the effects of ” when| o8t for'® m  phkp and p = 10.
As shown in Table 4.4, the proposed procedures outperform the LASSO procedures by a
large margin when” = 0.75. However, when” is small, CRs of LASSO procedure are
better than those of the ASD and step-down procedures. This is because the penalty
functions of LASSO do not use correlation information. By simulations, ” is increasing,
relative frequencies of ASD tend to superior to those of step-down and LASSO
procedures.

Note: Because the step-down procedure requires computations, it takes
significant computation time when p is large. Average computation times and standard
deviations of the step-down and the proposed adaptive step-down procedures for single
diagnosis with p = 10, 15, 20 and 25 are shown in Table 4.5. When p = 25, the average
execution time of the step-down procedure is about 44 minutes, while that of the
proposed procedure is about 0.02 seconds. Therefore the step-down procedure is not
practical for automatic processes that adjust fault variables automatically after
identification when p is large. The experiments were executed on Window 7 (64 bits)

desktop with 8GB RARM and 2.10 GHz Dual-Core CPU.

Table 4.5 Average computation time (standard deviations) in seconds for single diagnosis

p Step-down Adaptive step-down
10 0.0810 (0.0379) 0.0035 (0.0012)
15 2.1800 (0.0459) 0.0068 (0.0013)
20 75.2758 (0.6705) 0.0112 (0.0013)

25 2643.5394 (4.6083) 0.0180 (0.0011)
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4.4. Conclusions

When a shift in the mean vector is detected, identifying which variable or a group
of variables causes an out-of-control signal is very crucial. Conventional diagnosis
approaches such as step-down and MYT decomposition are theoretically sound for
diagnosing root-causes of the process change, but computationally impractical for a large
number of variables.

In this chapter we develop an adaptive step-down procedure using conditional
Y statistics for fault variable identification. By selecting a variable having no significant
evidence of a change based on the variables that are selected in previous steps, we can
construct single decomposition among RAMY T decompositions.

The proposed procedure provides reasonable computational complexity in high-
dimensional processes and enhances diagnostic power in identifying the shifted
components of the mean vector when a shift occurs only in a few variables. As shown in
simulations, the proposed procedure outperforms the MYT and Step-down procedures.
Moreover, the proposed procedure is superior to the LASSO-based procedure when shift
sizes are not small. In future work, we may extend our procedure for both monitoring and

diagnosis in multistage process.
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CHAPTER 5

PROCESS MONITORING IN MULTISTAGE PROCESSES

WITH AUTOCORRELATED OBSERVATIONS

5.1Introduction

As modern manufacturing industries become more sophisticated, it is common to
find a production process involving multiple stages such as those found in pharmaceutical
manufacturing, chemical industry and semiconductor manufacturing. Most of the
multistage SPC approaches treat the multistage system as a whole and lack the capability
of discriminate among changes at different stages (Montgomery and Woodall 1997, Shi
and Zhou 2009). A regression adjustment method named cause-selecting chart was
proposed to model two-stage processes using simple linear regression and then
monitoring the residual of the current stage by subtracting the impacts from the previous
stage (Zhang 1992, Hawkins 1991, 1993).

Recently, some multistage SPC approaches are developed to exploit the detailed
structure of multistage systems to achieve high detection power and diagnostic capability.
For example, an exponentially weighted moving average scheme under the static state
space model is proposed as a monitoring method for multistage systems (Xiang and
Tsung 2008, Zou and Tsung 2008). Methodologies for identifying in-control samples and
adjusting the detection power for multistage systems are reported in (Zou et al. 2008, Li

and Tsung 2009).
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Figure 5.1 shows the complex data relationships in a multistage manufacturing
process (MMP) where the X, Y, and Z axes represent the manufacturing stages, the time,
and the quality attributes, respectively, and O identifies the quality features. There are
three types of correlations among such data streams in an MMP (Shi 2007): (i) the quality
attributes are correlated in terms of the stages along the production line (e.g., 0 along
the X axis); (ii) the quality attributes are correlated among them within the same stage
([0 ,...,0 ] at stage N along the Z axis); and (iii) each quality attribute is also auto-
correlated in terms of time due to the degradation or wear of production tooling over time
(0 , i=1, 2, ...,m along the Y axis). Those three types of correlations, observed as a
stream of data, introduce significant challenges in variation modeling, analysis, and
control. However, there are no available multistage process monitoring procedures that
address the autocorrelation along the Y axis. All existing approaches assume that the data
generated within the same stage are independently distributed (Li and Tsung 2009,

Fenner et al. 2009, Zhou et al. 2004, Jin and Tsung 2009, Shi 2007).

autocorrelation
in tens of stages

\
/

-5
~5
NS
AN
AN

stage | stage 2

Figure 5.1 Complex data relationships in an MMP (Shi 2007)
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The assumption of uncorrelated or independent observations is not even
approximately satisfied in most of continuous and batch manufacturing processes such as
chemical processes (e.g., liquefied natural gas (LNG) processes) where consecutive
measurements on product characteristics are often highly correlated due to automated test
and inspection procedure as well as the chemical reaction processes, where the quality
characteristics are measured on every unit in time order of production (Montgomery
2008, Rosotowski and Schmid 2006, Jarrett and Pan 2007). As an example, a simplified
LNG process is composed of five stages is shown in Figure 5.2. Natural gas is a naturally
occurring hydrocarbon gas mixture consisting primarily of methane (CH4), with other
hydrocarbons (usually ethane) as well as small amounts of impurities such as carbon
dioxide. Through multiple stages natural gas is treated to remove dust, water, hydrogen
sulfide, carbon dioxide and other components to increase a percentage of methane (CH4).
Figure 5.3 shows a plot of 100 observations of the percentage increase of methane by the
removal of certain components (i.e., CO,, Hg, heavy hydrocarbons, respectively), of the
first three stages of the multistage LNG process shown in Figure 5.2 when all three
processes are in control. Close examination of this plot reveals that the behaviors of the
three state variables (w 0, i = 1, 2, 3) over sampling time t are not independent because
a value of w 0, that is above (or below) the long-term average tends to be followed by
other similar values.

Most of continuous-time multistage processes use the dynamic state space model
while discrete-time multistage processes use the static state space model to explain the
input and output relationships of the processes. Under such conditions traditional

multistage SPC techniques may be inappropriate for monitoring process quality, and thus
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more appropriate correlated models should be considered. A thorough review of the
literature shows that there is no prior work dealing with these autocorrelated models.
This chapter investigates the continuous state multistage processes with correlated
observation. Approaches for monitoring the process means and variances are developed

and their performance is evaluated.

Noise Nmse N01se N01se Nmse

Dehydration ]—)[ Fractionation ]—)[Refrlgeratlon]—)[ Lequfication ]—)

Figure 5.2 An example of a multistage model in an LNG process
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Figure 5.3 State variables in a three-stage model at (a) stage 1, (b) stage 2, and (c) stage 3

5.2 Multistage modelsand variability p ropagation

5.21 Discretetime multistage process model

A multistage process model is described by incorporating engineering knowledge
with statistical model-based methods to explore the relationship among stages (Jin and
Shi 1999, Basseville and Nikiforov 1993, Ding et al. 2002, Huang et al. 2002, Fenner et
al. 2005, Agrawal et al. 1999). In order to characterize the propagation of variation of

quality characteristics in multistage systems, the following linear model of quality
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measurement at the kth stage of a process with &€ stages is proposed (Jin and Shi 1999,
Ding et al. 2002, Huang et al. 2000, Zhou et al. 2003). For stations k=1, ...,

®w T © -, (5.1)
where @ is the quality characteristic variable of the kth stage, - is the process noise,
-x 0 mh, ,andf is the regression coefficient of @& on & , which is assumed to

be a known constant. In the linear model, T @  represents the transformation of
quality information from stage k-1 to stage k. Cause-selecting charts (Zhang 1984, Shu et
al. 2004) is based on the two stage linear model dealing with the cases where an output
variable under the normality assumption is a linear function of an input variable.
When the mean of the state variable at stage k is shifted at some time, the out-of-
control (OC) process model can be represented (Lawless et al 1996, Lui 2010) as
O I ® - (5.2)
where Ttis a shift level induced by the process variation sources at stage k The
popular state space models of equation (5.1) are used for the process monitoring of
discrete-time multistage processes such as discrete assembly and machining processes
where a static linear state space model is assumed. However, in many manufacturing
systems such as LNG production process, the system is a continuous-time multistage
processes where the dynamic state space model is used. A thorough literature review
reveals that the variability propagation models for first-order or higher-order dynamic

state space have not been investigated.

5.22 Continuoustime multistage process model
We develop models to capture the propagation of mean and variance shifts of

autocorrelated multistage processes. The propagation models can capture the correlations
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between two stages and autocorrelations of observations over time within the same stage
while existing state space model can capture only the correlations between stages. Using
the proposed propagation models, the mean and variance of the state variable for each
stage can be estimated, which serve as the basis to construct the observations-based
control charts.

An important characteristic of multistage manufacturing systems is that the
quality of a product at the end of stage k depends on the performance of stage k as well as
the input to stage k from previous stages. Also, the shifts of either mean or variance at a
certain stage can affect the mean and variance of both that stage and subsequent stages.
The state space models of equation (5.1) are used to explain this relationship that
characterizes the propagation of variation of quality characteristics in multistage systems.
However, as we mentioned in Section 5.1.1, the state space model is developed for
discrete-time multistage processes where the static linear state space model is used and
observations of a given state variable over time at the same stage are assumed to be
independently distributed. However, in many manufacturing systems such as LNG
systems, the system is a continuous-time multistage process where the first-order
dynamic linear state space model is used and observations of a given state variable within
the same stage are autocorrelated over time. In this section, we develop new variation
propagation models under the linear dynamic state space for continuous processes to
monitor the mean and variance of autocorrelated multistage systems.

To model a continuous-time multistage process, we consider an dastage,
continuous flow production process, in which stages are indexed by ‘% pF8 hx. Each

stage has its own characteristics that transform the input into an output for the
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downstream stage. To model an autocorrelated process, the following series of first order
differential equations are used (English et al 1991, Runger 2002):

W o L. e .
— WWOoO Ww O - 0
Qo

where ¢ and ¢ are state parameters, (> O is a univariate state variable with continuous
time Gaussian white noise - 6x 0 1h, of the ith stage at time t, which propagates to
the next stage. When @ 0 ’s are observed at small, equally spaced intervals of time 30,
where + mand t t 30 for 'Q plti , we can approximate the general

solution @ T of equation (5.2) as follows
o T w7t Q —® T p Q — 1t p Q (5.3)

Then, the process can be characterized by the following state space model with

autoregressive process of order one, AR(1),

o T o T ow Tt w f (5.4)
where 0 —p Q and Q are one dimensional, w T
— 1t p Q iIs a Gaussian white noise with mean 0 and variance ,,

5.23 The propagation of variability from a stage tathe subsequent stages
The following explains how the shift of the mean of stage ‘Qis propagated to the
means of subsequent stages. Suppose that the mean of a state variable @ 0 of stage k is

changed from* to ‘ 1 , wheref mat time t,. The mean of a state

variable ® O of stage 'Q Qs given by
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o0& o ‘ ‘ . (65)

where w is an initial state. Based on the equation (5.5), the expected value of a state
variable @ 0 of the final stage n,'O @ O attime tis given by

B —wh 0O 0

B —-® |1 B —p 0 D o
For example, in two-stage model, when the mean of a state variable at stage 1 is shifted,

then O ® 0O , shifts from m to m+ ¢, where g, 0 at time t, under a two-stage

process as

then the mean of the a state variable & 0 at stage 2 is given by

—wh 0 O

Ow o . :

—w | —p Q o o
Figure 5.4 shows how the expected values of state variables at each stage can change
over time. As shown in Figure 5.4 (a), a mean shift of a state variable at stage 1 occurs at
time O, which will be propagated to the mean of a state variable at stage 2. As shown in
Figure 5.4 (b), the mean of the state variable at stage 2 shows (i) a step change in case of
an existing static state space model ( =0), or (ii) a nonlinear change pattern with faster

increase over time for a higher autocorrelation in the proposed dynamic state space

model, which results in an earlier detection of a mean shift at stage 1.
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to stage 2

Figure 5.4 Effect of an autocorrelation on the propagation of a mean shift at stage 1 to 2

5.3 Detection ofprocess changes of the mean in ristage processes

When one of the stages of the multistage processes experiences a malfunction or
does not maintain the levels of its parameters, a consequence of such a change will be
reflected in the final product or downstream of intermediate products (Li and Tsung
2009, Lawless et al 1999, Jin and Tsung 2009). However, most of existing approaches
do not consider this cascade property of multistage processes that quality measurements
at a certain stage are affected by the output quality from preceding stages (Zhou et al
2003, Zhou et al 2004, Ding et al 2005, Shi and Zhou 2009). In this section, we derive a
statistical monitoring procedure for quality measurements in autocorrelated multistage

processes with VAR(1) model.

5.3.1Representation ofan autocorrelated multistage processs a VAR(1) model

In section 5.2.2, we show that continuous-time multistage model can be
represented as autocorrelated multistage model. In this section, we show that the
autocorrelated multistage process can be represented as a VAR(1) model, which is a

vector autoregressive model. For simplicity, we use simple form of the equation (5.4) as
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O O T ® %0(d - h
where %o is the autocorrelation factor for 'Q plth8 hBLet f, & B D = A
OB h+ - MBh athen the observation vector can be written as
A A My I

where A E A48 6o and

P T W T
” f p E é
A n E p T
m T p
The white noise vector, -, follows multivariate normal distribution with E £ ¢ and

#1 Oh =AEA QB when all stages are in-control. After multiplying both side

by A, we obtain the following VAR(1) model

M A A -h (5.6)
where’ A A "Ah A, 4 A - and
oy 'rp n EE I[ Ttl’l
n® p o Eom
A 1w (L)’ E Tt é,’h
1né€ € E p m
Ww 5 ® s E oy pl

where® T Ef for’Q Gndc T . For example, the VAR(1) model in a two

stage model can be expressed as

@ %o T[d) -

. (A
T 1T & f % % O (TR
where® @O  %o® - and® O T RO %® -

The properties of the stationary VAR(1) are studied in various time-series areas

(Hamilton 1994). The stationary VAR(1) model can be rewritten as

o € A B , (5.7)
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Stationary mean and covariance matrix can be obtained as
ony « £ A and 6 ¢ B 1+ B Lo
where ., O mas‘® Hband# 1 O, ) = .. The covariance matrix of fj;can be

approximatedas 1e B. . a(Zhang 1998).

5.3.2 Multivariate SPC approaches for detectinghnean changes

5.3.2.10bservation-basedd| charts
Assume that a multistage process consists of | stages and the measurements,
N 9 M Kby follows a multivariate normal distribution, & h ). When the process is

in-control (IC), the mean vector isH H , whereH  * M H , and the covariance

matrix , Where " - is known and constant over time. When the

process is out-of-control, the process mean vector is changed to €, , €,. The Hotelling’s

T? statistic can be decomposed to identify the fault variables when the control charts

generate an out-of-control signal, and it is defined as
Ta=(Y. €) B (Y, &),
where T? statistic follows a ¢ distribution with | degrees of freedom when the process

is in control. With a given false alarm rate| , it signals if Y ... . Although T? is

the optimal test statistic for a general multivariate shift of the known process mean
vector, it is not optimal when some of the process variables are known to be unchanged

in high-dimensional processes (Lowry and Montgomery 1995).

5.3.2.2 Residuabasedd| charts
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A basic assumption in most classical SPC chats is that the observations are
independent. However this assumption is not true in autocorrelated multistage processes.
If it is assumed that observations are independent, but they are correlated in fact, high
frequency of false alarms can be generated due to larger variance of the process caused
by autocorrelation. In order to overcome this problem, residuals are often used for
monitoring autocorrelated observations. If residuals are independent, then residual-based
control charts such as Shewhart, EWMA, and CUSUM provide the same detection
performances with these charts for i.i.d. observations.

Under the assumption that all parameters are known, we can obtain independent

residuals using the linear relationship in equation (5.6). Residual vectors can be defined

as
‘H N AN

where B, A Ny fort=12..., and . When A and are known, the

residual vector follows a multivariate normal distribution with “H and# 1 ®4'H

= . and. Based on the residual vectors, we can construct Y statistic as
Y M, H

where "Y follows a ¢? distribution with | degrees of freedom.

5.3.3 New multistage SPC approaches using unchanged stages information
Runger (1996) propose a conditional Y chart for process monitoring of

multivariate processes which are known a priori to be stable in control. Letd  ph8 hx

is the index set of all variables and "YO 0 be a subset of unchanged variables. In this

case, all fault variables belong to ™Y 0 “Ywhich is the complementary set of S.Then the
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conditional "Y can be derived as Yy "Y Y for detecting changes in variables in the

set Y where Y is the "Y of all variables in S It is easy to see that the conditional "Y
follows a ... distribution with degrees of freedom $¥ where $¥denotes the number of
elements in "¥ The conditional "Y chart is shown to be more efficient than the
conventional "Y of all variables variables in P or variables in "¥

Table 5.1 shows the efficiency of the conditional Y when some information of
unchanged variables are known. We evaluate the performance of control charts in terms
of ARL, which is defined as the average number of observations i} until the first out-of-
control signal is triggered by the control chart for a given mean shift. In this section, we
consider © ¥ ¢ Tt for the conventional “Y and fix the number of variables in the

process to € p Tt For simplicity, we set and . where ” p

and” @), and the means of 3rd and 7th variables are shifted with various magnitudes

~ o~ o~ v~ v v v v v

1 pleioftiv. Let Y be the index set of all unchanged variables, Y  pltft ukphxhdp Tt
in Table 5.1. When"Y "Y, the conditional "Y provides always the best performance,
while the conventional Y of all 10 variables always performs the worst when “Y 1.
Even only two variables are known such as Y ¢t , its performance is superior to the
conventional Y.
Similar performance improvements in multistage processes are shown in Table
5.2, which provides the performance comparisons with various S when 7Y
ph8 Ixhdprt . For simplicity, we set the parameters |, pand® Tfor’'Q pfB Ip Tt
and only the mean of stage 8 is changed. Similarly, when all unchanged stage information
is known, "Y "Y, it provides the best performance. It is clear that the detection

performance is better when "¥is closer to "Y in multistage processes.
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Y,
1 h Yoo Yoch Y chhip Y pltitdy YOy
0.0 201.07 200.01 201.51 199.21 200.7
0.5 105.82 94.64 85.84 76.18 51.10
1.0 27.81 24.30 19.53 14.90 9.36
15 7.53 6.29 5.11 3.98 2.84
2.0 2.73 2.47 2.12 1.75 1.44
2.5 1.49 1.38 1.28 1.17 1.09
3.0 1.11 1.07 1.04 1.03 1.01
Table 5.2 Performance comparisons with various “Yin multistage processes
v,
) Y n Y plt Y pRivh Y plghsdy YUY
0.0 199.98 197.02 200.29 200.18 201.71
0.5 131.26 114.38 108.84 98.63 89.79
1.0 49.86 44.48 36.30 28.42 23.18
15 16.84 14.50 12.07 8.84 7.30
2.0 6.26 5.44 4.50 3.49 3.04
2.5 2.92 2.61 2.27 1.88 1.70
3.0 1.78 1.59 1.45 1.31 1.25
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5.3.3.1 Unchanged stages identification procedures in multistage processes

The conditional Y statistic assumes that the set of in-control stages Sis known a
priori. In practice, the priori information is unknown. In this case, a search among all
possible subsets can be conducted to select unchanged stages. However, when the
number of stage is large, searching all subsets can also be impractical. In this case, we
may need a procedure for unchanged stage identification. Let “Ybe the subset of P that is
selected by an identification procedure.

If the data itself can provide information on the process fault status, then the
partial information can be used to construct the conditional Y statistic. In autocorrelated
multistage processes, cascading property between stages and autocorrelations within
stages can make it challenging to identify unchanged stages correctly. In this section, we
propose a procedure for identifying unchanged stages based on residuals. For a stage
"0 0, we can obtain a residual to select the stage has an evidence of unchanged as

Q o o,
where® @ T @ j %oy is the estimate of & given the observation of the
previous stage @ p and the observation of the one step before the current time Gy
However, using single residual ‘Q at time t can generate considerably many false
selections, EWMA scheme can be used for more accurate unchanged stages

identification. For 'Q pFB hy the EWMA statistic based on 'Q is given by
, p i, i Q (5.8)

wheremmt I pand———=x 0 71ip . Letny be the p-value of , then we can

select an estimated unchanged stage set "Yas
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Y @) 1 HQ pi8 hy, (5.9)
where[ is a predefined threshold value. The effect of [ is presented in Table 5.2 in terms

of ARL.

5.3.3.2Multistage SPC charts using unchanged stages information
Because of the i.i.d. property of residuals, we do not consider autocorrelation
factors and regression factors in selecting unchanged stages. After the selection, we can
construct conditional "Y statistics to monitor the mean vector of the autocorrerated
multistage process. Due to the cascade property, when a shift occurs in early stages such
as stage 1 or 2, observation-based Y can detect the shift quickly, while it may be
insensitive when a shift occurs at later stages such as stage 9 or 10 as shown in Table 5.4.
Residual-based Y statistics are robust regardless of the location where a shift occurs.
Therefore, we construct the conditional “Y statistics based on residuals as
YQ O He 'H "HTY "WY'H Y, (5.10)
where “H Y is a subset of variables in vector "H and "YAY is a covariance matrix of
"H"Y. It is easy to show that "Y' follows a ... distribution with degrees of freedom
D, "¢
Although we consider a Hotelling’s “Y -type control statistic using individual
residual vectors, EWMA-type control charts can be developed in a similar way to
monitor small shifts. Let , MBh o where, is the residual-based EWMA
statistic at the ith stage defined in equation (5.8), be the observed residual vector

collected over time t. In this case, we propose a conditional multivariate EWMA
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(CMEMWA) chart based on the MEWMA sequence of statistics (Lowry et al 1992),
which is defined as
“Yis : Y . "AY Y, (5.11)

where —_— ,andi v Tip is a weighting parameter. It signals when the

test statistic "Y, s is a greater than a control limit chosen to satisfy a given in-control

ARL.

5.3.4 Accuracy of unchanged stages identification procedures in multistage
processes

Let "Yoe a set of selected unchanged stages, where Y @4 [ HQ pF8 hi,
with a given threshold value[ . The design of unchanged stages identification involves
the choice of [ . With the larger[ , the smaller number of unchanged stages are selected
with higher probability of "YO "Y. However selecting smaller number of unchanged
stages causes a smaller performance improvement. When smaller [ is chosen, it is
expected that larger number of unchanged stages are selected, but it increases false
selection rate, that is "YP "Y. Selecting larger number of unchanged stages causes a larger
performance improvement when only a few stages are fault stages.

In this section, we propose a performance measure of accuracy to suggest a
guideline how to find a proper| value. Basic goal is to select as many as unchanged
stages without false changed stage selection. It seems reasonable that a performance
measure (PM) of accuracy satisfies two properties:

(i) If YO "Y, then0 0O pass$¥%O sVYs

(i) IF°YP Y, then0 0 T
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Although other performance measures can be used, we propose a novel measure of

accuracy as

z

00 —0 YOV) il YP Y (5.12)

where $'Ysis the number of elements of "Y. The measure can be reformed as

z

00 —=0¢-,
s’s O

where “Ois the indicator function.

For the multistage process model, shifts of magnitude| occur at the stages only
indexed in"Y 0 "Y. For instance, when ¥  chp, the means of stages 2 and 8 are
changed by , where the shifts initially occur. Table 5.3 compares the values of PMs with
various| for two different fault scenarios: (i) single fault stage, ¥ v ; (ii) two fault
stages "Y ¢l . In both scenarios, the smaller [ provides poor accuracy when the
magnitude of the mean shift is smaller, while the larger T is poor when the magnitude
larger. In general, since most SPC charts detect shift quickly when a shift magnitude is
large, identifying unchanged stages with the large shift size may improve a little of the
performance of SPC charts. Thus it may reasonable to give more credits for higher
accuracy in identifying unchanged stages when the magnitudes of shifts are smaller.

Table 5.3 shows that]  T@ provides the lowest accuracy overall, and] 1@
and 0.1 provides low accuracy when the magnitude of shifts is large and high,
respectively. When is unknown, it is reasonable to select [ 1@ v since it provides
overall good accuracy for a wide range of small shifts. Table 5.4 compares ARL
performance of the proposed CMEWMA chart with various|  T@®H® &g when a

shift occurs only at stage 5 and both stages 2 and 8. The EWMA parameter used in this



simulation is i

g and 0 "%
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¢ 1t.TGenerally, the CMEMWA with the larger[ is

sensitive to the smaller shifts, while the CMEMWA with the smaller[ is sensitive to the

larger shifts. Notice that the proposed CMEWMA with[

for signaling shifts

and’

[
[

T®, and the CMEWMA with[

Tip for signaling shifts @

T@® is betterthan [ T& v

T® us better than [ T®

o8t The table reveals that CMEWMA with

T& Us sensitive to a wide range of small shifts. Hence it is reasonable to select

& uwwheni is unknown.

Table 5.3 PMs for accuracy with various| in multistage processes

Single fault stage (¥ v Two fault stages (¥ ¢hp )
1 0.80 0.50 0.25 0.10 0.80 0.50 0.25 0.10
0.5 0.16 0.28 0.23 0.13 0.14 0.15 0.07 0.02
1.0 0.18 0.34 0.34 0.24 0.16 0.23 0.16 0.06
15 0.19 0.41 0.48 0.40 0.18 0.32 0.33 0.18
2.0 0.19 0.45 0.60 0.57 0.19 0.42 0.48 0.36
2.5 0.20 0.48 0.68 0.72 0.20 0.47 0.62 0.58
3.0 0.20 0.50 0.73 0.80 0.20 0.49 0.70 0.75
Table 5.4 ARL performances of CMEWMA with various|  T@®h & orgd
Single fault stage (¥ v Two fault stages (¥ ¢hp )
) r =0.50 0.25 0.10 0.50 0.25 0.10
0.0 201.71 201.99 199.72 201.28 202.60 200.46
0.5 61.37 61.44 64.65 35.72 35.84 37.75
1.0 16.21 15.50 16.69 8.97 8.83 9.24
15 7.80 7.57 7.76 5.02 4.95 5.10
2.0 5.16 4.95 5.05 3.47 3.40 3.51
2.5 3.86 3.74 3.84 2.75 2.68 2.72
3.0 3.14 3.02 3.00 2.27 2.24 2.23
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5.4 Performance Comparisons

In this section, we investigate the detection performance of the proposed scheme
through Monte Carlo simulation and compare the results with existing approaches under
various combinations of the multistage parameters. We assume individual observations.
The in-control process is assumed with a mean of zero and a standard deviation of one for
each individual variable.

We evaluate the performance of control charts in terms of ARL, which is defined
as the average number of observations until the first out-of-control signal is triggered by
the control chart for a given mean shift. In this section, we consider MEWMA-type charts
to detect small mean shifts quickly. Here we compare the proposed CMEWMA with
residual-based MEMWA (RMEWMA) charts and observation-based MEWMA
(OMEWMA). Similar to the previous simulations, we consider 0 ¥ ¢ 1t for all
MEWMA-type charts and set the number of stages in the process to € p Twith

parameters ,, pand ® Ttfor 'Q prB hx The proposed CMEMWA chart based on
the conditional "YﬁS statistic using selected unchanged stages information defined in

equation (5.11), is compared with OMEWMA and RMEWMA. The smoothing constants
r for the proposed chart is specified as 0.2 and[ = 0.25 is selected based on the results in
Table 5.2, which presents the effect of [ . The numerical results show that overall ARL
performances are almost best when [ = 0.25, while performances with| 0.1 andf
0.50 are slightly better when o8tand T®), respectively.

In this section, the ARLs for all charts are determined through Monte Carlo
simulation with 20,000 replications. For the multistage process model, shifts of

magnitude| occur at stages indexed in"Y 0 "Y. For instance, when "Y ofv , the
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means of stages 3 and 5 are changed by7 , where the shifts initially occur. In the
simulations, various levels of|  T@®p8tpdhc 8t &hodtare considered for single fault
stage, ™Y ¢ h v h w,andtwo fault stages™ thp and™¥ plp T

Table 5.5 shows the proposed CMEWMA is almost uniformly superior to the
other two MEWMA charts, OMEWMA and RMEWMA, in detecting small magnitude of
shifts. The observation-based OMWMA chart exhibits the worst sensitivity in the
autocorrelated multistage process when shifts occur at downstream stages such as stages
later than stage 5. The residual-based charts such as RMEWMA and CMEWMA provide
considerably robust results regardless of locations. Further, CMEWMA performs
superior to RMEWMA and OMEWMA charts in detecting overall shifts.

Table 5.5 ARL comparisons of procedures for shifts with various fault locations

Y ow Y v Y g

1 RM oM CM RM oM CM RM OM CM

0.0 209.11 200.42 200.89 203.15 199.49 201.99 204.09202.30 200.73
0.5 68.12 12398 63.17 68.33 103.58 61.04 66.04 5841 62.01
1.0 1761 3931 1547 17.87 30.78 1550 1796 17.35 1557
15 870 15.63 7.56 8.63 1274 757 8.42 8.93 7.47
20 555 892 4.93 5.60 7.64 495 5.67 6.17 4.92
25 422 6.23 3.72 4.22 5.56 3.74 425 4.80 3.72
30 342 4389 3.00 3.42 4.40 3.00 3.42 3.96 3.01

* RM: RMEMWA, OM: OMEWMA, CM: CMEWMA

In Table 5.6, we consider the combinations of two different fault stages scenarios:
(i) fault stages are located relatively close together such as ™Y  thp ; (ii) fault stages are
located relatively far from each other such as™¥  plp 1t Control limits of OMEWMA,

RMEWMA, CMEWMA are 'Q p®h1@do ¢ 1.4, respectively, for & "8 ¢ m.mThe
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experimental results in Table 5.5 and 5.6 reveal that the proposed CMEWMA chart
perform almost best when shifts occur at the stages that are not too early with reasonable
level of autocorrelation. Based on simulation results, we conclude that the proposed
conditional chart, by taking advantages of incorporating unchanged stage information,

provides considerably large improvements in detecting small shifts in terms of ARL.

Table 5.6 Performance comparisons with MEWMA-type procedures

Y thp Y pipm
1 RMEWMA OMEWMA CMEWMA RMEWMA OMEWMA CMEWMA
0.0 201.80 202.90 201.02 200.25 201.78 201.16
0.5 36.29 56.51 35.60 37.15 32.13 36.78
1.0 9.53 13.75 9.05 9.38 9.98 9.17
15 5.21 6.97 4.92 5.15 6.19 4.97
2.0 3.65 4.79 3.43 3.67 4.60 3.48
2.5 2.89 3.75 2.67 2.89 3.73 2.73
3.0 2.38 3.14 2.24 241 3.17 2.26

5.5Concluding Remarks

Multistages processes are sequentially concatenated. Generally, each stage
consists of input variables and output variables where model-based SPC charts can
monitor the output variables which can be explained by the input variables. In this
chapter we develop advanced SPC methodologies and associated tools for autocorrelated
multistage processes. We model an autocorrelated multistage process as VAR(1) model
and derive the propagation models of mean shifts to subsequent stages under the state

space model. Further, we propose a new procedure CMEWMA chart to detect the shift
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of mean in a multistage process by incorporating unchanged stage information. The
experimental results show that the proposed CMEWMA chart is efficient in detecting a
wide range of small mean shifts compared with the observation-based and the residual-
based MEWMA charts.

Our initial results show this approach is promising and lead to efficient
approaches for shift detection in the mean of multistage processes when shifts occur at
the stages that are not too early with reasonable level of autocorrelation. However when
shifts occur at the early stage(s) with larger autocorrelation, observation-based charts can
provide better detection performances. To overcome this drawback under these situations,

we intend to explore procedures dealing with autocorrelation information.
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CHAPTER 6

CONCLUDING REMARKS AND FUTURE RESEARCH

6.1 Concluding remarks

In this dissertation, we propose and subsequently develop several methodolgies
for SPC for univariate and multivariate processes. In chapter 2, we propose an adaptive
runs rule, which is motivated by the concept of supplementary runs rule, in order to make
control charts more sensitive to small mean shifts. The adaptive runs rule assigns scores
to consecutive runs based on the estimated shift size of the mean. We supplement the
ACUSUM chart with the adaptive runs rule to enhance its sensitivity in detecting small
mean shifts. The average run length performance of the ACUSUM chart with the
adaptive runs rule is compared with those of CUSUM and variants of adaptive charts
including ACUSUM. The experimental results reveal that the ACUSUM chart with the
adaptive runs rule achieves superior detection performance over a wide range of mean
shifts.

In chapter 3, we propose an MSPC chart based on a sequential test having an
optimal property for testing shift vectors with a specific noncentrality parameter. Due to
difficulty of having a closed form for the test statistics using log-likelihood ratios of the
sequential test, which makes them impractical for real applications, we drive an

approximate log-likelihood ratio which is integrated into an MSPC chart for detecting
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shift vectors having a specific noncentrality parameter. Further, we adopt an adaptive
scheme by adjusting its reference value based on an MEWMA estimate for detecting a
broader range of mean shifts. The statistical properties of the proposed test statistic are
explored. The ARL performance of the proposed chart is compared with other MSPC
charts for process mean monitoring. The simulation results reveal that the proposed
MSPC chart achieves superior detection performance over a wide range of mean shifts,
especially when the dimension of measurements is large.

In chapter 4, we propose an adaptive step-down procedure using conditional Y
statistics for fault variable identification. By selecting a variable having no significant
evidence of a change based on the p variables that are selected in previous steps, we can
construct single decomposition among NAMYT decompositions. The proposed procedure
provides reasonable computational complexity in high-dimensional processes and
enhances diagnostic power in identifying the shifted components of the mean vector
when a shift occurs only in a few variables.

Finally, in chapter 5, we propose advanced SPC methodologies and associated
tools for multistage processes. We model an autocorrelated multistage process and
derive the propagation models of mean shifts to subsequent stages under the state space
model. Further, we develop methods to detect the shift of mean in a multistage process
by incorporating unchanged stage information. The experimental results show that the
proposed CMEWMA procedure performs consistently better than existing observation-

based and residual-based MEWMA charts.
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6.2 Future research

Although the dissertation intends to develop a monitoring procedure, identifying
OC stages when the shift initially occurs is critical to many industries such as LNG
processes and semiconductor manufacturing. Our ongoing research effort is to develop a
diagnosis procedure considering autocorrelations and unchanged stage information. In
future work, we may extend our procedures for both monitoring and diagnosis in
multistage process.

Moreover, most of SPC procedures detect the mean shifts of multistage processes
under the assumption that process variability is constant (i.e., not changed) over time
(Zantek et al. 2002, 2006). Various charting approaches have been proposed to detect
variability changes at a single stage process (Montgomery and Wadsworth 1972; Alt and
Smith 1988; Aparisi et al. 1999). Some recently developed multistage variation
monitoring approaches do not consider the variation propagation and do not discriminate
between local and propagated variations (Zeng and Zhou 2008). The monitoring
procedures may consider the propagated variation as a local variation of a given stage,
but this may increase the number of false alarms. Thus, multistage monitoring of process
variability is a challenging problem due to the variation propagation of multistage
processes. Therefore, it deserves further attention to develop a new variability monitoring
procedure that considers propagated variations from preceding stages.

Finally, simultaneous monitoring of the mean and variance changes in an
autocorrelated multistage process is also open for further research. We believe that more

methodologies will bring improvements in this research area.
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Appendix A. MARKOV CHAIN APPROXI MATION OF

ACUSUM CHARTS

For simplicity we develop a Markov chain model for an upper ACUSUM chart.

Similar to the Markov chain model suggested by Shu and Jiang (2006), the upper
ACUSUM chart has a two-dimensional state space of (5{*, Z."). The range of possible c?f
is U =[d,

(. ]so that U is partitioned into &  p subintervals, U, ={d};,.} and

U= -, #fori=l..m, where y =y, 2 ,Jand D, {d,, -d.)/2m .
Similarly, the range of possible Z;" values is S=[0, H that is partitioned into & +1

subintervals, § ={0} and S =(s$ - ,Ps ) fori=1...m,, whereg=9s, € ,land
A=h/26 . When g U, and Z'1 S, (d,Z,) is in a transient state (i, j) at time t. To
approximate the transition probability, we assume that the control statistics c?t* i U, and
Zfi S] are equal to the center points U and s;, respectively. The transition probability

Pi.ia.y fromstate (ig, jo) to state (i, j,), where i;, j, , 0, can be obtained by

Poieiy =PHd U275 1 & B 20 &
=Prfy, - D& y< ,3D, Z'Ds< I B sk
=Pr{a, <X, &b X bk
= Pr{min[b,,max(a, )] <X ®in[bh,max(a, h)}

where
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flu+ D@ nHy) it o

—_

fu + D ifj,=0

Note that g is reset to g whenever Z' ¢0 so that g = g if j, =0, otherwise
d = K, | -)/_. Similar to the transition probability by Shu and Jiang (2006), the
transition probability B, , . . from state (iy, J,) and (i, j;) can be obtained as

Poiviin =PAq 1027 IS | & 8,2, S
gPr{min[b,, max(a, h)] < X max[h,min(g, B}, if i 0 j O,
|

fPr{a <X <max[a,min(a, h)} ifj 0, 0=
:fPr{bﬁXt max[ly, min(a,, )} if (=0, .0
%Pr{- o X min(a, )} ifi 0j= 0
=P <X s}

where B, 6.

=Pr{q <X &} is a general form of the transition probability. When
I, =0and j, =0,wesetc = - .
We can obtain the approximated ARL based on the transition probability.

Suppose that 1 is a column vector of ones and | is the identity matrix. The transition

matrix is formed as

R Q
01
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where Q=(I R)1 is a vector that contains the probabilities from one transient state to

the OC state and the submatrix R includes the probabilities of going from one transient

state to another. The approximated zero-state ARL is computed as
ARL= P (I-R)1,
where P} is the initial probability vector. Further, the steady-state ARL can be evaluated

using a cyclic steady-state probability vector (Lucas and Saccucci 1990).
Some experiments with different values of m suggest that satisfactory results can
be obtained by choosing & & G to be greater than 30. As an example, the

following table shows the approximations to the IC ARL of the ACUSUM chart

computed using different values of mwith [, , ¢ 1=[0.5,4.0],h £.025, /G2.

in?

m 15 20 25 30 35 40 45

ARL 467.96 479.27 486.54 493.47 498.92 499.23 499.73

We extend a two-dimensional Markov chain model of the improved ACUSUM

charts to three-dimensional model for ACUSUM-ACR charts using the random vector

(d',Z,* N, Y. The discretized state spaces of @ and Z are the same as those of the
ACUSUM charts. The IC state space of N, is V=[0,I] that is partitioned into o+1
subintervals, V, ={0}and V, =(v - ,By §) for i=1..,0, whereV =V, £ ,and
As=1/20. When NIV, we approximate N by the midpoint v of Vi. Note that
N =max{0, N," 4 (X -d/2)} whenever Z' >0. For simplicity, we define

g =V D)’ y /2 ifk O
Y1 g ifk =0
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L _fV DU g2tk o
’ %-uk1/2, if k =0

The transition probability B, | . .., from state (i, jo.K,) to state (i, j;,k;) when
jl 5 0 IS

Pk =P 10,27 IS N VI @" & Z," s= N U
=Pr{q, X &.d X dk
_ ePr{min[d,, max(c, d)]< X _<min[d,max(g, )}, if k 0
“iPr{c < X, min(c, d)}, if k, =0.

Note that N, is reset to zero when j, =0. In this case, the transition probability is

Proiknioo =PHA TULZ7 IS N" Wl @™ B 2,7 52 N
=P{q X &}
¢Pr{a, <X, max[q,min(g, B)} if j 0Q
:}Pr{- o X, min(a,b)} ifi 0=
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Appendix B. DERIVATION OF APPROX IMAT E LOG-

LIKELIHOOD RATIO

For simplicity, we assume that €, =0 in Appendix. Patnaik’s approximation

consists of replacing a noncentral ¢* by a central ¢* as

+2/°
(b 1) B drwo)

where w=/*/(p ® F) and c*(p+w0) is a central ¢ distribution with p+w df.

When / = /[, n”)_(nHE follows a noncentral c? distribution c?(p, f), where /, =</n {

. Then, the log-likelihood ratio s , can be approximated as follows

2
2/ 02(p+W,0)

_ p+
f(n|X_ [I|/ = - 2
Sn:|og (‘_nl () o ) I:gg p+/n2
f(n\xn |/ =0) c*(p,0)
. ) . 1 L .
Since the pdf of ¢?(p,0) is fx(x)zmx2 e 2, we can obtain
ulp
2 o ~ 2 o ~
én:O.SwnIog(an(n) 4og p+2/2” Iﬂ)gl]fj}ezE 82@.5wnlogz Iogﬂgew E
p+ n g —g Q 2 -

4

/ ~ . . . . .
where w, = p+”2/2 and @(+) is a gamma function. By rescaling, the approximated ratio

can be expressed as

s n :Wn Iog(nH)_(n

) K

where
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~

log2 Rloglgpe——

n

k, =

vO QJo
'88’

R

_lO:ew

p+/;

vﬂ%mo

;O p R/} log i
T ¢

The test statistic of the MC1 chart is based on the statistic /D, &;'D,, - 0.5n/,,
where D, =X, +--- &, . Jackson and Bradley (1961) define the log-likelihood ratio s

as

where

X X'
G(b =1 4 ob+D2! " Wb4).(b ADAH

is the generalized hypergeometirc function. Assuming that

/1n2 X, I

logG
g 4

|- OPO

Dnl E(‘)an

vol\?qo
©

where JDn' Z,'D, - 0.5n/, can be an approximation of $ ,. That is, under the above

assumption, the MC1 statics are based on likelihood ratios of a sequential ... test. In this
case, the test statistics of the MC1 and the MASC charts are equivalent, and both charts

may provide similar performance.
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Appendix C. DERIVATION OF THE NO NCENTRALITY

PARAMETER OF 4|5

For simplicity, we assume that , and ,, pand Tt p for QY
pHB M3}. Suppose that the mean of &, where ' "Y is shifted to1 11, and the means

of all elements in ware zero, O & rtfor all ' Go. Then the expected value of “Y, is

'O "Y:) ‘]:Fl
p
where . Therefore the noncentrality parameter of “Y, is
|

Let] be the noncentality parameter of Y, which follows a ... distribution with one

degree of freedom. Sincet p p, it can be shown that_ 1 .Letd Tt

be a constant value, then difference between cdf’s of noncentral chi-squares, Y and “Y,,
is given by (Johnson and Kotz 1970)

0iY o 00Y o T

From the above equation, we can obtain

00y, o6 0iY 08
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