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ABSTRACT OF THE THESIS

Stereo Vision-based Vehicular Proximity Estimation

by Arjun Krishna

Thesis Director: Prof. Janne Lindqvist

This thesis describes an innovative and cost effective method to develop a low-cost

following distance logging algorithm for volunteer participants which will allow quan-

titative research in driving behavior. Sparse stereo depth estimation methods along

with a license plate localization algorithm has been used in order to achieve this. The

depth is estimated by processing the video feeds from the stereo camera setup mounted

inside a car looking out of the front window. License plate localization is used as a

means to localize the position of the car within the image. Depth is estimated from

the disparity, which is calculated using the rectified images of the frames from both the

video streams.
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Chapter 1

Introduction

1.1 Motivation and goal

The work presented in this thesis represents the use of stereo vision in achieving depth

estimation. The main aim of this work is to develop a low-cost following speed logging

algorithm for volunteer participants, which will allow quantitative research in driving

behavior. The resulting distance estimates from this work, will be used for determining

driving behavior related aspects such as the speed at which a vehicle follows another

vehicle under various circumstances. Research in driving behavior can be used to quan-

tify various aspects such as factors leading to accidents, driving patterns of drivers

in various geographical locations, driver influence on car fuel consumption, and CO2

emissions [2], among others. Along these lines, a number of driver measurement scales

such as Driver Anger Scale [3], Driver Skill Inventory [4], etc. have been devised in

order to quantify the driving behavior. This data can also be used to perform driver

profiling and be used by driving schools, law-enforcement agencies, and so on. All these

quantifications can result in a better and safer driving environment for everyone. The

ease of availability and deployability of smartphones, and their underutilization, poses

the following question: can they can be used to fuel research interests in serving a

wide range of applications? Statistics show that one out of five people in the world

own a smartphone and this number will only increase with time. The various sensors

present in the smartphones can be taken advantage of by using them in research activ-

ities. Depth estimation and 3D reconstruction are among the most researched topics

in computer vision. The stereo camera setup acts as a so-called software sensor, which

is not an active sensor, as is the case with SONARs and RADARs, these require an

additional source of energy and may not always be feasible to implement. Computer
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vision, on the other hand, provides a whole new perspective on the given problem; it

can also be extended to solve other problems without the need for any extra hardware.

In this project, we use depth estimation using a stereo rig to achieve obstacle detection

and obstacle avoidance, which would go a step further towards the possibility of having

driverless cars. Other applications that can be implemented using the setupdescribed

here include driving assistance methods such as proximity alerting.

1.2 Overview

This thesis proposes a method to continuously determine the distance between a ve-

hicle and any other vehicle that it is following. There are several ways of doing this:

for example, using a laser range finder, sonar, or stereo vision. The former methods

mentioned above are not very cost effective, hence in this thesis stereo vision is used

to that end. Stereo vision involves the use of two cameras: the basic theory behind it

is that the information about a scene, as seen from two vantage points, can be used to

extract 3D information about the objects that are present in both the views. This is

similar to the biological process of stereopsis.

To obtain an Euclidean reconstruction of the scene, that is to get the actual depth,

the two cameras have to be calibrated. Calibration involves determining the intrinsic

and extrinsic matrices of both the cameras. The intrinsic camera matrix gives us the

focal length, image format, and principal point, whereas the extrinsic camera matrix

specifies the spatial relationship between the two cameras. The two images are then

rectified. Rectification is the process by which the images are rotated and translated

such that the image planes of both the cameras are parallel to each other. The extrinsic

camera matrix plays a crucial role in rectification. The next step in depth estimation

is finding corresponding points of interest in both of the images. Rectification aids this

process by making sure that these corresponding points lie along the same horizontal

line, thereby limiting the search to a one dimensional line. A license plate localization

technique is used restrict the image area in which the corresponding points have to

be found. This reduces the computational complexity and speeds up the process of

depth estimation. Once the corresponding feature points are found, all that remains is
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determining the depth. This is done by calculating the disparity between the images.

Disparity is the measure by which the corresponding points are shifted from one image

to the other. Since the images are rectified, the disparity is the difference between the

X-coordinates of the corresponding feature points. Once the disparity of the various

interest points is obtained, the depth at each of these points can easily be calculated

using the fact that disparity is inversely proportional to the depth. The average depth

of all the interest points is the estimate of the distance to the vehicle in front.

1.3 Outline of the document

The various aspects involved in this thesis are highlighted in each of the chapters.

Chapter 4 explains the depth estimation process, which consists of camera calibration

using a checkerboard pattern, aspects of epipolar geometry and rectification of the

input images, sparse stereo correspondence detection and matching, and finally the

estimation of depth from the sparse disparity values obtained. Chapter 5 sheds light on

the process of determining the location of the car in the image space through the use

of a license plate localization algorithm. Other intermediate processes are described in

smaller detail, but with the proper references, as and when required throughout this

document.

Chapter 6 offers an in-depth view of the implementation of the algorithm and the

experimental setup used to gather the results. This thesis, then concludes with the

results obtained from the data collected along with a discussion of these results.
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Chapter 2

Literature Survey

Much research is being done in order to quantify driver behavior in order to improve

road safety, improve fuel efficiency [2], and in general improve the overall driving ex-

perience [5]. Alessandrini et al. [2] look into the influence of the driver behavior and

driving style on the rate of CO2 emissions and the overall fuel efficiency of the vehicle.

They determined that at typical urban driving speeds, if all the drivers among the

volunteer participants had adhered to the eco-driving driving style proposed by them,

CO2 emissions could have been reduced by up to 30%. Li et al. [5] propose the use

of multiple noninvasive sensors for the purposes of the modeling of driver behavior in

various real world scenarios. They focus their study on the effects of distractions caused

by the various in-car technologies that are being developed.

Depth estimation has been one of the main focal points of computer vision research

from the early 1980’s. R. A. Jarvis [6] has explored the various approaches to range

finding in computer vision. He sheds light on the advantages and shortcomings of each

of these approaches. The various systems which are used for range estimation can

be classified into two main types. The first classification is direct or active systems.

These are systems such as ultrasonic range estimators, light time-of-flight estimation

and triangulation systems, all of which involve emission of a controlled energy beam

and reflected energy detection. The other type is passive systems, including monocular

based range finding methods including texture gradient analysis, photometric methods,

occlusion effects, size constancy, and focusing methods. Passive methods have a wider

range of applications, since they do not need an external source of energy as is the case

with ultrasonic and LASER range finding systems.

Strecha, von Hanses et al. [7] have studied in depth as to whether image based 3D
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modeling techniques can be used to replace LIDAR and other such systems for outdoor

3D data acquisition. Although the use of LIDAR has its advantages, such as the ability

to produce 3D point clouds with an accuracy of up to 1 cm, its major drawbacks are the

high costs and time-consuming data acquisition. They use laser scanning (LIDAR) to

obtain the ground truth and then compare it with the 3D reconstruction obtained from

the stereo reconstruction. Their structure and motion pipeline consists of three steps.

Firstly, sparse-feature based matching which is done using invariant feature detectors

and descriptors which are applied to the input images. Secondly, from these descriptors

the position, orientation, and the internal camera parameters are obtained using camera

calibration techniques. Once this is done, the last step is to find dense correspondences

between the two input images which have been rectified having taken into account the

radial and tangential distortions in order to obtain the complete 3D model. A variance

weighted evaluation shows that the best results for camera calibration deviate by σ and

by around 3σ for the dense depth estimation, where σ is the standard deviation. In

other words, within the horopter, the 3D modeling technique based on stereo vision has

accuracy comparable to that of the LIDAR, has almost no energy requirements as is

the case with an active range estimation system, and can be implemented at a fraction

of the cost.

Scharstein and Szeliski [8] provide a taxonomy of existing stereo algorithms which

enables their comparison, stating the pros and cons of each of them. Their analy-

sis focuses on calibrated two-frame methods. They also propose a test bed for the

quantitative evaluation of these algorithms. While their study is limited to just dense

reconstruction methods, it can be used to get an idea about the performance of the

sparse reconstruction methods as well since the only difference between the two is that

dense reconstruction methods provide a depth estimate of the entire scene, whereas the

latter provides a depth estimate at only certain points of interest in the scene. Bansal et

al. [9] aim to develop a practical stereo vision sensor that is impervious to the variability

of the high volume production processes and the impact of the unknown environmental

conditions during its operations. They provide a framework that can perform experi-

mental analysis that can provide an estimate of the physical bounds within which the
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system is supposed to produce sufficiently accurate results for range estimation using a

stereo vision sensor.

Bertozzi et al. [10] propose a different approach to the same problem being tackled

in this thesis. They propose a way of locating the vehicle in front based on the consid-

erations that a vehicle is generally symmetric, and hence can be detected by a bounding

box of a certain aspect ratio size placed in a specific region of the image. The next

step in their approach is to find gray level, and horizontal and vertical edge symmetries

within this bounding box in order to increase the detection robustness. Once this is

done they detect the bottom two corners of the a rectangular bounding box and then

the top horizontal limit is searched for, localizing the vehicle. They however propose a

monocular system which exploits specific features or patterns, such as texture, shape,

symmetry and optical flow. As observed by Lee et al. [11], this is inappropriate for an

inter-vehicle distance measurement system. Another major drawback of this approach

is that there might be certain scenarios where a grouping of distant vehicles might lead

to false detections. Apart from this their algorithm also suffers from high computation

costs.

Lowe [12] has proposed a scale-invariant feature detection and tracking algorithm

also known as SIFT, wherein a new class of object recognition system has been de-

veloped using a new class of features. These features are unaffected by changes in

image scaling, translations and rotations and are also partially invariant to illumina-

tion changes and affine or 3D projection. This method works using a staged filtering

approach. A Difference-of-Gaussian function is applied to the image. The first stage of

filtering involves locating the maxima and minima which represent key locations in the

image space. A feature vector is generated for each of these key locations such that it

describes the local image region relative to its scale-space coordinate frame. The main

advantage of the SIFT approach, apart from it being invariant to scaling, rotation, and

translation, is that it is very fast. The current implementation of SIFT, in which each

image generates around 1000 SIFT keys, takes less than a second of computation time.

Another robust feature detector, proposed by Bay et al. [13], called SURF (Speeded

Up Robust Features) is claimed to be more robust, accurate, and faster than the other
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interest point detection algorithms that had been previously proposed. The most im-

portant property of SURF is its repeatability, that is the property that the algorithm

repeatedly finds the same interest points under different viewing conditions reliably.

Another feature point detector worth mentioning is the Harris corner detector [14],

which finds the feature points based on the eigenvalues of the second-moment matrix.

But the main drawback of the Harris corner detector is that it is not scale-invariant. Sev-

eral other feature detectors are proposed like the one proposed by Kadir and Brady [15],

which focuses on low level approaches to solving the feature detection problem, and the

region detector proposed by Jurrie et al. [16], which is based on the shape rather than

the texture of the objects in the scene. The downside of most of these algorithms is

that they do not really focus on the speed aspect of the detection and matching of the

feature points.

Juan et al. [17] do a comparative study of the three main robust feature detection

methods, SIFT, PCA-SIFT and SURF. K Nearest Neighbors (KNN) and RANSAC

(RANdom SAmple Consensus) are used to analyze the effectiveness of each of the above

algorithms in recognition. The repeatability measurements and the number of correct

matches produced are used as parameters of their comparative study. From their study

it is evident that for the purposes of this thesis work, SURF was the ideal approach

to be pursued. It is the fastest of the three, good at scale changes and illumination

changes and is also invariant to affine transformations.

Kyto et al. [18] have devised a method to measure the accuracy of the depth obtained

using a stereo camera based on stereoscopic vision. The accuracy of depth, as obtained

by a stereo algorithm, is affected by several factors such as errors in calibration and

matching of the corresponding point pairs. The positioning and mounting of the stereo

cameras should be such that there is no relative motion between them and even if there

is, it should be traceable [19]. They propose that the accuracy of a stereo camera must

be evaluated in terms of both the absolute depth measurement accuracy and the depth

resolution.

Kwaśnicka and Wawrzyniak [20] propose an algorithm for license plate localiza-

tion and recognition which works under various environmental conditions and is not
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restricted to a certain type of plate. In this algorithm, license plate localization is

achieved by determining the presence of what is called the license plate signature, which

is a characteristic sequence of minimums and maximums in the brightness which is ob-

served when a horizontal scan line, passing through the entire image, passes through the

license plate region. Once all the possible signatures are found, further grouping and

eliminating algorithms are applied in order to narrow the list of possible candidates,

until the plate is successfully located.

Bulugu [21] proposes a method which takes advantage of the standard colors of

the Tanzanian license plates by simply trying to locate regions in the image with black

writing on a white or yellow background. Shapiro, Dimov et al. [22] propose an adaptive

method for license plate localization purposes. Their method involves edge detection,

rank filtering of the aforementioned edges, plate candidate segmentation and plate

candidate verification, all done in order to localize the plate region in the image.

Mahini et al. [23] propose another robust approach to solving the plate localization

problem. Their approach is based on the different features of the license plates in order

to deal with the complex situations, like varying illumination, shadows, scale, rotation

and weather conditions, that are faced in the real world. The candidates are determined

based on edge detection, morphological operations, and color analysis of the images.

The incorrect candidates are then eliminated based on the image features and the

correct license plate features are obtained. The algorithm used in this thesis is similar

to the one proposed by them and makes use of the edge detection and morphological

operations as suggested by them.
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Chapter 3

Technology Used

OpenCV [24] is used in order to implement and test the algorithm that is being pro-

posed. OpenCV is a computer vision library of programming functions developed by

Intel mainly for real-time computer vision. The primary interface of OpenCV is in

C++ with additional interfaces in Matlab, Java and Python. Some of the areas in

which OpenCV [25] is widely used are:

1. 2D and 3D feature toolkits,

2. Facial recognition,

3. Gesture recognition,

4. Human-computer interaction (HCI),

5. Object identification,

6. Segmentation and recognition,

7. Stereopsis stereo vision: depth perception from two cameras,

8. Structure from motion (SFM),

9. Motion tracking, and

10. Kalman filtering

The complete documentation and support for OpenCV can be found online [26].

The features of OpenCV have been summarized and depicted by Hewitt [27]. OpenCV

was first released in 1999. The initial requirement included the use of Intel’s Image

Processing Library which was later removed, OpenCV can now be used as a standalone
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library. OpenCV has support for many platforms like Windows, Linux and recently

Mac OS X. Its interfaces are platform independent. A brief summary of the major

functionalities of OpenCV are given below.

1. General computer vision algorithms

Includes implementation of many standard computer vision algorithms without

having to code them yourself. These include edge, line, and corner detection, el-

lipse fitting, image pyramids for multiscale processing, template matching, Fourier

transform and more.

2. High-level computer vision modules

Includes several high-level capabilities like facial recognition, and tracking,optical

flow (using camera motion to determine 3D structure), camera calibration, and

stereo vision.

3. Machine learning modules

Computer vision applications often require machine learning or other AI methods.

Some of these are available in OpenCV’s Machine Learning package.

4. Image sampling and view transformations

OpenCV includes interfaces to process a group of pixels as a subunit like extract-

ing image subregions, random sampling, resizing, warping, rotating, and applying

perspective effects.

5. Math routines

Includes support for many algorithms from linear algebra.

6. Data structures and algorithms

Includes support to manipulate large data sets like lists, collections and trees.

Because of the plethora of computer vision related functions readily available in the

OpenCV libraries and also the ease of implementation, OpenCV is an ideal tool for all

computer vision related applications.
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Chapter 4

Stereo Vision Based Depth Estimation

Depth estimation is the most important aspect of this thesis. It is through depth

estimation, along with the license plate localization algorithm explained in Chapter 5,

that the distance to the vehicle in front is estimated. In this chapter we look at the

various factors that are involved in the actual depth estimation process that is being

proposed. The process of depth estimation is done over several stages as elaborated in

the following sections of this chapter.

4.1 Camera Calibration

Camera calibration is the process of estimating the spatial relationship between the two

cameras: that is, determining the positions of the cameras that make up the stereo set

up with respect to one another. This is usually done by using a calibration pattern, such

as a checkerboard pattern where the size of the checks is known, and taking pictures

of this pattern in different orientations and distances from the cameras. A simple

contrast based algorithm can be used to detect the black-white intersections on the

checkerboard. Using the disparities between these intersection points in both images

the rotation and translation matrices between the two cameras can be determined

and hence the coordinate systems of each of the cameras can be transformed into a

common coordinate system. The algorithm used here is based on the OpenCV [24]

implementation based on [28] and [29].

The functions in OpenCV use the pinhole camera model. A pinhole camera model,

as seen in Figure 4.1, describes the mathematical relationship between the coordinates

of any 3D point in the world and the 2D coordinates of the image plane onto which this

3D point is projected. The name pinhole camera is due to the fact that the aperture
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Figure 4.1: Pinhole camera model

Figure 4.2: Calibration pattern as seen from both the cameras

of the camera is assumed to be a point and no lenses are used to focus light [30]. The

3D point is projected onto the 2D image plane using a perspective transform:

s×m′ = Mint × [R|t]×M ′ (4.1)

s×


u

v

1

 =


fx 0 cx

0 fy cy

0 0 1

×


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

×


X

Y

Z

1


, (4.2)

where, (X,Y, Z) are the coordinates of a 3D point in the world coordinate space, (u, v)

are the coordinates of the projection point in pixels, A is the camera matrix, or a matrix

of intrinsic parameters, (cx, cy) is a principal point that is usually at the image center,

(fx, fy) are the focal lengths expressed in pixel units. The intrinsic matrix parameters,
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Figure 4.3: Camera calibration

as specified by M int, do not depend on the scene viewed. So once it has been estimated,

it can be reused as and when necessary as long as the focal length remains the same

and the stereo setup is not disturbed. The [R|t] matrix describes the rotation and

translation of the camera around a static scene, or vice versa. That is, [R|t] is used in

order to translate a point (X,Y, Z) into a coordinate system that is with respect to the

camera.

In the real world, camera lenses usually have some form of distortion, mostly radial

and in some cases tangential. Distortion parameters are incorporated into the above

model in order to account for this. As explained in the OpenCV documentation [24], the

transformation given by Equation 4.2, taking into account the distortion parameters,

as given in the OpenCV documentation [24], results in


x

y

z

 = R×


X

Y

Z

 + t, (4.3)

which implies

x′ = x/z (4.4a)

y′ = y/z (4.4b)

x′′ = x′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ 2p1x

′y′ + p2(r2 + 2x′2) (4.4c)

y′′ = y′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ 2p1y

′y′ + p2(r2 + 2y′2), (4.4d)

where
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Figure 4.4: Epipolar Geometry [1]

Figure 4.5: Rectified Images

• r2 = x′2 + y′2,

• u = fx ∗ x′′ + cx,

• v = fy ∗ y′′ + cy,

• k1, k2...k6 are the radial distortion components, and

• p1 and p2 are the tangential distortion components.

4.2 Epipolar Geometry and Rectification

By assuming the pinhole camera model (as described in Section 4.1) for both the cam-

eras, we can arrive at a number of geometric relations between the 3D point and the
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2D images from the two cameras. The geometry that deals with this is called epipolar

geometry and is extensively used in stereo vision. The epipolar geometry can also be

described as the intrinsic projective geometry between the two views. It is independent

of scene structure, and only depends on the cameras’ internal parameters and relative

pose. Figure 4.4 depicts two cameras, with camera centers OL and OR, looking at a real

world 3D point X. The points xL and xR represent the projections of the point X onto

the image planes of the left and the right cameras respectively. The points X, xL and

xR all lie on the same plane. This plane is called the epipolar plane. This geometry is

usually motivated by considering the search for corresponding points in stereo match-

ing. The process of determining the corresponding point pairs in both the images can

computationally be very intensive as, for each point in any one of the images, called

the source image, the algorithm has to search for a similar point in the other. This

point in the second image, called the search image, can be located anywhere, hence

a two dimensional search has to be carried out. Suppose we know the point xL, and

want to figure out how its corresponding point xR is constrained. We know that the

ray corresponding to xR lies in the epipolar plane, hence the point xR lies on the line

of intersection of the epipolar plane and the right image plane. This line of intersection

is known as the epipolar line. Given the camera internal and external matrices and the

point, we can estimate the epipolar line in the right image, thereby constraining the

search space to this 1D line.

The process can be further simplified by using a process called rectification. Image

rectification is the process by which two or more images are projected onto a common

image plane. This process rectifies the distortion by transforming the images into a

standard coordinate system in which the images are rotated and translated such that

the image planes of both the cameras are parallel to each other, thereby resulting in

the epipolar lines being parallel to the baseline connecting the two cameras. This is

done by moving the epipoles to infinity. As a result of this, the image planes of both

the cameras are made parallel to each other. A set of rectified images of the calibration

pattern is as shown in Figure 4.5.
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4.3 Sparse Stereo Correspondence

Stereo correspondence is the problem of discovering the closest possible matches be-

tween two images captured simultaneously from two spatially separated cameras. There

are two main ways of doing this:

1. Dense stereo matching, and

2. Sparse stereo matching.

Dense stereo matching involves trying to match as many pixels as possible. This is

useful if detailed information about the scene is required or if the entire scene is being

reconstructed. This method is computationally very expensive. Some slightly efficient

algorithms such as Block matching, Semi Global Block Matching etc. have been in-

corporated into OpenCV [31]. Another way of working around this would be to have

dedicated hardware which runs a brute-force algorithm. However, for the requirements

of this thesis, a Sparse stereo matching algorithm suffices since the complete 3D recon-

struction of the scene is not the objective. As we are just interested in the vehicle that

is directly in front, the sparse stereo matching algorithm is run on the Region of Inter-

est(ROI) as returned by the license plate localization algorithm, explained in Chapter 5,

thereby improving the efficiency and also automatically localizing the location of the

vehicle in the image scene.

Sparse stereo correspondence involves searching for, and locating feature points of

interest, that is highly distinctive points, in one of the images. Let us call this image

the search image. The goal is to find the corresponding points in the other image.

SURF (Speeded Up Robust Features) method is being used here to find the point

matches between the left and the right image as explained in Section 4.4. It is a

robust local feature detector. It is similar to SIFT (Scale Invariant Feature Transform)

extractor, but is faster and more robust. SURF is an algorithm that extracts some

unique keypoints and descriptors from the image. The detection and matching process

can be done at high speeds, making it a viable option for real time applications. Object

detection using SURF is scale and rotation invariant, and as a result the object can
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Figure 4.6: SURF Matching

be detected in any orientation. The detector used is based on the Hessian matrix, and

as a result the computation time and accuracy is improved. The determinant of the

Hessian matrix is used for selecting the location and the scale. Further details of the

SURF can be seen in [13]. SURF, along with the brute force matching algorithm given

by the BFMatcher class in OpenCV [24] is used to do so. RANSAC is then used for

the effective removal of the outliers, hence obtaining a set of corresponding matches

with high confidence. The output of the SURF matching is shown in Figure 4.6.

4.4 Depth Estimation

Depth estimation is the most important step in this project, wherein the actual distance

to the vehicle in front is determined. In order to find the depth, we first need to

determine the disparity of the corresponding points. The disparity is the apparent shift

in the locations of the interest points along the x-axis in a rectified pair of stereo images.

The disparity can be seen in Figure 4.7, which is obtained by superimposing the image

from one of the cameras on top of the other. For the purposes of this thesis, a sparse

disparity map would suffice as we are just looking to find the depth of the car and do

not require the entire depth field. Hence we use the SURF feature detector along with

the brute force feature matcher in order to find the corresponding points in both the

rectified images. Once we get the corresponding features from both the rectified images,

we find the difference between their x-coordinates thereby obtaining disparity at that

point. In order to make the feature detection more robust, we use RANSAC (RANdom

SAmpling and Consensus) in order to filter out the outliers, thereby obtaining better



18

Figure 4.7: Illustration of disparity

point correspondences.

Once the disparities are determined, the corresponding distances at each set of

obtained point correspondences is calculated using the formula,

distance = f ·B/d, (4.5)

where f is the focal length in pixels, B is the baseline length, that is the distance between

the two camera centers and d is the disparity at the corresponding set of points being

considered.

Summarizing the above points, the individual frames from each of the video streams

are extracted and then the frames are rectified in order to remove tangential and radial

distortions that might exist due to imperfections of the lens. The camera intrinsic and

extrinsic matrices are used in order to perform rectification. Then a SURF detector is

used along with the brute force matcher which has been implemented in OpenCV [24] in

order to find the feature points and their corresponding point matches. From the point

matches thus obtained, the disparity is calculated and thus the distance is estimated

from the disparity.
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Chapter 5

License Plate Localization

In this thesis, we propose a novel license plate localization algorithm, which is used in

order to localize the region of the image in which the car is located. The algorithm is

designed so as to take advantage of the various characteristics of the license plate such as

its rectangular shape, the fact that it usually has dark writing on a lighter background,

the fact that in the video feed it is usually seen near the center of the frame, and

others. A feature-based license plate localization algorithm that is robust and effective

in different image capturing conditions, similar to the ones used by Mahini et al. [23] and

Chhabada et al. [32] is implemented. The algorithm is robust and can overcome various

undesired conditions such as out of focus images, different illumination conditions, and

variations in the orientations of the license plate with respect to the cameras. The

various steps involved in plate localization are as described in the following sections.

5.1 Preprocessing

Before carrying out the license plate localization, the incoming video feed has to be

preprocessed, in order to improve the quality of the image feed. Firstly, the frames

are grabbed from the video feed and then converted into grayscale. This is followed by

histogram equalization, thereby enhancing the contrast of the image.

5.2 Edge detection using the Sobel Operator

The Sobel operator is used in edge detection algorithms [33]. It is a discrete differenti-

ation operator that computes an approximation of the gradient of the image intensity

function. The Sobel operator involves two kernels, one for vertical changes and one for
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Figure 5.1: Sobel operators applied to the grayscale input image

horizontal changes. It is given by the following formula:

Gx =


−1 0 1

−2 0 2

−1 0 1

 ∗A (5.1)

Gy =


1 2 1

0 0 0

−1 −2 −1

 ∗A (5.2)

where Gx and Gy are two images that contain the horizontal and vertical derivative

approximations respectively, that is the horizontal and vertical edge maps. Once the

individual components are obtained, at each point in the image we calculate the ap-

proximation of the gradient at that point using the formula:

G =
√
G2

x +G2
y. (5.3)

Using the Sobel operator, we obtain the edges present in the input image, and the

obtained edge map is stored for further processing. The Sobel edge map obtained is

shown in Figure 5.1.
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Figure 5.2: Morphological close operator applied to the original input image

5.3 Morphological Close Operation

The morphological close operation is a process useful in removing small holes (dark

regions) from an image. It is obtained by dilating and then eroding an image file. The

effect of this operator is to preserve background regions that have similar a similar shape

to the structuring element, or that can completely contain the structuring element, while

eliminating all other regions of the background pixels. Here a structuring element of

size [1 × 2] since the aspect ratio of a standard license plate in the USA was found to

be 1:2. The closing operator is applied to a grayscale version of the input and then the

resulting image is blurred using a median blur filter of size [7× 7].

5.4 Thresholding

The output of the closing operation is then subject to a thresholding, yielding a binary

image consisting of just the candidate regions. After having run the algorithm over

several images under various conditions, a threshold of 150 was found to be ideal. After

the thresholding, salt-and-pepper type noise is removed by running a median filter

of size [9 × 9] over the image. The median filtering was done using the medianBlur
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Figure 5.3: First set of candidates extracted

function from OpenCV. The thresholded version of the output of the close operator

after blurring is shown in Figure 5.2. This was done using the threshold [24] function

present in OpenCV.

5.5 Extracting the Possible Candidate Regions

Once the thresholding has been performed, the edge map obtained using the Sobel

operator is multiplied by the thresholded image obtained in the previous step. The

possible candidates obtained are as shown in Figure 5.3. This was done using the

Mat::mul operator [24] present in OpenCV.

5.6 Contour detection

The next step was to separate the various candidate regions in the thresholded image.

This was done using the findContours [24] function in OpenCV. Once all the contours

were obtained, the next step was to approximate the contours to polygons, using the

function approxPolyDP, and only such polygons were selected which have at least four

edges. Ideally, only those polygons need to be selected which have just four edges, but it
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Figure 5.4: Possible candidate regions

was observed that under different lighting conditions and when there were shadows on

the license plate, sometimes the actual license plate region was approximated to poly-

gons consisting of more than four edges. Hence in order to take this into consideration,

all polygons with more than four edges were taken into consideration.

Once the polygons were obtained, minimum bounding boxes were drawn around

each of the polygons (bounding boxes are rectangles of minimum area required to close

in the contours), resulting in a refined set of candidates from the previous set.

5.7 Candidate elimination

The set of candidates obtained from the previous steps were subjected to progressive

elimination based on the following criteria:

• The plate region must neither be too small nor too big. For this the sizes of

the plate in the images, for the smallest and the largest distances that could be

detected, were used as constraints.

• The width of the detected region should be approximately twice that of its
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Figure 5.5: The localized plate region

Figure 5.6: Correct Localization
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Figure 5.7: Incorrect Localization

height [34].

• The average intensity of the plate region must be light enough.

• The intensity of a line passing through the middle of each of the bounding boxes,

must have the highest number of fluctuations, as the license plate has dark char-

acters on a light background.

• The region of the license plate is usually found to be somewhere close to the center

of the image and in the lower half. Thus we neglect all candidates that are near

the sides and also near the top of the image.

Based on the above criteria, the most eligible candidate area to contain the license

plate was selected. The final selected candidate is shown in Figure 5.5.

Once this was done, the Region Of Interest (ROI), the region containing the license

plate, was passed to the SURF function. As a result of this, only the distance estimate

to the vehicle in front is made.

In summary, the localization algorithm looks for the edges in the image and deter-

mines the possible regions of the image where dark characters on a light background is
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present. Once this is done, the possible candidates are determined and based on the

criteria stated above, one of those candidates is selected to estimate the location of the

license plate in the image. As can be seen in Figure 5.6 the license plate was success-

fully localized using the above stated algorithm. The accuracy of the algorithm varied

slightly depending on the environmental conditions such as different illumination levels,

angles at which the license plate is viewed by the stereo setup and other factors such

as the contrast between the color of the vehicle and that of the license plate. It was

found that the accuracy of the algorithm was better for cases where the contrast was

high. For example, localization was easier for dark colored cars as opposed to those of

lighter colors. Taking into consideration all the factors mentioned above, the algorithm

was found to work with an average accuracy of 85.71%.
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Chapter 6

Implementation

This chapter deals with the various aspects of implementation, such as the experimen-

tal setup, the software functions used for the implementation and the data collection

methods incorporated in order to test and verify the proper working of the algorithm.

The following sections provide an in-depth view into these aspects.

6.1 Experimental Setup and Equipment Used

Two Google Nexus 4 Android phones were used in the stereo rig. Two phones of the

same kind were chosen so that the focal lengths of the cameras were the same, as this

makes the distance estimation process simpler. Another reason for using the same kind

of phones was to make sure that the video capture was done at the same frames per

second in both the phones. The stereo rig was mounted inside a car using phone mounts

looking out of the front windscreen. The initial plan was to have the stereo cameras

looking out of the rear window, but some states in the USA do not require license plates

on the front. Hence the decision was made to place it in the front looking out of the

windscreen. It was important to prevent any relative motion between the two phones,

as this would ruin the calibration results and lead to erroneous values of estimated

distances. This was an especially difficult task since meticulous care had to be taken

in order to prevent the vibrations experienced by the moving car from disturbing the

calibrated stereo rig. Two phone mounts placed at separation of 10 cm was used for

this purpose. The distance of 10 cm was arrived at by setting an effective range of 1

m to 10 m and then calculating the baseline length required. This calculation is as

elaborated below:

d = b ∗ f/z (6.1)
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Figure 6.1: The mounts used for the cameras

where,

1. d is the disparity; the minimum disparity is chosen as 6 pixels and the maximum

disparity is chosen as 64 pixels,

2. b is the baseline length (this has to be calculated),

3. f is the focal length, which is obtained from the intrinsic camera matrix and was

found to be 630 pixels

4. z is the distance; the range of distance is assumed to be 1 m to 10 m.

Using the above values in the Equation 6.1, it was determined that the baseline

length should be 10 cm for the above given parameters. The actual setup of the stereo

rig is shown in Figure 6.1.

6.2 Implementation of the Algorithm

The implementation of the algorithm is depicted by the flow chart shown in Figure 6.2.

Several functions present in the OpenCV [24] library for C++ were used for the imple-
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Figure 6.2: Flowchart of the algorithm
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mentation of both the depth estimation and the license plate localization stages of this

thesis. The functions used for the depth estimation were:

1. The stereo calibration tutorial code provided by the OpenCV tutorials [26]

and the open source code provided by Martin Peris [35] were used in order to

obtain the intrinsic and extrinsic camera calibration parameters.

2. The filestorage class, which encapsulates all the information necessary for writ-

ing or reading data to/from an XML/YAML file [24], is used to save the camera

calibration parameters into, and then read from, an XML file.

3. The functions initUndistortRectifyMap() and remap() undistort the images

and provide the rectification mapping that needs to be applied to the images as

explained in Section 4.2. Undistorting removes the effects of radial and tangential

distortion that may be present.

4. The SurfFeatureDetector class is used in order to detect the feature points in

both the image. This is done in order to find the sparse correspondence matches

between the images from both the cameras.

5. The BFMatcher class, which uses the brute force matching algorithm in order to

find the sparse correspondence matches mentioned above.

For the license plate localization algorithm, the OpenCV functions used were:

1. The Sobel() function which is used to find the vertical and horizontal derivative

approximations, thereby achieving the edge detection.

2. Various morphological transformation operations such as closing, dilation, erosion

etc. which were explained in more detail in Chapter 5.

3. The Canny() function, in order to perform canny edge detection, the output of

which serves as an input to the findContour function. The findContour function

finds the contours which may be possible candidates for the license plate region

in the image.
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4. The minRect() function was used in order to draw minimum bounding rectangles

around the detected candidates.

6.3 Data collection

The data collection was carried out under two different scenarios, with the cameras

mounted in a Honda and a Toyota during these two phases of data collection respec-

tively. A black colored Ford, silver colored Toyota, and a dark blue Mazda was used

for testing.

1. The first scenario involved driving the car towards and away from a parked car,

with markers placed on the road at regular intervals. The first set of markers

were placed at 1.6764 m or 5.5 feet from the parked car, the next set at 2.4384

m or 8 feet, then 3.048 m or 10 feet and so on. The car with the cameras was

made to back up away from the parked car, stopping at each of these markers

and images captured from both the cameras simultaneously. The whole process

was repeated five times, so as to get an estimate of the confidence levels of the

distance estimated, and also calculate the error in the estimation. This set of

experiments also gave an indication of the maximum and minimum range of the

algorithm. Cars of different colors such as black, dark blue and silver were used

for data collection. The tests were run during both day, and night. This was done

to test the robustness of the algorithm with varying illumination levels.

2. The second scenario involved situations where both the cars are in motion. This

included instances when the car in front is not directly in front, which can happen

on curved roads or while making turns. This was done in order to determine if

the algorithm works as efficiently for moving vehicles as it does for stationary

ones. This set of experiments was conducted with the different conditions which

involved dark-colored and light-colored cars and also varying levels of illumination

experienced at different times of the day. This was done to test the robustness of

the proposed algorithm. Apart from that several other conditions such as one car

following the other in a straight line, along turns, when the car rapidly accelerates
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from the other car or when it rapidly decelerates, were all taken into consideration

during the testing process. The tests were conducted in a parking lot, where in

the cars were driven around one behind the other. The path taken by the cars

included two long straight lines, along with two turns.

The various tests proposed above were conducted, the results obtained were recorded

and analyzed as explained in detail in the next chapter.
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Chapter 7

Results

In this chapter we record the distance estimates obtained from the two data collection

scenarios described in the previous chapter. The results obtained are recorded and then

analyzed in a detailed manner as explained in this chapter.

In the first stage mentioned in the Chapter 6 involving one stationary car, data

was collected in order to determine the error in the estimated distances. Markers were

placed at various points along the road in between the two cars. The mounts were used

to fix the cameras in one of the cars, thereby forming the stereo camera. This was done

such that the baseline distance, the distance between the two camera centers, was 10

cm as was calculated in Chapter 6. The first set of markers were placed at 1.6764 m

or 5.5 feet from the parked car, the next set at 2.4384 m or 8 feet, then 3.048 m or

10 feet and so on. The images from the stereo rig are fed as input to the algorithm.

The algorithm, using the predetermined camera calibration parameters, rectifies the

images and then applies a sparse descriptor matching algorithm to the images. SURF

is used to find the descriptors in the source image and then a brute force matcher is

used in order to find the corresponding points in the other image. The ROI for the

SURF algorithm is determined by the license plate localization algorithm as explained

in Chapter 5. The disparity at these intervals was calculated using the formula given

by

d = PLx − PRx, (7.1)

where, d is the disparity that is given by the difference of PLx and PRx, which are

the X-coordinates of the interest point in the left image and its corresponding point

in the right image. The disparity thus obtained from Equation 7.1 is then used in

the depth calculation formula as given by Equation 4.5. The readings obtained are
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tabulated and as shown in Table 7.1 along with the actual distances and the error

percentages respectively. Figure 7.1 depicts the error calculated above with respect to

the distances. Here the actual distance estimation is done post hoc, hence the whole

experiment process is divided into two stages, the data collection stage and the distance

estimation stage.

7.1 Data Collection

The steps involved in the data collection stage are as follows:

1. The first step was to calibrate the cameras and save the calibration parameters

thus obtained.

2. Then the car with the stereo rig mounted inside, was positioned at 5.5 feet behind

the parked car.

3. An Android application was used in order to synchronize the picture taking pro-

cess. The images are taken at the exact same instance.

4. The car is then moved to the next marker and step 3 is repeated again.

5. This process is repeated several times at each of the markers.

7.2 Distance estimation

Having collected the data, we move on to the second stage of the experimentation,

namely the distance estimation stage. The steps involved in this stage are as follows:

1. The images are fed as input to the algorithm along with the camera calibration

parameters obtained during step 1 of the previous stage.

2. The average of the distances at all the feature points found inside the ROI, ob-

tained by the license plate localization, is calculated.

3. The above step is repeated for all the sets of images that were taken at each

of the markers. The average value of the distance estimated at each of them is

calculated and tabulated.
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Table 7.1: The average errors for different distances
Actual Distance (in m) Estimated Distance (in m) Error

1.6764 1.599445 0.0459
2.4384 2.40532 0.0135
3.048 2.808225 0.078666
4.2672 3.52961 0.17514
4.8768 3.93870 0.19236
5.4864 4.34157 0.208666
6.096 4.6659 0.2345987

Table 7.2: Confidence intervals for the various distances estimated
Actual Distance (in m) 1.6764 2.4384 3.048 4.2672 4.8768

Trial 1 1.62988 2.52902 2.80822 3.52961 3.93870

Trial 2 1.56901 2.33658 2.82546 3.84975 4.88456

Trial 3 1.42315 2.56821 2.97146 3.68974 4.99854

Trial 4 1.53014 2.48929 3.12458 4.02548 4.25698

Trial 5 1.69058 2.28162 3.25648 4.15897 4.22580

Std. Dev 0.086902 0.101386 0.147553 0.212764 0.506291

Mean 1.56855 2.44094 2.99724 3.85071 4.46091

Confidence Interval 0.076172 0.088868 0.129335 0.186496 0.443784

Figure 7.1: Error vs. Distance
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Table 7.3: The estimated distances at various time instances
Time (s) Distance (m)

70 2.3697
80 4.8890
90 3.3965
100 5.1664
110 5.2589
120 5.4007
130 3.8795
140 7.3131
150 5.0511
160 1.6764

For the second method, the calculation stage of the experiment remains the same,

but there is a slight difference in the data collection stage. For the data collection stage,

both the cars were driven around a parking lot, with one following the other and the

cameras. This time they were used to record a continuous video stream of the car in

front. The frames from the video captured were fed as input to the algorithm along with

the calibration parameters. In order to reduce the computational load, we process every

100th frame from each of the cameras. With the 60 fps video recording capabilities

of the Nexus 4 phones used, this works out to one distance estimate every 1.667 s. As

before, the license plate ROI is determined, the sparse point correspondences found

using SURF within the ROI, and the depth estimated by using Equation 4.5, where

the disparity is determined by using Equation 7.1. The values for the distance between

the cars at different time instances are shown in the Table 7.3. Here, the frames are

sampled at 10 second intervals and the distance estimated at each of those instances.

The first sample is made at 70 s, the next sample at 80 s and so on for the remaining

length of the video. The distance estimated at each of these time instances is plotted

against the time and is shown in Figure 7.2

7.3 Analysis

The distance estimates thus obtained as compared to the actual distances are as shown

in Table 7.1. Up to 12 feet, the algorithm output has an error percentage of less than

10% and from 12 feet onwards, this error is seen to increase to about 17 % to 25 %.
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Figure 7.2: Distances estimated with both cars in motion

Figure 7.3: The estimated distances with both cars in motion

Figure 7.4: The estimated distances with one car stationary
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This is because the range of effective distance calculation is influenced by the baseline

distance. To obtain distances beyond the above given range, the cameras have to be

placed further apart, but by doing this we sacrifice the distance calculation capabilities

of the nearby objects since the field of views intersect at a greater distance from the

cameras as the baseline length increases. The ideal baseline length which was calculated

to be 10 cm, was used.

The first set of experiments was performed with one stationary car and then taking

pictures from the stereo camera, which was mounted in the other car, at a known set of

distances. This was done in order to get the ground truth values of the distances and to

measure the accuracy of the algorithm. The estimated values, shown in the Table 7.1,

show the most effective range to be up to 4.5 m or 12 feet. The error rates here are less

than 10 %. Beyond this 12 feet range, the average error is seen to increase to about

25 %. In order to calculate the confidence interval of the distance estimates, we make

use of five sets of data for the same distance from the vehicle in front. Initially we start

off at the first marker, and then go all the way back to the last marker, stopping at

each marker in order to record the data. Once this is done we repeat the process four

more times, tabulating the distance estimates obtained during each of the trials. Once

this is done, the mean and the standard deviation is calculated and then by setting a

confidence level of 95%, we calculate the confidence interval of the estimates of each

of the distances from the vehicle in front. The confidence intervals, for the distances

estimated is shown in Table 7.2.

In the second set of experiments, with both the cars in motion, the same set of

experiments as before were conducted and the results obtained were recorder. Variations

in the distances at various instances of time were observed, owing to various conditions,

such as turns, straight lanes, disturbances such as other vehicles, etc. The license

plate localization algorithm tended to produce erroneous values when there were some

disturbances in the frames, such as when other vehicles were present in the scene.

This was taken care of by comparing the distance values with the previously obtained

value, and if the current distance estimate showed a variation of greater than 3 m

from the previous estimate, then the current estimate was ignored, and the next set
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of frames were read and the distance estimated again. It should be kept in mind that

the algorithm is most efficient up until a distance of around 4.5 m or 12 feet as was

determined by the previous set of experiments. Beyond this the error percentage tends

to increase significantly and was found to be around 25 % for distances of around 20

feet.
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Chapter 8

Conclusion and Future Work

This thesis provides a way of measuring the distance to any vehicle that is in front of

it by means of depth estimation using a calibrated stereo camera setup. This is then

used as an effective data collection tool from volunteer participants, in order to create

a following distance logger. The distance estimates obtained will serve as data for

research in quantifying driver behavior. The effective range of the algorithm is limited

by the horopter, which is dependent on the baseline distance of the stereo setup. By

using a larger baseline length, the effective range can be increased. However, this is not

always feasible because a larger baseline implies smaller overlap between the two image

scenes, thus the stereo matching process is more difficult. Not only this, but the usage

of a larger baseline also results in completely missing the estimation of depth of objects

close to the cameras. The individual frames grabbed from the video feeds of both the

cameras are first rectified and then SURF is used to find feature points in the frames

from one of the cameras and then find the corresponding point matches in the other.

RANSAC was used to filter out the outliers from the point matches thus obtained.

Once the point correspondences are determined, the disparity at each of these points is

determined and then from this the depth at each of these points is determined. Since

all these points lie within the region containing the license plate of the vehicle in front,

an average of all the distance estimates at the individual points is taken and is output

as the distance to the vehicle in front. The stereo depth estimation process used results

in a computationally less intense algorithm.

The ROI of the image which is fed to the SURF feature detector algorithm is

determined by the license plate localization algorithm that was developed. This ensures

that the location of the points needs to be determined in just a small portion of the
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image as opposed to the entire image and hence reduces the computational load of

the algorithm to a certain extent. The license plate localization proposed is a robust,

feature-based algorithm, which relies on the fact that the license plate is rectangular

and also that it usually consists of dark characters present on a lighter background.

This makes this implementation almost universal, which implies that the algorithm is

not restricted to any one particular kind of license plates. It was observed that the

license plate localization algorithm works exceptionally well at night, when there is not

much ambient light and when the headlights of the vehicle in which the cameras are

mounted are focused on the license plate of the vehicle in front. This can be attributed

to the fact that the reduced amount of ambient light makes other objects, that may

interfere with the proper functioning of the algorithm, not visible and the license plate

and the vehicle in front is the main object in focus of the headlights. Hence detecting

it becomes less error-prone.

8.1 Future Work

In order to further improve the accuracy of the depth estimation process, one could use

the accelerometer data already available from the Android phones and look to negate

the effects of the minute vibrations that may occur and result in the displacement of the

cameras with respect to each other. Another area where the accuracy might be improved

is the license plate localization algorithm which can be made more robust to changing

illumination levels, for example when there are shadows across the face of the license

plate and for video feeds taken during different times of the day with varying levels of

ambient lights. It was observed that the presence of shadows severely deteriorated the

accuracy of the algorithm and as a result the ROI which localized the car in the image

frame would not be detected or the detected region would be incorrect. Another area

of development could be making it possible for the license plate localization algorithm

to differentiate between other regions in the image that have dark characters on a light

background, for example billboards, from the license plates. This is taken care of, to a

certain extent, by confining our search for the license plate in the bottom two-thirds of

the image and also by neglecting the candidates that occur closer to the left and right
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edges of the image. Further work would include making this whole process real-time.

This can be achieved by using the OpenCV library for Android and using one of the

two phones used in the stereo setup to process of the image frames from the video feeds

of both the cameras.
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