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In this dissertation, we present several methodologies for detecting the mean 

changes in univariate and multivariate processes, identifying fault variables in 

multivariate processes, and detecting the mean changes in multistage processes. We first 

propose an adaptive runs rule, which is motivated by the concept of supplementary runs 

rule, in order to make control charts more sensitive to small mean shifts. The adaptive 

runs rule assigns scores to consecutive runs based on the estimated shift size of the mean. 

We supplement the adaptive CUSUM (ACUSUM) chart with the adaptive runs rule to 

enhance its sensitivity in detecting small mean shifts.   

We propose two new SPC procedures, MASC and AMASC, for detecting mean 

shift vectors based on the approximate sequential 2c  test. Similar to the univariate 

CUSUM chart, a multivariate CUSUM chart can be designed to detect a specific size of 

the mean shift optimally based on a sequential likelihood ratio test for noncentrality. 
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However, in multivariate case, the probability ratio of a sequential test is intractable 

mathematically and the test statistic based on the ratio does not have a closed form 

expression which makes it impractical for real application. We drive an approximate log-

likelihood ratio and propose a multivariate SPC chart based on the sequential 2c  test.  

We propose an adaptive step-down procedure using conditional Ὕ  statistics for 

the identification of fault variables. In a process with massive process, identifying which 

variable or a subset of variables causes an out-of-control signal is a challenging issue for 

quality engineers. The proposed adaptive step-down procedure selects a variable having 

no significant evidence of a change at each step based on the variables that are selected in 

previous steps.  

Finally, we represent an autocorrelated multistage process as VAR(1) model and 

derive the propagation models of mean shifts to subsequent stages under the state space 

model.  Further, we propose a new conditional CMEWMA chart to detect the shift of 

mean in a multistage process by incorporating unchanged stage information. The 

simulation results show that the proposed CMEWMA chart is efficient in detecting a 

wide range of small mean shifts compared with other MEWMA charts. 
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CHAPTER 1   

 

INTRODUCTION  

 

1.1 Overview 

The recent advances in instrumentation, data communication and sensors have 

resulted in significant improvements in product quality. The proper quality improvement 

strategy has emerged as a critical factor in the successful design, construction and 

operation and controlling the quality in a wide range of industries. A well-engineered and 

correctly specified modern control system will minimize the process variability, improve 

the process efficiency, avoid unexpected failure rates, keep operating and maintenance 

costs as low as possible.   

Quality improvement can be defined as the reduction of the proportion to 

variability (Montgomery 2005). Process variability normally consists of both common 

causes and special (assignable) causes. The common causes are inherent variability 

naturally embedded in the process so that they cannot be removed from the process. On 

the other hand, the special causes occur at random times due to some assignable causes 

during the process. The assignable causes usually change process characteristics from the 

target and can be removed from the process when detected.  

The action of monitoring the process with the assignable causes is performed by 

process charts such as Shewhart, CUSUM, and EWMA to detect whether the process 

level is changed from the target. These actions of process monitoring are called the 
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Statistical Process Control (SPC). SPC is often part of an organization’s strategic thrust to 

improve quality and it is the activity to monitor processes with emphasis on methods and 

procedures. The main objective of SPC is to detect process changes quickly and remove 

causes of process disturbances. Control charts are widely used to monitor process 

characteristics to detect process changes. Control charts plot values of test statistics 

against time or the sample number of process outputs collected constantly and randomly.  

Shewhart (1931) introduces the concept of a SPC chart to monitor the mean of a 

process with single parameter (univariate process). Since the development of the 

Shewhart chart, numerous control charts for univariate processes have been proposed 

(Page 1954, Roberts 1959, Lucas and Saccucci 1990, Sparks 2000, Shu and Jiang 2006, 

Jiang et al. 2008, Wu et al. 2009). Further research has been conducted to investigate 

multivariate SPC (MSPC) for multiple quality characteristics such as Hotelling’s 2T , 

MCUSUM and MEWMA (Healy 1987, Crosier 1988, Pignatiello and Runger 1990,  

Lowry et al. 1992, Sullivan and Jones 2002, Hawkins and Maboudou-Tchao 2008, Jiang 

and Tsui 2008).  In this dissertation, we propose efficient and effective approaches to 

detect changes in the process parameters as quickly as they occur for both univariate and 

multivariate processes.    

In high-dimensional processes, which have massive process variables, identifying 

which variable or a subset of variables causes an out-of-control signal is a challenging 

issue for quality engineers. The proposed MSPC chart focuses on detecting mean shifts in 

multiple process parameters based on Ὕ  statistics. However, it has difficulty in 

identifying variables which cause the out-of-control signal when the mean shift is 
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detected.  We propose an adaptive step-down procedure that can identify the source of 

changes efficiently. 

Most of the research on univariate/multivariate quality characteristics has been 

limited to single-stage production processes. Several investigators have proposed SPC 

procedures for monitoring and controlling processes with autocorrelated data for a single 

stage process (Schmid 1995, Lu and Reynolds 2001, Kramer and Schmid 1997, 

Rosotowski and Schmid 2006). In summary, SPC processes that deal with autocorrelated 

observations are limited to a single-stage process. However, as manufacturing industries 

become more sophisticated, it is common to find a production process involving multiple 

stages such as those found in pharmaceutical manufacturing, chemical industry and 

semiconductor manufacturing. In order to develop advanced SPC methodologies for an 

autocorrelated multistage process, there are a number of challenges that must be 

addressed. First, due to the complexity of multistage processes and autocorrelations of 

observations, the relationship between the output variables and input variables is 

complicated. Multistage processes have a unique cascading property, i.e., outputs from 

operations at upstream stages may affect the quality of downstream stages, and product 

variation may propagate throughout the production stages (Hawkins 1993, Li and Tsung 

2011). In case of an autocorrelated multistage process, this cascading property may 

produce more complex consequences because the variation propagation could be more 

time-dependent than usual discrete multistage processes. Consequently, identifying the 

faulty stages and the change time will be difficult. Our preliminary study in chapter 5 

shows that conventional multistage control charts do not work well when the quality 
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characteristic exhibits even low levels of correlation over time and gives misleading 

results in the form of excessive false alarms when the data are positively correlated. 

 

1.2 Dissertation outline 

  This dissertation is organized as follows. Chapter 2 presents an adaptive runs 

rule, which is motivated by the concept of supplementary runs rule, in order to develop 

control charts more sensitive to small mean shifts than existing approaches. Chapter 3 

proposes a multivariate SPC chart based on a sequential test having an optimal property 

for testing shift vectors with a specific noncentrality parameter. Chapter 4 presents an 

adaptive step-down procedure using conditional  Ὕ  statistics for fault variable 

identification. Chapter 5 proposes an SPC procedure for monitoring autocorrelated 

multistage processes. Finally, chapter 6 summarizes the research results and future work. 
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CHAPTER 2     

UNIVARIATE SPC WITH ADAPTIVE RUNS RULE  
 

2.1 Introduction 

In this chapter, we assume that a process has a single quality characteristic X 

whose measurements follow a normal distribution 2~ ( , )X N m s , and a sequence of 

measurements { }tX
 
is independently and identically distributed (i.i.d.). When the process 

is in control, its mean and standard deviation are 0m m= and 0s s=  respectively, 

otherwise the mean of the process is shifted to 1m, where 1 0m m¸ . Let 
1 0 0d m m s= -  

represent the magnitude of the unknown shift. For simplicity, we assume that 0 0m=  and 

0 1s= . The cumulative sum (CUSUM) chart  proposed by Page (1954) is widely used to 

detect small mean shifts efficiently. The conventional upper and lower-sided mean 

CUSUM statistics (Page 1954) can be written as  

1max[0, ]t t tC X k C+ +

-= - +  and 1min[0, ],t t tC X k C- -

-= + +    (2.1) 

where k > 0 and 0 0 0C C+ -= =. An out-of-control (OC) signal is triggered as soon as 

 >  or t tC h C h+ -<-
 where h is a predetermined control limit. Comprehensive investigations 

of the properties and the average run length (ARL) of the CUSUM charts are given in 

(Brook and Evans 1972, Woodall and Adams 1993, Nishina and Nishiyuki 2003). A main 

advantage of the conventional CUSUM chart is that it provides good detection 

performance when a particular shift level is known beforehand. In practice, the shift level 
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is usually unknown. Therefore the CUSUM chart may not perform well when the actual 

mean shift is different from the particular shift level. 

An adaptive CUSUM (ACUSUM) chart (Sparks 2000, Shu and Jiang 2006) and 

its variants (Jiang et al. 2008, Wu et al. 2009) have been proposed for detecting a range 

of mean shifts efficiently.  The ACUSUM chart adjusts the reference value of the 

conventional CUSUM chart dynamically based on the shift size estimation. The ARL 

performance of ACUSUM is analyzed by a two-dimensional Markov chain (MC) model 

(Shu and Jiang 2006). Simulation and MC analysis reveal that the ACUSUM chart is 

more robust and efficient in detecting a range of mean shifts than the conventional 

CUSUM chart. On the other hand, a drawback of the ACUSUM chart occurs when the 

range ‏ ȟ ‏ , where ‏ ‏  , of mean shifts is wide. The ACUSUM chart is 

often insensitive to mean shifts close to ‏ , since the ACUSUM chart is designed to 

provide a very good perfomance when the shift size is close to the initial value of shift 

size estimation (Shu and Jiang 2006). In general, the initial value is set to the midpoint of 

the region to balance the efficiency in detecting overall mean shifts within the region. 

In some environments, the process is very sensitive to even small variations of the 

air ambient temperature and such small changes may lead to a direct impact on the 

quality of processed gas (Bakker 2006). Thus, it is critical to detect small changes in the 

process parameters or product characteristics since small changes may significantly result 

in deterioration of product quality (Park et al. 2012, Jeong et al. 2006). In this chapter, 

we incorporate a runs rule with the ACUSUM chart to improve its sensitivity in detecting 

smaller mean shifts within the range. 
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Incorporating supplementary runs rule with Shewhart and CUSUM control charts 

have been explored to improve the ability of the charts in detecting small mean shifts 

(Champ and Woodall 1987, Koutras et al. 2007, Riaz et al. 2010). Champ and Woodall 

(1987) introduce a general form of supplementary runs rules, ( , , , )T n m a b , indicating that 

an OC signal is triggered if n of the last m statistics fall within the interval (a,b) as 

1

2

3

4

Rule no. 1: { (1,1, , 3), (1,1,3, )},

Rule no. 2 : { (2,3, 3, 2), (2,3,2,3)},

Rule no. 3 : { (4,5, 3, 1), (4,5,1,3)},

Rule no. 4 : { (8,8, 3,0), (8,8,0,3)}.

R T T

R T T

R T T

R T T

= -¤ - ¤

= - -

= - -

= -
 

Rule no. 1 represents the Shewhart control charts with 3-sigma control limits and Rule 

no. 4 is the consecutive runs rule. These rules can be combined to form several composite 

rules. For example, Rules no. 1, no. 2 and no. 3 can be combined to form 

123 1 2 3R R R R= Ç Ç . Champ and Woodall (1987) conclude that, when the power of the 

control chart increases, the false alarm rate also increases. Khoo (2003) and Zhang and 

Wu (2005) propose an optimal design of the supplementary runs rules to setup the control 

limits to maintain a desired in-control (IC) ARL (ARL0). Among several supplementary 

runs rules, runs rule 4, “eight consecutive points on the same side of the center line,” is 

effective in detecting small mean shifts (Champ and Woodall 1987). Acosta-Mejia (2007) 

and Lim and Cho (2009) suggest a general form of runs rule 4, m-of-m runs rule which 

signals if m consecutive points fall beyond a predefined threshold level, called a warning 

limit, and combine the m-of-m runs rule with the Shewhart chart. Riaz et al. (2010) 

propose 2-of-2 and 2-of-3 runs rules to improve the performance of CUSUM charts. 

However, the performance of the CUSUM charts supplemented with two runs rules 

illustrates just a small improvement compared to the conventional CUSUM charts.  
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In existing control charts incorporating m-of-m runs rule, the control chart 

generates an OC signal either when an observation falls outside the control limits or when 

m consecutive observations fall on the same side of the center line. However, when the 

mean shift is known, the optimal number of consecutive runs on the same side of the 

center line may be different depending on both the level of mean shift and a specified 

ARL0 as shown in Lim and Cho (2009). When the actual mean shift size is unknown, one 

may consider incorporating an ACUSUM chart with m-of-m runs rule by changing the 

number of consecutive runs adaptively through the estimation of mean shift level. 

However, changing the number of consecutive runs adaptively depending on the shift 

level of the mean can cause difficulty in setting up the control limits of the integrated 

control chart to maintain a desired ARL0 under IC process. Also, the MC analysis of the 

integrated control chart to study the ARL1 performance under different shift scenarios is 

difficult to perform.  

In order to overcome these challenges, we propose a new incremental scoring 

procedure which adjusts a score adaptively depending on the estimated shift level of the 

mean rather than changing the number of consecutive runs, by adopting the concept in a 

zone control chart (Jaehn 1987). In this way, we change the number of consecutive runs 

indirectly based on the estimated shift level. In the proposed scoring procedure, we assign 

a score to a consecutive run using the estimated shift size and accumulate the scores until 

the total score reaches a threshold score limit. This procedure signals an OC condition 

when the total score exceeds the threshold value or when the point falls outside the 

control limits. Further, we provide some guidelines for the design the proposed adaptive 

runs rule. 
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The chapter is organized as follows. In section 2.2, the ACUSUM chart is 

reviewed and an initial value of shift size estimation is discussed. In section 2.3, the 

ACUSUM chart with the adaptive runs rule (ACUSUM-ACR) is presented with the 

discussion of a proposed adaptive runs rule, followed by an example to illustrate the 

implementation. In section 2.4, the performance of the proposed chart is compared with 

other control charts including CUSUM, Spark’s ACUSUM, AEWMA, and ACUSUM-C 

charts. Finally, concluding remarks are given as well as suggestions for future research.  

2.2  ACUSUM chart 

2.2.1 ACUSUM chart based on EWMA estimator 

The ACUSUM chart proposed by Sparks (2000) adjusts the reference value k of 

the conventional CUSUM chart using an estimate ˆ
td  of the current mean size. We 

illustrate this by considering the upper-sided CUSUM chart in equation (2.1). Let 

ˆ / 2t tk d+ += , where  ˆ
td
+

 
is the current estimate of a positive mean shift available at time t. 

The upper Sparks’ ACUSUM chart can be defined as  

1max{0, ( ) ( )}t t t t tZ Z X k h k+ + + +

-= + -
,    (2.2) 

where h(k) is an operating function that defines the control limit of the upper  CUSUM 

statistic.  Shu and Jiang (2006) obtain an approximation of h(k) as follows; 

2

0

1/2

0

ln(1 2 2.332 ) / 2 1.166,  if 0
( ) ,

( ) 1.166,                                  if 0

k ARL k k k
h k

ARL k

+

+

ë + + - ¸î
=ì

- =îí
  (2.3)
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where 
0ARL+ is a pre-specified ARL of the upper ACUSUM chart. Similarly, the lower-

sided ACUSUM statistic is 
1min{0, ( ) ( )}t t t t tZ Z X k h k- - - -

-= - - . An OC signal is 

triggered when  > tZ h+  or Zt h-<-, where h is a predetermined control limit.   

Although different schemes can be used to estimate shift size, the EWMA statistic 

is widely used to estimate the process mean due to its simplicity and efficiency as  

1
ˆ ˆ(1 )t t tXd l l d-= + -

,     (2.4) 

where 0 1l¢ ¢ is a smoothing parameter. A small value of ɚ is efficient in detecting 

small shifts but less efficient in detecting relatively larger shifts. However, the traditional 

EWMA statistic suffers from the “inertia problem” when the difference between the 

value of EWMA statistic and the target value is large before a change occurs (Yashchin 

1987, Capizzi and Masarotto 2003, Woodall and Mahmoud 2005). If the value of the 

EWMA statistic is far below the target value and the mean of a process is shifted in the 

opposite direction, then it may take much longer for the EWMA estimator to react to the 

mean shifts. To overcome this, Sparks (2000) recommends using the upper EWMA 

statistic with a minimum positive value 
min

ˆ 0d+ >
 
for improving the sensitivity to shifts 

mind d+²
 
as 

min 1
ˆ ˆmax{ , (1 ) },t t tXd d l l d+ + +

-= + -
 

where 
0d̂
+ is the initial value for positive shifts, and 

min mind̂ d+ =  when the shift range 

‏ ȟ ‏  is of interest. Although Sparks (2000) and Shu and Jiang (2006) do not 

define 
maxd
+ , it is reasonable to choose  

max maxd d+ =  for the purpose of improving the 

sensitivity to shifts 
max .d d+¢

  
Thus, the upper EWMA estimator can be derived as
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min 1 max
ˆ ˆmin{max{ , (1 ) }, },t t tXd d l l d d+ + + +

-= + -

 
  (2.5) 

where 
min mind d+ =  and 

max maxd d+ = are pre-specified minimum and maximum positive 

shifts for improving the sensitivity in detecting shifts larger than 
mind
+  and smaller than 

maxd
+ .  Similarly, for negative mean shifts, the lower EWMA estimator is defined as 

min 1 max
ˆ ˆmax{min{ , (1 ) }, },t t tXd d l l d d- - - -

-= + -   (2.6) 

where 
0 0

ˆ ˆd d- +=-  is the initial value for negative shifts, and 
min mind d- =-  and 

max maxd d- =-

.  In this section, we focus our discussion on the ACUSUM chart based on the estimators 

defined in equations (2.5) and (2.6). In addition, we reset 
0

ˆ ˆ
td d+ +=

 
when 

0 0Z+¢  and 

0
ˆ ˆ
td d- -=

 
when 

0 0Z-² , as suggested by Sparks (2000). 

 

2.2 Initial value setting for the EWMA estimator  

The initial estimate of a shift size has a considerable effect on the ARL 

performance of the ACUSUM charts. In general, ACUSUM charts are sensitive in 

detecting mean shifts close to 
0d̂ . For the detection efficiency over a range of mean 

shifts, the midpoint of the range min max[ , ]d d , i.e., 
mi0 n max

ˆ . )0 5(d dd += , is commonly used 

as an initial value (Shu and Jiang 2006). For positive and negative shift estimators, we set 

0 0
ˆ ˆd d+=  and 

0 0
ˆ ˆd d-=-, respectively. Since we can consider the term 0.5 as a certain weight 

assigned to  ‏  and ‏ , the initial value can be generalized as 

 min ma0 x
ˆ (1 )w wdd d+= -

,     (2.7) 
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where π ύ ρ. When w = 0.5, the intial value is equal to the midpoint suggested by 

Shu and Jiang (2006). Table 2.1 shows the zero-state and steady-state ARL performance 

of ACUSUM charts with different values of w = 0, 0.25, 0.5, 0.75, 1.0 for various mean 

shifts when ɚ = 0.2 and min max[ , ] [0.5,4.0]d d = . The zero-state ARL (ZARL) is the ARL 

obtained with an assumption that a process change occurs at the initial stage, while the 

steady-state ARL (SARL) is the ARL computed assuming a process change take places 

after the process has been in control for some time (Lucas and Saccucci 1990). The zero-

state and steady-state ARLs are obtained from extensive simulation experiments with 

100,000 replications.   

It is observed that the minimum ARL value for each ŭ occurs when the initial 

value of the shift is around ŭ. When w = 0, the initial value is set to mind , while it is set to 

maxd  
when w = 1.0. In general, a small value of w enhances the sensitivity of ACUSUM 

charts to small shifts, and a large value of ύ improves the sensitivity to large shifts. 

However, choosing w = 0 or 1.0 considerably deteriorates the performance of detecting 

either large or small shifts. Therefore, Shu and Jiang (2006) recommend choosing 
0d̂ as 

the midpoint of min max[ ,  ]d d , i.e. 0.5w=  for balancing the efficiency in detecting both 

small and large shifts.  

2.3 ACUSUM chart with adaptive runs rule  

The ACUSUM with 
mi0 n max

ˆ . )0 5(d dd +=  is insensitive to shifts close to mind when 

the range min max[ , ]d d
 
of mean shifts is wide. Specifically, when ‏ πȢυ, the ARL = 135 

for the range [0.5, 6.0] and 63 for the range [0.5, 4.0] as shown in Table 2.4. In order to 
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improve the efficiency in detecting a wide range of shifts, we propose an adaptive runs 

rule in this section.  

2.3.1 Adaptive runs rule 

An adaptive runs rule is based on the shift size estimation used in ACUSUM 

charts. We assign scores to consecutive runs using the estimated shift size and add these 

scores  until the total score reaches a limit similar to the score function of a zone control 

chart (Jaehn 1987). We propose a new scoring function using the value of the current 

observation and the estimated shift size of the mean. For the upper adaptive runs rule for 

positive mean shift detection, we define the cumulative score as 

1
ˆmax{0, ( , )},  if Z 0 

,
0,                                       if Z 0

t t t t

t

t

N X
N

f d+ + +

-+

+

ë + >î
=ì

=îí

   (2.8) 

where 
0 0N+=

 
and ( )f  is a score function of the value of the current observation and  

the value of the current mean shift estimate.  The score is added when the value of current 

statistic Zt

+ is positive, otherwise the previous total score 
1Zt

+

-  
is reset to zero.  

When the mean changes and the magnitude of the change is known, the log-

likelihood ratio (motivated by the log-likelihood ratio test) can be used as a good scoring 

function. Assume that tX has a probability density function 0 ~ (0,1)f N  from an IC 

process, while tX
 
has a probability density function 

1
ˆ~ ( ,1)tf N d+  from an OC process. 

The log-likelihood ratio of tX
 
can be defined as  

2

2

ˆ( ) /2

1

/2
0

( )ˆ ˆ ˆ( , ) log log ( 2).
( )

t t

t

X

t
t t t t tX

t

f X e
X X

f X e

d

f d d d

+- -
+ + +

-
= = = -  

 

 (2.9) 
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Table 2.1 Zero- and steady-state ARLs of ACUSUM charts with different values of w 

when   λ = 0.2 for detecting shifts within the range [0.5, 4.0] 

  

w = 0.0, 

h = 0.927 

w = 0.25, 

h = 1.000 

w = 0.5, 

h = 1.025 

w = 0.75, 

h = 1.058 

w = 1.0, 

h = 1.040 

δ ZARL SARL ZARL SARL ZARL SARL ZARL SARL ZARL SARL 

0.0 500.39 493.19 501.45 496.79 500.43 499.90 501.68 500.46 499.83 499.35 

0.5 34.08 31.81 39.51 37.88 63.53 62.73 126.88 126.58 179.68 179.64 

1.0 10.91 9.88 11.00 10.40 13.33 13.00 21.58 21.42 37.69 37.63 

1.5 6.16 5.55 5.58 5.30 5.82 5.67 7.32 7.24 10.64 10.60 

2.0 4.30 3.88 3.64 3.48 3.46 3.37 3.81 3.76 4.62 4.61 

2.5 3.37 3.04 2.73 2.63 2.43 2.38 2.45 2.43 2.69 2.68 

3.0 2.81 2.55 2.24 2.17 1.89 1.86 1.81 1.79 1.86 1.85 

3.5 2.42 2.22 1.93 1.87 1.55 1.53 1.44 1.43 1.43 1.42 

4.0 2.17 2.02 1.72 1.67 1.32 1.31 1.22 1.22 1.21 1.20 

 

If ˆ / 2t tX d+> , then the cumulative score is increased by ( )f . Otherwise, 
tN+ is 

not changed or decreased by ( )f .  The adaptive runs rule triggers an OC signal 

whenever
tN l+> , where l is the limit of the accumulated score. Analogously, the 

cumulative score of the lower adaptive runs rule for negative mean shifts is defined as  

1
ˆmax{0, ( , )},  if Z 0 

,
0,                                       if Z 0

t t t t

t

t

N X
N

f d- - -

--

-

ë + <î
=ì

=îí

    (2.10)
 

where 
0 0N-= . 

It is interesting to study the effect of  l on the ARL performance of ACUSUM. 

Table 2.2 compares the zero-state ARL values of ACUSUM-ACR with different values 

of ὰ when w = 0.5, ‗ πȢς, and min max[ , ] [0.1,4.0]d d = . When ὰ Њ, the adaptive runs 
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rule could not generate OC signals so that ACUSUM-ACR provides the same ARL 

performance with Spark’s ACUSUM, while only adaptive runs rule is responsible for OC 

signals when Ὤ Њ. Note that both charts use the same EWMA estimator to estimate the 

process mean.  

Table 2.2 also reports the proportions of OC signals generated by the adaptive 

runs rule. For instance, when l = 6.04 and ŭ = 0.5, about 70% of detections are from the 

runs rule; this indicates that the adaptive runs rule plays an important role in detecting the 

small mean shift. In general, the proposed adaptive runs rule with smaller l is more 

sensitive in detecting small shifts. However, when the value of l is too small, it is difficult 

to maintain ὃὙὒ to a specific value regardless of the value of h.  In Table 2.2, for 

ὃὙὒ = 500, the minimum value of l is 6.03. It is thus reasonable to choose l and h with 

the proportion of false alarms equal to 50% in order to improve sensitivity to small shifts. 

Table 2.3 shows the parameters l and h for various shift regions when w = 0.5 and 

‗ πȢς. The corresponding ὃὙὒ is equal to 500 and the proportion of false alarm by the 

adaptive runs rule is 50%.    

Table 2.4 compares the zero- and steady-state ARL values of ACUSUM-ACR 

and ACUSUM for different values of ‏  when w = 0.5, ‗ πȢς, and ‏  0.5. The 

ACUSUM is inefficient in detecting shifts around ‏  when ‏   is large, and the 

adaptive runs rule makes the ACUSUM more sensitive to small shifts.   Specifically, 

when the range is [0.5, 6.0], ACUSUM-ACR is more sensitive to shifts  2.0 than 

ACUSUM. On the other hand, when the range is small like [0.5, 2.0], the adaptive runs 

rule improves the performance of ACUSUM in a small region. 
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Table 2.2 Zero-state ARL comparisons of ACUSUM using adaptive runs rule with 

different l and h (w = 0.5) 

 

 

ACUSUM with adaptive runs rule 

‗ πȢςȟ min max[ , ] [0.1,4.0]d d =  

Spark’s 

ACUSU

M 

 

l = 6.03, 

h =Њ 

l = 6.04, 

h = 1.12 

l = 6.45, 

h = 1.06 

l = 8.2, 

h = 1.03 

l = Њ, 

h = 1.014 

ŭ ARL 

Prop 

(%) ARL 

Prop 

(%) ARL Prop (%) ARL 

Prop 

(%) ARL 

0.0 501.14 100 500.90 50.12 499.51 25.39 500.30 9.72 501.18 

0.1 380.69 100 380.13 55.04 383.62 32.11 391.73 16.25 418.75 

0.5 45.51 100 45.51 69.16 46.49 52.57 49.24 31.40 52.98 

1.0 11.75 100 11.75 49.43 12.01 27.08 12.46 5.49 12.44 

1.5 5.71 100 5.71 24.03 5.73 7.13 5.71 0.35 5.63 

2.0 3.61 100 3.59 10.84 3.55 1.38 3.49 0.01 3.45 

3.0 2.03 100 2.01 6.45 1.99 0.06 1.95 0.00 1.93 

4.0 1.42 100 1.40 6.98 1.41 0.00 1.38 0.00 1.36 

* Prop is the proportion of signals detected by the adaptive runs rule.  

 

Table 2.3 Parameters of ACUSUM-ACR with various shift ranges when Prop = 50 % 

  

ACUSUM-ACR 

 

ACUSUM 

‏ ‏    h L 
 

h 

0.50 

2.0 1.09 6.92 

 

0.996 

4.0 1.12 5.78 

 

1.025 

6.0 1.20 5.25 

 

1.060 

0.25 

2.0 1.10 8.34 

 

1.130 

4.0 1.13 5.94 

 

1.017 

6.0 1.19 5.32 

 

1.060 



17 

 

 

Table 2.4 Zero-state and steady-state ARL comparisons of ACUSUM-ACR and 

ACUSUM with different maxd  
when w = 0.5 and ɚ = 0.2 

 

ACUSUM-ACR 

 

ACUSUM 

ŭ ZARL Prop (%) SARL Prop (%) 

 

ZARL SARL 

‏  ȟ ‏ πȢυȟφȢπ 

0 500.23 50.46 499.79 50.61 

 

500.49 499.46 

0.5 118.91 57.08 118.55 57.12 

 

135.87 135.56 

1.0 20.79 58.55 20.63 58.69 

 

23.18 23.04 

1.5 6.99 49.56 6.91 49.83 

 

7.65 7.56 

2.0 3.69 34.49 3.64 34.98 

 

3.88 3.84 

3.0 1.80 13.98 1.79 14.39 

 

1.79 1.78 

4.0 1.23 5.91 1.22 6.04 

 

1.22 1.21 

5.0 1.04 1.54 1.04 1.58 

 

1.04 1.04 

6.0 1.00 0.20 1.00 0.21   1.00 1.00 

‏  ȟ ‏ πȢυȟτȢπ 

0.0 502.84 50.13 499.12 50.38 

 

501.54 500.86 

0.5 54.88 68.63 53.81 68.96 

 

63.89 62.87 

1.0 12.21 55.65 11.84 56.47 

 

13.30 12.98 

1.5 5.67 33.85 5.47 35.20 

 

5.78 5.62 

2.0 3.50 18.43 3.39 20.03 

 

3.45 3.37 

3.0 1.94 9.27 1.89 10.85 

 

1.88 1.85 

4.0 1.34 7.42 1.32 8.55   1.32 1.31 

‏  ȟ ‏ πȢυȟςȢπ 

0.0 501.92 50.16 495.30 50.985 

 

501.27 496.82 

0.5 33.89 63.15 31.72 64.975 

 

38.23 36.51 

1.0 11.28 25.48 10.44 30.225 

 

10.94 10.31 

1.5 6.04 6.67 5.62 12.87 

 

5.63 5.33 

2.0 3.98 2.54 3.72 8.96   3.71 3.53 

 

2.3.2 Parameter selections 
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The design of an ACUSUM-ACR chart involves the choice of parameters 

min max,  d d , ɚ, l and h. In this section, we provide guidelines for the choice of the 

parameters of ACUSUM-ACR charts. Suppose 
1 2[ ,  ]d d is the range of potential mean 

shifts to be detected. Based on Sparks (2000) and Shu and Jiang (2006), we recommend 

the following guidelines for designing ACUSUM-ACR charts. 

¶ Set min max 1 2[ , ] [ , ]d d d d= , and 
min min mind d d+ -= =-  and 

max max maxd d d+ -= =- . 

¶ Choose 
i x0 m n ma+ˆ (  ) / 2d dd=

 
to balance the efficiency in detecting shifts over the 

range. Set 
0 0

ˆ ˆd d+=  and 
0 0

ˆ ˆd d-=-  for positive and negative shift estimators, 

respectively.  

¶ Choose a EWMA parameter ‗ in the range [0.05,0.25]  . In general, ‗ πȢρ 

and ‗ πȢς result in good performance of the chart 

¶ Reset  
1 0

ˆ ˆ ,td d+ +

+= 0tN+=  when 
1 0tZ++¢ , and 

1 0
ˆ ˆ ,td d- -

+= 0tN-=  when 
1 0.tZ-+²  

When 
1 0tZ++¢ or

1 0tZ-+² , the previous process is very unlikely to have 

positive or negative shifts so that it is reasonable to reset the mean estimation 

and the cumulative score to its initial value for the following observations. 

¶ Select Ὤ and l to achieve the desired ARL0  with the proportion of false alarm 

generated by an adaptive runs rule equivalent to 50%.  

Note that the above parameter selections are not intended to optimize detection 

for any particular range of shifts. In section 4, we show that these guidelines improve 

detection performance over the specified range min max[ ,  ]d d . 

2.3.3 An illustrative example 
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To illustrate an adaptive runs rule scheme with ACUSUM, we use a data set of 

simulated observations taken from Lucas and Saccucci (1990). The data set is shown in 

Table 2.5 and contains 19 observations from normal distribution. The target value of the 

first 10 observations is 0 and the target value of the last 9 observations is shifted to one 

standard deviation.  The parameters of the ACUSUM-ACR are chosen to be w = 0.5, ɚ = 

0.2,  h = 0.862 and l = 5.0 with ὃὙὒ ςππ for detecting mean shifts within [0.5, 4.0].   

Also in Table 2.5, the third and fourth columns show the values of ACUSUM 

statistics,  ὤ  and  ὤ ,  and the fifth and sixth columns contain the values of positive and 

negative estimates of mean shifts, respectively. The final two columns contain the values 

of the cumulative scores. For example, the score of the 11th observation for positive 

shifts is calculated as 
11 11 11 11 11
ˆ ˆ ˆ( , ) ( 2) 2.04(1.2 2.04 2) 0.3672.X Xf d d d+ + += - = - =  

As 

ὔ π, we obtain ὔ πȢσφχς. As shown in Figure 2.1, which plots the values of ὤ  

and ὔ  for detecting positive shifts, the proposed adaptive runs rule gives an OC signal 

at the 16th observation, whereas the ACUSUM signals at the 17th observation. 
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Table 2.5 Example of an ACUSUM and adaptive runs rule using data (Lucas and 

Saccucci 1990) 

T Observed Value ὤ  ὤ ‏  ‏   ὔ  ὔ  

0  0 0   0 0 

1 1 0 0 2.25 -2.25 0 0 

2 -0.5 0 0 2.25 -2.25 0 0 

3 0 0 0 2.25 -2.25 0 0 

4 -0.8 0 0 2.25 -2.25 0 0 

5 -0.8 0 0 2.25 -2.25 0 0 

6 -1.2 0 -0.0324 2.25 -2.04 0 0 

7 1.5 0.1618 0 2.10 -2.25 0.945 0 

8 -0.6 0 0 2.25 -2.25 0 0 

9 1 0 0 2.25 -2.25 0 0 

10 -0.9 0 0 2.25 -2.25 0 0 

11 1.2 0.0324 0 2.04 -2.25 0.3672 0 

12 0.5 0 0 2.25 -2.25 0 0 

13 2.6 0.6365 0 2.32 -2.25 3.3408 0 

14 0.7 0.4310 0 2.00 -2.25 2.7460 0 

15 1.1 0.4696 0 1.82 -2.25 3.0941 0 

16 2 0.8444 0 1.85 -2.25 5.0834 0 

17 1.4 1.0102 0 1.76 -2.25 5.9976 0 

18 1.9 1.3493 0 1.79 -2.25 7.7965 0 

19 0.8 1.3171 0 1.59 -2.25 7.8028 0 
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Figure 2.1 ACUSUM and ACUSUM-ACR charts. The solid and dashed horizontal 

lines indicate control limits of ACUSUM-ACR and ACUSUM, respectively. 

2.4 Performance comparisons  

In the previous section, we compare ARL performance of the proposed 

ACUSUM-ACR charts with that of ACUSUM charts for different ranges of mean shifts. 

In this section, we compare the effectiveness of the ACUSUM-ACR in detecting both 

small and large mean shifts with the conventional CUSUM and recent variants of 

adaptive charts including AEWMA (Capizzi and Masarotto 2003) and ACUSUM-C 

(Jiang et al.  2008).  

MC approximations of the ACUSUM and the ACUSUM-ACR are described in 

Appendix A. The ACUSUM chart can be represented by the two-dimensional Markov 

random vector ˆ( , )t tZd+ +  to evaluate the ARL. The two-dimensional MC approaches (Shu 
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and Jiang 2006, Jiang et al. 2008) are extensions of existing univariate MC approaches 

(Brook and Evans 1972, Lucas and Saccucci 1990, Capizzi and Masarotto 2003). 

Similarly, the ACUSUM-ACR chart can be represented by the three-dimensional Markov 

random vector ˆ( , , )t t tZ Nd+ + +by extending the two-dimensional MC approach of the 

improved ACUSUM. The MC analysis of the ARL provides approximate results of 

Monte Carlo simulations. 

2.4.1 Comparisons with CUSUM and ACUSUM charts 

Figure 2.2 contrasts the (a) zero-state and (b) steady-state ARL values of 

ACUSUM-ACR chart and CUSUM charts with 
min / 2k d+=  and 

max / 2k d+=  for detecting 

shifts within the range
min max[ , ] [0.5,4.0]d d+ + = . The ACUSUM-ACR chart is designed for 

providing good detection performance over a range of mean shifts [0.5, 4]. The zero-state 

ὃὙὒ values for both charts are maintained at 500. Both zero-state and steady-state ARL 

curves of the ACUSUM-ACR chart are almost always at the bottom. Similar 

observations are made for ACUSUM-ACR charts designed for moderate and small 

ranges of shifts.  

2.4.2 Comparisons with recent variants of ACUSUM charts 

In Figure 2.3, the zero-state and steady-state ARLs of ACUSUM-ACR are 

compared with AEWMA (Capizzi and Masarotto 2003) and ACUSUM-C (Jiang et al. 

2008) charts. In order to detect shifts between 0.5 and 4.0 efficiently, we set 

min max0.5 and 4.0d d= = , and select ɚ = 0.2. The parameters h = 1.12 and l = 5.78 of the 

ACUSUM-ACR chart are selected to satisfy an ARL0 = 500. The zero-state and steady-
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state ARLs are obtained from extensive simulation experiments with 100,000 

replications. 

 

Figure 2.2 (a) Zero-state and (b) steady-state ARL comparisons between ACUSUM-ACR 

and CUSUM with  k = 0.25 and 2.0 
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(a)  

 

(b) 

Figure 2.3 (a) Zero-state and (b) steady-state ARL comparisons between AEWMA, 

ACUSUM-C, and ACUSUM-ACR for the range [0.5, 4.0] 
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Yashchin (1995) suggests the generalization of the EWMA (EWMA-C) statistic 

based on Huber’s score function. The AEWMA chart proposed by Capizzi and Masarotto 

(2003) is an adaptive version of EWMA chart based on the EWMA-C statistic. Capizzi 

and Masarotto (2003) show that the AEWMA chart is more effective than the EWMA 

chart for detecting a wide range of mean shifts.  The AEWMA chart with ɚ = 0.0398, ɔ = 

2.899, h = 0.4309 and 
min 0.5d+ =  in Figure 2.3 is optimized for detecting mean shifts over 

[0.5, 4]. Compared with the AEWMA chart, the detection performance of the ACUSUM-

ACR chart is more effective for mean shifts when 1.0 4.0d¢ ¢ . 

Another adaptive chart based on the EWMA-C statistic for detecting a wide range 

of mean shifts is the ACUSUM-C chart, which was proposed by Jiang et al. (2008). The 

ACUSUM-C chart is an extension of Sparks’ ACUSUM chart based on the EWMA-C 

statistic. According to Jiang et al. (2008), the ACUSUM-C chart with ɚ = 0.2, ɔ = 2.5, 

min 0.5d+ = , and  h = 6.13 provides an overall good performance in detecting mean shifts 

over the range [0.5, 4.0]. Interestingly, the ACUSUM-ACR is more sensitive than the 

ACUSUM-C chart in detecting mean shifts when1.0 3.5d¢ ¢ . 

2.5 Conclusions 

Traditionally, SPC charts are used to monitor processes in order to reduce process 

variability and improve product quality. Although the ACUSUM chart is more efficient 

in detecting a wider range of mean shifts than the conventional CUSUM chart, the 

ACUSUM is often insensitive to mean shifts close to the minimum level of the range 

when the range of the shift is relatively large. Some runs rules have been widely used 

with control charts to improve the performance in detecting small mean shifts. However, 

there is no efficient runs rule for supplementing the ACUSUM chart.  
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In this chapter, we propose a new adaptive runs rule and supplement the 

ACUSUM chart to improve its sensitivity for small mean shifts. The proposed adaptive 

runs rule is based on a score function from the estimated shift in consecutive runs. The 

performance of the ACUSUM-ACR is investigated and compared with CUSUM and 

variants of adaptive charts such as ACUSUM, AEWMA and ACUSUM-C charts. The 

comparisons reveal the effectiveness of the proposed adaptive runs rule in shift detection 

for a wide range of shift magnitudes.  

The proposed adaptive runs rule can be designed to detect linear shifts of the 

process mean efficiently in future research. In addition, the rule can be extended to a 

multivariate control chart. 

  



27 

 

 

CHAPTER 3   

MULTIVARI ATE STATISTICAL PROCESS CONTROL 

CHARTS BASED ON THE APPROXIMATE SEQUENTIAL   

Ⱶ  TEST 

 

3.1 Introduction  

Multivariate statistical process control (MSPC) charts have been widely used to 

detect process changes by monitoring multiple quality characteristics and/or process 

parameters.  In this chapter, we assume that a process has p quality characteristics and 

measurements, 1 2, , ,X X  are independently and identically distributed random vectors 

following a multivariate normal distribution with a mean vector ɛ and a covariance 

matrixɆ, that is, ~ ( , )pNX ɛɆ .  It is assumed that the first 1 2, , , t»X X X     are from an in-

control (IC) process with the process mean 0=ɛ ɛ, while 1 2, ,t t+ +»X X     are from an out-

of-control (OC) process with 0ɛ̧ ɛ.  The covariance matrix 0=Ɇ Ɇ  is assumed to be 

known and fixed over time, and the change time t is unknown.  For successive 

observations, multivariate control chart approaches for monitoring the mean of a 

multivariate normal process can be interpreted as repeated tests of significance of the 

form  

0 0:H =ɛ ɛ versus 1 0:H ɛ̧ ɛ,    (3.1) 



28 

 

 

where ɛ represents a multivariate normal process mean.  The Hotelling’s 2T  statistic is 

the classical test statistic for the hypotheses. It is defined as ( ) ( )2 1

0 0 0 ,T -= - -X ɛ Ɇ X ɛ
'

 

which follows a 2c  distribution with p  degrees of freedom (df).  The average runs 

length (ARL) performance of control charts based on the 2T  statistic is dependent only 

on the distance of ɛ from 0ɛ (Lowry and Montgomery 1995), where distance is defined 

as the square root of the noncentrality parameter ()2l ɛ  of  a 2c  distribution given by  

()( ) ( )2 1

0 0 0 .l -= - -ɛ ɛ ɛ Ɇ ɛ ɛ
'

 

In this chapter, distance 1( )lɛ  is used to represent the shift size of a mean vector 1ɛ from 

0.ɛ  

The Hotelling’s 2T  statistic is an optimal test statistic in detecting a mean change 

based on a single multivariate observation (Lowry and Montgomery 1995).  However, 

with sequential observations, the 2T  statistic is not efficient in detecting small and 

moderate shifts of the mean vector, as it uses only the most recent observation.  As 

alternatives to the Hotelling’s control chart, control charts using information given by the 

entire sequence of observations like multivariate EWMA (MEWMA) (Lowry et al. 1992) 

and multivariate CUSUM (MCUSUM) (Alwan 1986, Healy 1987, Crosier 1988, 

Pignatiello and Runger 1990) have been proposed to detect small mean shifts efficiently.  

In MEWMA charts, test statistics are 2T  values of weighted sum of observations similar 

to a univariate EWMA scheme.  

Woodall and Ncube (1985) suggest using p  univariate CUSUM charts 

simultaneously to monitor p variables.  This scheme generates an OC signal whenever 

any chart signals.  Crosier (1988) proposes two multivariate CUSUM charts: cumulative 
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sum of T values (COT) and MCUSUM.  The COT is based on the univariate CUSUM 

statistics of T values, and the MCUSUM is obtained by replacing the scalar values of a 

univariate CUSUM by vectors. Pignatiello and Runger (1990) also propose two 

multivariate CUSUM charts, MC1 and MC2. The MC2 chart accumulates the squared 

distance from an observation vector to the target mean vector similar to the univariate 

CUSUM chart.  The MC1 chart accumulates the deviation vectors, -
0

X ɛ, rather than 

accumulate the squared distance.  The MCUSUM chart provides similar ARL 

performance but is more complicated than the MC1 chart.  Further, it is known that the 

MC1 chart shows the best zero-state ARL performance among multivariate CUSUM 

charts when processes are initially in OC state (Golosnoy et al. 2009).  However, the 

MC1 chart shows poor steady-state ARL performance when p is large.  The zero-state 

ARL is the ARL obtained with an assumption that a process change occurs at the initial 

stage, while the steady-state ARL is the computed ARL assuming a process change takes 

place after the process has been in control for some time (Lucas and Saccucci 1990). 

Sequential tests, based on likelihood ratios, have been used in statistical process 

control (SPC) successfully (Page 1954, Healy 1987, Jiang and Tsui 2008, Mahmoud et 

al. 2008, Reynolds and Lou 2010, Ou et al. 2012, Tsui et al. 2012).  The univariate 

CUSUM (Page 1954) is one of the most popular charts, which consists of a set of 

sequential probability ratio tests (SPRT) (Wald 1947).  It is known that the CUSUM chart 

has certain optimality properties in terms of ARL (Lorden 1971, Pollack 1985, 

Moustakides 1986).  Healy (1987) proposes a multivariate CUSUM chart using 

sequential log-likelihood ratios (log-LR), and the statistic accumulates a linear 

combination of the p normal random variables.  It is well known that the test statistic 
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based on the SPRT is optimal for detecting a shift mean 1ɛ in terms of ARL when 1ɛ is 

known (Moustakides 1986).  

A drawback of Healy’s chart, which solves a simple hypothesis test as 0 0: =ɛ ɛH  

versus 1 1:H =ɛ ɛ, where 1 0¸ɛ ɛ, is that it is designed to detect a specific mean vector 

1ɛ.  When p is large, it becomes difficult to specify a meaningful single alternative since 

there are infinitely many points in p-space.  When only a few components of the real 

shifted mean are different from those of 1ɛ, Healy’s chart (1987) may perform far from 

optimal (Lowry and Montgomery 1995).  Based on the drawback of Healy’s scheme, it is 

natural to consider other procedures that operate within the surfaces of p-dimensional 

ellipsoids.  For instance, the statement 0=ɛ ɛ is equivalent to () 0l =ɛ .  Similarly, the 

alternative hypothesis would be of the same form but equal to a scalar value as 

( )1 1l l=ɛ  when 1 0¸ɛ ɛ.  The hypotheses become 

0 : 0H l=  versus 1 1:H l l= ,    (3.2) 

where 1 0l¸ .  Alwan (1986) proposes a multivariate CUSUM chart using SPRT scheme 

based on the above hypotheses as a simple extension of univariate CUSUM.  However, a 

certain optimality property of the SPRT is not satisfied under the hypotheses of equation 

(3.2)  as the SPRT is designed for testing parameters, not for testing functions of 

parameters such as ()lɛ  , which is a function of the unknown parameter μ (Lai 1981).  

Although the SPRT for testing the hypotheses in equation (3.1) is used in SPC 

charts effectively, there is no MSPC chart based on a sequential …  test (Jackson and 

Bradley 1961) for testing the hypothesis in equation (3.2). A sequential …  test is based 

on a probability ratio for the detection of a change in noncentrality parameter of a  …  
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distribution.  The sequential …  test has an asymptotic optimality property (Lai 1981).  

However, as Crosier (1988) points out, the probability ratio of a sequential test for the 

noncentrality parameter is intractable mathematically, and the test statistic based on the 

ratio is not clear as it has no closed form expression.  Thus, even though an existing 

sequential 2c  test can be used for developing an MSPC chart, it may not be appropriate 

for the on-line process monitoring if a closed form expression of the test statistic is not 

obtained.   

In this chapter, we develop a closed form expression of approximate sequential 

2
ɢ test based on the approximation to a noncentral 2c  distribution.  The approximation 

provides a closed form of the test statistic for testing the hypotheses in equation (3.2). By 

adapting the approximate test statistic, we propose a novel multivariate approximate 

sequential chi-square (MASC) chart for monitoring a specific shift size 1l.  The test 

statistic of the MASC chart is based on the cumulative moving average and its 2T  value 

with a reference used in CUSUM-type control charts.  Then, we propose an adaptive 

MASC (AMASC) chart for detecting a wide range of shift by adjusting the reference 

value of the proposed chart dynamically motivated by the concepts of the adaptive 

CUSUM (ACUSUM) (Sparks 2000, Shu and Jiang 2006).  By using an EWMA estimator 

of mean shift rather than the pre-specified reference value, we can adjust the reference 

value dynamically. 

 

 

3.2 Approximate sequential 2
ɢ test 
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In this section, we construct the approximate sequential 2c  test statistic which has 

a closed-form expression.  A sequential statistical test is used for solving hypotheses 

testing problems when the sample number is not fixed a priori but depends on the data 

that have been already observed. The sequential 2c  test is a multivariate sequential test 

based on the two simple hypotheses 0H  and 1H  in equation (3.2).  After n data are 

observed, we obtain ( ) ( )1

0 0 0 0n n n

-= - --X ɛ X ɛ Ɇ X ɛ
'

, where 
1( )n n n= +»+X X X  is 

a sample mean vector based on n observations.  Under 1H ,  0nn -X ɛ  follows a 

noncentral 2c  distribution 2 2

1( , )p nc l ; while under under 0H , it follows a central 2c  

distribution.  The test statistic based on the log-likelihood ratio is defined as 

0 1

0

( | )
ȿ log ,

( | 0)

n

n

n

f n

f n

l l

l

=
=

=

-

-

X ɛ

X ɛ
     (3.3) 

where ( )f  is a pdf of 2c  distribution.  The test statistic ȿn  consists of a generalized 

hypergeometric function defined in the form of infinite hypergeometric series (Jackson 

and Bradley 1961).  

A closed form of ȿn  may be useful in practice for repeated tests.  To obtain a 

closed form of ȿn , we may approximate the generalized hypergeometric function using 

a specified number of hypergeometric series of the function.  However, the error of the 

approximation can be large when the selected number of terms is small, while the 

computational overhead may be high and on-line monitoring may not be possible when 

the selected number of terms is large.  To overcome this problem, several researchers 

have proposed various approximations to the noncentral 2c  distribution (Patnaik 1949, 
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Cox and Reid 1987).  Different schemes can be used to approximate a noncentral 2c  

distribution.  In this section, we use Patnaik’s approximation due to its computational 

efficiency (Cox and Reid 1987).  It is known that the error of Patnaik’s approximation to 

noncentral chi-squared cdf is 2( )Ol  as 0l­ , 1/2( )Ol-  as l­¤ for a fixed p  

(Johnson and Kotz 1970).  

Using Patnaik’s approximation and rescaling, ȿn  can be approximated by (see 

Appendix B for details) 

( )0ȿ logn n n nw n k--= X ɛ ,     (3.4) 

where  

2

2

2
log 2 2logũ 2 log logũ

2 2

n n
n n

n

p w p p
k w

p

l

l

å õå õ+ +å õ å õ
= + - +æ öæ ö æ öæ ö

+ ç ÷ç ÷ç ÷ç ÷
                     (3.5) 

and 
4

22

n
n

n

w
p

l

l
=
+

, 
1n nl l= , and ()ũ  is a gamma function.  When n = 1, 

1l is equal 

to 1l.  

Note that the proposed statistic may be asymptotically optimal in testing a 

noncentrality parameter 1l l e= + due to the error of the proposed approximation ȿn
 to 

ȿn . Figure 3.1 compares the expected values of ȿn
 and ȿn  

as functions of n with ‗ = 

1.0, when p =2 and 20. For simplicity, we set 0 =ɛ 0 .  The solid line represents the 

expected values of ȿn for different n values, and the dashed, dotted, and dash-dot lines 

are the expected values of ȿn
 for e = 0, 0.5, and 1.0, respectively.  Since the 

noncentrality parameter of 0|| ||nn -X ɛ is a linearly increasing function of n, the 
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difference between ȿn
 and ȿn  increases as n increases when e = 0.  When e =1.0, the 

difference becomes very large.  The varying and large differences can cause difficulty in 

setting up decision regions of sequential tests and result in significant test errors.  

Interestingly, when e = 0.5, the expected values of ȿn
 provides similar patterns with 

those of ȿn  for both small and large p, and the differences between ȿn
 and ȿn  appear 

to be unvarying.  In this section, we select e = 0.5 such that the test statistics for testing a 

noncentrality parameter 1l is based on 

1( 0.5)n nl l= +
. 

The proposed approximate sequential 2c  test has three decision rules: (i) Accept 0H  

when ȿ 0n¢ ; (ii) Accept 1H  when ȿn h> ; and (iii) continue by observing 1n+X  when  

0 ȿn h< ¢ , where (0, )h  is called a continuation region.  

 

(a) 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

n

E
xp

ec
te

d 
V

al
ue

 

 

E(L
n
)

e = 0

e = 0.5

e = 1.0



35 

 

 

 

(b) 

Figure 3.1 Expected values of ȿn  and ȿn
 with various e when (a) p = 2 and (b) p = 20 

3.3 MSPC using the approximate sequential 2ɢ test 

3.3.1 Multivariate approximate sequential chi-square (MASC) chart 

As described in the previous section, we are interested in testing 0 : 0H l=  versus 

1 1:H l l=  based on the approximate sequential 2c  test in the MSPC testing problem.  In 

sequential tests, we accept 0H  or 1H  based on the test statistic value.  However, in a SPC 

testing problem, we accept 1H  or restart a sequential test when the previously taken 

decision is to accept 0H .  When we accept 1H
 
for the first time, we stop observation and 

do not restart a new cycle of the sequential test.  For instance, the test statistic proposed 

by Healy (1987) is reset to zero and the SPRT is restarted when the value of the test 

statistic is less than zero.  When the value of the test statistic is greater than a threshold 
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value (control limit), it alarms an OC signal by accepting 1H .  Using this concept, we can 

integrate a sequential test into an MSPC chart. 

To introduce the proposed MASC chart, we consider the cumulative moving 

average as  

, 1

1
( ),

t tm t t m t

tm
- += +»+M X X      (3.6) 

where tm  is the number of observations starting from the recent sequential test.  As 

shown in the approximate sequential  2c  test based on the logarithm of the likelihood 

ratio, the test statistic of the proposed chart is defined as  

( ), 0log
t t tt m t m t mMA w m k-= -M ɛ ,    (3.7) 

where 0
tmk >  is a reference value defined in equation (3.5).  Since 

, 0tm t-M ɛ represents 

the difference between the accumulated sample average and the target mean, the norm 

, 0tm t-M ɛ =( ) ( )1

, 0 0 , 0t tm t m t

-- -M ɛ Ɇ M ɛ
'

 is considered a measure of the difference of 

our estimate of the mean of the process from the target mean.  Based on the value of tMA

, the procedure  of  the proposed MASC chart is as follows: 

¶ Stop and alarm an OC signal when tMA h> ; 

¶ Update 1 1t tm m+= +  when 0 tMA h< ¢ ; 

¶ Update 1 1tm+=  when 0tMA ¢ , 

where 0h>  is a control limit for an OC signal, respectively.  As long as tMA h< , we 

update the cumulative moving average as 

1

1
, 1 , 1

1 1

1
.

1
t t

t
m t m t t

t t

m

m m+

+
+ +

+ +

= +
-

M M X     (3.8) 
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When 1 1tm+= , the previous moving average 
,tm tM   is cancelled out so that 

1 , 1 1tm t t+ + +=M X . For simplicity, the value of tMA  defined in equation (3.7) can be set to 

zero whenever 0tMA ¢ . Hence the proposed MASC can be expressed as follows 

( ){ }, 0max log ,0
t t tt m t m t mMA w m k= --ɛM

   
(3.9) 

and  

1 1

1

1  if 0

1            if 0

t t

t

t

m MA
m

MA

- -

-

+ >ë
=ì

¢í
,     (3.10) 

where 0 1m = and 0 0MA = .  The proposed MASC chart signals when tMA h> . 

Remarks: If we set 1 1tm+=  when tMA h¢  for all 0t> , then the moving average 
,tm tM  

is equal to tX .  Since 
tmk  and 

tmw are constants,  by rescaling and transforming 

, 0|| ||g )lo (
tt m tm -M ɛ , the test statistic can be equivalent to the test statistic of the 

Hotelling’s 2c  control chart. Appendix B describes the relationship between the popular 

MC1 chart (Pignatiello and Runger 1990) and the proposed chart in detail.  

3.3.2 Design of parameters 

The design of an MASC chart involves the choice of parameters h and ‗.  The 

basic design strategy is to select the shift size ‗ to be detected quickly and choose h for 

satisfying the desired ὃὙὒ.  This approach produces MASC charts with good ARL 

performance when the size of the mean shift is close to ‗. Using Tables 3.1 and 3.2, we 

can obtain the MASC parameters that result in the minimum OC ARL for mean shifts of 

the specified size ‗.  Table 3.1 provides the zero-state ARLs of the proposed MASC 

charts with different values of ‗ when p = 2, 5, 10.  The numerical results show that the 
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MASC charts with ‗ = 0.5, 1.0, and 1.5 have the minimum ARLs in detecting shifts of 

sizes ɚ = 0.5, 1.0, and 1.5, respectively.  These results are similar to those obtained in 

univariate CUSUM charts so that smaller and larger values of ‗ are more sensitive in 

detecting smaller and larger shifts, respectively.  Table 3.2 provides h and the minimum 

OC ARL ὃὙὒ  for detecting mean shifts of size ‗ = 1.0 with various ὃὙὒ = 200, 

500, 700, and 1000.  We choose ‗  = 1.0 because this value provides good ARL 

performance in detecting small shifts in the mean vector.  All ARL values are obtained 

using 20,000 simulations. 

 

Table 3.1 Zero-state ARLs of MASC charts with different values of ‗ when p = 2, 5, 10 

 ‗ = 0.5  ‗ = 1.0  ‗ = 1.5 

  p = 2 p = 5 p = 10 

 

p = 2 p = 5 p = 10 

 

p = 2 p = 5 p = 10 

‗ h = 6.3 h = 5.52 h = 4.81  h = 7.39 h = 6.67 h = 6.03  h = 8.05 h = 7.39 h = 6.81 

0.0 199.52 199.70 200.67 

 

200.67 201.01 200.4 

 

200.30 199.61 201.02 

0.5 28.27 36.45 44.44 

 

34.46 45.84 55.66 

 

44.47 59.29 70.92 

1.0 10.49 13.37 16.41 

 

9.76 12.46 15.23 

 

10.82 13.87 17.08 

1.5 7.16 9.17 11.40 

 

5.64 7.13 8.71 

 

5.24 6.55 8.01 

2.0 5.90 7.58 9.43 

 

4.28 5.39 6.64 

 

3.63 4.49 5.51 
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Table 3.2 Optimal parameters of MASC charts in detecting mean shifts of Size ‗=1.0 

with different ὃὙὒ when p = 2, 5, 10, 20 

    In-control ARL 

P 

 

200 500 700 1000 

2 

 

h 7.39 9.15 9.82 10.53 

ὃὙὒ   9.76 11.75 12.50 13.29 

5 

 

h 6.67 8.42 9.07 9.82 

ὃὙὒ   12.46 14.84 15.77 16.74 

10 

 

h 6.03 7.84 8.51 9.19 

ὃὙὒ   15.23 18.34 19.43 20.49 

20 

 

h 5.37 7.15 7.80 8.53 

ὃὙὒ   18.90 22.90 24.22 25.62 

3.3.3 Properties of the proposed test statistic 

The test statistic defined in equation (3.8) is based on the log transformation of  

2c  distribution, since , 0|| ||
tt m tm -M ɛ follows a 2c  distribution with p degrees of 

freedom when a process is in control.  The 2logc  distribution is considerably close to the 

normal distribution for the following reasons: (i) it provides closer approximation to 

normality based on the Kullback-Leibler information number, which is a measure of the 

difference between two probability distributions (Hawkins and Wixley 1986); (ii) it can 

be considered as truly normal, because the transformed variable of a positive-valued 

variable from 2c  distribution is defined over the whole range from ¤-  to ¤ (Keene 

1995); and (iii) the log transformation is widely used for converting right-skewed 

distributions with heavy right tails to be symmetric.   
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Suppose that Y is a random variable from 2logc  distribution with p degrees of 

freedom. Then the pdf Yf  is given as 

()
( )

( )/2 2 2
/2

1
.

2 ũ / 2

ye
y p

Y p
f y e e

p

--
=  

The mean and variance of the 2logc  distribution can be obtained using Taylor series 

approximation (Casella and Berger 2002), where the mean and variance of Y  are log p  

and 12p- , respectively.  Interestingly, the variance decreases as p is increases.  Figure 3.2 

compares 2logc  distributions when p=5, 10, 20. It is clear that a 2logc  distribution with 

larger p is closer to normality and has smaller variance.  

 
Figure 3.2 Probability density functions of 2logc  distributions with p=5, 10, 20 

Figure 3.3 compares the expected values of , 0||l ||o ( )g
t tm t m tw m -M ɛ  and  Ὧ   

when p = 10 and ‗ ρȢπ.  The expected values of , 0||l ||o ( )g
t tm t m tw m -M ɛ
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and OC processes approximate to log
tmw pand 2

1log( )
tm tw p ml+ , respectively.  It is 

clear that the test statistic tMA  is often reset to zero since the expected value of tMA , 

which approximates to log( )
t tm mw p k- , becomes negative as  ά   increases under an IC 

process (ɚ = 0).  However, when the process is out of control with ɚ = 1.0, a signaling 

probability becomes larger since the expected value 2

1log( )
t tm t mw p m kl+ - increases as 

ά   increases.   

 

Figure 3.3 Expected values of ύ ÌÏÇάȿȿ- ȟ ʈȿȿ and Ὧ  when p = 10 and 

‗ ρȢπ 

3.3.4 An illustrative example 

To illustrate the use of the MASC chart, we utilize a set of simulated observations 

taken from Crosier (1988).  The data set in Table 3.3 contains 10 observations from 

bivariate normal distribution with a correlation coefficient of 0.5 and unit variances.  The 

process mean vector of the first 5 observations is [0, 0], while the mean vector of the last 
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5 observations is shifted to [1, 2].  The parameters of the MASC chart are chosen to be  

‗ = 1.0 and h = 7.39 with ὃὙὒ ςππ.  

Table 3.3 An example of an MASC chart using data from Crosier (1988) 

 Observations  Ἑ ὓȟὓ      

t ὢ ὢ ά  ὓ  ὓ  ὣ ύ  Ὧ  ὓὃ 

1 -1.19 0.59 1 -1.19 0.59 1.19 0.78 -0.55 1.47 

2 0.12 0.90 2 -0.54 0.75 1.20 1.84 0.16 2.04 

3 -1.69 0.40 3 -0.92 0.63 1.99 2.94 1.42 4.42 

4 0.30 0.46 4 -0.62 0.59 1.76 4.05 3.04 4.06 

5 0.89 -0.75 5 -0.31 0.32 0.70 5.17 4.94 0.00 

6 0.82 0.98 1 0.82 0.98 0.10 0.78 -0.55 0.63 

7 -0.30 2.28 2 0.26 1.63 1.81 1.84 0.16 3.18 

8 0.63 1.75 3 0.38 1.67 2.22 2.94 1.42 5.10 

9 1.56 1.58 4 0.68 1.65 2.40 4.05 3.04 6.66 

10 1.46 3.05 5 0.83 1.93 2.93 5.17 4.94 10.19 

 

Figure 3.4 Plot of a MASC chart using data from Table 3.7  
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In Table 3.3, the fourth column contains the number of observations used for 

computing cumulative moving average 
,tm tM , and the fifth and sixth columns show the 

values of 
, 1 2[ , ].

tm t M MM  = The seventh, eighth and ninth columns contain the values of 

, 0||l ||)og(
tt t m tY m -= M ɛ , ύ , and Ὧ  for computing ὓὃ , respectively.  The final 

column shows the values of the test statistic ὓὃ.  As shown in Figure 3.4, which plots 

the values of the MASC statistic, the proposed MASC chart gives an OC signal at the 

10th observation.  The Crosier’s MCUSUM chart (1988) with k = 0.5 also signals at the 

10th observation when !2, ςππ.  Note that the MASC vector elements, ὓ  and ὓ , 

provide some clues to diagnose the direction of the shift when the MASC signals. 

3.4 Adaptive MASC chart based on the estimated shift size  

The MASC chart can be optimized when we have accurate information on the 

shift size l.  In practice, the magnitude of the mean shift is unknown.  When a specified 

1l is different from the magnitude l of a real changed mean, the control charts based on 

the likelihood ratio methods can perform poorly.  In the univariate case, adaptive 

schemes (Sparks 2000, Capizzi and Masarotto 2003, Shu and Jiang 2006, Jiang et al. 

2008, Shu et al. 2008, Wu et al. 2009) have been widely used to overcome this problem.  

In this section, we introduce the adaptive version of the MASC chart. 

The univariate ACUSUM chart proposed by Sparks (2000) adjusts the reference 

value of the conventional CUSUM chart using an estimate of the current mean shift size.  

When l can be efficiently estimated at time t, say ˆ
tl, then we can obtain the reference 

value )ˆ(
tm tk l  at each time t.  In this case, the AMASC statistic can be written as 
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( ){ }0,
ˆ( ),ax g 0m lo

t t tt m t m t m tAMS w m k l-= -M ɛ ,    (3.11) 

where 
2ˆ
tl  is the estimator of the noncentrality parameter.  It signals whenever tAMS h> , 

where h  is the control limit of the AMASC chart.  For estimating a noncentrality 

parameter
2l , we adopt the maximum likelihood estimator (MLE) in terms of the mean 

squared error (MSE) proposed by Saxena and Alam (1982)  as 

( )0max 0, .t t py= - -x ɛ
    

(3.12) 

where 1

0 0 0 0||| | (( ) )t t t

-- = - -x ɛ x ɛ Ɇ x ɛ
' .  Analogous to the ACUSUM charts (Sparks 

2000; Shu and Jiang 2006), the EWMA scheme, which is one of the most popular 

schemes in practice due to its simplicity, can be a good estimate of ‗ as 

1(1ˆ ) ˆ
t t tr rl y l-= + - , where r is an EWMA parameter with π ὶ ρ. When 

min max,[ ]l l
 
is the range of shift sizes of interests, we define the EWMA statistic as  

( )( )min ma1 xmin max , 1 ) ,ˆ ˆ(t t tr rl l y l l-= + - ,   (3.13) 

where minl  
and maxl  

are minimum and a maximum values for improving the sensitivity 

to shift sizes min maxl l l¢¢ .  

 

3.4.1 Parameter selections 

The design of an AMASC chart involves the determination of the parameters minl

, maxl , r and h.  In this section, we provide guidelines for the parameters of AMASC 

charts.  Suppose [ , ]a b  is the range of potential mean shift sizes to be detected.  Based on 
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Sparks (2000) and Shu and Jiang (2006), we recommend the following guidelines for 

designing AMASC charts. 

¶ Set min max[ ] [ , ], a bl l =
. 

¶ Choose r  in the range [0.05, 0.2] (Shu and Jiang 2006). In general, 0.1r =  

and 0.2r =  result in good performance of the chart. 

¶ Reset 1 0
ˆ ˆ
tl l+=  

when 0tAMS¢ .  When   0tAMS¢ , the current process is very 

likely to be in control so that it is reasonable to reset the process variables to 

their initial values for the following observations. 

¶ Choose min max0
ˆ )( 2l l l+=  to balance the efficiency in detecting shifts over 

the range. 

¶ Select h  to achieve the desired 0ARL . 

Note that the above parameter selections are not intended for optimizing detection 

performance for any particular range of shifts.  Next, we show that these guidelines can 

provide a reasonably good detection performance over the specified range min max[ , ]l l .  

The ARL performance of the proposed AMASC chart is slightly less than that of the 

MASC chart when the size of a mean shift is around ‗, otherwise, the AMASC chart 

considerably outperforms the MASC.  
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Table 3.4 Zero-state and steady-state ARLs of an AMASC chart with different regions
 

when  r = 0.2 and ‗ = 1.0 

λ  

p = 2 p = 5 p = 10 p = 20 

ZARL SARL ZARL SARL ZARL SARL ZARL SARL 

‗ ȟ‗  = [ 0.5, 3.0] 

0.0 199.01 196.01 200.90 198.13 200.25 195.26 201.79 197.34 

0.5 34.32 34.31 49.09 48.83 64.22 64.02 82.06 81.59 

1.0 9.86 10.10 12.65 13.24 16.08 16.91 21.11 21.99 

1.5 5.17 5.54 6.47 7.07 7.88 8.65 9.76 10.71 

2.0 3.40 3.77 4.19 4.74 5.08 5.76 6.33 7.15 

2.5 2.61 2.96 3.12 3.61 3.75 4.32 4.65 5.32 

3.0 2.15 2.46 2.53 2.99 2.99 3.50 3.70 4.29 

4.0 1.69 1.93 2.00 2.31 2.23 2.64 2.65 3.13 

5.0 1.29 1.57 1.72 1.96 1.98 2.26 2.15 2.54 

‗ ȟ‗  = [ 0.5, 4.0] 

0.0 200.92 198.85 200.87 198.06 201.95 198.36 201.89 197.64 

0.5 37.38 37.25 52.20 52.06 67.33 66.87 84.86 84.30 

1.0 10.14 10.40 13.19 13.64 16.59 17.19 21.76 22.57 

1.5 5.18 5.46 6.50 7.03 7.90 8.58 9.81 10.72 

2.0 3.36 3.68 4.11 4.62 4.96 5.62 6.21 7.01 

2.5 2.52 2.82 3.02 3.49 3.60 4.17 4.48 5.17 

3.0 2.07 2.37 2.44 2.87 2.85 3.36 3.51 4.13 

4.0 1.52 1.78 1.89 2.20 2.14 2.54 2.50 2.99 

5.0 1.17 1.44 1.51 1.80 1.87 2.16 2.08 2.48 

‗ ȟ‗  = [ 0.5, 5.0] 

0.0 200.61 198.58 200.36 198.19 200.65 197.95 199.92 196.15 

0.5 40.41 40.07 56.36 55.99 71.94 71.81 87.57 86.87 

1.0 10.61 10.74 13.83 14.14 17.44 17.92 22.56 23.15 

1.5 5.27 5.47 6.60 7.03 8.04 8.64 9.92 10.73 

2.0 3.34 3.57 4.09 4.52 4.92 5.53 6.13 6.92 

2.5 2.46 2.70 2.95 3.36 3.51 4.04 4.34 5.02 

3.0 1.97 2.22 2.35 2.74 2.75 3.24 3.36 3.99 

4.0 1.40 1.64 1.76 2.06 2.06 2.44 2.39 2.88 

5.0 1.10 1.35 1.35 1.66 1.72 2.03 2.02 2.40 

ZARL is zero-state ARL; SARL is steady-state ARL. 
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Table 3.4 compares the zero-state and steady-state ARLs of an AMASC chart for 

different shift range ‗ ȟ‗  when r = 0.2 and ὃὙὒ  200.  When the range is [0.5, 

3.0], control limits for p = 2, 5, 10, 20 are h = 8.25, 7.41, 6.76, 6.13, respectively.  With 

the range [0.5, 4.0] and [0.5, 5.0], h = 8.79, 7.93, 7.19, 6.47 and h = 9.2, 8.4, 7.67, 6.86 

for p = 2, 5, 10, 20, respectively.  These comparisons show that the AMASC chart with 

larger ‗  is more effective in detecting shifts with large ɚ, but insensitive to small ɚ. 

3.5 Performance comparisons  

All control charts compared in this section are directional invariant.  The ARL 

performance of a directionally invariant control chart depends only on the distance, not 

on the particular direction of the mean vector (Pignatiello and Runger 1990).  Shifts in 

the process mean are based on the distance l from the IC mean 0 =ɛ 0 which are of the 

form ( ,0, ,0)d= »ɛ .  For simplicity, we assume that the covariance matrix is the 

identity matrix.  In each independent simulation, the run length is recorded as the number 

of simulations observed until the control chart issues an OC signal.  The estimated ARL 

is the average of the independent run lengths.  We use 0 200ARL =  and repeat 20,000 

simulations to obtain ARLs.  For simulating steady-state ARLs, the true shift location † is 

fixed at 51, and any simulation in which shift signals occur before † is discarded.  

3.5.1 Comparisons of MASC charts with MCUSUM and MC1 charts 

We now compare both zero-state and steady-state ARL performance of the 

proposed MASC chart with those of two multivariate CUSUM charts: Crosier’s 

MCUSUM (1988) and MC1 (Pignatiello and Runger 1990) charts.  All charts are 

optimally designed to detect shifts of size ‗ ρȢπ, and these charts also provide good 
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ARL performance in detecting small shifts in the mean vector. Table 3.5 shows ARL 

comparisons for p = 2, 10, 20, and 50, respectively. Control limits of the MCUSUM 

charts are h = 5.5, 14.9, 24.7, 49.95 and those of the MC1 are h = 4.77, 9.55, 14.58, 

28.72, for p = 2, 10, 20, 50, respectively. 

 It is clear from Table 3.5 that the MC1 chart provides the smallest zero-state 

ARL value for all p, but has poor steady-state ARL performance when p is large due to 

an inertia problem, which can refer to the resistance of a chart in signaling a process 

change (Yashchin 1987).  The MC1 chart can build up a considerably large amount of 

inertia when the chart has run some time before a mean shift occurs (Woodall and 

Mahmoud 2005), which results in a lengthy delay in detecting the mean shift.  For 

example, if a number of positive deviations from the target value in one variable are 

accumulated before a negative mean shift occurs, there is a delay in the signal. The 

inertia from the positive deviations needs to be canceled by sufficient negative deviations 

to either restart the chart or generate a negative sum that eventually grows beyond the 

control limit.  

It is observed that the Crosier’s MCUSUM chart provides relatively larger zero-

state ARLs than the other charts, but smaller steady-state ARLs than the MC1 chart.  One 

drawback of Crosier’s MCUSUM chart is that the steady-state ὃὙὒ is considerably 

smaller than the zero-state when p is large.  Thus, the MCUSUM chart in a steady-state 

process can cause more false alarms than that in a zero-state process. To maintain the 

steady-state ὃὙὒ to a specific level, the MCUSUM control limit must be increased and 

the increased control limit results in larger ARLs.  
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Table 3.5 ARL comparisons between MASC, MCUSUM and MC1 charts (‗ ρȢπ) 

λ 

MASC MCUSUM MC1 

ZARL SARL ZARL SARL ZARL SARL 

  p = 2 

0.0 200.67 197.49 203.52 197.22 197.74 193.99 

0.5 34.46 33.97 29.97 28.62 31.39 31.34 

1.0 9.76 9.81 9.87 9.41 9.31 9.78 

1.5 5.64 5.68 5.79 5.54 5.26 5.70 

2.0 4.28 4.24 4.14 3.98 3.70 4.08 

2.5 3.59 3.50 3.25 3.14 2.89 3.24 

3.0 3.21 3.05 2.70 2.62 2.41 2.72 

 

p = 10 

0.0 199.90 193.88 199.33 176.05 199.59 202.77 

0.5 55.66 54.26 42.71 36.09 43.52 51.72 

1.0 15.23 15.28 18.59 15.59 12.53 17.90 

1.5 8.71 8.77 11.92 9.92 7.68 10.98 

2.0 6.64 6.47 8.80 7.34 5.67 7.97 

2.5 5.64 5.29 7.02 5.86 4.56 6.31 

3.0 5.08 4.58 5.87 4.92 3.84 5.28 

 

p = 20 

0.0 202.03 194.17 198.62 160.56 200.89 212.36 

0.5 66.96 64.58 56.06 43.61 47.71 74.68 

1.0 18.90 18.99 27.17 20.79 15.26 29.26 

1.5 11.03 11.00 17.97 13.60 10.05 17.72 

2.0 8.48 8.11 13.49 10.23 7.64 12.76 

2.5 7.24 6.67 10.79 8.20 6.21 10.04 

3.0 6.47 5.73 9.04 6.83 5.26 8.31 

 

p = 50 

0.0 199.37 186.59 199.05 149.17 199.64 225.76 

0.5 81.01 76.75 86.11 63.80 48.04 120.38 

1.0 25.66 25.17 47.56 34.88 23.28 29.37 

1.5 15.36 14.93 32.72 23.89 16.59 17.81 

2.0 12.00 11.23 24.95 18.19 13.00 13.28 

2.5 10.23 9.16 20.21 14.73 10.75 10.69 

3.0 9.15 7.86 16.99 12.38 9.18 8.93 

* ZARL is zero-state ARL; SARL is steady-state ARL. 
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Contrary to the MCUSUM and the MC1 charts, which have considerably different 

values between zero-state and steady-state ARLs when p is large, the proposed MASC 

chart provides similar zero-state and steady-state ARLs in detecting small shifts in the 

mean vector for all p.  In addition, the MASC chart has the smallest steady-state ARLs 

when p is larger than 10 and ‗ ρȢπ.  Therefore the proposed MASC chart is most 

effective in detecting process mean shifts both when the process is initially out of control 

and when it is initially in control and a shift occurs later. 

3.5.2 Comparisons of AMASC charts with MASC charts 

In Figure 3.5, the zero-state ARLs of AMASC charts are compared with MASC 

charts when p = 2 and 10.  In order to detect shifts between 0.5 and 3.0 efficiently, we set 

min max0.5 and 3.0l l= =  and select ɚ = 0.2.  The parameters h = 8.25 and 6.76 of the 

AMASC are selected to satisfy the zero-state ὃὙὒ  = 200 when p = 2 and 10, 

respectively.  The target shift sizes for MASC charts are chosen as 
1 minl l= and 

1 maxl l=

, respectively.  The two MASC charts have nearly the minimum ARL at shift sizes  
minl

and maxl .  Figure 3.5 shows overall ARL values of the three charts.  It is observed that the 

zero-state ARL curves of the AMASC charts are close to the bottom in wide range when 

p = 2 and 10. 
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(a) 

 
(b) 

Figure 3.5 Zero-state ARL comparisons between MASC and AMASC charts for 

detecting shifts within the range [0.5 3.0] when (a) p = 2 and (b) p = 10 
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3.5.3 Comparisons of AMASC charts with AMCUSUM charts 

For detecting a wide range of mean shifts efficiently, Dai et al. (2011) propose an 

adaptive MCUSUM (AMCUSUM) chart based on Crosier’s MCUSUM chart.  Figures 

3.6 and 3.7 compare the zero-state and steady-state ARL values of the AMASC charts 

and the AMCUSUM charts for detecting shifts of sizes within the range [0.5, 6.0].  Both 

charts use the same EWMA parameter r = 0.2.  The zero-state ὃὙὒ for both charts is 

maintained at 200.  The control limits of AMCUSUM are h = 1.083 and h = 1.117 when 

p= 5 and 10, respectively.  The control limits of AMASC charts are h = 8.8 and 8.1 when 

p = 5 and 10, respectively.  As shown in Figures 3.6 and 3.7, AMASC is more sensitive 

to small shifts of sizes ‗  1.0 but less sensitive to shift sizes ‗ ρȢπ.  

The steady-state comparisons shown in Figure 3.6 (b) and 3.7 (b) indicate that the 

steady-state ὃὙὒ of AMCUSUM charts are significantly smaller than 200, similar to 

Crosier’s MCUSUM chart.  Specifically, when p=10, the steady-state ὃὙὒ  of the 

AMCUSUM chart is 160, while that of the AMASC chart is 199.  Thus, to make the 

steady-state ὃὙὒ close to 200, the control limits of AMCUSM charts must be increased. 
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Figure 3.6 (a) Zero-state and (b) Steady-state ARL comparisons of AMCUSUM and 

AMASC charts when p = 5 

 

Figure 3.7 (a) Zero-state and (b) Steady-state ARL comparisons of AMCUSUM and 

AMASC charts when p = 10 
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3.6 Conclusion 

In this chapter, we present two new MSPC charts, MASC and AMASC, for 

detecting general mean shift vectors based on the approximate sequential 2c  test, which 

uses an approximate likelihood ratio of a central and a noncentral 2c  distribution.  

Because of the properties of the sequential 2c  test, the proposed MASC chart provides 

good zero-state and steady-state ARL performance for detecting shifts in the mean vector 

that have a specific shift size 
1l regardless of the dimension of measurements p, unlike 

the MCUSUM (Crosier 1988) and the MC1 (Pignatiello and Runger 1990), which have 

considerably different values between zero-state and steady-state ARL when p is large.  

Due to this robustness property of the MASC chart, it can quickly detect process mean 

shifts both when the process is initially out of control and when it is initially in control 

but shift occurs later.     

We also propose an AMASC chart, which is an adaptive version of an MASC 

chart for detecting general mean shifts.  The concept of the AMASC chart is to adaptively 

adjust the reference value of the proposed MASC chart by estimating the noncentrality 

parameter of the current process mean vector.  The experimental results show that the 

proposed AMASC chart is efficient in detecting a wide range of mean shifts compared 

with the MASC chart and the AMCUSUM (Dai, et al. 2011), which is an adaptive 

version of Crosier’s MCUSUM chart.  

When a shift in the mean vector is detected, we may need to identify the variables 

that cause an out-of-control signal.  In future work, we intend to explore diagnostic 

procedures to identify the out-of-control variables in both MASC and AMASC charts.  
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CHAPTER 4   

 

FAULT VARIABLE IDENTIFICATION USING ADAPTIVE 

STEP-DOWN PROCEDURE 

 

4.1 Introduction 

MSPC has received considerable attention for monitoring multiple quality 

characteristics and/or process parameters. The primary objectives of MSPC are to detect 

a change in the process mean vector and to identify which variables are responsible for 

the change. MSPC charts alarm an OC signal when a shift is detected, but have difficulty 

identifying the variables which cause the OC signal. A variable whose mean is shifted is 

defined as a faulty variable. 

Identifying the cause of an OC signal is a challenging problem for quality 

engineers in high-dimensional processes when an MSPC control chart detects a shifted 

process mean. Since control charts based on Ὕ  statistics have difficulty identifying 

variables that cause an OC signal, a variety of diagnostic procedures have been developed 

(Alt 1985, Doganaksoy et al. 1991, Hawkins 1991, 1993, Mason et al. 1995, Sullivan et 

al. 2007, Li et al. 2008). One popular approach for fault diagnosis is based on testing 

each individual variable. It identifies faulty variables that are significant (Alt 1985, 

Doganaksoy et al. 1991). A main drawback of this approach is that it ignores correlations 

among variables. In a highly-correlated structure, values of test statistics can be large, 
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even though there is no change in the mean vector. Another approach is based on testing 

every possible subset of variables  (Murphy 1987, Chua and Montgomery 1992, Sullivan 

et al. 2007). Although this approach incorporates the correlation information among 

variables, it may be impractical due to intensive computations in a high-dimensional 

process.  

Hawkins (1991, 1993) proposes a monitoring and diagnostic procedure under the 

assumption that only single variable is shifted in the mean vector. The procedure is based 

on regression-adjusted variables using the correlations among variables. Hawkins’ 

regression-adjusted approach is effective in detecting and identifying a shift of single 

variable in the mean vector. When the maximum of the absolute values of regression-

adjusted variables is significant, it signals and identifies the variable associated with the 

maximum as a changed variable. However, when the number of changed variables is 

unknown, one may select all significant regression-adjusted variables, which may result 

in poor identification performance when the means of several variables are 

simultaneously shifted or even when the mean of single variable that is highly correlated 

with other variables is shifted (Das and Prakash 2008). 

Mason et al. (1995, 1997) propose a decomposition procedure based on all 

possible partitioning of Ὕ  statistic into independent unconditional and conditional Ὕ  

terms defined in equation (4.2). This approach is referred to MYT decomposition (Mason 

et al. 1997).  While the MYT decomposition is theoretically sound, it may not be 

practical when the number of variables, ὴ, is large, since it needs to examine ὴȦ 

decompositions. To reduce the number of computations in the MYT decomposition, 

Mason et al. (1997) propose a shortened sequential procedure. In a worst-case scenario, 
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however, the procedure still requires the same computations with the original MYT 

approach. Furthermore, the MYT approach has a concern about diagnostic capability (Li 

et al. 2008). Assuming the mean shifts of variables and no changes in the variable 

relationships, it is not clear which variable or a subset of variables is responsible for a 

significant conditional term. Since it examines all possible decompositions, an extremely 

large number of terms of all decompositions can be significant and all related variables 

can be identified as being changed.  In this case, these terms and variables need to be 

evaluated and interpreted by process engineers. Mason et al. (1995, 1997) suggest using 

unconditional Ὕ  statistics for the identification of mean shifts of individual variables. 

However, their suggested method ignores correlation structures among variables, so it is 

equivalent with the procedures based on testing individual variables (Alt 1985, 

Doganaksoy et al. 1991).  

A main issue based on MYT decomposition is to find a meaningful 

decomposition containing information on identifying which variable or a subset of 

variables are responsible for the process mean shift among different ὴȦ decompositions. 

Recently, Li et al. (2008) propose a causation-based decomposition by integrating the 

traditional MYT decomposition with a Bayesian causal network that defines the causal 

relationship between variables. Tan and Shi (2012) propose a Bayesian approach based 

on Bayesian hierarchical model to determine the shifted means and the directions of the 

shifts. Based on some prior knowledge and experience to specific processes that have 

known causal or Bayesian hierarchical property, one can investigate a smaller number of 

decompositions than the MYT approach. While these approaches are effective in some 
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process control situations, they are often not proper in certain processes that do not have 

known causal or Bayesian hierarchical property.   

In high-dimensional processes, it is reasonable to assume that shifts in the mean 

vector occur in only a few variables, which is called the sparsity property (Zou and Qiu 

2009). Wang and Jiang (2009) and Zou and Qiu (2009) propose process monitoring and 

diagnosis schemes based on variable selection methods and the sparsity assumption. 

Although both schemes provide diagnosis capability, they basically focus on the 

monitoring task.  

In this chapter, we propose an adaptive step-down procedure for identifying 

variables whose means are shifted, under the assumption that a shift in the mean vector 

occurs in only a few variables and a multivariate SPC chart based on  chi-square statistic 

like Hotelling’s Ὕ  chart signals after detecting the shift. The proposed procedure selects 

a variable that has the strongest evidence of no mean change at each step. The variable 

selection is based on the variables that are selected in previous steps, where the 

previously selected variables have strong evidence of no change. The proposed procedure 

first searches for the group of variables that are not changed with strong evidence, and 

then identifies the variables that are responsible for the OC signal based on conditional 

Ὕ  statistics given the selected (or unchanged) variables. Our approach adopts a 

projection scheme (Runger 1996) and constructs conditional Ὕ  statistics. The proposed 

procedure yields a less computational complexity in a high-dimensional process, since it 

is based on the polynomial time algorithm. Thus it can be an effective diagnostic tool for 

the real time faulty variable identification in a high-dimensional process.   
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4.2 Conditional ╣  statistics with known group of unchanged variables  

Assume that a process has p quality characteristics and the measurement, 

ἦ ὢȟȣȢȟὢ  follows a multivariate normal distribution, ὔ ȟ). When the process 

is in-control (IC), the mean vector is 0=ɛ ɛ, where ‘ȟȣȟ‘ , and the covariance 

matrix , where „
ȟ

, is known and fixed over time. When the process 

is out-of-control, the process mean vector is changed to 1 0¸ɛ ɛ . The Hotelling’s 2T  

statistic is decomposed to identify the fault variables when the control charts generate an 

out-of-control signal, and it is defined as  

( ) ( )2 1

0 0 0 ,T -= - -X ɛ Ɇ X ɛ
'

    (4.1)  

where 2T  statistic follows a 
2c  distribution with p  degrees of freedom (df) when the 

process is in control. With a given false alarm rate ‌, it signals if Ὕ …ȟ . Although 

2T  is the optimal test statistic for a general multivariate shift of mean vector, it is not 

optimal when some variables are known to be unchanged  in high-dimensional processes 

(Lowry and Montgomery 1995).  

Suppose that ἦ ἦȟἦ , where ɱ and ɜ are index sets of two partitions of ἦ. 

Then the mean vector and covariance matrix can be partitioned as ȟ  and 

ȟ 

respectively. Without loss of generality, a shift of the mean vector occurs only in a subset 

of variables ɱ and there are no changes in all variables of ɜ, Runger (1996) propose a 

projection chart based on the conditional Ὕ  given ɜ defined as 

Ὕȿ Ὕ Ὕȟ     (4.2) 
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where Ὕ ἦ ἦ  is the Ὕ  of all variables in ɜ. Under the null 

hypothesis, Ὕȿ follows the chi-square distribution with ȿɱȿ df.  It is shown that using 

Ὕȿ  statistic is more powerful than using overall Ὕ  or Ὕ , which is the Ὕ  of all 

variables in ɱ (Runger 1996). However, the Ὕȿ statistic also do not provide which 

variable or a group of variables in ɱ are changed. 

After a mean shift is detected by control charts based on Runger’s Ὕȿ statistics, 

we propose a new conditional Ὕ -based diagnosis to specify the shifted variables by 

choosing regression-adjusted variables, which are regressed on the variables in ɜ, with 

significantly different from the target value. For a variable i in ɱ, the test statistic is based 

on the square of a regression adjusted variable ὝϽ, which is adjusted by the mean and 

standard deviation of the conditional distribution of ὢ given ἦ  as  

ὝϽ
░Ͻἦ  

░Ͻ

ϳ ȟ    (4.3) 

where ░Ͻ is a column vector of the regression coefficients of  ὢ on ὢ for all Ὦɴ ɜ, 

which are obtained as ░Ͻ , where  is the ith column vector of  

(Anderson (1984)). As shown in Mason et al. (1995), Ὕ᷾ Ὕ ὝϽ, so that we can 

simply obtain the square of ὝϽ as  

ὝϽ Ὕ᷾ Ὕȟ    (4.4) 

where Ὕ᷾  is the Ὕ  of all variables in ɜ᷾ Ὥ. The distribution of ὝϽ follows a chi-

square distribution with one degree of freedom. With a given significant level ‌, we can 

choose a control limit …ȟ  for ὝϽ and determine shifted variables in ɱ if ὝϽ …ȟ  for 

all Ὥɴ ɱ. 
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Proposition 1.  Suppose that ɜ is a subset of unchanged variables and ɜ  is known in 

advance. Then for Ὥɴ ɱ,   

0ÒὝϽ …ȟ ὖὶὝ …ȟ Ȣ   (4.5) 

When Ὁὢ ‘ , both ὝϽ and Ὕ  follow a central chi-square distribution with one 

degree of freedom. In this case, 0ÒὝϽ …ȟ ὖὶὝ …ȟ . When Ὁὢ ‘

‏ where ,‏ π, the distributions of ὝϽ and Ὕ  depend on the noncentrality parameters, 

‗ and ‗, of chi-square distributions, respectively. Since ‗ ‗,  0ÒὝϽ …ȟ

ὖὶὝ …ȟ   

 

Figure 4.1 Power functions of ὝϽ with various ” when ὢ ὔͯ‏ȟρ and ὢ ὔͯπȟρ 
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Since ρ ” ρ, if  ὢ is close to target value, then Pr( ὝϽ Ὕȿὢ ὼ ᴼ

ρ ὥί ὼᴼπ. Thus  ὝϽ can be significant, although Ὕ  is not significant. The power 

functions of a shift ‏ can be defined as 

‏‍ ὖὝϽ …ȟ ȟ 

where ‌ is a significant level. The function ‏‍ is continuous in ‏, and ‏‍ ‌, 

when ‏ π. When ” π, the distribution of ὝϽ is equivalent with that of Ὕ . The slope 

of power functions with larger ” is steeper than those with smaller ”.  

As a special case, when Ὓ Ὦ and ῲ ρȟȣȟὮ ρȟὮ ρȟȣȟὴ, the conditional 

ὝϽ statistic is closely related to Hawkins’ regression-adjusted variable. Hawkins (1991, 

1993) shows that the test static ὝϽ is based on the optimal test statistic when a shift 

occurs only in the jth component of X.  However, the conditional statistic is often far 

from optimal when ȿὛȿ ρ.  

4.3 Adaptive step-down procedure 

In practice, the subset of variables that are not affected by assignable causes is 

often unknown. In this case, the step-down procedure (Sullivan et al. (2007)) and the 

MYT decomposition (Mason et al. (1995, 1997)) have been shown to be effective in the 

interpretation of the OC signal. However, interpretation eǟorts based on these approaches 

may require numerous computations. From the point of view of computational 

complexity, they depend on exponential-time algorithms, and this fact might discourage 

quality practitioners.  

In this section, we propose an adaptive step-down procedure based on conditional 

Ὕ  statistics on a group of selected variables, ɜ. In each step, the proposed adaptive 
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procedure selects a variable with strong evidence of no change given previously selected 

variables. The variable at Ὥth step is selected as   

‎ ÁÒÇÍÉÎ ɵὝϽȟ     (4.6) 

where ɜ ‎ȟ‎ȟȣȟ‎  is a group of variables selected by the previous step. When 

Ὥ ρ, the set ɜ is empty. In this case, we set ὝϽ Ὕ , where Ὕ  is the unconditional Ὕ  

of an individual variable. 

The procedure has two decision rules. The first rule is to detect fault variables. If 

the conditional ὝϽ is larger than a threshold value …ȟ , where ‌ are a significance 

level for fault variables, then the conditional ὝϽ for all Ὦɵ  ɜ exceeds …ȟ . In this case, 

we can conclude all variables not in ɜ  are fault variables.  

The second decision rule is to keep from selecting a fault variable and adding it 

into ɜ.  If Ὕẕ …ȟ , where ‌ is a significance level for the group of unchanged 

variables and  Ὕẕ  follows a chi-square distribution with i df, then the selected 

variable at the ith step can be a fault variable. To provide early notification if a fault 

variable is selected, we suggest choosing ‌ with relatively larger value than the Type I 

error of the control chart used for mean shift detection. In this case, the procedure stops 

and identifies which variables not in ɜ are fault variables. As commented in the previous 

section, the conditional ὝϽ for all Ὦɵ  ɜ can be powerful test statistics for identifying 

which variables not in ɜ are fault variables. When both ὝϽ …ȟ  and  Ὕẕ …ȟ  

are satisfied, then adds  ‎ into ɜ and move to the next step. In this section, we set 

‌ ‌ for simplicity.  

4.3.1 Initial variable selection 
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The proposed procedure begins with selecting a variable with statistically 

strongest evidence of no change. Although different schemes can be used for the initial 

variable selection, it seems reasonable to select a variable based on correlation 

information between variables as  

‎ ÁÒÇÍÉÎȟȣȟὝϽȟȣȟ ȟ ȟȣȟȟ    (4.7) 

where ὝϽȟȣȟ ȟ ȟȣȟ is the conditional Ὕ  value of jth variable on the remaining ὴ ρ 

variables, ρȟȣȟὮ ρȟὮ ρȟȣȟὴ . The conditional value can be easily obtained as 

ὝϽȟȣȟ ȟ ȟȣȟ Ὕ Ὕȟȣȟ ȟ ȟȣȟ , where  Ὕȟȣȟ ȟ ȟȣȟ  is the Ὕ  of the 

remaining ὴ ρ variables. When the mean of each variable is on-target, ὝϽȟȣȟ ȟ ȟȣȟ 

follows a … distribution with one df. When Ὕ …ȟ , we stop and conclude that all 

variables whose Ὕ …ȟ for Ὦɴ ρȟȣȟὴ are fault variables.  

4.3.2 Design of parameters 

The design of an adaptive step-down procedure involves the choice of parameters 

‌ and ‌.  The significance level ‌ is to test whether the mean of a variable is changed 

and ‌  is to maintain ɜ having no fault variables. The choices of ‌ and  ‌   are 

considered in Table 4.1. This compare the identification performance with various ‌ and  

‌ when p = 10. Let π and „
ȟ

, where „ ρ and „ ”. Diagnostic 

analysis is executed 10,000 times whenever the Hotelling’s Ὕ  chart with ὃὙὒ ςππ 

detects a shift of the mean vector. The shifted mean vector is defined as  , 

where ‏ȟȣȟ‏ Ȣ  When the mean of the jth variable is shifted, ‏ π, while 

‏ π when the mean is not changed. The performance measure is the relative frequency 
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that the proposed procedure identifies fault variables exactly, which means no fault 

variables are missed and all fault variables are identified.    

It is expected that the corresponding variable with large ‏ can be easily identified 

as a fault variable even with smaller ‌, but may not  falsely identify unchanged variables 

with high probability. So smaller ‌ may provide better correct identification rate when 

single variable is changed. However, when the means of multiple variables are changed, 

smaller ‌  can often miss fault variables, while larger ‌  can identify unchanged 

variables as fault with higher probability.   

The basic strategy of selecting ‌, which is a significance level for the group of 

unchanged variables, is to choose ‌ ‌ as large as the detection performance of the 

adaptive step-down procedure is not affected, since larger ‌  can stop the procedure 

earlier. However,  ‌ is too large, the procedure can stop at the first step and then use p 

unconditional Ὕ  for identification. Suppose that the procedure is at ith step after 

selecting ‎ with ὝϽ …ȟ . If the selected one is a fault variable and ‌ ‌, then a 

fault variable ‎ can be added into ɜ since Ὕẕ Ὕ ὝϽ …ȟ .  However, when 

‌ ‌ , it can be Ὕẕ …ȟ even ὝϽ …ȟ . In this case, instead adding the 

variable ‎  into ɜ, it stops the procedure and tests using conditional Ὕ  given ɜ, a group 

of variables having no significant evidence of a change. Table 4.1 shows that the 

procedure with ‌ πȢπυ  provides slightly bad performance than those with ‌ πȢπρ 

and 0.005, while the procedures with  ‌ πȢπρ and 0.005 provides the same results. 

Hence we suggest using ‌ ‌ for the group of unchanged variables.  
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Table 4.1 Relative frequencies identifying fault variables exactly with different ‌ and  

‌ when ”  0.75, 0.5, and 0.25 

 
‌ πȢπυ 

 
‌ πȢπρ 

 
‌ πȢππυ 

‌ 0.05 0.01 0.005  0.05 0.01 0.005  0.05 0.01 0.005 

Shifts ”  0.75 

 0.21 0.21 0.21 1 =‏
 
0.54 0.54 0.54 

 
0.61 0.61 0.61 

 0.51 0.51 0.50 2 =‏
 
0.84 0.85 0.85 

 
0.91 0.91 0.91 

 0.63 0.63 0.63 3 =‏
 
0.91 0.91 0.91 

 
0.95 0.95 0.95 

 0.27 0.27 0.27 1 =‏ ,1 =‏
 
0.32 0.32 0.32 

 
0.25 0.25 0.25 

 0.62 0.62 0.62 2 =‏ ,2 =‏
 
0.78 0.78 0.78 

 
0.77 0.77 0.77 

 0.70 0.70 0.70 3 =‏ ,3 =‏
 
0.92 0.92 0.92 

 
0.96 0.96 0.96 

 ”  0.50 

 0.42 0.42 0.43  0.36 0.37 0.36  0.11 0.11 0.11 1 =‏

 0.80 0.80 0.80  0.71 0.71 0.70  0.33 0.33 0.33 2 =‏

 0.92 0.92 0.92  0.86 0.86 0.86  0.53 0.53 0.52 3 =‏

 0.12 0.12 0.12  0.17 0.17 0.17  0.14 0.14 0.14 1 =‏ ,1 =‏

 0.47 0.47 0.47  0.55 0.55 0.55  0.46 0.46 0.46 2 =‏ ,2 =‏

 0.83 0.83 0.83  0.84 0.84 0.84  0.64 0.64 0.64 3 =‏ ,3 =‏

 ”  0.25 

 0.34 0.34 0.34  0.29 0.29 0.29  0.08 0.08 0.08 1 =‏

 0.71 0.71 0.71  0.63 0.63 0.62  0.25 0.25 0.24 2 =‏

 0.88 0.88 0.88  0.81 0.81 0.81  0.42 0.42 0.42 3 =‏

 0.07 0.07 0.07  0.10 0.10 0.10  0.10 0.10 0.10 1 =‏ ,1 =‏

 0.33 0.33 0.33  0.42 0.42 0.42  0.35 0.35 0.35 2 =‏ ,2 =‏

 0.64 0.64 0.64  0.70 0.70 0.70  0.57 0.57 0.57 3 =‏ ,3 =‏
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4.3.3 Implementation of the adaptive step-down procedure 

Practitioners who wish to apply the proposed procedure can follow the steps 

below. The decision threshold values …ȟ and …ȟ  for Ὥ ρȟȣȟὴ can be obtained prior 

from a … distribution with i degree of freedoms with pre-specified significant level ‌ 

and ‌.  

Let Ὓ ρȟȣȟὴ, and set Ὥ ρ and ɜ .ɲ 

(1) Compute ‎ ÁÒÇÍÉÎᶰ ὝϽȟȣȟ ȟ ȟȣȟȢ 

(2) Repeat step a - d until Ὕẕ …ȟ .  

a. Set ɜ ɜ᷾ ‎ .  

b. Increase Ὥ by 1, Ὥ Ὥ ρ.  

c. Compute ‎ ÁÒÇÍÉÎᶱ ὝϽ. 

d. Stop repetition and move to (3) if ὝϽ …ȟ . 

(3) Stop and declare variables whose ὝϽ …ȟ  for all Ὦɵ  ɜ as fault variables. 

The proposed procedure reduces the computation complexity dramatically 

compared with the approximation procedure of the MTY decomposition (1997). The 

procedure does not investigate all decompositions to alleviate fault variable 

identification. In worst case, the number of test statistics is ὕὴ ὴὴ ρȾς. When 

all variables are independent, the proposed test statistics are equivalent with individual 

Ὕ  test statistics (Doganaksoy et al. 1991). 
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4.3.4 Relationship with MYT decomposition 

Suppose that the proposed procedure stops at (p-1)th step. Then the proposed 

procedure computes all conditional terms of one MYT decomposition (Mason et al. 

1995) as   

Ὕ Ὕ ὝϽ Ễ Ὕ Ͻȟȣȟ Ȣ   (4.8) 

Note that the diagnostic procedure starts after Hotelling’s Ὕ  chart signals since the value 

of Ὕ  statistic is significantly large. In this case, since a group of variables 

‎ȟ‎ȟȣȟ‎   has no evidence of a change, the final variable ‎ is a fault variable with 

high probability.   

4.4. An example 

We illustrate our proposed procedure using dataset of switch drums from Flury 

and Riedwyl (1988) and Hawkins (1991). The dataset contains five variables (p = 5): ὢ 

is the inside diameter of the drum, and ὢ, ὢ, ὢ, ὢ are distances from the head to the 

edges of four sectors cut in the drum. The target mean of X  is   (17.96, 10.30, 

11.08, 8.26) and the standard deviation is (1.8622, 1.7053, 1.7090, 1.8718, 2.2114). The 

covariance matrix of standardized variables is defined as 

 

 

1 0.1388 0.3496 0.0829 0.2652 

0.1388 1 0.7324 0.9130 0.6932 

0.3496 0.7324 1 0.6824 0.8214 

0.0829 0.9130 0.6824 1 0.7640 

0.2652 0.6932 0.8214 0.7640 1 

A sequence of 50 observations is presented in the dataset. After first 35 observations, the 

marginal standard deviation of ὢ  is increased by 0.5 and an upward shift of 0.25 

standard deviation is given to ὢ. All other correlations and means are left unchanged. At 
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48th observation, X = (13.065, 11.625, 14.923, 12.589, 12.446), Hotelling’s Ὕ  control 

chart signals as Ὕ ρψȢρω > …ȟ= 15.09, where ‌ πȢπρ significnat level. In step 1, 

the 3th variable has provides strongest evidence of no change, where ὝϽȟȟȟ= 0.80. 

Then ‎ σ so that ɜ σ in step 1. In step 2, the conditional Ὕ  values given ὢ are 

evaluated, and select ‎ ς  since ὝϽ has the smallest value among {ὝϽ, ὝϽ, ὝϽ  so 

that ɜ ςȟσ. Similarly, we select ‎ τ so that  ɜ ςȟσȟτ in step 3. After step 3, 

the step-down procedure stops since both ὝϽȟȟ and ὝϽȟȟ are significantly large, and 

identify both ὢ  and ὢ  are fault variables. The identification of ὢ  and ὢ  as the 

variables contributing significantly to the signal is similar to the conclusions reached by 

Hawkins (1991). Mason et al. (1995) show that 31 terms are significant, and ὢ, ὢ, ὢ 

are identified as changed variables when the shortened sequential procedure (Mason et al. 

1997) are used. When we test only unconditional Ὕ  for individual variables, ὢ  is 

identified as changed variable. 

Table 4.2 Conditional and unconditional Ὕ  values of all steps in the proposed procedure 

Step Test Statistics 

1 ὝϽȟȟȟ = 10.77 ὝϽȟȟȟ = 1.44 ╣Ͻȟȟȟ= 0.80 ὝϽȟȟȟ = 2.98 ὝϽȟȟȟ = 8.30 

2 ὝϽ  9.36 ╣Ͻ = 0.17 ὝϽ = 0.22 ὝϽ = 5.47  

3 ὝϽȟ  9.22 ╣Ͻȟ = 0.05 ὝϽȟ = 5.32   

4 ὝϽȟȟ = 9.20 ὝϽȟȟ = 6.73    
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4.3 Performance comparisons 

We now compare the proposed diagnostic procedure with the existing procedures 

such as step-down procedure (Sullivan et al. (2007)) and LASSO-based procedure (ZOU 

et al. (2011)). In this study, only mean shifts are presented to the variables and there are 

no changes in the variable relationships, that is, correlations between variables. For 

performance comparisons, the relative frequency that the diagnostic procedures identify 

fault variables exactly (CR) is used to evaluate the performances of a diagnostic 

procedure. 

The diagnostic procedures are executed 10,000 times after Hotelling’s Ὕ  chart 

with ὃὙὒ ςππ signals.  Significance level for step-down procedures is set to 0.05, 

where Sullivan et al. (2007) use the value about optimal. For  compositions, the 

significance level is set to 0.005 for the proposed adaptive step-down (ASD) procedure.  

In this simulations, we set  and „
ȟ

, where „ ρ and 

„ ”, for simplicity. The shifted mean vector is , where ‏ȟȣȟ‏ Ȣ 

For performance comparisons, relative frequencies are considered to evaluate the 

performances of diagnostic procedures. A diagnostic procedure performs better if relative 

frequency is larger. We assume that a Hotelling’s SPC detects a shift at time Ὕ, and then 

the diagnosis procedures start.  

4.3.1 Performance comparisons using only the last observation responsible for the 

OC signal 

Figure 4.2 compares relative frequencies of the adaptive step-down (ASD) and 

MYT procedures using only the last point ἦ  that generate an OC signal. Two fault 
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scenarios are used for comparisons: (a) ɱ υ and (b) ɱ ρȟυ.  Because we assume 

only mean shifts, unconditional Ὕ  statistics for individual variables in the MYT 

procedure are evaluated for identifying mean shifts as suggested by Mason et al. (1995, 

1997). For both procedures, we use 0.005 as the Type I error probability. When shift size 

is small, performances of both procedures are poor in Figure 4.2 (a) with single fault 

variable. However, the CR of ASD increases fast with the shift size increased by 5.0.  In 

most situations, the ASD procedure outperforms the MYT procedure by a large 

difference, especially when shift sizes are between 1.0 and 4.0. 

4.3.2 Performance comparisons using OC observations based on estimated change 

point 

As shown in Zou et al. (2011), the performance of LASSO-based approach 

strongly depends on the number of OC observations. The LASSO-based procedures (Zou 

and Qui (2009) and Zou et al. (2011)) estimates the shift location first, and then do 

diagnostic procedures using the mean of all observations after that the location. For fair 

comparisons, we follow the change point estimation based on the MLE-based 

multivariate change point estimator (Zamba and Hawkins (2006)). The location of change 

point † is defined as  

†Ƕ ÁÒÇÍÉÎὝ ὸἦ◄ ἦἼ , 

where T is the time that a SPC chart detects a shift and ἦ◄ ╣ ◄
В ἦ░
╣
░◄ . In this 

comparison, the mean  ἦⱲ is used for fault identification, instead of ἦ╣.  
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(a) 

 

(b) 

Figure 4.2 Performance comparisons with various fault variables when only the last 

observation is used with (a) ɱ υ and (b) ɱ ρȟυ 

 

Figure 4.3 compare relative frequencies of the adaptive step-down (ASD), the 

step-down, and LASSO procedures with various shift sizes when the mean of the 5
th
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variable is changed. Compared with Table 4.2, the simulation results show that relative 

frequencies of both procedures are increasing when shift sizes are less than 4.0.  When 

sift size is large, the SPC detects the shift immediately, so that the last observation can be 

used for diagnosis in most case. Because of estimation error, the performances of the 

ASD in (a) and (b) of Figure 4.3 are slightly worse than those of Figure 4.2 when sift size 

is large. As expected, the performance of LASSO procedure is improved when the shift is 

detected later. 

For performance comparisons, we also compare the expected error rates in mean 

shift decisions (EER) defined as  

%%2Ὁ
  

  
Ὁ В ȿὍᶰ Ὅᶰ ȿȾὴ , 

where number of errors is the number of missed fault variables and falsely identified 

variables. When a diagnostic procedure identifies fault variables exactly, CR = 1 and 

EER = 0, while CR=0 and EER = 1 when all identified fault variables are false and all 

fault variables are missed. Thus a diagnostic procedure performs better if its value in 

column “CR” is larger and its value in column “EER” is smaller. The results in Table 4.3 

and 4.4 show that the proposed approach has comparable diagnostic ability to other 

procedures.  
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(a) 

 

(b) 

Figure 4.3 Performance comparisons of ASD, step-down, and LASSO procedures with 

(a) ɱ υ and (b) ɱ ρȟυ 
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Table 4.3 shows the effects of the locations and the number of fault variables. 

Overall performance decreases as the number of fault variables increases. The 

performance of step-down and ASD procedure are more improved than LASSO when the 

locations of fault variables are closer (more correlated) in both 2 and 3 fault variables.  

Table 4.3 Performance comparisons of ASD, step-down, and LASSO procedures with 

various location of shifts when ‏ σȢπ, for Ὥɴ ß 

  Step-down LASSO ASD 

 ɱ CR EER CR EER CR EER 

{1} 0.881 0.017 (0.052) 0.760 0.035 (0.074) 0.906 0.013 (0.050) 

{5} 0.901 0.014 (0.048) 0.756 0.035 (0.074) 0.915 0.012 (0.046) 

{1,10} 0.581 0.051 (0.070) 0.577 0.062 (0.087) 0.697 0.038 (0.066) 

{5,6} 0.794 0.032 (0.077) 0.611 0.059 (0.089) 0.839 0.026 (0.077) 

{1,5,6} 0.410 0.093 (0.099) 0.463 0.087 (0.101) 0.508 0.079 (0.098) 

{4,5,6} 0.570 0.076 (0.113) 0.452 0.091 (0.105) 0.590 0.097 (0.158) 

 

Table 4.4 Performance comparisons of ASD, step-down, and LASSO procedures with 

” πȢςυȟπȢυȟπȢχυ 

  Step-down LASSO ASD 

 ” CR EER CR EER CR EER 

0.25 0.294 0.100 (0.087) 0.434 0.087 (0.095) 0.372 0.098 (0.094) 

0.50 0.410 0.093 (0.099) 0.463 0.087 (0.101) 0.508 0.079 (0.098) 

0.75 0.774 0.038 (0.090) 0.534 0.082 (0.118) 0.854 0.029 (0.089) 
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Table 4.4 shows the effects of ” when ‏ σȢπ, for Ὥɴ ɱ ρȟυȟφ and p = 10. 

As shown in Table 4.4, the proposed procedures outperform the LASSO procedures by a 

large margin when ” = 0.75.  However, when ” is small, CRs of LASSO procedure are 

better than those of the ASD and step-down procedures. This is because the penalty 

functions of LASSO do not use correlation information. By simulations, ” is increasing, 

relative frequencies of ASD tend to superior to those of step-down and LASSO 

procedures. 

Note: Because the step-down procedure requires ς  computations, it takes 

significant computation time when p is large. Average computation times and standard 

deviations of the step-down and the proposed adaptive step-down procedures for single 

diagnosis with p = 10, 15, 20 and 25 are shown in Table 4.5. When p = 25, the average 

execution time of the step-down procedure is about 44 minutes, while that of the 

proposed procedure is about 0.02 seconds. Therefore the step-down procedure is not 

practical for automatic processes that adjust fault variables automatically after 

identification when p is large.   The experiments were executed on Window 7 (64 bits) 

desktop with 8GB RARM and 2.10 GHz Dual-Core CPU.   

Table 4.5 Average computation time (standard deviations) in seconds for single diagnosis 

p Step-down Adaptive step-down 

10 0.0810 (0.0379) 0.0035 (0.0012) 

15 2.1800 (0.0459) 0.0068 (0.0013) 

20 75.2758 (0.6705) 0.0112 (0.0013) 

25 2643.5394 (4.6083) 0.0180 (0.0011) 
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4.4. Conclusions 

When a shift in the mean vector is detected, identifying which variable or a group 

of variables causes an out-of-control signal is very crucial. Conventional diagnosis 

approaches such as step-down and MYT decomposition are theoretically sound for 

diagnosing root-causes of the process change, but computationally impractical for a large 

number of variables.  

In this chapter we develop an adaptive step-down procedure using conditional 

Ὕ  statistics for fault variable identification. By selecting a variable having no significant 

evidence of a change based on the variables that are selected in previous steps, we can 

construct single decomposition among ὴȦ MYT decompositions.  

The proposed procedure provides reasonable computational complexity in high-

dimensional processes and enhances diagnostic power in identifying the shifted 

components of the mean vector when a shift occurs only in a few variables. As shown in 

simulations, the proposed procedure outperforms the MYT and Step-down procedures. 

Moreover, the proposed procedure is superior to the LASSO-based procedure when shift 

sizes are not small. In future work, we may extend our procedure for both monitoring and 

diagnosis in multistage process.  
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CHAPTER 5   

PROCESS MONITORING IN MULTISTAGE PROCESSES 

WITH AUTOCORRELATED OBSERVATIONS  

 

5.1 Introduction  

As modern manufacturing industries become more sophisticated, it is common to 

find a production process involving multiple stages such as those found in pharmaceutical 

manufacturing, chemical industry and semiconductor manufacturing. Most of the 

multistage SPC approaches treat the multistage system as a whole and lack the capability 

of discriminate among changes at different stages (Montgomery and Woodall 1997, Shi 

and Zhou 2009). A regression adjustment method named cause-selecting chart was 

proposed to model two-stage processes using simple linear regression and then 

monitoring the residual of the current stage by subtracting the impacts from the previous 

stage (Zhang 1992, Hawkins 1991, 1993).  

Recently, some multistage SPC approaches are developed to exploit the detailed 

structure of multistage systems to achieve high detection power and diagnostic capability. 

For example, an exponentially weighted moving average scheme under the static state 

space model is proposed as a monitoring method for multistage systems (Xiang and 

Tsung 2008, Zou and Tsung 2008). Methodologies for identifying in-control samples and 

adjusting the detection power for multistage systems are reported in (Zou et al. 2008, Li 

and Tsung 2009).  
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Figure 5.1 shows the complex data relationships in a multistage manufacturing 

process (MMP) where the X, Y, and Z axes represent the manufacturing stages, the time, 

and the quality attributes, respectively, and ὓ  identifies the quality features.  There are 

three types of correlations among such data streams in an MMP (Shi 2007): (i) the quality 

attributes are correlated in terms of the stages along the production line (e.g., ὓ   along 

the X axis); (ii) the quality attributes are correlated among them within the same stage 

([ὓ ,…, ὓ ] at stage N along the Z axis); and (iii) each quality attribute is also auto-

correlated in terms of time due to the degradation or wear of production tooling over time 

(ὓ , i=1, 2, …,m along the Y axis). Those three types of correlations, observed as a 

stream of data, introduce significant challenges in variation modeling, analysis, and 

control.  However, there are no available multistage process monitoring procedures that 

address the autocorrelation along the Y axis. All existing approaches assume that the data 

generated within the same stage are independently distributed (Li and Tsung 2009, 

Fenner et al. 2009, Zhou et al. 2004, Jin and Tsung 2009, Shi 2007).   

 

Figure 5.1 Complex data relationships in an MMP (Shi 2007) 
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The assumption of uncorrelated or independent observations is not even 

approximately satisfied in most of continuous and batch manufacturing processes such as 

chemical processes (e.g., liquefied natural gas (LNG) processes) where consecutive 

measurements on product characteristics are often highly correlated due to automated test 

and inspection procedure as well as  the chemical reaction processes, where the quality 

characteristics are measured on every unit in time order of production (Montgomery 

2008, Rosotowski and Schmid 2006, Jarrett and Pan 2007). As an example, a simplified 

LNG process is composed of five stages is shown in Figure 5.2. Natural gas is a naturally 

occurring hydrocarbon gas mixture consisting primarily of methane (CH4), with other 

hydrocarbons (usually ethane) as well as small amounts of impurities such as carbon 

dioxide. Through multiple stages natural gas is treated to remove dust, water, hydrogen 

sulfide, carbon dioxide and other components to increase a percentage of methane (CH4). 

Figure 5.3 shows a plot of 100 observations of the percentage increase of methane by the 

removal of certain components (i.e., CO2, Hg, heavy hydrocarbons, respectively), of the 

first three stages of the multistage LNG process shown in Figure 5.2 when all three 

processes are in control. Close examination of this plot reveals that the behaviors of the 

three state variables (ὼὸ, i = 1, 2, 3) over sampling time t are not independent because 

a value of ὼὸ, that is above (or below) the long-term average tends to be followed by 

other similar values. 

Most of continuous-time multistage processes use the dynamic state space model 

while discrete-time multistage processes use the static state space model to explain the 

input and output relationships of the processes. Under such conditions traditional 

multistage SPC techniques may be inappropriate for monitoring process quality, and thus 
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more appropriate correlated models should be considered. A thorough review of the 

literature shows that there is no prior work dealing with these autocorrelated models.  

This chapter investigates the continuous state multistage processes with correlated 

observation. Approaches for monitoring the process means and variances are developed 

and their performance is evaluated. 

 

Figure 5.2 An example of a multistage model in an LNG process 

 

(a)     (b)    (c) 

Figure 5.3 State variables in a three-stage model at (a) stage 1, (b) stage 2, and (c) stage 3 

 

5.2  Multistage models and variability p ropagation 

5.2.1 Discrete-time multistage process model 

A multistage process model is described by incorporating engineering knowledge 

with statistical model-based methods to explore the relationship among stages (Jin and 

Shi 1999, Basseville and Nikiforov 1993, Ding et al. 2002, Huang et al. 2002, Fenner et 

al. 2005, Agrawal et al. 1999). In order to characterize the propagation of variation of 

quality characteristics in multistage systems, the following linear model of quality 
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measurement at the kth stage of a process with ὲ stages is proposed (Jin and Shi 1999, 

Ding et al . 2002, Huang et al . 2000, Zhou et al . 2003). For stations k = 1, …,l, 

 ὣ ‍ ὣ ‐,      (5.1) 

where ὣ is the quality characteristic variable of the kth stage, ‐ is the process noise, 

‐ ὔͯπȟ„ , and ‍  is the regression coefficient of   ὣ on ὣ , which is assumed to 

be a known constant. In the linear model,  ‍ ὢ  represents the transformation of 

quality information from stage k-1 to stage k. Cause-selecting charts (Zhang 1984, Shu et 

al. 2004) is  based on the two stage linear model dealing with the cases where an output 

variable under the normality assumption is a linear function of an input variable.  

When the mean of the state variable at stage k is shifted at some time, the out-of-

control (OC) process model can be represented (Lawless et al. 1996, Lui 2010) as   

ὣ ‍ ὣ ‐  (5.2)    ‏

where ‏ π is a shift level induced by the process variation sources at stage k. The 

popular state space models of equation (5.1) are used for the process monitoring of 

discrete-time multistage processes such as discrete assembly and machining processes 

where a static linear state space model is assumed. However, in many manufacturing 

systems such as LNG production process, the system is a continuous-time multistage 

processes where the dynamic state space model is used. A thorough literature review 

reveals that the variability propagation models for first-order or higher-order dynamic 

state space have not been investigated.   

5.2.2 Continuous-time multistage process model 

We develop models to capture the propagation of mean and variance shifts of 

autocorrelated multistage processes. The propagation models can capture the correlations 
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between two stages and autocorrelations of observations over time within the same stage 

while existing state space model can capture only the correlations between stages. Using 

the proposed propagation models, the mean and variance of the state variable for each 

stage can be estimated, which serve as the basis to construct the observations-based 

control charts. 

An important characteristic of multistage manufacturing systems is that the 

quality of a product at the end of stage k depends on the performance of stage k as well as 

the input to stage k from previous stages. Also, the shifts of either mean or variance at a 

certain stage can affect the mean and variance of both that stage and subsequent stages. 

The state space models of equation (5.1) are used to explain this relationship that 

characterizes the propagation of variation of quality characteristics in multistage systems. 

However, as we mentioned in Section 5.1.1, the state space model is developed for 

discrete-time multistage processes where the static linear state space model is used and 

observations of a given state variable over time at the same stage are assumed to be 

independently distributed. However, in many manufacturing systems such as LNG 

systems, the system is a continuous-time multistage process where the first-order 

dynamic linear state space model is used and observations of a given state variable within 

the same stage are autocorrelated over time. In this section, we develop new variation 

propagation models under the linear dynamic state space for continuous processes to 

monitor the mean and variance of autocorrelated multistage systems.  

To model a continuous-time multistage process, we consider an ὰstage, 

continuous flow production process, in which stages are indexed by Ὧᶰρȟȣȟὰ.  Each 

stage has its own characteristics that transform the input into an output for the 
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downstream stage. To model an autocorrelated process, the following series of first order 

differential equations are used (English et al. 1991, Runger 2002): 

Ὠὣ ὸ

Ὠὸ
ὥὣ ὸ ὦὣ ὸ ‐ ὸ 

where ὥ and ὦ are state parameters, ὣ ὸ is a univariate state variable with continuous 

time Gaussian white noise ‐ ὸͯ ὔπȟ„  of the ith stage at time t, which propagates to 

the next stage.  When ὣ ὸ’s are observed at small, equally spaced intervals of time ɝὸ, 

where † π and † † ɝὸ  for Ὦ ρȟςȟȣ, we can approximate the general 

solution ὣ †   of equation (5.2) as follows 

ὣ † ὣ † Ὡ ὣ † ρ Ὡ ‐ † ρ Ὡ   (5.3) 

Then, the process can be characterized by the following state space model with 

autoregressive process of order one, AR(1), 

ὣ †  ὣ † ὃὣ † ὡ †   (5.4) 

where  ὃ ρ Ὡ  and   Ὡ  are one dimensional, ὡ †

‐ † ρ Ὡ   is a Gaussian white noise with mean 0 and variance „

ρ Ὡ „ . 

5.2.3  The propagation of variability from a stage to the subsequent stages 

The following explains how the shift of the mean of stage Ὧ is propagated to the 

means of subsequent stages. Suppose that the mean of a state variable ὣ ὸ of stage k is 

changed from ‘ to ‘ ‘ ‏ , where ‏ π at time 1t . The mean of a state 

variable ὣ ὸ of stage Ὧ Ὥ is given by 
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Ὁὣ ὸ

Б ώȟ                                                            ὸ ὸ

Б ὼ Б‏ ρ Ὡ  ȟὸ ὸ
, (5.5) 

where ώ is an initial state. Based on the equation (5.5), the expected value of a state 

variable ὣ ὸ  of the final stage n , Ὁὣ ὸ  at time t is given by 

Ὁὣ ὸ

Б ώȟ                                                               ὸ ὸ

Б ώ Б‏ ρ Ὡ  ȟὸ ὸ
. 

For example, in two-stage model, when the mean of a state variable at stage 1 is shifted, 

then  Ὁὣὸ , shifts from m1  to  m d1 1+ , where 1 0d¸  at time 1t  under a two-stage 

process as 

Ὁὣὸ
ώȟ           ὸ ὸ

ώ ȟὸ‏ ὸ
, 

then the mean of the a state variable ὣ ὸ at stage 2  is given by 

Ὁὣ ὸ
ώȟ                                           ὸ ὸ

ώ ‏ ρ Ὡ ȟὸ ὸ
. 

Figure 5.4 shows how the expected values of state variables at each stage can change 

over time. As shown in Figure 5.4 (a), a mean shift of a state variable at stage 1 occurs at 

time Ô, which will be propagated to the mean of a state variable at stage 2. As shown in 

Figure 5.4 (b), the mean of the state variable at stage 2 shows (i) a step change in case of 

an existing static state space model (  =0), or (ii) a nonlinear change pattern with faster 

increase over time for a higher autocorrelation in the proposed dynamic state space 

model, which results in an earlier detection of a mean shift at stage 1.  
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Figure 5.4 Effect of an autocorrelation on the propagation of a mean shift at stage 1 to 2 

5.3 Detection of process changes of the mean in multistage processes 

When one of the stages of the multistage processes experiences a malfunction or 

does not maintain the levels of its parameters, a consequence of such a change will be 

reflected in the final product or downstream of intermediate products (Li and Tsung 

2009, Lawless et al. 1999, Jin and Tsung 2009). However, most of existing approaches 

do not consider this cascade property of multistage processes that quality measurements 

at a certain stage are affected by the output quality from preceding stages (Zhou et al. 

2003, Zhou et al. 2004, Ding et al. 2005, Shi and Zhou 2009). In this section, we derive a 

statistical monitoring procedure for quality measurements in autocorrelated multistage 

processes with VAR(1) model. 

5.3.1 Representation of an autocorrelated multistage process as a VAR(1) model 

In section 5.2.2, we show that continuous-time multistage model can be 

represented as autocorrelated multistage model. In this section, we show that the 

autocorrelated multistage process can be represented as a VAR(1) model, which is a 

vector autoregressive model. For simplicity, we use simple form of the equation (5.4) as 

 

(a) A mean shift at stage 1               (b) The propagation of a mean shift at stage 1 

to stage 2 
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ὣ ὥ ‍ ὣ ‰ὣ ‐ȟ  

where ‰  is the autocorrelation factor for Ὥ ρȟςȟȣȟὰȢLet ἧἼ ὣȟȣȟὣ ᴂ, Ἃ

ὥȟȣȟὥ ȟ Ἴ ‐ȟȣȟ‐ ᴂ, then the observation vector can be written as 

ἌἧἼ Ἃ ἧἼ Ἴ, 

where  ÄÉÁÇ‰ȟȣȟ‰  and  

Ἄ

ρ π     π       π
‍
π
π

ρ Ệ ể
Ệ ρ π
π ‍ ρ

. 

The white noise vector, Ἴ, follows multivariate normal distribution with E Ⱡ◄  and 

#ÏÖἼȟἼ = ÄÉÁÇ„ ȟȣȟ„  when all stages are in-control. After multiplying both side 

by Ἄ , we obtain the following VAR(1) model 

ἧἼ Ἃ ἧἼ Ἴȟ     (5.6) 

where Ἃ Ἄ Ἃȟ Ἄ , Ἴ Ἄ Ἴ, and  

Ἄ

ụ
Ụ
Ụ
Ụ
ợ
ρ
ὦ
ὦ
ể
ὦ ȟ

π
ρ
ὦ
ể

  ὦ ȟ

ỄỄ
π
Ệ
Ệ
Ễ

π
Ễ
π
ρ

ὦ ȟ

  π
  π
  ể
  π
  ρỨ
ủ
ủ
ủ
Ủ

ȟ 

where ὦ ‍Ễ‍ for Ὧ Ὦ and ὦ ‍. For example, the VAR(1) model in a two 

stage model can be expressed as 

ἧἼ
ὣ
ὣ

ὥ
‍ὥ ὥ  

‰ π
‍‰ ‰

ὣ

ὣ

‐
‍‐ ‐ , 

where ὣ ὥ ‰ὣ ‐  and ὣ ὥ ‍ὣ ‰ὣ ‐ .  

The properties of the stationary VAR(1) are studied in various time-series areas 

(Hamilton 1994). The stationary VAR(1) model can be rewritten as  

ἧἼ ἓ Ἃ В ,     (5.7) 
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Stationary mean and covariance matrix can be obtained as  

ὉἧἼ ◄ ἓ Ἃ   and  ὅέὺἧἼȟἧἼ ╨ В ░
Ⱡ
░ᴂ░ , 

where ░
Ⱡ
░ᴼπ as ὭO Њ and #ÏÖἼ, Ἴ) = Ⱡ. The covariance matrix of ἧἼ can be 

approximated as ╨ḙВ
░
Ⱡ
░ᴂ░  (Zhang 1998).  

 

5.3.2 Multivariate SPC approaches for detecting mean changes 

5.3.2.1 Observation-based ╣  charts 

Assume that a multistage process consists of l stages and the measurements, 

ἧ 9ȟȣȟὣ  follows a multivariate normal distribution, ὔ ȟ). When the process is 

in-control (IC), the mean vector is Ⱨ Ⱨ , where Ⱨ ‘ȟȣȟ‘ , and the covariance 

matrix , where „
ȟ

, is known and constant over time. When the 

process is out-of-control, the process mean vector is changed to 1 0¸ɛ ɛ. The Hotelling’s 

2T  statistic can be decomposed to identify the fault variables when the control charts 

generate an out-of-control signal, and it is defined as  

( ) ( )2 1

0 0 0 ,Yt t tT -= - -Y ɛ Ɇ Y ɛ
'

      

where 2T  statistic follows a 
2c  distribution with l degrees of freedom when the process 

is in control. With a given false alarm rate ‌, it signals if Ὕ …ȟ . Although 2T  is 

the optimal test statistic for a general multivariate shift of the known process mean 

vector, it is not optimal when some of the process variables are known to be unchanged 

in high-dimensional processes (Lowry and Montgomery 1995).   

5.3.2.2 Residual-based ╣  charts 
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A basic assumption in most classical SPC chats is that the observations are 

independent. However this assumption is not true in autocorrelated multistage processes. 

If it is assumed that observations are independent, but they are correlated in fact, high 

frequency of false alarms can be generated due to larger variance of the process caused 

by autocorrelation. In order to overcome this problem, residuals are often used for 

monitoring autocorrelated observations.  If residuals are independent, then residual-based 

control charts such as Shewhart, EWMA, and CUSUM provide the same detection 

performances with these charts for i.i.d. observations.   

Under the assumption that all parameters are known, we can obtain independent 

residuals using the linear relationship in equation (5.6). Residual vectors can be defined 

as  

Ἥ◄ ἧ◄ ἧἼȟ  

where  ἧἼ Ἃ ἧἼ  for t = 1,2,…., and ἧ . When Ἃ  and  are known, the 

residual vector follows a multivariate normal distribution with Ἥ◄  and #ÏÖἭ◄, Ἥ◄) 

= Ⱡ and. Based on the residual vectors, we can construct Ὕ  statistic as 

Ὕ Ἥ ⱠἭ,  

where Ὕ  follows a 
2c  distribution with l degrees of freedom. 

5.3.3 New multistage SPC approaches using unchanged stages information 

Runger (1996) propose a conditional Ὕ  chart for process monitoring of 

multivariate processes which are known a priori to be stable in control. Let ὖ ρȟȣȟὰ 

is the index set of all variables and Ὓ Ṓὖ be a subset of unchanged variables.  In this 

case, all fault variables belong to ὛӶ ὖ͵Ὓ, which is the complementary set of S. Then the 
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conditional Ὕ  can be derived as Ὕȿ Ὕ Ὕ  for detecting changes in variables in the 

set ὛӶ , where Ὕ  is the Ὕ  of all variables in S. It is easy to see that the conditional Ὕ  

follows a … distribution with degrees of freedom ȿὛӶȿ, where ȿὛӶȿ denotes the number of 

elements in ὛӶ. The conditional Ὕ  chart is shown to be more efficient than the 

conventional Ὕ  of all variables variables in P or variables in ὛӶ.   

Table 5.1 shows the efficiency of the conditional Ὕ  when some information of 

unchanged variables are known. We evaluate the performance of control charts in terms 

of ARL, which is defined as the average number of observations ἧ until the first out-of-

control signal is triggered by the control chart for a given mean shift. In this section, we 

consider ὃὙὒ ςππ for the conventional Ὕ  and fix the number of variables in the 

process to ὲ ρπ. For simplicity, we set  and ”
ȟ

, where ” ρ 

and ” πȢυ, and the means of 3rd and 7th variables are shifted with various magnitudes  

‏ ρȟςȟσȟτȟυ. Let Ὓᶻ be the index set of all unchanged variables,  Ὓᶻ ρȟςȟτȟυȟφȟχȟωȟρπ  

in Table 5.1. When Ὓ Ὓᶻ, the conditional Ὕ  provides always the best performance, 

while the conventional Ὕ  of all 10 variables always performs the worst when Ὓ .ɲ 

Even only two variables are known such as Ὓ ςȟτ, its performance is superior to the 

conventional Ὕ . 

Similar performance improvements in multistage processes are shown in Table 

5.2, which provides the performance comparisons with various S when  Ὓ

ρȟȣȟχȟωȟρπ. For simplicity, we set the parameters „ ρ and ὥ π for Ὧ ρȟȣȟρπ, 

and only the mean of stage 8 is changed. Similarly, when all unchanged stage information 

is known, Ὓ Ὓᶻ, it provides the best performance.  It is clear that the detection 

performance is better when Ὓ is closer to Ὓᶻ in multistage processes. 
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Table 5.1 Performance comparisons with various Ὓ in multivariate processes 

   
Ὕȿ 

  
Ὓ ‏ȟ‏  ɲ Ὓ ςȟτ Ὓ ςȟτȟφȟψ Ὓ ρȟςȟȢȢȟφ Ὓ Ὓᶻ 

0.0 201.07 200.01 201.51 199.21 200.7 

0.5 105.82 94.64 85.84 76.18 51.10 

1.0 27.81 24.30 19.53 14.90 9.36 

1.5 7.53 6.29 5.11 3.98 2.84 

2.0 2.73 2.47 2.12 1.75 1.44 

2.5 1.49 1.38 1.28 1.17 1.09 

3.0 1.11 1.07 1.04 1.03 1.01 

 

Table 5.2 Performance comparisons with various Ὓ in multistage processes 

       Ὕȿ     

Ὓ  ‏  ɲ Ὓ ρȟς Ὓ ρȟςȟσȟτ Ὓ ρȟςȟȢȢȟφ Ὓ Ὓᶻ 

0.0 199.98 197.02 200.29 200.18 201.71 

0.5 131.26 114.38 108.84 98.63 89.79 

1.0 49.86 44.48 36.30 28.42 23.18 

1.5 16.84 14.50 12.07 8.84 7.30 

2.0 6.26 5.44 4.50 3.49 3.04 

2.5 2.92 2.61 2.27 1.88 1.70 

3.0 1.78 1.59 1.45 1.31 1.25 
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5.3.3.1 Unchanged stages identification procedures in multistage processes 

The conditional Ὕ  statistic assumes that the set of in-control stages S is known a 

priori. In practice, the priori information is unknown. In this case, a search among all 

possible subsets can be conducted to select unchanged stages. However, when the 

number of stage is large, searching all subsets can also be impractical. In this case, we 

may need a procedure for unchanged stage identification. Let Ὓ be the subset of P that is 

selected by an identification procedure.   

If the data itself can provide information on the process fault status, then the 

partial information can be used to construct the conditional Ὕ  statistic. In autocorrelated 

multistage processes, cascading property between stages and autocorrelations within 

stages can make it challenging to identify unchanged stages correctly.  In this section, we 

propose a procedure for identifying unchanged stages based on residuals. For a stage 

Ὥɴ ὖ, we can obtain a residual to select the stage has an evidence of unchanged as 

Ὡ ὣ ὣ, 

where ὣ ὥ ‍ ὣ ȟ ‰ὣȟ  is the estimate of ὣ given the observation of the 

previous stage ὣ ȟ and the observation of the one step before the current time ὣȟ . 

However, using single residual Ὡ  at time t can generate considerably many false 

selections, EWMA scheme can be used for more accurate unchanged stages 

identification. For Ὥ ρȟȣȟὰ, the EWMA statistic based on  Ὡ  is given by  

‚ ρ ὶ‚ ὶὩ,     (5.8) 

where π ὶ ρ and  ͯ  ὔπȟρ. Let ὴ  be the p-value of , then we can 

select an estimated unchanged stage set Ὓ as   
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Ὓ Ὥȿ ὴ ‎ȟὭ ρȟȣȟὰ,    (5.9) 

where ‎ is a predefined threshold value. The effect of ‎ is presented in Table 5.2 in terms 

of ARL.  

5.3.3.2 Multistage SPC charts using unchanged stages information 

Because of the i.i.d. property of residuals, we do not consider autocorrelation 

factors and regression factors in selecting unchanged stages. After the selection, we can 

construct conditional Ὕ  statistics to monitor the mean vector of the autocorrerated 

multistage process.  Due to the cascade property, when a shift occurs in early stages such 

as stage 1 or 2, observation-based Ὕ  can detect the shift quickly, while it may be 

insensitive when a shift occurs at later stages such as stage 9 or 10 as shown in Table 5.4. 

Residual-based  Ὕ  statistics are robust regardless of the location where a shift occurs. 

Therefore, we construct the conditional Ὕ  statistics based on residuals as 

ὝὩȿ Ἥ ⱠἭ Ἥ Ὓ Ⱡ ὛȟὛἭ Ὓ,    (5.10) 

where Ἥ Ὓ is a subset of variables in vector Ἥ and  ὛȟὛ is a covariance matrix of 

Ἥ Ὓ. It is easy to show that ὝὩȿ follows a …  distribution with degrees of freedom 

ȿ0͵Ὓȿ.  

Although we consider a Hotelling’s Ὕ -type control statistic using individual 

residual vectors, EWMA-type control charts can be developed in a similar way to 

monitor small shifts. Let ‚ȟȣȟ‚ ᴂ, where ‚  is the residual-based EWMA 

statistic at the ith stage defined in equation (5.8), be the observed residual vector 

collected over time t. In this case, we propose a conditional multivariate EWMA 
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(CMEMWA) chart based on the MEWMA sequence of statistics (Lowry et al. 1992), 

which is defined as 

Ὕȟȿ Ⱡ  Ὓ Ⱡ ὛȟὛ Ὓ,    (5.11)  

where ,  , and ὶɴ πȟρ is a weighting parameter. It signals when the 

test statistic Ὕȟȿ is a greater than a control limit chosen to satisfy a given in-control 

ARL.  

5.3.4  Accuracy of unchanged stages identification procedures in multistage 

processes 

Let Ὓ be a set of selected unchanged stages, where Ὓ Ὥȿ ὴ ‎ȟὭ ρȟȣȟὰ, 

with a given threshold value ‎. The design of unchanged stages identification involves 

the choice of ‎. With the larger ‎, the smaller number of unchanged stages are selected 

with higher probability of Ὓ ṒὛᶻ. However selecting smaller number of unchanged 

stages causes a smaller performance improvement.  When smaller  ‎ is chosen, it is 

expected that larger number of unchanged stages are selected, but it increases false 

selection rate, that is ὛṔὛᶻ. Selecting larger number of unchanged stages causes a larger 

performance improvement when only a few stages are fault stages.  

In this section, we propose a performance measure of accuracy to suggest a 

guideline how to find a proper ‎ value. Basic goal is to select as many as unchanged 

stages without false changed stage selection. It seems reasonable that a performance 

measure (PM) of accuracy satisfies two properties:  

(i) If ὛṒὛᶻ, then ὖὓO ρ as ȿὛȿO ȿὛᶻȿ, 

(ii) If ὛṔὛᶻ, then ὖὓ π. 
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Although other performance measures can be used, we propose a novel measure of 

accuracy as  

ὖὓ
ᶻ᷊

ȿ ȿz
ὖὛṒὛᶻ) +πϽὖὛṔὛᶻ ,   (5.12) 

where ȿὛᶻȿ is the number of elements of Ὓᶻ. The measure can be reformed as  

ὖὓ
ᶻ᷊

ȿ ȿz
ὍṒ ᶻ, 

where Ὅ is the indicator function.  

For the multistage process model, shifts of magnitude ‏ occur at the stages only 

indexed in ὛӶ ὖ͵Ὓᶻ. For instance, when ὛӶ ςȟψ, the means of stages 2
 
and 8 are 

changed by ‏, where the shifts initially occur. Table 5.3 compares the values of PMs with 

various ‎ for two different fault scenarios: (i) single fault stage, ὛӶ υ; (ii) two fault 

stages ὛӶ ςȟψ. In both scenarios, the smaller ‎ provides poor accuracy when the 

magnitude of the mean shift is smaller, while the larger  ‎ is poor when the magnitude 

larger. In general, since most SPC charts detect shift quickly when a shift magnitude is 

large, identifying unchanged stages with the large shift size may improve a little of the 

performance of SPC charts. Thus it may reasonable to give more credits for higher 

accuracy in identifying unchanged stages when the magnitudes of shifts are smaller.  

Table 5.3 shows that ‎ πȢψ provides the lowest accuracy overall, and ‎ πȢυ 

and 0.1 provides low accuracy when the magnitude of shifts is large and high, 

respectively. When ‏ is unknown, it is reasonable to select  ‎ πȢςυ, since it provides 

overall good accuracy for a wide range of small shifts. Table 5.4 compares ARL 

performance of the proposed CMEWMA chart with various ‎ πȢυȟπȢςυȟπȢρ when a 

shift occurs only at stage 5 and both stages 2 and 8. The EWMA parameter used in this 
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simulation is ὶ πȢς and ὃὙὒ ςππ. Generally, the CMEMWA with the larger ‎ is 

sensitive to the smaller shifts, while the CMEMWA with the smaller ‎ is sensitive to the 

larger shifts. Notice that the proposed CMEWMA with ‎ πȢυ  is better than  ‎ πȢςυ 

for signaling shifts ‏ πȢυ, and the CMEWMA with ‎ πȢςυ is better than  ‎ πȢυ 

and ‎ πȢρ for signaling shifts πȢυ ‏ σȢπ. The table reveals that CMEWMA with 

‎ πȢςυ is sensitive to a wide range of small shifts. Hence it is reasonable to select 

‎ πȢςυ when ‏ is unknown. 

Table 5.3 PMs for accuracy with various ‎ in multistage processes 

 
Single fault stage (ὛӶ υ  

 
Two fault stages (ὛӶ ςȟψ ) 

 0.10 0.25 0.50 0.80 ‏
 

0.80 0.50 0.25 0.10 

0.5 0.16 0.28 0.23 0.13  0.14 0.15 0.07 0.02 

1.0 0.18 0.34 0.34 0.24  0.16 0.23 0.16 0.06 

1.5 0.19 0.41 0.48 0.40  0.18 0.32 0.33 0.18 

2.0 0.19 0.45 0.60 0.57  0.19 0.42 0.48 0.36 

2.5 0.20 0.48 0.68 0.72  0.20 0.47 0.62 0.58 

3.0 0.20 0.50 0.73 0.80  0.20 0.49 0.70 0.75 

Table 5.4 ARL performances of CMEWMA with various ‎ πȢυȟπȢςυȟπȢρ 

 
Single fault stage (ὛӶ υ  

 
Two fault stages (ὛӶ ςȟψ ) 

 ‎ = 0.50 0.25 0.10 ‏
 

0.50 0.25 0.10 

0.0 201.71 201.99 199.72  201.28 202.60 200.46 

0.5 61.37 61.44 64.65  35.72 35.84 37.75 

1.0 16.21 15.50 16.69  8.97 8.83 9.24 

1.5 7.80 7.57 7.76  5.02 4.95 5.10 

2.0 5.16 4.95 5.05  3.47 3.40 3.51 

2.5 3.86 3.74 3.84  2.75 2.68 2.72 

3.0 3.14 3.02 3.00  2.27 2.24 2.23 
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5.4 Performance Comparisons 

In this section, we investigate the detection performance of the proposed scheme 

through Monte Carlo simulation and compare the results with existing approaches under 

various combinations of the multistage parameters.  We assume individual observations. 

The in-control process is assumed with a mean of zero and a standard deviation of one for 

each individual variable.  

We evaluate the performance of control charts in terms of ARL, which is defined 

as the average number of observations until the first out-of-control signal is triggered by 

the control chart for a given mean shift. In this section, we consider MEWMA-type charts 

to detect small mean shifts quickly. Here we compare the proposed CMEWMA with 

residual-based MEMWA (RMEWMA) charts and observation-based MEWMA 

(OMEWMA). Similar to the previous simulations, we consider ὃὙὒ ςππ for all 

MEWMA-type charts and set the number of stages in the process to ὲ ρπ with 

parameters „ ρ and ὥ π for Ὧ ρȟȣȟὰ. The proposed CMEMWA chart based on 

the conditional Ὕȟȿ statistic using selected unchanged stages information defined in 

equation (5.11), is compared with OMEWMA and RMEWMA. The smoothing constants 

r for the proposed chart is specified as 0.2 and ‎ = 0.25 is selected based on the results in 

Table 5.2, which presents the effect of ‎. The numerical results show that overall ARL 

performances are almost best when  ‎ = 0.25, while performances with ‎  0.1 and ‎  

0.50 are slightly better when ‏ σȢπ and ‏ πȢυ, respectively. 

In this section, the ARLs for all charts are determined through Monte Carlo 

simulation with 20,000 replications.  For the multistage process model, shifts of 

magnitude ‏ occur at stages indexed in ὛӶ ὖ͵Ὓᶻ. For instance, when ὛӶ σȟυ, the 
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means of stages 3
 
and 5 are changed by ‏, where the shifts initially occur. In the 

simulations, various levels of ‏ πȢυȟρȢπȟρȢυȟςȢπȟςȢυȟσȢπ are considered for single fault 

stage, ὛӶ ςȟυȟω, and two fault stages ὛӶ τȟφ and ὛӶ ρȟρπ.    

Table 5.5 shows the proposed CMEWMA is almost uniformly superior to the 

other two MEWMA charts, OMEWMA and RMEWMA, in detecting small magnitude of 

shifts. The observation-based OMWMA chart exhibits the worst sensitivity in the 

autocorrelated multistage process when shifts occur at downstream stages such as stages 

later than stage 5.  The residual-based charts such as RMEWMA and CMEWMA provide 

considerably robust results regardless of locations. Further, CMEWMA performs 

superior to RMEWMA and OMEWMA charts in detecting overall shifts.  

Table 5.5 ARL comparisons of procedures for shifts with various fault locations 

 
ὛӶ ω 

 
ὛӶ υ 

 
ὛӶ ς 

 RM OM CM ‏

 

RM OM CM 

 

RM OM CM 

0.0 209.11 200.42 200.89 
 

203.15 199.49 201.99 
 
204.09 202.30 200.73 

0.5 68.12 123.98 63.17 
 

68.33 103.58 61.04 
 

66.04 58.41 62.01 

1.0 17.61 39.31 15.47 
 

17.87 30.78 15.50 
 

17.96 17.35 15.57 

1.5 8.70 15.63 7.56 
 

8.63 12.74 7.57 
 

8.42 8.93 7.47 

2.0 5.55 8.92 4.93 
 

5.60 7.64 4.95 
 

5.67 6.17 4.92 

2.5 4.22 6.23 3.72  4.22 5.56 3.74  4.25 4.80 3.72 

3.0 3.42 4.89 3.00 
 

3.42 4.40 3.00 
 

3.42 3.96 3.01 

* RM: RMEMWA, OM: OMEWMA, CM: CMEWMA 

In Table 5.6, we consider the combinations of two different fault stages scenarios: 

(i) fault stages are located relatively close together such as ὛӶ τȟφ ; (ii) fault stages are 

located relatively far from each other such as ὛӶ ρȟρπ. Control limits of OMEWMA, 

RMEWMA, CMEWMA are Ὤ ρȢυȟπȢωφ, 1.4, respectively, for ὃὙὒ ςππ. The 
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experimental results in Table 5.5 and 5.6 reveal that the proposed CMEWMA chart 

perform almost best when shifts occur at the stages that are not too early with reasonable 

level of autocorrelation. Based on simulation results, we conclude that the proposed 

conditional chart, by taking advantages of incorporating unchanged stage information, 

provides considerably large improvements in detecting small shifts in terms of ARL. 

Table 5.6 Performance comparisons with MEWMA-type procedures 

  ὛӶ τȟφ 

 

ὛӶ ρȟρπ 

 RMEWMA  OMEWMA CMEWMA ‏

 

RMEWMA OMEWMA CMEWMA 

0.0 201.80 202.90 201.02   200.25 201.78 201.16 

0.5 36.29 56.51 35.60 

 

37.15 32.13 36.78 

1.0 9.53 13.75 9.05 

 

9.38 9.98 9.17 

1.5 5.21 6.97 4.92 

 

5.15 6.19 4.97 

2.0 3.65 4.79 3.43 

 

3.67 4.60 3.48 

2.5 2.89 3.75 2.67 

 

2.89 3.73 2.73 

3.0 2.38 3.14 2.24   2.41 3.17 2.26 

 

5.5 Concluding Remarks 

Multistages processes are sequentially concatenated. Generally, each stage 

consists of input variables and output variables where model-based SPC charts can 

monitor the output variables which can be explained by the input variables. In this 

chapter we develop advanced SPC methodologies and associated tools for autocorrelated 

multistage processes.  We model an autocorrelated multistage process as VAR(1) model 

and derive the propagation models of mean shifts to subsequent stages under the state 

space model.  Further, we propose a new procedure CMEWMA chart to detect the shift 
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of mean in a multistage process by incorporating unchanged stage information. The 

experimental results show that the proposed CMEWMA chart is efficient in detecting a 

wide range of small mean shifts compared with the observation-based and the residual-

based MEWMA charts.  

Our initial results show this approach is promising and lead to efficient 

approaches for shift detection in the mean of multistage processes when shifts occur at 

the stages that are not too early with reasonable level of autocorrelation. However when 

shifts occur at the early stage(s) with larger autocorrelation, observation-based charts can 

provide better detection performances. To overcome this drawback under these situations, 

we intend to explore procedures dealing with autocorrelation information. 
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CHAPTER 6   

 

CONCLUDING REMARKS AND FUTURE RESEARCH  

 

6.1 Concluding remarks 

In this dissertation, we propose and subsequently develop several methodolgies 

for SPC for univariate and multivariate processes. In chapter 2, we propose an adaptive 

runs rule, which is motivated by the concept of supplementary runs rule, in order to make 

control charts more sensitive to small mean shifts. The adaptive runs rule assigns scores 

to consecutive runs based on the estimated shift size of the mean. We supplement the 

ACUSUM chart with the adaptive runs rule to enhance its sensitivity in detecting small 

mean shifts. The average run length performance of the ACUSUM chart with the 

adaptive runs rule is compared with those of CUSUM and variants of adaptive charts 

including ACUSUM. The experimental results reveal that the ACUSUM chart with the 

adaptive runs rule achieves superior detection performance over a wide range of mean 

shifts. 

In chapter 3, we propose an MSPC chart based on a sequential test having an 

optimal property for testing shift vectors with a specific noncentrality parameter. Due to 

difficulty of having a closed form for the test statistics using log-likelihood ratios of the 

sequential test, which makes them impractical for real applications, we drive an 

approximate log-likelihood ratio which is integrated into an MSPC chart for detecting 
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shift vectors having a specific noncentrality parameter. Further, we adopt an adaptive 

scheme by adjusting its reference value based on an MEWMA estimate for detecting a 

broader range of mean shifts. The statistical properties of the proposed test statistic are 

explored. The ARL performance of the proposed chart is compared with other MSPC 

charts for process mean monitoring. The simulation results reveal that the proposed 

MSPC chart achieves superior detection performance over a wide range of mean shifts, 

especially when the dimension of measurements is large. 

In chapter 4, we propose an adaptive step-down procedure using conditional Ὕ  

statistics for fault variable identification. By selecting a variable having no significant 

evidence of a change based on the p variables that are selected in previous steps, we can 

construct single decomposition among ὴȦ MYT decompositions. The proposed procedure 

provides reasonable computational complexity in high-dimensional processes and 

enhances diagnostic power in identifying the shifted components of the mean vector 

when a shift occurs only in a few variables.  

Finally, in chapter 5, we propose advanced SPC methodologies and associated 

tools for multistage processes.  We model an autocorrelated multistage process and 

derive the propagation models of mean shifts to subsequent stages under the state space 

model.  Further, we develop methods to detect the shift of mean in a multistage process 

by incorporating unchanged stage information. The experimental results show that the 

proposed CMEWMA procedure performs consistently better than existing observation-

based and residual-based MEWMA charts. 

. 
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6.2 Future research 

Although the dissertation intends to develop a monitoring procedure, identifying 

OC stages when the shift initially occurs is critical to many industries such as LNG 

processes and semiconductor manufacturing. Our ongoing research effort is to develop a 

diagnosis procedure considering autocorrelations and unchanged stage information. In 

future work, we may extend our procedures for both monitoring and diagnosis in 

multistage process.  

Moreover, most of SPC procedures detect the mean shifts of multistage processes 

under the assumption that process variability is constant (i.e., not changed) over time 

(Zantek et al. 2002, 2006). Various charting approaches have been proposed to detect 

variability changes at a single stage process (Montgomery and Wadsworth 1972; Alt and 

Smith 1988; Aparisi et al. 1999). Some recently developed multistage variation 

monitoring approaches do not consider the variation propagation and do not discriminate 

between local and propagated variations (Zeng and Zhou 2008). The monitoring 

procedures may consider the propagated variation as a local variation of a given stage, 

but this may increase the number of false alarms. Thus, multistage monitoring of process 

variability is a challenging problem due to the variation propagation of multistage 

processes. Therefore, it deserves further attention to develop a new variability monitoring 

procedure that considers propagated variations from preceding stages.  

Finally, simultaneous monitoring of the mean and variance changes in an 

autocorrelated multistage process is also open for further research. We believe that more 

methodologies will bring improvements in this research area. 
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Appendix A. MARKOV CHAIN APPROXI MATION OF 

ACUSUM CHARTS 

For simplicity we develop a Markov chain model for an upper ACUSUM chart. 

Similar to the Markov chain model suggested by Shu and Jiang (2006), the upper 

ACUSUM chart has a two-dimensional state space of ˆ( , ).t tZd+ +

 
The range of possible ˆ

td
+ 

is min max[ , ]U d d+ += so that U is partitioned into ά ρ subintervals, 0 min{ }U d+=
 
and 

1 1( , )i i iU u u= -D +Dfor 11,...,i m= , where 1 12i iu u-= + Dand 1 max min 1
( ) 2md d+ +D = - . 

Similarly, the range of possible tZ+values is [0, ]S h=  that is partitioned into ά +1 

subintervals, 0 {0}S =
 
and 2 2( , )i i iS s s= -D +D for 21,...,i m= , where 1 22i is s-= + D

 
and 

Δ2=h/2ά . When ˆ
t iUd+Í  and t jZ S+Í , ˆ( , )t tZd+ +

 is in a transient state ( , ) i j at time t. To 

approximate the transition probability, we assume that the control statistics ˆ
t iUd+Í  and 

t jZ S+Í  are equal to the center points iu and 
js , respectively. The transition probability 

0 0 1 1( , ),( , )i j i jP
 
from state 0 0( , )i j  to state 1 1( , )i j , where 1 1,  0i j ¸ , can be obtained by 

0 0 1 1 1 1 0 0

1 1 1 1 0 0

( , ),( , ) 1 1

1 1 2 2 1 1

1 2 1 2

2 1 1 1 2 2

ˆ ˆPr{ , | , }

ˆ ˆPr{ , | , }

Pr{ , }

Pr{min[ ,max( , )] min[ ,max( , )}

i j i j t i t j t i t j

i t i j t j t i t j

t t

t

P U Z S u Z s

u u s Z s u Z s

a X a b X b

b a b X b a b

d d

d d

+ + + +

- -

+ + + +

- -

= Í Í = =

= -D < < +D -D < < +D = =

= < < < <

= < <
 

where 

( )
1 0

1

1

1 0

1

1 0

(1 ) ,  if 0 
,

,                            if =0

i i

i

u u j
a

u j

l l-ë -D - - ¸î
=ì

-Dîí
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( )
1 0

1

1

1 0

2

1 0

(1 ) ,  if 0
,

,                            if =0

i i

i

u u j
a

u j

l l-ë +D - - ¸î
=ì

+Dîí  

( )( )
1 0 1 11 2 2 2,j j i ib s s h u u= -D - +

 

( )( )
1 0 1 12 2 2 2.j j i ib s s h u u= +D - +

 

Note that ˆ
td
+

 is reset to 0d̂
+

 whenever 0tZ+¢  so that 0
ˆ ˆ
td d+ +=  if 0 0j = , otherwise 

1
ˆ ˆ(1 )t t tXd l l d+ +

-= + - . Similar to the transition probability by Shu and Jiang (2006), the 

transition probability 
0 0 1 1( , ),( , )i j i jP

 
from state 0 0( , )i j  and 1 1( , )i j  can be obtained as 

 

0 0 1 1 1 1 0 0( , ),( , ) 1 1

2 1 1 1 2 2 1 1

1 1 2 2 1 1

1

ˆ ˆPr{ , | , }

Pr{min[ ,max( , )] max[ ,min( , )},  if 0,  0 

Pr{ max[ ,min( , )},                            if 0,  0

Pr{ max[

i j i j t i t j t i t j

t

t

t

P U Z S u Z s

b a b X b a b i j

a X a a b i j

b X

d d+ + + +

- -= Í Í = =

< < ¸ ¸

< < ¸ =
=

< < 1 2 2 1 1

2 2 1 1

1 2

,min( , )},                             if 0,  0

Pr{ min( , )},                                       if 0,  0

Pr{ },

t

t

b a b i j

X a b i j

c X c

ë
î
î
î
ì

= ¸î
î
î -¤< < = =í

= < <
 

where 
0 0 1 1( , ),( , ) 1 1Pr{ }i j i j tP c X c= < < is a general form of the transition probability. When 

1 0i = and 1  0j = , we set 1c =-¤.   

We can obtain the approximated ARL based on the transition probability. 

Suppose that 1 is a column vector of ones and I  is the identity matrix. The transition 

matrix is formed as 

0,...,0 1

è ø
é ù
ê ú

R          Q
P=

    
, 
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where (= -Q I R)1  is a vector that contains the probabilities from one transient state to 

the OC state and the submatrix R includes the probabilities of going from one transient 

state to another. The approximated zero-state ARL is computed as  

ARL = 
1

0 (T --P I R) 1 , 

where 0

T
P  is the initial probability vector. Further, the steady-state ARL can be evaluated 

using a cyclic steady-state probability vector (Lucas and Saccucci 1990).  

Some experiments with different values of m suggest that satisfactory results can 

be obtained by choosing ά ά ά  to be greater than 30. As an example, the 

following table shows the approximations to the IC ARL of the ACUSUM chart 

computed using different values of m with min max[ , ] [0.5,4.0], 1.025, 0.2.hd d l+ + = = =  

m 15 20 25 30 35 40 45 

ARL 467.96 479.27 486.54 493.47 498.92 499.23 499.73 

 

We extend a two-dimensional Markov chain model of the improved ACUSUM 

charts to three-dimensional model for ACUSUM-ACR charts using the random vector 

ˆ( , , )t t tZ Nd+ + +. The discretized state spaces of ˆ
td
+

and 
tZ+ are the same as those of the 

ACUSUM charts. The IC state space of tN+
 is V=[0,l] that is partitioned into o+1 

subintervals, 0 {0}V = and 3 3( , )i i iV v v= -D +D for 1,...,i o= , where 1 32i iv v-= + Dand 

Δ3=l/2o. When ,t iN V+Í  we approximate tN+ by the midpoint vi of Vi.  Note that 

0
ˆ ˆmax{0, ( / 2)}t t t tN N Xd d+ + + += + -

 
whenever 0tZ+> . For simplicity, we define  

0 1 1

1

3 1

1

1

( )( ) / 2,  if  0

,                                  if  =0

j k kv u u k
d

k

-ë -D - ¸î
=ì
-¤îí , 
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1

3 1

2

1
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/ 2,                            if  =0
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-ë +D - ¸î
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The transition probability 
0 0 0 1 1 1( , , ),( , , )i j k i j kP

 
from state 0 0 0( , , )i j k  to state 1 1 1( , , )i j k  when 

1 0j ¸  is 

0 0 0 1 1 1 1 1 1 0 0 0( , , ),( , , ) 1 1 1

1 2 1 2

2 1 1 1 2 2 1

1 2 2

ˆ ˆPr{ , , | , , }

Pr{ , }

Pr{min[ ,max( , )] min[ ,max( , )},  if  0.

Pr{ min( , )},                     

i j k i j k t i t j t k t i t j t k

t t

t

t

P U Z S N V u Z s N u

c X c d X d

d c d X d c d k

c X c d

d d+ + + + + +

- - -= Í Í Í = = =

= < < < <

< < ¸
=

< < 1                      if  =0.k

ë
ì
í

 Note that 
tN+ is reset to zero when 1 0j = . In this case, the transition probability is    

0 0 0 1 1 0 0 0( , , ),( ,0,0) 0 0 1 1 1

1 2

1 1 2 2 1

2 2 1
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Appendix B. DERIVATION OF APPROX IMAT E LOG-

LIKELIHOOD RATIO   

For simplicity, we assume that 0 =ɛ 0  in Appendix. Patnaik’s approximation 

consists of replacing a noncentral 2c  by a central 2c  as 

( ) ( )
2

2 2 2

2

2
, ,0

p
p p w

p

l
c l c

l

+
+

+
º

, 

where 24 2 )(w pl l= +  and 2( ,0)p wc +  is a central 2c  distribution with p w+  df.  

When 1l l= ,  follows a noncentral  distribution 
2 2( , )npc l, where 1n nl l=

.  Then, the log-likelihood ratio ȿn  can be approximated as follows 

( )

( )

2
2

2
1

2

2
,0

( | )
ȿ log ȿ log .

,0( | 0)
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n n
n n

n
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+
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Since the pdf of ( )2 ,0pc  is 
( )

1
2 2

/2

1
( )

2 ũ / 2

p x

X p
f x x e

p

- -

= , we can obtain  

( )
2

2

2
ȿ 0.5 log log logũ 0.5 log 2 logũ
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where 
4
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n
n

n
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l
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+

 and  is a gamma function. By rescaling, the approximated ratio 

can be expressed as 

( )ȿ log ,n n n nw n k= -X
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The test statistic of the MC1 chart is based on the statistic 
1

1

0 0. ,5n n nl- -D Ɇ D
'

where 1n n+ +=D X X .  Jackson and Bradley (1961) define the log-likelihood ratio ȿn  

as  

2
1 1|| ||

ȿ log ,
2 4 2

n
n

n np
G

l lå õ
æ ö
ç ÷

= -
X

 

where  

( , ) 1
( 1)2! ( 1)...( 1) !

nx x x
G b x

b b b b b b n n
= + + + + +

+ + + -
 

is the generalized hypergeometirc function.  Assuming that  

2
11

0

|| ||
log ,

2 4

n
n n

np
G

l -å õ
ºæ ö

ç ÷

X
D Ɇ D

'

, 

where 
1

0 10.5n n nl- -D Ɇ D
'

 can be an approximation of ȿn .  That is, under the above 

assumption, the MC1 statics are based on likelihood ratios of a sequential … test.  In this 

case, the test statistics of the MC1 and the MASC charts are equivalent, and both charts 

may provide similar performance.  
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Appendix C. DERIVATION OF THE NO NCENTRALITY 

PARAMETER  OF ╣░Ͻ◔ 

For simplicity, we assume that  , and „ ρ and π „ ρ for ὭȟὮɴ

ρȟȣȟὴ}. Suppose that the mean of ὢ, where Ὥɴ Ὓ, is shifted to ‏ π, and the means 

of all  elements in ῲ are zero, Ὁὢ π for all Ὦɴ ῲ. Then the expected value of ὝϽ is 

ὉὝϽ
‏

ρ

ȟ 

where . Therefore the noncentrality parameter of ὝϽ is 

‗
‏

ρ
Ȣ 

Let ‏  be the noncentality parameter of Ὕ , which follows a …  distribution with one 

degree of freedom. Since π ρ ρ, it can be shown that ‗ Let ὸ .‏ π 

be a constant value, then difference between cdf’s of noncentral chi-squares, Ὕ  and ὝϽ, 

is given by (Johnson and Kotz 1970) 

ὖὶὝ ὸ 0ÒὝϽ ὸ πȢ 

From the above equation, we can obtain  

0ÒὝϽ ὸ ὖὶὝ ὸȢ 
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