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Dr. Zoran Gajić

The development of affordable, inexhaustible and clean solar energy technologies will

have huge long term benefits, and the solar cell lies at the heart of this technology,

which converts the incident sun light into electric current. During the last years the

performance of bulk hetrojunction solar cells has been improved significantly making

them a viable option for future generation solar cells. For a large-scale application of

this technology further improvements are required.

In this thesis, we explore the means to improve the efficiency of organic solar cells by

studying the one dimensional drift diffusion equations and understanding the parame-

ters which play a significant role in the operations of these devices. After identifying

the physical parameters, a state space technique is applied and the nonlinear model is

developed which is both time and space varying. Then, two sub models are derived -

one by freezing space and another by freezing time. Both models are nonlinear. We

perform linearization of the nonlinear model around a nominal operating point for the

purpose of designing linearized optimal controller. The controllers obtained are applied

to the nonlinear solar cell model.

As the parameters are numerically very large in range, we performed scaling and

derived a scaled down model. The internal stability of both the models is checked
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and an optimal controller is developed around the nominal point with the objective to

maintain a constant number of electrons and holes which in turn directly affects the

output current of the solar cell. This steady state constant values can ensure desired

charge separation which sweep towards the cathode and anode before they exit the

device. In the event of high intensity of sunlight this steady state values will help

overcome the space charge effect which is an important factor in organic cells.

The model is also subjected to the Turing instability test for a reaction diffusion

system to investigate and detect the presence of Turing patterns in the drift-diffusion

model of the organic solar cell.
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Chapter 1

Introduction

1.1 Overview

While a majority of the world’s current electricity supply is generated from fossil fuels

such as coal, oil and natural gas, these traditional energy sources face a number of

challenges including rising prices, security concerns over dependence on imports from

a limited number of countries which have significant fossil fuel supplies, and growing

environmental concerns over the climate change risks associated with power generation

using fossil fuels. As a result of these and other challenges facing traditional energy

sources, governments, businesses and consumers are increasingly supporting the devel-

opment of alternative energy sources and new technologies for electricity generation.

Renewable energy sources such as fuel cell, solar cell, biomass, geothermal, hydroelec-

tric and windpower generation have emerged as potential alternatives which address

some of these concerns. As opposed to fossil fuels, which draw on finite resources that

may eventually become too expensive to retrieve, renewable energy sources are gener-

ally unlimited in availability. Solar power generation has emerged as one of the most

rapidly growing renewable sources of electricity, see Figure 1.1, Alon [2008].

Currently, the world consumes an average of 13 terawatts (TW) of power. By the

year 2050, as the population increases and the standard of living in developing coun-

tries improves, this amount is likely to increase to 30 TW. If this power is provided by

burning fossil fuels, the concentration of carbon dioxide in the atmosphere will more

than double, causing substantial global warming, along with many other undesirable

consequences. Therefore, one of the most important challenges facing engineers is find-

ing a way to provide the world with 30 TW of power without releasing too much carbon

into the atmosphere. Although it is possible that this could be done by using carbon
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sequestration along with fossil fuels or by greatly expanding nuclear power plants, it is

clearly desirable that we develop renewable sources of energy. The sun deposits 120,000

TW of radiation on the surface of the earth, so there is clearly enough power available

if an efficient means of harvesting solar energy can be developed, [McGehee, 2008].

Figure 1.1: Global PV Market [EPIA, 2013]

Only a very small fraction of power today is generated by solar cells, which convert

solar energy into electricity, because they are too expensive [Crabtree and Lewis, 2007].

More than 95 percent of the solar cells in use today are made of crystalline silicon (c-Si).

The efficiency of the most common panels is approximately 10 percent, and the cost

is $350/m2. In other words, the cost of the panels is $3.50/W of electricity produced

in peak sunlight. When you add in the cost of installation, panel support, wiring,

and DC to AC converters, the price rises to approximately $6/W . Over the lifetime

of a panel (approximately 30 years), the average cost of the electricity generated is $

0.3/kW-hr. By comparison, in most parts of the United States, electricity costs about

$ 0.06/kW-hr. Thus, it costs approximately five times as much for electricity from

solar cells. If the cost of producing solar cells could be reduced by a factor of 10, solar

energy would be not only environmentally favorable, but also economically favorable.

Although c-Si solar cells will naturally become cheaper as economies of scale are realized,

dicing and polishing wafers will always be somewhat expensive. Thus, it is desirable
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that we find a cheaper way to make solar cells. The ideal method of manufacturing

would be depositing patterned electrodes and semiconductors on rolls of plastic or

metal in roll-to-roll coating machines, similar to those used to make photographic film

or newspapers. Solar cells made this way would not only be cheaper, but could also be

directly incorporated into roofing materials, thus reducing installation costs. Organic

semiconductors that can be dissolved in common solvents and sprayed or printed onto

substrates are very promising candidates for this application.

1.2 Thesis objective

The enormous gap between the potential of solar energy and our use of it is due to

cost and conversion capacity. Dramatic cost-effective increases in the efficiency of solar

energy conversion are enabled by our growing ability to understand and control the

fundamental nanoscale phenomena that govern the conversion of photons into other

forms of energy.

The powering of electronic devices is often limited to rigid and bulky energy solu-

tions (such as batteries). The lack of thin, flexible, lightweight energy sources restricts

innovations in application areas such as wireless, autonomous, and flexible systems. A

small number of soft (polymer) batteries are newly available on the market; however,

their small capacity implies frequent servicing. Although energy harvesting has the

potential to provide supplementary or, in some cases, stand-alone continuous power,

it inherently requires the matching of function and environment. Several lightweight,

miniaturized energy-harvesting solutions have been demonstrated (such as microvibra-

tion energy harvesting), but most are extremely application specific, complex, expensive

to manufacture, and ultimately still rigid.

Solar or light energy is abundant and is arguably the most accessible energy source

for many electronics applications, as supplied by solar (also known as photovoltaic)

cells. The performance of a solar cell is measured by power conversion efficiency (PCE)

which is defined as the useful output power to the incident power. Silicon-based solar

cells can typically achieve 20% in power conversion efficiency (PCE), but their high



4

manufacturing costs discourage greater use. In contrast, organic solar cells (OSCs) cost

far less to manufacture because of the solution processable nature of their polymer in-

gredients. Polymers can be printed on thin, flexible substrates using roll-to-roll, ink-jet,

or other print-based fabrication, avoiding costly siliconchip manufacturing equipment.

Recent technological advances in OSCs have increased their PCE to higher than 8%.

With the low manufacturing costs and increased PCE, OSCs now offer a very attractive,

sub-dollar-per-watt production cost and are expected to greatly surpass silicon-based

solar cells in price competitiveness.

The technology proposed in this thesis is based on the idea that efficiency of the

organic solar cells can be improved considerbaly by controlling the number of electrons

and the rate of flow of electrons in the organic solar cells across the device.

1.3 Conclusion

Based on the knowledge of recent growth in the need of solar technology and the recent

advancements in the organic solar cells they are a very good candidate to research upon.

The power concversion efficiency of these OSC if improved can play a major role in the

future solar cell technology. In the next chapter 2 we investigate the different type of

solar cells and their performance parameters.
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Chapter 2

Evolution of Solar Cells

2.1 Photovoltaic Cells in Operation

2.1.1 Solar Cell Structure

A solar cell is an electronic device which directly converts sunlight into electricity. Light

shining on the solar cell produces both a current and a voltage to generate electric

power. This process requires firstly, a material in which the absorption of light raises

an electron to a higher energy state, and secondly, the movement of this higher energy

electron from the solar cell into an external circuit. The electron then dissipates its

energy in the external circuit and returns to the solar cell. A variety of materials and

processes can potentially satisfy the requirements for photovoltaic energy conversion,

but in practice nearly all photovoltaic energy conversion uses semiconductor materials

in the form of a p-n junction.

The basic steps in the operation of a solar cell are as follow :

1. The generation of light-generated carriers.

2. The collection of the light-generated carries to generate a current.

3. The generation of a large voltage across the solar cell.

4. The dissipation of power in the load and in parasitic resistances.

2.1.2 Traditional Model for Solar Cells

To understand the electrical behaviour of solar cells, it is useful to create an equivalent

model for the traditional solar cell (shown in Figure 2.2). A solar cell, also known as
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Figure 2.1: Cross section of a solar cell

a photodiode or photovoltaic, may be modeled by a current source in parallel with a

diode (see Figure 2.2). The diode in the model represents a real physical diode which

is created by the junction of P and N materials which form the solar cell. As photons

strike the cells surface, they excite electrons and move them across the PN junction of

the diode. Shunt and series resistances are added to obtain a better modeling of the

current-voltage characteristic [Servaites et al., 2011]. When the photovoltaic (PV) cell

is illuminated and connected to a load a potential difference (V) appears across the

load and a current (I) circulates. The cell functions as a generator as shown in Figure

2.2. The photons reaching the interior of the cell with energy greater than the band

gap generate electron-hole pairs that may function as current carriers.

Some of these carriers will find themselves in or near the potential barrier and are

accelerated as shown to form the photonic current. Other carriers will recombine and

contribute to a diode or dark current as governed by the Shockley equation:

ID = I0(exp(−V D/mV T )− 1) (2.1)

With:
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Figure 2.2: Circuit diagram for traditional solar cell

ID : the diode current,

I0 : the reverse bias saturation current (or scale current),

VD : the voltage across the diode,

VT : the thermal voltage,

m: the ideality factor, also known as the quality factor or sometimes emission coefficient.

The ideality factor m varies from 1 to 2 depending on the fabrication process and

semiconductor material and in many cases is assumed to be approximately equal to 1

(thus the notation m is omitted).

The thermal voltage VT is approximately 25.85 mV at 300 K, a temperature close to

”room temperature” commonly used in device simulation software. At any temperature

it is a known constant defined by: VT = kT
q , where k is the Boltzmann constant,T is

the absolute temperature of the pn junction, and q is the magnitude of charge on an

electron (the elementary charge), [Selwan, 2012]. The load current is the difference

between the photonic and diode currents such that I = Iv − ID, which when combined

with Eq. 2.1 yields:

I = Iv − I0(exp(−(V + IRS)/mV T )− 1) (2.2)

Note V + IRS = VD and that the constant m= 1 at high current and m=2 at low



8

current.

The saturation current I0 is difficult to measure and the I-V equation may be more

usefully written in terms of the open-circuit voltage (Voc) and the short circuit current

(Isc). The short circuit current is nearly equal to the photonic current I ≈ Isc (RS is

very small) and at open-circuit conditions reduces to:

0 = Isc − I0(exp(−(Voc)/VT )− 1) (2.3)

=⇒

Voc = VT ln(Isc/I0 + 1) (2.4)

Thus we can conclude :

1. Series resistance causes ohmic loses.

2. Shunt resistance causes charge separated to recombine.

2.2 Model for Organic Solar Cells

The equivalent circuit diagram for the organic solar cell is shown in (Figure 2.3) [Iyer

and Subramanian, 2007]. PV is modeled as a current source because it supplies a con-

stant current over a wide range of voltages. This new model tries to model the circuit

diagram by taking into account the inter-step excition formation in organic solar cells.

Figure 2.3: Circuit diagram for organic solar cell
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The key features of this model are the following :

1. i is a function of voltage.

2. Exciton generation Ip is a constant.

3. Rshunt,int will account for exciton recombination.

4. Rs,int will account for extraction of e− and h+ to electrodes.

2.2.1 Control of Linear Time Varying Systems

The model as shown in Figure 2.3 has three diodes. As demonstrated in [Davoudi et al.,

2013] the diodes can be approximated by the second order linear time varying systems

so that the circuit in Figure 2.3 can be modeled as a sixth order linear time varying

system.

Studying linear time varying systems is numerically and analytically very challeng-

ing. Thus, we decided to follow the approach of developing state space model for drift

diffuson model which is shown in next chapters.

2.3 Device Physics of the OPV Cell

General Working Principle

In OPV cells, the photovoltaic process of converting light to electricity is composed of

four consecutive steps.

ηeff = ηabs ∗ ηdiss ∗ ηtrans ∗ ηcol (2.5)

where :

ηabs : light absorption efficiency , ηdiss : exciton dissociation efficiency,

ηtrans : charge transport efficiency, ηcol : charge collection efficiency

The first step is light absorption leading to exciton formation. When sunlight

is directed onto photosensitive semiconducting organics, electrons in highest occu-

pied molecular orbital (HOMO) are excited to lowest unoccupied molecular orbital
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Figure 2.4: Device Working Principle from Light Absorption to Charge Collection

(LUMO). After light absorption, inorganic semiconductors immediately produce free

carriers while organic semiconductors require additional processes to produce free carri-

ers. First organic semiconductors form excitons, which are strongly bound electron-hole

pairs, that then diffuse inside of the organic semiconductor, which is independent on an

applied electric field. The typical exciton diffusion length in an organic semiconductor

is around 10-20 nm, and exciton dissociation occurs only at the interface between the

donor and the acceptor due to the offset of HOMO states of the donor and the acceptor

[Arkhipov et al., 2003]. If excitons do not reach the interface, they recombine and the

absorbed energy is dissipated without generating photocurrent. Therefore, to efficiently

generate power, the excitons have to be dissociated and collected at electrodes before

recombination.The performance of an OPV cell is characterized by a J-V curve as seen

below

The general current density and voltage characteristic under illumination are shown

in Figure 2.5. and a electrical circuit of photovoltaic device is depicted in Figure 2.6.

Under dark conditions, there is no current at the short circuit condition. Under an

illumination condition, the incident photons generate current and the minus current
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Figure 2.5: The definition of fill factor (FF), Jmax: current density at the maximum
of J x V in 4th. quadrant, Vmax:bias at the maximum of J x V in 4th. Quadrant

Figure 2.6: Circuit of photovoltaic device, Rs: series resistance, Rsh: shunt resistance.

density in the 4th quadrant of J-V curve indicates this photogenerated current. Param-

eters such as short circuit current (Jsc), open circuit voltage (Voc), fill factor (FF), and

power conversion efficiency (PCE) are used to quantitatively analyze the performance

of PV cells. For an ideal diode, the dark current density Jdark(V) is

Jdark(V ) = Jo(e
qV/kBT − 1) (2.6)

where:

Jo is a constant,kB is Boltzmanns constant and T is temperature in degrees Kelvin.

The overall current voltage response of the cell can be approximated as the sum of the

short circuit photocurrent and the dark current. Although the reverse current, which

flows in response to voltage in an illuminated cell, is not formally equal to the current

that flows in the dark, the approximation is reasonable for many photovoltaic materials.

The sign convention for current and voltage in photovoltaics is that the photocurrent
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is negative. With this sign convention, the net current density in the cell is :

JV = Jdark(V )− Jsc (2.7)

which becomes for an ideal diode

J(V ) = Jo(e
qV/kBT−1) − Jsc (2.8)

When the contacts are isolated, the potential difference has its maximum value, the

open circuit voltage Voc. This is equivalent to the condition when the dark current and

short circuit photocurrent exactly cancel out. For the ideal diode,

Voc =
kT

q
ln(

Jsc
Jo

+ 1) (2.9)

Equation 2.4 shows that Voc increases logarithmically with light intensity. Figure 2.5

shows that the current-voltage product is negative and the cell generates power when

the voltage is between 0 and Voc. At V < 0, the illuminated device acts as a photode-

tector, consuming power to generate a photocurrent that is light dependent but bias

independent. At V > Voc, the device again consumes power. This is the region where

light emitting diodes operate.

Power Output and Fill Factor

The fill factor (FF) is calculated as

FF =
JmVm
JscVoc

(2.10)

to denote the part of the product of Voc and Jsc that can be used. With this, the

power conversion efficiency can be written as



13

η =
POUT
PIN

=
JMAXVMAX

PIN
=
FFJSCVOC

PIN
(2.11)

When we consider parasitic resistances such as series resistance (Rs) and shunt re-

sistance (Rsh), Equation( 2.8) is modified as follows :

J(V ) = Jo(e
qV/kBT − 1) +

V − JARs
Rsh

− Jsc (2.12)

In the real cell, power is dissipated through the resistance of the contacts and

through leakage currents. These effects are equivalent electrically to two parasitic re-

sistances in series (Rs) and in parallel (Rsh) (Figure 2.6). The series resistance arises

from the resistance of the cell material to current flow, particularly through the front

surface to the contacts. The parallel or shunt resistance arises from leakage of current

through the cell. Since series and shunt resistances reduce fill factor, smaller Rs and

larger Rsh are required in order to fabricate an efficient PV cell.

Figure 2.7: J-V curves under dark condition and illumination.y axis is log scale [Ser-
vaites et al., 2011]

The derived Equation( 2.8) includes comprehensive elements to explain the J-V

curve of a PV cell. The y axis in Figure 2.7 is plotted in log scale and the J-V curve
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has three regions that can be correlated with Rsh (region I), exponential behavior of

pn junction (region II), and Rs (region III):

I. A linear regime at negative voltages and low positive voltages where the current is

limited mainly by Rsh

II. An exponential behavior at intermediate positive voltages where the current is con-

trolled by the diode

III. A second linear regime at high voltages where the current is limited by the Rs.

2.4 Scope to improve the efficiency of OSC

As the exciton binding energy in organic semiconductors is generally large (0.11eV)

compared to silicon, the built-in electric fields (on the order of 106 − 107V/m) are

usually not high enough to dissociate the excitons directly. Hence, a process has to be

introduced that efficiently separates the bound electron-hole pairs. This is possible at

the sharp drop of potential at donor - acceptor (D-A) as well as semiconductor metal

interfaces. A second issue is the consecutive charge transport to the electrodes.

Since I = q
t and since q = n ∗ e , this leads to :

1. By improving the number of electrons reaching the electrodes, more current can

be extracted from the cell.

2. As Pout = V ∗ I thereby this can lead to an improve in efficiency for the cell at

the given conditions.

2.5 Conclusion

In this chapter the two models : traditional model of solar cell and the organic solar

cell model was introduced. The organic solar cell is an upcoming type of solar cell

and their promising scope prompted us to learn more about the OSC. The power

conversion efficiency and the fill factor was derived for the OSC. In the next chapter

3 we understand the parameters involved in the OSC and then model it into a state

space form.



15

Chapter 3

Modeling and Control of Electron Hole Dynamics in

Organic Solar Cell

The bulk hetrojunction solar cells has improved significantly in the last few years but

for large scale applications of this technology further improvements are required which

focuses in improving the power conversion efficiency of these cells. In this chapter, we

will try to understand the physical parameters which factors out to play an important

role in governing the operation of OSC (organic solar cells). In the second part of

the chapter a state-space model is developed which is later on controlled to satisfy the

control objective.

3.1 Understanding Physical Parameters of Organic Solar Cells

In order to optimize the power conversion efficiency (PCE) of these devices, we need

to understand the factors playing important roles in the dynamics of photovoltaics. To

qualify the loss mechanisms which are expected to occur we need to understand the

distributions of the charge density and electric field in devices under various operating

conditions.

In view of the above, we need to study the one-dimensional drift-diffusion equations

which have successfully been used to model the steady state properties of bilayer and

bulk hetrojunction devices [Hwang, 2008]. The internal nanaostructure of the active

layer is ignored, and it is assumed that the device can be modelled by an effective

medium approach with electron and hole mobilities µn and µp representing the trans-

port of the respective carrier through the acceptor or donor component of the blend in

the z direction. Denoting the electron, hole, and charge pair densities by n, p and X
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respectively, the relevant equations are [Barker et al., 2003] :

∂n

∂t
=

∂

∂z
[−µnkBT

∂n

∂z
− µnneE] + kdiss(E)X − γnp (3.1)

∂p

∂t
=

∂

∂z
[−µpkBT

∂p

∂z
+ µpneE] + kdiss(E)X − γnp (3.2)

∂E

∂z
=
e(p− n)

ε0εr
(3.3)

∂X

∂t
= G− krecX − kdiss(E)X − γnp (3.4)

The paramters in the above partial differential equations (PDE) are the following :

n : electron density p : hole density

εr: relative permittivity of material ε0 : absolute permittivity material

µn : electron mobility µp : hole mobility

KB : Boltzmann constant E : electric field strength

Kdiss : charge pair dissociation rate constant X : charge pairs

Krec : charge pair recombination rate constant G: generation rate constant

e : elementary charge T : absolute temperature

Equations ( 3.1) and ( 3.2) represent the coupled drift-diffusion equations for elec-

trons and holes, with generation of free carriers by dissociation of charge pairs with

the rate constant Kdiss, and bimolecular recombination of electrons and holes to form

charge pairs with the rate constant γ. Equation ( 3.3) represents the change in field

inside the device due to space charges, and Equation ( 3.4) describes the dynamics of

charge pairs which undergo molecular recombination with the rate constant Krec and

are generated wth rate G, which is assumed to be linearly proportional to the light

intensity.
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3.2 Developing a State Space Model for the Drift Diffusion Equations

Since the above PDE is both time and space varying we decided to do system analysis

on both the varying qunatities separately by freezing one of them alternatively.

3.2.1 Freezing Space

Model obtained by freezing space :

∂n

∂t
= kdiss(E)X − γnp (3.5)

∂X

∂t
= G− krecX − kdiss(E)X − γnp (3.6)

In the above PDE we decide to choose the states as :

x1 = n x2 = X (3.7)

The input variable chosen as the sunlight G

Thus the non linear state space quations will look like :

ẋ1 = kdiss(E)x− γx21 (3.8)

ẋ2 = u− krecx2 − kdiss(E)x2 − γx21 (3.9)

3.2.2 Freezing Time

Model obtained on freezing time based on differential equations for free carriers are as

follows :

− 1

q

dJn
dx

= −Dn
d2n

dx2
− Fµn

dn

dx
= g − krecnp; (3.10)

− 1

q

dJp
dx

= −Dp
d2p

dx2
+ Fµp

dp

dx
= g − krecnp; (3.11)

Thus we have the following equations :

−Dn
d2n

dx2
− Fµn

dn

dx
= g − krecnp (3.12)
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−Dp
d2p

dx2
+ Fµp

dp

dx
= g − krecnp (3.13)

In the above PDE we decide to choose the states as :

x1 = n x2 =
∂n

∂t
(3.14)

x3 = p x4 =
∂p

∂t
(3.15)

Thus we get the state equations as :

ẋ1 = x2 (3.16)

ẋ2 = − F

Dn
µnx2 −

g

Dn
+
krec
Dn

x1x3 (3.17)

ẋ3 = x4 (3.18)

ẋ4 = − F

Dp
µpx4 −

g

Dp
+
krec
Dp

x1x3 (3.19)

3.3 Control of Nonlinear Systems via Linearization

As we notice that both the 2nd order and 4th order models are nonlinear, there is a

need to linearize the system around a nominal operating point which best replicates the

non linear system. The sytem around this operating point will be a linearized version

of the nonlinear system. Thus, there arises a need to come up with a control strategy

to achieve our goal for this linearized system.

The model we have developed is a nonlinear model, thus we use the approach of

controlling nonlinear systems via linearization, by [Friedland, 1985] and [Gajic, 2003].

This approach is summarized below :

Given a non linear system

ẋ = f(x, u) (3.20)

y = g(x, u) (3.21)

where x εRn are state variables, u εRm are control output, y εRl is the system output

and f , g are nonlinear functions.
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Assuming that the system nominal points (operation point) often the steady state

point is known, that is

xnom , unom , ynom = ydesired are known (3.22)

and that the system operates in the neighborhood of it’s nominal point, that is

x(t) = xnom +4x(t) (3.23)

u(t) = unom +4u(t) (3.24)

y(t) = ynom +4y(t) (3.25)

4x(t), 4u(t), 4y(t) are small quantities.

Then, the system can be linearized around its nominal points leading to a linear system

for 4x(t), 4u(t) and 4 y(t)

4 ẋ(t) = A4 x(t) +B 4 u(t) (3.26)

4 y(t) = C 4 x(t) +D4 u(t) (3.27)

where

A =
∂f

∂x |xnom,unom

B =
∂f

∂u |xnom,unom

(3.28)

C =
∂g

∂x |xnom,unom

D =
∂g

∂u |xnom,unom

(3.29)

Since the above is a linear system, we can use any linear controller design technique

to control 4x(t) via 4u(t).

In most cases, the nominal points are the steady state points which can be obtained from

0 = f(xnom, unom) (3.30)

ynom = ydesired = g(xnom, unom) (3.31)

Now since xnom unom , ynom are known, in general from the above set of equations

we can obtain the relationship

unom = ϕ(xnom, ynom) (3.32)
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which is called the set-point controller.

Also we need to obtain

xnom = ϕ(unom, ynom) (3.33)

Since the goal is to reduce 4x(t)→ 0 and bring the system back to it’s nominal tra-

jectory (in which case 4u(t) → 0 and 4y(t) → 0 so that y(t) → ydesired = ynom ) we

can design any linear controller using the above derived linear system to achieve that

task. We can now use any linear controller design technique to get the signal 4u(t)

from 4x(t).

Figure 3.1: Linear Controller

The corresponding block diagram for controlling a non linear system via linearization

is presented in Figure 3.2. It is adapted from [Friedland, 1985].
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The block diagram can be implemented in Simulink as follows :

Figure 3.2: Control of non linear systems via linearization

3.4 Linearizing the Nonlinear System

The usual practice is to linearize the nonlinear system

ẋ1(t) = x2(t) (3.34)

ẋ2(t) = − F

Dn
µnx2(t)−

g

Dn
+
krec
Dn

x1(t)x3(t) (3.35)

ẋ3(t) = x4(t) (3.36)

ẋ4(t) = − F

Dp
µpx4(t)−

g

Dp
+
krec
Dp

x1(t)x3(t) (3.37)

around it’s equilibrium points

0 = xss2 (3.38)

0 = −Fµnxss2 − g + krecx
ss
1 x

ss
3 (3.39)

0 = xss4 (3.40)

0 = −Fµpxss4 − g + krecx
ss
1 x

ss
3 (3.41)
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Substituting equation (4.5) in equation (4.6) and substituting equation (4.7) in equa-

tion (4.8) we get :

Krecx
ss
1 x

ss
3 − g = 0 (3.42)

which leads to

xss1 =
g

Krec

1

xss3
(3.43)

This implies :

xss1 ∝
1

xss3
(3.44)

which is incorrect as the number of electrons generated cannot be inversely proportional

to the number of holes generated.

Thus, linearzing the non linear system about the origin does not seem to be correct.

We will further see in the next chapter the choice of the nominal point around which

this system is linearized.

3.5 System Analysis of the Model

The goal for this model is to have the desired number of electrons present in the solar

cell as the sunlight strikes the cell because we believe that the output current depends

on the rate of flow of elctrons in the cell and more the electrons, more is the current.

i.e. y = ydesired = n = x1 (3.45)

3.5.1 2nd Order Model

Now as we see that our model is nonlinear we will like to have a linear controller to

control u(t) around the steady state.

So let us linearize the system at steady state :

0 = kdiss(E)xss2 − γx2ss1 = f1(x
ss
1 , x

ss
2 ) (3.46)
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0 = u− krecxss2 − kdiss(E)xss2 − γx2ss1 = f2(x
ss
1 , x

ss
2 ) (3.47)

yss = ydesired = xss1 (3.48)

For this linear model we will calulate the system matrix by calculating the Jacobian

matrix which is given by :  ∂f1∂x1
∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 . (3.49)

Thus the system state space matrices are as follows :

A =

−2γx1 kdiss(E)

−2γx1 −(krec + kdiss(E))

 (3.50)

B =

0

1

 (3.51)

C =
[
1 0

]
(3.52)

D = 0 (3.53)

Before moving further and design the controller we decided to check the internal stability

of the system and thus we have applied the Routh Hurwitz crietrion.

Considering the system matrix A to be generalized now :

A =

a b

a d

 (3.54)

Thus,

poly(A) = x2 + (−a− c)x− ab+ ac (3.55)

Formulating the Routh’s table we get :

s2 : 1 a(c− b)

s1 : (−a− c) 0

s0 : (ac+ ab)

Now as we know according to Routh’s criteria for a system to be stable there should

be no sign changes in the first column of the Routh’s table
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Therefore, we get :

1) (−a− c) > 0 =⇒ a+ c < 0 (3.56)

2) − ac+ ab > 0 =⇒ a(c− b) > 0 (3.57)

which leads to :

b > c if a > 0 (3.58)

and

b < c if a < 0 (3.59)

Now since,

a = −2γx1 =⇒ a < 0 (3.60)

and as

b = kdiss(E) and c = −(krec + kdiss(E)) =⇒ b > c (3.61)

Therefore the system is asymptotically stable.

3.5.2 4th Order Model

Model obtained on freezing time based on differential equations for free carriers which

are as follows :

− 1

q

dJn
dx

= −Dn
d2n

dx2
− Fµn

dn

dx
= g − krecnp; (3.62)

− 1

q

dJp
dx

= −Dp
d2p

dx2
+ Fµp

dp

dx
= g − krecnp; (3.63)

Thus on freezing time, we have the following equation :

−Dn
d2n

dx2
− Fµn

dn

dx
= g − krecnp (3.64)

−Dp
d2p

dx2
+ Fµp

dp

dx
= g − krecnp (3.65)

In the above PDE, we decide to choose the states as :
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x1 = n (3.66)

x2 =
∂n

∂t
(3.67)

x3 = p (3.68)

x4 =
∂p

∂t
(3.69)

Thus, we get the state equations as :

ẋ1(t) = x2(t) (3.70)

ẋ2(t) = − F

Dn
µnx2(t)−

g

Dn
+
krec
Dn

x1(t)x3(t) (3.71)

ẋ3(t) = x4(t) (3.72)

ẋ4(t) = − F

Dp
µpx4(t)−

g

Dp
+
krec
Dp

x1(t)x3(t) (3.73)

For this linear model, we will calulate the system matrix by calculating the Jacobian

matrix which is given by : 

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f4
∂x1

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4


. (3.74)

Thus the system matrices are as follows :

A =



0 1 0 0

krec
Dn

xnom3
−F
Dn
µn

krec
Dn

xnom1 0

0 0 0 1

krec
Dp

xnom3 0 krec
Dp

xnom1
F
Dp
µp


(3.75)

B =



0

− 1
Dn

0

− 1
Dp


(3.76)

C =
[
1 0 0 0

]
(3.77)

D = 0 (3.78)
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Routh Hurwitz’s Stability Test for 4th Order Model

For the system matrix as shown in Equation ( 3.79) we need to check the asymptotic

stability and which is done by applying the Routh Hurwitz’s stability test.

The matrix can be represented conveniently as the following :

A =



0 1 0 0

axnom3 −c axnom1 0

0 0 0 1

bxnom3 0 bxnom1 d


(3.79)

The characteristic equation of the system can be calculated as the following :∣∣∣λI −A∣∣∣ = det(λI −A)

=



λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ


-



0 1 0 0

axnom3 −c axnom1 0

0 0 0 1

bxnom3 0 bxnom1 d



=



λ −1 0 0

−axnom3 λ+ c −axnom1 0

0 0 λ −1

−bxnom3 0 −bxnom1 λ− d


Now to calcualte the determinant of the above matrix we can expand it along row

1 and after which we get :

λ4 + λ3[c− d] + λ2[−bxnom1 − cd− axnom3 ] + λ[adxnom3 − bcxnom1 ] = 0 (3.80)

Now forming the Routh’s array we get :

s4 : 1 (−bxnom1 − cd− axnom3 ) 0

s3 : (c− d)(adxnom3 − bcxnom1 ) 0

s2 :
(c−d)(−bxnom

1 −cd−axnom
3 −(adxnom

3 −bcxnom
1 )

(c−d) 0 0

s1 : (adxnom3 − bcxnom1 ) 0

s0 : 0
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Condition for stability :

There should be no sign changes in the first column of the Routh’s array. We get the

following conditions :

c− d > 0 (3.81)

In other words, µn > µp which is true for our model.

(adxnom3 − bcxnom1 ) > 0 (3.82)

which is equivalent to :

adxnom3 > bcxnom1 (3.83)

Since, µn > µp thus for this condition to hold true xnom3 > xnom1 i.e holes > electrons.

This result is in tune with the results we display for the simulation of our model.

3.6 LQR Controller Design

One way of finding Kc is by using the Linear-Quadratic Regulator (LQR) design. We

will state the problem as follows:

Consider the system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (3.84)

We seek a control u∗(t) that minimizes the performance measure

minuJ =

∫ ∞
0

[(Qx(t), x(t)) + (Ru(t),u(t))] dt (3.85)

where x(t) is the solution of the above system equation: Here Q = QT ≥ 0 and

R = RT > 0 are weighting matrices. It is well known that if an optimal control u∗(t)

exists, it has the form

u∗(t) = −Kcx(t) (3.86)
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where Kc is a constant gain matrix. Moreover, the closed loop system

ẋ(t) = Ax(t)−BKcx(t) = (A−BKc)x(t) (3.87)

is asymptotically stable. The assumption that R > 0 ensures that the energy of the

control is finite. The following result may be found in [Dorato et al., 2000].

Existence and Stability of the Steady-State LQR Solution :

Given the LQR problem with R > 0, and Q = CTC, where the pair (A,C) is detectable

and the pair (A,B) is stabilizable, it follows that the solution to the steady-state LQR

problem exists. In particular, there exists a unique positive semidefinitive solution P̄

to the algebraic Riccati equation [Hwang et al., 2010].

0 = ATP + PA+Q− PBR−1BTP (3.88)

and

Kc = R−1BT P̄ (3.89)

make the closed loop system ( 3.87) is asymptotically stable. The simulation results for

this controller will be presented in the next chapter.

3.7 Conclusion

In this chapter, we modelled the OSC which is both time and space varying into two sub

models. We also investigated their internal stability using the Routh Hurwitz stability

test and found them to be asymptotically stable. Thus based on this, we proposed an

optimal LQR and a set point controller to achieve our control goal. In the next chapter

4 we will see the results from simulating the models in MATLAB.
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Chapter 4

Observations and Results

The electric current that a photovoltaic solar cell delivers corresponds to the number of

created charges that are collected at the electrodes. As discussed in Equation( 2.5), this

number depends on the fraction of photons absorbed (ηabs), the fraction of electron-hole

pairs that are dissociated (ηdiss), and finally the fraction of (separated) charges that

reach the electrodes (ηcol) determining the overall photocurrent efficiency(ηeff ).

The fraction of absorbed photons is a function of the absorption spectrum, absorp-

tion coefficient, absorbing layer thickness, and of internal multiple reflections at, for

example, metallic electrodes. The fraction of dissociated electron-hole pairs on the

other hand is determined by whether they diffuse into a region where charge separation

occurs and on the charge separation probability there. To reach the electrodes, the

charge carriers need a net driving force which generally results from a gradient in the

electrochemical potentials of electrons and holes.

4.1 Frozen Space

In our submodel of frozen space we demonstrate that we examine the number of elec-

trons and the charge pairs as to how they can effect the organic solar cell with change

in time eventually playing a vital role in the pheonomenon like state space charge

recombination and high electric field dissociation.

4.1.1 Data

The values of the parameters used to simulate the formulated model was obtained from

[Barker et al., 2003], [Hwang, 2008] and [Kirchartz et al., 2008] :

γ = 3 ∗ 10−4m1/2V −1/2, Krec = 103 s−1, Kdiss = 105 s−1, n = 8 ∗ 1010m−3
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4.1.2 2nd Order : Block Diagram

Figure 4.1: 2nd order nonlinear organic solar cell model implemented in Simulink

Figure 4.1 is a block diagram representation of the 2nd order solar cell model in

Simulink wherein a set-point controller as shown in Figure 4.2 is used to control the

number of electrons and the charge pairs as they vary in time. The charge pairs is given

by X = γn2

kdiss
and thus controlling the number of electrons also affects the charge pair

densitiy in the model.

4.1.3 Scaled Down Model

The system matrix as represnted in Equation( 3.50) is of the order of magnitude 1021.

MATLAB gives precision errors when the optimal control algorithm is applied, thus we

need to scale down the model.

The scaled down variables are :

x̂1 = 10−5 ∗ x1

x̂2 = 1010 ∗ x2

û = 1010 ∗ uss;

And now the order of magnitude reduces to order 107 which is manageable in order

to control. Also, the scaled down model is both controllable and observable.
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4.1.4 Set-point Controller

Figure 4.2: Solar Cell 2nd order Nonlinear Model : Set-point controller

As we know from Equation( 3.47)

0 = u− krecxss2 − kdiss(E)xss2 − γx2ss1 (4.1)

Thus, the set-point controller is given by :

uss = krecx
ss
2 + kdiss(E)xss2 + γx2ss1 (4.2)

which is represented above in Figure 4.2.

From Equation( 3.46) :

0 = kdiss(E)xss2 − γx2ss1 (4.3)

we get

xss2 =
γx2ss1

kdiss(E)
(4.4)
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4.2 Simulation Results of Frozen Space Submodel

Below the simulations results as simulated in MATLAB for a time period of 10−4

seconds.

4.2.1 Electrons : x1

Figure 4.3: Solar cell 2nd order output y (number of electrons)

The above Figure 4.3 shows that the number of electrons is being maintained con-

stant in this frozen time model.

Low Intensity

The input in our model is G, i.e the sunlight whose intensity can vary. The constant

number of electrons will ensure in the event of low intensity that enough generated

electrons are swept towards the cathode where they exit the device.
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High Intensity

In the event of high intensity the biomolecular recombination factor krec is very strong.

This recombination leads to a space charge effect which leads to the supression of an

electric field in the device thereby essentially blocking the separation of electrons and

holes from the excitons.

By maintaing a constant number of electrons the space charge effect can be some-

what supressed.

4.2.2 Charge Pairs : x2

Figure 4.4: Solar cell 2nd order output (charge)

The above Figure 4.4 repsrented the dynamics of charge pairs as present in the

device. In our sub-model (frozen space) we have achieved a steady charge pair of order

1013 units.

As concluded in [Hwang, 2008] the photocuurrent rise time in a bulk hetrojunction

photovoltaic device is not solely associated with a carrier time, but also depends on the

dynamics of charge pair seperation and recombination.
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Low Intensity

A constant number of charge pairs in the event of low intensity will ensure that ηdiss and

ηcol have high values and thereby overall affecting ηeff as also seen in Equation( 2.5).

High Intensity

In the event of high intensity where biomolecular recombination is very strong, the

charge pairs acts as a ’reservoir’ which slows the passage of charge carriers but by

controlling and maintaining a steady state of charge pairs we can somewhat diminish

this effect. Thus a good value can be maintained for ηdiss and this affects overall ηeff .

4.3 Frozen Time

In our submodel of frozen time we demonstrate the electrons and holes with their rate

of change as they will vary inside the cell after the photons strile the cell. We try to

replicate these sates as shown in the simulation diagrams ( 4.7), ( 4.8), ( 4.9), ( 4.10)

of this model.

4.3.1 Data

The values of the parameter used to simulate the formulated model was obtained from

Barker et al. [2003], [Hwang, 2008] and [Kirchartz et al., 2008] :

n : 1.6 ∗ 10−19 C E = 7.1 ∗ 106 V m−1

Krec = 103 s−1 µn = 3 ∗ 10−10m2/V s

µp : 1 ∗ 10−10m2/V s G : 4.3 ∗ 1017m−3s−1

Rest of paramaters are derived relationally (they are included in Apendix)

4.3.2 4th Order : Block Diagram

Figure 4.5 is a block diagram representation of the 4th order solar cell model in Simulink

wherein a set point controller as shown in Figure 4.6 is used to control the number of

electrons, rate of change of electrons, number of holes, and rate of change of holes as

they will change inside the cell.
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Figure 4.5: Solar cell 4th order Non Linear Model

4.3.3 Scaled Down Model

The original system matrix A is of the order of 1026 and B of the order of 1012, which

is numerically not ideal, thus we scale down the model for simulation purposes. The

new parameters after scaling down are calculated as :

Â = 10−12A, B̂ = 10−12B, t = 10−12τ, u = 106û (4.5)

This scaled down system is numerically more stable and eaiser to simulate. This

scaled down model is stabilizable and thus by applying the LQR optimal controller we

are able to calculate the required gain to achieve our controller goal as discussed in

Equation( 3.45).

4.3.4 Set-Point Controller

As seen earlier in Section 3.4 for the 4th order model, the set-point controller cannot

be achieved around the steady state point. Given the system matrix is of very high

order in magnitude we calclulate the nominal operating points after performing some

iterations in MATLAB.
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Nominal operating point

Using MATLAB we calculated the values of operating points around which the system

can be linearized

xop1 = 706 (4.6)

xop2 = 2.63 ∗ 107 (4.7)

Using Equation( 3.43) we get Equation( 4.8)

xop3 =
g

Krec

1

xss1
(4.8)

xop4 = −1.22 ∗ 108 (4.9)

Also,

uop = 107 ∗ u (4.10)

Thus, this is the set point controller which is shown below in Figure 4.6.

Figure 4.6: Solar cell 4th order Nonliinear Model : Set-point controller

4.4 Simulation Results of Frozen Time Submodel

By constructing the nonlinear model as seen in Figure 4.5 we are attempting to maintain

a constant number of electrons as ideally the rate of flow of electrons determines the

current. The model is simulated for a time period of 10−11 seconds.
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4.4.1 Electrons : x1

In this frozen time sub model we see that the number of electrons can be maintained

constant in the order of desired 1011.

Figure 4.7: Solar cell 4th order output x1 (number of electrons)

The input in our model is G, i.e the sunlight whose intensity can vary. The constant

number of electrons as shown in Figure 4.7 will ensure in the event of low intensity that

enough generated electrons are swept towards the cathode where they exit the device.

In the event of high intensity the biomolecular recombination factor krec is very strong.

This recombination leads to a space charge effect which leads to the supression of an

electric field in the device thereby essentially blocking the separation of electrons and

holes from the excitons. By maintaing a constant number of electrons the space charge

effect can be supressed.
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4.4.2 Rate of Change of Electrons : x2

As shown in Figure 4.8 the rate of change of electrons can directly affect the output

current

Figure 4.8: Solar cell 4th order output x2 (rate of change of electrons)

4.4.3 Holes : x3

The input in our model is G, i.e the sunlight whose intensity can vary. The constant

number of holes as shown in Figure 4.9 will ensure in the event of low intensity that

enough generated electrons are swept towards the anode where they exit the device.

By maintaing a constant number of holes the space charge effect can be somewhat

supressed.

4.4.4 Rate of Change of Holes : x4

Around nominal operating point the rate of change in holes is shown in Fig 4.10.
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Figure 4.9: Solar cell 4th order output x3 (number of holes)

Figure 4.10: Solar cell 4th order output x4 (rate of change of holes)
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Chapter 5

Turing Patterns : Solar Cell Drift Diffusion Model

Turing’s seminal work in 1952 [Turing, 1952] showed that for some non-linear reaction-

diffusion equations the steady state solution of the system is not spatially uniform. The

Turing instability occurs when a spatially homogeneous steady state of the reaction

dynamics, which is linearly stable in the absence of diffusion, becomes linearly unstable

when the reactions are coupled with the diffusion. This can occur when there are

two or more nonlinearly interacting species with different diffusivites. The resultant

inhomogeneous spatial pattern is called a Turing pattern [Stancevic et al., 2013].

Turing argued that if the diffusion coefficients of the two species are widely different,

then if one of the species is auto catalytic with the other inhibiting its growth, then the

steady homogeneous state will be unstable to a patterned steady state. The instability

could also set in as a temporal pattern in a spatially homogeneous state under certain

conditions. Turing patterns have been a very important aspect of the study of the non

linear systems.

As shown earlier in Equations( 3.1), ( 3.2), ( 3.3), and ( 3.4), the solar cell model

under inverstigation is varying with time also being spatially varying. Recently there

has been extension of the Turing work in some unexpected directions and recently [Riaz

et al., 2004] have shown that a Turing pattern for charged species could be altered by an

applied electric field. Thus, the spatio-temporal behaviour of this system is investigated

within the framework of Turing instability-induced pattern formation.

5.1 Conditions for Fomation of Turing patterns

For any reaction diffusion systems spatially extended model patterns may occur in the

neighbourhood of a spatially homogeneous steady state provided the conditions for a
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Turing instability are met, namely that the spatially homogeneous steady state is:

(T1) linearly stable in the absence of diffusion, and

(T2) linearly unstable in the presence of diffusion.

5.2 Existence of Turing Patterns In Our Model

We need to investigate the dynamics of our time and space varying model whether it

allows for formation of spatial patterns or not. A similar work for a two dimensioanl

reaction model of HIV dynamics was carried out by [Stancevic et al., 2013]. We have

adapted their proposed approach and applied in our model.

5.3 Linearizing About Spatially Homogenous Steady State

The equations under investigation

∂n

∂t
= kdiss(E)X − γnp (5.1)

∂p

∂t
= kdiss(E)X − γnp (5.2)

∂X

∂t
= G− krecX − kdiss(E)X − γnp (5.3)

In these equations, the dependent variables are :

n : number of electrons in the solar cell; p : number of holes in the solar cell; and X

: charge pairs formed in the exciton formation and disscoaition process, where these

all vary with time t , but not space. The parameter kdiss(E) represents dissociation

of charge pairs, γ represents biomolecular recombination of electrons and holes to form

charge pairs and krec represents dynamics of charge pairs which undergo molecular

recombination.

Extending this model to include also spatial aspects so that the independent vari-

ables are now (t, z) produces the following model:



42

∂n

∂t
=

∂

∂z
[−µnkBT

∂n

∂z
− µnneE] + kdiss(E)X − γnp (5.4)

∂p

∂t
=

∂

∂z
[−µpkBT

∂p

∂z
+ µpneE] + kdiss(E)X − γnp (5.5)

∂X

∂t
= G− krecX − kdiss(E)X − γnp (5.6)

To investigate further the above set of equations can be conveniently represented as

:

∂n

∂t
= −αn

∂2n

∂z2
− βn

∂n

∂z
+ kdiss(E)X − γnp (5.7)

∂p

∂t
= −αp

∂2p

∂z2
− βp

∂p

∂z
+ kdiss(E)X − γnp (5.8)

∂X

∂t
= G− krecX − kdiss(E)X − γnp (5.9)

Now the linearized form for perturbation is given by :

∂
∂τ


4n

4p

4X

 =


−γp −γn kdiss(E)

−γp −γn kdiss(E)

−γp −γn −krec − kdiss(E)



4n

4p

4X

+


0

0

G



+


−αn 0 0

0 −αp 0

0 0 0



∂24n
∂z2

∂24p
∂z2

∂24X
∂z2

+


−βn 0 0

0 βp 0

0 0 0



∂
∂z

∂
∂z

∂
∂z


After carrying out Fourier transforms with respect to the spatial variables yields :

∂

∂τ


4n

4p

4X

 =


−γp −γn kdiss(E)

−γp −γn kdiss(E)

−γp −γn −krec − kdiss(E)

+


αnq

2 0 0

0 αpq
2 0

0 0 0

+


−jqβn 0 0

0 jqβp 0

0 0 0

 .

4N

4P

4X


(5.10)
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where 4N , 4P , 4X denote the Fourier transform of 4n, 4p and 4X respectively

and q2 := qT q where q ∈ <d is the Fourier variable, with d the spatial dimension.

Considering only the real part for the above equation gives us:

∂

∂τ


4n

4p

4X

 =


−γp+ αnq

2 −γn kdiss(E)

−γp −γn+ αpq
2 kdiss(E)

−γp −γn −krec − kdiss(E)



4N

4P

4X

 (5.11)

The conditions for Turing instabilities are determined from the eigenvalue spectrum

of the coefficient matrix in Equation ( 5.11). The requirement that the homogeneous

steady state is stable in the absence of diffusion is met if all eigenvalues have negative

real parts when q2 = 0. A Turing instability may then occur if one or more eigenvalues

have positive real parts for some q2 > 0.

The characteristic polynomial of the matrix in Equation ( 5.11)

A =


−γp+ αnq

2 −γn kdiss(E)

−γp −γn+ αpq
2 kdiss(E)

−γp −γn −krec − kdiss(E)

 (5.12)

is calculated by

4(λ) = det(λI −A) (5.13)

4(t) = det


λ+ γp− αnq2 γn −kdiss(E)

γp λ+ γn− αpq2 −kdiss(E)

γp γn λ+ krec + kdiss(E)

 (5.14)

The determinant of the matrix in Equation ( 5.14) gives us the following form :

λ3 + λ2[krec + kdiss(E) + γn− αpq2 + γp− αnq2] + λ[krecγn+ kdiss(E)γn− krecαpq2

−kdiss(E)αpq
2+kdiss(E)γn+krecγp+kdiss(E)γp−αpq2γp+kdiss(E)γp]+[−krecαpq2γp

− kdiss(E)αpq
2γp− αnq2krecγn− αnq2kdiss(E)γn+ krecαnαqq

4 + kdiss(E)αnαqq
4

− αnγnkdiss(E)q2 − kdiss(E)αpq
2] = 0

. (5.15)
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To check for stability, recall that a cubic polynomial λ3+aλ2+bλ+c has all roots in

the left half complex plane if and only if a, b, c > 0 and ab > c (Routh-Hurwitz stability

criterion for a cubic polynomial) [Hurwitz, 1964]. Below we consider the characteristic

polynomial for different values of q2.

5.3.1 Case of No Spatial Variation

In the absence of diffusion (q2 = 0), the characteristic polynomial Equation A simplifies

to

λ3+λ2[krec+kdiss(E)+γn+γp]+λ[krecγn+krecγp+2kdiss(E)γn+2kdiss(E)γp] (5.16)

Since the parameters are positive all the coefficients of Equation ( 5.16) are positive

and this case is essentially the same as our Frozen Space model. Now the remaining

condition

(krec + kdiss(E) + γn+ γp)(krecγn+ krecγp+ 2kdiss(E)γn+ 2kdiss(E)γp) > 0 (5.17)

is necessary and sufficient for all roots of ( 5.16) to be in the left half plane.

Thus, the endemic steady state is stable in the absence of diffusion and the first

Turing condition (T1) is satisfied. We can also conclude from the relation as shown

in Equations ( 3.60) and ( 3.61) that in case of no spatial variation the system is

asymptotically stable.

5.3.2 Case of Spatial Variation

Now we investigate the nature of the roots of Equation ( 5.15) in the presence of diffusion

(q2 = 0).

Firstly, consider the case for large q2. Then the coefficients of characteristic polyno-

mial ( 5.15) will determine the inherent stability of the system. The Equation ( 5.15)

can be conveniently represnted as :
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λ3 +λ2[krec+kdiss(E) +γn+γp− (αp+αn)q2] +λ[krecγn+ 2kdiss(E)γn+krecγp+

2kdiss(E)γp−(krecαp+αpγp+kdiss(E)αp)q
2]+[(krecαnαq+kdiss(E)αnαq)q

4−(krecαpγp

+ kdiss(E)αpγp+ αnkrecγn+ 2αnkdiss(E)γn+ kdiss(E)αp)q
2]

. (5.18)

To investigate the stability the above Equation ( 5.18) can also be conveniently reprsented

as :

λ3 + λ2(a1 − a2q2) + λ(b1 − b2q2) + (c1q
4 − c2q2) (5.19)

Investigation of Roots :

Firstly, consider the case for large q2. Then the characteristic polynomial shown in

Equation( 5.15) will have all its coefficients positive ( as in each term the largest power

of q2 has a positive coefficient). It is then straightforward to show that the product

of the former two is larger than the latter, hence for sufficiently large q2 all roots of

Equation ( 5.15) are in the left half complex plane and the syetem is stable.

Even though for large values of q2 the system becomes stable, there may still be

an appropriate range of values of q2 for which instabilities occur. As we note from

Equation ( 5.19) that all coefficients are positive except for possibly a2, b2, c2. If we

assume if these too are positive then :

λ3 + λ2(a1 + a2q
2) + λ(b1 + b2q

2) + (c1q
4 + c2q

2) (5.20)

As we know from [Hurwitz, 1964] ab > c, thus we get the following conditions :

(S1) a1b2 + a2b1 > c2 (S2) a2b2 > c1 (5.21)

Proof of S2:

(αn + αq)(krecαp + kdiss(E)αp + αpγp) > krecαnαq + kdiss(E)αnαq (5.22)

Clearly on expansion of Equation ( 5.22) above equality holds and thus S2 holds true.
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Proof of S1:

To satsify the inequality as shown in Equation ( 5.21) is not possibe as the combi-

nation of parameters is different on both sides of the inequality i.e. S1 does not hold.

Thus, we can conclude that in case of spatial variation the model is linearly unstable

in the neighbourhood of spatially homogeneous steady state.

5.4 Conclusion

As discussed in Section 5.1 that for the existence of Turing patterns the Turing insta-

bility conditions must be met namely :

(T1) linearly stable in the absence of diffusion, and

(T2) linearly unstable in the presence of diffusion.

We have proved both the above conditions as seen in case of both no spatial variation

and in the case of spatial variation respectively. Thus, we can conclude about the

exostence of Turing patterns in our model.
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Chapter 6

Thesis Conclusion and Future Research Work

6.1 Conclusions

The study of control techniques for organic solar cells are investigated in this thesis.

The organic solar cell (OSC) which is a promising candidate in the PV industry needs

to be studied well. We analyzed the various parameters which play a major role in the

conversion of photovoltaic current after sunlight falls on the OSC.

We studied the one dimensional drift diffusion equation which explains the internal

physics of an OSC. We further took the space and time varying differential equations

and modelled them into two sub-models : by freezing space and by freezing time.

We checked the internal stability of this two models by subjecting them to the Routh-

Hurwitz stability test and found them to be asymtotically stable. Using linear quadratic

optimal controller and setpoint controller we were able to maintain the constant number

of electrons and charge pairs around the operating point of the considered nonlinear

model.

We discussed the results of simulation and made observations as to how these results

relate to the performance of the cell in varying sunlight. In addition, we subjected our

model to the Turing pattern instabiliy test to confirm the presence of Turing patterns

from a reaction diffusion system point of view.

6.2 Future Work

In the future, we plan to develop a state space form of equations for the original

nonlinear model. Then, we can design a nonlinear controller to control the useful

parameters of the organic solar cell. The new simulated model will be then very close
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to reality.

Since the organic solar cell is very complex in nature from a physics point of view

which involves huge range of parameters, drift diffusion equations may be studied more

in detail and corresponding controllers can be designed in the future using multiple

time scales.

We can also coordinate with the material people and can share our results which can

help them choose the organic materials keeping in mind the consideration of parameters

and how they affects the performance.
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