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ABSTRACT OF THE DISSERTATION

Higgs Mediated Supersymmetry Breaking

By SIMON KNAPEN

Dissertation Director:

Professor David Shih

We study the role the Higgs sector can play in mediating supersymmetry breaking in the

context of the MSSM and its most minimal extension. Higgs-messenger interactions can

supplement gauge mediated supersymmetry breaking in important ways: they may provide

a solution to the µ/Bµ problem and at the same time generate generate large trilinear

Higgs-squark couplings, which are well motivated in the light of the observation of a Higgs

boson with mass near 126 GeV. We identify the A/mH problem, which is analogous of the

µ/Bµ problem, as well as several solutions. Moreover we present a general framework for

studying Higgs mediated supersymmetry breaking, which enables us to study the possible

implications of strongly coupled hidden sectors.
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Preface

This thesis is the result of a my graduate training at New High Energy Theory Center

at Rutgers University, under the direction of professor David Shih and professor Matthew

Strassler. During my graduate education I was fortunate to be given to opportunity to

work on a variety of topics with many different collaborators. For this thesis however I

have attempted to craft a single, coherent story, and for this reason only a selection of my

papers is included. The other papers were all published in peer-reviewed journals, and can

be conveniently accessed at http://arxiv.org/.

This thesis is organized as follows: Chapter one contains a brief review of weak scale

supersymmetry, intended to sketch the context in which my work may be relevant. Chapters

two, three and four consist out of papers on the subject that I wrote with my collaborators

and chapter five contains a brief conclusion and outlook.
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Chapter 1

Introduction

On the 4th of July 2012, the ATLAS and CMS collaborations announced the observa-

tion of a new particle decaying to a photons and Z-bosons (figure 1.1) [1, 2]. Subsequent

measurements have demonstrated that the new particle furthermore decays to W-bosons,

tau-leptons and b-quarks. At the time of this writing, all decay rates are consistent with

the decay modes associated with a standard model Higgs boson (See figure 1.2). The decay

width with respect to the W and Z bosons is of particular importance: if the new parti-

cle is indeed a Higgs boson, the strength of this decay is fully determined by the masses

of the electroweak gauge bosons. As such, this measurement is a very strong test of the

Higgs mechanism and gives us very high confidence that the new particle is indeed a Higgs

boson. A detailed and technical description of the Higgs mechanism would easily fill a full

chapter of this thesis, and many of the details are not immediately relevant to understand

the broader context in which this thesis was written. Moreover such detailed, pedagogical

descriptions are available in any standard text on quantum field theory. Nevertheless, given

the importance of the subject, a brief, qualitative description is appropriate here.

1.1 Breaking electroweak symmetry

Quantum field theory is the framework in which we understand relativistic quantum me-

chanics, and when it comes to precise quantitive predictions it is unmatched in all of science.

(The anomalous magnetic moment of the electron was predicted and confirmed to 1 part in

a billion.) The fact that we deal with relativistic systems implies we would like to preserve

a Lorentz covariance formulation as much as possible. In many cases this if a fairly trivial

requirement, but in some (important) exceptional cases this approach comes at a price. An

extremely important example in this category is the case of spin 1 particles. A massless
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Figure 1.1: The Higgs boson as observed in the ZZ channel (left, CMS collaboration [3])
and in the γγ channel (right, ATLAS [4]) collaboration.

Figure 1.2: The Higgs boson as observed in the ZZ channel (left, CMS collaboration [5])
and in the γγ channel (right, ATLAS [4]) collaboration.
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spin one particle has 2 degrees of freedom or polarization states (-1 and +1), a massive spin

1 particle has 3 degrees of freedom, associated with the -1, 0, and 1 polarization states.

Both cases clash with the requirement of Lorentz covariance: A spin 1 field transforms as a

vector under the Lorentz group and must therefore be written as

Aµ with µ ∈ {0, 1, 2, 4}. (1.1)

The Aµ field has therefore four degrees of freedom, 2 more than a massless spin 1 particle

and 1 more than a massive spin one particle. We are therefore confronted with the choice

of either giving up Lorentz covariance all together or to allow for extra, unphysical degrees

of freedom into the theory. As it turns out, the latter is the lesser of the two evils. Now

that we accepted these extra, unphysical bookkeeping devices into our calculations, we must

make sure that their effect drops out in the final answer for every physical observable. This

is ensured by a special symmetry, called gauge symmetry. For instance, for a massless

spin 1 particle, there is no longitudinal polarization and the component of Aµ aligned with

the propagation direction of the particle should not have any physical meaning. This means

that we must demand that all physical observables must always be invariant under

Aµ → Aµ + ∂µf (1.2)

where f is an arbitrary differentiable function. This gauge symmetry therefore simply acts

as a firewall between the physical and unphysical degrees of freedom, and failure to enforce

it will result in unphysical contributions to physical observables. Typically this sort of

mistake would manifest itself as a violation of unitarity in some scattering amplitude. To

obtain a massive spin 1 particle, one can simply promote this spurious degree of freedom

to a physical degree of freedom1.

If our spin one particle has no interactions with other spin one particles, this could be the

end of the story. However if there are such interactions, the situation is more complicated,

at least for massive particles. The reason is that now two transversely polarized particles

can scatter into a longitudinal one, as shown in the vertices of the diagram in figure 1.3(a).

However if we simply added back the longitudinal mode like we did in the none-interacting

1This is know as the Stueckelberg mechanism.
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Figure 1.3: Scattering of massive spin 1 bosons, suggestively labeled with W . The diagram
on the left grows with energy and would induce unitarity violation at high center of mass
energies. Adding in a contribution from exchanging a Higgs boson fixes this problem.

case, the scattering cross section for the longitudinal modes (figure 1.3(a)) keeps rising

with energy until unitarity is violated. As we discussed earlier, this is a hallmark of gauge

invariance being violated somewhere in our initial setup. But even if one didn’t know about

gauge invariance, one could simply postulated a new, ad hoc particle with exactly the

right couplings to the spin 1 bosons to correct for this nonsensical behavior (figure 1.3(b)).

This particle is the Higgs boson. The existence of the Higgs boson is therefore a direct

consequence of having a self-consistent quantum field theory of massive, interacting spin

one particles2.

The Higgs mechanism furthermore has an elegant interpretation in terms of the spon-

taneous symmetry breaking. This goes as follows: The interactions of spin one particles

always exhibit a global symmetry, which we must then extend to a more general gauge sym-

metry to ensure that the unphysical degrees of freedom decouple. For the standard model

W bosons, this global symmetry is the SU(2) weak isospin. For massive spin 1 bosons,

this global symmetry is broken by the mass term in the Lagrangian. While this is harmless

on the level of the global symmetry, we must ensure that the associated gauge symmetry

is still present to safeguard the consistency of the theory. The Higgs mechanism elegantly

addresses both problems simultaneously: The Higgs field obtains a vacuum expectation

value which spontaneously breaks weak isospin and generates a mass for the associated

2As we will see, an important exception to this rule occurs when the spin 1 particles are composite
particles.
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gauge bosons. At the same time, the goldstone modes associated with the spontaneous

symmetry breaking ensure the existence of non-linear realization of the gauge symmetry,

hence rescuing unitarity. In more mundane terms, the goldstone modes will play the role of

the longitudinal polarizations of the gauge bosons and do so in precisely the right way as to

prevent unphysical degrees of freedom from contributing to the scattering amplitudes. The

Higgs particle is then simply a byproduct of this arrangement: the simplest representation

under weak isospin consists out of 4 real degrees of freedom of which only 3 are taken up

by the goldstone modes. The remaining degree of freedom is the Higgs boson.

1.2 A Hierarchy problem for spin 0 particles

Aside from any theoretical prejudice that we may have regarding the Higgs mechanism, there

is already strong experimental evidence that the new particle is indeed a spin 0 particle.

An obvious observation is that it must be a boson, since it decays to two other bosons.

Moreover spin 1 particles cannot decay to two massless spin 1 states [6, 7], and therefore

the hypothesis of a new spin 1 state is immediately ruled out by the existence of a decay

mode to two photons. Finally, the phase space distribution of the final states clearly favors

a spin 0 particle over a spin 2 state (figure 1.4).

Figure 1.4: The spin 2 hypothesis is disfavored at 99% confidence level, while the spin 0
hypothesis is compatible with the data [8].
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Aside from the role they can play in the Higgs mechanism, there is a second reason as to

why spin 0 particles are special. In a quantum field theory, spin zero fields are most sensitive

to the most massive states they interacts with. Concretely, the mass of the spin zero field

receives corrections proportional to the mass of these extra states. For our universe, the

highest energies at which we certainly expect new states is the Planck scale, at which gravity

becomes an important player. This means that the mass of our freshly discovered scalar

particle would get corrected as

δm2 ∼ 1

16π2
M2
pl + · · · (1.3)

This lead to an obvious paradox in the sense that the mass of the new particle is measured

to be ∼ 126 GeV, which is of course much less than the 1016 GeV that is suggested by

(1.3). This paradox is trivially avoided by invoking some unknown physics at the Planck

scale which somehow neutralizes these type of large corrections. However doing so leads to

an even more serious problem, since it implies the breakdown of the principle of separation

of scales. This empirical principle states that phenomena are governed by physical laws

applicable at the natural scale3 of the problem. For instance, if we would want to compute

the orbit of Jupiter, the local weather patterns in New Jersey are totally irrelevant and

can be neglected. Obviously, this fact has been one of the cornerstones in the predictive

success of physics on all scales that we currently can probe. However from our previous

discussion it thus appears that this principle breaks down for spin zero particles: In order

to say anything about the Higgs boson it appears that we must understand the full details

of quantum gravity, an impossible task in the absence of direct experimental handles on

the physics taking place at that scale. This paradox is usually referred to as the hierarchy

problem.

There is a short list of possible resolutions to the hierarchy problem

1. We do not fully understand perturbative quantum field theory and the

quadratic sensitivity is not really present. While this is a logical possibility,

it is a little hard to imagine. While non-perturbative quantum field theory remains

quite mysterious, we achieved astonishing quantitative successes with perturbative

3Resonance effects are a notable exception.



7

calculations. Occasionally radical ideas have been proposed in this direction, but

none have gained wide support in the community.

2. The Higgs boson is composite particle. If the Higgs boson is a composite particle,

its description in terms of a spin zero particle is only valid up to the scale at which its

constituents are resolved. Concretely this means that it is inconsistent to extrapolate

the estimate in (1.3) all the way up to the Planck scale. In its most simple form this

scenario is however ruled out by the LHC already. For a generic composite Higgs one

would expect large Higgs self interactions, which in turn lead to a mass and width

incompatible with those observed for the Higgs boson.

3. There are cancellation in (1.3) and they are due to an accident. This idea

makes most sense in the context of a multiverse, where the parameters in the Higgs

potential are randomly sampled over the various universes. Our universe would then

simply correspond to a choice of parameters for which life can exist. While such

an anthropic argument is a priori self consistent, it to some extend eliminates our

ability to make predictions about the Higgs boson, at least if we refrain from making

untestable assumptions on the nature of the multiverse.

4. There are cancellation in (1.3) and they are due to a conspiracy, also know

as a symmetry. This final possibility asserts that there are indeed cancellations to

keep the Higgs boson light, but that they are there for a specific reason rather than

due a multiverse-type accident. This is the avenue that has attracted most attention

over the years, especially because it generically leads to the prediction of new particles

that may be observable relatively soon. Specifically, one needs to assume the existence

of a symmetry to forbid uncontrolled corrections to the Higgs mass operator

m2h†h. (1.4)

The exhaustive list of possibilities is again short:

(a) Supersymmetry: Supersymmetry relates the Higgs boson a fermionic partner

as follows

h→ εψ (1.5)
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where ε is the infinitesimal parameter that controls the symmetry transformation.

Once supersymmetry has been established, corrections to (1.4) are controlled by

the chiral symmetry associated with the fermionic partner of the Higgs, which is

then transplanted in to the Higgs itself by the existence of supersymmetry. In

order for supersymmetry to work, every standard model particle must have its

own, fairly light partner, which makes supersymmetry the ideal hunting ground

for collider physicists searching for new signatures at the LHC. Except for the

following few paragraphs, this thesis is written entirely within the framework of

supersymmetry.

(b) Shift symmetry: The action may be invariant under a shift of the Higgs field

as follows

h→ h+ ε. (1.6)

This scenario is realized if the Higgs boson is pseudo-goldstone boson of a spon-

taneously broken global symmetry. Typically the Higgs is a composite particle

in this sort of model, very much like pions are the pseudo-goldstone bosons of

spontaneous chiral symmetry breaking by the strong dynamics of QCD. The ad-

ditional global symmetry that is needed for this mechanism predicts the existence

of new (colored) particles, analogous to the superpartners in supersymmetry.

(c) Gauge symmetry: The Higgs mass may be protected by a gauge symmetry

h→ εµAµ. (1.7)

This sort of arrangement may arise in solutions involving extra dimensions. Con-

cretely, the Higgs boson may be provided by the component of the weak gauge

fields along a 5th, compactified dimension. Also this case predicts the presence

of extra particles near the weak scale from the Kaluza-Klein towers of the com-

pactified extra dimension(s).

(d) Scaling symmetry: Large corrections to the Higgs mass could be forbidden by

the requirement of scale invariance

h→ εh. (1.8)
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This scenario requires a consistent embedding of the standard model into an IR

fixed point of the renormalization group. This is very challenging due to the

upwards running of the hypercharge in the UV and no fully consistent, non-

supersymmetric examples are known. The various problems with this scenario

are discussed in [9].

Of these four possibilities, supersymmetry is the only one that is fully consistent for

energies all the way up to the Planck scale.

1.3 Supersymmetry

Since its introduction in the early seventies, supersymmetry has occupied a central role

in theoretical high energy physics. It has directly let to unprecedented developments in

our understanding of string theory and the non-perturbative aspects quantum field theory.

On the more phenomenological end of the spectrum, the idea of supersymmetry has been

equally tantalizing, although somewhat less convincing due to the experimental challenges

associated with most of its realizations. A convincing discovery of the principle of weak

scale supersymmetry would require the observation of a number of superpartners at a large

collider experiment like the LHC, and technical complexities of such an undertaking can

hardly be overestimated. At the time of completion of this thesis, the LHC has finalized its

first round of data taking, which has blessed us with the tremendously exciting discovery

of a weakly coupled Higgs boson. On the other hand, the LHC has not yet uncovered any

signs of beyond the standard model physics and none of the traditional signatures related

to supersymmetry appear to be present in the 8 TeV data set. This puts us in a interesting

limbo, as already supersymmetry is being constrained in interesting ways, while the most

important part of the LHC data has yet to be collected. Since I have no crystal ball at my

disposal, this thesis is entirely focused on the implications of the 8 TeV data on weak scale

supersymmetry, with special attention to properties the newly discovered Higgs boson. As

I write it in early 2014, most of its content will be outdated in several years from now,

which I do not see as a misfortune, but rather as a very exciting prospect for our field.

This section is therefore not intended to be an exhaustive overview of the impact of the 8
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TeV data on weak scale supersymmetry nor to provide a pedagogical introduction to the

subject. For the latter I gladly refer the interested reader to the classic review by Steve

Martin [10], while a more advanced reader can learn the former from the soon-to-be-classic

review by Nathaniel Craig [11].

Whereas in the more formal side of high energy physics the importance of supersymme-

try is now elevated beyond any discussion, the same is not true for the phenomenological

implementations of this idea near the scale of electroweak symmetry breaking. In the end,

this is a question that can only be settled decisively by experiment, but in the meantime it

is useful to keep the score by listing both the virtues and challenges associated with weak

scale supersymmetry.

The main motivation for introducing weak scale supersymmetry is the hierarchy prob-

lem, as was discussed in the previous section. In unbroken supersymmetry, all super-

particles would have the same masses as their standard model counterparts, an idea which

is clearly not phenomenologically viable. However the main virtues of supersymmetry are

preserved if supersymmetry is broken spontaneously. For simplicity, let us consider a toy

example where all superpartners have the same mass as the supersymmetric top, which

was conveniently named ‘ stop’. At energies above well above the stop mass, the mass

splitting between the superparticles and the standard model counterparts is neglegible and

the theory is very close to a theory with unbroken supersymmetry. An important prop-

erty of an exactly supersymmetric theory is that the various contributions from particles

and sparticles in (1.3) cancel exactly, and the sensitivity to arbitrary high mass scales is

therefore removed. If we were to collide particles at energies below the stop mass, there

is not enough energy available to produce the superpartners, and they effectively decouple

from the theory. Here the theory appears non-supersymmetric and the quadratic sensitivity

from (1.3) is reintroduced. The crucial difference is however that now the Higgs boson is

quadratically sensitive to the transition point to the supersymmetric phase (the stop mass

in our toy example), rather than to the Planck scale. If the stop mass is roughly around a

TeV, we have successfully traded the large hierarchy problem for a little hierarchy problem.

This means that the Higgs mass is now predicted by degrees of freedom that are potentially

within reach of our colliders, rather than by physics at the elusive Planck scale.
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In addition to ameliorating the hierarchy problem, supersymmetry has a few other

compelling features:

• In its most minimal realizations, supersymmetry significantly improves on gauge

coupling unification in comparison with the standard model (see figure 1.5). Inter-

estingly, the gauge couplings now unify rather precisely, while the same unification in

the standard model is only very approximate.

Figure 1.5: Two-loop renormalization group evolution of the inverse gauge couplings α−1(Q)
in the Standard Model (dashed lines) and the MSSM (solid lines). In the MSSM case, the
sparticle masses are treated as a common threshold varied between 500 GeV and 1.5 TeV,
and α3(mZ) is varied between 0.117 and 0.121. (Taken from [10].)

• Supersymmetry naturally provides a stable, uncharged particle which in some circum-

stances can serve as candidate for the dark matter. In my opinion, this is perhaps

the least compelling element in the list. The mere prediction of a stable, uncharged

particle is easily achieved in a wide class of models of beyond the standard model

physics, and as such it is not a strong argument in favor of supersymmetry. On the

other hand, in some part of its parameter space, the dark matter candidate provided

by weak scale supersymmetry is charged under the electroweak force and naturally

qualifies as weakly interacting massive particle (WIMP) dark matter, which implies

that its annihilation cross section in the early universe is in the right ballpark to give

us the correct dark matter abundance today. At the time of this writing, the WIMP

paradigm is under stress by null observations in various dark matter direct detection

experiments, of which the LUX experiment [12] has been the most powerful so far.
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Aside from its assets as listed above, supersymmetry also suffers from a number of

challenges, some of which are theoretical, while others are related to (the lack of) certain

experimental observations. The latter category is typically shared by other solutions to the

hierarchy problem in one way or another.

• A first and important challenge that any model for beyond the standard model physics

must confront is the flavor problem. Precision flavor experiments have put the scale

of generic new physics several orders of magnitude higher than the weak scale, at which

one expects new degrees of freedom which address the hierarchy problem. For weak

scale supersymmetry this implies that whatever mechanism spontaneously breaks su-

persymmetry, must do so without introducing large flavor violation. Concretely, all

supersymmetry breaking masses and interactions must be approximately diagonal in

flavor space. Similar considerations can be made with regards to CP-violation. Fortu-

nately such a spectrum is easily achieved if the effects of supersymmetry breaking are

communicated to the supersymmetric standard model by standard model gauge inter-

actions only, which are necessarily flavor conserving. This framework is called gauge

mediated supersymmetry breaking or simply gauge mediation. A gauge me-

diation model typically consists out of a hidden sector which spontaneously breaks

supersymmetry, and messenger sector. The latter by itself is fully supersymmetric,

but its feels the effects of supersymmetry breaking from the hidden sector through

a perturbative coupling of some sort. It is important that the messenger sector con-

tains some fields that are charged under the standard model gauge groups. This way

the effects of supersymmetry breaking get communicated down to the minimal super-

symmetric standard model (MSSM) through loop corrections involving the standard

model gauge fields. This setup is shown schematically in figure 1.6 and has the ad-

vantage that it is insensitive to the details of the physics which determines the flavor

structure of the yukawa matrices, provided that the latter takes place at energies

above the typical mass scale of the messenger sector.

• A second challenge for the MSSM is related to the manner in which electroweak

symmetry is broken. To see this, we must account for the fact that the MSSM has
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Figure 1.6: Schematic picture of gauge mediated supersymmetry breaking. Supersymmetry
is broken spontaneously in the hidden sector and communicated down to the MSSM through
loop corrections involving the MSSM gauge fields as well as the messenger fields.

a slightly more complex Higgs sector than the standard model, in the sense that it

contains not one but two Higgs doublets, which are usually denoted by Hu and Hd.

The Lagrangian for the MSSM Higgs sector looks as follows

L ⊂(|µ|2 +m2
Hu)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2 − (BµH

0
uH

0
d + c.c.) (1.9)

+
1

8
(g2 + g′

2
)(|H0

u|2 − |H0
d |2)2

where I dropped the charged components of the Higgs doublets, since they are not

relevant for our discussion here. The symbol µ stands for the mass of the Higgsinos,

which are the superpartners of the Higgses (also suppressed in (1.9)). m2
Hu

, m2
Hd

and

Bµ are supersymmetry breaking contributions to the masses of the Higgs fields. g and

g′ are the weak isospin and hypercharge gauge couplings respectively. The Lagrangian

in (1.9) is the MSSM equivalent of the famous ‘mexican hat’ potential of the Higgs

field in the standard model. For this model to produce viable electroweak symmetry

breaking, a number of conditions must be satisfied:

1. The potential must be bounded from below.

2. The potential must have a minimum for a non-zero value for one or both of the

Higgs fields.

Imposing these conditions leads to a set of consistency requirements on the relative

sizes of µ, m2
Hu

, m2
Hd

and Bµ. The exact conditions are not particularly illuminating

for the qualitative discussion in this introduction and it suffices to know that they are

generally satisfied when µ, m2
Hu

, m2
Hd

and Bµ are all in the same ballpark, or more
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precisely

µ2 ∼ m2
Hu ∼ m2

Hd
& Bµ. (1.10)

This relation is certainly reasonable if all arise through the same mechanism of su-

persymmetry breaking. However there is one important caveat in the sense that a

priori the µ parameter is not related to supersymmetry breaking. Certainly one could

choose to adjust it by hand to right size, after which supersymmetry would prevent it

from getting large quantum corrections through the mechanism sketched out earlier

in this section. However such an ad hoc solution is somewhat unsatisfying, and one

would like to have a dynamical mechanism such that µ automatically comes out with

the correct size. Unfortunately, such a setup is not possible with the standard model

gauge interactions alone4.

Gauge mediation must therefore be supplemented with another mechanism for me-

diating supersymmetry breaking. Typically this is done by allowing for yukawa in-

teractions between the MSSM Higgs sector and some of the fields in the messenger

sector. Although in the literature this idea is occasionally lumped together with gauge

mediation, I will here and onwards refer to it as ‘Higgs mediated supersymmetry

breaking’ or simply ‘Higgs Mediation’. Although Higgs mediation can generate

µ2 ∼ m2
Hu
∼ m2

Hd
quite trivially, generic models will also generate the detrimental

relation

Bµ ∼ 16π2|µ|2 (1.11)

which is a violation of the consistency condition in (1.10). This is known as the µ/Bµ

problem. There are handful solutions known to this problem, some of which will be

discussed in the later chapters of this thesis.

• A final nagging problem that plagues supersymmetry (as well as all other symmetry-

based solutions to the hierarchy problem) is the lack of experimental evidence for

the extra particles it predicts. Of particular interest in supersymmetry are the stops,

and to lesser extend the Higgsino’s and the gluino (the superpartner of the gluon), as

4The technical reason for this is that the mechanism responsible for supersymmetry breaking must also
break the Peccei-Quin (PQ) symmetry which protects the µ term. Since gauge interactions preserve PQ
symmetries, such a mechanism can not be realized with the standard model gauge interactions alone.
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Figure 1.7: Limits set by the CMS collaboration on direct t̃t̃ production [13, 14] (left) and
g̃g̃ pair production with a cascade decay through stops to a top anti-top pair plus neutralino
[15] (right). Similar limits exist from the ATLAS collaboration.

their masses determine the extend to which the model is a successful solution to the

hierarchy problem. A complete overview of the limits set by the 8 TeV LHC is beyond

the scope of this short introduction, but can be found in [11]. It is however instructive

to briefly comment on the limits on the stops and the gluino. In the simplest scenario

(with all other superparticles decoupled), the stop now must be heavier than roughly

750 GeV and the gluino heavier than roughly 1300 GeV (see figure 1.7). As always,

there is a large amount of caveats associated with these limits, and one can easily

construct scenarios in which these limits either strengthen or weaken. However the

general take-home point should be that both a light stop and a light gluino with a

mass of a few hundred GeV are now firmly excluded, up to a few pathological cases.

Although this is certainly somewhat unfortunate from the point of view of naturalness,

it is perfectly compatible with the observation of a SM-like Higgs boson with a mass

around 126 GeV, as we will discuss in the next section.

1.4 A Higgs Boson at 125 GeV

Now that a Higgs boson has been discovered and its mass measured reasonably well (recall

figure 1.1), one can ask the question what implications this measurement has on various

models of beyond the standard model physics, in particular supersymmetry. As in the
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standard model, the mass of the particle that we associate with the Higgs boson is deter-

mined by the product of the vacuum expectation value v and the quartic interaction in its

potential:

m2
h = λv2 (1.12)

In the standard model, the quartic λ is free parameter, and as such the mass of the Higgs

boson is a priori not a prediction of the model, aside from an upper bound provided by

unitarity. This is in sharp contrast with the MSSM, where the quartic couplings originates

the from the equations of motion of the D-terms in the electroweak sector. In more mundane

terms, this means that the quartic is fixed by the gauge couplings of the electroweak sector,

as can be seen already in equation (1.9). Since the vacuum expectation value is known

through our measurements of the masses of the W and Z boson, this results in a prediction

for the mass of the lightest CP-even Higgs boson, at least at tree-level:

m2
h = cos2 2β m2

Z (1.13)

where tanβ is the ratio of the vacuum expectation values of the Hu and Hd fields and mZ

the mass of the Z boson. This implies that the MSSM would have been invalidated at LEP,

if it were not for radiative corrections which may increase the mass of the Higgs. At one

loop these corrections take the form

m2
h = cos2 2β m2

Z +
3v2

4π2

(
|yt|4 log

M2
S

m2
t

+
A2
t

M2
S

(
|yt|2 −

A2
t

12M2
S

))
(1.14)

with v the total vacuum expectation value of the Higgs fields and mt is the top mass.

MS =
√
mt̃1

mt̃2
. mt̃1

and mt̃2
are the masses of the stop mass eigenstates and At is an

additional supersymmetry breaking Higgs-stop-stop interaction. Specifically, At is defined

by the operator

L ⊃ AtHuQ̃3Ũ3 (1.15)

in the MSSM Lagrangian, with Q̃3 and Ũ3 the third generation5, respectively left and

right-handed, superpartners of the quarks, in other words the left and right handed stops.

5Note the subtle difference in notation between Q̃3 and Ũ3 on the one hand and t̃1 and t̃2 on the other
hand. The former indicates the squark fields in a basis where the gauge interactions are diagonal, while the
latter indicates the basis where the mass matrix is diagonal. While this difference is very important when
performing accurate calculations, we do not have to pay close attention to it for the qualitative discussion
in this introduction.
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Figure 1.8: Leading diagrams involving (s)tops that contribute to the Higgs quartic in the
MSSM.

Note that the interaction term in (1.15) breaks supersymmetry since there is no fermionic

analogue for it. For lack of a better name, this type of coupling is usually referred to as

an ‘A-term’. Similar A-terms may also exist of the other superpartners, however they are

irrelevant for the Higgs mass.

Example diagrams for the various contributions in (1.14) are shown in figure 1.8. From

(1.14) we see that there are 3 ways by which one could increase the prediction of the Higgs

mass to match its measured value.

• Add extra tree-level contributions to the quartic of the type in figure 1.8(a). This

necessarily implies adding extra structure to MSSM. The presence of extra fields may

boost the tree-level quartic, but necessarily increase the complexity of the model.
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Popular incarnations of this mechanism are to extend the MSSM with an extra U(1)

gauge symmetry or an extra singlet which comes with a yukawa interaction with Higgs

fields. The latter is known as the Next-to-Minimal Supersymmetry Standard model

(NMSSM) and will be discussed extensively in chapter 2.

• Staying within the MSSM, one could increase the quartic by relying on the logarithm

in the second term in equation (1.14). This corresponds to the contributions from the

diagrams in figure 1.8(b). Because of the logarithmic form of this term, this method

of increasing the Higgs mass is not very efficient and the stops must be very heavy

(between 5 and 10 TeV) to reach the measured value of 125 GeV. In this scenario the

stops are unobservable at the LHC.

• Again within the MSSM, the third contribution in (1.14) may be maximized if At
MS
≈

√
6. This corresponds to maximizing the contribution from the diagrams in figure

1.8(c). In this case it suffices to take MS ≈ 1 TeV which yields a potentially observable

stop signal at the LHC. For historical reasons, this case is known as the ‘maximal stop

mixing’ scenario, since a large At may also induce a large left-right mixing in the stop

mass eigenstates. Typically it is non-trivial to obtain a large enough At from a realistic

UV completion of the MSSM.

Although all scenarios are both plausible and interesting, in this thesis I only focus on

the large A-term scenario. There are several reasons for this. In contrary to the heavy

stop case, it gives us hope of observing stops at the 14 TeV run at the LHC, and in this

sense there is a large extend to which this idea is falsifiable in the very short term future.

Moreover as we will see, the possible UV completions are very strongly constrained by

flavor observables and electroweak symmetry breaking, to the extend that we can hope to

systematically map out all the possibilities, something which is much less clear once we

deviate from the simplicity of the MSSM.

1.5 Generating A-terms

As I mentioned earlier, the strong constraints on flavor observables naturally push the

model builder towards a gauge mediation scenario, as flavor constraints in this case are
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automatically and elegantly evaded. Unfortunately, in gauge mediation all A-terms are

parametrically small at the typical mass scale of the messenger fields, which I will further

refer to as the ‘messenger scale’. Specifically, in pure gauge mediation the A-terms at the

messenger scale are by far insufficient to realize the desired ‘maximal mixing’ story where

At
MS
≈
√

6. There are however several ways to remediate this problem, each which comes

with its own challenges and constraints.

1.5.1 Through RG-running

t

g̃

t

Hu

t̃

t̃

Figure 1.9: Leading diagram that renormalizes the A-term. This diagram may generate a
large A-term in the RG running if the gluino mass is sufficiently large.

The most minimal option is to remain within the framework of gauge mediation and

to once again rely on radiative corrections to save the day. In particular, the A-terms are

sensitive to the gluino in the renormalization group flow between the messenger scale and

the weak scale (see figure 1.9). For a sufficiently large messenger scale and/or gluino mass,

it is possible to radiatively generate a large weak scale At, even if the A-terms start out

parametrically small at the messenger scale [16]. This is illustrated by the green lines in

figure 1.10. Since we did not deviate from gauge mediation, flavor constraints are not a

concern, however this scenario is instead strongly constrained by electroweak symmetry

breaking. In particular, the stops receive a positive correction from the gluino as well

and even more so than At. In order to maintain TeV scale stops at the weak scale, one

must arrange the stop masses to start out negative at the messenger scale. While it is

certainly possible to build a model dat does this, such negative boundary conditions have
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Figure 1.10: Examples of gauge mediation spectra where a large A-term is generated radia-
tively. If both stops are light at the weak scale, typically electroweak symmetry is restored
radiatively (left panel) or the left handed slepton remains tachyonic in the IR (right panel).
Both features invalidate the spectrum.

big implications on the rest of the spectrum. Specifically, the negative boundary conditions

for the stops (purple lines) induce an upward pull on mHu (red line), which may jeopardize

electroweak symmetry breaking at the weak scale (left panel of figure 1.10). This can

be avoided by a negative boundary condition for the Higgs fields at the messenger scale,

however in gauge mediation this typically has detrimental consequences to the left handed

slepton, as it fails to run positive before hitting the weak scale (right panel of 1.10). The

combination of both constraints implies that the ‘sweet spot’ of the maximal mixing scenario

where

At
MS
≈
√

6 and MS ≈ 1 TeV (1.16)

is firmly ruled out in pure gauge mediation [17].

1.5.2 Through flavored gauge mediation

Since generating A-terms radiatively is rather challenging, one may attempt to generate

them through a threshold correction from integrating out the messenger sector, which nec-

essarily requires one to go beyond pure gauge mediation. When doing so, one must proceed

with great care. The reason is that in general A-terms are matrices in flavor space, and a

large entry for one of the first two generations will typically cause problems with precision

flavor tests. The easiest way to guarantee a flavor-safe spectrum is to generate the A-term

matrix in the ‘minimal flavor violation’ ansatz (MFV). Concretely, this implies that actual
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A-term is proportional to the standard model yukawa matrix

Aij = yijAu. (1.17)

Because the standard model yukawa couplings for the first two generations are much smaller

than the top yukawa, the MFV ansatz naturally suppresses the dangerous entries of the

A-term matrix, while keeping the desirable At ≡ A33 entry large. When working in the

MFV ansatz, if is often convenient to deal with the quantity Au rather than with the real

A-term At, and I will do so in the later chapters of this thesis. Au is defined from (1.17),

and historically is often called ‘A-term’ as well. The difference between both is usually clear

from the context, and in any case At and Au are equal up to an order one number, which

is the top yukawa.

On a qualitative level, the effect of messenger scale threshold corrections is most conve-

niently seen in the ‘effective Kähler potential’ formalism, where we have integrated out the

fields in the messenger sector. This then yields the following operators

X†H†uHu, X†Q†iQj , X†U †i Uj . (1.18)

where X is the field responsible for spontaneous supersymmetry breaking, Qi and Ui are

superfields containing the MSSM quark and squark fields, where the indices are flavor

indices. For the qualitative discussion in this introduction it suffices to know that the

‘superfields’ mentioned earlier are just a convenient way to package the standard model

fields with their superpartner, in a way that makes supersymmetry manifest. Along the

same lines, the ‘effective Kähler potential’ is nothing more than the supersymmetric version

of the effective action. While superfield and Kähler potential techniques are extremely

powerful when it comes to concrete computations, we do not need any of this detailed

technology in the rest of our discussion in this introduction6.

The first operator in (1.18) is manifestly MVF, since it carries no flavor indices. The sec-

ond and third are not MFV and in general a reason for concern. The most straightforward

manner to generate this sort of operators is to allow for additional marginal interactions

between the messenger fields and the MSSM matter fields. Such interactions can either

6A detailed introduction to the subject can be found in for instance [18].



22

consist out of messenger-messenger-MSSM or messenger-MSSM-MSSM couplings and may

or may not be MFV. The MFV case is achieved automatically if the MSSM fields partic-

ipating in the interaction belong to the Higgs sector only. This case is the main subject

of this thesis and is further discussed in the next section. The non-MFV case, sometimes

referred to as ‘flavored gauge mediation’ has been studied in detail elsewhere [19–21]. For

each of the operators in (1.18), a generic model will generate a large contribution to the

corresponding soft mass operator

XX†H†uHu, XX†Q†iQj , XX†U †i Uj . (1.19)

As will be discussed in detail in chapter 2, this feature is most detrimental for the first

operator, as it may lead to a violation of the consistency condition in (1.10). Even if

electroweak symmetry remains possible, this type of contribution tends to severely increase

the fine tuning of the model. This is somewhat less of an issue for the operators involving

the squarks, however in this case the model builder must provide a detailed explanation for

the absence of anomalies in precision flavor experiments.

1.5.3 Through Higgs mediation

As I already mentioned, the first operator in (1.18) is manifestly MFV, and as such it

deserves special attention, since it allows us to elegantly bypass various flavor considerations.

Concretely, we equip gauge mediation with extra interactions of the form

λuOuHu + λdOdHd + λsOsHuHd (1.20)

where the Ou, Od and Os are operators composed out of fields in the messenger sector. As

was mentioned earlier, such interactions are already desirable to facilitate a solution to the

µ/Bµ problem [22, 23] and as such they are well motivated regardless the need for large

A-terms. The singlet operator Os leads to parametrically suppressed A-terms, but the Ou
is capable of generating an A-term of the correct size [23].

Despite its elegance in sidestepping flavor problems, interactions of the form (1.20) are

severely constrained by the requirement of electroweak symmetry breaking at the weak

scale. In particular, we will show that the first operator in (1.20) will always induce a
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contribution to m2
Hu

, which generically tends to dominated over the soft mass from gauge

mediation. In particular there exist a ‘A/mH problem’ and a ‘little A/mH problem’, where

the former is precisely analogous to the better known µ/Bµ problem and can be evaded in

certain special cases, as discussed extensively in chapter 2. The little A/mH problem on

the other hand is specific to weakly coupled models and may not invalid the spectrum, but

tends to severely enhance the tuning of the model.

This thesis is organized as follows: In chapter 2 we will define the A/mH problem and a

little A/mH problem precisely and present an example of a fully weakly coupled solution to

the former. In chapter 3 we develop a formalism that allows for a very general treatment of

models that make use of (1.20). This formalism will then enable us then present a partially

strongly coupled set of solutions to both the A/mH problem and a little A/mH problem in

chapter 4. Chapter 5 contains a brief conclusion and outlook.
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Chapter 2

A complete model of low scale Gauge Mediation

With N. Craig, D. Shih and Y. Zhao

Appeared in JHEP 1303 (2013) 154, arXiv:1206.4086

General context of this chapter

As discussed in the introduction, the recent observation of a Higgs boson with mass around

126 GeV motivates the existence of large Higgs-stop-stop couplings (A-terms) in the MSSM.

Generating such A-terms presents a special challenge for gauge mediation, which by itself

predicts vanishing A-terms at the messenger scale. In this chapter, we extend gauge media-

tion with messenger-Higgs interactions, which enable us to generate sizable A-terms without

introducing problems with precision flavor tests. Realistic models are however non-trivial,

and we clearly demonstrate the existence of an ‘A/mH problem’ which generically arises in

this class of models, and present a mechanism to overcome this problem. Using this mech-

anism, we construct the first full model of low scale gauge mediation with TeV-scale stops

and a Higgs boson with mass of 126 GeV. Specifically we demonstrate that this type of

models is compatible with existing solutions to the µ/Bµ-problem. Our models are simple,

economical, and complete realizations of supersymmetry at the weak scale, however we show

that they nevertheless still suffer from a ‘little A/mH problem’, which greatly increases the

fine tuning.

2.1 Introduction

The latest results from ATLAS and CMS exclude the Standard Model (SM) Higgs except in

the narrow range of mh ∼ 122−127 GeV, and show intriguing hints of an excess at mh ≈ 125

GeV [24, 25]. A Standard Model-like Higgs in this range renews the urgency of the hierarchy

problem, for which supersymmetry (SUSY) remains the best solution available. Numerous
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studies have focused on the implications for the MSSM in general (including e.g. [26–

29, 16, 30–33]), with the result that mh = 125 GeV in the MSSM translates to a lower

bound on a combination of the A-terms and the stop mass. For zero stop mixing, the stops

must be heavier than ∼ 10 TeV, and for maximal mixing they must be heavier than ∼ 1

TeV. In the former case there is little reason to hope for meaningful signs of supersymmetry

at the LHC, and the naturalness problem of the MSSM is greatly exacerbated. We will

focus on the latter, more conventional scenario in this paper.

Accurately modeling the Higgs sector is especially challenging in low-scale SUSY-breaking

scenarios such as gauge mediation (GMSB; for a review and original references, see e.g. [34]).

There are two reasons for this. The first is omnipresent and pervasive, but is less directly

tied to a Higgs at 125 GeV: the well-known µ - Bµ problem. Gauge mediation does not

generate the parameters µ or Bµ at the messenger scale. Extending gauge mediation to

include new interactions in the Higgs sector that generate µ tends to produce a Bµ-term

that is too large for viable electroweak symmetry breaking (EWSB).

The second reason why the Higgs sector is challenging in gauge mediation is a direct

consequence of mh = 125 GeV. This is the failure of gauge mediation to generate A-terms at

the messenger scale, in addition to µ andBµ. The A-terms are instead generated through the

renormalization group equations of the MSSM, driven predominantly by the gluino mass. If

there is no other source of trilinear soft terms, then in order to generate A-terms of sufficient

size to explain the Higgs mass, the messenger scale must be extremely high (Mmess & 1010

GeV), and the gluinos must be extremely heavy (Mgluino & 3 TeV) [16]. Absent additional

interactions, this would seem to greatly constrain low-scale supersymmetry breaking.

The purpose of this paper will be to address all of these difficulties in a simple, econom-

ical, and calculable setting. To this end, we will construct perturbative spurion-messenger

models that generate the A, µ, and Bµ-terms of the right parametric size at the messenger

scale. Since vanilla GMSB can generate large A-terms through RG evolution from high mes-

senger scales, in this paper we will focus exclusively on low messenger scales (M ∼ 105−106

GeV) where the problem of the Higgs mass is most acute. The models presented here are

complete and fully calculable effective theories below the messenger scale; generate all the

required couplings of the Higgs sector; and are consistent with collider limits and a Higgs
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at mh = 125 GeV.

The starting point for our model-building is the introduction of marginal superpotential

interactions between the Higgses and messengers.1 As we will review in the next section,

if new Higgs-messenger interactions are introduced, the principal challenge is to generate

one-loop A-terms at the messenger scale while not generating too large (one-loop) m2
H soft

masses. Indeed, just as there is a µ - Bµ problem, there is a completely analogous A - m2
H

problem. If anything, the A - m2
H problem is more serious, because m2

H is a singlet under

all global symmetries.

Fortunately, the A - m2
H problem can be solved by adapting a well-known fact: if the

sole source of messenger mass is a single SUSY-breaking spurion X as in minimal gauge

mediation (MGM) [42–44], then even in the presence of direct couplings to the messengers,

one-loop contributions to scalar mass-squareds vanish to leading order in SUSY-breaking.2

That is, we may avoid the A - m2
H problem provided the superpotential takes the form

W = X φi · φ̃i + λuijHu · φi · φ̃j (2.1)

with 〈X〉 = M+θ2F and i, j summed over all the messengers (in irreducible representations

of SU(3) × SU(2) × U(1)) of the theory. Here and below, the dots will be used to denote

contraction of gauge indices. In order to avoid generating Bµ at one loop in this model, we

must take the analogous coupling for Hd to be zero (or at least extremely small, . 10−3).

This can be ensured with an appropriate global symmetry, or by appealing to technical

naturalness a la the SM Yukawa couplings.

As a mechanism for generating large A-terms, this was first described in a broader

context in [41]. Very recently, it was used in [48] to construct models with an eye specifically

towards mh = 125 GeV. Here, we will reanalyze these models with one crucial difference:

we will take into account a one-loop, negative, F/M2-suppressed contribution to m2
Hu

that

was neglected in [48]. Since F/M ∼ 100 TeV is fixed by the scale of soft masses, this new

contribution is important only when the messenger scale is low – within a factor of ∼ (a

1Alternatives to this would be to consider Higgs-messenger mass mixing [35–39]; interactions between
MSSM matter fields and messengers [40, 41, 20, 39]; or perhaps even MSSM matter-messenger mass mixing.
Some of these approaches are strongly constrained by precision flavor, for which more intricate model building
is required.

2This phenomenon was first noticed in the early literature on gauge mediation [22, 40]. An understanding
in terms of the symmetries special to MGM can be found in [45–47].
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few) × 100 TeV. In this regime, the one-loop contribution opens a qualitatively new region

of parameter space for EWSB that is unavailable at higher scales.

Our models for the MSSM (or those of [48]) may be viewed as a “module” for generating

large A-terms in gauge mediation. One can imagine attaching this module to theories

involving a successful solution of the µ - Bµ problem without new light degrees of freedom,

such as [47, 23, 49]. However, in this paper we explore an alternative and more economical

route, one that is all but inexorably suggested by the form of the superpotential (2.1).

Namely, if we extend the MSSM to the NMSSM, and couple the NMSSM singlet N to the

same MGM messengers, we may simultaneously solve the µ - Bµ problem and the A - m2
H

problem! Not only that, but in the NMSSM there is also a need for a negative soft mass and

large trilinears in the singlet potential in order to achieve viable EWSB and avoid ultra-light

pseudoscalars [50].3 This is a serious problem in conventional GMSB, since the singlet soft

mass-squared m2
N only arises at three loops and A-terms are again small. To a large extent,

this has discouraged the pursuit of NMSSM-like models of GMSB, despite the evident

suitability of an additional light singlet for addressing the µ - Bµ problem. Our extended

model with Higgs-messenger and singlet-messenger interactions automatically solves this A

- m2
N problem and reconciles the NMSSM and gauge mediation. Much as before, we find

that negative, F/M2-suppressed one-loop contributions to m2
N open a qualitatively new

region of parameter space in the NMSSM models when the messenger scale is low.

So our complete model for µ, Bµ and large At will be:

W = X (φi · φ̃i+ϕi · ϕ̃i)+λuijHu ·(φi · φ̃j+ϕi · ϕ̃j)+λNN(φi · ϕ̃i)+λNHu ·Hd−
1

3
κN3 (2.2)

again with λd = 0. This superpotential can be made natural under a U(1)X×Z3 symmetry.

The doubling of the messenger sector is necessary so that N can couple to a different

messenger bilinear than X in order to avoid generating dangerous tadpoles for N , which

are threatening since it is a gauge singlet [41, 46].

The addition of singlet-messenger interactions to an NMSSM model in GMSB has been

explored previously in [46], for the purpose of generating µ and Bµ. Here the new ingredient

is that we combine it with the A-term module in a natural and efficient way in order to

3For related approaches to this problem, see [51, 46, 52, 53]. For a review and references of NMSSM
phenomenology, see [54].
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generate a suitable mass for the Higgs, together with µ and Bµ. This combination is far from

trivial; as we will see, large A-terms place interesting constraints on the NMSSM sector.

Indeed, they access a qualitatively different region of parameter space – and lower messenger

scales – than were available in [46], and they arguably make it easier to achieve viable EWSB.

The interplay of all these issues illustrates the utility in constructing a complete effective

theory with the full set of interactions required for viable electroweak symmetry breaking

and a sizable Higgs mass.

It bears emphasizing that our philosophy is quite different from the typical approach

to the Higgs mass in the NMSSM. Rather than trying to lift the Higgs mass using the

NMSSM potential – an endeavor that is largely incompatible with perturbativity in the

Higgs sector up to the GUT scale – we instead use the MSSM stop mixing to lift the Higgs

mass and only employ the NMSSM to generate µ and Bµ. Indeed, in this scenario it’s easier

to generate mh ≈ 125 GeV if the NMSSM is in the “decoupling limit” of λ, κ → 0 with

large tanβ. Otherwise, the NMSSM couplings tend to contribute negatively to the Higgs

mass. In this sense, the Higgs mass and µ, Bµ have separate origins. Ultimately, however,

all the infrared parameters emerge from a common mechanism for generating A, m2
H , µ,

Bµ at the messenger scale via interactions with messenger fields.

The low-energy phenomenology of our models is relatively insensitive to the details of

the EWSB sector and the choice of messenger representations. To a large extent it resembles

that of MGM, due to the key role played by the MGM-like couplings of the messengers to

the hidden sector. Concretely, the stops are the lightest colored scalars, and typically the

only colored superpartners below 2 TeV. Additional scalars in the EWSB sector are heavy

and the Higgs properties are SM-like. Because we are forced to consider larger effective

messenger numbers to improve the At/mt̃ ratio, the NLSP is typically the lightest stau.

Finally, our exclusive focus on low messenger scales in this paper means that the stau

NLSP always decays promptly in the detector. The most fruitful channels for discovery are

likely to be those with leptons and missing energy, and these spectra readily satisfy current

LHC limits [55].

It is interesting that we are essentially led to minimality in the messenger sector because

of the need to solve the A - m2
H problem. Since colored superpartners are relatively heavy
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in MGM, perhaps this explains why we have yet to observe evidence for supersymmetry at

the LHC! Of course, while minimality is appealing from an aesthetic point of view, it is not

strictly necessary. The mechanisms we discuss here for generating large A-terms without

over-large m2
H , and µ without over-large Bµ, can in principle be added to any general model

of gauge mediation [56], e.g. the model of [57] which covers the GGM parameter space. This

greatly expands the possible phenomenology.

The outline of our paper is as follows: In section 2.2 we present the general problems of

gauge mediation in light of a Higgs at 125 GeV, focusing on the challenges of generating a

µ-term without an over-large Bµ-term, and likewise large A-terms without over-large m2
H

soft masses. As we discuss in section 2.2, these problems share a common solution, through

the use of minimal gauge mediation and (in case of µ - Bµ) the NMSSM. We present specific

models in section 2.3. These include a module for generating large A-terms in the MSSM,

and a complete theory incorporating µ and Bµ in the NMSSM. Various constraints on the

models stemming from EWSB and avoidance of tachyons are discussed in detail in section

2.4, and the spectrum and phenomenology of the models are analyzed in section 2.5. We

conclude in section 2.6 with a summary and discussion of future directions. Finally, general

formulas for soft masses and a discussion of physics above the messenger scale (i.e. Landau

poles) are reserved for appendices 2.A and 2.B, respectively.

2.2 Generalities

2.2.1 The µ-Bµ and A-m2
H problems

A successful theory of supersymmetry breaking should give rise to gaugino masses and scalar

soft masses of the same order, as well as A-terms and a Bµ-term that are of the same order

or smaller. In addition, supersymmetry breaking should ideally provide a natural origin for

the µ-term,

L ⊃
∫
d2θ µHuHd . (2.3)

Although the µ-term is ostensibly supersymmetric and need not originate from supersymme-

try breaking, successful electroweak symmetry breaking requires that the scale of µ coincide

with that of the other soft masses in the Higgs sector, i.e., µ2 ∼ m2
soft. This is the origin
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of the so-called “µ problem”. A glaring coincidence problem may be avoided only if the

µ-term is generated by the same dynamics that breaks supersymmetry.

Gauge mediation gives rise to gaugino masses at one loop and sfermion soft masses-

squared at two loops, such that mg̃ ∼ mf̃ ∼ msoft as desired. However, gauge interactions

alone do not generate all possible soft terms at similar orders. In particular, in the most

general gauge mediation model, µ and Bµ are not generated to any order in the gauge

couplings, as they are protected by U(1)PQ symmetries which rotate Hu and Hd. Meanwhile

the A-terms are not generated to leading order in the gauge couplings [56]. They can be

generated at higher orders, through the usual MSSM RGEs, but this means that it is quite

challenging to make them large enough, especially for mh = 125 GeV [16]. The failure of

gauge interactions to generate appropriate contributions to Higgs sector soft parameters

suggests that a viable and complete theory of supersymmetry at the weak scale should

include both gauge mediation and additional couplings to the Higgs sector.

This may be arranged in gauge mediation by introducing couplings between the Higgs

multiplets and messengers such that, below the scale M of the messengers, the theory

contains an effective operator of the form

L ⊃
∫
d4θ

cµ
M
X†HuHd + h.c. (2.4)

Here we are working in the spurion limit, where the effects of supersymmetry breaking are

encoded by the expectation values 〈X〉 = M+θ2F and the dynamics of X may be neglected;

we also assume the messenger sector is weakly coupled. The effective operator (2.4) leads

to a µ-term of the right size in weakly-coupled models provided the coefficient cµ arises at

one loop.

However, in most models of gauge mediation, whatever Higgs-messenger interactions

give rise to (2.4) likewise generate an effective operator contributing to the Bµ-term of the

form

L ⊃
∫
d4θ

cBµ
M2

X†XHuHd + h.c. (2.5)

at the same loop order. Consequently, one finds Bµ/µ
2 ∝ cBµ/c

2
µ ∼ 16π2/λ2

µ � 1, where

λµ represents some set of perturbative Higgs-messenger couplings that collectively break

the PQ symmetry. This “µ - Bµ problem” is a disaster for stable electroweak symmetry
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breaking, which generally requires µ2 ∼ Bµ.4 Considerable attention has been devoted to

possible solutions to this problem.

Interestingly, an analogous problem – which has thus far received much less attention –

arises between A-terms and Higgs soft masses m2
Hu,d

. An attractive way to generate sizable

A-terms aligned with Standard Model Yukawa couplings is to introduce Higgs-messenger

couplings that lead to Kähler terms of the form

L ⊃
∫
d4θ

cAu,d
M

XH†u,dHu,d + h.c. (2.6)

Such terms give rise to A-terms after substituting F †Hu,d → −yuQū via the MSSM super-

potential, and the F -component vev of X.5 The resulting A-terms are attractive from the

perspective of flavor physics, since they are naturally aligned with Standard Model Yukawa

couplings. In order for these A-terms to have a meaningful impact on the gauge-mediated

soft spectrum, cAu,d should arise at one loop so that A ∼ msoft.

However, in complete analogy with µ - Bµ, whatever interactions generate (2.6) also

typically give rise to contributions to Higgs soft masses of the form

L ⊃
∫
d4θ

cmu,d
M2

X†XH†u,dHu,d (2.7)

at the same loop order. If A-terms are generated at one loop, as is necessary for them to

have any impact on the mass of the Higgs, this implies a one-loop contribution to Higgs soft

masses that seriously imperils electroweak symmetry breaking. This “A - m2
H problem”

is especially troublesome because the couplings cmu,d are singlets under all possible global

symmetries acting on X and Hu,d, making it difficult to generalize many conventional

approaches to the µ - Bµ problem.

In order to understand the solution to the A - m2
H problem, it is useful to reexamine the

problem more concretely using the most general perturbative model of messengers coupled

to a supersymmetry-breaking spurion [61]:

W = λijXφi · φ̃j +mijφi · φ̃j . (2.8)

4An exception is if m2
Hd

is large and positive, in which case the standard EWSB relations in the MSSM
allow for Bµ � µ2. The idea was first proposed in [58], together with a viable messenger model involving
multiple spurions. More details were later worked out in [59, 60].

5As we will discuss in more detail later, these terms also contribute to m2
Hu,d

, as well as to Bµ if µ is

present in the superpotential.
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Here as above, 〈X〉 = M + θ2F . If we want one-loop A-terms, we should couple the

messengers directly to the Higgs fields:6

δW = λuijHu · φi · φ̃j + λdijHd · φi · φ̃j . (2.9)

Integrating out the messengers leaves a supersymmetric effective theory for X, Hu and Hd

described by the effective Kahler potential

Keff = Zu(X,X†)H†uHu + Zd(X,X
†)H†dHd + (Zµ(X,X†)HuHd + h.c.) + . . . (2.10)

where the ellipses denote terms that are higher order in Hu and Hd, and ε is a loop-

counting parameter. In addition to being functions of X and X†, the wavefunction factors

will also depend on other dimensionful parameters. This includes not only mij from the

superpotential, but also a UV cutoff Λ0 – in general the wavefunctions are UV divergent

quantities.

The terms in (2.10) are responsible for generating µ, Bµ, m2
Hu

, m2
Hd

, and Au, Ad.

Specifically, we have, to leading order in F/M2 and to one-loop order:

µ = F ∂XZ
(1)
µ , Bµ = |F |2 ∂X∂X†Z(1)

µ

Au,d = F ∂XZ
(1)
u,d , m2

Hu,d
= |F |2 ∂X∂X†Z(1)

u,d (2.11)

where all the X derivatives are evaluated at X = M . If the wavefunctions are completely

general functions of X, X†, mij and Λ0, typically nothing will cause their mixed second

derivatives to disappear, and so nothing prevents Bµ, m2
Hu

, and m2
Hd

from appearing at

one loop at leading order in F/M2. Although one might hope to forbid certain terms from

appearing in the wavefunction factors using appropriate global symmetries, the soft terms

m2
Hu,d

are especially dangerous, as they are neutral under all global symmetries.

In summary, we see that if µ is generated at one loop, then Bµ also tends to be generated

at one loop; there is nothing in the form of (2.11) that distinguishes the loop counting of

the two parameters. Similarly, if Au,d is generated at one loop, then m2
Hu,d

tends to be

generated at one loop. So just as there is a µ - Bµ problem, there is an A - m2
H problem.

6Note that we could also write down interactions involving singlet messengers S of the form W ⊃ SHuHd;
we will not consider this option in detail here.
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2.2.2 A general mechanism for a solution

As is well known (see especially the discussion in [47]), there is one special case for which the

mixed derivatives of the wavefunction factors will vanish: minimal gauge mediation [42–44],

for which the only source of mass in the messenger sector is the vev of X. In that case, the

superpotential is constrained to take the form W = λiXφiφ̃i. In fact, this model is further

special: it is endowed with an R-symmetry under which R(φi) = R(φ̃i) = 0 and R(Hu) =

R(Hd) = R(X) = 2. This R-symmetry is broken only by the lowest-component-vev of

X. Then by a combination of dimensional analysis and the R-symmetry, the wavefunction

renormalization factors are constrained to take the form

Zu,d = f

(
X†X

Λ2
0

)
, Zµ =

(
X†

X

)
g

(
X†X

Λ2
0

)
. (2.12)

At one loop, we can have at most a logarithmic divergence by power counting. So symmetries

and dimensional analysis imply Z
(1)
u,d = cu,dλ

2
u,d logX†X/Λ2

0, in which case the one-loop

contributions to m2
Hu,d

vanish! Of course, we emphasize that this approach only captures

the leading-order effects in F/M2, so that there may be nonzero one-loop soft masses

suppressed by powers of F/M2 that are not problematically large.

Meanwhile, we see from (2.12) that Bµ does not vanish in general at one loop, and

typically must be forbidden by imposing additional symmetries. In fact, if g is a nontrivial

function, µ and Bµ can in general be UV sensitive. These problems may be avoided if

λd = 0 in (2.9), in which case there is an additional PQ symmetry; the one-loop contribution

Z
(1)
µ ∝ λuλd vanishes and neither µ nor Bµ arise at this order. Since we wish to generate

A-terms without exacerbating the µ - Bµ problem, in what follows we will exploit this

case and take λd = 0. This choice is technically natural, and may be enforced by a global

symmetry distinguishing Hu and Hd.

Although this approach leads to sizable A-terms and solves the A - m2
H problem, it

does not explain the origin of µ and Bµ. While it is possible to address the problem

by supplementing the messenger sector with additional interactions and symmetries, there

exists a far more economical route. Namely, if we extend the MSSM by a single light singlet

field N , and couple N to the same MGM messengers that Hu couples to, then we can

simultaneously generate µ, Bµ and At! In this paper, we will focus on the simplest scenario,
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namely the Z3 symmetric NMSSM:

W ⊃ λNHu ·Hd −
1

3
κN3 . (2.13)

As is well known, the main obstacle to marrying the NMSSM and gauge mediation is that

a viable vacuum requires a sufficiently large, negative soft mass m2
N at the weak scale, as

well as sizable trilinear couplings Aλ, Aκ – but pure gauge mediation does not generate

any of these quantities at the messenger scale [50]. So by the same logic as before, one is

confronted with an A - m2
N problem in the NMSSM. But again, the same logic tells us that

there is a uniform solution of all of these problems – A - m2
N , A - m2

H , and µ - Bµ – via the

MGM-messenger mechanism described above!

2.2.3 The little A-m2
H problem

Thus far our discussion of viable spectra has focused on the loop order at which various soft

parameters arise. While a necessary constraint, it is not sufficient on its own to guarantee

successful electroweak symmetry breaking; even if they are all the same size, the Higgs sector

soft parameters must satisfy various inequalities in order to ensure a nontrivial vacuum. In

particular, the soft masses m2
Hu

and m2
t̃

receive large corrections at the messenger scale from

the Higgs-messenger coupling λu, such that radiative electroweak symmetry breaking may

no longer be taken for granted. The contributions to m2
Hu

are highly generic and particularly

troublesome. As mentioned above, whenever A-terms arise via Kähler operators of the form

(2.6), there is an irreducible contribution to m2
Hu,d

given by A2
u,d. These arise from putting

the auxiliary fields to their equations of motion, e.g.:

−V ⊃ F †HuFHu +
(
AuHuF

†
Hu

+ c.c.
)
→ −A2

uH
†
uHu (2.14)

Although this increase in m2
Hu

does not necessarily spoil electroweak symmetry breaking,

it greatly enhances the degree to which the model is tuned. Thus even when the loop-level

A - m2
H problem is solved, there is a remnant “little A - m2

H” problem that is universal in

models where the A-terms originate from Kähler operators such as (2.6).

The consequences for EWSB depend on the specific choice of messenger representations

and couplings. We will first present general models for the MSSM and the NMSSM, and

reserve a detailed discussion of electroweak symmetry breaking for section 2.4.
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2.3 Models

2.3.1 Warmup: an MSSM module for large A-terms

Let us now analyze an explicit model with the features discussed above. This model was

constructed recently in [48], motivated by mh = 125 GeV. Our analysis in this paper will

differ crucially in the treatment of one-loop soft masses. As we will show, these can have

profound effects on the model at low messenger scales.

Consider a theory with messengers φi, φ̃i in vector-like irreps of SU(3)×SU(2)×U(1);

a SUSY-breaking spurion X with 〈X〉 = M + Fθ2; and superpotential interactions

W = X φi · φ̃i + λuHu · φ1 · φ̃2 + ytHu ·Q · U + µHu ·Hd + . . . (2.15)

where the ellipses denote other MSSM interactions that are irrelevant for our purposes.

Here we are making a number of simplifying assumptions: first, we are assuming that there

is only one combination of the messengers, φ1 · φ̃2, that can be combined with Hu to make a

gauge singlet. The generalization to multiple such couplings is straightforward. Second, at

this stage we are interested in generating A-terms at one loop, rather than explaining the

origin of µ and Bµ, and so we will allow for arbitrary µ and Bµ.7 In the next subsection,

we will extend the model to also generate these parameters. Finally, we are only including

the top Yukawa explicitly in (2.15), because its large size means that it will play a role in

the later analysis.8

The interactions (2.15) comprise the most general renormalizable superpotential consis-

tent with the SM gauge symmetry, together with messenger number (to forbid messenger-

matter mixing), and a global U(1)X symmetry under which the fields carry the following

charges:

qX(X,φi, φ̃i, Hu, Hd) = (1,−1/2,−1/2, 1,−1) . (2.16)

(Charges of MSSM matter fields can always be chosen such that the usual Yukawa terms are

allowed.) Messenger number forbids mixing with matter multiplets and renders the lightest

messenger stable, though this may be readily broken by higher-dimensional operators [62].

7As noted earlier, the Higgs-messenger interactions contribute to Bµ given a supersymmetric µ-term, but
we allow arbitrary additional contributions to satisfy EWSB.

8The bottom and tau yukawas are unimportant even at large tanβ because our Higgs-messenger couplings
only involve Hu.
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We may readily extend this model to include Nmess flavors of messengers, so in general

we consider messengers φif , φ̃if with f = 1, . . . Nmess. To avoid a proliferation of couplings,

we will impose a U(Nmess) flavor symmetry.

The superpotential interactions (2.15) give rise to both conventional gauge-mediated soft

masses and new contributions to m2
Hu

, m2
Q, m2

U , and At due to the direct Higgs-messenger

interaction. The latter are given by:

δm2
Hu = −dH

αλu
12π

h(Λ/M)

(
Λ

M

)2

Λ2 +

(
dH(dH + 3)

α2
λu

16π2
− dHCr

αrαλu
8π2

)
Λ2 (2.17)

δm2
Q = −dH

αtαλu
16π2

Λ2 (2.18)

δm2
U = −dH

αtαλu
8π2

Λ2 (2.19)

At = −dH
αλu
4π

Λ (2.20)

Here we have introduced

Λ ≡ F/M (2.21)

Also, dH counts the total number of fields coupled to H through λu; and Cr = cHur +cφ1
r +cφ̃2

r

is the sum of quadratic Casimirs of the fields which participate in the Higgs-messenger-

messenger Yukawa coupling. (Concrete examples of dH and Cr will be given in section

2.3.3.) The little A - m2
H problem is manifest in the second term of (2.17), specifically in

the contribution proportional to d2
H .

The first term in δm2
Hu

is the Λ/M -suppressed one-loop contribution to m2
Hu

which

cannot be eliminated by the MGM mechanism described in the previous section. The

function h(x) is given by:

h(x) =
3
(

(x− 2) log(1− x)− (x+ 2) log(1 + x)
)

x4
= 1 +

4x2

5
+ . . . (2.22)

and is such that the one-loop contribution to m2
Hu

is always strictly negative. This effect

was neglected in [48], and it will be crucial for the discussion in section 2.4.1, when we

analyze the viability of these models from the perspective of EWSB. There are, of course,

additional Λ/M -suppressed contributions to all the other soft masses [62, 63], but these

are always subdominant. The Λ/M -suppressed contribution to m2
Hu

(and only m2
Hu

) is

parametrically important because it first arises at one loop.
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Once the number and type of messenger representations are specified, the dimensionless

parameter space of the MSSM module for large A-terms consists solely of (Λ/M, λu). In

addition, there is one dimensionful parameter Λ that sets the overall scale of the soft masses.

Since we are interested in a particular Higgs mass, mh = 125 GeV, this completely fixes Λ,

given a choice of (Λ/M, λu). We will explore this parameter space in detail in sections 2.4

and 2.5.

We emphasize that the addition of these Higgs-messenger interactions to the MSSM is

essentially modular. It leaves unaltered (and unaddressed) whatever physics generates µ

and Bµ, and may be incorporated into a variety of solutions to the µ - Bµ problem. In

general, new interactions that generate µ and Bµ also contribute to m2
Hu

, often at two loops.

The sign of these contributions to m2
Hu

depend on the details of the model, and may either

increase or decrease the value of m2
Hu

at the messenger scale. Scenarios in which the new

contributions are negative [23, 49] will improve the prospects for (radiative) electroweak

symmetry breaking.

2.3.2 The complete NMSSM model for A, µ, and Bµ

While the coupling of messengers to Hu in the MSSM provides an avenue for generating

A-terms at one loop, it does not explain the origin of µ and Bµ. Indeed, had we allowed

analogous couplings to Hd, we would have generated both a µ-term and a Bµ-term at one

loop, which would have been disastrous for EWSB. This suggests another source is required

for the µ and Bµ-terms. A natural possibility is the addition of a gauge singlet superfield

N , which may be coupled to messengers much like Hu [41, 46].

As discussed in the previous section, the addition of a light gauge singlet superfield

raises the usual challenges of generating suitable A-terms and m2
N in the singlet sector.

This is again solved by the same MGM mechanism.9 However, the new challenge is that N ,

being a gauge singlet, can potentially mix with X, leading to dangerous tadpole terms for

N [41, 46]. To forbid these, it suffices to extend the U(1)X symmetry of (2.16) to include

9The same approach was also used recently in [64]. However the EWSB mechanism in this paper is
different from ours, as they require the “lopsided” hierarchy µ2 ∼ m2

Hu
� Bµ � m2

Hd
[58–60].
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N so that10

qX(N) = 0 . (2.23)

By itself though, this would forbid any coupling between N and the messengers. So we

will follow the approach of [41, 46] and double the messenger sector, φi → φi, ϕi, using

the freedom to assign different U(1)X charges to φi and ϕi. For instance, we can take the

following charge assignment:

qX(X,φ, φ̃, ϕ, ϕ̃,Hu, Hd, N) = (1, 0,−1,−1, 0, 1,−1, 0) . (2.24)

With this U(1)X symmetry, we can have a viable model with the superpotential

W = X(φi · φ̃i +ϕi · ϕ̃i) + λuHu · (φ1 · φ̃2 +ϕ1 · ϕ̃2) + λNNφi · ϕ̃i + λNHu ·Hd + . . . (2.25)

where the ellipses again denote other MSSM interactions that are irrelevant for our purposes.

At this point N is a total singlet and so its interactions can be fully general, for instance

those discussed in [54]. Of course, a total singlet with arbitrary interactions is disastrous

for many reasons, including the possible reintroduction of UV divergences; typically some

set of symmetries must be imposed to ensure that the theory is well-behaved. In this

paper, we will for simplicity focus on the usual Z3-symmetric NMSSM. Because of the N -

messenger-messenger couplings, this Z3 must be extended to act on the messengers as well.

A consistent charge assignment is:

Z3(X,φi, φ̃i, ϕi, ϕ̃i, Hu, Hd, N) = (0, 1, 2, 2, 1, 0, 2, 1) . (2.26)

Then the most general superpotential consistent with our choice of U(1)X × Z3 symmetry

is:

W = X(φi·φ̃i+ϕi·ϕ̃i)+λuHu·(φ1·φ̃2+ϕ1·ϕ̃2)+λNNφi·ϕ̃i+λNHu·Hd−
1

3
κN3+ytHu·Q·U+. . .

(2.27)

This is our complete model of supersymmetry at the messenger scale, which will give rise

to all the superpartner masses, large At, µ, and Bµ after the messengers are integrated out.

10Note that in [41, 46], a Z3 symmetry was invoked for this purpose. However, their Z3 symmetry is
neither sufficient nor necessary for obtaining a viable model. In particular, it does not forbid direct EOGM
[61] mass terms for the messengers.
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Note that the model without the Hu-messenger interaction was studied in [46]. We will see

that adding this interaction and requiring large At for mh = 125 GeV qualitatively changes

the model and actually improves its viability.

The contributions to the soft masses from the NMSSM couplings are given by (these

should be added to the standard gauge mediation terms and those in (2.17)-(2.20)) :

δm2
Hu =

(
dH

αλNαλu
16π2

− dN
αλαλN
16π2

)
Λ2 (2.28)

δm2
Hd

=

(
− dH

αλαλu
16π2

− dN
αλαλN
16π2

)
Λ2 (2.29)

m2
N = −dN

αλN
12π

h(Λ/M)

(
Λ

M

)2

Λ2 +

(
dN (dN + 2)

α2
λN

16π2
− dN

αλNακ
4π2

(2.30)

− dH
αλαλu

8π2
− diiNcir

αλNαr
4π2

+
(
d11
N d

H2
1 + d22

N d
H1
2

) αλuαλN
16π2

)
Λ2

δm2
Q = δm2

U = δAt = 0 (2.31)

Aλ = −
(
dH

αλu
4π

+ dN
αλN
4π

)
Λ (2.32)

Aκ = −3dN
αλN
4π

Λ (2.33)

where again, Λ ≡ F/M ; dH is as above; and dN similarly counts the total number of fields

coupling to N via λN . We also have diiN counting the number of fields of type φi (or ϕi)

coupling to N (and so dN =
∑

i d
ii
N ). The numbers dH2

1 and dH1
2 count the number of

fields coupling to φ1 and φ2 respectively through the λu Yukawa coupling. Finally, cir is the

quadratic casimir of φi in the rth gauge group. Concrete examples of all of these parameters

are given in section 2.3.3.

The full NMSSM model introduces three new parameters (λ, κ, λN ) relative to the MSSM

module; as we will discuss in detail in section 2.4.2, EWSB fixes two of the extra parameters

(say κ and λN ) in terms of the third (λ) and the other Higgs sector parameters. So for

fixed messenger content, the full parameter space of the theory is Λ, M , and λu (the MSSM

parameters), plus λ. Restricting our attention to mh = 125 GeV, the full parameter space

may be specified by Λ/M, λu, and λ. As with the MSSM, it is no longer obvious that EWSB

is viable due to new contributions to the Higgs soft mass; we reserve a detailed study for

section 2.4.
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2.3.3 Examples

Here we will illustrate the use of the general formulas above with two specific examples for

messenger representations. These examples effectively exhaust the possibilities for low-scale

GMSB consistent with genuine perturbative gauge coupling unification. The only additional

possibility which we are not considering here is a 24 of SU(5), as it is incompatible with

the messenger doubling needed for the complete NMSSM model.

• The first example is where the messengers fill out 5⊕5 representations of SU(5) (plus

the necessary gauge singlets to form the Hu Yukawa coupling). In more detail, we

take the SU(3)×SU(2)×U(1) representations of the fields in (2.15) and (2.27) to be

(φ1, φ2, φ3) = ((1,1, 0), (1,2, 1/2), (3,1,−1/3)) (2.34)

Note that the first field is a pure gauge singlet, and the third is purely a spectator

in the MSSM case from the perspective of generating A-terms, serving only to com-

plete the GUT multiplet and communicate SUSY breaking to colored fields via gauge

interactions.

In this model, the quantities needed to fully specify the MSSM and NMSSM soft

masses are given by

dH = Nmess, dH2
1 = 2, dH1

2 = 1

dN = 3Nmess, d11
N =

1

2
Nmess, d22

N = Nmess, d33
N =

3

2
Nmess (2.35)

c1
r = (0, 0, 0), c2

r = (0, 3/4, 3/20), c3
r = (4/3, 0, 1/15)

Note that for NMSSM models, Nmess must be even due to the doubling of the mes-

senger sector.

• Our second example is where the messengers fill out a 10⊕ 10 of SU(5). So here we

also have three messengers (up to an overall multiplicity Nmess)

(φ1, φ2, φ3) = ((3,1, 2/3), (3,2, 1/6), (1,1, 1)) (2.36)

Note that φ is actually not a 10 of SU(5). Rather, φ plus the conjugate φ̃ fill out a

10⊕ 10 of SU(5); this choice is merely a notational convenience that makes manifest
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the global symmetries of the theory. The key difference relative to the 5 + 5 case

is that the messengers coupling to the Higgs are now charged under SU(3). As was

shown in [48], this has interesting consequences for the viable parameter space of the

theory due to negative contributions to m2
Hu

proportional to ∼ α3αλu in (2.17).

In this model, for Nmess pairs of 10 ⊕ 10 messengers, the necessary coefficients for

soft parameters are given by

dH = 3Nmess, dH2
1 = 2, dH1

2 = 1

dN = 5Nmess, d11
N =

3

2
Nmess, d22

N = 3Nmess, d33
N =

1

2
Nmess (2.37)

c1
r = (4/3, 0, 4/15), c2

r = (4/3, 3/4, 1/60), c3
r = (0, 0, 3/5)

Again, for NMSSM models, Nmess must be even.

2.4 EWSB and Other Constraints

It is clear thus far that introducing additional interactions to generate sizable A-terms has

repercussions for the rest of the theory via new contributions to various soft masses. These

new contributions are typically quite large (since A-terms are large) and may significantly

alter the vacuum structure of the theory relative to MGM. Requiring a viable vacuum in

which electroweak symmetry is broken but various other Standard Model symmetries are

preserved leads to nontrivial constraints on the space of UV parameters. In particular, the

challenges of guaranteeing EWSB while avoiding charge- and color-breaking minima are

more acute than in MGM and favor particular values of scales and couplings in the effective

theory. In this section we will discuss the qualitative challenges imposed by a viable vacuum

and study several benchmark points that exemplify the effects on parameter space. These

effects will be further manifest in section 2.5, where we perform a comprehensive numerical

study on the viable parameter space for explicit models.
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2.4.1 EWSB in the MSSM with large A-terms

In the MSSM, minimizing the Higgs potential leads to the relations

µ2 =
m2
Hd
−m2

Hu
t2β

t2β − 1
− 1

2
m2
Z (2.38)

s2β =
2Bµ

m2
Hd

+m2
Hu

+ 2µ2
(2.39)

between soft parameters and the observables mZ and tanβ at the scale of EWSB. (Here we

write tanβ and sin 2β as tβ and s2β for short. In all the numerical calculations that follow,

we will use tanβ = 10.) These conditions are satisfied at the minimum of the potential, but

alone are not sufficient to guarantee a viable vacuum. Rather, the soft parameters must

also satisfy the inequalities

Bµ < |µ|2 +
1

2
(m2

Hu +m2
Hd

) (2.40)

B2
µ > (|µ|2 +m2

Hu)(|µ|2 +m2
Hd

) (2.41)

which correspond to the requirements that the quadratic part of the scalar potential is

positive along D-flat directions and that the origin is not a stable minimum (in which case

the vacuum could preserve electroweak symmetry), respectively.

These conditions are most readily satisfied if m2
Hu

is negative at the weak scale. Indeed,

renormalization group evolution of soft parameters down to the weak scale typically ensures

that this is the case. The most salient feature of the RG evolution of m2
Hu

is the negative

contribution coming from the large top quark Yukawa, proportional to the third generation

soft masses m2
Q3
,m2

u3
and the top A-term. With high messenger scales, the large logarithm

is usually sufficient to guarantee that these contributions drive m2
Hu

negative. With low

messenger scales, as we are focusing on in this paper, the logarithm is not large, so m2
Hu

must

be negative for other reasons. In GMSB, the soft masses of colored scalars are substantially

larger than the messenger-scale soft mass for Hu due to the size of the QCD gauge coupling

and the SU(3) Casimir; this suffices to drive m2
Hu

negative in only a few decades of running.

So even though m2
Hu

is positive at the messenger scale, radiative effects drive it negative

before the weak scale. Thus radiative electroweak symmetry breaking is a robust prediction

of minimal GMSB.
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Figure 2.1: Plot of m2
Hu

vs Λ/M , for Λ = 110 TeV, Nmess = 4, and λu = 0.1 (left panel)
and λu = 1.1 (right panel). The total value of m2

Hu
in the MSSM at the messenger scale

(see (2.15)) is shown in black. The green, red and yellow lines indicate the usual GMSB
contribution, the one-loop contribution from λu, and the two- loop contribution from λu,
respectively. Finally, the dashed black line represents the value of m2

Hu
RG evolved down

to MSUSY . EWSB at large tanβ requires m2
Hu

< 0 at the weak scale. We see that for large
λu, EWSB is achieved for sufficiently large Λ/M due to the negative 1-loop contribution.
For small values of λu EWSB is achieved radiatively, as in MGM.

In any model (not just GMSB) with sizable contributions to Higgs A-terms at the

messenger scale, the success of radiative EWSB is greatly endangered. Even if the A -

m2
H problem is solved at one loop, it is in general impossible to suppress the two-loop

contributions to m2
Hu

. Since generating mh ∼ 125 GeV requires A-terms at least as large

as the stop masses, and since the A-terms and m2
Hu

have a common origin, it is generally

the case that m2
Hu
∼ m2

stop. But then RG contributions from third generation soft masses

are no longer sufficient to drive m2
Hu

negative when running from a low scale. While A-

terms also act to drive m2
Hu

negative, they are not parametrically larger than m2
Hu

itself.

So the success of radiative EWSB now depends sensitively on the messenger scale. All of

these features are illustrated concretely in (2.17)-(2.20), but the problem of EWSB is highly

generic.

However, all is not lost. In the context of our models, we identify two possibilities for

rescuing EWSB:

• If the messenger scale is low (M . 106 GeV), then the negative, Λ/M -suppressed

one-loop contribution to m2
Hu

in (2.17) may be competitive with the unsuppressed

two-loop contribution. Partial or complete cancellation between the two terms of

different loop order may diminish the value of m2
Hu

at the messenger scale or render it
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Figure 2.2: Plot of the weak-scale signed mass m2
Hu
/
√
|m2

Hu
| vs λu, for the 5 ⊕ 5 model

with Nmess = 4 (left) and the 10⊕10 model with Nmess = 2 (right). In both plots, Λ = 110
TeV. The blue, red and yellow curves correspond to Λ/M = 0.1, 0.5 and 0.9 respectively.
As we will see, mh ∼ 125 GeV requires λu ∼ 1 for reasonable stop masses. We see that
in the 5 ⊕ 5 model, m2

Hu
becomes positive well below λu ∼ 1 for Λ/M = 0.1, but not for

Λ/M = 0.5 or 0.9. But in the 10⊕ 10 model, even Λ/M = 0.1 is possible, because m2
Hu

is
receiving an additional negative contribution from the colored messengers.

negative. The effect is illustrated in figure 2.1. The 1-loop contribution was neglected

in [48], but we will see that it significantly influences theories with low messenger

scales; it will also play an additional key role when we turn to the NMSSM.

• Alternatively, there can be a significant reduction of the two-loop contribution itself,

if the gauge contribution in (2.17) is large enough to partially or wholly cancel the

Yukawa contribution [48]. Since obtaining the physical Higgs mass through stop

mixing requires λu & g3, among the Standard Model gauge couplings only g3 is large

enough to result in meaningful cancellation.11 Thus if any of the messengers φ1, φ̃1,

φ2, φ̃2 are charged under SU(3)C , the two-loop contributions to m2
Hu

may largely

cancel among themselves for arbitrary messenger scale. Note that this is impossible

to arrange when the messengers transform as complete 5 + 5̄ multiplets, but may

occur if they transform as higher-rank representations such as 10 + 10. In this case,

m2
Hu

is still typically positive at the messenger scale, but is small enough to be driven

negative by radiative effects before the weak scale. This effect is illustrated in fig. 2.2.

11Also considered in [48] is the possibility that the messengers are charged under a strong hidden sector
gauge group.
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2.4.2 EWSB in the NMSSM

The discussion of EWSB must be expanded somewhat for the NMSSM due to the additional

singlet degree of freedom in the Higgs sector; the introduction of a light singlet changes the

vacuum structure of the potential and introduces a number of new parameters into the

conditions for electroweak symmetry breaking. Fortunately, it is possible to develop a

parametric understanding of the NMSSM vacuum in certain simplifying limits, and that

will suffice for our purposes. We will find that the upshot remains largely the same as

in the previous subsection – for successful EWSB, we will need large negative m2
N at the

weak scale, and there is a window of low messenger scales in which the negative, one-loop,

Λ/M suppressed contribution to m2
N ensures this. In what follows, our discussion will often

mirror that of [46], who considered this model without the large A-terms, and without the

one-loop correction to m2
N . We will see that these have vital effects and qualitatively change

the behavior of the model.

Upon introducing a singlet, the minimization conditions for the tree-level potential are

extended to three equations: (2.38)-(2.39), together with12

2
κ2

λ2
µ2 − κ

λ
Aκµ+m2

N = λ2v2

[
−1 +

1

2
s2β

(
Bµ
µ2

+
κ

λ

)
+

1

4
s2

2β

λ2v2

µ2

]
. (2.42)

These equations determine µ = λ〈N〉, and Bµ is given by:

Bµ =
κ

λ
µ2 −Aλµ−

1

2
s2βλ

2v2 . (2.43)

In general, the solutions to (2.38)–(2.39) and (2.42) are complicated functions of the

parameters and couplings. However, things simplify considerably in the case of interest:

v2 � m2
soft; large tanβ (to maximize the tree-level MSSM contributions to the Higgs

mass); and λ � 1 (since we are not trying to lift the Higgs mass using the NMSSM

quartic). This is a decoupling limit in which the singlet serves largely to fix µ and Bµ and

does not mix significantly with the Higgs doublets. Consequently, the constraints on soft

parameters imposed by EWSB in the MSSM are largely unchanged, but are supplemented

12Of course, these are merely the tree-level equations, which should be dressed with radiative corrections
in the full solution. In what follows, we use NMSSMTools [65, 66] where necessary to capture the full effects
of radiative corrections, but find that the tree-level equations are adequate to understand the parametric
behavior of the vacuum.
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Figure 2.3: Plot of m2
N vs. λN , for Λ = 110 TeV, M = 220 TeV, λu = 1.1, Nmess = 4, and κ

and λ negligibly small. (At this point, the stops are about 2 TeV and mh = 125 GeV.) The
total value of m2

N at the messenger scale (2.30) is shown in black; the red and yellow are
the one and two loop contributions, respectively. Blue is the required value from EWSB.
The dashed curve is given by the tree-level expression from (2.46) at the weak scale, and
the solid curve is extracted from NMSSMTools at messenger scale. Clearly, both the RG and
the weak-scale radiative corrections have negligible effects on m2

N . The successful EWSB
solution lies at where the blue and black curves intersect. We see from this that the one-loop
negative contribution to m2

N dominates and leads to a successful EWSB solution.

by additional constraints on the singlet sector. In this regime, we find (provided m2
Hd

+ µ2

is not exceptionally large) the approximate relations

µ2 ≈ −m2
Hu (2.44)

Bµ ≈ µ
(κ
λ
µ−Aλ

)
≈ 0 (2.45)

m2
N ≈ Aλ(Aκ − 2Aλ) (2.46)

The third equation in particular is a parametrically interesting requirement: although m2
N

may arise predominantly from either one-loop or two-loop contributions, depending on

Λ/M , successful EWSB requires it be the same size as a two-loop contribution. But note

that large At automatically implies large Aλ according to (2.32), so m2
N at the weak scale

must in general be quite large and negative for viable EWSB. The only possible exception

is if there is some cancellation between Aκ and Aλ, in which case m2
N may be smaller and

take either sign.

What effects lead to large negative m2
N at the weak scale? Since we are focusing on

low messenger scales and λ � 1, RG running is generally not sufficient. Instead, we are
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led to consider precisely the same mechanism as in the MSSM – with moderate Λ/M , the

negative, one-loop, Λ/M -suppressed contribution to m2
N in (2.30) cannot be neglected, and

can lead to a successful solution to the vacuum conditions. Note that the solution will

generally prefer moderate λN – if λN is too small, then m2
N is too small and cannot satisfy

(2.46), while if λN is too large, the (positive) two-loop term will dominate. The interplay

of one- and two-loop contributions to m2
N and the requirements for a viable vacuum are

illustrated in fig. 2.3 for a particular point in parameter space.

As discussed in section 2.3.2, we can view the NMSSM model as adding three more

parameters, (λ, κ, λN ), to the MSSM module. The requirements for EWSB (2.44)-(2.46)

can be used to determine two of these parameters, say (κ, λN ), in terms of the third (λ) and

the other Higgs sector parameters. (In addition, the EWSB equations determine µ.) The

nature of this solution is illustrated in fig. 2.4 for one point in parameter space, exemplifying

our discussion of the parametric behavior of soft parameters required for EWSB. The red

curve can be inferred to good accuracy by solving the approximate tree-level equations

(2.44)-(2.46) for κ as a function of λN . The black curve meanwhile is flat as a function

of κ because when κ is small it has essentially no effect on the dynamics of the model.

In general, for fixed Λ,M, λu, λ, and Nmess, each viable solution for EWSB constitutes a

similar intersection of curves in the space of κ and λN .

2.4.3 Stop and slepton tachyons

In addition to achieving successful EWSB, our models must also have a viable superpartner

spectrum. In particular, the squarks and sleptons cannot be tachyonic at the weak scale.

Weak-scale tachyons may be induced either by direct contributions to the soft masses at

the messenger scale or by RG running. These two effects provide further constraints on the

parameter space.

As we can see from (2.18) and (2.19), two-loop cross terms proportional to αλu and αt

contribute negatively to the stop masses. Since yt ≈ 1 and λu & g3 in order to generate

sufficiently large A-terms, this negative contribution is parametrically the same size (or

larger!) than the positive gauge-mediated contribution. Further, the large mixing will

induce a bigger splitting between two mass eigenvalues in stop mass matrix. These two
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Figure 2.4: Plot showing the EWSB solution in more detail, for the same parameter point
as in fig. 2.3. The black line is the contour along which the input value of m2

N from the
model (2.30) agrees with the value required by EWSB (2.46). It is flat as a function of
κ because κ has a negligible effect on m2

N when it is small. The red line indicates the
agreement between input values and EWSB requirements for κ. The intersection of the two
lines gives the consistent EWSB solution for a given value of Λ,M, λu, Nmess, and λ.

effects lower the stop masses relative to those of other colored scalars. Avoiding prohibitive

color-breaking minima therefore leads to an upper bound on λu.13

A completely different effect may lead to tachyonic sleptons. As discussed in section

2.4.1, EWSB in models with large A-terms and low messenger scales typically entails a

large and negative contribution to m2
Hu

, already at the messenger scale. This can lead to

m2
L < 0 at the weak scale, through the hypercharge trace contribution to one-loop RGEs:

2π
d

dt
m2
La = δa3ατ (m2

L3
+m2

E3
+m2

Hd
+A2

τ )− 3

5
α1M

2
1 − 3α2M

2
2 −

3

10
α1ξ (2.47)

where

ξ = Tr[m2
Q − 2m2

U +m2
D −m2

L +m2
E ] +m2

Hu −m2
Hd

(2.48)

Since the stau mass eigenvalues are often further separated by mixing and the ατ contri-

bution to the RGEs, typically the stau is the first state to be driven tachyonic. In any

13Were it not for the Higgs mass, which in these models typically require stops above a TeV, this would be
an amusing mechanism for generating a natural SUSY spectrum in gauge mediation. Even here, it typically
renders the stops several hundred GeV lighter than other colored scalars.
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Figure 2.5: Plot of the weak-scale signed masses m2
t̃R
/
√
|m2

t̃R
| and m2

τ̃L
/
√
|m2

τ̃L
| vs λu, for

the 5⊕5 model (left) and the 10⊕10 model (right). The other parameter choices are as in
fig. 2.2. We see that in both the 5⊕5 and 10⊕10 models, tachyonic stops are problematic
for λu & 1, except for larger values of Λ/M . In this regime the stop mass gets pulled up
during the RG flow by the large negative m2

Hu
. However, the same effect pushes down the

left-handed slepton masses, leading to tachyonic sleptons for large Λ/M . Combined with
fig. 2.2, we see that for λu ∼ 1, a sweet spot exists with moderate Λ/M where all constraints
can simultaneously be satisfied.

event, this translates to a requirement that m2
Hu

cannot be too large and negative at the

messenger scale.

Shown in fig. 2.5 are plots of the stop and slepton masses, illustrating the interplay of

all of these effects.

2.4.4 Implications of the constraints

Let us now conclude this section by summarizing briefly its main points and discussing their

implications. In the previous subsections we have demonstrated that the soft parameters

depend most sensitively on λu and Λ/M . To achieve a large enough A-term for mh = 125

GeV, we need λu ∼ g3 ∼ 1. Then as we vary Λ/M , a number of issues can arise:
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• m2
Hu

(and m2
N ) can remain positive at the weak scale even after RG flow, preventing

electroweak symmetry breaking. This occurs for low values of Λ/M .

• m2
Hu

can be too large and negative already at the messenger scale, resulting in a

tachyonic sleptons at the weak scale due to the RG running. This problem arises for

large values of Λ/M .

• The stops can be negative at the messenger scale due to the direct contribution from

the messenger-Higgs interactions. This effect happens at low to moderate Λ/M and

large λu.

Clearly a way to address the first two problems is to choose moderate values of the

ratio Λ/M . Note that since Λ is usually fixed to be ∼ 100 TeV for reasonable superpartner

masses, this implies that there is a “sweet spot” of M ∼ (a few) × 100 TeV where the

model is viable. In this sense low messenger scales are actually an output of the model.

The third problem is still present at moderate Λ/M , and it is the ultimate limiting factor

on the size of At. Here the way out is to increase the messenger number – At and m2
t̃

are

both proportional to Nmess, and the relevant quantity for the Higgs mass is A2
t /m

2
t̃
. Indeed,

for a model with 5 ⊕ 5 messengers, we find that for Nmess = 1, mh = 125 GeV requires

extremely heavy stops. But already for Nmess = 2, mh = 125 GeV is possible for stops as

light as 2 TeV. The situation improves somewhat for larger Nmess, though the improvement

is saturated as the increasing messenger number also raises the gluino mass, which in turn

pulls up the stop mass through RG flow. For 10 ⊕ 10 messengers, the effective messenger

number already starts at three, so this is not an issue in this case. In the following section,

we will focus on Nmess = 4 for the 5⊕ 5 model and Nmess = 2 for the 10⊕ 10 model.

2.5 Spectrum and Phenomenology

In the previous section we discussed qualitatively the challenges and possible solutions for

viable models with large A-terms. In this section we will complete our analysis of these

models by mapping out the available parameter space and phenomenology of the 5 ⊕ 5̄

and 10⊕ 10 benchmark models introduced in section 2.3.3. In each case, we may consider

either the simple MSSM module for A-terms, or the complete NMSSM theory that also
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generates µ and Bµ. As discussed in section 2.4.2, the vacuum structure of the NMSSM is

more intricate, which will result in an additional constraint on the parameter space from

requiring a nonzero singlet vev. Aside from this additional constraint, the analysis of the

MSSM carries over completely to the NMSSM, since we are working in the decoupling limit

where κ → 0 and λ → 0. For numerical exploration of the parameter space, we use a

combination of softsusy v.3.3.0 [67] and NMSSMTools v.3.1.0 [65, 66].

2.5.1 Models with 5 + 5̄ messengers

As discussed in section 2.3.1, the parameter space of the MSSM version of this model

consists of Λ ≡ F/M , Λ/M , λu, and Nmess. Since we are restricting ourselves to low-scale

GMSB, we will only consider Nmess ≤ 5 to avoid Landau poles in the gauge couplings. In

fig. 2.6 we show contours of the Higgs mass as a function of Λ and λu in our “best-case”

model (Nmess = 4,Λ/M = 0.5) in the 5 ⊕ 5 case; this choice of Nmess and Λ/M strikes

a favorable balance between large A-terms and viable EWSB. We also show the variation

in the lightest stop mass mt̃1
and the mixing ratio At/MSUSY (here MSUSY ≡ √mt̃1

mt̃2
).

The former is controlled mainly by Λ (although as λu increases, we see the approaching

stop tachyon being reflected in the contours); while the latter is controlled by λu. We see

that mh = 125 GeV is easily possible, with messenger scales as low as ∼ 100 TeV and stops

as light as 1500 GeV.

Since we are interested in mh = 125 GeV, it is perhaps more useful to focus on the

subspace of parameters for which this is the case. Once we have fixed the Higgs mass and

chosen Nmess = 4, the remaining parameter space of the model is precisely (Λ/M, λu). So

contour plots of quantities in this plane provide a complete characterization of the model

for a given value of the Higgs mass. In fig. 2.7 we scan over the space of parameters for

fixed mh = 125 GeV as a function of Λ/M and λu, showing contours of Λ, MSUSY , and

At/MSUSY . The viable parameter space is bounded by regions with tachyonic superpartner

masses or unsuccessful electroweak symmetry breaking, exemplifying our discussion in the

previous section.

Generalization from the MSSM module to the full NMSSM model is straightforward.

As discussed in sections 2.3.2 and 2.4.2, the NMSSM introduces three new parameters
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Figure 2.6: Contour plots of mh0 , mt̃1
and At/MSUSY in the Λ vs. λu plane, for Nmess = 4

and Λ/M = 0.5 (our best-case scenario for the 5⊕ 5 model).
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Figure 2.7: Contour plots of the value of Λ required for mh = 125 GeV in the λu vs.
Λ/M plane for the 5⊕ 5 model, together with analogous plots for MSUSY and At/MSUSY .
Here we have fixed Nmess = 4. The white regions indicate where the spectrum runs afoul
of tachyonic color/charge state or electroweak symmetry breaking. Overlaid in red is the
region where there does not exist a consistent NMSSM solution with small λ.

(λ, κ, λN ); we can choose to determine two of the extra parameters, say κ and λN , in

terms of the third (λ) and the other Higgs sector parameters. So we only need to add one

parameter, λ, to the MSSM parameter space. Since our philosophy is to get mh = 125 GeV

from stop mixing in the MSSM and µ/Bµ from the NMSSM, it is most favorable to operate

in the decoupling limit λ� 1; in the plots below we will take λ = 0.01 for simplicity.

In section 2.4.2, we also showed that viable EWSB in the NMSSM in the presence

of large At imposes the additional constraint that m2
N should be large and negative at the



53

0.50 0.55 0.60 0.65 0.70 0.75
0.0

0.5

1.0

1.5

2.0

L�M

ΛN

100�Κ

0.50 0.55 0.60 0.65 0.70 0.75
-10

-5

0

5

10

L�M

@T
eV

D

Μ

-mN
2

AΛ

AΚ

Figure 2.8: A plot showing the dependence of the EWSB solution on Λ/M . The other
parameters are as in fig. 2.3. Smaller values of Λ/M are disallowed by m2

Hu
> 0 at the

weak scale and/or the inability to solve the m2
N equation for λN ; while higher values are

disallowed by m2
τ̃ < 0 at the weak scale.

messenger scale to obtain a satisfactory µ-term. For given values of Λ/M and λu, there may

not exist a value of λN satisfying this constraint, in which case there is no consistent NMSSM

solution. For instance, if Λ/M is too small, m2
Hu

> 0 as in the MSSM and/or we are unable

to find a consistent NMSSM solution; typically the latter condition dominates. Meanwhile

at high Λ/M , the stau is driven tachyonic as in the MSSM case. These constraints bound

0.35 . Λ/M . 0.8., and they remove a sizable chunk of the parameter space that is viable

for the MSSM module alone. In fig. 2.7 we have overlaid the region in which there is no

consistent NMSSM solution at small λ onto the MSSM parameter space. The shape of

this boundary in the plane of λu and Λ/M is approximately linear due to the conditions

for obtaining a sufficiently negative value of m2
N in terms of λu, λN , and Λ/M . While this

certainly erodes some of the parameter space viable in the MSSM module, a wide range of

possible solutions remains.

Fig. 2.8 exemplifies the discussion of section 2.4, showing the EWSB solution for κ and

λN as a function of the ratio Λ/M . The figure also shows the values of µ (determined by

the vev of N) as a function of Λ/M . We see that as the ratio Λ/M increases, µ likewise

increases, because the large negative one-loop contribution to m2
Hu

is taking over and must
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be cancelled by larger values of µ2 in order to yield the correct value of the Higgs vev.

Taken together, we see that a consistent model with mh = 125 GeV, a calculable source

of µ and Bµ, and a viable superpartner spectrum exists in a window around Λ/M ∼ 0.5

where one-loop soft masses are important but not unreasonably large.

2.5.2 Models with 10 + 10 messengers

For this type of model, the effective messenger number is automatically at least 3, which

helps to increase stop mixing. However, the effective messenger number increases rapidly

with additional pairs of 10⊕10 messengers; already with two pairs of 10⊕10, we are living

dangerously at M ∼ 105 GeV with regard to Landau poles for the Standard Model gauge

couplings. In general, enforcing perturbativity up to the GUT scale favors somewhat larger

values of M and thus smaller values of Λ/M .

In fig. 2.9 we show contours of the Higgs mass in the plane of Λ and λu. The contours of

Higgs mass, stop mass, and the ratio At/MSUSY are qualitatively similar to the 5⊕ 5̄ case.

Fig. 2.10 shows the analogous contour plot of Λ values required for mh = 125 GeV in the

plane of λu and Λ/M . As we discussed in section 2.4.1, the region of viable solutions extends

to much smaller values of Λ/M than were allowed for 5⊕ 5̄ messengers, since the two-loop

correction to m2
Hu

is smaller and so the negative one-loop contribution is less important

for successful EWSB. Indeed, at small Λ/M there exists a sizable region where the Higgs

soft masses are positive at the messenger scale and electroweak symmetry breaking occurs

radiatively as in MGM.

As before, we may seamlessly generalize the MSSM module for 10 ⊕ 10 messengers to

the full NMSSM. The constraint imposed on Λ/M by a viable solution for the NMSSM

vacuum is parametrically similar to that in the case of 5 ⊕ 5 messengers in terms of the

absolute limit, since the numerical details of the solution for NMSSM soft parameters are

largely insensitive to the change in messenger representations. However, as shown in fig.

2.10, the NMSSM vacuum constraint precludes the region at small Λ/M that is opened in

the 10⊕ 10 case by reduced two-loop contributions to m2
Hu

.
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Figure 2.9: Contour plots of mh0 , mt̃1
and At/MSUSY in the Λ vs. λu plane, for Nmess = 2

and Λ/M = 0.3 (our best-case scenario for the 10⊕ 10 model).
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Figure 2.10: Contour plots of the value of Λ required for mh = 125 GeV in the λu vs. Λ/M
plane for the 10 ⊕ 10 model, together with analogous plots for MSUSY and At/MSUSY .
Here we have fixed Nmess = 2. Overlaid in red is the region where there does not exist a
consistent NMSSM solution with small λ.

2.5.3 Phenomenology

Finally, let us briefly describe the phenomenology of the models considered in the previous

sections. The low-energy spectrum does not differ radically between the MSSM and NMSSM

cases, since in the NMSSM models the singlet degrees of freedom are heavy and decoupled.

Similarly, there are only slight differences between the choice of messenger representations,

up to the general effects of changing the effective messenger number. The RG evolution of

a representative soft spectrum is shown in fig. 2.11, while the mass spectrum for this point
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masses for colored superpartners are shown in red, while those for electroweak superpartners
are shown in black. Dashed lines denote gaugino masses, solid lines denote scalar masses.
Note the Hu soft mass-squared is negative.

is shown in fig. 2.12.

In the colored sector, the stops are typically lighter than in minimal GMSB for the same

value of Λ and Nmess, due to the additional negative contributions from Higgs-messenger

couplings. The large A-term also increases the splitting between the two stop mass eigenval-

ues, which further lowers the mass of the lighter eigenstate t̃1. Even so, attaining mh = 125

GeV typically requires stops above ∼ 1.5 TeV and gluinos above 2 TeV (and more typically

near 3 TeV). Thus the cross section for colored sparticle production is typically quite low,

near the limit of observability at the LHC.

In the electroweak sector, the sleptons and electroweakinos are typically at or below a

TeV, with the usual MGM splitting between the wino and bino. The sleptons are typically

lighter than the wino. The cross section for electroweak sparticle production is also quite

low, but nonetheless observable at the LHC.

As we mentioned earlier, we work in the decoupling limit of NMSSM, where both λ and
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Figure 2.12: The physical mass spectrum, for the same model as in fig.2.11.

κ are small, the gauge singlet component in higgs is negligible and has almost no effects to

higgs properties. Although stops have large mixing, they are generically very heavy, so it

will not affect the higgs couplings to gluons or photons. Note that the higgsinos and Higgs

scalars H0, A0, and H± are quite heavy due to the large value of µ necessitated by EWSB,

so that the Higgs sector is far into the decoupling limit and the lightest Higgs properties

are those of the Standard Model.

The NLSP is almost invariably the stau, except in very small regions of parameter space

where it may become a mostly-bino neutralino. The staus are heavily mixed, such that the

lightest stau is always lighter than the sneutrino ν̃τ and there is no co-NLSP. Since the scale

of SUSY breaking is low in these scenarios, the NLSP decays promptly in the detector; the

most promising search channels for this spectrum are likely to be those involving leptons

plus missing transverse energy, such as the HT /E
miss
T binning of the CMS multilepton

search [55]. In that paper, limits were set on a GMSB-motivated benchmark model which

has degenerate slepton co-NLSPs and specific mass relations among the superpartners. So

as such, it is not possible to directly use the CMS search to infer limits on our scenario,

which has stau NLSP. It would be interesting to recast the CMS search in terms of our
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model; this should be straightforward, since they provide the data for channels where taus

are included. Furthermore, we expect that the limits are strictly weaker for stau NLSPs

compared to slepton co-NLSPs. For decoupled squarks and gluinos, the CMS limit was

mχ̃±1
& 600 GeV, with m˜̀

R
= 0.3mχ̃±1

, mχ̃−1
= 0.5mχ̃±1

, and m˜̀
L

= 0.8mχ̃±1
. So we are

confident that the existing search does not yet meaningfully encroach on our parameter

space. Nevertheless, multilepton searches should ultimately prove sensitive with increased

integrated luminosity.

Although ancillary to the phenomenology, we conclude with a few remarks on fine-

tuning in the EWSB potential given this characteristic spectrum. As usual, at large tanβ

the tuning in the potential is governed by a cancellation between µ2 and m2
Hu

. In both

the MSSM and NMSSM models, the overall tuning (as quantified by the Barbieri-Giudice

measure [68]) is typically 103−104. The tuning in the NMSSM is generically larger than that

in the MSSM since the NMSSM has a stronger constraint from EWSB that excludes some

of the less tuned points. In section 2.2.3 we introduced the little A - m2
H problem, which

is essentially the observation that m2
Hu

always receives an irreducible, positive contribution

from A2
u. This large contribution must either cancel against a large µ2-term or against

another large term in 2.17 with opposite sign. Either way, such a large cancellation greatly

enhances the tuning of the model.

In the MSSM models, the tuning is therefore dominated by λu, which controls both

At and the one- and two-loop contributions to m2
Hu

. In the NMSSM, the situation is

similar, though now the tuning associated with µ is translated to a tuning in λN , λ, and

κ via (2.42)-(2.43). Amusingly, there is very little tuning associated with the scale of

colored superpartners since the threshold contributions to Higgs soft parameters from Higgs-

messenger couplings are far more important than radiative corrections from colored scalars.

In this sense, the relative heaviness of the gluino and squarks is a red herring for tuning at

the weak scale in these models.

2.6 Conclusions

A Higgs boson at 125 GeV poses a challenge for the MSSM in general and in gauge me-

diation in particular. If colored superpartners lie within reach of the LHC, explaining the
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Higgs mass requires large A-terms that are unavailable to pure gauge mediation unless

the messenger scale is high [16]. This constraint would appear to challenge the possibility

that supersymmetry may be broken and mediated to the MSSM at relatively low scales.

Yet low-scale gauge mediation remains an attractive framework due to its distinctive phe-

nomenology, including features such as favorable gravitino cosmology and prompt NLSP

decays. This strongly motivates exploring ways in which low-scale gauge mediation might

be reconciled with the presumptive mass of the Higgs.

In this work we have constructed simple, economical, and calculable models of low-

scale gauge mediation that generate all the necessary parameters in the Higgs sector of the

MSSM and readily provide a Higgs at 125 GeV. The key feature is the introduction of Higgs-

messenger interactions that lead to large A-terms aligned with the SM flavor structure. This

is a natural step in the context of GMSB, since the µ - Bµ problem already suggests that

additional interactions are required in the Higgs sector. In general, such interactions lead to

an A - m2
H problem, which is solved if the only source of mass in the messenger sector is the

expectation value of a single SUSY-breaking spurion (i.e. if the messengers are described

by minimal gauge mediation). Such models suffice for generating large A-terms and stop

mass mixing required for the Higgs, but on their own do not solve the µ - Bµ problem. In

this sense they constitute “modules” that may be appended to other solutions to the µ -

Bµ problem. One particularly compelling solution is in the context of the NMSSM, where a

simple generalization to include singlet-messenger couplings simultaneously ameliorates the

problems of the NMSSM in GMSB, and generates viable µ and Bµ. Since the Higgs mass

arises primarily due to stop mixing, the singlet sector serves only to generate µ and Bµ,

thereby avoiding problematically large singlet-Higgs couplings with Landau poles at low

scales. Indeed, these theories remain weakly-coupled up to, and generally well beyond, the

messenger scale. It is compelling that a straightforward generalization of low-scale gauge

mediation to include perturbative interactions between the Higgs sector and messenger

sector – interactions already hinted at by the µ - Bµ problem – naturally accommodates a

Higgs at 125 GeV and provides all necessary soft parameters.

Our approach builds on previous works, especially [46] and [48], but the complete com-

bination of interactions for large A-terms and µ/Bµ, and the emphasis on low messenger
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scales, are both novel and lead to a qualitatively new model with distinctive features. Chief

among these is the crucial role played by one-loop Λ/M -suppressed contributions to m2
Hu

in guaranteeing electroweak symmetry breaking, which is otherwise imperiled by large two-

loop soft masses that accompany sizable A-terms.

The phenomenology of these models is very similar to that of MGM with high effective

messenger number. One notable difference is that the mass of the stop is always signifi-

cantly lowered relative to the masses of other colored scalars due to the Higgs-messenger

interactions, such that the lightest stop is typically several hundred GeV lighter than the

remaining squarks. Even so, a Higgs mass at mh = 125 GeV suggests the stop is relatively

heavy on LHC scales, above ∼ 1.5 TeV, with the gluino above 2 TeV. The NLSP is almost

always the stau, though in some cases it may be the lightest neutralino. In either case,

NLSP decays to the gravitino are always prompt due to the low messenger scale. Overall,

the spectrum is quite consistent with current collider limits and perhaps explains why we

have yet to observe evidence for supersymmetry at the LHC.

There are numerous avenues for future study. The models presented here have a po-

tentially large parameter space, of which we have only considered a simplified subspace.

It would be interesting, for example, to study the consequences of splitting the messen-

ger multiplets on the low-energy phenomenology. More generally, it should be possible to

construct weakly-coupled models with large A-terms that realize the full parameter space

allowed by general gauge mediation [56, 57], which would allow for a greater range of NLSP

candidates and collider signals. We have also focused exclusively on the decoupling limit of

the NMSSM, where λ, κ� 1; it may be the case that other parametric regimes are allowed,

in which case Higgs signals could deviate from Standard Model expectations. Finally, we

have remained agnostic to the origin of the supersymmetry breaking and messenger sectors.

Ultimately, it is worth exploring whether our models might be embedded in a complete

theory of dynamical supersymmetry breaking in which Higgs-messenger couplings are a

natural ingredient.

It bears emphasizing we have limited our focus to weakly-coupled theories with per-

turbative messenger sectors and decoupled hidden sector interactions. It is plausible that

the related problems of µ -Bµ, A - m2
H , and mh = 125 GeV may alternatively be resolved
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in a strongly-coupled hidden sector along the lines of [69–71]. In this case, the details of

the hidden sector interactions are crucial to the boundary conditions for soft parameters

[72], and it would be interesting to systematically study implications for the Higgs sector

in terms of hidden- and messenger-sector correlation functions [49].

Appendices

2.A General Formulas

Whenever SUSY breaking may be parameterized by a single spurion X whose lowest ex-

pectation value is responsible for messenger masses, the soft spectrum may be computed

to leading order in Λ/M via analytic continuation into superspace [41]. The resulting soft

masses and A-terms for arbitrary marginal visible-messenger superpotential interactions

linear in the visible sector fields are [35]:14

δm2
a

∣∣∣
t= 1

2
log |M |2

=
1

2

[∑
m

( dγ+
a

dαm
− dγ−a
dαm

)
∂tα

+
m −

dγ−a
dαm

(
∂tα

+
m − ∂tα−m

)]
Λ2
∣∣∣
t= 1

2
log |M |2

(2.49)

Aa

∣∣∣
t= 1

2
log |M |2

= −
∑
m

( dγ+
a

dαm
− dγ−a
dαm

)
α+
mΛ
∣∣∣
t= 1

2
log |M |2

(2.50)

where the δ denotes a correction to the usual GMSB soft masses. The A-term computed

here correspond to a specific field label by a, rather than to a coupling. The A-terms cor-

responding to the couplings yt, κ, λ, . . . are linear combinations of the A-terms computed

in (2.50). In what follows i, j, etc. range over messenger fields; and a, b, etc. range over

visible sector fields. Repeated indices are summed over, except for the free index a. The

A-terms appear in the potential via V ⊃ Aaφa∂φaW (φ) + h.c.. The γ±a ≡ −1
2
∂ logZ±a

∂t and

α±m ≡ (λ±m)2

4π are the anomalous dimensions and couplings above and below the messenger

threshold, respectively. The sum over m runs over all the couplings in the theory.

We convert (2.49) and (2.50) into more explicit formulas by specifying the anomalous

dimensions and the β functions, accounting for couplings between messengers and matter

14The conventions for Aa and the anomalous dimensions used in [35] differ slightly from ours. We are
using the conventions of [73].
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fields but neglecting possible couplings between messengers alone. The anomalous dimen-

sions are then given by

γa = 1
4π

(
1
2d

ij
a αaij + 1

2d
bc
a αabc − 2carαr

)
(2.51)

γi = 1
4π

(
daji αaij − 2cirαr

)
(2.52)

The dija count the number of fields i, j talking to a through the Yukawa vertex (aij). With

a slight abuse of notation, we denote the couplings with the messenger sector, the MSSM

Yukawa couplings, and the gauge couplings with αaij , αabc and αr respectively. Similarly,

the relevant beta functions are

∂tα
±
abc = 2αabc(γ

±
a + γ±b + γ±c ) (2.53)

∂tα
±
aij = 2αaij(γ

±
a + γ±i + γ±j ) (2.54)

where the ± subscript again indicates whether α and γ are to be taken above or below the

messenger threshold. Substituting these formulas in (2.49) and (2.50) yields

δm2
a =

1

8π2

(
− 1

2
dija (car + cir + cjr)αrαaij +

1

8

(
dija αaij

)2
+

1

2
dija d

bk
i αbikαaij −

1

4
dbca d

ij
b αabcαbij

)
Λ2 (2.55)

Aa = − 1

8π
dija αaijΛ . (2.56)

Now to obtain the formulas (2.17)-(2.20) and (2.28)-(2.33) in the bulk of the text, it

suffices to substitute for the correct dija , αaij and αabc. For the MSSM, the indices a, b, c, . . .

run over the fields Hu, Q and U . The indices i, j, k, . . . run over the messenger fields φi and

φ̃i. With this in mind, one can read off the non-zero d’s and the couplings from (2.15):

dφ1φ̃2

Hu
= dH , dHuφ̃2

φ1
+ dHuφ1

φ̃2
= 3, αHuφ1φ̃2

= αλu , αHuQU = αt (2.57)

with dH given by (2.35) or (2.37) in the 5 ⊕ 5 or 10 ⊕ 10 models respectively. The same

conventions hold for the NMSSM, with the important difference that the indices a, b, c, . . .

now can take the value Hd and N as well. Moreover several extra couplings must be
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accounted for:15

dφ1φ̃2

Hu
+ dϕ1ϕ̃2

Hu
= dH , dHuφ̃2

φ1
= dHuϕ̃2

ϕ1 = dH2
1 , dHuφ1

φ̃2
= dHuϕ1

ϕ̃2
= dH1

2 ,

dϕ1φ̃1

N + dϕ2φ̃2

N = dN , dNϕ̃1

φ1
= dNϕ̃2

φ2
= dNφ1

ϕ̃1
= dNφ2

ϕ̃2
= 1,

dHuHdN = 2, dNHdHu
= 1, dNNN = 1,

αHuφ1φ̃2
= αHuϕ1ϕ̃2 = αλu , αNφiϕ̃i = αλN

αHuQU = αt, αNHuHd = αλ, αNNN = 4ακ

(2.58)

with dH , dN , etc. again given in (2.35) or (2.37). Finally note that equation (2.56) computes

the A-terms corresponding to various fields (see (2.11)), instead of couplings. The A-term

for the various couplings that are used in the bulk of the draft can be obtained as follows:

At = AHu

Aλ = AN +AHu

Aκ = 3AN . (2.59)

2.B Physics Above the Messenger Scale

The models presented in sections 2.5.1 and 2.5.2 are complete and calculable effective the-

ories below the messenger scale. This is the most that one can concretely ask for when

treating the hidden sector in the spurion limit, since above the messenger scale the dynam-

ics of the hidden sector and the origin of hidden-messenger couplings are bound to become

important. However, one may still wish to study the behavior of the theory above the

messenger scale, modulo ignorance of hidden sector dynamics.

Unlike in many realizations of the NMSSM where the singlet contributions to the po-

tential are used to raise the Higgs mass, there is no problem with Landau poles in λ for

any of the models we consider. Such Landau poles would be particularly troublesome since

they involve all the light degrees of freedom in the EWSB sector. Since we are working in

the decoupling limit, λ is always very small at the weak scale, and although it grows in the

ultraviolet, it easily remains perturbative all the way to the GUT scale. The same may be

15Note the extra factor of 4 in the translation of αNNN to ακ. This is because of the non-standard NMSSM
convention for the normalization of κ.



64

said of κ, which is likewise small at the weak scale and never runs large below the GUT

scale. Thus all the parameters in the NMSSM effective theory below the messenger scale

are well-behaved above it as well.

On the other hand, there may conceivably be Landau poles in the gauge couplings

and the couplings introduced at the messenger scale. The particular complications are

qualitatively different depending on the messenger representations. For MSSM and NMSSM

models with 5⊕ 5 messengers there are no irreducible Landau poles in the Standard Model

gauge couplings up to the GUT scale for any value of the messenger scale, since viable

models exist with Nmess ≤ 4. For models with 10⊕ 10 messengers there may be Landau

poles in the Standard Model gauge couplings before the GUT scale due to the large effective

messenger number if the messenger scale is too low. However, for the most minimal NMSSM

model (with effective messenger number 6) we find there are no Landau poles across the

range of messenger scales under consideration, as determined by two-loop RG running and

one-loop threshold matching. But the Standard Model gauge couplings grow strong as they

approach the GUT scale, and perturbation theory is perhaps no longer reliable. Higher

values of the effective messenger number, corresponding to more than two pairs of 10⊕ 10,

introduce Landau poles in the gauge couplings below the GUT scale.

The situation is somewhat different with respect to superpotential couplings. In 5⊕ 5

models λu typically reaches a Landau pole before the GUT scale, since its value is necessarily

quite large at the messenger scale and its RG evolution is dominated at one loop by λu itself

and also by yt. In 10⊕ 10 models there are also large negative contributions from g3, which

help to control the running. These effects are evident in the β functions, which in the MSSM

case are dominated by

βλu ∼ λu
16π2

[
(Nmess + 3)λ2

u + 3y2
t + . . .

] (
5⊕ 5 messengers

)
(2.60)

βλu ∼ λu
16π2

[
(3Nmess + 3)λ2

u + 3y2
t −

16

3
g2

3 + . . .

] (
10⊕ 10 messengers

)
.(2.61)

For 5⊕ 5 messengers, there is always a Landau pole below the GUT scale in the range

of parameters with mh = 125 GeV. For 10⊕ 10 messengers there are Landau poles for

λu > 0.9, while for λu ≤ 0.9 the color contributions lead to an approximate fixed point.

This is illustrated clearly in fig. 2.13, which shows the scale of the Landau pole in λu
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Figure 2.13: Contour plots of log10(MLandau/GeV) for points with mh = 125 GeV in
typical MSSM models of 5⊕ 5 messengers with Nmess = 4 (left) and 10⊕ 10 messengers
with Nmess = 2 (right). The Landau pole is mainly caused by the blow up of λu.

across the parameter space with mh = 125 GeV. The occurrence of Landau poles is some

sense a different manifestation of the same phenomenon that caused problems with radiative

electroweak symmetry breaking: λu must be large at the messenger scale to generate sizable

A-terms. For 5⊕ 5 messengers, the only two-loop contributions to m2
Hu

and one-loop

contributions to βλu are large and positive, while for 10⊕ 10 messengers there is a partial

cancellation with color contributions in both the soft mass and beta function.

We emphasize, however, that the apparent Landau pole in λu does not doom the models

with 5⊕ 5 messengers. In a complete theory of dynamical supersymmetry breaking, super-

symmetry is broken by dimensional transmutation in a hidden sector gauge group. Perhaps

the messengers at low scales are actually composites of the strong dynamics (as in theories

of direct supersymmetry breaking), or are charged under the hidden sector gauge group and

accumulate additional negative contributions to βλu . In either case, the unknown strong

dynamics naturally control the apparent landau pole in λu, whose appearance is simply an

artifact of maintaining the spurion limit all the way to the GUT scale. In this respect, fig.

2.13 indicates the scale at which new physics must appear in the hidden sector. Finally,

although it is not entirely meaningful given the likely role of hidden sector dynamics, it is

at least reassuring that there are models with 10⊕ 10 messengers and mh = 125 GeV for

which all couplings remain perturbative up to the GUT scale.



66

Chapter 3

General Messenger Higgs Mediation

With N. Craig and D. Shih

Appeared in JHEP 1308 (2013) 118, arXiv:1302.2642

General context of this chapter

In the previous chapter we presented a first, simple example of a model that accommodates

the Higgs mass through a combination of Higgs and gauge mediation. Along the way, we

identified the ‘A/mH problem’ and proposed a simply, weakly coupled solution. In this

chapter we attempt to study Higgs mediation in a more general and more systematic way,

with a special emphasis on the A/mH problem. In particular, the solution presented in

the previous chapter was rather non-generic, and one would like to know whether other

possibilities exist. Moreover our proposed solution still suffered from a ‘little A/mH prob-

lem’ and it is an interesting question whether solutions to this secondary problem can be

constructed.

For this purpose we developed a general formalism for analyzing supersymmetric models

where the Higgs sector directly couples to the messengers of supersymmetry breaking. Our

framework is applicable to the µ/Bµ problem in addition to the A/mH problem. Using our

formalism, we identify new avenues to solving both these problems through strong dynamics

in the messenger sector or hidden sector. Although our formalism is entirely general, we

show how it reproduces familiar results in two simplifying limits: one where the hidden

sector consists of a single spurion, and the other where it is approximately superconformal.

In the latter limit, our formalism generalizes and clarifies the scenario of hidden sector

sequestering, which we show can solve both the µ/Bµ and A/m2
H problems uniformly.
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3.1 Introduction

The recent discovery [1, 2] of a Higgs-like particle with a mass near 125 GeV has profound

implications for physics beyond the Standard Model. It renews the urgency of the hierarchy

problem, for which supersymmetry (SUSY) remains the best solution. Minimal realizations

of weak-scale SUSY such as the MSSM are highly constrained, since the tree-level prediction

for the Higgs mass is bounded from above by the mass of the Z boson and must be increased

through radiative corrections. As discussed in [26–30, 16], to obtain mh = 125 GeV in the

MSSM while minimizing the fine-tuning of the electroweak scale, the A-terms must be large

relative to other soft masses and close to maximal mixing [74–76, 33].

There are several options for generating large weak-scale A-terms in calculable models,

and each comes with its own challenges. One option is to have A ≈ 0 at the messenger scale

M but generate it through RG running of the MSSM. In [16], it was shown that this places

strong constraints on the messenger scale and the gluino mass, requiring both to be very

high. Another option is to generate non-zero A-terms already at the messenger scale, by

directly coupling Hu and Hd to the messengers.1 Aside from being richer in terms of model

building possibilities, this option is attractive and economical because such couplings are

already necessary for solving the µ problem of the MSSM. But here the main challenge, at

least in weakly-coupled models, is something called the “A/m2
H problem:” A and m2

H are

typically generated at the same loop order, in direct analogy with the µ/Bµ problem [77].

Such a large m2
H would have disastrous effects on electroweak symmetry breaking (EWSB)

and fine-tuning.

In [77], the problem of generating large A-terms was studied in the context of weakly-

coupled messenger models where SUSY is broken by a spurion X. Here the challenges of

the A/m2
H problem are perhaps starkest. Integrating out the messengers generates effective

operators involving the SUSY-breaking hidden sector and the Higgs fields; the A-terms arise

from

cAu

∫
d4θ

X†

M
H†uHu → AuH

†
uFHu (3.1)

1We could also consider direct couplings of the quark superfields to the messengers, but these would not
be minimally flavor violating.
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where we have substituted 〈X〉 = θ2F . In general, m2
Hu

is also generated at the same loop

order, since the only difference in the effective operator is the non-chiral operator X†X

instead of the chiral hidden sector operator X:

cm2
Hu

∫
d4θ

X†X

M2
H†uHu → m̂2

HuH
†
uHu (3.2)

This is exactly analogous to the more well-known µ/Bµ problem – for which the effective

operators are the same as in (3.1) and (3.2), but with H†uHu replaced by HuHd. In [77],

it was argued (following [47]) that only models where the messengers receive all masses

and SUSY-breaking from a single spurion (i.e. models of minimal gauge mediation (MGM)

[42–44]) can solve the A/m2
H problem, by eliminating the one-loop m2

H at leading order in

F/M2. (See also [48] for a study of these MGM-based models.) But even in these models,

a residual problem – dubbed the “little A/m2
H problem” in [77] – remains: m2

Hu
always

contains an irreducible, positive, two-loop contribution ∝ A2
u coming from integrating out

the auxiliary component of Hu in (3.1). Since the A-terms must be large (at least ∼ 2 TeV)

for maximal stop mixing and mh = 125 GeV, this also presents difficulties for radiative

EWSB and for fine tuning.

Motivated by these considerations, in this paper we will broaden the scope of [77] consid-

erably and take a general, model-independent approach to studying the Higgs soft spectrum

arising from direct Higgs-messenger couplings. This will include both weakly-coupled spu-

rion models and strongly-coupled models as special cases. Our main tool in this endeavor

will be the supersymmetric correlator formalism of [56, 57]. This was first applied to the

Higgs sector in [23], assuming the following portals between the Higgs and hidden sectors

[56]:

W = λuOuHu + λdOdHd (3.3)

where the hidden sector operators Ou,d are SU(2) doublets.2 (Singlet couplings were also

studied in [23]; in the interest of clarity we will only work out the doublet case in this paper.

The extension to the singlet case is straightforward.) We will refer to this framework as

2Throughout the paper we will be neglecting potential contributions to soft masses proportional to the
MSSM gauge and Yukawa couplings. Note that the presence of hidden sector operators Ou,d implies at the
minimum some gauge-mediated contributions to the MSSM soft spectrum, but these need not be the leading
effect; the interactions in (3.3) may be incorporated into various models of supersymmetry breaking.



69

“General Higgs Mediation” (GHM), in analogy with [56, 57]. Integrating out the hidden

sector generates the Higgs-sector soft Lagrangian:3

−δL ⊃
(
AuH

†
uFHu +AdH

†
dFHd + c.c.

)
−
(
m̂2
HuH

†
uHu + m̂2

Hd
H†dHd

)
(3.4)

+ µ
(
HuFHd +HdFHu − ψHuψHd + c.c.

)
−
(
BµHuHd + c.c.

)
(3.5)

Note that we have put hats on the dimension-two soft masses in (3.4), in order to distinguish

them from the full dimension-two soft masses that are only obtained upon integrating out

FHu,d :

m2
Hu,d

= m̂2
Hu,d

+ |Au,d|2, Bµ = B̂µ + µ(A∗u +A∗d) (3.6)

Correlator formulas for the Higgs soft parameters were derived to leading order in λu,d in

[23]. No assumption was made in [23] regarding the structure of the hidden sector, thus

their results were best suited to the single-sector case where there is no distinction between

messenger and SUSY-breaking hidden sectors.

Here we will extend the work of [23] in two ways. First, we will extend their single-sector

formulas for the dimension-two soft masses to next-to-leading order in λu,d. This is obviously

necessary in order to discuss phenomenologically relevant models where A2
u,d ∼ m2

Hu,d
and

Bµ ∼ µ2. Second, we will derive more detailed formulas for models in which the messenger

sector is distinct from the SUSY-breaking hidden sector, along the lines of [78]. This

factorization is illustrated in fig. 1, and in analogy with [78], we will refer to this framework

as “General Messenger Higgs Mediation” (GMHM). We will focus on the superpotential

portal of [78]:

W = κOhOm (3.7)

In general, the coupling κ can be dimensionful, and Oh,m have dimensions ∆h,m. Oh is a

chiral operator that breaks SUSY

〈Q2Oh〉 ≡ F
∆h+1

2 (3.8)

and generalizes the spurion X to possibly nontrivial, interacting hidden sectors. (Without

loss of generality, we take F to be real, and we shift Oh so that its lowest component

3Here and for the rest of the paper, we are neglecting the “wrong Higgs couplings,” as they arise at a
higher order in the supersymmetry breaking order parameter [23].
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has zero vacuum expectation value.) It would also be interesting to study the Kähler and

half-Kähler portals considered in [78], but we will not do so here.

One of the primary virtues of GMHM is that it enables the study of models where the

SUSY-breaking scale
√
F is much smaller than the messenger scale M . When this is the

case, there is an additional small parameter F/M2 to expand in, and the expressions for

the soft masses often simplify. More generally, many existing models feature this separation

between SUSY-breaking hidden sector and messenger sector, and so GMHM is the ideal

framework for studying them collectively.

MSSMHidden

E ∼
√

F E ∼ M

Om

Ou,d

Messenger
κOhOm λuOuHu + λdOdHd

Oh

Figure 3.1: The general setup of GMHM, assuming doublet portals connecting the Higgs
sector to the messenger sector. The messengers are characterized by a scale M , and they
communicate via another perturbative superpotential interaction with the hidden sector,
which is characterized by a SUSY-breaking scale

√
F .

Computing soft parameters in the framework of GMHM involves a double expansion

in λu,d and κ. Carefully performing this double expansion and manipulating the resulting

correlators, we will derive fully general formulas for Higgs soft parameters in any setup of

the form in figure:

µ = λuλdκ
∗ 〈Q̄2O†h〉h

∫
d4y Cµ(y) (3.9)

Au,d = |λu,d|2κ∗ 〈Q̄2O†h〉h
∫
d4y CAu,d(y) (3.10)

Bµ = λuλd|κ|2
∫
d4yd4y′ 〈Q4[O†h(y)Oh(y′)]〉hCBµ(y, y′;λu,d) (3.11)

m2
Hu,d

= −|µ|2 + |λu,d|2|κ|2
∫
d4yd4y′ 〈Q4[O†h(y)Oh(y′)]〉hCm2

Hu,d

(y, y′;λu,d) (3.12)

where Q4 = Q2Q̄2. Cµ, etc. are integrated correlation functions of messenger-sector oper-

ators; explicit expressions for them will be given in Section 2. Since we have expanded to

NLO in λu,d, CBµ and Cm2
Hu,d

contain O(|λu,d|2) corrections.

These formulas have broad applicability, as they may be used to compute Higgs soft
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parameters for any model with Higgs-messenger couplings in which the messenger sector

and SUSY-breaking hidden sector factorize. We will illustrate this in several ways, starting

with showing how they reproduce the results of the weakly-coupled spurion models of [77].

In these models, the hidden sector has no dynamics, and so

〈Q4[O†h(y)Oh(y′)]〉h → |〈Q2Oh〉|2 (3.13)

We will show how the A/m2
H problem is a generic property of the integrated messenger

correlators
∫
Cm2

Hu,d

and
∫
CAu,d , and how the little A/m2

H problem (made explicit in (3.6))

arises from the disconnected part of Cm2
Hu,d

.

The utility of the GMHM framework extends far beyond spurion-messenger models,

however. Such broadening of scope is powerfully motivated by the challenges that weakly-

coupled spurion models face in accommodating the Higgs mass. Perhaps the key lies in

non-trivial dynamics of the hidden sector, as the considerations that led to the A/m2
H

problem could be completely avoided at strong coupling. For instance, if the messenger

sector is strongly-coupled, the notion of a loop factor might not even apply. Or, as has been

suggested before in the context of the µ/Bµ problem [69–71], if the SUSY-breaking hidden

sector is strongly coupled, then O†hOh should really be replaced with a general non-chiral

operator O∆ with scaling dimension ∆. If ∆ > 2∆h and
√
F � M , then the anomalous

dimension of O∆ could help to sequester Bµ relative to µ2:

Bµ
µ2
∼
(√

F

M

)∆−2∆h

� 1 (3.14)

It is natural to ask whether the same mechanism can help with the A/m2
H problem. As

we will see, GMHM is ideally suited to addressing such questions. We will show that

hidden-sector sequestering is contained within the GMHM framework, and that it can be

successfully applied to both the µ/Bµ and the A/m2
H problems. In particular, we will

demonstrate how dependence on the hidden sector OPE and anomalous dimensions emerges

naturally from (3.9).

In the course of generalizing hidden-sector sequestering using GMHM, we will clear up a

lingering disagreement regarding the sequestered soft spectrum. In [70, 79], it was claimed
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that the result of complete hidden-sector sequestering should be:

m2
Hu,d
→ −µ2 , Bµ → 0 (3.15)

In particular, the fully sequestered soft parameters do not depend on the A-terms, nor

do they depend on OPE coefficients in the hidden sector. The claim was based on an

argument that the A-term and µ-term operators were redundant, in the sense that they

could be removed by a field redefinition [79].

Various questions were raised in [72] about the validity of this argument – what if

the UV theory is strongly coupled and field redefinitions are not well-defined? If the UV

theory is an interacting SCFT, shouldn’t the OPE coefficient of O†hOh → O∆ be involved?

Using superconformal perturbation theory, [72] argued that the result of hidden sector

sequestering, starting from an interacting SCFT in the UV, should really be:

m2
Hu,d
→ −C∆µ

2 + (1− C∆)A2
u,d , Bµ → (1− C∆)µ(A∗u +A∗d) (3.16)

where C∆ is an OPE coefficient. This obviously differs from (3.15).

These previous studies of nontrivial hidden sector dynamics have all been based on RG

evolution in the effective theory below the messenger scale. As we will see, in GMHM we

instead work with the full theory and expand systematically in the couplings, expressing

everything in terms of integrals over correlation functions. (In this sense GMHM is like a

fixed-order calculation vs. the “running and matching” taken in previous works.) This allows

for more precise control over the final answer and a clearer understanding of the interplay

between different contributions. Using our general GMHM formulas, valid for any SUSY-

breaking hidden sector and any messenger sector, we will show that – surprisingly – GMHM

reproduces the claims of [70, 79] and (3.15), even in strongly coupled cases where field

redefinitions are not necessarily applicable. We will reconcile the conformal perturbation

theory RGEs derived in [72] with (3.15), vis a vis an approximate sum rule derived from

the OPE.

Significantly, applying the GMHM formalism to models of hidden sector sequestering

allows us to go beyond simply clarifying existing results. In particular, the case of complete

sequestering advocated in [70, 79] is an idealized limit in which M �
√
F and ∆ � 2∆h.
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However, phenomenological considerations [79, 80] and recent bounds on operator dimen-

sions [81] constrain these respective inequalities, so that viable models are only partially

sequestered and remain sensitive to the details of the hidden sector. As we will show, the

GMHM formalism provides an efficient framework for computing the soft spectrum of such

partially sequestered models.

The outline of our paper is as follows: In Section 2 we apply the GMHM formalism to

the Higgs sector and obtain general NLO expressions for Higgs soft parameters given the

portals (3.3) and (3.7). We demonstrate their power in Section 3 by computing Higgs soft

parameters in the spurion limit and the SCFT limit. In Section 4 we connect our GMHM

results to previous work on hidden sector sequestering by computing Higgs soft parameters

in an effective theory framework. We find perfect agreement between our GMHM results

and various methods for computing soft parameters in the effective theory. In the pro-

cess we reconcile results from superconformal perturbation theory with GMHM through an

approximate sum rule derived from the OPE. We reserve various technical details of the

GMHM framework for Appendix A. In Appendix B, we describe a check of the supercon-

formal perturbation theory RGEs and the validity of field redefinitions using a perturbative

Banks-Zaks fixed point.

3.2 The Higgs in GMHM

3.2.1 General Higgs Mediation at NLO

In this section, we will derive correlator formulas for the Higgs soft parameters in GMHM.

The first step is to expand in the direct Higgs-hidden-sector couplings (3.3), assuming a

fully general hidden sector. In [23], this was performed to leading order in λu,d. Since a

successful solution to the µ/Bµ and A/m2
H problems will have Bµ . µ2 and m2

Hu
. A2

u,

we must extend the results of [23] by going to NLO for the dimension-two soft masses. We
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find:

µ = λuλd〈Xµ〉 (3.17)

Au,d = |λu,d|2〈XAu,d〉 (3.18)

B̂µ = λuλd〈XBµ〉 (3.19)

m̂2
Hu,d

= |λu,d|2〈Xm2
Hu,d

〉 (3.20)

where we have introduced the following notation for later convenience:4

Xµ = −
∫
d4x QαOu(x)QαOd(0) (3.21)

XAu,d = +

∫
d4x Q̄2

[
Ou,d(x)O†u,d(0)

]
(3.22)

XBµ = −
∫
d4x Q2Ou(x)Q2Od(0)1 +

∑
i=u,d

|λi|2
∫
d4z d4z′Q2[OiHi(z)]Q̄

2[O†iH
†
i (z
′)]

 (3.23)

Xm2
Hu,d

= −
∫
d4x Q2Q̄2

[
Ou,d(x)O†u,d(0)

]
1 +

∑
i=u,d

|λi|2
∫
d4z d4z′Q2[OiHi(z)]Q̄

2[O†iH
†
i (z
′)]

 (3.24)

Note that we Wick rotated the formulas from [23] to Euclidean space, to avoid a proliferation

of factors of i.

Since we are computing terms in an effective action, all diagrams contributing to (3.17)

must be 1PI. This becomes an issue first at NLO order in λu,d, where we must contract

the extra Higgs fields in the last two lines of (3.21). Shown in figure 3.2 are the differ-

ent topologies for the diagrams at this order. Each blob is a connected (or if necessary,

1PI) hidden-sector correlator. The bottom two diagrams are interesting, since they involve

disconnected hidden sector correlators. Let’s now discuss these topologies in turn:

4A note about our slightly non-standard conventions for the supercharges Qα and Q̄α̇. To avoid cluttering
our formulas with irrelevant factors of two, we are normalizing Q and Q̄ so that for a WZ model, −L =
Q4K + (Q2W + c.c.). This differs from the more standard conventions of e.g. Wess and Bagger that would
have 1/16 and 1/4 in front of the Kähler potential and superpotential respectively.
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(a) (b) (c)

(d) (e)

Figure 3.2: Topologies for the NLO expansion of the dimension-two soft parameters. The
dashed lines, the solid line and the double lines represent the Higgs scalar, fermion and
auxiliary propagators, respectively. The shaded blobs represent connected hidden-sector
correlators. The diagrams on the bottom line are not 1PI and therefore do not contribute
to B̂µ and m̂2

Hu,d
. Note that there is no diagram of this type with an intermediate fermion

line, as the individual correlators would have to be Grassmann odd.

1. Clearly, the three topologies5 (a), (b), and (c) should always be included in the cal-

culation of m2
Hu,d

and Bµ.

2. The topology (d) should not contribute, since it is not 1PI. Note that these diagrams

are always schematically of the form m2
1 × 1

z2 ×m2
2 where m2

1,2 are shorthand for Bµ,

m2
Hu,d

. So if the soft masses are further suppressed by an additional small parameter

(such as the GMHM portal κ), then this topology will always be higher order in this

parameter.

3. Finally, the topology (e) is not 1PI in the theory (3.4) that includes the Higgs auxiliary

fields. However, these auxiliary fields must be integrated out, and the full dimension-

two soft masses are given by (3.6). This corresponds precisely to adding back in

the topology (e) of (3.2). For instance, taking the NLO contribution to 〈XBµ〉 with

i = u, contracting the auxiliary Higgs propagators, and disconnecting the correlator,

we obtain:∫
δ(4)(z − z′)

〈
Q2Ou(x)Q2Od(0)Ou(z)O†u(z′)

〉
→
∫ 〈

Q2Ou(x)O†u(z)
〉〈
Q2Od(0)Ou(z)

〉
(3.25)

5An interesting subtlety about diagram (c): since the LO contribution is non-vanishing, the NLO con-
tribution might be scheme dependent. In particular, employing the δ-function from contracting the Higgs
F -components in (3.21) collides the operators Oi and O†i , which can generate a UV divergence.
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The integral on the right can be fully factorized using the translation invariance of both

correlators and a simple change of variables. After putting back in all the couplings

etc., this becomes A∗uµ. A complete set of such disconnected diagrams is shown in

fig. 3. Taking all of these into account exactly reproduces (3.6).

To summarize, when computing the full Bµ and m2
Hu,d

, we should in fact include di-

agrams of the type (e) in (3.2), despite the fact that they do not appear to be 1PI at

first glance. Meanwhile, disconnected correlators connected by a scalar propagator as in

topology (d) must still be excluded from the NLO formulas.

µA∗
dµA∗

u

|Au|2|µ|2

Figure 3.3: The NLO contributions to Bµ (upper two) and m2
Hu

(lower two) involving
contractions of the auxiliary fields of the Higgs multiplets. The contributions to m2

Hd
are

identical to m2
Hu

upon switching u ↔ d everywhere. When cut at the dotted line, these
diagrams provide the extra contributions in (3.6).

3.2.2 Higgs soft parameters in GMHM

As discussed in the introduction, in the GMHM setup we further divide the overall hidden

sector into a separate SUSY-breaking hidden sector and messenger sector, connected by a

weakly-coupled portal. (We take the operators Ou and Od to be in the messenger sector,

as shown in (3.1).) Although in [78] more general portals were considered, in this paper

we are focusing on the superpotential portal (3.7) for simplicity. We then expand in κ

and factorize the correlators (3.17) into separate correlators of the messenger and hidden
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sectors. Supersymmetry in the messenger sector then allows us to simplify the resulting

expressions.

One general problem that immediately arises is that one typically finds both dimension-

one soft masses and Bµ already at O(κ). This would be disastrous for EWSB, as it would

imply Bµ ∼ µ ×M , where M is the messenger scale. As we discuss more in Appendix A,

a symmetry of the messenger sector that can forbid this while allowing for nonzero µ and

Au,d (and gaugino masses) is an R-symmetry under which

R(Om) = 2, R(Ou) +R(Od) = 4 (3.26)

We will assume this R-symmetry throughout the paper.

With this in hand, we find that the GHM expressions (3.17) become, at the leading

nonvanishing order in κ:

µ = λuλdκ
∗ 〈Q̄2O†h〉h

∫
d4y

〈
O†m(y)Xµ

〉
m

(3.27)

Au,d = |λu,d|2κ∗ 〈Q̄2O†h〉h
∫
d4y

〈
O†m(y)XAu,d

〉
m

(3.28)

B̂µ = λuλd|κ|2
∫
d4y d4y′

〈
Q4
[
O†h(y)Oh(y′)

]〉
h

〈
Om(y)O†m(y′)XBµ

〉
m

(3.29)

m̂2
Hu,d

= |λu,d|2|κ|2
∫
d4y d4y′

〈
Q4
[
O†h(y)Oh(y′)

]〉
h

〈
Om(y)O†m(y′)Xm2

Hu,d

〉
m

(3.30)

For more details, we refer the reader to Appendix A. Here the m and h subscripts denote

correlators evaluated purely in the messenger and SUSY-breaking hidden sector, respec-

tively. The integrated operators Xµ etc. were defined in (3.21); now the components of

the Higgs fields are understood to be contracted. In the last two lines we see that the an-

swers always organize themselves so that they depend on a single hidden sector correlator,〈
Q4
[
O†h(y)Oh(y′)

]〉
h
.

As in the previous subsection, at NLO in λu,d, we must again deal with the issue of

connected vs. disconnected correlators. The NLO topologies in GMHM are shown in (3.4),

in direct analogy with (3.2). As argued in the previous subsection, topology (6) is the

contribution (3.6) of integrating out FHu,d , so it must be included in the final result for

Bµ and m2
Hu,d

. Due to the R-symmetry and supersymmetry, topologies (3) and (5) do

not contribute. Finally, the other topologies must clearly be included since they are 1PI.
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(2)

(6)

h h

m m

(4)

m

h

m

hh

m

(5)

h h

m m

(3)

h

m m

(1)

h

m

Figure 3.4: Possible topologies for the NLO in λu,d contributions to the dimension-two
soft parameters in GMHM. Blobs denoted with m (h) denote messsenger (hidden sector)
correlators. The thick solid lines in (1) and (2) represent the sum of scalar, fermionic and
auxiliary Higgs propagators.

Therefore, we conclude that the full Bµ and m2
Hu,d

are given by the full hidden and messenger

correlators, to this order in the GMHM expansion. The final formulas are thus simply

Bµ = λuλd|κ|2
∫
d4y d4y′

〈
Q4
[
O†h(y)Oh(y′)

]〉
h,full

〈
Om(y)O†m(y′)XBµ

〉
m,full

(3.31)

m2
Hu,d

= −|µ|2 + |λu,d|2|κ|2
∫
d4y d4y′

〈
Q4
[
O†h(y)Oh(y′)

]〉
h,full

〈
Om(y)O†m(y′)Xm2

Hu,d

〉
m,full

(3.32)

where for m2
Hu,d

we have subtracted out |µ|2 to adhere to the standard convention for these

soft masses. These formulas are valid at O(|κ|2) and up to O(|λu,d|4), i.e. at the same order

in the GMHM expansion as our results for µ2, etc.

Let us conclude this section with one important observation about (3.31) that we will

need later: even though the full messenger correlators – including disconnected parts – are
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used in (3.31), in fact only the region of integration with |y − y′| . 1/M contributes to the

soft masses. The reason is that the full messenger correlators fall off exponentially at long

distance: 〈
Om(y)O†m(y′)XBµ,m2

Hu,d

〉
m,full

→ 0 as |y − y′| � 1/M (3.33)

since effectively only connected messenger diagrams contribute after integrating out the

Higgs auxiliary fields. (For more explicit details, we again refer the reader to Appendix A.)

This implies that when
√
F � M – as is generally the case in models of dynamical SUSY

breaking – the hidden sector correlator is effectively at short distance and the expressions

(3.31) can be further simplified using the OPE in the hidden sector. We will put this obser-

vation to work in the next section when we discuss hidden sectors that are approximately

superconformal at the scale M .

3.3 Examples

The power of the GMHM formalism becomes apparent upon considering various special

cases in which the general expressions (3.27) simplify further. As was shown in [78], il-

lustrative examples include the well-known spurion limit employed in the study of many

weakly-coupled models (such as those in [77, 48]); and the SCFT limit used to study hidden

sector sequestering [69? , 79, 72, 80]. As we will see, the latter idea is especially attractive

– although originally proposed for solving the µ/Bµ problem, we will show that it can work

equally well for the A/m2
H problem. In the following subsections, we will consider these two

special limits in turn, and show how they are reproduced in the GMHM framework.

3.3.1 Spurion limit

In the spurion limit, the hidden sector operator Oh has no nontrivial interactions, and all

hidden-sector correlators are given by their fully disconnected components. Although it

is not necessary for the spurion limit, for simplicity, we will take Oh to have canonical

dimension ∆h = 1 in this subsection. So we have:

〈Q2Oh〉h = F , 〈Q4
[
Oh(x)O†h(0)

]
〉h,full = |〈Q2Oh〉h|2 = |F |2 (3.34)
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The formulas for µ and Au,d are identical to those in (3.27). For Bµ and m2
Hu,d

, we saw

in the previous section that the fully disconnected contributions (i.e. disconnecting both

hidden and messenger correlators) are precisely those of integrating out FHu,d as in (3.6).

Thus from (3.31), we have:

Bµ = µ(A∗u +A∗d) + λuλd|κ|2|F |2
∫
d4y d4y′

〈
Om(y)O†m(y′)XBµ

〉
m,connected

(3.35)

m2
Hu,d

= |Au,d|2 + |λu,d|2|κ|2|F |2
∫
d4y d4y′

〈
Om(y)O†m(y′)Xm2

Hu,d

〉
m,connected

(3.36)

Here we see that whether there is a µ/Bµ or A/m2
H problem depends on the messenger

sector in the following manner:

1. If the messenger sector is strongly coupled, then loop counting is not well-defined, and

there need not be any problem with µ/Bµ or A/m2
H . However, there is not much more

that we can say about this scenario, since the messenger sector is strongly coupled and

typically incalculable, and statements about the parametric form of the soft masses

are exhausted by dimensional analysis.

2. If instead the messenger sector is weakly coupled, then the messenger correlators

can be computed, and they generally include a loop factor (1/16π2) in addition to

dimensional analysis. For generic messenger sectors, the connected correlators in

(3.35) are non-zero at one loop, which results in

µ ∼ λuλd
16π2

F

M
Bµ ∼

λuλd
16π2

F 2

M2
Au,d ∼

|λu,d|2
16π2

F

M
m2
Hu,d
∼ |λu,d|

2

16π2

F 2

M2
.

(3.37)

Now the µ/Bµ and A/m2
H problems are manifest. So, in contrast to the strongly-

coupled case, a weakly coupled messenger sector typically implies the existence of a

µ/Bµ and A/m2
H problem.

The A/m2
H problem is especially manifest in (3.35), since using (3.21) we can rewrite

the LO formulas for A and m2
H as:

Au,d = |λu,d|2κ∗F∂M∗Zu,d, (m2
Hu,d

)LO = −|λu,d|2|κF |2∂M∂M∗Zu,d (3.38)

with Zu,d ≡
∫
d4x 〈O†u,d(x)Ou,d(0)〉m, where we have imagined deforming the messenger

sector by δW = MOm. This form of Au,d and m2
Hu,d

indicates that, to leading order in
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F
M2 , they generically arise at the same loop order in the messenger sector (when “loop

order” is well-defined). This is the GMHM analogue of the argument using field strength

renormalization that was presented in [77].

As shown in [77], MGM is the unique solution to the A/m2
H problem in the weakly-

coupled messenger + spurion limit. In this case, the second derivative in (3.38) vanishes

because the correlator in question evaluates to logMM∗. One-loop contributions to m2
H

still exist, but they are higher order in κ, i.e. they are suppressed by F/M2. The same

solution does not apply to µ/Bµ because the relevant correlator does not generally factorize

into terms holomorphic and anti-holomorphic in M , though it may be arranged in more

elaborate models with additional scales [47]. In [77], the µ/Bµ problem was avoided by

taking λd = 0, while µ and Bµ were then generated using an extension to the NMSSM

along the lines of [41, 46].

Finally, let us comment on the “little A/m2
H problem.” This is manifested by the pres-

ence of the A2
u,d term in (3.35). Even if the 1-loop contribution to m2

Hu
is dealt with through

the MGM mechanism, large A-terms still imply a large 2-loop contribution to m2
Hu

, which

drastically increases the tuning of the model or impedes electroweak symmetry breaking

altogether. We emphasize that this is a universal feature of models with SUSY breaking

spurions that generate large A-terms through Higgs-messenger couplings. The problem can

ultimately be traced back to the relation 〈Q4
[
Oh(x)O†h(0)

]
〉h,full = |〈Q2Oh〉h|2, which is

a consequence of the triviality of the spurion limit. When hidden sector interactions are

accounted for, we may instead have 〈Q4
[
Oh(x)O†h(0)

]
〉h,full � |〈Q2Oh〉h|2, thus providing

a route for solving the little A/m2
H problem. This strongly motivates going beyond the

spurion limit in the hidden sector, as we consider in the next subsection.

3.3.2 Models with hidden sector SCFTs

In these models we take
√
F � M , with the hidden sector described by an approximate

SCFT at and above the scale M . Then, as discussed below (3.31), the hidden sector

correlator 〈Q4[O†h(y)Oh(y′)]〉h,full is always pinned by the messenger sector correlator at

|y − y′| . 1
M � 1√

F
, i.e. at short distance. So we can apply the OPE of the SCFT to it:

Oh(y)O†h(y′) ∼ |y − y′|−2∆h1 + C∆|y − y′|γO∆(y′) + . . . (3.39)
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where

γ ≡ ∆− 2∆h (3.40)

Here 1 is the unit operator (it drops out under the action of Q4), and O∆ (with dimension

∆) is the lowest-dimension scalar operator in the UV fixed point of the hidden sector. The

. . . denotes terms with higher-dimension operators; we neglect them here as they will be

further suppressed by F/M2. Substituting this into (3.31) we obtain

Bµ ≈ λuλd|κ|2C∆〈Q4O∆〉h
∫
d4y d4y′ |y − y′|γ

〈
Om(y)O†m(y′)XBµ

〉
m,full

(3.41)

m2
Hu,d
≈ −|µ|2 + |λu,d|2|κ|2C∆〈Q4O∆〉h

∫
d4y d4y′ |y − y′|γ

〈
Om(y)O†m(y′)Xm2

Hu,d

〉
m,full

(3.42)

As in the spurion limit, the general expressions for µ and Au,d again remain unchanged with

respect to (3.27). So if γ > 0 (i.e. ∆ > 2∆h) and
√
F �M , the contributions proportional

to 〈Q4O∆〉h are subleading with respect to those proportional to |〈Q2Oh〉h|2, and they are

suppressed relative to µ2 and A2
u,d. This is precisely the phenomenon of hidden-sector

sequestering [69–71], as seen from the point of view of GMHM. From (3.41), we note that

the −|µ|2 contribution to m2
Hu,d

is the only unsequestered contribution to the soft masses;

in particular, there is no unsequestered contribution involving the OPE coefficient. We will

comment more on the physical interpretation of this fact, and its relation to previous work,

in the following section.

The idea of hidden-sector sequestering was originally proposed in order to solve the

long-standing µ/Bµ problem. Now with the need for large A-terms forced upon us by a

Higgs at 125 GeV, we also have the A/m2
H problem to contend with. We see from (3.41)

that sequestering has the potential to solve both problems simultaneously. But despite its

theoretical elegance, this approach suffers from a number of practical challenges. Foremost,

it is difficult to achieve proper electroweak symmetry breaking with the fully sequestered

boundary condition Bµ ≈ 0 and m2
Hu,d

≈ −|µ|2 [79, 80]. Moreover, recent developments

in the understanding of 4D SCFT’s have resulted in strict upper bounds on the allowed

anomalous dimensions [81]. These bounds have made it increasingly difficult to envision a

realistic setup where the anomalous dimensions and separation between
√
F ,M are large

enough to achieve the desired amount of sequestering.
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The GMHM expressions (3.41) point to possible ways out of these difficulties. For

example, we see that the sequestered contributions in (3.41) depend on the OPE coefficient

C∆. So if this is small for some reason, then we can again overcome the infamous loop

factors. This is an entirely separate mechanism for solving the µ/Bµ and A/m2
H problems

that has not been considered before. Alternatively, one could combine a relatively small

OPE coefficient with some realistic amount of sequestering. The expressions in (3.41)

provide a calculable setup to further investigate such partially sequestered models [82].

In both of these solutions, the burden of addressing the µ/Bµ and A/m2
H problems is

shifted towards the hidden sector. This is in contrast to spurion-based models, where the

messenger sector does all the legwork. From (3.41) we can see another important difference

with the spurion limit, as both the 1-loop and the 2-loop contributions are susceptible to

sequestering and the smallness of the OPE coefficient. Therefore a solution to the µ/Bµ

and A/m2
H problems through sequestering, a small OPE coefficient, or some combination

of the two, automatically implies a solution to the little A/m2
H problem.

3.4 Comparison with effective theory

Previous studies of hidden sector dynamics have worked in terms of the effective theory

below the messenger scale M , in which the Higgs sector and hidden sector are coupled

through irrelevant operators in the Kähler potential [69–71, 79, 72]. Furthermore, these

studies have relied on using the RG to evolve down to the SUSY-breaking scale
√
F �M in

order to extract the physical soft parameters. In this section we re-visit the effective theory

approach and show how its results can be matched to the GMHM calculation presented in

Section 2 (which is more analogous to a fixed-order calculation in a full theory).

The hidden sector may or may not be strongly coupled at the scale M . Either way,

we will assume for simplicity that it is approximately superconformal, i.e. that M is well-

separated from all the other mass scales in the hidden sector. So we are in the SCFT limit

of GMHM described in the previous subsection. Upon integrating out the messenger sector,
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the effective theory at the scale M is of the form

Leff ⊃
∫
d4θ

∑
i

[
cµ(M)

M∆h
O†hHuHd +

cBµ,i(M)

M∆i
O∆iHuHd + h.c.

+
cAu,d(M)

M∆h
O†hH

†
u,dHu,d + h.c.+

cmu,d,i(M)

M∆i
O∆iH

†
u,dHu,d

]
(3.43)

where Oh is a hidden-sector chiral operator with an F -term expectation value, while the O∆i

are non-chiral operators that appear in the OPE (3.39) of O†h and Oh. Previous approaches

have only focused on the leading operator appearing in the OPE, but in general there are

many such operators germane to the effective theory. For example, in Appendix B we

construct an explicit Banks-Zaks example with two nontrivial O∆i . Unlike in the GMHM

calculation, it will be important to keep track of all the operators in the OPE, because of

the potentially unsequestered contributions in (3.16)

The numerical values of the coefficients cµ, cBµ,i, cAu,d , cmu,d,i at the scale M depend on

the details of the hidden sector and messenger sector, and they are fixed by matching to

the full theory. With this effective theory in hand, the Higgs sector soft parameters may

be computed in three equivalent ways: (1) by direct calculation in the effective theory with

cutoff M ; (2) by RG evolution of the coefficients ci to a lower scale E satisfying
√
F �

E < M followed by calculation in the effective theory (still assumed to be superconformal)

with cutoff E; and (3) RG evolving down to a scale E �
√
F and “freezing-out” the SCFT

dynamics by just substituting operator vevs, i.e. transitioning to the spurion limit where

there are no nontrivial correlation functions. (Keep in mind that operator dimensions need

not be canonical in the spurion limit.) The third approach has been taken by previous works,

with the further assumption that the transition to the spurion limit happens abruptly at
√
F . But it is very instructive to perform the calculation all three ways and compare with

the predictions from GMHM. We can also compare the GMHM and direct effective theory

results to arguments from field redefinitions when the hidden sector starts at a UV free

fixed point.

3.4.1 Direct calculation in the effective theory with cutoff M

To compute the Higgs sector soft parameters directly in the effective theory, we imagine

performing the path integral over the effective theory with the momentum of hidden sector
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fields and loops of Higgs doublets restricted to lie below the Wilsonian cutoff M . The

leading contributions from operators involving the O∆i are trivially computed by treating

Hu,d as background fields. There are also contributions to soft parameters quadratic in

cµ and cAu,d ; these correspond to NLO contributions to the GMHM result coming from

disconnected messenger correlators.

The calculation of the full soft mass proceeds entirely in parallel to the GMHM calcu-

lation. For simplicity we will focus on the scalar masses m2
Hu,d

; the calculation for Bµ is

analogous. The linear O∆i contributions are straightforward; working in the effective theory

(3.43) to leading order in cmu,d,i, we simply have:

m2
Hu,d

∣∣∣
linear

= −
∑
i

cmu,d,i(M)

M∆i
〈Q4O∆i〉M (3.44)

Here and below, the subscript M will denote correlation functions evaluated in the effective

theory with cutoff M . Turning now to the contributions quadratic in cµ and cAu,d , after

some manipulations we have for example

m2
Hu,d

∣∣∣
quadratic

⊃
|cAu,d(M)|2
M2∆h

∫
d4x

〈
Q4[O†h(x)Oh(0)]

〉
M
∂2〈H†u,d(x)Hu,d(0)〉M (3.45)

At this stage, simply substituting a free propagator for the Higgs correlator in (3.45) is

evidently problematic; integrating over x would give rise to a pure contact term. This

reflects the fact that the contribution being computed here is only sensitive to physics

above the cutoff. Indeed, this agrees with the GMHM result – as discussed at the end

of Section 2, the hidden sector correlator for disconnected contributions is pinned by the

messenger correlators at distances . 1/M , and so it does not accumulate any significant

contributions from below the scale M .

We can regulate the contact term in (3.45) any number of ways; different choices corre-

spond to different prescriptions for matching with the full GMHM calculation. One useful

regulator is to replace the delta function at x = 0 with a (radial) delta function at |x| = 1/M .

As we will see below, this has the useful advantage of respecting both the physical cutoff at

M and the assumed abrupt transition to the spurion limit when the sliding cutoff is taken

to
√
F . As such, we can apply this scheme uniformly to the various effective theory cases

of interest and absorb all scheme-dependence into a single set of matching conditions at M .
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Substituting the general OPE (3.39) and applying the regulator to (3.45), we obtain

m2
Hu,d

∣∣∣
quadratic

⊃
∑
i

|cAu,d(M)|2
M∆i

C∆i〈Q4O∆i〉M (3.46)

where C∆i and γi are defined as in (3.39). The calculation of the |cµ|2 contribution is entirely

analogous, although here we must remember to subtract out the fully disconnected contri-

bution |µ|2, since this is conventionally not included in the definition of m2
Hu,d

. Repeating

the same procedure for Bµ and combining the various contributions, the general effective

theory result is

Bµ = −
∑
i

(
cBµ,i(M)− C∆icµ(M)(c∗Au(M) + c∗Ad(M))

M∆i

)
〈Q4O∆i〉M (3.47)

m2
Hu,d

= −|µ|2 −
∑
i

(
cmu,d,i(M)− C∆i(|cAu,d(M)|2 + |cµ(M)|2)

M∆i

)
〈Q4O∆i〉M (3.48)

The dependence of the soft terms only on the composite vevs 〈Q4O∆i〉, and not on |〈Q2Oh〉|2,

is in complete agreement with the result (3.41) from GMHM in the SCFT limit. The specific

linear combinations of coefficients appearing in (3.47) may be used to fix the matching of

cmu,d,i, cBµ,i with the O(λ4) terms in the GMHM result for m2
Hu,d

and Bµ.

3.4.2 Effective theory with cutoff
√
F � E < M : testing the RGEs

Alternately, we may compute the soft parameters in a different effective theory with a cutoff

E < M by evolving the coefficients ci(M) to the scale E via RG running and repeating the

direct calculation of scalar masses in the new effective theory. The scalar masses should,

of course, agree with the result obtained in the theory with cutoff M . This procedure is

completely straightforward in effective theories with cutoff E �
√
F , where the hidden

sector is still an SCFT at the cutoff and the regularization scheme can be maintained. We

refer the reader to [72, 83] for the details of computing beta functions using superconformal

perturbation theory. One thing to keep in mind is that to preserve the result for the soft

masses, it is crucial to use the same regulator and scheme as in (3.46). The result for the
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beta functions between M and
√
F is:

βcµ = ∆hcµ (3.49)

βcAu,d = ∆hcAu,d (3.50)

βcmu,d,i = ∆icmu,d,i − γiC∆i(|cµ|2 + |cAu,d |2) (3.51)

βcBµ,i = ∆icBµ,i − γiC∆icµ(c∗Au + cµc
∗
Ad

) (3.52)

In general, integrating the beta functions from M to E yields

|cµ(E)|2 = |cµ(M)|2
(
E

M

)2∆h

|cAu,d(E)|2 = |cAu,d(M)|2
(
E

M

)2∆h

(3.53)

cmu,d,i(E) = cmu,d,i(M)

(
E

M

)∆i

− C∆i

(
|cµ(M)|2 + |cAu,d(M)|2

) [( E
M

)∆i

−
(
E

M

)2∆h
]

(3.54)

cBµ,i(E) = cBµ,i(M)

(
E

M

)∆i

− C∆icµ(M)
(
c∗Au(M) + c∗Ad(M)

) [( E
M

)∆i

−
(
E

M

)2∆h
]

(3.55)

The calculation of soft masses in the theory with cutoff E proceeds in the SCFT limit

precisely as above, with the replacement M → E:

Bµ = −
∑
i

(
cBµ,i(E)− C∆icµ(E)(c∗Au(E) + c∗Ad(E))

E∆i

)
〈Q4O∆i〉E (3.56)

m2
Hu,d

= −|µ|2 −
∑
i

(
cmu,d,i(E)− C∆i(|cAu,d(E)|2 + |cµ(E)|2)

E∆i

)
〈Q4O∆i〉E (3.57)

Note that at a superconformal fixed point, operator wavefunction renormalization is trivial,

and so 〈Q4O∆i〉 does not change between M and E. Substituting the integrated couplings

(3.53) into (3.56), we again obtain (3.47). Of course, the fact that running alone yields agree-

ment between the two calculations is not surprising, since there are no physical thresholds

between M and E. This serves as an check of the RGEs that were derived independently

using superconformal perturbation theory in [72].

3.4.3 Effective theory below
√
F

Finally, we come to the most commonly considered case in the literature: RG evolving

down to the scale
√
F and “freezing-out” the SCFT dynamics by just substituting operator
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vevs – in other words, transitioning abruptly to the spurion limit. We imagine that just

above the scale
√
F , some unspecified relevant operator in the SCFT turns on and drives

it very quickly to a SUSY-breaking vacuum. Then right above
√
F , the couplings (3.53)

obtained using the superconformal RGEs should be valid, while right below
√
F , the hidden

sector is gapped and we should be in the spurion limit. Computing the dimension-two soft

parameters in the spurion theory, we find:

m2
Hu,d

= −|µ|2 −
∑
i

cmu,d,i(
√
F )

(
√
F )∆i

〈Q4O∆i〉√F +
|cµ(
√
F )|2 + |cAu,d(

√
F )|2

(
√
F )2∆h

|〈Q2Oh〉√F |2

(3.58)

Bµ = −
∑
i

cBµ,i(
√
F )

(
√
F )∆i

〈Q4O∆i〉√F +
cµ(
√
F )(c∗Au(

√
F ) + c∗Ad(

√
F ))

(
√
F )2∆h

|〈Q2Oh〉√F |2

(3.59)

Substituting (3.53) into (3.58) with E →
√
F , we have

m2
Hu,d

= −|µ|2 −
∑
i

(
cmu,d,i(M)− C∆i

(
|cµ(M)|2 + |cAu,d(M)|2

)
M∆i

)
〈Q4O∆i〉√F

+
|cµ(M)|2 + |cAu,d(M)|2

M2∆h
∆S (3.60)

Bµ = −
∑
i

cBµ,i(M)− C∆icµ(M)
(
c∗Au(M) + c∗Ad(M)

)
M∆i

〈Q4O∆i〉√F

+
cµ(M)(c∗Au(M) + c∗Ad(M))

M2∆h
∆S (3.61)

where

∆S ≡ |〈Q2Oh〉√F |2 −
∑
i

C∆i(
√
F )−γi〈Q4O∆i〉√F (3.62)

Comparing this with (3.47), we see that there is an apparent disagreement. In particular, the

answer in the spurion theory seems to have “unsequestered” contributions ∝ (
√
F/M)2∆h .

This result illustrates the fact that, in general, threshold corrections to the couplings cBµ,i

and cmu,d,i at the scale
√
F cannot be neglected.

At the same time, it is also true that our regularization scheme (see the discussion around

(3.45)) minimizes these threshold corrections. The key ingredient here is the continuity

of the OPE. If the theory transitions abruptly to the spurion limit at a scale
√
F , then
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continuity of the OPE demands:

|〈Q2Oh〉√F |2 ≈ 〈Q4[Oh(x)Oh(0)]〉√F
∣∣
|x|=1/

√
F
≈
∑
i

C∆i(
√
F )−γi〈Q4O∆i〉√F (3.63)

Substituting this into (3.60), we find that the threshold corrections are minimized, and the

result is brought into agreement with previous effective theory calculations and the GMHM

expectation. In the limit ∆i � 2∆h, the 〈Q4O∆i〉 terms are negligible, and we indeed find

m2
Hu,d
≈ −|µ|2, Bµ ≈ 0 (3.64)

as claimed in [70, 79].

Had we chosen a different regularization scheme in (3.45), e.g. a smoother regulator that

smears out the integrand in (3.45) around the cutoff, then the second term in ∆S would have

been correspondingly smeared. Then the OPE sum rule (3.63) would not have accounted

for ∆S, and additional threshold corrections to the couplings would have been required.6 In

a sense, our choice of radial delta function regularization is particularly appropriate in that

it is abrupt and localized at the cutoff, in the same way that our transition to the spurion

limit is taken to be abrupt. This allows us to maintain the same regularization scheme in

effective theories above and below
√
F and smoothly absorb all scheme dependence into

matching at the scale M .

3.4.4 Field redefinitions

Finally, we can compare both results to the soft parameter predictions obtained via field

redefinition at a UV free fixed point as in [79]. If the hidden sector is weakly interacting at

the scale M , and Oh is a dimension-one elementary field, then the only nontrivial operator

in the OPE is O∆1 ∼ O†hOh and the terms linear in Oh in (3.43) are redundant, i.e., may

be eliminated by field redefinitions. Such UV free theories are only a restricted subset of

models amenable to treatment by our formalism, but they provide a useful check.

In this case, the terms proportional to cAu,d may be eliminated by the redefinition

Hu,d → H̃u,d = Hu,d(1 + cAu,dO
†
h/M) (3.65)

6Even in this case, one can check that in the limit γi � 1, the beta functions and soft masses become
scheme independent to leading order in γi and the matching procedure at

√
F is likewise insensitive to the

details of exiting the SCFT.
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which leads to an equivalent effective theory at the scale M

L ⊃
∫
d4θ

[
cµ
M
O†hH̃uH̃d +

cBµ − cµ(c∗Au + c∗Ad)

M2
O†hOhH̃uH̃d + h.c. (3.66)

+
cmu,d − |cAu,d |2

M2
O†hOhH̃

†
u,dH̃u,d + . . .

]
(3.67)

where the ellipses denote terms of cubic order or higher in hidden sector fields (i.e., higher

order in κ in the GMHM approach). In this effective theory there are no additional contri-

butions to Higgs soft masses proportional to |cAu,d |2.

To compute the physical mass of the scalar doublet H̃u, we may treat it as a background

field, keeping H̃d, Oh as dynamical fields and performing the field redefinition

H̃d → H̃ ′d = H̃d +
c∗µ
M
OhH̃

†
u (3.68)

where the apparently non-holomorphic field redefinition preserves supersymmetry because

H̃u is simply a background field. Now there are also no additional contributions proportional

to |cµ|2, and the calculation of soft masses is straightforward. In this theory the physical

mass of the scalar H̃u is simply

m2
H̃u

= −|µ|2 − cmu(M)− |cAu(M)|2 − |cµ(M)|2
M2

〈Q4(O†hOh)〉M (3.69)

From this we can infer the soft mass, and it is in complete agreement with the results from

GMHM and the effective theory. Analogous arguments hold for the calculation of m2
Hd

and Bµ. Note that here 〈Q4(O†hOh)〉M 6= |F |2, since by assumption the hidden sector is

asymptotically free and the operator vev reflects sequestering due to nontrivial dynamics

below the scale M .

To summarize, we have found agreement between the Higgs sector soft parameters as

computed in GMHM and the soft parameters computed by a variety of approaches in the

effective theory below the messenger scale: directly in the effective theory defined at the

scale M ; in effective theories with cutoffs above and below
√
F ; and via field redefinition

in the effective theory when the hidden sector is weakly coupled at the scale M . The key

to reconciling the weakly-coupled results of [70, 79] with the superconformal perturbation

theory result of [72] is the approximate operator vev sum rule (3.63) imposed by the OPE.
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Of course, thus far our discussion has remained fairly abstract. We validate certain

features of our analysis by comparison with explicit perturbative calculations in a toy Banks-

Zaks model, the details of which we reserve for Appendix B.

3.5 Conclusions and future directions

The discovery of a Higgs near 125 GeV poses significant challenges for minimal supersymme-

try. If electroweak symmetry breaking is natural, either the Higgs sector must be extended

– often at the expense of other attractive features of the MSSM such as perturbative gauge

coupling unification – or A-terms must be large. While this latter option is attractive, it

poses a particular challenge for calculable models where intrinsic A terms are naturally

small. Introducing new interactions to generate A terms results in the A/m2
H problem,

i.e., unwanted contributions to other soft terms that threaten EWSB and supersymmetric

naturalness.

Yet the A/m2
H problem is but one symptom of a broader sickness in the Higgs sector of

calculable models. Beyond confronting the A/m2
H problem to accommodate the observed

Higgs mass, calculable models must also confront the more familiar µ/Bµ problem to achieve

EWSB. In addition, we see from (3.6) that such models also potentially suffer from the

little A/m2
H problem, even if the one loop contribution to m2

Hu
vanishes. The ubiquity and

tenaciousness of these problems in calculable models with weakly-coupled hidden sectors

strongly favors hidden sectors with non-trivial dynamics. In this case, powerful tools are

required in order to make concrete predictions for the physical spectrum.

In this work, we have developed a framework for computing the soft spectrum arising

from general Higgs-messenger interactions in theories where the SUSY-breaking dynamics

factorizes into arbitrary messenger and hidden sectors. We compute soft parameters in a

supersymmetric correlator formalism through a double expansion in the portals connecting

the Higgs, messenger, and hidden sectors. This approach allows us to identify general

solutions to the µ/Bµ and A/m2
H problems. An essential key is that while µ and Au,d

depend on the one-point function 〈Q2Oh〉h in the hidden sector, Bµ and m2
Hu,d

depend

on the two-point function 〈Q4(O†h(y)Oh(y′))〉h. Although in spurion models these two are

trivially related, more generally they need not have anything to do with one another.
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Although our results are quite general, we demonstrate their power by using them to

compute the soft spectrum for hidden sectors in the spurion and SCFT limits. In the

SCFT limit, we make contact with previous approaches to hidden sector sequestering [69–

71, 79, 72]. In particular, we resolve a long-standing disagreement between different ap-

proaches to hidden-sector sequestering, validating the results obtained via field redefinitions

and reconciling previously conflicting results from superconformal perturbation theory us-

ing an approximate sum rule derived from the OPE. However, our general formalism allows

us to go beyond the case of full sequestering considered in previous works and compute the

soft spectrum in the case of partial sequestering, where hidden sector anomalous dimensions

conspire with details of the hidden sector to yield potentially viable phenomenology. This

is particularly attractive since the idealized limit of full sequestering appears increasingly

unrealistic due to both limits on operator dimensions [81] and tightly constrained paramet-

rics [79, 80]. In partially sequestered scenarios, SCFT data (such as OPE coefficients and

operator dimensions), operator vevs, and numerical coefficients all play important roles in

solving the µ/Bµ and A/m2
H problems. Interestingly, in contrast with the spurion limit, a

solution to the A/m2
H problem in this context automatically guarantees a solution to the

little A/m2
H problem. Moreover these models have much more parametric freedom com-

pared to the fully sequestered case, and exhibit novel phenomenology that we will explore

in detail in future work [82].

Let us conclude by highlighting a variety of interesting future directions:

1. Much as GGM delineated the full parametric freedom available in gauge mediation,

our formalism delineates the full parametric freedom available to models with Higgs-

messenger interactions. It would be particularly useful to determine whether this full

parameter space may be spanned by weakly coupled models, along the lines of what

was done for GGM in [57, 84].

2. In this work we have applied our formalism to two simplified cases, the spurion limit

and the SCFT limit. However, the formalism may be applied to any theory in which

the overall hidden sector factorizes into separate messenger and SUSY-breaking hidden

sectors, and there are likely many other well-motivated cases amenable to detailed
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study. For example, it may be used to compute corrections to the spurion limit in

weakly-interacting hidden sectors whose IR physics are described by O’Raifeartaigh

models.

3. We have restricted our attention to superpotential portals connecting the messenger

and hidden sectors. It would be interesting to analyze Kähler portals to determine

whether there are other qualitatively new features or new approaches to the µ/Bµ

and A/m2
H problems. Along similar lines, we have focused on SUSY-breaking due to

a chiral operator in the hidden sector; it would be interesting to consider more general

operators as well.

4. Considerable attention has recently been devoted to the NMSSM in light of the ob-

served Higgs mass, and calculable models for the NMSSM soft spectrum must confront

challenges analogous to the A/m2
H problem. It would therefore be fruitful to extend

our formalism to cover the NMSSM and related models involving additional degrees

of freedom at the weak scale.

5. In partially sequestered scenarios, SCFT data such as operator dimensions and OPE

coefficients play a key role in determining the Higgs soft spectrum. While considerable

effort has recently been devoted to developing general bounds on operator dimensions

in 4D SCFTs [81], it would be particularly useful to extend general bounds on OPE

coefficients beyond those considered in [81]. This in turn should increase the predic-

tiveness of viable partially-sequestered models.

Appendices

3.A Details on the factorization of the correlators

In this appendix, we provide some more details about the required R-symmetry in the mes-

senger sector and show explicitly how the correlators for the dimension-two soft parameters

in (3.27) factorize into a hidden sector correlator and a messenger sector correlator.
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3.A.1 O(κ) expansion and R-symmetry

With the X defined in (3.21), the formulas for the soft parameters to leading order in κ are

given by

µ =λuλdκ
∗〈Q̄2O†h〉h

∫
d4y 〈O†m(y)Xµ〉m + λuλdκ〈Q2Oh〉h

∫
d4y 〈Om(y)Xµ〉m (3.70)

Au,d =|λu,d|2κ∗〈Q̄2O†h〉
∫
d4y 〈O†m(y)XAu,d〉m (3.71)

B̂µ =λuλdκ〈Q2Oh〉h
∫
d4y 〈Om(y)XBµ〉m (3.72)

m̂2
Hu,d

=O(κ2) (3.73)

All other possibilities are forbidden by the supersymmetry Ward identities on the messenger

correlator. This can be most easily understood from the observation that XAu,d , XBµ and

Xm2
Hu,d

in (3.21) can be written as

XAu,d = Q̄2
[
· · ·
]
, XBµ = Q2

[
· · ·
]
, Xm2

Hu,d

= Q4
[
· · ·
]

(3.74)

where the · · · are integrated operators built out of supercharges, Ou,d and Hu,d operators.

To understand the formula for µ, one should additionally keep in mind that we have shifted

the vev of the lowest component of Oh to zero, as explained in the introduction.

The O(κ) contribution to Bµ in (3.70) is allowed by supersymmetry and results in the

parametric behavior Bµ ∼ Mµ, which is disastrous for electroweak symmetry breaking.

We therefore wish to impose a suitable symmetry on the messenger sector that forbids

the correlator contributing to Bµ, while preserving an O(κ) contribution to both µ and

Au,d. From (3.70) one can easily see that the only symmetries satisfying these criteria are

R-symmetries with charge assignments

R[Om] = 2 R[Ou] +R[Od] = 4 (3.75)

or

R[Om] = 2 R[Ou] +R[Od] = 0 (3.76)

(3.75) and (3.76) respectively preserve the first and second correlator contributing to µ. All

known models in the literature adhere to the first charge assignment, and this is why we

have assumed (3.75) throughout this paper. It would of course be interesting to explore the
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other R-charge assignment, but we will not do so here. We emphasize that the presence of

an R-symmetry in the messenger sector is a generic feature of all models that attempt to

generate both µ and Au,d through the same set of Higgs-Messenger interactions.

3.A.2 O(κ2) expansion

Since the O(κ) contribution is assumed to vanish by virtue of the R-symmetry that we

imposed in the previous section, we now proceed to the derivation for the O(κ2) contribution

to B̂µ. The derivation for m̂2
Hu,d

is completely analogous. The only contribution compatible

with the R-symmetry in (3.75) is

B̂µ = λuλd|κ|2
∫
d4y d4y′

〈
Q2
[
OhOm(y)

]
Q̄2
[
O†hO

†
m(y′)

]
XBµ

〉
m+h

(3.77)

Using (3.74), we can write (3.77) as

B̂µ = λuλd|κ|2
∫
d4y d4y′

〈
Q2Q̄2

[
OhOm(y)O†hO

†
m(y′)XBµ

]〉
m+h

(3.78)

where we dropped total derivatives. Now we redistribute the supercharges over the combi-

nations OhO
†
h and OmO

†
mXBµ and factorize the correlators. The unbroken supersymmetry

of the messenger correlator kills all terms except the term where all the supercharges are

inside the hidden sector correlator:

B̂µ = λuλd|κ|2
∫
d4y d4y′

〈
Q2Q̄2

[
Oh(y)O†h(y′)

]〉
h

〈
Om(y)O†m(y′)XBµ

〉
m

(3.79)

The result has now arranged itself such that all the contributions from the hidden sector

are packaged in a single hidden sector two-point function.

3.A.3 Short distance dominance of the messenger correlator

Finally, let us explicitly verify that the disconnected components of the messenger correla-

tors for Bµ and m2
Hu,d

indeed fall off at long distance as claimed in (3.33), and that they

integrate to give the auxiliary field contributions in (3.6), as claimed in (3.31).
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As an example, consider the O(κ2, λuλd|λu|2) messenger correlator for Bµ〈
Om(y)O†m(y′)XBµ

〉
m

(3.80)

⊃ |λu|2
∫
d4xd4zd4z′ 〈Om(y)O†m(y′)Q2Ou(x)Q2Od(0)Q2

[
OuHu

]
(z)Q̄2

[
O†uH

†
u

]
(z′)〉m

(3.81)

= |λu|2
∫
d4xd4zd4z′ 〈Q2Om(y)O†m(y′)Q2Ou(x)Q2Od(0)OuHu(z)Q̄2

[
O†uH

†
u

]
(z′)〉m

(3.82)

where in the second line we used the supersymmetry Ward identity, dropping any total

derivatives. In order to enable a contraction between the Hu operators, the Q̄2 must act on

O†u(z′):〈
Om(y)O†m(y′)XBµ

〉
m

(3.83)

⊃ |λu|2
∫
d4xd4zd4z′

1

4π2

1

(z − z′)2
〈Q2Om(y)O†m(y′)Q2Ou(x)Q2Od(0)Ou(z)Q̄2O†u(z′)〉m

(3.84)

Now we want to factorize this into two separate correlators. All one-point functions are

assumed to vanish, and one can easily check that there is no factorization into a product

of two- and four-point functions consistent with the symmetries. This leaves a product of

three-point functions, and here the only non-vanishing factorization consistent with all the

symmetries is〈
Om(y)O†m(y′)XBµ

〉
m

(3.85)

⊃ |λu|2
∫
d4xd4zd4z′

1

4π2

1

(z − z′)2
〈Q2Om(y)Q2Ou(x)Q̄2O†u(z′)〉m〈O†m(y′)Q2Od(0)Ou(z)〉m

(3.86)

Moving the supercharges around in the first correlator produces a ∂2
z′ , and after integrating

by parts we are left with a δ(4)(z − z′). So the answer becomes:〈
Om(y)O†m(y′)XBµ

〉
m

(3.87)

⊃ |λu|2
∫
d4xd4z 〈Om(y)Q2Ou(x)O†u(z)〉m〈O†m(y′)Q2Od(0)Ou(z)〉m (3.88)

This is the desired result: the delta function ensures that, to this order in perturbation

theory, the messenger correlator always falls off exponentially for M |y − y′| → ∞, despite
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the fact that it is disconnected. Furthermore, substituting (3.87) back into (3.79) but

now using the disconnected component of the hidden sector correlator, the result becomes

precisely µA∗u. The argument is analoguous for m2
Hu,d

and the O(κ2, λuλd|λd|2) contribution

to Bµ, and in this way we reproduce the contributions from integrating out the F -terms in

(3.6).

3.B A Banks-Zaks model of hidden sector renormalization

3.B.1 Setup

In this appendix we study a toy example of a weakly-coupled interacting SCFT containing

a chiral gauge singlet operator X that will serve as a proxy for the supersymmetry breaking

operator Oh. The goal is to validate the beta functions in (3.49), obtained through super-

conformal perturbation theory, against a direct calculation of the beta functions through

Feynman diagrams. In the process, we are also equipped to confirm the validity of the field

redefinition argument in our weakly coupled example. This provides an explicit check of

the various approaches to hidden sector sequestering in an effective theory framework.

Our toy model is the same one as in [83]: a Banks-Zaks model coupled to X via the

superpotential

W =
1

2π
λXTrQQ̃ . (3.89)

Here Q and Q̃ are Nf flavors charged under an SU(Nc) gauge group with Nf = 3Nc/(1+ε),

and the trace is over all colors and flavors.7 Before the deformation (3.89), the only coupling

in the theory is the gauge coupling, g; for Nf , Nc � 1, this undeformed theory flows to the

perturbative BZ fixed point at which βg = 0. Deforming this BZ model by the addition of

(3.89) induces a flow to a new fixed point at which βλ = βg = 0, with [83]

ĝ∗ =
(
ε+O(ε2)

)
+

5

3N2
c

(
ε+O(ε2)

)
(3.90)

λ̂∗ =
2

3
ε(1 + ε) +O

(
ε2

N2
c

)
(3.91)

where ĝ = Ncg
2/8π2, λ̂ = N2

c λ
2/8π2 are the generalized ’t Hooft couplings.

7In what follows, we work with the conventions in [83]. In particular, we take Q and Q̃ to be canonically
normalized, and X to be CFT-canonically normalized.
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We would like to study hidden sector renormalization at the fixed point in which Kähler

operators linear in X renormalize Kähler operators linear in O∆i , where O∆i are scaling

operators that appear in the OPE of X†X. In a perturbative SCFT, we expect the dimen-

sions of such operators O∆i to be close to two. This singlet-deformed BZ theory possesses

two such candidate operators:

L =
4π2√
2NfNc

Tr(Q†Q+ Q̃†Q̃) (3.92)

JX = X†X . (3.93)

Here these operators are CFT-canonically normalized to leading order in the undeformed

theory, i.e., using free field contractions. These operators are easiest to work with from the

point of view of computing Feynman diagrams. But due to mixing in the beta functions,

they are not scaling operators at the deformed BZ fixed point. Rather, they are related to

scaling operators O∆1 and O∆2 via a linear transformation:O∆1

O∆2

 =

S11 S12

S21 S22

 L

JX

 . (3.94)

This change of basis is related to the diagonalization of the matrix of anomalous dimensions

Γ; we refer the reader to [83] for details. Although explicit formulas for S can be derived,

we will not actually need them.

3.B.2 Beta functions

Here we will verify the renormalization of the couplings cBµ,i and cmu,d,i due to cµ, cAu,d . To

do so, we compute this result at the fixed point using superconformal perturbation theory

and compare with data computed perturbatively at the free fixed point.

Neglecting visible-sector interactions due to Hu, Hd, for the couplings cmu,d,i, cBµ,i we



99

apply the superconformal perturbation theory results of Section 4 to find

d

d log Λ

cmu,d,1
cmu,d,2

 =

∆1 0

0 ∆2

cmu,d,1
cmu,d,2

−
C∆1γ1(1 + . . . )

C∆2γ2(1 + . . . )

 (|cµ|2 + |cAu,d |2)

(3.95)

d

d log Λ

cBµ,1
cBµ,2

 =

∆1 0

0 ∆2

cBµ,1
cBµ,2

−
C∆1γ1(1 + . . . )

C∆2γ2(1 + . . . )

 (cµc
∗
Au + cµc

∗
Ad

) . (3.96)

where again γi ≡ ∆i − 2∆X . The . . . are higher order corrections in γ1,2 that are scheme-

dependent. For comparison with the direct calculation of RGEs, we need to compute the

coefficients C∆1γ1 and C∆2γ2. While we could compute the OPE coefficients and anomalous

dimensions separately, it suffices to merely extract the combinations C∆iγi from three-

point functions in the hidden sector. The form of the three-point functions is dictated by

conformal invariance up to the OPE coefficients C∆1 , C∆2 ; expanding in powers of ε and

1/Nc yields

〈X†(x1)X(x2)O1(x3)〉 =
C∆1

x2
13x

2
23

(1 + γ1 log x12 − ν1 log(x13x23)) + . . . (3.97)

〈X†(x1)X(x2)O2(x3)〉 =
C∆2

x2
13x

2
23

(1 + γ2 log x12 − ν2 log(x13x23)) + . . . (3.98)

Working around the free fixed point, we have access to the X†−X−L and the X†−X−

JX three point functions, shown diagrammatically at one loop in fig. 5. We can compute

C∆iγi by isolating the log x12 terms in the perturbative three-point functions and rotating

to the basis of scaling operators using (3.94).

X†(x1) X(x2)

L(x3)

+ + . . .

X†(x1) X(x2)

JX(x3)

Figure 3.5: The leading perturbative contributions to the X† −X − L and X† −X − JX
three point functions.
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Therefore we have at one loopC∆1γ1

C∆2γ2

 = S

 bL

bJX

 (3.99)

where bL, bJX are the coefficients of the log x12 terms appearing in the X† − X − L and

X†−X−JX three point functions, respectively. Diagrammatically, it is clear that bJX = 0

at one loop, since the loops in X† −X − JX are functions only of x13 or x23. However, the

loop in X†−X−L is sensitive to x12, and so bL should be nonzero at one loop. An explicit

calculation of the diagrams in )(3.5) yields bL = 2
√

2
3
ε
Nc

and bJX = 0.

Now we can compare the superconformal perturbation theory result with standard per-

tubation theory around the free fixed point. As before, the calculation around the free fixed

point in terms of L, JX is related to the scaling operators by the transformation (3.94).

Thus we need only verify that

d

d log Λ

 cmu,d,L

cmu,d,JX

 ⊃ −
 bL

bJX

 (|cµ|2 + |cAu,d |2) (3.100)

d

d log Λ

 cBµ,L

cBµ,JX

 ⊃ −
 bL

bJX

 (cµc
∗
Au + cµc

∗
Ad

) (3.101)

by a standard one-loop calculation of beta functions around the free fixed point.

In perturbation theory, the renormalization of cmu,d,L proportional to |cµ|2 or |cAu,d |2

arises at one loop and O(ε/Nc). We may compute these loop diagrams in components using

a suitably clever choice of external lines. Focusing on cmu,d,LQ
†QF †Hu,dFHu,d , for example,

there is one diagram proportional to |cµ|2, corresponding to the first diagram shown in

figure 3.6. Similarly, for cmu,d,LF
†
QQH

†
u,dFHu,d there is one diagram proportional to |cAu,d |2,

corresponding to the second diagram in figure 3.6 . In contrast, the renormalization of

cmu,d,JX first arises at two loops and O(ε2/N2
c ). Similarly, the renormalization of cBµ,L

proportional to cµ(c∗Au + c∗Ad) arises at one loop and O(ε/Nc). For the external components

cBµ,LF
†
QQFHuHd there is one diagram proportional to cµc

∗
Au

, corresponding to the third

diagram in figure 3.6 , while for cBµ,LF
†
QQFHdHu there is an analogous diagram proportional

to cµc
∗
Ad

. As was the case for cmu,d,JX , the renormalization of cBµ,JX first arises at two loops

and O(ε2/N2
c ), and we do not consider it here.
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FHu

F †
QQ

Hd

FHu

FX X

Q̃

QQ†

Q̃

FX FX

F †
Hu

FHu

Hd

(a)

F †
Q

FX X

Q

Q̃

H†
u FHu

FHu

(b) (c)

Figure 3.6: Component diagrams for the one-loop renormalization of (a) cmu,L proportional
to |cµ|2, (b) cmu,L proportional to |cAu |2, and (c) cBµ,L proportional to cµc

∗
Au

.

Computing these one-loop diagrams in MS, the counterterms cancelling UV divergences

associated with the one-loop diagrams renormalizing cmu,d,L and cBµ,L yield contributions

to the beta functions of the form

dcmu,d,L

d log Λ
⊃ −2

√
2

3

ε

Nc
(|cµ|2 + |cAu,d |2) + . . . (3.102)

dcBµ,L

d log Λ
⊃ −2

√
2

3

ε

Nc
(cµc

∗
Au + cµc

∗
Ad

) + . . . (3.103)

in agreement with (3.100). This directly confirms the hidden sector renormalization calcu-

lated using superconformal perturbation theory in (3.95) via standard perturbation theory

to one loop at the free fixed point.

3.B.3 Confirming the field redefinition argument

It is also straightforward to see that this toy model is also consistent with the results

expected from field redefinitions in the UV. The validity of the field redefinition argument
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requires the beta functions to take the form

d

d log Λ

 cmu,d,L

cmu,d,JX

 ≈ Γ

 cmu,d,L

cmu,d,JX

− (Γ− 2∆X × 1)

0

1
!

 (|cµ|2 + |cAu,d |2) (3.104)

d

d log Λ

 cBµ,L

cBµ,JX

 ≈ Γ

 cBµ,L

cBµ,JX

− (Γ− 2∆X × 1)

0

1

 (cµc
∗
Au + cµc

∗
Ad

) (3.105)

This field redefinition prediction agrees with the result from superconformal perturbation

theory provided

S−1

C∆1

C∆2

 =

0

1

 (3.106)

We can check this directly in our toy model since (3.106) is precisely what is computed by

the non-log-enhanced terms in the X† − X − L and X† − X − JX three point functions.

These terms are scheme-dependent starting at O(ε), so the only scheme-independent con-

tributions come from tree-level diagrams in (3.5); these yield 0 for cmu,d,L, cBµ,L and 1 for

cmu,d,JX , cBµ,JX . Thus (3.106) is trivially satisfied, rendering explicit agreement between

the expectations from superconformal perturbation theory, direct perturbative calculation,

and field redefinitions in the UV.
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Chapter 4

Higgs Mediation with Strong Hidden Sector Dynamics

With D. Shih

Submitted to JHEP, appeared on arXiv:1206.4086

General context of this chapter

In the previous chapter we developed a general formalism to study Higgs-messenger inter-

actions, and showed that strong hidden sector dynamics could provide a possible solution

to both the µ/Bµ and A/m2
H problems. Now we provide an existence proof for this idea in

the form of a fully worked out example.

Concretely, we present a simple model that achieves mh ≈ 126 GeV in the MSSM with

large A-terms and TeV-scale stops through a combination of gauge mediation and Higgs-

messenger interactions. The µ/Bµ and A/m2
H problems are both solved by a common

mechanism – partial sequestering from strong hidden sector dynamics. Using the framework

of the previous chapter, we explicitly calculate the soft masses in terms of the vacuum

expectation values, operator dimensions and OPE coefficients of the strongly-coupled hidden

sector. Along the way, we also present a general analysis of the various constraints on

sequestered Higgs mediation models. The phenomenology of such models is similar to

gaugino mediation, but with large A-terms. The next-to lightest supersymmetric particle

(NLSP) is always long-lived and is either the lightest stau or the Higgsino. The colored

states are typically out of reach of the 8 TeV LHC, but may be accessible at 14 TeV,

especially if the NLSP is the lightest stau.

4.1 Introduction

The discovery of a Higgs boson near 126 GeV [1, 2] has profound implications for super-

symmetry as a solution to the electroweak hierarchy problem. This is especially the case
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in minimal supersymmetry, where the stops must either be unnaturally heavy (& 10 TeV)

or have a large trilinear coupling to the Higgs [26–29, 16, 30–33]. The former possibility

leaves little hope for preserving naturalness or observational signals at the LHC, so we will

focus on the latter scenario. This requires a plausible mechanism for generating such large

A-terms without introducing large flavor violation or other unwanted effects.

The lack of decisive deviations in searches for flavor and CP violation has long favored

low-scale gauge mediation by virtue of its flavor universality. However, in its minimal

form, gauge mediation is challenged by the Higgs sector, since it generates neither the

µ and Bµ parameters necessary for electroweak symmetry breaking (EWSB), nor the A-

terms suggested by the Higgs mass measurement. These terms may be generated in a flavor

universal manner by adding interactions between the Higgs sector and the messenger sector,

W ⊃ λuOuHu + λdOdHd (4.1)

where Ou,d are messenger-sector operators. Although the µ and A-terms are obtained

trivially in such a setup, viable solutions must confront two thorny problems: the “µ/Bµ

problem” [22] and the “A/m2
H problem” [77]. Both problems arise because adding Higgs-

messenger interactions that generate a µ (A) term also tend to produce a Bµ (m2
H) term

that is too large for viable electroweak symmetry breaking.

The most stringent form of the A/m2
H problem may be resolved if the sole source of

messenger mass is a single SUSY-breaking spurion [47, 77], as in minimal gauge mediation

(MGM) [42–44]. But even in this case the µ/Bµ problem remains unaddressed, and requires

a further extension of the model. Moreover, there is a residual “little A/m2
H problem”, as

any weakly-coupled model that generates large A-terms through Higgs-messenger interac-

tions also generates contributions to the Higgs soft masses proportional to A2 [77]. Even

if these contributions do not prevent electroweak symmetry breaking, they significantly

increase the fine-tuning associated with the weak scale.

In this paper, we present an alternative framework which uses strong dynamics in the

hidden sector to economically solve both the µ/Bµ and A/m2
H problems. Two ingredients

are required for this: that there exists a hierarchy between the messenger scale M and the

SUSY-breaking scale
√
F ; and that the anomalous dimensions of the operators responsible
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for SUSY-breaking are large and positive. The former property is a generic prediction of

dynamical supersymmetry breaking [85], while the latter property is constrained, but still

allowed by the conformal bootstrap [81]. If both these conditions are met, strong renormal-

ization effects in the hidden sector can suppress the soft masses of the scalars (including

Bµ [69, 71, 70] and m2
H [49]), an idea more generally known as “conformal sequestering”

or “scalar sequestering” [86–88]. We will demonstrate that with such a strongly coupled

hidden sector, even the very simplest example for the messenger sector yields a large viable

parameter space. The simplicity of our model contrasts sharply with most fully weakly-

coupled solutions, which address the µ/Bµ problem by elaborately extending either the

Higgs sector or the messenger sector (or both).

In recent years, there has been tremendous progress in our understanding of 4D con-

formal field theory, starting with the work of [89]. This revival of the conformal bootstrap

program has led to strong bounds on the dimensions of operators appearing in the OPE.

Applying these bounds to the operators responsible for SUSY-breaking has in turn strongly

limited the efficacy of the conformal sequestering scenario [81]. In particular, it is now very

difficult to achieve full suppression of Bµ and m2
Hu

,

Bµ � |µ|2 and m2
Hu + |µ|2 � |Au|2. (4.2)

On the other hand, a partial suppression of the dangerous contributions such that

Bµ . |µ|2 and m2
Hu + |µ|2 . |Au|2. (4.3)

is still possible and may be sufficient to facilitate electroweak symmetry breaking. In this

case the details of the hidden sector dynamics do not fully decouple from the low energy

observables, and testing for viable electroweak symmetry breaking requires a robust frame-

work to explicitly compute the MSSM soft parameters in terms of the hidden sector data

(such as the spectrum of operators, their scaling dimensions, and their OPE coefficients).

General Messenger Higgs Mediation (GMHM), developed recently in [49], provides pre-

cisely such a framework. Following [78], the idea of GMHM is to go beyond the single-sector

frameworks of [56, 57, 23] and explicitly separate the messenger sector and SUSY-breaking

sector, so that it becomes possible to take
√
F �M . Specifically, we parametrize the cou-

pling between the messenger sector and the SUSY-breaking hidden sector via a perturbative
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Messenger

Hidden

MSSM

Oh

√
F

M

κ

Λ∆h−1
OhOm

λuOuHu + λdOdHd

Om, Ou,d

Mweak

Figure 4.1: Schematic representation of the various sectors and couplings. This paper we
take the messenger sector to be weakly coupled but allow for strong dynamics in the hidden
sector.

superpotential interaction as in [78]:

W ⊃ κ

Λ∆h−1
OhOm (4.4)

where Oh is an operator in the SUSY-breaking sector with dimension ∆h, Om is an operator

in the messenger sector, and Λ is the cut-off scale associated with the irrelevant operator

in (4.4). The complete setup of GMHM is shown in figure 4.1. By expanding in the portal

couplings κ, λu,d of (4.1) and (4.4), we can express the soft parameters in terms of products

of separate correlation functions over the messenger sector and the hidden sector. Under

the assumption that the hidden sector is near a conformal fixed point between the scales

M and
√
F , the correlators simplify dramatically. The GMHM formalism then allows, for

the first time, for a full calculation of soft masses directly in terms of hidden sector scaling

dimensions, OPE coefficients, and expectation values.

Although GMHM applies to any hidden sector and messenger sector coupled through

the portals (4.1), (4.4), in this paper we will focus on weakly-coupled messenger sectors in

order to preserve calculability and predictivity.1 We will explore the phenomenology of this

entire class of models, as well as present a very simple explicit example. Concretely, the

1For this reason we will assume for simplicity that ∆m = ∆u = ∆d = 2 (while allowing for arbitrary
∆h), which is well motivated for a weakly coupled messenger sector. This explains the powers of Λ or lack
thereof implicitly taken in (4.1) and (4.4).
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model for the messenger sector that we consider is given by

W =
( κ

Λ∆h−1
Oh +M

)(
φ̃DφD + φ̃SφS

)
+ λuφ̃DφSHu + λdφDφ̃SHd. (4.5)

where φD, φ̃D and φS , φ̃S are SU(2) doublets and gauge singlets respectively. Although

this model is the prime example of a model that does not solve the µ/Bµ problem when the

hidden sector is trivial [22], with partial hidden-sector sequestering it becomes an elegant

solution to both the µ/Bµ and A/m2
H problems. We find that electroweak symmetry break-

ing and mh = 126 GeV are easy to achieve in this model, and instead the most interesting

constraints on the parameter space originate from stau tachyons. Nevertheless there is a

large viable parameter space, which can accommodate O(1) OPE coefficients and roughly

10% suppression from conformal sequestering. The collider phenomenology is similar to

that of standard gaugino mediation [90, 91], with all the colored states above 1 TeV. The

NLSP is always long-lived, which leads to spectacular collider signatures if the NLSP is a

stau.

The paper is organized as follows. Section 2 is a brief review of the mechanism of

conformal sequestering as well as the most important features of the GMHM formalism.

In section 3 we discuss the model-independent constraints on the parameter space from

weak scale requirements such as EWSB and the Higgs mass, prior to presenting a full

analysis of our explicit example in section 4. Section 5 is a short discussion of the collider

phenomenology of this class of models. Section 6 contains our conclusions, and we reserve

various technical details for the appendices.

4.2 Review of GMHM and Conformal Sequestering

4.2.1 The GMHM formalism

In this subsection, we review the calculation of the Higgs soft parameters µ, Bµ, Au,d and

m2
Hu,d

through the GMHM formalism. For the derivation of the various results we refer to

[49]. At the scale
√
F , conformal symmetry and supersymmetry are broken by an F -term

expectation value for the hidden sector operator Oh with dimension ∆h:

〈Q2Oh〉h ≡
√
F

∆h+1
, (4.6)
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To leading order, the dimension-one soft parameters (gaugino masses, µ, and Au,d) are only

sensitive to this vacuum expectation value.

Meanwhile, the dimension-two soft parameters (sfermion mass-squareds, Bµ, and m2
Hu,d

)

are sensitive to the dynamics of the hidden sector. The leading contribution of such dy-

namics is packaged in the hidden-sector two-point function

〈Q4[O†h(x)Oh(x′)]〉h, (4.7)

In the spurion limit, this correlation function simply factorizes into |〈Q2Oh〉h|2, but in

a non-trivial hidden sector this is not necessarily a good approximation. For calculable

models of the supersymmetry breaking sector one could address this issue by explicitly

evaluating (4.7) and then studying its effects on the low energy physics. In this paper

we will take a different approach: we will remain agnostic about the precise mechanism

of supersymmetry breaking, but instead assume that the hidden sector is approximately

conformal before it breaks SUSY. In the GMHM framework, the hidden sector correlator

in (4.7) is always convolved with a short-distance messenger correlator, which then enforces

|x− x′| ∼ 1
M � 1√

F
. It is therefore justified to simplify (4.7) by making use of the operator

product expansion:

Oh(x)O†h(x′) ∼ |x− x′|−2∆h1 + C|x− x′|∆−2∆hO∆(x) + . . . (4.8)

where the ellipses denote terms with higher dimension and/or spin. The supercharges

annihilate the unit operator such that the correlation function is reduced to

〈Q4[Oh(x)O†h(x′)]〉h ≈ C|x− x′|∆−2∆h〈Q4O∆〉h (4.9)

where we only keep the leading non-vanishing term in the OPE. Dimensional analysis then

demands that the D-term expectation value of O∆ takes the form 〈Q4O∆〉 ≡ ξ∆F
(∆+2)/2,

where ∆ is the scaling dimension of O∆ and ξ∆ is a dimensionless number. The parameters

ξ∆ and C are degenerate at the level of our analysis, and to facilitate the notation we thus

introduce an ‘effective OPE coefficient’ :

Ĉ ≡ Cξ∆. (4.10)

Note that ξ∆ (and therefore Ĉ) is a real number, but can have either sign.
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To leading order in λu,d, the µ term and the A-terms are given by

µ = −λuλdκ
√
F

∆h+1

Λ∆h−1

∫
d4y d4x〈O†m(y)QαOu(x)QαOd(0)〉m (4.11)

Au,d = |λu,d|2κ
√
F

∆h+1

Λ∆h−1

∫
d4yd4x〈O†m(y)Q̄2

[
O†u,d(x)Ou,d(0)

]
〉m (4.12)

The Higgs sector soft masses are specified by the correlators

Bµ = −λuλdκ2Ĉ

√
F

∆+2

Λ2∆h−2

∫
d4y d4y′ d4x |y − y′|γ

〈
Om(y)O†m(y′)Q2Ou(x)Q2Od(0)

〉
m

(4.13)

m̂2
Hu,d

= −|λu,d|2κ2Ĉ

√
F

∆+2

Λ2∆h−2

∫
d4y d4y′ d4x |y − y′|γ

〈
Om(y)O†m(y′)Q2Ou,d(x)Q̄2O†u,d(0)

]〉
m

(4.14)

with γ ≡ ∆− 2∆h. Here we have introduced the following notational convenience:

m̂2
Hu,d
≡ m2

Hu,d
+ |µ|2 (4.15)

where the m2
Hu,d

are the usual soft masses for the Higgs fields.

Although the Higgs sector parameters are generated by the portal (4.1), for the rest

of the MSSM soft parameters we need a different source. In this paper, we assume that

these arise through standard gauge mediation, i.e. the messenger sector in figure 4.1 also

couples to the MSSM through gauge interactions. For completeness, let us exhibit the usual

gauge-mediated contributions to the soft masses. These can be assembled from the GGM

correlators [56, 57]:

Mi = g2
iBi

m2
f̃

=

3∑
i=1

g4
i c2(f, i)Ai (4.16)

where f labels the matter representations of the MSSM, and c2(f, i) is the quadratic Casimir

of f with respect to the gauge group i. In the GMGM formalism the Bi and Ai correlators

can be written as a convolution of a messenger sector correlator with a hidden sector cor-

relator [78]. Crucially, the hidden sector correlator appearing in the expression for the Ai
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is precisely (4.7). Using the OPE, the expressions for Bi and Ai then reduce to

Bi =
κ

4

√
F

∆h+1

Λ∆h−1

∫
d4y d4x〈Q2O†m(y)Ji(x)Ji(0)〉m (4.17)

Ai = − κ2

128π2
Ĉ

√
F

∆+2

Λ2∆h−2

∫
d4y d4y′ d4x |y − y′|γ

〈
Q4
[
Om(y)O†m(y′)

]
Ji(x)Ji(0)

〉
m

log[M2x2]

(4.18)

The Ji(x) are the bottom components of the current superfields through which the messen-

gers couple to gauge group i. In contrast with (4.13) and (4.14), the expression for sfermion

mass-squareds in (4.18) is suppressed by an extra loop factor, in addition to any loop factors

that may be generated by the messenger correlator itself.

4.2.2 Conformal sequestering

For a generic weakly-coupled messenger sector, all the messenger correlators in equations

(4.11)-(4.14) are non-zero at one loop, which implies that Bµ and m̂2
Hu,d

are too large to fa-

cilitate viable electroweak symmetry breaking. However just by applying naive dimensional

analysis on the correlators in the previous section, we can already identify several possible

avenues to address the problem:

Bµ
µ2
∼ 16π2

λuλd

Ĉ

N

(√
F

M

)γ
m̂2
Hu,d

|Au,d|2
∼ 16π2

|λu,d|2
Ĉ

N

(√
F

M

)γ
(4.19)

A well known method to mitigate the infamous loop factor is to increase the messenger

number, which we denote by N . However, this is limited by Landau poles in the gauge

couplings and cannot be responsible for completely suppressing the loop factor. Secondly,

if γ > 0 and
√
F � M , the last factor on each line of (4.19) can in principle suppress the

loop factor. This is the conformal sequestering mechanism. Finally, one could consider an

SCFT with Ĉ � 1, such that the effective OPE coefficient provides the desired suppression

factor, possibly in combination with some suppression from sequestering.

Meanwhile, from equations (4.16)-(4.18) we see that since the gaugino and sfermion

masses are generated through gauge mediation, they satisfy:

m2
f̃

M2
i

∼ Ĉ

N

(√
F

M

)γ
(4.20)
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In particular, the sfermion masses come with an extra loop factor with respect to Bµ and

m̂2
Hu,d

, but are subject to the same suppression from the hidden sector. This implies that

the sfermion masses are always suppressed with respect to the gaugino masses if the µ/Bµ

and A/m2
H problems are solved. The phenomenology will therefore be similar to that of

gaugino mediation [90, 91].

The idealized cases where γ � 1 or Ĉ → 0 lead to the extremely simple boundary

conditions at the scale
√
F :

Bµ ≈ m̂2
Hu,d
≈ m2

f̃
≈ 0 (4.21)

Interestingly, this part of the UV boundary conditions becomes completely model-independent.

The sensitivity of these parameters to the details of the hidden sector and messenger sector

has been completely erased.

Unfortunately this scenario is severely challenged in several ways. First, it has been

known for some time that achieving suitable EWSB is nontrivial for these boundary condi-

tions [79, 80]. Second, even if one succeeds in breaking electroweak symmetry, the amount

of sequestering through the factor
(√

F
M

)γ
is now severely limited by powerful upper bounds

on γ from the internal consistency of the hidden sector SCFT [81].

To see this, consider some reference values in table 4.1, taken from figure 7 of [81]. The

bounds are clearly very strong for low values of ∆h, but could going to larger ∆h allow

for enough sequestering? (This is indeed suggested by figure 9 of [81].) In fact, increasing

∆h runs into a competing constraint. Because the messenger sector portal (4.4) becomes a

higher-dimension operator, it becomes increasingly challenging to achieve realistic gaugino

masses.2 These are given by (4.16) and (4.17):

Mi =
g2
i

16π2
N

√
F

∆h+1

MΛ∆h−1
. (4.22)

Requiring TeV-scale gaugino masses leads to the following rough limit on the suppression

that can be achieved from conformal sequestering:(√
F

M

)γ
&

(
100 TeV

Nε∆h−1
√
F

) γ
∆h

(4.23)

2An identical argument applies to µ and Au,d, which implies that this constraint cannot be be simply
circumvented by arranging the gaugino masses to arise from a separate source of supersymmetry breaking.
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∆h (γ)max
1.20 0.1
1.45 0.4
2.00 0.7

Table 4.1: Maximum allowed value of γ for selected values of ∆h, as extracted from figure
7 of [81].

where we made the rough order of magnitude estimate 16π2

g2
i
Mi ∼ 100 TeV and defined

ε ≡ M
Λ < 1. Figure 4.2 shows this as a function of

√
F and ∆h (with γ saturating the

bootstrap bound), for two choices of ε. For larger ∆h, the hierarchy between the messenger

and hidden sector scales is greatly reduced in comparison to the hierarchy that one would

obtain in the spurion limit. In combination with the upper bound on γ from [81], this

severely limits the amount of sequestering that can be achieved. Some more comments on

this result:

• Equation (4.23) and the requirement that M >
√
F also provide a rough lower bound

on
√
F & 100 TeV

Nε∆h−1 . This is the same type of lower bound as found for any model

with weakly coupled messengers, except that in the case at hand the bound is further

strengthened for smaller values of ε and larger values of ∆h.

• For ∆h & 1.7, increasing ∆h barely improves the sequestering, because of the com-

peting effects described above.

• The estimate in (4.23) also shows that the achievable sequestering somewhat improves

for higher N , however the gain is limited due to the
√
F -dependent upper bound on

N from Landau poles in the gauge couplings.

By comparing figure 4.2 with figure 9 of [81], we see that the bound on the sequestering

has been strengthened considerably by accounting for TeV scale gaugino masses and by

factoring in the UV scale Λ, here parametrized by the variable ε. In particular, a full loop

factor suppression is only feasible for
√
F & 1011 GeV. In this case the separation with the

weak scale may be sufficiently high such that MSSM RG-running could suffice to generate

a large A-term, without the need for Higgs mediation [16]. Moreover, such a high scale of

supersymmetry breaking introduces various subtleties in the model: firstly, the gravitino is

no longer the LSP. While this is interesting if the new LSP is a neutralino [70, 92, 93], it is a
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Figure 4.2: Contours of the maximal suppression factor that can be achieved from confor-
mal sequestering as a function of ∆h and

√
F for various values of ε with N = 5. The

dashed contour indicates the suppression needed to precisely overcome the factor 16π2 that
constitutes the µ/Bµ and A/m2

H problems. The gray region corresponds to the unphysical
case

√
F > M . The contours should be taken as a rough estimate using (4.23). The precise

value of the sequestering is model-dependent.

disaster if the new LSP is a stau. Secondly, for
√
F & 1011 GeV, contributions from anomaly

and/or gravity mediation may not be negligible. Especially the latter could be problematic,

as they generically induce large flavor violation in the A-terms and the sfermion masses. (On

the other hand, it is possible that the very same mechanism of conformal sequestering may

help to suppress dangerous flavor violation [86–88].) While these are certainly interesting

issues, we do not wish to confront them in this paper. For simplicity we therefore restrict

our discussion to
√
F < 1010 GeV, to ensure that the gravitino is always the NLSP and

that gravity-induced flavor violation is always automatically small.

From figure 4.2 we then conclude that for
√
F < 1010 GeV conformal sequestering is

not sufficiently powerful to achieve the fully suppressed boundary conditions in (4.21). The

best we can hope for is to achieve a partial suppression from sequestering given by(√
F

M

)γ
∼ 0.01− 0.1. (4.24)

This may be sufficient – especially in combination with some additional suppression from

Ĉ < 1 and/or N > 1 – to achieve viable EWSB, provided that the boundary conditions at
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the scale
√
F still satisfy

Bµ . |µ|2 and m̂2
Hu . |Au|2, (4.25)

rather than the overly stringent requirement in (4.21). Such partially suppressed boundary

conditions imply that the details of the dynamics in the hidden and messenger sectors are

not erased at the scale
√
F . Instead, both sectors should leave an observable imprint on

the low energy spectrum. Using the GMHM formalism developed in [49], we are able for

the first time to explicitly evaluate this imprint for a weakly messenger sector of our choice.

We will present an explicit example in section 4.4, but before doing so, it is useful to study

the available parameter space in a (semi) model-independent way. This will be the subject

of the next section.

4.3 Exploring the Parameter Space

The correlator formalism described in the previous section a priori involves a very large

parameter space; in the most general case the boundary conditions are described by no less

than 10 free parameters:

M1, M2, M3, Au, Ad, µ, Bµ, m̂
2
Hu , m̂

2
Hd
,
√
F . (4.26)

with m2
f̃
≈ 0. (Recall from the discussion around equation (4.20) that the sfermion masses

are suppressed at the scale
√
F .) Here and onwards, the parameters in (4.26) are always

to be thought of as evaluated at the scale
√
F , unless indicated otherwise. Following the

discussion of the previous section, to maximize the impact of the conformal sequestering we

choose
√
F = 109 GeV. At the end of section 4.4 we briefly comment on lower values for

√
F .

Before even writing down a specific UV model, we can restrict this parameter space

through phenomenological considerations in the IR such as EWSB and the Higgs mass.

This approach has a double advantage: it serves as a valuable intermediate step in the full

analysis and provides some model independent information about the UV soft parameters.

Despite the restrictions from the IR boundary conditions, the remaining parameter space

in (4.26) is still rather daunting to analyze in full generality. In this paper, we instead
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Parameters: M1 M2 m̂
2
Hd

Ad m̂2
Hu

Bµ M3 Au

Constraints: Stau tachyons Messenger parity EWSB
mh ∼ 125 GeV
mt̃ ∼ 1 TeV

Figure 4.3: Schematic representation of the various constraints and how they impact the
parameter space. We use the electroweak symmetry breaking conditions to eliminate Bµ
in favor of tanβ. Our assumption regarding the action of the messenger parity on the
operators Ou and Od allows us to eliminate Ad as an independent variable and to constrain
m̂Hd to be positive.

choose to impose one more condition on the UV soft parameters purely for simplicity. This

condition – an extension of messenger parity to the Higgs-messenger portal – renders the

parameter space in (4.26) manageable. Moreover it is a property of a broad class of models,

and it is motivated in particular by the model we will study in section 4.4. The impact

of each of the constraints on the soft parameters is summarized in figure 4.3, and in this

section we will describe each one in turn.

4.3.1 Simplifying assumptions for the UV soft parameters

In GGM, a standard ingredient is that the hidden sector possesses a “messenger parity”

symmetry that forbids dangerous hypercharge tadpoles [94, 56]. To reduce the size of the

parameter space here, we choose to extend this symmetry to the Higgs-messenger interac-

tions. Specifically, we assume that messenger parity exchanges Ou and Od. This greatly

simplifies our analysis, since it implies that the correlators for Au and Ad in (4.12) must

be identical. The same is true for the correlators for m̂2
Hu

and m̂2
Hd

in (4.14). The soft

parameters must therefore obey the following relation at the scale
√
F :

Ad
Au

=
m̂2
Hd

m̂2
Hu

=
|λd|2
|λu|2

> 0. (4.27)

We can conveniently use this constraint to eliminate Ad as a free parameter, and thus reduce

size of the parameter space. In addition, (4.27) determines the relative sign of Au and Ad,

as well as the relative sign of m̂2
Hu

and m̂2
Hd

. We emphasize that this extension of messenger
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parity to Ou and Od is motivated purely on the grounds of convenience; although messenger

parity is usually included in the definition of gauge mediation, in general it does not need

to act on Ou and Od in this specific way.

For any concrete model, the UV soft parameters must be realized in terms of the un-

derlying parameters of the model, which generally leads to additional restrictions on top of

(4.27). For example, a minimal messenger sector with only messengers in a 5-5̄ representa-

tion of an SU(5) GUT yields the following relation between the gaugino masses:

M1 =
3

5

g2
1

g2
2

M2 +
2

5

g2
1

g2
3

M3. (4.28)

In this section we discuss this special case as well as the more general case where all three

gaugino masses are independent. Any further restrictions on the UV boundary conditions

are typically highly model-dependent, and we deal with them only when we commit to a

specific example in section 4.4.

4.3.2 IR boundary conditions

The restrictions on the IR soft masses are purely given by phenomenological considerations,

and as such they are independent of the precise composition of the messenger sector. In

particular, we demand that a realistic spectrum at the weak scale satisfies the following

requirements:

1. Viable electroweak symmetry breaking.

2. mh ≈ 126 GeV and TeV-scale stops.

3. Charge, color and CP must be unbroken in the vacuum on cosmological time scales.

In what follows, we will go step by step through the IR constraints mentioned above, and

use them to reduce the size of the parameter space until it becomes tractable. More details

on our numerical procedure are given in appendix 4.B.

Constraints from EWSB

As usual, the tadpole equations in the Higgs sector allow us to eliminate m̂2
Hu

and Bµ at

the weak scale in favor of mZ and tanβ. In order not to exacerbate the fine-tuning, we
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only consider |µ| ≤ 500 GeV, but this is by no means essential. This assumption has the

additional benefit that the parameter µ now has little impact on the IR spectrum, with the

exception of course of the mass of the Higgsino, which may be the NLSP. A small number

of discrete choices therefore suffices to obtain a good qualitative picture of the parameter

space. In addition, we fix tanβ = 10.

Constraints from the Higgs mass

The parameters Au and M3 are the most important parameters as far as the mass of the

lightest CP even Higgs is concerned, as they set the stop A-term as well as the stop masses.

To appreciate the latter, consider the system of RG equations

16π2 d

dt
m2
Q3

= 2y2
t (m̂

2
Hu +m2

Q3
+m2

u3
+ |Au|2)− 32

3
g2

3|M3|2 − 6g2
2|M2|2

16π2 d

dt
m2
u3

= 4y2
t (m̂

2
Hu +m2

Q3
+m2

u3
+ |Au|2)− 32

3
g2

3|M3|2 (4.29)

16π2 d

dt
m̂2
Hu = 6y2

t (m̂
2
Hu +m2

Q3
+m2

u3
+ |Au|2)− 6g2

2|M2|2

where we neglected contributions proportional to yb and g1. We also dropped the depen-

dence on the µ parameter, since we assumed it to be smaller than the other soft masses.

The key fact is that the stop masses and m̂2
Hu

are essentially zero at the scale
√
F (due to

sequestering) and at the weak scale (due to EWSB), respectively. Therefore, the running

of the stops and m̂2
Hu

must be determined primarily by the sources M3, M2 and Au. Of

these parameters, the effect of M2 is typically subleading compared to the other two. It is

therefore justified to fix the parameters Au and M3 by insisting on mh ≈ 126 GeV with

TeV-scale stop masses.3 This is illustrated in figure 4.4 for some representative values of

M2. Given both the theory and the experimental errors on the Higgs mass, this is neces-

sarily a somewhat loose constraint, and for the purpose of our analysis, we simply choose a

representative point in the allowed region, indicated with a star in figure 4.4. Other choices

are certainly possible, but the qualitative features of what will follow are preserved.

3A priori, a large Au may cause our vacuum to decay to a lower, color-breaking vacuum on a time scale
shorter than the age of the universe. The recently improved empirical constraint on this process [95] does
not impact the parameter space plotted in figure 4.4. (See also [96] for a similar recent result.)
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Figure 4.4: Contours of the pole masses (in GeV) of the lightest stop (red) and the gluino
(black), as a function of M3 and |Au|/M3, for different choices of M2. The other parameters
are fixed to tanβ = 10, µ = 200 GeV,

√
F = 109 GeV, M1 = 1.2 TeV and mA0 = 1.5 TeV.

The pseudoscalar pole mass mA0 was used instead of m̂2
Hd

for purely technical reasons; all

other parameters are defined at the scale
√
F . The blue region represents 123 GeV < mh <

129 GeV; the green region is ruled out by stau tachyons. The star indicates the benchmark
point plotted in figure 4.5.



119

Constraints from tachyons and (meta)stability

Having fixed Au and M3 from requiring TeV-scale stops and mh ≈ 126 GeV, we are left

with just the independent parameters M1, M2 and m̂2
Hd

(see figure 4.3). All of these will

be constrained by requiring the absence of slepton tachyons. Since the Yukawa interaction

pushes the sleptons down in the RG running, the third generation is always the most

constraining. The relevant RG equations are4

16π2 d

dt
m2
L3

= 2y2
τ |Ad|2 − 6g2

2|M2|2 −
6

5
g2

1|M1|2 −
3

5
g2

1S (4.30)

16π2 d

dt
m2
e3 = 4y2

τ |Ad|2 −
24

5
g2

1|M1|2 +
6

5
g2

1S (4.31)

with

S = Tr[Yim
2
φi

]. (4.32)

At the scale
√
F , S ≈ m̂2

Hu
− m̂2

Hd
, since all sfermion masses are small. Given that y2

τ � g2
1,

we neglect all the terms proportional to y2
τ , except for |Ad|2, which may be very large. The

right-handed stau is the more fragile of the two staus, since its mass is not sensitive to the

upwards pull of M2. Moreover recall that m̂2
Hu

and Ad have already been fixed by EWSB

plus the Higgs mass constraint and the extension of messenger parity, respectively. The

most interesting slicing of the parameter space is therefore in terms of M1 and m̂2
Hd

. This is

shown in the plots in figure 4.5, and we now proceed to discuss these plots in more detail.5

Let us first consider the case where M2 is held fixed, as shown in figure 4.5(a) and figure

4.5(b) for two representative values of M2.

• Since m̂2
Hd

pushes down m2
L3

in the RGE, as m̂2
Hd

is increased, it eventually results

in a snutau tachyon. This is indicated by the red shaded region in figure 4.5(a). This

is less of an issue for larger M2, which is why there is no analogous constraint from

snutau tachyons in figure 4.5(b).

4Keep in mind that m̂2
Hd

does not exhibit strong RG running and can usually be approximated fairly
well by its UV value. The story is very different for the stau masses: although in absolute terms their RG
running is small as well, their UV threshold value is highly suppressed and the running therefore provides
the dominant contribution to the IR stau masses.

5Note that in these plots we have considered only positive m̂2
Hd

. This is because m̂2
Hu

(at the scale
√
F )

is positive for our choices of M3, M2 and Au, and our simplifying assumption about messenger parity relates
the sign of m̂2

Hd
to that of m̂2

Hu
through equation (4.27).
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(c) 5-5̄ messengers

Figure 4.5: The pole mass of the lightest stau in GeV (black) and Ad in TeV (gray) as a
function of M1 and m̂Hd . M3 = 2.0 TeV and Au = −3.2 TeV and were chosen such that a
mh ≈ 126 GeV is achieved with TeV-scale stop masses (see the red star on figure 4.4). The
other parameters were fixed to |µ| = 400 GeV,

√
F = 109 GeV and tanβ = 10. All soft

parameters are defined at the scale
√
F . The green (red) shaded region indicates a stau

(snutau) tachyon. If the µ < 0, the purple region is ruled out by an A0 tachyon. The blue
dashed line in 4.5(c) indicates the slice of parameter space where the gaugino masses unify
at the GUT scale.
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• For smaller M1, either the S-term or the |Ad|2 term drives the right-handed stau

tachyonic. This is indicated by the green shaded regions in figure 4.5.

• Another interesting feature in figure 4.5(a) and figure 4.5(b) is that Ad is fairly in-

dependent of M1 and monotonically increases as a function of m̂2
Hd

. This is a direct

consequence of (4.27) and the fact that (as we just discussed) m̂2
Hu

is basically constant

in these plots.

• A final noteworthy special case occurs if M2 �M1, as the lightest stau mass eigenstate

may be predominantly composed out of the left-handed stau, due to the smaller

coefficient for the |M1| term in (4.30) compared to its analogue in (4.31).

In models with only 5-5̄ messengers, M2 is a function of M1 and M3 rather than an

independent variable. The constraints on this case are shown in figure 4.5(c).

• We see from figure 4.5(c) that M2 is always larger than M1, so snutau tachyons no

longer constrain the parameter space, as a stau tachyon is always generated first.

• The relation between the gaugino masses has some interesting implications on Ad

and the lightest stau as shown in figure 4.5(c). In particular, the Ad contours bend

downwards for large values of M2. This is again easily understood from (4.27) and

(4.29): for large values of M2, m̂Hu is smaller at the scale
√
F , which in turn leads to

a large and negative Ad. Since Ad pulls the staus down, the stau contours eventually

start tracking the Ad contours for sufficiently large Ad, and ultimately a stau tachyon

is induced. Interestingly, this leads to an upper bound on M1 from stau tachyons, a

priori a somewhat counterintuitive notion.

• Also note that the special scenario where all the gaugino masses unify at the GUT

scale (dashed blue line in figure 4.5(c)) is only viable in a small sliver of the parameter

space for m̂Hd ∼ 2 TeV.

Finally, we verified using Vevacious-1.0.11 [97] that there are no further significant

constraints from metastable vacuum decay to a charge breaking minimum (even with such
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large Ad). However, the parameter space is constrained by demanding the absence of CP-

breaking vacua. If µ < 0 and |Au| �M2, the pseudoscalar may end up tachyonic by virtue

of a large radiative correction. This constraint is indicated by the purple region in figure

4.5.

4.3.3 Summary of the constraints

This concludes the discussion of the (semi) model-independent constraints on the parameter

space. Since the discussion was rather lengthy and involved, a brief summary is appropriate:

• Our assumptions on the extension of messenger parity let us eliminate Ad as a free

parameter through (4.27) and restrict m̂2
Hd

to be positive at the scale
√
F .

• Through the EWSB conditions we eliminate m̂2
Hu

and trade Bµ for tanβ. Except for

the Higgsino mass, the IR physics has little sensitivity to the µ parameter.

• Requiring mh ≈ 126 GeV for a minimal SUSY scale roughly fixes M3 and Au. As

an extra consequence, this requirement also more or less determines m̂2
Hu

at the scale
√
F .

• The absence of a charge and CP breaking vacuum imposes restrictions on the param-

eters M1, M2 and m̂2
Hd

. Roughly speaking, this leads to a lower bound on M1 and an

upper bound on m̂2
Hd

.

Now that we have exhausted all (semi) model-independent constraints, we will write

down an explicit example and compute the associated UV boundary conditions using

GMHM. These boundary conditions then yield a prediction for the conformal sequester-

ing and the effective OPE coefficient Ĉ.

4.4 A Minimal Example

Perhaps the simplest example of a messenger sector which generates both µ and Au at one

loop is

W =
( κ

Λ∆h−1
Oh +M

)(
φ̃DφD + φ̃SφS

)
+ λuφ̃DφSHu + λdφDφ̃SHd. (4.33)



123

where the φD and φS are a SU(2) doublet and a gauge singlet respectively. In the spurion

limit this model notoriously yields the disastrous relation Bµ ∼ 16π2µ2 [22]. However, as

we will show, when hidden sector effects are accounted for this is not necessarily the case.

To obtain a complete model we embed the doublet messengers in 5-5̄ representations

of SU(5) and exploit the full parametric freedom of the model. The full superpotential is

then

W =
Oh

Λ∆h−1

(
κT φ̃TφT + κDφ̃DφD + κSφ̃SφS

)
+MT φ̃TφT +MDφ̃DφD +MSφ̃SφS

+ λuφ̃DφSHu + λdφDφ̃SHd (4.34)

where the φT , φ̃T are SU(3) triplets. Note that they do not participate in the Higgs

mediation; their sole purpose is to complete the SU(5) multiplet and to give a mass to

the gluino through standard gauge mediation. MT , MD and MS can all be chosen positive

without loss of generality. As is conventional, we allow for N identical copies of these

messengers, as long as no Landau poles are introduced below the GUT scale.

4.4.1 UV boundary conditions

The threshold contributions to the gaugino masses are the usual ones in gauge mediation,

and may be obtained from (4.16) and (4.17):

M3 =
g2

3

16π2
ΛT

M2 =
g2

2

16π2
ΛD (4.35)

M1 =
3

5

g2
1

16π2
ΛD +

2

5

g2
1

16π2
ΛT

with

ΛD,T = NκD,T

√
F

∆h+1

MD,TΛ∆h−1
. (4.36)

Since the messenger sector consists out of 5-5̄ messengers, the only two out of the three

gaugino masses are independent and the relation in (4.28) is satisfied.

At one loop, the threshold corrections to the Higgs sector obtained from integrating out

(4.34) are symmetric under interchange of (κS , MS)↔ (κD, MD). This symmetry is made
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manifest if we introduce the notation:

κ =
√
κDκS , M =

√
MDMS , a =

√
MD

MS
, b =

√
κD
κS

(4.37)

and

ΛH ≡ Nκ
√
F

∆h+1

MΛ∆h−1
(4.38)

Then the symmetry becomes a → 1/a, b → 1/b with κ, M and ΛH unchanged. The soft

parameters can be written as:

µ =
λuλd
16π2

fµ(a, b)ΛH (4.39)

Au,d =
|λu,d|2
16π2

fA(a, b)ΛH (4.40)

The dimensionless functions fµ and fA can be obtained from explicit computation of the

appropriate correlation functions in section 4.2:

fµ(a, b) =
ab

(a4 − 1)2

(
1− a4 + 4 log a

)
+ (a↔ 1

a
, b↔ 1

b
) (4.41)

fA(a, b) =
a3b

(a4 − 1)2

(
1− a4 + 4 log a

)
+ (a↔ 1

a
, b↔ 1

b
) (4.42)

Similarly, the dimension two soft parameters are given by

Bµ =
λuλd
16π2

fB(a, b, γ)
Ĉ

N

(√
F

M

)γ
Λ2
H (4.43)

m̂2
Hu,d

=
|λu,d|2
16π2

fmH (a, b, γ)
Ĉ

N

(√
F

M

)γ
Λ2
H (4.44)

where Ĉ is the effective OPE coefficient as defined in section 4.2, the suppression factor
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(√
F
M

)γ
is the result of the conformal sequestering, and

fB(a, b, γ) =
π3/2 csc

(πγ
2

)
Γ
(γ

2 + 2
)

Γ
(γ

2

)
4 (a4 − 1)2 Γ

(
−γ

2

)
Γ
(
γ+3

2

) (b2a−γ (γ − a4(γ + 4)
)

+ 2
(
a4 + 1

)
aγ+2

− 2
(
a4 − 2a2b2 + 1

)
aγ+2

2F1

(
γ

2
,
γ + 2

2
; γ + 2; 1− a4

))
+ (a↔ 1

a
, b↔ 1

b
)

(4.45)

fmH (a, b, γ) =
π3/2 csc

(πγ
2

)
Γ
(γ

2 + 1
)

Γ
(γ

2 + 2
)

2 (a4 − 1)2 γΓ
(
−γ

2

)
Γ
(
γ+3

2

) (
4aγ+4 − a6−γb2(γ + 2) + a2−γb2(γ − 2)

+ 2
(
a4b2 − 2a2 + b2

)
aγ+2

2F1

(
γ

2
,
γ + 2

2
; γ + 2; 1− a4

))
+ (a↔ 1

a
, b↔ 1

b
)

(4.46)

In the limit γ → 0 the hidden sector reduces to the spurion limit and the formulas simplify

drastically. In this limit the model was first discussed in [22], and was later leveraged as a

weakly coupled solution to the A/m2
H problem in the special case where a = b = 1 [48, 77].

Another interesting special case occurs if a = 1 and b = i (corresponding to MD = MS and

κD = −κS), in which case a symmetry argument forbids both Au,d and µ at one loop. Both

of these special limits serve as important consistency checks of our formulas. We elaborate

on them further in Appendix 4.A.

4.4.2 Solutions to the UV boundary conditions

As is usual in models with factorizable messenger and hidden sectors, there are some degen-

eracies in the parametrization of the soft masses in terms of the fundamental parameters of

the model. Concretely, all soft masses are left invariant by three different reparametrizations

of the fundamental parameters

κT → xκT , MT → xMT

κD → yκD, MD → yMD, κS → yκS , MS → yMS , Ĉ → yγĈ

MD,T → zMD,T , Λ→ z
1

1−∆h Λ (4.47)

where the x, y and z are arbitrary real constants. As we will see in a moment, these

degeneracies are relevant when we attempt to map soft parameters onto the various model-

specific couplings and mass scales.
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One important subtlety is that the conformal sequestering and the effective OPE coef-

ficient would seem to be degenerate, as can be seen from (4.43), (4.44), and the second line

of (4.47). It would seem to imply that a small effective OPE coefficient with little or no se-

questering can be traded for a larger OPE coefficient with more sequestering and vice versa,

without affecting the soft parameters. However in practice, the effect of this rescaling is lim-

ited by the requirement that the κD,S are perturbative and that
√
F < Min[MT ,MD,MS ].

The two other degeneracies in (4.47) are restricted by similar consistency conditions.

In general, the model-independent restrictions discussed in section 4.3 are supplemented

by the additional requirement that the soft parameters can all be realized in terms of the

fundamental parameters of the model. In other words, one must establish that there exists

a solution to the set of 10 boundary conditions for the soft parameters

M1,M2,M3, Au, Ad, µ,Bµ, m̂
2
Hu , m̂

2
Hd

and
√
F (4.48)

in terms of a realistic choice for the 13 continuous ‘fundamental’ parameters

λu, λd, κT , κD, κS ,MT ,MD,MS , Ĉ,∆h, γ,
√
F and Λ (4.49)

plus the discrete messenger number N . Of the 10 soft parameters, only 9 are really in-

dependent since we imposed a messenger parity that related Ad to Au, m̂Hu and m̂Hd .

Naively this system of equations appears to be underconstrained, and one would expect

that generically a solution should exist. However the situation is bit more subtle.

First, we have used the results of the conformal bootstrap program (summarized in table

4.1) to choose the maximum γ allowed for a given ∆h, so they are no longer independent.

Secondly, 3 out of the 12 remaining continuous fundamental parameters are degenerate as

in (4.47). For definiteness, we break the degeneracies6 in (4.47) by fixing κT = κD = 2 and

Λ = 2 max[MT ,MD,MS ]. This choice attempts to maximize the impact of the conformal

sequestering, while preserving perturbativity in κD,T . (Even more sequestering, and thus

larger Ĉ, can be obtained from (4.47) if one is willing to tolerate a larger value for κD.)

After fixing the degeneracies, we are left with only with 9 independent fundamental

parameters to determine 9 independent soft parameters. Since the boundary conditions are

6Our choice for Λ corresponds to the most optimistic case as far as the impact of the sequestering is
concerned. For a different choice of Λ the messenger scale and the sequestering can be obtained by the
rescaling in (4.47).
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soft parameters fundamental parameters√
F 109 GeV γ 0.1 0.4 0.7

M1 1.75 TeV ∆h 1.20 1.45 2.00
M2 3.53 TeV N 6 6 6
M3 2.0 TeV λu 0.66 0.68 0.70
Au -3.2 TeV λd 0.60 0.62 0.63
Ad -2.6 TeV κS -0.19 -0.25 -0.30
µ 400 GeV MT 4.3× 1012 GeV 9.0× 1011 GeV 1.6× 1011 GeV

m̂Hu 1.66 TeV MD 1.5× 1012 GeV 3.2× 1011 GeV 4.0× 1010 GeV
m̂Hd 1.50 TeV MS 2.4× 1011 GeV 6.4× 1010 GeV 9.7× 109 GeV

Bµ 0.35 TeV2
(√

F
M

)γ
0.53 0.14 0.12

Ĉ 0.071 0.30 0.30

Table 4.2: An example of a point with its interpretation in terms of the fundamental
parameters, for various values of γ. For this point tanβ = 10.

highly non-linear in some of the fundamental parameters, a solution is not guaranteed, and

requiring its existence can further constrain the acceptable range of the soft parameters in

(4.48). Such solutions must be obtained numerically; details on our algorithm are provided

in appendix 4.B. We do not attempt to find all possible solutions for a given set of soft

parameters, but are content with a single viable solution per set of soft parameters. A

‘viable’ solution in this context means that all masses, couplings and the effective OPE

coefficient are real, that the couplings λu, λd and κS are perturbative and that
√
F <

Min[MT ,MD,MS ]. The latter will turn out to be a stringent condition if
√
F ≤ 107 GeV.

Table 4.2 contains an example of a point and its solution in terms of the fundamental

parameters for various choices of γ. Unsurprisingly, conformal sequestering is not efficient

for γ = 0.1 and the effective OPE coefficient must be very small to accommodate a solution.

For γ = 0.4 and γ = 0.7 on the other hand, conformal sequestering provides roughly an order

of magnitude suppression for the one-loop contributions to Bµ and m̂2
Hu,d

.7 Moreover, if we

choose N = 6 the 1
N factor in (4.43) and (4.44) in combination with conformal sequestering

provides a sufficient amount of suppression to facilitate an O(1) effective OPE coefficient.

More generally, the solutions for the effective OPE coefficient as a function of M1 and

m̂Hd are shown in figure 4.6 for various values of γ. Almost all of the viable parameter space

7Notice that the sequestering for γ = 0.7 is essentially the same as the sequestering for γ = 0.4, despite
the higher anomalous dimension of the former. We have encountered this already in figure 4.2. It is due to
the competing effects of increased sequestering from larger γ, but decreased sequestering from larger ∆h.
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in figure 4.5(c) of the previous section can be covered by our example, except for a small

region for low m̂2
Hd

where our numerical method fails to converge on a suitable solution.

It is conceivable that these points may be recovered with a more sophisticated numerical

procedure. This result suggests that it should be possible to cover the full parameter space

with weakly coupled models for the messenger sector; however this is beyond the scope of

this work.

It is interesting to compare the precise effectiveness of the conformal sequestering in

our model as a function of
√
F with our rough estimates in figure 4.2. The sequestering

as computed in our example is shown in figure 4.7, as well as the effective OPE coefficient

needed to obtain viable EWSB. In fairly good agreement with our rough estimate in figure

4.2, conformal sequestering becomes less efficient for lower
√
F , and its effect completely

disappears for
√
F ∼ 106 GeV. As we have seen, the reason is that for a fixed gaugino mass

and lower
√
F , the separation between M and

√
F must decrease, limiting the capabilities

of the sequestering.

From the left-hand panel of figure 4.7 one also learns that increasing the messenger

number has a double advantage: on the one hand it provides an extra 1
N suppression in (4.43)

and (4.44). In addition, a larger N in (4.35) allows for a slightly larger splitting between

MD and
√
F and thus slightly more efficient suppression from conformal sequestering. For

low N and low
√
F , a smaller Ĉ is needed to compensate for the loss in sequestering and

messenger number suppression. This is illustrated in the right-hand panel figure 4.7, where

for completeness we added the extreme limit of γ = 0, which corresponds to no contribution

from sequestering.
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Figure 4.6: Ĉ as a function of M1 and m̂Hd for N = 6. The light gray area indicates the
region where our algorithm does not converge on a suitable solution for the UV boundary
conditions. All other parameters and colors are as in figure 4.5(c).
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Figure 4.7: Plots of
(√

F
M

)γ
and Ĉ as a function of log10

√
F for mA0 = 1.5 TeV, M1 = 1.2

TeV, µ = 400 GeV and tanβ = 10. For each value of
√
F , M3 and Au are fixed such that√

mt̃1
mt̃2

is minimized under the constraint mh > 125 GeV. Dashed lines represent N = 1,
full lines represent N = 6. The various curves are cut off at the point where the consistency
condition

√
F < Min[MT ,MD,MS ] is no longer satisfied.

4.5 Collider Phenomenology

In this section we briefly discuss the collider phenomenology and the current constraints

on the model. Since all the sfermion masses are suppressed at the scale
√
F , their IR

values are primarily set through gaugino mediation. We emphasize once more that this is

a general property of models that attempt to address the µ/Bµ and the A/m2
H problems

with strong hidden sector dynamics. This implies a number of generic features of the low

energy spectrum which are independent of the precise content of the hidden and messenger

sectors:

• The gluino tends to be heavier than the squarks, the wino tends to be heavier than the

left-handed sleptons, and the bino tends to be heavier than the right-handed sleptons.

• The colored sfermions are typically heavier than the electroweak sfermions, because

only the former are pulled up by M3. One exception is the lightest stop, which may

be pushed down due to mixing effects.

• The NLSP is a stau or a Higgsino and is sufficiently long-lived8 to escape the detector,

except if
√
F ∼ 106 GeV, in which case it decays through a displaced vertex.

8This is assuming R-parity conservation. If R-parity is violated, the NLSP could still decay promptly
despite a high supersymmetry breaking scale.
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• The LSP is the gravitino if
√
F . 1010 GeV as we have assumed in this paper. (If

√
F > 1010 GeV, the gravitino mass may be lifted to the extent that it is no longer

the LSP [70, 92, 93].)

Unsurprisingly, this class of models is subject to a variety of collider constraints. Con-

ceptually, it is important to distinguish constraints on the colored part of the spectrum

from constraints on the electroweak part. Regarding the former, the masses of the colored

sparticles are almost exclusively controlled by M3 and Au. As we saw in section 4.3.2, these

two parameters are determined by the requirement of a 126 GeV Higgs with TeV-scale

stops. Therefore, we expect robust predictions on the typical masses of the colored sparti-

cles. As shown in figure 4.4, the lightest stop is always the lightest colored state and must

be heavier than 750 GeV, while the minimum gluino mass is roughly 2 TeV. The masses of

the electroweak states on the other hand are controlled by the bino and wino masses, and

may be as light as several hundreds of GeV. The phenomenology of these electroweak states

is very rich and radically different depending on the nature of the NLSP. In what follows

we discuss stau and Higgsino NLSP separately.9 A typical spectrum is shown in figure 4.8.

Since the NLSP is nearly always detector-stable in these models, there are already very

powerful collider constraints if the stau is the NLSP. In particular, CMS has excluded

such long-lived staus with a cross section above 0.3 fb [99]. (A slightly weaker limit from

ATLAS is also available [100].) This translates to a lower limit on the mass of 339 GeV.

As can be seen from figure 4.5, this constraint implies that the stau NLSP scenario is now

experimentally disfavored.

Since these searches are inclusive, they are also likely to be sensitive to the production

of the entire superpartner spectrum, and not just to the staus themselves (see e.g. the

discussion in [101, 102]). By comparing their production cross sections [103] with the CMS

limit, one can estimate the bounds on the masses of other sparticles. For instance, we

find that the gluino and the stops should be heavier than ∼ 1400 GeV and ∼ 1000 GeV

respectively. According to the preceding discussion of the colored spectrum (see again figure

4.4), this is not a very stringent constraint on these models, where the gluinos and stops

9In a narrow corner of the parameter space the sneutrino can be the NLSP. For a discussion on the
phenomenology of this scenario we refer to [98].
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Figure 4.8: The spectrum for the point in table 4.2, with Higgsino NLSP. The spectrum
with stau NLSP is nearly identical, since the µ parameter has only a small effect on the
other masses.

are already heavy to begin with. Meanwhile, the Higgsino is excluded below ∼ 600 GeV,

where we estimated the production cross section with Prospino 2.1 [104]. In the discussion

in section 4.3 we restricted ourselves to |µ| < 500 GeV for simplicity, however we verified

that Higgsino masses which evade the constraint can easily be obtained.

The collider phenomenology of a detector stable Higgsino NLSP is essentially identical to

that of a Higgsino LSP in gravity mediation models. Unsurprisingly, from an experimental

point of view a long-lived Higgsino NLSP is much more challenging than a long-lived stau

NLSP. If the other states decouple, the only robust bound comes from LEP, and requires the

charged Higgsino component to be heavier than 92.4 GeV [105]. Since the sfermion masses

are generated through gaugino mediation, the next state in the spectrum is typically the

lightest stau mass eigenstate, possibly degenerate with the right-handed light flavor sleptons.

With a Higgsino heavier than the LEP bound, there is currently no bound on these right-

handed sleptons if they are Drell-Yan produced [106, 107]. The left-handed sleptons on the

other hand have a higher production cross section and are constrained to be heavier than

300 GeV if the Higgsino is lighter than 160 GeV [106, 107], however this bound does not yet
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significantly constrain our minimal model with 5-5̄ messengers. The lightest colored state

is always the lightest stop and is always outside the reach of the 8 TeV LHC, but its direct

production could be a promising channel at the 14 TeV run. Although the spectrum is

not natural in the strict sense, this signature is covered by existing “Natural SUSY” search

strategies.

4.6 Discussion and Outlook

Strong hidden sector dynamics may provide an elegant framework in which both the µ/Bµ

and the A/m2
H problems can be addressed through a single mechanism. Rather than relying

on a cleverly designed messenger sector, this class of models counters the disastrous 16π2

enhancement of Bµ and m2
H by a suppression from strong dynamics in the hidden sector.

This suppression can arise from conformal sequestering, a small effective OPE coefficient,

large messenger number, or a combination of all three. We provide a simple example of

a complete model, as well as the first explicit calculation of the low energy observables in

terms of scaling dimensions, vacuum expectation values and OPE coefficients of the leading

operators in the hidden sector. The essential tool enabling this calculation is the GMHM

framework [49].

Accounting for the bounds on the anomalous dimension from the conformal bootstrap

program [81], we make a general estimate of the impact of conformal sequestering for this

class of models and validate our estimate in an explicit example. In either case, conformal

sequestering is insufficient to produce a full loop factor suppression, but a suppression of

roughly one order of magnitude is possible if
√
F ∼ 109 GeV. In this case viable electroweak

symmetry breaking can be achieved for effective OPE coefficients roughly between 1 and

0.1, depending on the details of the messenger sector. It is still an open question whether

the upper bound on γ from the bootstrap program can be saturated, as currently no ex-

amples are known. Such an example would necessarily need to be strongly coupled, as

weakly coupled SCFT’s were shown not to produce the required inequalities for the scaling

dimensions of the operators [83].

An important and generic feature of this class of models is that the suppression from

conformal sequestering is only appreciable for
√
F as high as roughly 109 GeV. From this
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fairly high scale of supersymmetry breaking one would expect a degree of fine-tuning of

roughly 1 in 103 at best, and a priori the tuning may be aggravated by large cancellations

in the UV boundary conditions, as is the case in Higgs mediation models without appre-

ciable hidden sector dynamics. In most of the parameter space of our example such large

cancellations do not occur, indicating that the tuning estimates from the high scale RG

running are a fair estimate of the total tuning of the model. The model therefore consti-

tutes a solution to the “little A/m2
H problem” as presented in [77], although a moderate

price in tuning had to be paid from the higher supersymmetry breaking scale.

This problem would be alleviated to some degree by considering lower values
√
F , where

the suppression of the loop factor must be obtained from the smallness of the effective OPE

coefficient rather than from the conformal sequestering.10 At this point it is not clear

whether such small OPE coefficients can be achieved in a realistic model. The conformal

bootstrap program has resulted in interesting lower bounds on OPE coefficients, provided

that there is a gap in the spectrum of operators [81]. Implicitly, we assumed the existence

of such a gap by truncating the OPE after the leading term, and it seems plausible that

our scenario may be constrained from this end as well.11 A detailed quantitative analysis of

this type of constraint is beyond the scope of this paper, but is certainly worth exploring.

Even if very small OPE coefficients could be made compatible with the bootstrap con-

straints, within our simple example, we found it very challenging to find viable solutions

with
√
F ∼ 106 GeV. But we strongly suspect that even extending the model slightly would

allow for many more solutions with low
√
F . A broader question which is also interesting

is whether it is possible to completely cover the rest of the parameter space in (4.26). It

is encouraging that even with our simple example we were able to sample a large part of

it. We therefore suspect that it should be possible to cover the full parameter with a set

of perturbative messenger models. Here are some promising ideas in this direction. First

we could relax our assumption on the action of the messenger parity on Ou and Od. For

instance, one could consider multiple portals between the messenger sector and the MSSM

10Alternatively, we could conceivably avoid the loop factors altogether with a strongly-coupled messenger
sector. Although such a setup may greatly alleviate the fine-tuning by allowing for lower

√
F , it may also

lose much of its predictivity and calculability.
11We thank David Simmons-Duffin for bringing this to our attention.
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Higgs sector, of the form:

W ⊃
∑
i

λ(i)
u O

(i)
u Hu +

∑
i

λ
(i)
d O

(i)
d Hd (4.50)

Another idea would be to allow for portals of the form

W ⊃ λSHuHd (4.51)

where S is a gauge singlet. This is interesting since the singlet portal does not generate

Au,d and m̂2
Hu,d

at the same loop order as µ and Bµ [23] and therefore provides a clean

way to untangle these two soft parameters from the others. Finally, in our simple model

we assumed 5-5̄ messengers. A model including 10-10 messengers (as in [80]) would offer

more parametric freedom.

In our analysis we restricted ourselves to
√
F < 1010 GeV in order to avoid problems with

charged LSPs and to automatically eliminate Planck-induced flavor violation. However it is

conceivable that with enough assumptions about the hidden sector, conformal sequestering

could also suppress dangerous Planck-induced operators [86–88]. If this is true, then our

model could be extended beyond
√
F ∼ 1010 GeV (at least with the Higgsino being the

LSP). Such a scenario deserves further study, especially since with larger
√
F , the impact

of the conformal sequestering can be further enhanced beyond what we have found in this

paper.

The collider phenomenology in this class of models is generically similar to the phe-

nomenology of gaugino mediation with large A-terms and depends strongly on the nature

of the NLSP. If the NLSP is the Higgsino, the phenomenology is similar to that of a neu-

tralino LSP. The constraints on this scenario are currently rather weak and prospects for the

14 TeV run depend heavily on the spectrum of the colored states. On the other hand, if the

NLSP is a stau, our model is already strongly constrained by current searches. Moreover,

in this case direct stop production would be a spectacular channel at the 14 TeV run of the

LHC, which should allow us to definitively test this scenario.

Appendices
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4.A Simplifying Limits

The boundary conditions for Bµ and m̂Hu,d for our example in section 4.4 simplify dramat-

ically in the spurion limit (γ → 0 and Ĉ → 1). Specifically, the dimensionless functions

reduce to:

fB(a, b, 0) =
1

(a4 − 1)3

[
b2
(
−a8 + 8a4 log a+ 1

)
(4.52)

− a2
(
a4 + 1

) (
1− a4 + 2

(
a4 + 1

)
log a

)]
+ (a↔ 1/a, b↔ 1/b)

fmH (a, b, 0) =− 2a2(a2 − b2)

(a4 − 1)3

(
1− a4 + 2

(
a4 + 1

)
log a

)
+ (a↔ 1/a, b↔ 1/b) (4.53)

If in addition we take a = b, the model reduces to the model first presented by Dvali,

Giudice and Pomarol [22] and we can verify that in this limit our results agree with theirs.

Concretely, the dimensionless functions further reduce to

fµ(a, a) =
a2 log a4

1− a4

fA(a, a) = −1

fB(a, a, 0) =
a2 log a4

1− a4

fmH (a, a, 0) = 0 (4.54)

Observe that m̂Hu and m̂Hd vanish at one loop; this was the basis of the weakly coupled

solution to the A/m2
H problem presented in [77]. In that paper we considered the special

limit λd = 0 which ensures that µ, Bµ, Ad and m̂Hd vanish. In such a setup, the µ/Bµ

problem is postponed and must dealt with separately, for instance by extending the MSSM

with an extra singlet.

For the case a 6= b, DGP also provide an expression for m̂2
Hu,d

.12 Their notation is

somewhat different from ours, and the Λ1 and Λ2 in equation (22) of [22] correspond to

Λ1 =
a

b
ΛH and Λ2 =

b

a
ΛH (4.55)

With this change of notation in (4.53), our expression for m̂2
Hu,d

becomes

m̂2
Hu,d

=
|λu,d|2
16π2

(Λ1 − Λ2)2g(a) (4.56)

12To 1 loop order, the distinction between m̂2
Hu,d

≡ m2
Hu,d

+ |µ|2 and m2
Hu,d

is moot.
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with

g(a) = −a4 1− a4 + (1 + a4) log(a4)

(1− a4)3 (4.57)

The magnitude of our expression agrees with equation (22) in [22], however we disagree on

the sign. We find m̂2
Hu,d

> 0 and since the Higgs fields can be considered as pseudomoduli

in a model with only fields of R-charge 0 and 2, we have confidence in our result [108, 109].

The second interesting special limit is when a = 1 and b = i, as in this case µ and Au,d

vanish at one loop. The superpotential reduces now to

W = κ
Oh

Λ∆h−1

(
φ̃DφD − φ̃SφS

)
+M

(
φ̃DφD + φ̃SφS

)
+ λuφ̃DφSHu + λdφDφ̃SHd. (4.58)

with κ ≡ κD = −κS and M ≡ MD = MS . The model now has an enhanced discrete

symmetry:

φD ↔ φ̃S φ̃D ↔ φS Oh → −Oh (4.59)

which forbids the correlators (4.11) and (4.12) at the one loop level13 since the operator Om

is odd under (4.59). This feature may be useful when attempting to cover the full GMHM

parameter space with weakly coupled models for the messenger sector.

4.B Numerical Procedure

Our general philosophy is to front-load the part of the calculation that involves integrating

the RGE’s, and delay the implementation of the model-specific boundary conditions as long

as possible. This allows us to study various tachyons and EWSB requirements in terms of

the familiar soft parameters, rather than the somewhat unintuitive parameters λu,d, Ĉ etc.

This approach also should allow for a more straightforward generalization to other models,

since the model-independent, more time consuming steps are performed first. Concretely,

we parametrize our scan in terms of the independent variables

M1,2,3, Au, Ad, tanβ, µ,mA(pole) and
√
F (4.60)

13Of course the discrete symmetry does not commute with the gauge symmetry, and is therefore not a
symmetry of the full theory. However for the 1 loop Higgs mediated contributions the gauge charge of φD
is irrelevant.
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where all parameters are specified at the scale
√
F , except the pole mass of the pseudoscalar

mA. We choose the latter rather than m̂Hd such that our scan is maximally compatible

with the inputs that must be provided to SOFTSUSY-3.3.9 [67]. For the case where the

messengers fit into 5-5̄ representations, we solve for M2 from the outset by using (4.28).

Our method can be further broken down in the following steps:

1. For a given choice of (4.60), SOFTSUSY-3.3.9 computes the RG-running and imposes

the EWSB conditions, a procedure which results in a value for m̂2
Hu

and m̂2
Hd

at the

scale
√
F . Furthermore we determine Ad as a function of the other soft parameters by

imposing (4.27). Since (4.27) involves m̂2
Hu

and m̂2
Hd

, this must be done through an

iterative procedure, which we repeat until convergence is achieved. At this point we are

done with integrating the RGE’s, and there is no more need to run SOFTSUSY-3.3.9

in the remainder of the calculation.

2. At this stage we can express ΛH as a function of M2, a and b. At the level of finding a

solution for the boundary conditions, the variables Ĉ, N and
(√

F
M

)γ
are degenerate.

We therefore define an auxiliary variable

C̃ ≡ Ĉ

N

(√
F

M

)γ
(4.61)

to simplify the solution finding procedure. Solving the UV boundary conditions spec-

ified in (4.39), (4.40), (4.43) and (4.44) thus corresponds to solving 6 algebraic equa-

tions in terms of the 5 variables λu,d, a, b and C̃. In the previous step we already

eliminated Ad by solving (4.27) through the iterative procedure. This leaves us with

5 equations with 5 unknowns, and a much better chance of obtaining a viable solution

than if we would have attacked all 6 equations at once. This translates into a much

improved computation time per point than if we would have performed a brute force

scan over λu,d, a, b and C̃. Next we can isolate a simple set of two equations by taking

a clever combination of the boundary conditions:

µ2

AuAd
=

(
fµ(a, b)

fA(a, b)

)2

B2
µ

(µ2 +m2
Hu

)(µ2 +m2
Hd

)
=

(
fB(a, b, γ)

fmH (a, b, γ)

)2

(4.62)
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This system of equations is independent of λu,d and C̃ and can be solved analytically

for b. At this point we have to commit to a concrete choice of γ, after which we can

solve the remaining equation for a numerically.

3. Now that we have solved for a and b for a given choice of γ, it is trivial to solve the

remaining boundary conditions for λu,d and C̃. At this point we discard the solution

if any of these parameters does not have a real solution, if |λu| > 3, if |λd| > 3 or if

C̃ > 100. These cuts are chosen arbitrarily to ensure no non-physical solutions where

kept. We verified that the results are not sensitive to the precise value of these cuts.

4. In the final step we recover MD from (4.35) and table 4.1, and use this to unpack C̃

in terms of the suppression factor from conformal sequestering and the effective OPE

coefficient Ĉ. At this step we also must commit to a choice of messenger number N .

By delaying an explicit choice for γ and N as long as possible we gained in both flexibility

and computation speed.
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Chapter 5

Conclusion and outlook

In the context of supersymmetry, the observation of a SM-like Higgs boson with a mass

near 126 GeV either requires a non-trivial extension of the MSSM or stops heavier than

roughly 1 TeV. Furthermore the lower bound on the stops in the latter case can only be

saturated if the stops are equipped with a large trilinear coupling with the Hu Higgs field,

which results in a large positive threshold contribution to the mass of the lightest CP-even

Higgs. In this work, we have attempted to systematically study the implications of requiring

such a large A-term on possible UV completions of the MSSM, without sacrificing the MFV

ansatz. Since it is very challenging to obtain sizable A-terms from mere RG running without

jeopardizing electroweak symmetry breaking [17], one must allow for direct interactions

between the MSSM matter fields and the messenger fields. If such extra interactions are

restricted to the MSSM Higgs sector, the MFV ansatz is trivially preserved. Moreover such

Higgs-messenger couplings are well motivated as a solution to the µ/Bµ problem.

In chapter 2 we showed that Higgs mediation suffers from an A/mH problem, just as it

suffers from the more well known µ/Bµ problem. Concretely this means that in a generic

model, the soft supersymmetry breaking terms in the Higgs sector satisfy

Bµ ∼ 16π2|µ|2 (5.1)

m2
Hu ∼ 16π2|At|2. (5.2)

Both relations have a detrimental effect on the Higgs potential and prevent electroweak

symmetry from being broken spontaneously. In a fully weakly coupled context, there exists

a simple solution to the A/mH problem, which also appears to be unique. Concretely, we

consider a simple model of the form

W = X
(
φ̃1φ1 + φ̃2φ2

)
+ φ1φ̃2Hu. (5.3)
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where X is responsible for spontaneous supersymmetry breaking. Upon integrating out the

φ, φ̃ fields, the 1-loop field strength renormalization factor for Hu is

ZHu(X,X†) ∼ 1

16π2
log

(
XX†

Λ2

)
(5.4)

At one loop, m2
Hu

is computed by differentiating ZHu(X,X†) with respect to X and X†. For

the case at hand, ZHu(X,X†) is the sum of a holomorphic and an anti-holomorphic piece,

and therefore vanishes under differentiation with respect to both X and X†. This implies

that m2
Hu

must vanish at one loop and we are therefore able circumvent the dangerous

relation in (5.2). This behavior is however spoiled if extra mass scales are introduced in the

model defined by (5.3).

We further constructed an explicit example which incorporates this solution, in addition

to a solution to the µ/Bµ problem by means of an extra singlet as in the NMSSM. Although

this solution allows for low messenger scales, it is nevertheless significantly fine tuned. The

reason is a large, positive two loop contribution to m2
Hu

which must be cancelled off partially

to facilitate electroweak symmetry breaking. These contributions arise from integrating out

the auxiliary component of the Higgs field:

AuFHuH
†
u → |Au|2HuH

†
u (5.5)

where Au is of course large by construction, to facilitate a physical Higgs mass near 126 GeV.

We find that this ‘little A/mH problem’ is present in all weakly coupled Higgs mediation

models that strive towards large A-terms.

Since fully weakly coupled models are always plagued by this little A/mH problem,

partially strongly coupled solutions are of special interest. Strongly coupled messenger

sectors may be viable but lose most, if not all of their predictivity. On the other hand,

models where only the hidden sector is strongly coupled can be made calculable to a very

high degree. We lay the theoretical groundwork for this in chapter 3 and provide and

explicit, fully worked out example in chapter 4. As it turns out both the µ/Bµ and A/mH

problems may be resolved by a single, simple mechanism, provided that certain anomalous

dimensions and OPE coefficients in the hidden sector satisfy certain inequalities. Concretely,

in a strong hidden sector the operators Oh and O∆, responsible for respectively the A-term
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and for m2
Hu

, do not need to be related in an obvious way. In this case m2
Hu

will be

proportional to the ratio of the susy breaking scale
√
F and messenger scale M , such that

m2
Hu ∼ 16π2C∆

(√
F

M

)∆−2∆h

|Au|2 (5.6)

where C∆ is an OPE coefficient in the hidden sector and ∆ and ∆h the scaling dimensions of

O∆ and Oh respectively. If ∆ > 2∆h and M �
√
F , this results in the desired suppression

of m2
Hu

. In chapter 4 we clarified the theoretical foundations of this scenario in terms of

a correlator formalism. This allows us to clear up some disagreements that have persisted

in the literature, as well as to extend the calculability of this class of models. In chapter 5

we show that recent constraints from the conformal boothstrap program [81] rule out the

scenario where the power suppression is sufficiently strong to fully counter the 16π2 en-

hancement in (5.6). Nevertheless a successful solution is still possible if the OPE coefficient

C∆ is smaller than one. We provide an explicit example of model and show that this type

of solutions are characterized by fairly high supersymmetry breaking scales, which once

again increases the fine tuning of the model. On the other hand, such high supersymmetry

breaking scales may lead to very interesting collider signatures in the form of a long lived

stau NLSP.

On general grounds, one may claim that if the MSSM or a close variant is indeed realized

in nature, it is not surprising that none of the superpartners have been discovered at the 8

TeV LHC. If the A-terms are small, the stop are bound to be out of the reach of the 14 TeV

as well, and a much more powerful experiment would be needed. On the other hand, if the

A-terms are sizable, the stops may be accessible, depending on the rest of the spectrum, in

particular the properties of the LSP. In this sense we enjoy the exciting prospect that much

of the work in this thesis will be experimentally tested in the early phase of the 14 TeV run.

On the model building side there are two main avenues to build further on this work.

In chapter 4 we studied the full parameter space of general Higgs mediation by means of

correlation functions, as was done for gauge mediation in [56, 57, 78]. For gauge mediation

it was shown that the full parameter space could be spanned with explicit models [57, 84].

At this time, no such proof exists for Higgs mediation, but the example provided in chapter

4 may be a fruitful starting point to pursue this goal.



143

The second major question that currently remains unanswered is whether the two solu-

tions to the A/mH problem in Higgs mediation presented in this thesis are unique or whether

other solutions exists. This is especially important since both the weak and strongly coupled

solutions appear fairly fine-tuned, although for different reasons. An especially promising

direction is to obtain the A-term through an effective superpotential operator of the form

Weff = yij
X

M
HQiUj . (5.7)

This type of operator may be obtained by integrating out fields at tree-level, and is therefore

not subject to the detrimental relation in (5.2). A priori one may think that such a model

does not need to generate any soft mass at all, however we find that in a generic model

contributions of the form

m2
soft ∼

1

κ2
|Au|2 (5.8)

cannot be avoided [110]. The soft mass in question may be m2
Hu

or a squark soft mass,

where the former is MFV and the latter is not. κ is a particular coupling constant in the

model under consideration. Although its precise meaning is model dependent, we find that

all models of this type contain a coupling constant which can be identified with κ such that

(5.8) holds. Although the dreaded soft masses cannot be avoided entirely, this scenario

may nevertheless constitute an improvement over the other models presented in this thesis

because of the presence of the coupling constant κ in (5.8). In particular it is notable that

the little A/mH problem from (5.5) is reduced in (5.8) is κ is allowed to be large. This in

turn leads to better fine tuning properties of the model. In [110] we show that a realistic UV

completion of this idea can be constructed if either the Higgs or the squarks are (partial)

composites of a new strongly coupled sector.

Finally, although Higgs mediation is the perhaps the most straightforward method to

obtain manifestly MFV A-terms, it is likely not to be the only possibility. In particular, one

may allow for squark-messenger couplings, which may not suffer from the same problems

which Higgs-messenger couplings are prone to. In this sense this type of models is expected

to be less fine tuned, and perhaps a minimally tuned model can be constructed. On the

other hand, in such a scenario MFV is no longer manifest and a full or partial flavor model

is needed to generate properly aligned A-terms, which introduces another set of challenges



144

for the model builder [19–21].
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