Staff View
Examination of microstructural liquid phase behavior during heat treatment of doped-lead telluride thermoelectric materials

Descriptive

TitleInfo
Title
Examination of microstructural liquid phase behavior during heat treatment of doped-lead telluride thermoelectric materials
Name (type = personal)
NamePart (type = family)
Langan
NamePart (type = given)
Sean McCoy
NamePart (type = date)
1987-
DisplayForm
Sean McCoy Langan
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Birnie
NamePart (type = given)
Dunbar P
DisplayForm
Dunbar P Birnie
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Haber
NamePart (type = given)
Richard A
DisplayForm
Richard A Haber
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Cosandey
NamePart (type = given)
Frederic
DisplayForm
Frederic Cosandey
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2014
DateOther (qualifier = exact); (type = degree)
2014-10
CopyrightDate (encoding = w3cdtf)
2014
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Thermoelectric materials offer a potentially valuable source of energy by converting a temperature gradient to electricity. Recent progress in alloying, doping, and nanostructuring these materials has increased their figure of merit, bringing this technology closer to widespread use. However, the costs associated with processing and questions about fatigue reliability during long-term use could slow the development process. Liquid phase microstructure shapes are critical for sintering; further understanding of these shapes could potentially be used to improve mechanical response and lower overall processing costs. Here we review our progress with respect to the microstructure development of the material depending on heat treatment and composition. Thermoelectric materials made up of a PbTe/Ag2Te system were produced by heat treatments aimed at producing a liquid phase in the material. These samples were then examined through scanning electron microscopy, in an attempt to better understand the microstructure and track the liquid phase. This study was met with mixed results. While the process outlined does seem to produce faster sintering than undoped samples, full densification was not achieved. Furthermore, though the silver telluride was identified in the sample through the use of backscattering detection and EDS, the desired accuracy in finding the liquid phase was not achieved. However, the silver telluride was found to penetrate the grain boundaries, create secondary phases and form nano-precipitates, a development that is extremely promising as these features could all scatter phonons and raise the figure of merit of the material.    
Subject (authority = RUETD)
Topic
Materials Science and Engineering
Subject (authority = ETD-LCSH)
Topic
Thermoelectric materials
Subject (authority = ETD-LCSH)
Topic
Microstructure--Materials
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_5859
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xiii, 88 p. : ill.)
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Sean McCoy Langan
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3542M8T
Genre (authority = ExL-Esploro)
ETD graduate
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Langan
GivenName
Sean
MiddleName
McCoy
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2014-09-18 22:06:34
AssociatedEntity
Name
Sean Langan
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024