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ABSTRACT OF THE DISSERTATION

CLASSIFICATION MODELS FOR IDENTIFYING SKIN SENSITIZERS USING IN
VITRO ALTERNATIVES TO ANIMAL TESTING

By SEROM LEE

Dissertation Director:

Martin L. Yarmush, MD, PhD

Allergic contact dermatitis (ACD) is an inflammatory disease that occurs

when chemicals known as sensitizers come in contact with the skin.  Recent

European legislation prohibits animal based screens of cosmetic ingredients.

Current alternatives to animal testing are limited by their poor ability to identify a

subset of non-innate contact sensitizers known as pre-/pro-haptens which require

transformation in the skin. Furthermore, these approaches only evaluate a single

cell type with 1 or 2 biomarkers.

To address this, we performed an initial study using RealSkin, a full

thickness skin equivalent, in co-culture with MUTZ-3 derived Langerhan’s cells

(MUTZ-LCs). This co-culture was treated with model pro-/pro-haptens from an

irritant control and multiple cellular metrics were evaluated. A novel feature

selection method was developed using a support vector machine (SVM) to rank

the margin distances of each metric and identify biomarkers of sensitization. A

panel (IL-12, IL-9, VEGF, IFN-γ) was identified by SVM and predicted sensitizers

with over 90% accuracy. Although promising, this method is costly and resource
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intensive. Thus, we designed a more economic, high throughput screening

approach to metabolize pro-hapten sensitizers.

MUTZ-LCs were cultured alone and in parallel with a co-culture of HaCaT

keratinocytes, dermal fibroblasts, and MUTZ-LCs. Both cultures were treated

with a panel of pre- and pro-hapten sensitizers and non-sensitizers. The

secretome of both cultures were evaluated for 27 cytokines, chemokines, and

growth factors. Feature selection by SVM identified predictive signatures of

sensitization for each culture type. These cellular metrics was used to develop a

classification model of sensitization. The MUTZ-LCs classification model was

83.3% accurate at identifying pro-hapten sensitizers using MIP-1β, MIP-1α,

RANTES, IL-8, and IL-9. The co-culture classification model was 89.6% accurate

at identifying pro-hapten sensitizers using a panel of IL-8, GM-CSF, and

RANTES.  The presence of the keratinocytes and fibroblasts enhanced the

identification of pre- and pro-haptens to sensitize the MUTZ-LCs. This approach

also preserves the cross-talk signals between all three skin cell types. Thus, the

co-culture of HaCaT keratinocytes, dermal fibroblasts, and MUTZ-LCs is an

attractive, high throughput in vitro alternative to animal testing for the

identification of pre- and pro-hapten skin sensitizers.
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CHAPTER 1: INTRODUCTION

1.1 CONTACT DERMATITIS

Skin serves as the primary barrier between our external environment and our

body. Thus, it is unsurprising that there are relentless insults on the skin due to

exposure of ultraviolet rays, micro-organisms, viral pathogens, and xenobiotics.

Contact dermatitis (CD) is an inflammatory skin disease that can commonly

occur as a consequence of exposure to harmful xenobiotics such as irritants or

sensitizers. The symptoms of contact dermatitis can range from mild itching to

more serious health complications such as the formation of blisters with long-

lasting effects. Contact dermatitis is the most common skin disease with an

estimated 20% of people in the general population that are sensitive to at least

one allergen in their environment [1]. Furthermore, CD is one of the most

commonly reported occupational diseases, with a significant economic burden

that is estimated at nearly $1 billion in medical costs, worker’s compensation,

and lost work days [2].

Irritant Contact Dermatitis

Irritant contact dermatitis (ICD) is the more prevalent form of contact

dermatitis that constitutes nearly 70% of all diagnoses. ICD is an acute response

to an irritant that triggers the innate immune system and does not lead to the

formation of memory T-cells or antigen-specific antibodies.  Irritants are

commonly surfactants, detergents, and weak acids that compromise the barrier

properties of the stratum corneum in the epidermis. Though the precise

mechanism that leads to ICD is still not fully understood, this non-specific
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inflammation is thought to occur due to cytotoxic effect of irritants on skin cells.

This triggers an inflammatory cascade of events where mediators such as

cytokines (e.g., IL-1α and TNF-α) and prostaglandins are released and immune

cells such as neutrophils, macrophages, and eosinophils are recruited. This

ultimately results in the clinical symptoms characteristic of ICD such as oedema

and erythema.

Allergic Contact Dermatitis

Although Allergic Contact dermatitis (ACD) occurs with less frequency

than ICD, it is the more serious of the two disorders in terms of duration and

clinical expression. ACD is a delayed type IV hypersensitivity response that is

mediated by antigen-specific T lymphocytes and leads to the development of a

memory response. ACD can often occur as a complication of ICD and there is

evidence that frequent exposure to irritants can condition the development and

severity of an ACD response [3]. Additional risk factors of ACD include gender,

age, occupation, genetic predisposition, and underlying pathologies such as

atopic eczema where the skin’s barrier is compromised. These statistics

represent a growing public health concern since the incidence rate of ACD is on

the rise (especially in the youth demographic) due to the increased prevalence of

contact allergens in the environment [4]. Clinical symptoms can manifest as

early as 24-72 hours after re-exposure and is characterized by erthryma that can

lead to the formation of hives, blisters or scaly plaques pending on severity [5].

These effects can be enduring with up to 50% of cases lasting nearly 6 months
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[6]. Thus, it is imperative to minimize the greater public’s exposure to these

harmful agents that can potentially cause great duress.

1.2 IN VIVO MECHANISM

The in vivo mechanism of ACD can be generally broken down into two

distinct phases: 1) sensitization phase and 2) elicitation phase.

During the sensitization phase, contact allergens penetrate the stratum

corneum barrier and bind to nucleophilic proteins or peptides in the skin to form

the macromolecular immunogen. Keratinocytes in the epidermis play an integral

role in allergic contact dermatitis in initiating the inflammatory cascade of events.

Keratinocytes sense contact allergens via their toll house receptors (e.g., TLR-2

and TLR-4), which leads to the secretion of inflammatory cytokines such as IL1-

α, TNF-α, IL-8 and GM-CSF [7, 8]. These factors promote the antigen

presentation process of resident Langerhan’s cells and dermal dendritic cells and

recruitment of inflammatory cells. In addition to providing necessary danger cues

in the microenvironment, they are also the major source of xenobiotic metabolism

in the skin. Keratinocytes possess oxidizing phase I enzymes such as members

of the Cytochrome P450 (CYP) family, alcohol dehydrogenases, aldehyde

dehydrogenases, monoamine oxidases, flavin containing monooxygenases, and

hydrolytic enzymes [9-12]. Phase II enzymes such as acyltransferases,

glutathione S-transferases, uridine 5′-diphospho-glucuronosyltransferases, and

sulfotransferases are also present in the skin and may play a role in metabolizing

pro-haptens [11-13]. Langerhan’s cells (LCs) reside in the epidermis and are a

subset of dendritic cells with antigen presenting capability. The immunogen is
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taken up and processed by LCs. Dendritic cells (DCs) that reside in the dermis

are also capable of internalizing the immunogen and processing it as well.  While

the antigen is being processed, a series of cellular changes occur where LCs

and/or DCs down-regulate adhesion molecules and up-regulate chemokine

receptors such as CXCR4 and CCR7 on their cell surface [14][15, 16]. This

ultimately leads to a migration response of LCs/DCs out of the skin and towards

their corresponding local lymph node. During this migratory maturation process,

co-stimulatory molecules such as CD86, CD83, CD80, and adhesion molecules

such as CD54 will also be expressed on the surface of LCs/DCs[17].  These

surface molecules help facilitate the presentation of the antigen to naïve T-cells

in the lymph node via the MHC-I and MHC-II receptors [18, 19]. Once presented

with an antigen, activated T-cells undergo a proliferation and differentiation

process into Th1 or Th2 cells depending on the cytokine environment. Memory T-

cells specific to the contact allergen are also produced.  The sensitization phase

can take anywhere from 10–15 days in humans and is typically asymptomatic

[20]. However, an acute inflammatory response that is hapten specific could

occur 5-15 days after initial contact with the allergen [21]. This response is

mediated by CD8+ T-cells that subsequently enter circulation after activation and

mount an antigen-specific inflammatory response at the site where the allergen

was in contact with the skin [21].

The elicitation phase of ACD occurs when one is re-exposed to the

sensitized contact allergen. Memory T-cells are recruited to the site of contact

and mediate the antigen-specific inflammatory response. This response appears
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within 24-72 hours after re-exposure to the contact allergen [20]. CD8+ T-cells

are the main effector cells that are recruited early after elicitation and are

responsible for KC apoptosis. They also recruit additional leukocytes that

participate in the development of the clinical lesions characteristics of ACD [22].

The accessory lymphocytes that are recruited include natural killer cells, mast

cells, and neutrophils [20].

1.3 SKIN SENSITIZERS

It is estimated that up to 17% of 60,000 chemicals currently in commercial

use could be contact sensitizers with nearly 3000 confirmed allergens

determined by patching testing [23, 24]. The most common allergens are nickel,

fragrances, dyes, and preservatives [25]. Contact sensitizers have molecular

properties that allow them to penetrate through the stratum corneum barrier such

as a low molecular weight (<1000Da) and lipophilicity (logp ~ 2) [26]. There are

three broad classes of contact allergens that are grouped according to their

mechanistic pathways to form macro-molecular immunogens that initiate the

allergic response. The first class of contact allergens was discovered in 1935 by

Landsteiner and Jacobs when they observed that small organic molecules can

readily bind to skin proteins to form a sensitizing entity [27]. These small organic

molecules are known as haptens and the process by which they bind to skin

proteins is known as haptenization. Haptens are directly reactive to proteins due

to the presence of electrophilic functional groups such as alkyl halides,

aldehydes, ketones, amides, and esters [28]. The skin is a nucleophilic hotspot

that is filled with many proteins that contain nucleophilic amino acids such as
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cysteine, lysine, histidine methionine, and tyrosine [26].  Contact sensitizers

preferentially bind to cellular proteins, rather than serum proteins [29]. One

specific example of a cellular protein is the sensor protein Keap1 that contains

highly reactive Cys residues [30]. Several pathways theorized in these

electrophilic-nucleophilic binding reactions include SN2 reactions, SNAr reactions,

Schiff base formations, Michael type additions, and acylation reaction [26]. Once

bound together, this conjugated complex serves as the antigen that is further

processed by antigen-presenting cells and presented to T-cells that ultimately

mediate the resulting immune response. Non-classical haptens such as metal

cations, Ni2+, and Cr3+ can directly bind to HLA-DR52c, an MHC-II molecule and

an unknown HC-bound peptide via histidine or acidic residues on the side chain

[31]. Ni2+ may also bind to TLR-4/MD-2 and death ligands on keratinocytes to

mediate an innate immune response that leads to the conditioning of ACD [32].

Unlike haptens, the following two classes of sensitizers known as pre- and

pro- haptens are not inherently reactive due to a lack of binding site susceptible

to nucleophilic attack.  However, they can undergo chemical reactions to form

reactive intermediates or products that readily bind to proteins in the skin.  Pre-

haptens undergo abiotic mechanisms such as auto-oxidation to form reactive

hydroperoxide products[33]. Common pre-haptens include dyes such as p-

phenylenediamine and fragrances such as linalool [25]. Pro-haptens are

sensitizers that undergo chemical activation by metabolic conversion that is

mediated by the host’s enzymes.  These enzymatic reactions likely take place in

skin cells such as keratinocytes, fibroblasts, melanocytes, and antigen-
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presenting cells native to the skin such as Langerhan’s cells in the epidermis and

dermal dendritic cells based on mRNA expression studies of CYP enzymes [34]

[9]. The primary group of enzymes implicated in bio-transforming pro-haptens

includes members of the cytochrome P450 family. However, additional enzymes

such as alcohol dehydrogenases, aldehyde dehydrogenases, monoamine

oxidases, flavin-containing monooxygenases, hydrolytic enzymes,

acyltransferases, glutathione S-transferases, uridine 5′-diphospho-

glucuronosyltransferases, and sulfotransferases are also present in the skin and

may play a role in metabolizing pro-haptens [12]. The reactive intermediates and

products formed during these enzymatic mechanisms are often sensitizing

haptens such as aldehydes and epoxides [26, 35]. These reactive products can

be actively pumped out through multi-drug resistant transporters[36] where

neighboring Langerhan’s cells or dendritic cells may internalize it.

Pre- and pro-hapten sensitizers constitute an estimated 30-60% of all

known contact sensitizers [37, 38]. There are also several examples of chemicals

that could act as both pre- and pro-haptens and are capable of undergoing both

auto-oxidative and enzymatic reactions such isoegeunol, eugenol, and p-

phenylenediamine [39, 40].

1.4 CURRENT SCREENING APPROACHES

Traditional aspects of the multi-step in vivo pathway of allergic contact

dermatitis and predict screening tools for skin sensitizers include animal tests

such as the guinea pig maximization assay (GPMA) and the local lymph node

assay (LLNA) in the murine model. Compared to human data, these animal
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models are 72% accurate at predicting the sensitization potential of chemicals

[2]. This discrepancy is due the misclassification of irritants such as sodium

dodecyl sulfate that induce non-specific proliferation of T-lymphocytes in the

LLNA[2]. There are also several examples of common false negatives such as

pro-haptens geraniol, eugenol, and abietic acid[41]. Additional limitations with

these animal models include their low throughput nature, high cost, variability,

and ethical concerns. For these reasons, the European Union has placed a ban

on animal testing of cosmetic ingredients that has been in effect since March

2013[42].  In lieu of these recent legislative events, many alternatives to in vivo

screening of chemicals have been developed in chemico and in vitro. These

novel alternatives to animal assays in development seek to model various events

that occur during the ACD mechanism to predict sensitization potential of

chemicals.  However, all of these assays have yet to be formally approved by the

European Union as a suitable alternative for animal testing.

In silico Tools

In silico tools are based on principles of QSAR (quantitative structure

activity relationship) that relates molecular structure with the biology activity of

the compound.  The first QSAR model in context of sensitization was founded by

Roberts and Williams in 1982 where they discovered correlations between

physico-chemical properties and sensitizing abilities of alkylating agents [43].

Since then, many classification models based on machine learning tools and

computer-based expert systems (Table 1.1) are available for the prediction of

contact allergens.
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A summary of in silico tools with their corresponding metrics used to determine

the sensitization potential of chemicals, and their accuracy rates. The OECD

toolbox accuracy rate was determined with respect to a panel of 54 chemicals.

The DEREK and TOPKAT accuracy rate was determined with a panel of 178

chemicals.

Table 1. 1 In Silico Tools for Predicting Sensitization. A summary of in

silico tools with their corresponding metrics used to determine the

sensitization potential of chemicals, and their accuracy rates. The OECD

toolbox accuracy rate was determined with respect to a panel of 54

chemicals. The DEREK and TOPKAT accuracy rate was determined with a

panel of 178 chemicals.

The OECD QSAR toolbox is a free software tool that uses structural alerts

of molecules for predicting direct covalent protein binding to identify possible

mechanisms involved. When 54 chemicals were evaluated in silico using this

toolbox, an accuracy of 80% was achieved [44]. Although non-sensitizers that do

not have any electrophilic binding potential were all identified correctly, there

were several false-negatives due to the complete misclassification of all pre- and

pro-haptens evaluated. Thus, electrophilic structural alerts alone are only

sufficient for the proper prediction of hapten sensitizers.

Derek for Windows (Deductive Estimation of Risk from Existing

Knowledge) is a rule-based system that uses a set of molecular sub-structures

In Silico Metrics Accuracy
OECD ToolBox QSAR 80%

DEREK QSAR + Metabolism + Skin Penetration 73%
TOPKAT QSAR + GPMT data base 83%
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as alerts that are correlated with skin sensitization. These structural alerts include

potential acylating or alkylate/arylating agents, Michael electrophiles, aldehydes,

free radical generators, and  thiol-exchange units [33]. DEREK is also capable of

being updated with new rules that can allow additional QSAR data such as skin

penetration and metabolic predictions to be implemented [33]. When using a test

set of 178 chemicals from the GMPT and LLNA databases, an accuracy score of

73% was achieved[45]. This score is due to erroneous predictive mechanisms

which led to the misclasssification of several known pre- and pro- haptens such

as geraniol, vinyl pyridine, benzo-pryene, abietic acid, oximes, and dienes [46,

47].

TOPKAT (Toxicity Prediction by Komputer Assisted Technology) is

another available rule-based system where electrotopical descriptors of atoms in

a given molecule are used in conjunction with statistical regression analysis to

predict the sensitizing potential of chemicals and their potencies. Additionally,

TOPKAT checks whether query structures are part of an internal database of

known sensitizers used to build the model. When testing a panel of 178

chemicals from a GPMT database, a 73% accuracy score was obtained [45].  A

major limitation of the TOPKAT model is that it was developed based solely on

the guinea pig model. Hence, many chemicals that are falsely classified in the

GPMT were also falsely classified using TOPKAT [33].

Although in silico tools are an extremely efficient method of screening

potential skin allergens based on their structural characteristics, the correct

identification of pre- and pro-haptens is a major issue. This is especially clear for
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in silico tools that do not account for metabolism such as the OECD tool box

where 0% accuracy is reported for 8 pre- and pro-haptens [44]. Even when a

metabolic component is introduced, the fact that predictions are made based on

speculative chemistries and metabolic reactions that have yet to be empirically

validated show the limitations of in silico tools. With the development of in

chemico assays and tools, sensitizer mechanisms can be elucidated and these in

silico models can be improved.

In chemico Assays

An in chemico peptide binding assay was developed to empirically assess

the formation of the macromolecular immunogen that develops during the initial

step of sensitization. This assay measures the depletion of free peptides or the

formation of adducts due to covalent binding of electrophilic sensitizers to

nucleophilic regions on peptides.  The latter method of measuring haptenization

may provide more structural and mechanistic insights on how macromolecular

immunogens form.  The synthetic peptides utilized for these studies were 7

amino acids long with an exposed glutathione, cysteine, lysine, or histidine

residue (Table 1.2) [48]. When this assay was evaluated with a panel of 38

sensitizers, peptides with cystiene showed the greatest degree of accuracy with

83% accuracy.  A major caveat of this assay platform is that metabolism and

oxidation reactions are not considered. This leads to an assay system that is

poorly predictive of pre- and pro-hapten sensitizers without a source of

metabolism or oxidation [38]. Although peptide binding is an integral step during

ACD and this in chemico assay is an insightful tool for evaluating the
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sensitization potential of chemicals, cellular responses to contact allergens

should be considered.

Table 1.2 In Chemico Peptide Binding Assay for Predicting

Sensitization. Peptide binding assay accuracy results when 38 sensitizers

were evaluated for their ability to covalently bind to nucleophilic amino

acids: cysteine, lysine, glutathione, or histidine. Peptide depletion was

measured using HPLC. Most contact sensitizers in this study preferentially

binded to cysteine residues on peptides.

In vitro Assays

In vitro assays encompass the vast majority of current screening tools in

development. In the interest of brevity, only in vitro assays that were submitted to

the European Union and are currently undergoing multi-laboratory validation

studies will be discussed in this section (Table 1.3). Prominent in vitro assays

branch into two general categories that assess the cellular response of

sensitizers on either keratinocytes or dendritic cells.

Table 1.3 A summary of in vitro assays for predicting sensitization.

These cell-based in vitro alternatives are currently undergoing multi-

laboratory validation studies in Europe. The h-CLAT and MUUST are

dendritic cell based assays that evaluated the surface expression of CD54

and/or CD86 using flow cytometry methods. The GARD assay is a dendritic

In Chemico Metrics AccuracyPeptide
Binding  Cysteine - Binding 83%

Lysine - Binding 67%
Glutathione - Binding 66%

Histidine - Binding 36%
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cell based assay that utilized a 200 gene signature of sensitization. The

KeratinoSens assay used a gene reporter cell line derived from HaCat

keratinocytes with an antioxidant response element (ARE) promoter. The

NCTC2544 keratinocyte cell line is used to measure IL-18 production by

ELISA.

The KeratinoSens assay is a keratinocyte (KC) based test that utilizes a

reporter gene cell line derived from HaCaT cells. This assay carries a luciferase

reporter gene for the antioxidant response element (ARE) promoter [49]. This

approach was based on the finding that the Nrf2-Keap1-ARE regulatory pathway

was activated by skin sensitizers due to haptens binding to cysteine residues on

Keap1 as part of the innate inflammatory response mediated by keratinocytes

[50]. Genes that are activated via this regulatory pathway include IL-8, quinone

reductase, aldo-keto reductase, thioredoxin, and thioredoxin-reductase [50].

Pending on the test set of chemicals used, the KeratinoSens assays report

accuracies ranging from 77-83% [51, 52]. A limitation of this assay is that Nrf2-

Keap1-ARE regulatory pathway is activated by cysteine-reactive skin sensitizers,

thus leaving out a group of skin sensitizers that preferentially bind to other amino

acids or the amino-terminus such as aldehydes with no α-β-unsaturation, pthalic

anhydride, and oxazolone [52].

In Vitro Cell Line Cell Type Metrics Accuracy

h-CLAT THP-1 Dendritic Cell CD54, CD86 85 - 93%
MUSST U-937 Dendritic Cell CD86 77 - 85%
GARD MUTZ-3 Dendritic Cell 200 Gene Signature 89 - 98%

KeratinoSens HaCaT Keratinocyte ARE 83 - 94%
NCTC IL-18 NCTC2544 Keratinocyte IL-18 78 - 97%
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Another keratinocyte based assay that is currently undergoing validation

studies is the NCTC2544 IL-18 assay. This assay utilizes the NCTC2544

keratinocyte cell line and measures IL-18 production as a biomarker of skin

sensitization [53, 54]. IL-18 is produced during allergic contact dermatitis and is

released when cytotoxic concentrations of chemicals are used. IL-18 is a potent

inducer of IFN-γ production and promotes a Th-1 response. This assay appears

to be highly predictive (78-97%) with the current test set of chemicals that consist

primarily of hapten [53, 55]. Although both keratinocyte-based assays show

promising results, dendritic cells that play an integral role in the presentation of

the allergens to naïve T-cells during sensitization should also be investigated as

a complementary approach.

Current in vitro dendritic cell (DC) assays commonly use myeloid

leukemia-derived cell lines such as the THP-1 and U937. The THP-1 cell line is

used in the human cell line activation test (h-CLAT) and the U937 cell line is used

in the Myeloid U937 skin sensitization test (MUSST). Both of these assays

predict the sensitization potential of chemicals using viability and dendritic cell

maturation metrics such as surface molecules CD54 and CD86. Pending on the

test set of chemicals evaluated, the MUSST assay reported accuracy scores that

range from 71-86% [44, 51, 56]. When both CD54 and CD86 expression are

evaluated in the h-CLAT assay, accuracy scores that range from 76 – 93% were

reported. [44, 57].

Another potential source of LCs/DCs for in vitro studies includes the

MUTZ-3 cell line. The Mutz-3 cell line is derived from myeloid leukemia and is
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established as a viable cell source for differentiation into Langerhan’s cells or

dendritic cells upon exposure to different growth factors and cytokines [58-60].

Mutz-3 derived cells physiologically resemble human DCs  more than THP-1 and

KG1 cell lines based on gene expression studies [61]. The Genomic Allergen

Rapid Detection (GARD) assay utilizes the MUTZ-3 cell line with a highly

predictive genomic signature for sensitization comprising of 200 genes that was

initially reported to be 98% accurate [62]. The genomic signature includes genes

that regulate xenobiotic metabolism, cell proliferation, cell death, lipid

metabolism, hematopoietic development, cell cycle, molecular transport, and

carbohydrate metabolism. This screening approach was combined with a support

vector machine classifier to predict the sensitization potential of chemicals. A

recent in-house validation study using the GARD assay found it to be 89%

accurate [63].

1.5 CURRENT LIMITATIONS AND CHALLENGES

Despite the promising numbers initially reported for overall assay

performance in current alternatives to animal testing, it is important to evaluate

the specifics of these numbers. After all, many assays are nearly 100%

successful for some classes of chemicals and unsuccessful for others. Thus, the

performance of a given assay will depend on the diversity of chemicals used in

the study. This is reflected in current literature reports where reported assay

accuracies vary pending on the chemical panel (Table 1.3). When each assay’s

ability to identify pre- and pro-hapten sensitizers was specifically assessed,

significantly lower accuracies were observed and highlight a major limitation with
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several of the current methods (Table 1.4). This was especially apparent for the

peptide binding assay that measures the covalent binding of haptens that are

innately electrophilic to nucleophilic peptide residues.

Table 1. 4 Assay Accuracies Detecting Pre-/Pro-Hapten Sensitizers.

Assay performance of in chemico and in vitro assays when a panel of only

pre- and pro-haptens were evaluated. Reduced accuracy rates were

observed compared to assay performances determined in Table 2 and

Table 3.

Dendritic cell based assays, h-CLAT, and MUSST also performed very

poorly when detecting pre- and pro-hapten sensitizers with low accuracies in the

range of 63 - 66% [56, 57]. Several known pre- and pro-haptens (e.g., 2-

aminophenol, potassium dichromate, p-phenylenediamine, propyl gallate,

hydroquinone, isoeugenol, ethylene diamine, anilin, eugenol, and geraniol) are

commonly misclassified as non-sensitizers in DC-based assays [64]. This could

be due to insufficient metabolic activity in dendritic cells as compared to

keratinocytes where THP-1 cells used in the h-CLAT assay were shown to

exhibit mRNA expression and protein content of CYP1A1 and CYP3A5 at lower

levels compared to the normal human skin [65]. THP-1 cells also lack the aryl

hydrocarbon receptor that regulates the induction of CYP1A1 expression [65].

In Chemico Metrics Accuracy
Peptide Binding  Cysteine - Binding 58%
Peptide Binding  Lysine - Binding 37%

In Vitro Cell Line Cell Type Metrics Accuracy
h-CLAT THP-1 DC CD54, CD86 63%
MUSST U-937 DC CD86 66%
GARD MUTZ-3 DC 200 Genes 75%

KeratinoSens KeratinoSens KC ARE 77%
NCTC2544 IL-18 NCTC2544 KC IL-18 83%
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Thus, dendritic cell based assays that utilize the THP-1 cell line may be

insufficient tools to accurately predict potential sensitizing agents that undergo

metabolic reactions in the skin. Interestingly, the GARD assay that utilized the

MUTZ-3 cell line appears less impaired in accurately predicting 3 out of 4 four

test pre/pro-hapten sensitizers. This is likely due to the fact that the GARD

signature includes activation of genes that are involved in xenobiotic metabolism.

Furthermore, several pro-hapten sensitizers were utilized as part of the training

set. Thus, the MUTZ-3 cell line may possess greater metabolic capacity than

THP-1 and U937 sources of DCs. Since keratinocytes are considered the major

cell source of xenobiotic metabolism in the epidermis, it is not surprising that the

KeratinoSens assay and the NCTC2544 keratinocyte IL-18 assay generally

performed better at identifying pre- and pro-haptens than DC-based assays with

accuracies ranging from 77% to 83% respectively [52, 66].

Another limitation of current methods is that they only investigate one

facet of a multi-step ACD pathway or a single cell type. Thus, an assay based on

the use of one to two metrics or “biomarkers” is insufficient to predict all

sensitizers. This observation is true across a variety of DC sources and cell lines

such as CD34+ hematopoetic progenitor cells, CD14+ monocytes, THP-1, U-

937, Mutz-3, and KG-1[64]. As more chemicals are being evaluated using current

alternatives, it is evident that the use of CD54 and CD86 alone is insufficient.

Thus, the use of a molecular signature that takes into account several cellular

metrics will be more sensitive than the use of a single biomarker. This effect is

likely why the GARD assay is successful at predicting sensitization since it
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utilizes 200 genes to classify chemicals. Furthermore, it appears that multi-metric

approaches that incorporate in vitro data from various assays are more predictive

than the use of data from one metric alone [44, 51, 66]. However, these methods

still incorporate the combination of less predictive metrics and could benefit from

a combination of superior markers. To aid in the development of predictive

models of sensitization that incorporate various cellular metrics of skin

sensitization, computational approaches that include machine learning can be

utilized.

1.6 MACHINE LEARNING

Machine learning is the process of learning from data where predictions

are made based on a set of metrics or features (e.g., physico-chemical

properties). In supervised machine learning, there is a training set (e.g., physico-

chemical properties of known sensitizers) of data where the outcome (e.g.,

Sensitizer vs. Non-sensitizer) is known based on the feature.  Using this data, a

prediction model or “learner” will be able to determine the outcome of new test

set (e.g., chemicals with unknown sensitization potential) of data.  A variety of

machine learning methods such as linear discriminate analysis, decision trees,

neural nets, and support vector machine have been used as classification tools

to perform feature selection and build classification models to predict the

sensitization potential of chemicals [37] . These computational methods initially

utilized QSAR knowledge of known sensitizers from animal model data banks to

”train” their classification model and a subset of ”test” chemicals were used to

evaluate the classifier performance [67].
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Due to a large panel of potential cellular metrics currently being explored

in literature and in our studies to predict sensitization responses, an in silico

analysis method based on machine learning principles can provide valuable

insights in a high throughput manner. Feature selection is the process where a

subset of metrics is selected and uninformative metrics are discarded without

altering the original data set. This is in contrast to other dimensionality reduction

techniques such as principal component analysis or compression[68].

Supervised classification models can be used to perform feature selection on

cellular secretion data that we evaluated. This will allow us to identify molecular

signatures of sensitization at the secreted protein level that are most predictive.

This information can be used to build a classification model that is capable of

predicting the sensitization potential of unknown chemicals. An additional benefit

of coupling an in vitro culture alternative with an in silico analysis method is that

the classification model can be improved as more in vitro information becomes

available when additional cellular metrics and chemicals are evaluated. Thus,

there is an iterative feedback loop set in place to improve the model’s

performance with empirical data.

1.7 DISSERTATION SUMMARY

The primary goal of this thesis work is to develop a non-animal alternative

for screening skin sensitizers. Current in vitro assays generally utilize a single

cell type and/or biomarker that are involved in the ACD pathway to predict

sensitization. This has led to the accurate prediction of many known hapten-

sensitizers. However, correct identification of pre-/pro-haptens is limited due to



20

the lack of a sufficient metabolic component. We propose to address these

issues by 1) establishing an in vitro culture system that preserves the dynamic

signaling environment and metabolic machinery found in vivo during allergic

contact dermatitis and 2) using computational methods to identify the most

predictive cellular metrics and build a classification model of sensitization using

these selected biomarkers.

In chapter 2, we initially developed an in vitro system where a full

thickness skin model with keratinocytes and fibroblasts was co-cultured with

MUTZ-3 derived Langerhans’ cells. With this co-culture assay, we were able to

topically apply a variety of treatments and induce metabolism of model pro-

haptens to sensitize the Mutz-LCs placed below the skin. This culture system set

up the platform to evaluate many different sensitization metrics based on the in

vivo pathway with ease and led to the development of a novel feature selection

method. Post-sensitized Langerhan’s cells were subsequently isolated and

characterized for the presence of maturation surface molecules, cytokine

secretion, and chemotaxis towards CCL19. We developed a novel method of

performing feature selection by ranking cellular metrics using the margin

distances calculated from the support vector machine (SVM). This work

highlighted the limitations of CD54 and CD86 as biomarkers and the use of the

trans-well migration assay using CCL19. However, we found that the

combination of IL-12, IL-9, IFN-γ, and VEGF together can be used to build a

predictive classification model using SVM. Although promising, this co-culture

assay is potentially costly and resource intensive. Thus, an alternative means to
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metabolize pro-hapten sensitizers in a manner that is more amenable for cost

efficient, high throughput screening was established. Furthermore, with our

feature selection method validated, we can apply our in silico tools to other

culture systems where multiple secreted metrics are evaluated.

In chapter 3, we developed a co-culture system that combined HaCaT

keratinocytes, dermal fibroblasts, and MUTZ-LCs in a single well and compared

this to MUTZ-LCs alone. The co-culture method enables the keratinocytes and

fibroblasts to carry out the necessary metabolism to activate pro-hapten

sensitizers and to provide additional cross-talk signals to promote LC maturation.

A panel of secreted cytokines, chemokines, and growth factors were evaluated in

the supernatants generated after sensitizer treatment for the two culture systems.

Support vector machine analysis was utilized to perform feature selection to

identify promising cellular metrics and to develop a predictive classification model

of skin sensitization for both culture systems.

In chapter 4, a summary of the key dissertation findings and implications

will be provided. Furthermore, the limitations of our assays will be discussed in

greater detail and potential future studies will be outlined.
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CHAPTER 2: PREDICTING FULL THICKNESS SKIN SENSITZATION USING

A SUPPORT VECTOR MACHINE

Note: This chapter is reproduced from the following publication:

Serom Leea, David Xu Donga, Rohit Jindala, Tim Maguirea, Bhaskar Mitraa, Rene

Schlossa, Martin Yarmushab

Predicting Full Thickness Skin Sensitization Using a Support Vector Machine,

Toxicology In vitro (Accepted July 2014).

2.1 INTRODUCTION

Allergic contact dermatitis (ACD) is a common inflammatory skin disease

that is mediated by adaptive immunity. It is reported that up to 19.5% of the

general population is sensitive to at least 1 allergen [1]. Traditional in vivo

screening assays for sensitizers include the guinea pig maximization assay and a

more quantitative assay known as the murine local lymph node assay (LLNA).

However, there are still several limitations with these animal models that include

their low throughput nature, high cost, variability, and ethical concerns.

Furthermore, compared to human clinical data, these in vivo assays are only

73% accurate at predicting the sensitization potential of chemicals [2]. For these

reasons, the European Union has placed a ban on animal testing of cosmetic

ingredients [3].  Alternatives to animal testing should allow for high throughput

screening of chemicals using sensitive metrics that can reliably predict human

immunotoxicity.
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There are many novel alternatives to animal assays in development that seek

to model aspects of the in vivo pathway of allergic contact dermatitis and predict

the sensitization potential of chemicals [4]. Sensitizers are commonly haptens,

which are molecules that can easily penetrate through the epidermal barrier and

bind to nucleophilic regions of proteins in the skin. This conjugated complex

serves as the immunogen that initiates the allergic contact dermatitis response

[5]. A high through-put in chemico assay was developed that measures this

peptide binding with a high degree of accuracy [6]. Low through-put in vitro

assays that utilize dendritic cells have also been explored to predict the

sensitization potential of chemicals using maturation metrics such as surface

molecules, cytokine production, chemotaxis, and ability to stimulate a T-cell

proliferation response.

A major limitation of many of these systems is that they do not contain a

metabolic component to accurately identify a class of haptens known as pro-

haptens [7] [6].  Pro-haptens are innately non-electrophilic and require chemical

activation or biotransformation to form reactive intermediates or products that

subsequently bind to peptides to form the immunogen [8]. A metabolic

component integrated with dendritic cells would be a valuable addition for the

identification of pro-hapten sensitizers.  Furthermore, due to the complexity of the

in vivo mechanisms that trigger allergic contact dermatitis, a tiered approach that

tests for a more comprehensive panel of cellular metrics may be needed. To aid

in the analysis of these in vitro metrics, high throughput computational tools can
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be utilized to identify the best predictors of sensitization and streamline the low

through-put collection of cellular data.

To develop a culture platform that is physiologically relevant to humans

and capable of metabolizing pro-haptens, a re-constructed full thickness skin

model known as RealSkin was used either as a stand-alone assay or co-cultured

with Langerhan’s cells derived from the MUTZ-3 cell line. This allows for key in

vivo events such as permeation through the skin barrier, metabolic activation of

pro-haptens, and a dynamic signaling environment from a variety of cell types in

vitro. Post-sensitized Langerhan’s cells were subsequently isolated and

characterized for the presence of maturation surface molecules, cytokine

secretion, and chemotaxis towards CCL19. The secretome from the post-

sensitized cultures was evaluated using hierarchical cluster analysis and support

vector machine (SVM) classification tools.

SVM is a powerful machine learning tool that is commonly used in pattern

recognition and was previously used to classify skin sensitizers based on

molecular structures [9]. We utilized the support vector machine as a feature

selection tool to compare different cytokine secretion profiles as potential

predictors and using a small sensitizer panel identified the best molecular

signature for sensitization, as a proof of concept for the utility of our approach.

This analysis tool can also potentially aid in the understanding of key events in

allergic contact dermatitis associated with sensitizer potency differences.

2.2 MATERIALS AND METHODS

RealSkin and Cell Lines
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RealSkin, a full thickness skin model from EpiSkinTM consists of a

dermal equivalent with a lattice of acido-soluble collagen and normal human

adult fibroblasts overlaid by a stratified, well differentiated epidermis layer derived

from normal human adult. The RealSkin kit including the tissue model and its

respective culture medium was provided by EPISKINTM (Lyon, France) as a

donation from L’Oreal (Paris, France). MUTZ-3 cells were a donation from

L’Oreal (Paris, France) and are available for purchase from DSMZ

(Braunschweig, Germany). 5637 urinary bladder carcinoma cell line was

purchased from ATCC (Manassas, Va). RealSkin was cultured for up to a two

week period and the medium was changed every other day.  A 1 cm2 biopsy

punch was applied to the RealSkin prior to experimental use and the excised

piece was placed on top of sterile inserts supplied by L’Oreal (Paris, France).

The 5637 cell line was maintained at 37oC and 5% CO2 in RPMI medium

supplemented with 10% FBS, 2% L-glutamine, and 1% penicillin-streptomycin.

Media was changed every other day and conditioned medium was collected

when the cells were 90% confluent. This conditioned medium was supplemented

into the MUTZ-3 culture medium as per the guidelines from DSMZ. MUTZ-3 cell

line was maintained at 37oC and 5% CO2 in alpha-MEM medium with Glutamax,

ribonucleosides, and deoxyribonucleosides (Invitrogen) supplemented with 20%

heat inactivated FBS, 10% 5637 conditioned medium, 1% Penicillin-

streptomycin, and 50uM2-mercaptoethanol. Media was changed every other day

and the cells were split on day five of culture.
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Figure 2. 1 Schematic of our experimental system, comparing sensitized

Realskin with Realskin+Mutz co-cultures. RealSkin was cultured at the air-

liquid interface (ALI) and topically dosed with either non-sensitizers

(vehicle and salicylic acid (SA)) or sensitizers (isoeugenol(IE) or p-

phenylenediamene (PPD)) for 48 hours. For the co-culture configuration,

the RealSkin was also cultured at the ALI with the MUTZ-3 derived

Langerhan’s cells, cultured in the medium below. The supernatant from

each treatment condition was collected and analyzed using the Bioplex

assay to screen up to 27 cytokines. Of these cytokines, the * indicates

factors that have been previously explored by other groups in literature for

skin equivalent sensitization studies and ** indicates factors that have been
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commonly utilized in dendritic cell based assays[10] [4]. The secretome

data was further analyzed in silico using feature selection tools such as

hierarchical cluster analysis and support vector machine to identify

potential biomarkers for sensitization. The MUTZ-3 derived LC’s from the

co-culture was also analyzed in vitro for surface marker expression

changes and chemotaxis towards CCL19.

Chemicals

The chemical panel selected to perform the initial proof-of-concept studies

were irritant, Salicylic acid (SA), a moderate pro-hapten sensitizer, isoeugenol

(IE), and a strong pre-hapten, p-phenylenediamine (PPD). These chemicals were

selected as representative pre- and pro-haptens that are currently on the list

provided by Sens-It-Iv initiative (Newsletter number 02-2007, January 26.

http://www.sens-it-iv.eu/files/newsletter/Sens-it-iv_Newsletter_0.8.html). All

chemicals were purchased from Sigma-Aldrich. The stock solutions were

prepared in dimethylsulfoxide (DMSO) and then subsequently diluted to their final

working concentrations using RPMI cell culture medium (Invitrogen). The final

concentration of DMSO was 0.4% across all conditions. These working

concentrations were determined from dose-response studies where at least 90%

of the skin cells were viable as determined by MTT conversion assay (data not

shown). These concentrations are 180 μM and 360 μM for SA, 112 μM and 224

μM for IE, and 185 μM and 92.5 μM for PPD. The chemicals were topically

applied on either RealSkin alone or on RealSkin as a co-culture with MUTZ-3

derived Langerhan’s cells for 48 hours (Figure 2.1).
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Flow Cytometry

The phenotype of sensitized MUTZ-LC was determined by flow cytometry.

Cells were stained using mouse anti-human monoclonal antibodies to CD54

(IgG1-FITC, R&D Systems) and CD86 (IgG1-FITC, R&D Systems). IgG1-FITC

(R&D Systems) was used as an isotype control to assess non-specific binding.

Cells were incubated with antibodies for 30 minutes on ice with 1% mouse serum

for blocking, washed three times with PBS, fixed in 4% paraformaldeyhyde for 15

minutes, and then re-suspended in the PBS for FACS analysis with a FACScan

flow cytometer (Beckton Dickinson, San Jose, Ca.). The data was analyzed using

CellQuest Software. Comparisons between different treatment conditions were

performed by measuring the stimulation index (SI) which was determined by

taking into account the fluorescent intensity and % positive population of cells

from the treatment conditions relative to the fluorescent intensity and % positive

population of cells treated with the vehicle.

Trans-well Migration Assay with CCL19

Sensitized MUTZ-3 LCs co-cultured with RealSkin were harvested and

placed into the upper chamber of a 24-well transwell insert (8 um pore size) at a

density of 5 x 104 cells in the presence and absence of 250 ng/mL of chemokine,

CCL19. (R&D Systems) Four hours after the cells were exposed to the

chemokine, the MUTZ-LCs that migrated were centrifuged and re-suspended in

100uL of fresh media prior to counting by hemocytometer. The net migration of

cells was determined by the following equation using conditions where cells were

in the presence and absence of CCL19.
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[Net # of Cell Migration] = [# Cells migrated in presence of CCL19] – [#

Cells migrated in absence of CCL19]

The data was further processed to find the fold difference between all the

sensitizer treated conditions with respect to the irritant treated condition. The net

migration of LCs for SA treated conditions across a concentration range was

averaged since the values were approximately the same. This average net

migration for irritant treated cells was then used to determine the fold increase in

migration for different sensitizers using the formula below.

Fold Increase in Migration = [Net Migration for Sensitizer Treated Cells]
[Average Net Migration for Irritant Treated Cells]

Cytokine Multiplex Analysis

Supernatant was collected after treating RealSkin alone and RealSkin co-

cultured with MUTZ-LCs with salicylic acid, isoeugenol, and  p-

paraphenylenediamine for 48 hours. Basal alpha-MEM media fortified with 20%

heat inactivated FBS and 1% P/S was used as control. The supernatants were

then analyzed for 27 human cytokines (IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-8, IL-

7, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, Eotaxin, Basic FGF, G-CSF, GM-CSF,

IFN-γ, IP-10, MCAF, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α, and VEGF)

using a Bioplex Assay following the manufacturer’s instructions (Bio-Plex Human

Cytokine 27-plex panel; Bio-Rad Laboratories, Hercules, CA, USA).

Hierarchical Cluster Analysis
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Unsupervised agglomerative hierarchical clustering was performed as a

feature selection method in Matlab on secretome data from the Bioplex that was

normalized to the vehicle treated cultures.

Support Vector Machine

The supervised classification approach for distinguishing chemical

potency utilizes support vector machine (SVM) as a feature selection method,

which determines the best discriminate metrics between the two classes of

chemicals (sensitizing vs. non-sensitizing). For each cytokine, the training data is

given by { , }, = 1 … , ∈ {−1,1} , where x denotes the cytokine

concentration and y corresponds to the label of the chemical (-1 for non-

sensitizers and 1 for sensitizers). Using a linear kernel, the points that lie on the

hyperplane that separates the positives and negatives is ⋅ + = 0, which

leads to the following constraints to the training data:⋅ + ≥ +1 = +1 (1)⋅ + ≤ −1 = −1 (2)

where w is the norm to the hyperplane and | |/‖ ‖ is the perpendicular distance

from the hyperplane to the origin, and | | is the Eucledian norm of w. From

inequality (1), the perpendicular distance of the hyperplane to the origin is found

to be |1 − |/ | | . Similarly, the distance of the hyperplane in (2) to the origin is|−1 − |/ | | . Therefore the margin distance between these two hyperplanes is2/ | | . Thus we can find a pair of hyperplanes that best separates the two

classes by minimizing | | subject to the constraints (1) and (2). This problem is

solved using quadratic programming provided by the bioinformatics toolbox in
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Matlab. We used the aforementioned method to compute the margin distance

2/||w| for each cytokine. These margin distances and classification accuracy

values were subsequently ranked to identify metrics that had the greatest

distance of separation between the non-sensitizer (untreated, vehicle, and

salicylic acid) and sensitizer treated classes (isoeugenol and

paraphenylenediamine).

The support vector machine was also used as a classification model to

predict sensitization. Model performance (accuracy, sensitivity, specificity) was

assessed using 10-fold cross validation for each individual cytokine metric and

molecular signatures identified through various feature selection methods

described above.

Statistical Analysis

All data is presented as mean ± standard error. All data in the paper was

based on N≥3 independent biological replicates. Specifically, the data for the

CCL19 migration assay was N=4 independent biological replicates and the data

for all other evaluated metrics (IL-8, CD54, CD86, 27-cytokines) were N=3

independent biological replicates. To compare the data from the different

chemical treatments, we used ANOVA followed by Fisher’s least significant

difference post-hoc analysis. Statistical significance was determined at p ≤0.05

and these values were ranked to perform feature selection on the multi-plex data.

2.3 RESULTS

IL-8 Secretion
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Secretion of IL-8 is a commonly utilized metric for sensitization of several

dendritic cell lines and skin cultures [4]. Thus, we assessed IL-8 levels in our co-

culture system to see if elevated levels were present in sensitized conditions

when normalized to vehicle. IL-8 secretion was evaluated in the supernatant

collected from the co-culture configuration with RealSkin and MUTZ-LC 48 hr.

post-chemical treatment. IL-8 secretion from RealSkin alone indicated that

chemical treatments with salicylic acid (SA), isoeugenol (IE), and p-

phenylenediamine (PPD) did not significantly alter relative to vehicle treatment

(Figure 2.2A). Differential secretion between non-sensitized groups (untreated

and vehicle) compared to sensitized groups (IE and PPD) were observed (Figure

2.2B). However, only PPD induced a significant elevation in secretion levels as

compared to the vehicle.

Evaluation of CD54 and CD86 on MUTZ-LC

Studies were also designed to evaluate the RealSkin full thickness skin

co-culture sensitization system using commonly evaluated surface expression

metrics for dendritic cell maturation, CD54 and CD86. Sensitizers, isoeugenol

(IE) and p-phenylenediamine (PPD) or controls, vehicle (0.4% DMSO in RPMI

medium) and irritant salicylic acid (SA) were topically applied to the RealSkin and

DC sensitization was evaluated via immunofluorescence labeling after 48 hours.

The flow cytometric results (Figure 2.3) of IE and PPD sensitization indicated

that exposure to a strong pre-hapten 185 μM PPD, yielded the greatest

stimulation for CD86 and CD54. However, isoeugenol, a moderate sensitizer,

induced a very mild increase in CD86 and CD54 that was not significant.
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Figure 2. 2 Secretion of IL-8 from A) RealSkin and B) RealSkin co-cultured

with Mutz-3 LCs. After 48-hours of chemical treatment the secretion level of

IL-8 was normalized to the baseline vehicle level. Data is represented as

Means ± S.E. for N=3 independent replicates. (A) RealSkin alone did not

induce any significant changes in IL-8 secretion following treatment with

the chemicals salicylic acid (SA), isoeugenol (IE) or p-phenylenediamine

(PPD).   (B) RealSkin Co-Cultured with MUTZ-LCs showed significant IL-8
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increases with 224 μM IE and PPD treatments with respect to the untreated

and vehicle where p≤0.05. However, these conditions were not significant

when compared with the 360 μM dose of SA.

Figure 2. 3 Expression of CD54 and CD86 of MUTZ-LCs following

sensitization. The relative percent positive in the sensitized MUTZ-3 LC’s

populations was compared to vehicle treatment for A) CD54 and B) CD86

expression. The expression level of each corresponding surface molecule
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treated with vehicle is indicated by the black dotted line.  CD54 surface

expression did not significantly change with treatments salicylic acid (SA),

isoeugenol (IE), or p-phenylenediamine (PPD). CD86 expression increased

significantly following treatment with the strong sensitizer PPD. * indicates

significance at p≤0.05. Although there is an increased CD86 trend following

moderate sensitizer IE treatment, the difference was not significant. Data is

represented as Means ± S.E. for N=3 independent replicates.

Evaluation of MUTZ-LC Migration to CCL19

To functionally assess the MUTZ-3 derived LC sensitization mediated

chemotaxis towards the chemokine CCL19, a 4 hour trans-well migration assay

was performed. After 48 hour sensitizer exposure, an enhanced dose responsive

migration towards CCL19 was observed relative to SA for IE and PPD,

respectively (Figure 2.4).
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Figure 2. 4 Migration of MUTZ-LCs co-cultured with RealSkin toward

CCL19. Cultures were established and sensitized as described above.

Migration was quantified post-exposure to chemical treatments. The data

was not normalized to vehicle for the migration assay due to zero net

migration when treated with vehicle alone. Instead, the data was

normalized to irritant salicylic acid (SA) instead as represented by the

dashed line to indicate mean level of migration for SA treated MUTZ-LCs.

Chemotaxis in response to CCL19 exposure was greatest for the strong

sensitizer treatment p-phenylenediamine (PPD) followed by the moderate

sensitizer isoeugenol (IE). This difference was significant for both

sensitizer treatments, where ** indicates p≤0.01. The non-sensitizer

treatments (untreated, vehicle, and salicylic acid (SA)) showed minimal cell

migration. Data is represented as Means ± S.E. for N=4 independent

replicates.

Hierarchical Cluster Analysis of Secretome Data

In order to expand our quantitative analysis of RealSkin mediated

sensitization, we examined the secreted molecular patterns post-chemical

treatment using a 27-cytokine Bioplex screen. The data from this secretome

screen was analyzed using high throughput classification tools to identify

molecular patterns related to sensitization. An unsupervised agglomerative

hierarchical clustering analysis was performed to identify potential cytokines that

are elevated post-sensitization and for the two culture conditions (RealSkin

treated alone or RealSkin co-cultured with MUTZ-LCs).
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The heat map representation of the data shows increased relative levels

of secretion in shades of red and decreased levels of secretion in shades of

green. The cluster analysis for the RealSkin alone treated with chemicals shows

a dendrogram that clusters a node with sensitizer PPD and irritant SA. This

demonstrates that these two treatment conditions share similar secretion

patterns (Figure 2.5A). In contrast, the cluster analysis for the co-culture

secretome from RealSkin with MUTZ-LC shows a dendrogram that clusters non-

sensitizer treatments (untreated, vehicle, and irritant SA) together. However, the

moderate sensitizer, isoeugenol, branches out from this node, indicating a

change in the baseline secretion. Moreover, the strong sensitizer PPD, branches

off from the isoeugenol treatment conditions and farthest away from the non-

sensitizer treatment conditions. Therefore, the non-sensitizer treatment

conditions share similar patterns in secretion post-treatment with low levels of

inflammatory cytokine secretion and sensitizer treatment conditions show

increased levels of inflammatory cytokine secretion. A panel of secreted metrics

that is clustered together to reflect these patterns include VEGF, IL-4, IL-9, and

IL-12 (Figure 2.5B) and are selected as potential candidates to predict skin

sensitization.
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Figure 2. 5 Hierarchical cluster analysis of A) RealSkin and B)

RealSkin co-cultures with MUTZ-LCs secretome. A) RealSkin secretome

normalized relative to vehicle and B) RealSkin co-cultured with MUTZ-LCs

secretome normalized relative to vehicle after treatment with sensitizers

isoeugenol (IE), p-phenylenediamine (PPD), and irritant, salicylic acid (SA)

for 48-hours. No discriminant patterns emerged in the RealSkin mono-

culture with sensitizer treatment and therefore the cluster analysis does

not arrange the treatments according to their actual potency. However, for

the co-culture condition, a panel of cytokines (VEGF, IL-4, IL-12, IL-9) show

elevated levels of secretion relative to both irritant and vehicle for

sensitizer treatments of moderate and strong potency. Heat map data is

represented as mean for N=3 independent replicates.

Support Vector Machine Analysis on Secretome Data

Although the hierarchical cluster analysis gave some insight in parsing the

potencies of each chemical and identifying potential biomarkers for sensitization

based on the multi-plex data, it does not systematically rank the metrics to

identify the best possible biomarker(s) quantitatively. Thus, alternative feature

selection methods were explored such as the utility of p-values from ANOVA and

a support vector machine (SVM) classifier. The SVM calculated the margin

distance of separation between two classes of chemicals: non-sensitizer control

treatments and sensitizer treatments (IE and PPD). The greater margin distances

indicated a greater degree of separation between the two classes for any given

metric. Based on this information, we were able to rank each cytokine based on
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its ability to distinguish between the controls and the sensitizer treatments and

select the key features necessary to produce an accurate prediction. The margin

distances for the cytokine data from the co-culture assay are greater than the

margin distances from the skin equivalent secretome indicating a greater degree

of separation from non-sensitized treatment groups and sensitized treatment

groups (data not shown). Furthermore, for RealSkin alone, no cytokines were

found to be statistically significant and all cytokine metrics showed low

accuracies (<75%) for correctly classifying sensitized treatments.

The margin distances of the top ten secretome cytokines collected through

the co-culture system with RealSkin and MUTZ-LCs in ranked order are IL-12, IL-

9, VEGF, IFN-γ, PDGF, IL-7, IL-8, GM-CSF and IL-6 (Table 2.1). A

representative scatter plot of the top metric, IL-12 shows the separation of the

sensitizer (IE and PPD) data points in contrast to the non-sensitizer (Vehicle, SA)

data points that are separated by the margin distance (Figure 2.6).   The top 3

cytokines, IL-12, IL-9, and VEGF all have accuracy, sensitivity, and specificity

values that exceed 80% as individual biomarkers. Using the support vector

machine to rank the cytokines by their accuracy instead of by margin distances

yields the same panel of cytokines. However, the ranking order is slightly altered

to reflect the following hierarchy in descending order of IL-12, IL-9, VEGF, PDGF,

IL-4, GM-CSF, IL-6, IL-8, IFN-γ, and IL-7. Ranking the cytokines by p-values

determined through ANOVA results in the same cytokines listed in the top 10 as

the panel identified by ranking margin distances. However, the order of the top
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ten cytokine ranking is slightly shuffled to reflect the following order of IL-12,

VEGF, IL-9, IFN-γ, IL-4, PDGF, IL-8, IL-7, IL-6, and GM-CSF.

Figure 2. 6 Representative scatter plot of IL-12 using support vector

machine. Red + indicates non-sensitizer (NS) treatments (untreated,

vehicle, and salicylic acid (SA)) and green + indicates sensitizer

(isoeugenol (IE) and p-phenylenediamine (PPD)) treated conditions. The

line separating the two classes in this plot indicates the center of the

margin distance boundary. The two encircled points near the margin

distance center boundary indicates the critical points that are used as

support vectors. IL-12 data analyzed by the SVM classifier included all

treatment conditions (untreated, vehicle, SA, IE, and PPD) and all of their

respective concentrations for N=3 independent replicates.

Table 2. 1 Margin distances of Cellular Metrics from Support Vector

Machine Analysis. The margin distances quantified from the support

vector machine ranked, from greatest to least distance of separation,

between non-sensitizer treatment groups and sensitized groups for metrics

from a Bioplex screen using supernatant from co-culture of RealSkin with

MUTZ-3 derived Langerhan’s cells (RSLC). The accuracy, sensitivity, and
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specificity for each cytokine metric were determined using a support vector

machine classification model with 10-fold cross. The top ten secretion

metrics (IL-12, IL-9, VEGF, IFN-γ, IL-4, PDGF, IL-8, IL-7, GM-CSF, and IL-6)

that can accurately classify non-sensitizers (vehicle and salicylic acid (SA))

from sensitizers (isoeugenol (IE) and p-phenylenediamine(PPD)) identified

by SVM all have p values ≤0.05 as determined by ANOVA. IL-12 is the only

metric that has an accuracy, sensitivity, and specificity value that exceeds

90%. Data analyzed by the SVM included all treatment conditions

(untreated, vehicle, SA, IE, and PPD) and all of their respective

concentrations for N=3 independent replicates.
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Table 2. 2 Performance of classification models using metrics identified

through feature selection methods. Classification performance in terms of

accuracy, sensitivity, and specificity was determined by 10-fold cross

validation. By utilizing all of the 27 cytokines from the Bioplex without

performing any feature selection to build a predictive model, the accuracy,

sensitivity and specificity of the classifier was very poor. Performing

Rank Metrics Margin
Distance

Accuracy
(%)

Sensitivity
(%)

Specificity
(%) P-value

1 IL-12 0.5564 91.67 91.67 91.67 < .0001
2 IL-9 0.339 83.33 83.33 83.33 0.00011
3 VEGF 0.3176 83.33 83.33 83.33 0.00022
4 IFN-γ 0.2645 66.67 66.67 66.67 0.00146
5 IL-4 0.2564 75 66.67 83.33 0.00287
6 PDGF-bb 0.2473 79.17 83.33 75 0.00732
7 IL-8 0.2438 70.83 66.67 75 0.01131
8 IL-7 0.2403 66.67 50 83.33 0.01559
9 GM-CSF 0.2391 75 58.33 91.67 0.02965
10 IL-6 0.2336 70.83 58.33 83.33 0.02993
11 IL-17 0.2278 66.67 75 58.33 0.05489
12 IL-15 0.2233 58.33 66.67 0.5 0.083
13 IL-10 0.2219 66.67 58.33 75 0.09419
14 IL-1β 0.2196 62.5 50 75 0.09501
15 FGF basic 0.2189 66.67 66.67 66.67 0.13044
16 TNF-α 0.2181 66.67 75 58.33 0.15035
17 IL-1ra 0.216 50 25 75 0.16244
18 G-CSF 0.2147 50 25 75 0.22958
19 IL-2 0.2137 54 50 58.33 0.2565
20 IP-10 0.2117 50 16.67 83.33 0.2815
21 Rantes 0.2104 50 50 50 0.42441
22 Eotaxin 0.209 33.33 33.33 33.33 0.53499
23 MIP-1α 0.2089 33.33 25 41.67 0.79776
24 MIP-1β 0.2087 25 33.36 16.67 0.80659
25 IL-13 0.2087 45.83 8.33 83.33 0.86399
26 MCP-1 0.2087 33.33 16.67 50 0.89127
27 IL-5 0.2085 45.83 50 41.67 0.90373
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feature selection by ranking the margin distances from the SVM and p-

values determined from ANOVA identified IL-12, IL-9, VEGF, IFN-γ as a

molecular signature to build the classification model. This classification

model performed superiorly as compared to a model built using features

selected using hierarchical cluster analysis or by ranking the accuracies

computed from the SVM. Data analyzed by all feature selection methods

included all treatment conditions (untreated, vehicle, SA, IE, and PPD) and

all of their respective concentrations for N=3 independent replicates.

When hierarchical cluster analysis was used to perform feature selection,

a panel of cytokines (IL-12, VEGF, IL-4, IL-9) was identified and used to build the

SVM classification model. This feature selection method resulted in a model that

performed with accuracy of 91.67% and with a sensitivity and specificity score of

91.67%. When feature selection was performed by ranking the margin distances

and p-values, the top 4 metrics (IL-12. IL-9, VEGF, and IFN-γ) were identified

and utilized to build a SVM classification model. Both feature selection methods

led to the best classification performance where the accuracy, sensitivity, and

specificity were all 92% (Table 2.2). The accuracy value for sensitizer

classification was greater when a panel of metrics was used instead of individual

cytokine metrics alone (Table 2.1). Interestingly, the cytokine panel identified

using feature selection also performed better than all other cellular metrics

Feature Selection Method Metrics Accuracy Sensitivity Specificity

No Feature Selection All 27 Cytokines from Bioplex 75.0% 67.0% 83.0%
P-Values IL-12, IL-9, VEGF, IFN-γ 92.0% 92.0% 92.0%

Hierarchical Cluster Analysis IL-4, IL-9, IL-12, VEGF 91.7% 91.7% 91.7%
SVM Margin Distance IL-12, IL-9, VEGF, IFN-γ 92.0% 92.0% 92.0%

SVM Accuracy IL-12, IL-9, VEGF, PDGF 91.3% 90.9% 91.7%
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including CD54, CD86, and chemotaxis to CCL19 which had respective accuracy

scores of 72.73%, 81.83%, and 87.5%. Thus, feature selection methods are

useful tools to identify potential molecular signatures to build predictive

classification models of skin sensitization.

2.4 DISCUSSION

Predictive in vitro assays that can accurately identify skin sensitizers and fully

replace animal testing are in demand. Although high through-put alternatives

such as the peptide binding assays accurately predicted 89% of the 82

sensitizers tested, it failed to accurately identify a class of haptens known as pro-

haptens [6]. Pro-haptens require auxiliary chemical reactions to transform the

innately inert molecule into a hapten that will bind to peptides in the skin and

serve as the antigen that triggers the allergy response. Furthermore, there is

evidence that pro-hapten transformation involves Cytochrome p450 enzymes

present in the epidermis and dermis [11] [12].  Although peptide binding provides

a helpful initial tool for evaluating the sensitization potential of chemicals, other

cellular factors such as skin permeation, metabolism, cytokine signaling

environment, and dendritic cell activation should also be considered.

To address the need for a metabolic component that is more in vivo-like, we

developed a co-culture assay system where a full thickness skin model with

keratinocytes and fibroblasts known as RealSkin was cultured together with

MUTZ-3 derived Langerhan’s cells. RealSkin’s™’ mRNA levels for phase I and

phase II enzymes were found to be more similar to excised skin than the

epidermal skin model, EpiSkin™. This is thought to occur due to fibroblasts in



51

RealSkin which modulate the enzymes’ expression levels [13]. Dermal fibroblasts

also have immunomodulatory properties that can facilitate dendritic cell

maturation though soluble signals such as TNF-alpha and direct cell-cell contact

[14]. Thus, a full thickness skin model that contains both epidermal keratinocytes

and dermal fibroblasts co-cultured with Langerhan’s cells can ensure that the

dynamic signaling environment across different cell types during sensitization is

preserved in vitro.  The MUTZ-3 cell line is derived from myeloid leukemia and is

established as a viable cell source for differentiation into Langerhan’s cells or

dendritic cells upon exposure to different growth factors and cytokines [15] [16].

In a previous study by Oewehand et al, a full thickness skin equivalent model

with MUTZ-3 derived Langerhan’s included within the epidermis was developed

and showed dendritic cell maturation responses upon exposure to skin

sensitizers. Here, the LCs were stained for CD83 via immunohistochemistry, IL-

1β and CCR7 mRNA were measured, and migration into the dermis of the skin

equivalent was observed [17].  This system is uniquely poised to evaluate the

induction of LC migration out of sensitized skin and may also be useful in

identifying important sensitization metrics which can be ranked in importance

using our analysis tools.   Thus far secretome analysis was not performed so we

are unable to compare the results of their and our systems in identifying

important sensitization metrics. In our co-culture assay the LC are not

incorporated directly into the skin equivalent.  Nevertheless, we are able to take

advantage of the many benefits of skin equivalents. These advantages include

the ability to use commercially available products to topically apply chemicals,
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preservation of the cellular cross talk between keratinocytes, fibroblasts, and

LCs, and a source of xenobiotic metabolism for pre/pro-haptens to sensitize the

MUTZ-LCs placed below the skin.  Thus, with the MUTZ-LCs cultured below the

skin compartment, the two components are easily separated and we were able to

assess multiple dendritic cell maturation metrics. A small panel of chemicals that

include representative pre-/pro-haptens isoeugenol and p-phenylenediamine and

irritant salicylic acid were selected in this initial study to show proof-of-concept.

Others have also reported small chemical panels for initial system

characterization [4, 16, 18, 19].  Future studies that incorporate additional

chemicals will be necessary to further validate our approach.

Based on the results from our co-culture sensitization platform, we were

able to distinguish PPD as a sensitizer relative to vehicle and irritant salicylic acid

controls, through CD54 and CD86 surface expression. However, both surface

molecules were not elevated for the moderately potent isoeugenol. CD86 and

CD54 have been reported as promising surface molecule biomarkers for

sensitization with several cell lines including THP-1, U-937, KG-1 and MUTZ-3

[4]. However, an evaluation of CD86 on MUTZ-3 cells using a panel of 20

sensitizers  (where PPD and IE were included) and 20 non-sensitizers (where

DMSO and SA were included)  corroborated our findings where CD86 was

upregulated for PPD verses SA and DMSO, but IE was not [7]. Thus, CD86 and

CD54 may not be sufficient to accurately predict sensitization as standalone

metrics.
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In addition to surface molecule expression, the level of IL-8 mRNA or

secretion is also a commonly evaluated metric of sensitization among several

different cell-based assays. Secreted IL-8 was measured from RealSkin alone

and from the co-culture of RealSkin with the MUTZ-LCs. RealSkin alone did not

secrete IL-8 in a discriminate fashion for sensitizers as compared to the control

treatments. IL-8 secretion from the co-culture of RealSkin and MUTZ-LC was

able to correctly identify only PPD as a sensitizer. While reports in literature are

generally supportive of IL-8 as a distinguisher of sensitization, there are still

several reports with false negatives where a contact sensitizer was mis-classified

[20]. Similar to CD54 and CD86, IL-8 expression may be better suited as a metric

that is evaluated within a panel of additional cellular markers. In addition to

molecular metrics, a trans-well migration assay was used to functionally assess

the MUTZ-LC’s post-sensitization. A dose response with respect to

concentrations of the sensitizer was observed for both IE and PPD.  These

results indicate that a functional assessment of the sensitized LCs to migrate in

response to chemokine CCL19 can be used to distinguish pro-hapten IE and pre-

hapten PPD from irritant SA and vehicle control (0.4% DMSO in RPMI medium)

in our co-culture system.

Several prominent cellular metrics such as CD54, CD86, and IL-8

performed poorly on correctly identifying the less potent sensitizer, isoeugenol.

Although these metrics are useful as an initial screening tool, the need to find

more sensitive metrics and assays still persist. Thus, a 27-cytokine screen was

performed to assess the secretome from the topical application of sensitizers on
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RealSkin alone and on RealSkin co-cultured with MUTZ-LCs.  An unsupervised

classification tool known as hierarchical cluster analysis was used to analyze the

secretome data and identify molecular patterns of sensitization. Based on the

results of hierarchical cluster analysis, RealSkin secretome did not show any

distinguishing cytokine metrics that could be used to cluster sensitizer IE and

PPD relative to non-sensitizers SA and vehicle. However, hierarchical clustering

of the co-culture system grouped the vehicle and SA treatments with moderate

sensitizer IE branching off and with strong PPD treatments clustering adjacent to

the IE treatments. Thus, the cluster pattern for this culture configuration also

separates treatments by the potency of sensitizers. This suggests that cytokines

secreted through co-culture can discriminate between non-sensitizers and

sensitizers more accurately than cytokines secreted from the skin alone.

Secreted metrics that were identified as prospective predictors in the co-culture

setup for the identification of sensitizers include VEGF, IL-4, IL-9, and IL-12.

Interestingly, several of these metrics include cytokines currently implicated

during skin sensitization and are involved in the immune regulation of T-cells [21-

23].

To further aid in the discovery of sensitization molecular signatures, a

supervised classifier known as a support vector machine was used to classify

and identify the best secreted metrics that were capable of distinguishing

between sensitizers and non-sensitizers. A support vector machine is a powerful

machine learning tool that has been extensively applied in the area of pattern

recognition and classification.  SVM analysis was compared with linear
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discriminate analysis (LVA) in screening 130 organic compounds based on 6

molecular descriptors associated with quantitative structure activity relationships

(QSAR) based on electrophile-nucleophile reactions that occur during skin

sensitization [9]. Based on this study, SVM methods proved to be superior in

classifying compounds as non-strong/moderate or strong/moderate sensitizers

according to their QSAR properties when these in silico results were compared to

the Gerberick LLNA database. Additional physicochemical property descriptors

were utilized such as hydrophobicity and polarity of the test molecules. However,

limited descriptors derived from in vitro biological experiments were applied in

this study. Since then, genomic data collected post-sensitization from MUTZ-3

cells has also been used to built a classification model with a support vector

machine where 89% accuracy was achieved using a 200 gene signature (GARD

assay) [7, 24]. Here, we report the novel use of a SVM for sensitizer classification

applied to biological activity at the protein level to build a classification model and

develop a feature selection tool to compare different biomarkers. Furthermore,

the molecular signature that we’ve identified utilizes four secreted soluble

proteins that are easily detectable by ELISA or multi-plex and do not require the

more labor intensive nucleic acid based protocols.

By comparing the computed margin distances from the secreted metrics of

the RealSkin alone and the co-culture of RealSkin with MUTZ-LCs, the co-culture

system showed superior assay performance in the correct prediction of both the

moderate pro-hapten isoeugenol and strong pre-hapten PPD. This is likely due to

the more in vivo-like nature of the co-culture system where the dynamic cellular
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interactions between keratinocytes, fibroblasts and Langerhan’s cells are

preserved. By systematically ranking the margin distances and accuracy values,

a panel of cytokines capable of distinguishing sensitizers was identified. This

panel includes IL-12, IL-9, VEGF, IFN-γ, IL-4, PDGF, IL-8, IL-7, GM-CSF, IL-6,

and IL-17 with the top three metrics with accuracies, sensitivities, and

specificities all exceeding 83.33%. By ranking the statistical p-values from

ANOVA, we found the same panel of potential cytokine markers.

After identifying cytokines of interest, we explored whether using them as

a panel led to greater accuracies in identifying sensitizers than using each

secreted metric alone. Using 10-fold cross-validation, it was determined that

using a panel of metrics identified independently through cluster analysis, SVM,

and ANOVA improved the accuracy, specificity, and sensitivity in correctly

identifying PPD and IE as sensitizers better than using a single cellular metric

alone. The results indicate that traditional feature selection methods such as

ANOVA and hierarchical cluster analysis validate our support vector machine

feature selection approach.  However, additional benefits of using SVM as a

feature selection tool over traditional statistical methods based on filtering

significant p-values or cluster analysis are that SVM accounts for dependencies

amongst the features, enables quantitative ranking of individual metrics, interacts

with the classifier, and affords superior computational complexity [25]. The ability

to interact with the classifier is especially important as the classification model is

progressively trained with more biological information provided by expanding the

panel of chemicals and cellular metrics.
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The classifier accuracy, sensitivity, and specificity were all greater than

90% when the best secreted features were selected based on our small panel of

sensitizers.  This supports the recent notion that a molecular signature or a

battery of assays needs to be implemented together to correctly identify potential

contact allergens [26, 27]. The true predictive power of our specific molecular

signature will need to undergo validation studies with an expanded panel of

chemicals. However, the accuracy of our classification model suggests that this

identified signature validates our feature selection method by SVM and the need

to use a panel of several metrics. Thus, as more chemicals are evaluated, it is

feasible that the number of predictive metrics may expand as was the case in the

GARD study where initial studies utilized 10 genes and was later expanded to

200 genes [7]. Furthermore, additional sensitizers or varying potencies will need

to be evaluated to determine whether the system can accurately predict

potencies of chemicals as well as their sensitizing potential.

Our molecular panel includes secreted products that are implicated during

antigen presentation such as cytokines IL-12, IFN-γ, and IL-9. VEGF is a potent

vasodilator that facilitates lymphocyte infiltration into the skin during an allergy

response [28, 29]. Thus, all proteins identified are physiologically relevant to

allergic contact dermatitis. Recent literature also indicates IL-18 as an effective

predictor of skin sensitization using epidermal equivalents and the NCTC2544

keratinocyte cell line [30, 31]. Although IL-18 was not measured as part of our

27-cytokine Bioplex screen, we did identify IFN-γ as a predictive marker of skin

sensitization. Since IL-18 is a potent inducer of IFN-γ production and promoter of
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a Th-1 response, it is feasible that there could be some IL-18 release in our co-

culture model [32].  However, previous studies with skin equivalents indicate that

the accuracy of IL-18 as a biomarker depends on cytotoxicity levels that yield

<50% [31]. Nonetheless, future studies could benefit from characterizing IL-18

release and this cellular metric could be compared to the others evaluated in this

paper using our SVM selection approach. Also, these studies should include

more cytotoxic concentrations as part of the dose response studies to allow for

the full predictive potential of IL-18 release as a biomarker.

Although the use of skin equivalents may be more time and resource

intensive than submerged cell cultures if they are developed in-house, these

inconveniences could be significantly reduced if the skin equivalents are

purchased directly through a vendor. Although RealSkin is currently not available

for purchase through EpiSkin, there are several full thickness skin equivalents

available on market such as MatTek’s EpidermFT, and CellSystems’ AST2000

[33, 34].  Commercially available epidermal equivalents such as MatTek

EpiDerm™, SkinEthic™ EpiSkin, and SkinEthic™ RHE may also be used in a co-

culture model [31]. There is evidence that assays that use of epidermal

equivalents may be more amenable to inter-laboratory transfers to generate

reproducible results than submerged cell lines that are more sensitive to specific

culture conditions [31, 35]. Ultimately, it is clear that a single assay and cellular

metric of sensitization is insufficient as a stand-alone predictor and tiered

strategies using a battery of assays improved the overall accuracy of identifying

known skin sensitizers [26, 27]. Thus, we envision this type of co-culture system
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to be utilized as a second tier assay following in silico or peptide binding

screening methods. Unlike studies where a battery of assays with different cell

sources, metrics, and specifications are evaluated separately, we envision a

more streamlined approach where several key in vivo sensitization steps such as

permeation, metabolism, keratinocyte activation, and dendritic cell maturation

can all be measured within a single assay system.

In conclusion, we established an assay system that utilizes an organotypic

skin model co-cultured with differentiated Langerhan’s cells from the MUTZ-3 cell

line as a potential alternative to animal testing. Furthermore, we describe a novel

feature selection method to identify key biomarkers of sensitization using a

support vector machine to rank the margin distances from a panel of 27 secreted

cellular metrics. Unlike standard dendritic cell based assays, chemicals can be

topically applied to the skin model and permeate through the skin to activate the

MUTZ-LCs below. Additional benefits of a co-culture system include the

metabolic capabilities of the skin model to convert pro- and pre-hapten

sensitizers into electrophilic products and the preserved cellular interactions

between keratinocytes, fibroblasts, and Langerhan’s cells. Based on our

comprehensive analysis of multiple cellular metrics, we found that CD54, CD86,

and IL-8 may be unreliable markers to identify potential skin sensitizers in our

system. However, using a multi-plex screen combined with unsupervised and

supervised classification tools, we identified a molecular pattern of cytokines that

were expressed after sensitization. Furthermore, the support vector machine was

utilized as a tool to systematically rank these cytokines of interest and select for
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the best panel of sensitization biomarkers in our system. This signature that

includes IL-12, IL-9, IFN-γ, and VEGF showed greater accuracy, sensitivity, and

specificity than using a single secreted metric.  Future studies will focus on

evaluating an expanded panel of sensitizers with wider ranges of dosages to

further optimize and validate our culture approach and molecular signature. The

support vector machine feature selection method and classification model we

have developed can be continually expanded to compare cellular metrics

obtained by our laboratory and by others in training the classification model to

predict sensitizers and their respective sensitizer potencies.
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CHAPTER 3: CO-CULTURE OF KERATINOCYTES, FIBROBLASTS, AND

LANGERHAN’S CELLS IMPROVES SENSITIZATION PREDICTION

3.1 INTRODUCTION

Allergic contact dermatitis is an inflammatory skin disease that is a rising

public health concern due to its growing prevalence. To assess the public’s

propensity for contact dermatitis, many alternatives to in vivo screening of

chemicals have been developed. However, these systems are limited by their

poor ability to accurately identify a subset of contact sensitizers known as pro-

haptens that require metabolic activation to serve as the antigen. Pro-hapten

sensitizers are innately un-reactive until they are bio-transformed by enzymes in

the skin to form sensitizing intermediates and products. Thus, for the accurate

identification of pro-hapten sensitizers, a metabolic component must be

incorporated with the screening tool.

Several strategies to introduce a metabolic component to transform pre–

and pro-hapten sensitizers were previously investigated in literature using

Cytochrome p450 enzyme cocktails, liver microsomes, and keratinocyte cell lines

[1-3]. A skin-like cocktail of CYP enzymes (CYP1A1, CYP1B1, CYP2B6,

CYP2E1, and CYP3A5) was used to metabolize pro-hapten dienes, and

metabolism of these substrates was confirmed using LC-MS [3]. The products of

this reaction were added to peripheral blood mononuclear derived dendritic cells,

and elevated IL-8 mRNA was measured to confirm sensitization. While this

method shows great promise, the CYP enzymes in this study were enriched a
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1000-fold and may not be fully representative of the in vivo content and activity of

these enzymes [4].

Another alternative source of metabolism previously explored utilized

human liver microsomes co-incubated with THP-1 cells to facilitate the

metabolism of pro-haptens benzo(a)pyrene, 7,12-dimethylbenz(a)anthracene,

carvone oxime, cinnamic alcohol, and isoeugenol [1]. THP-1 cells that were co-

incubated with the microsomal enzymes had greater CD54 and CD86 expression

as compared with control cells that were not incubated with microsomes. Thus,

liver microsomes derived from hepatocyte’s endoplasmic reticulum where CYP

enzymes are concentrated could be a viable source of metabolism that is both

cost effective and amenable for high throughput screens based on their

extensive use by the pharmaceutical industry to perform drug metabolism and

pharmacokinetic studies [5]. However, there are tissue specific discrepancies in

the panel of Cytochrome P450 enzymes and their respective activity levels

between skin and liver derived microsomes [6, 7]. Thus, a more physiologically

relevant source of enzymes that are involved during sensitization such as

keratinocytes and fibroblast cell cultures may be a suitable, cost effective

alternative. In a previous study, co-culture of HaCaT keratinocytes and THP-1

cells was able to improve the detection of pro-haptens using CD86 expression as

an end point metric [2].

Keratinocytes (KCs) in the epidermis are primarily responsible for carrying

out xenobiotic metabolism in the skin. An immortalized KC line, HaCaT cells

express several key phase I enzymes such as CYP1A1, CYP1 B1, CYP3A, and
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COX [6, 7]. CYP1A1 is particularly important in generating reactive intermediates

from pro-haptens such as eugenol, isoeugenol, and geraniol [8-11]. KCs also

produce several inflammatory mediators such as members of the IL-1 family,

TNF-α, IL-6, IL-18 and GM-CSF during ACD. These factors orchestrate various

events during the sensitization phase such as the migration and maturation LCs,

the recruitment of T-lymphocytes, and accessory lymphocytes such as natural

killer cells, macrophages, and neutrophils [12-14].  Fibroblasts in the dermis also

play an important role by secreting chemokines such as CXCL12 and cytokines

such as TNF-α that further direct LC migration and maturation during

sensitization [15, 16]. Fibroblasts may also regulate the expression of

Cytochrome P450 enzymes in keratinocytes by secreted factors [17]. Thus, a co-

culture approach that includes both of skin cell types may confer additional

benefits as compared with the use of keratinocytes alone.

In a previous study described in Chapter 2, a full thickness skin model co-

cultured with Mutz-3 derived Langerhan’s cells was assessed as an in vitro

model to identify pro-hapten isoeugenol and pre-hapten p-phenylenediamine.

Although the preliminary results were promising, there are several limitations to

this approach. The use of a full thickness skin equivalent can be resource

intensive from a labor and cost perspective. This can potentially limit its ability to

perform high-throughput screening that is necessary to evaluate the sensitizer

potential of numerous compounds. At this present time, there are no skin models

that have been validated for sensitization testing. However, there are several

models that have been deemed acceptable for irritant screening by the European
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Commision. These models include three epidermal equivalent models from RHE:

SkinEthic, EpiDerm, and Episkin. The Episkin model is available for purchase in

a 12-well format at an estimated cost of ~$450/test kit/chemical [18]. It is

estimated that nearly 20,000 new compounds will require sensitization

information by 2018, according to the guidelines placed by REACH, the

European community regulation on chemicals and their safe use [19].  A basic

cost analysis for this class of new chemicals entering the market yields 20,000 x

~$450 = ~$9 million for just the cost of skin alone. This high cost and limited

availability of reconstructed skin models are largely due to lengthy protocols that

are labor intensive and performed by trained personnel. Thus, an alternative

method that preserves the benefits of keratinocyte and fibroblast’s presence in

co-culture with MUTZ-LCs was explored in this chapter. In parallel, MUTZ-LCs

were cultured alone to assess if these cells were capable of identifying an

expanded panel of pre/pro-haptens. Previous studies with MUTZ-3 cells in the

GARD assay and the CXCL12 migration assay indicated that this cell line can be

used for identifying pre/pro-haptens [20-23].

3.2 MATERIALS AND METHODS

Cell culture

The HaCaT keratinocyte (KC) cell line was a donation from Dr. Bozena

Michniak-Kohn.  Primary dermal fibroblasts (FB) isolated from foreskin were a

donation from Dr. Francois Berthiaume. Both HaCaT KCs and FBs were

maintained in DMEM (Gibco) with 10% FBS and 100 U/mL Penicillin, 100ug/mL

streptomycin supplementation.
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The 5637 urinary bladder carcinoma cell line was purchased from ATCC

(Manassas, Va.). The 5637 cell line was maintained at 37oC and 5% CO2 in

RPMI medium supplemented with 10% FBS, 2% L-glutamine, and 1% penicillin-

streptomycin. Media was changed every other day and conditioned medium was

collected when the cells were 90% confluent. This conditioned medium was

supplemented into the MUTZ-3 culture medium as per the guidelines from

DSMZ.

The MUTZ-3 cells were a donation from L’Oreal (Paris, France) and are

available for purchase from DSMZ (Braunschweig, Germany). The MUTZ-3 cell

line was maintained at 37oC and 5% CO2 in alpha-MEM medium with Glutamax,

ribonucleosides, and deoxyribonucleosides (Invitrogen) supplemented with 20%

heat inactivated FBS, 10% 5637 conditioned medium, 1% Penicillin-

streptomycin, and 50uM2-mercaptoethanol. Media was changed every other day

and the cells were split on day five of culture. To differentiate the MUTZ-3 to LCs,

cells were cultured for 7 days using 2.5 ng/mL TNF-α, 10ng/mL TGF-B1, and

100ng/mL GM-CSF. On day 2 and day 5, fresh cytokines were added at half

those concentrations. Differentiated LCs utilized in experiments were maintained

in complete MUTZ-3 media described above without the 5637 conditioned

medium. This medium will be described as the Maturation Medium in future

sections.

Chemicals and Reagents

Test chemicals included both non-sensitizers and known skin sensitizers

that are pre-/pro-haptens (Table 3.1). Non-sensitizing chemicals included the
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vehicle (0.1% Dimethylsulfoxide) and 2 skin irritants, salicylic acid (SA) and

sodium dodecyl sulfate (SDS).  A panel of 9 sensitizers of varying potencies and

classes outlined in Table 3.1 were evaluated. This panel includes eugenol (EU),

gerionol (GER), cinnamic alcohol (CA), isoeugenol (IE), Cinnamaldehyde (CLD),

2-Aminophenol (2AP), Hydroquinone (HQ), p-phenylenediamine (PPD), and

dinitrochlorobenzene (DNCB).  All chemicals are purchased through Sigma-

Aldrich and prepared in dimethylsulfoxide (DMSO) where the final concentration

of DMSO in cell culture during treatment was 0.1%. Concentration ranges were

based on values commonly reported in a literature review of these chemicals.

Table 3. 1Panel of chemicals evaluated.

Co-Culture of HaCaT Keratinocytes, Dermal Fibroblasts, and MUTZ-3

Langerhan’s Cells

HaCaT keratinocyte cells (1.25 x 105) and human dermal foreskin

fibroblasts (1.25 x 105) were plated 24-hours into 96-well plates before the start

of the experiment in the complete DMEM medium described above. After the

Chemical Abbreviation Chemical Type Potency Concentration (μM)
Sensitizers

Dinitrochlorobenzene DNCB Hapten Extreme 6.25
2-Aminophenol 2AP Pre-/pro-hapten Strong 100
Hydroquinone HQ Pre-/pro-hapten Strong 25

p -Phenylenediamine PPD Pre-/pro-hapten Strong 62.5
Cinnamaldehyde CLD Hapten Moderate 125

Isoeugenol IE Pre-/pro-hapten Moderate 250
Cinnamic Alcohol CA Pre-/pro-hapten Weak 500

Eugenol EU Pre-/pro-hapten Weak 250
Gerianol GER Pre-/pro-hapten Weak 500

Non-Sensitizers
Dimethylsulfoxide DMSO 0.10%

Salicylic Acid SA Irritant - 500
Sodium Dodecyl Sulfate SDS Irritant - 250
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cells attached to the bottom of the plate, the wells were washed with the

Maturation culture medium.  Fully differentiated (day 7) MUTZ-LCs (2.5x105) was

added to the wells in 220 μL of Maturation culture medium with the chemical

treatment at the listed concentration for 48 hours to induce sensitization. After

this incubation period, the supernatant was collected, stored at -20C, and thawed

prior to performing the Multi-plex analysis.

Cytokine Multi-plex Analysis

Supernatant was collected after treating MUTZ-LCs alone and HaCaT

KCs and FBs co-cultured with MUTZ-LCs with a panel of non-sensitizers and

sensitizers. The supernatants were then analyzed for 27 human cytokines,

chemokines, and growth factors (IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-8, IL-7, IL-

9, IL-10, IL-12, IL-13, IL-15, IL-17, Eotaxin, Basic FGF, G-CSF, GM-CSF, IFN-γ,

IP-10, MCAF, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α, and VEGF) using a

Bioplex Assay following the manufacturer’s instructions. (Bio-Plex Human

Cytokine 27-plex panel; Bio-Rad Laboratories, Hercules, CA, USA).

Statistical Analysis

A total of N=4 independent, biological replicates were analyzed by support

vector machine to determine the margin distances and develop the classification

models. Statistical significance was determined at p ≤0.05 by Student’s T-test in

Kaleidagraph.

Support Vector Machine as a Feature Selection Method

In the previous chapter, we described a novel method of performing

feature selection by support vector machine using the calculated margin
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distances between 2 classes of chemicals: non-sensitizer control treatments and

sensitizer treatments. For each cytokine, the training data is given by { , }, =1 … , ∈ {−1,1} , where x denotes the cytokine concentration normalized to

vehicle and y corresponds to the label of the chemical (-1 for non-sensitizers and

1 for sensitizers). For potency evaluation, the labels were changed to indicate -1

for non-sensitizers and 1 for weak/moderate sensitizer or strong sensitizer.

Factors that were unable to be normalized to the vehicle or below the detection

threshold of the Bioplex assay were excluded. Using a linear kernel, the points

that lie on the hyperplane that separates the positives and negatives are⋅ + = 0, which leads to the following constraints to the training data:⋅ + ≥ +1 = +1 (1)⋅ + ≤ −1 = −1 (2)

where w is the norm to the hyperplane and | |/‖ ‖ is the perpendicular distance

from the hyperplane to the origin, and | | is the Eucledian norm of w. From

inequality (1), the perpendicular distance of the hyperplane to the origin is found

to be |1 − |/ | | . Similarly, the distance of the hyperplane in (2) to the origin is|−1 − |/ | | . Therefore the margin distance between these two hyperplanes is2/ | | . Thus we can find a pair of hyperplanes that best separates the two

classes by minimizing | | subject to the constraints (1) and (2). This problem is

solved using quadratic programming provided by the bioinformatics toolbox in

Matlab. We used the aforementioned method to compute the margin distance

2/||w| for each cytokine. These margin distances and classification accuracy

values were subsequently ranked to identify metrics that had the greatest
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distance of separation between the non-sensitizer (vehicle, SA, SDS) and

sensitizer treated classes (EU, GER, CA, CLD, IE, 2AP, HQ,PPD, DNCB).

Development of a Classification Model

A support vector machine was used to develop classification models in

MATLAB based on the identified secreted metrics from ranking margin distances

to predict sensitization for each culture configuration (co-culture model and

MUTZ-LC model). The classifier’s performance (accuracy, sensitivity, and

specificity) was assessed using 5-fold cross validation for each individual

cytokine metric and molecular signature identified through various feature

selection methods described above.  This method trains the data with 80% of

randomly selected data and tests the data with the remaining 20% in an iterative

fashion 5 times.

Principal Component Analysis

Principal component analysis (PCA) is a multi-variate statistical tool that

reduces dimensionality of datasets in a manner that preserves the information of

the original data. Dimensions are reduced down to their principal components

that are calculated from an orthogonal transformation that converts correlated

variables into a new set of uncorrelated variables. These principal components

are ordered in terms of the variance such that the first principal component

contains the greatest amount of variance from the original data set.  Since we

utilized the SVM as a feature selection method to reduce the dimensionality of

our data, PCA was used primarily as a visualization tool using the identified
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molecular signatures to generate scatter plots along the data’s principal

components. PCA was performed using the statistical toolbox in MATLAB.

3.3 RESULTS

Feature Selection

The support vector machine was utilized as a feature selection method.  A

greater margin distance computed between the two classes of chemicals

indicated a greater degree of separation for any given secreted factor. Based on

this information, we were able to rank each secreted metric based on its ability to

distinguish between the non-sensitizing controls and the sensitizer treatments

and select the key features necessary to produce an accurate prediction. The

margin distances of the top ranked secretome cytokines collected through the

MUTZ-LCs alone in ranked order were MIP-1β, MIP-1α, IL-8, RANTES, and IL-9.

(Table 3.2). Each metric alone in this panel had accuracies that did not exceed

75%.

The margin distances of the top ranked secretome cytokines collected

through the co-culture system with HaCaT KCs, FBs, and MUTZ-LCs in ranked

order are IL-8, GM-CSF, RANTES, MIP-1β, and MIP-1α (Table 3.3). The

greatest accuracy score out of all the metrics evaluated in the co-culture was for

IL-8 with ~80%. The margin distance and accuracy for the top ranked cytokine

from the co-culture assay was greater than any of the margin distances from the

MUTZ-LC secretome indicating a greater degree of separation of the two

chemical classes in the co-culture configuration.

Classification Model for Distinguishing Sensitizers from Non-Sensitizers
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Classification models for identifying sensitizers was developed using both

individual metrics and using a panel of metrics that was identified by ranking the

margin distances. The identified top metrics identified in the MUTZ-LC’s

secretome showed accuracies that did not exceed 75% when a single biomarker

was assessed.  However, IL-8 secretion in the co-culture setting was identified as

the best individual metric overall with the greatest margin distance, accuracy

(80%), sensitivity (91.7%), and specificity (77.8%) based on 5-fold cross

validation (Table 3.4). Although IL-8 secretion in the co-culture showed an

accuracy of 80%, we were interested in evaluating whether the use of a panel of

biomarkers can improve the classifier performance as we observed in Chapter 2.

Based on the results of the feature selection method, we compared different

combinations of the identified features to build a predictive classification model.

When a predictive model was developed using a signature of the top 5 metrics

(MIP-1β, MIP-1α, IL-8, RANTES, and IL-9) identified in the MUTZ-LC secretome,

the classifier performance increased to 83.3% (Table 3.3). Including additional

metrics beyond the top 5 ranked cytokines did not improve the classifier

performance. When a classification model was built using the selected features

from the co-culture system, the combination of the top three cytokines (IL-8, MIP-

1β, RANTES) provided the best prediction with accuracy of 89.6% (Table 3.5).

Table 3. 2 The performance of classification models predicting skin

sensitization using secreted metrics from MUTZ-LCS identified through

SVM feature selection. The margin distances quantified from the support

vector machine ranked, from greatest to least distance of separation from a
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Bioplex screen using supernatant from  Mutz-3 derived Langerhan’s cells.

The accuracy, sensitivity, and specificity of each metric were determined

by 5-fold cross validation. Data analyzed by the SVM included non-

sensitizers conditions (DMSO, SA, SDS) and sensitizers (EU, GER, CA, IE,

CLD, 2AP, PPD, HQ, DNCB) for N=4 independent replicates.

Table 3. 3 The performance of classification models predicting skin

sensitization using secreted metrics from MUTZ-LCS identified through

SVM feature selection. Classification performance in terms of accuracy,

sensitivity, and specificity was determined by 5-fold cross validation.

Rank Metric Margin Distance Accuracy Sensitivity Specificity
1 MIP-1β 0.18273 65.0% 91.7% 58.3%
2 MIP-1α 0.15715 61.0% 83.3% 52.8%
3 IL8 0.15665 71.0% 83.3% 66.7%
4 RANTES 0.15438 65.0% 100.0% 47.2%
5 IL-9 0.15128 60.0% 83.3% 55.6%
6 IL-17 0.15071 75.0% 91.7% 69.4%
7 MCP-1(MCAF) 0.14815 48.0% 32.4% 92.9%
8 IL-15 0.14185 53.0% 83.3% 44.4%
9  IL-1b 0.14 70.0% 83.3% 58.3%
10  IL-6 0.13386 48.0% 83.3% 47.2%
11 VEGF 0.13183 69.0% 75.0% 63.9%
12 IL-13 0.13063 54.0% 83.3% 50.0%
13 IL-1ra 0.12957 65.0% 66.7% 61.1%
14 IL-4 0.12811 54.0% 66.7% 52.8%
15 IL-7 0.12733 53.0% 75.0% 50.0%
16 IL-12(p70) 0.12731 59.0% 66.7% 50.0%
17  TNF-a 0.12723 40.0% 25.0% 27.8%
18 PDGF-bb 0.12709 39.0% 50.0% 44.4%
19 IL-10 0.12682 46.0% 58.3% 41.7%
20 IFN-γ 0.12667 42.0% 41.7% 38.9%
21 IP-10 0.12651 55.0% 33.3% 33.3%
22 FGF basic 0.1265 47.0% 25.0% 36.1%
23  G-CSF 0.12638 65.0% 75.0% 52.8%
24 Eotaxin 0.12634 36.0% 41.7% 38.9%
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Performing feature selection by ranking the margin distances from the SVM

identified MIP-1β, MIP-1α, IL-8, RANTES, and IL-9 as a predictive molecular

signature to build the classification model. This classification model

performed superiorly as compared to a model built using the MIP-1β alone

or in combination with the top 4 ranked metrics. Using these 5 metrics, an

overall accuracy of 83.3% was observed. Data analyzed by the SVM to

develop these classification models included non-sensitizers conditions

(DMSO, SA, SDS) and sensitizers (EU, GER, CA, IE, CLD, 2AP, PPD, HQ,

DNCB) for N=4 independent replicates.

Table 3. 4 Margin distances of Cellular Metrics from HaCaT KC, dermal FB,

and MUTZ-LC co-culture secretome. The margin distances quantified from

the support vector machine ranked from greatest to least distance of

separation from the co-culture are shown. The accuracy, sensitivity, and

specificity of each metric were determined by 5-fold cross validation. Data

analyzed by the SVM included non-sensitizers conditions (DMSO, SA, SDS)

and sensitizers (EU, GER, CA, IE, CLD, 2AP, PPD, HQ, DNCB) for N=4

independent replicates.

Metrics Accuracy Sensitivity Specificity
MIP-1Β 66.7% 100.0% 50.0%

MIP-1Β, MIP-1α 75.0% 100.0% 66.7%
MIP-1Β, MIP-1α, IL-8 75.0% 100.0% 66.7%

MIP-1Β, MIP-1α, IL-8, RANTES 80.0% 100.0% 75.0%
MIP-1Β, MIP-1α, IL-8, RANTES, IL-9 83.3% 100.0% 75.0%
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Table 3. 5 The performance of classification models predicting skin

sensitization using secreted metrics from HaCaT KC, dermal FB, and

MUTZ-LC co-culture identified through SVM feature selection.

Classification performance in terms of accuracy, sensitivity, and specificity

was determined by 5-fold cross validation. Feature selection identified IL-8,

GM-CSF, RANTES, and MIP-1β as a predictive molecular signature for the

classification model. This classification model performed superiorly as

compared to a model built using each of the metrics alone. Using these 3

or 4 metrics in combination, an overall accuracy of 89.6% was observed.

Rank Metric Margin Distance Accuracy Sensitivity Specificity
1 IL8 0.18698 79.0% 91.7% 77.8%
2 GM-CSF 0.16002 67.0% 91.7% 58.3%
3 RANTES 0.14471 63.0% 91.7% 50.0%
4 MIP-1β 0.14302 58.0% 91.7% 47.2%
5 MIP-1α 0.13638 58.0% 83.3% 50.0%
6 MCP-1 0.13581 41.0% 91.7% 19.4%
7 IL-4 0.12976 61.0% 66.7% 55.6%
8 TNF-a 0.12971 75.0% 75.0% 63.9%
9 G-CSF 0.12912 40.0% 83.3% 36.1%
10 IL-6 0.12891 37.0% 83.3% 22.2%
11  IL-1ra 0.12873 67.0% 66.7% 61.1%
12  IL-15 0.12867 61.0% 66.7% 52.8%
13 IL-17 0.12836 43.0% 75.0% 38.9%
14 IP-10 0.12727 49.0% 91.7% 22.2%
15 IL-13 0.12721 52.0% 91.7% 33.3%
16 VEGF 0.12706 52.0% 91.7% 33.3%
17 IL-1b 0.12684 50.0% 41.7% 38.9%
18 Eotaxin 0.12679 67.0% 33.3% 66.7%
19 IFN-γ 0.12644 67.0% 50.0% 47.2%
20 PDGF-bb 0.12622 14.0% 60.0% 40.0%



77

Data analyzed build these classification models included all treatment

conditions for N=4 independent replicates.

Potency Analysis

To identify secretome metrics that are sensitive to weak and moderate

sensitizers, SVM analysis was performed using only non-sensitizers (DMSO, SA,

SDS) and weak to moderate sensitizers (EU, GER, CA, CLD, IE) from both the

co-culture and MUTZ-LC’s secretome.  SVM analysis of the MUTZ-LCs treated

with weak to moderate strength potency showed that MIP-1β was the most

predictive metric. However, the accuracy of this metric was very poor (59%) due

to the low specificity rate (Table 3.6). Using a panel of the subsequently ranked

metrics did not improve the performance of this classification model based on

MUTZ-LC data. SVM analysis of the MUTZ-LCs treated with strong sensitizers,

however, showed the best separation between non-sensitizers and strong

sensitizers when using a panel of 4 top ranked metrics (MIP-1β, MIP-1α, IL-17,

and IL-8). In this classification model, the accuracy was 92.9% (Table 3.6). Thus,

MUTZ-LCs alone treated with strong sensitizers is best suited for identifying

strongly sensitizing pro-hapten chemicals.

Table 3. 6 Classification models using metrics that are predictive of

weak to moderate sensitizers in the MUTZ-LC secretome. Classification

performance in terms of accuracy, sensitivity, and specificity was

Metrics Accuracy Sensitivity Specificity
IL-8 79.2% 91.7% 75.0%

IL-8, GM-CSF 83.3% 83.3% 83.3%
IL-8, GM-CSF, RANTES 89.6% 83.3% 91.7%

IL-8, GM-CSF, RANTES, MIP-1β 89.6% 83.3% 91.7%
IL-8, GM-CSF, RANTES, MIP-1β, MIP-1α 83.3% 83.3% 83.3%
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determined by 5-fold cross validation. Performing feature selection by

ranking the margin distances from the SVM identified MIP-1β, RANTES, IL-

8, MCP-1, and IL-9. However, all classification models generated showed

poor performance rates and increasing the panel size did not improve

accuracy. Data utilized to build these classification models included all

non-sensitizer treatment conditions (DMSO, SA, SDS), weak sensitizers

(EU, GER, CA), and moderate sensitizers (CLD and IE) for N=4 independent

replicates.

Table 3. 7 Classification models using metrics that are predictive of

strong sensitizers in the MUTZ-LC secretome. Classification performance

in terms of accuracy, sensitivity, and specificity was determined by 5-fold

cross validation. Performing feature selection by ranking the margin

distances from the SVM identified MIP-1β, MIP-1α, IL-17, IL-8, and IL-1β.

Using the top 4 or 5 metrics yield the same classification performance with

high degree of accuracy, sensitivity, and specificity. Data utilized to build

these classification models included all non-sensitizer treatment

conditions (DMSO, SA, SDS) and strong sensitizers (2AP, HQ, PPD, DNCB)

for N=4 independent replicates.

Metrics Accuracy Sensitivity Specificity
MIP-1β 59.4% 91.7% 40.0%

MIP-1β, RANTES 53.1% 83.3% 35.0%
MIP-1β, RANTES, IL-8 59.4% 83.3% 45.0%

MIP-1β, RANTES, IL-8, MCP-1 56.3% 83.3% 40.0%
MIP-1β, RANTES, IL-8, MCP-1, IL-9 59.4% 83.3% 45.0%
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To identify secretome metrics that are prominent in identifying weak

sensitizers in the co-culture secretome, SVM analysis was performed to rank the

margin distances and develop predictive models based on the identified metrics.

In table 3.8, using a panel of IL-8, RANTES, and GM-CSF led to an accuracy of

84.4% in identifying weak to moderate strength sensitizers from non-sensitizers.

This demonstrates that the co-culture assay is more predictive at identifying pro-

hapten chemicals that are weakly sensitizing than the use of MUTZ-LCs alone.

When SVM analysis was performed to develop a classification model to

distinguish strong sensitizers from non-sensitizers using co-culture data, IL-8,

GM-CSF, and RANTES used together were found to be 92.9% accurate (Table

3.9).

Table 3. 8 Classification models that are predictive of weak and moderate

sensitizers in the co-culture secretome. Classification performance in terms of

accuracy, sensitivity, and specificity was determined by 5-fold cross

validation. Performing feature selection by ranking the margin distances

from the SVM identified IL-8, RANTES, GM-CSF, MIP-1β, and MIP-1α. The

use of the top 3 (IL-8, RANTES, and GM-CSF) developed the highest

performing classification model with an accuracy of 84.4%. Data utilized to

build these classification models included all non-sensitizer treatment

Metrics Accuracy Sensitivity Specificity
MIP-1β 82.1% 83.3% 81.3%

MIP-1β, MIP-1α 85.7% 83.3% 87.5%
MIP-1β, MIP-1α, IL-17 85.7% 83.3% 87.5%

MIP-1β, MIP-1α, IL-17, IL-8 92.9% 91.7% 93.8%
MIP-1β, MIP-1α, IL-17, IL-8, IL-1b 92.9% 91.7% 93.8%
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conditions (DMSO, SA, SDS), weak sensitizers (EU, GER, CA), and

moderate sensitizers (CLD and IE) for N=4 independent replicates.

Table 3. 9 Classification models that are predictive of strong sensitizers in

the co-culture secretome. Classification performance in terms of accuracy,

sensitivity, and specificity was determined by 5-fold cross validation.

Performing feature selection by ranking the margin distances from the SVM

identified IL-8, GM-CSF, MIP-1β, MIP-1α, and RANTES. The use of the top 2

(IL-8 and GM-CSF) or the top 4 (IL-8, GM-CSF, MIP-1β, and MIP-1α)

developed the highest performing classification model with an accuracy of

92.9%. Data utilized to build these classification models included all non-

sensitizer treatment conditions (DMSO, SA, SDS) and strong sensitizers

(2AP, HQ, PPD, DNCB) for N=4 independent replicates.

Principal Component Analysis

PCA was utilized as a visualization tool of the data using the identified

features that were used to build a classification model and to demonstrate

separation of the chemicals classes by plotting them against their principal

Metrics Accuracy SensitivitySpecificity
IL-8 68.8% 83.3% 60.0%

IL-8, RANTES 78.1% 91.7% 70.0%
IL-8, RANTES, GM-CSF 84.4% 91.7% 80.0%

IL-8, RANTES, GM-CSF, MIP-1β 75.0% 75.0% 75.0%
IL-8, GM-CSF, MIP-1β, MIP-1α, RANTES 78.1% 75.0% 80.0%

Metrics Accuracy Sensitivity Specificity
IL-8 89.3% 91.7% 87.5%

IL-8, GM-CSF 92.9% 83.3% 100.0%
IL-8, GM-CSF, MIP-1β 89.3% 83.3% 93.8%

IL-8, GM-CSF, MIP-1β, MIP-1α 92.9% 83.3% 100.0%
IL-8, GM-CSF, MIP-1β, MIP-1α, RANTES 89.3% 83.3% 93.8%
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components. In Figure 3.1 a 3-Dimensional scatter plot is shown for the top 5

metrics found in the MUTZ-LC secretome using the first three principal

components. The separation of the non-sensitizers (in circles) and sensitizers (in

squares) can be best seen along the first principal component where the greatest

variation in the data is present, as confirmed by the associated Scree plot. This

scatter plot shows poor separation between non-sensitizers and weakly

sensitizing chemicals. However, strong sensitizers (indicated by yellow, orange,

and red) separate away from this cluster of non-sensitizers and weak sensitizers.

Figure 3. 1 A 3-dimensional visualization of PCA on data from the MUTZ-LC

secretome using the top 5 ranked metrics (MIP-1β, MIP-1α, IL-8, RANTES,

IL-9) for distinguishing sensitizers from non-sensitizers. The non-

sensitizers (DMSO, SA, SDS) are shown as blue circles and the sensitizers

are marked as squares. Sensitizers with weaker potencies are shown in

light blues, green, and yellow (EU, GER, CA, CLD, IE).  Strong sensitizers
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(2AP, HQ, PPD, DNCB) are represented in orange and red hues. The scree

plot on the right shows that most of the separation of the 2 chemical

classes (the variance) is contained along the axis of the first principal

component. Using Mutz-LCs alone with MIP-1β, MIP-1α, IL-8, RANTES, and

IL-9, there is separation between strongly sensitizing chemicals and weakly

sensitizing chemicals. However, non-sensitizers did not separate clearly

from weak sensitizers as our classification model indicated.

In Figure 3.2, PCA visualization of the data for the top three cytokines

identified in the co-culture can be observed.  The greatest degree of separation

of non-sensitizers and sensitizers can be seen along the first and second

principal components. Here, the non-sensitizers appear grouped together tightly

with most of the weak sensitizers shown just at the periphery of this cluster.

Strong sensitizers are shown distal to the non-sensitizers and weak sensitizers

along principal component 1 and 2.
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Figure 3. 2 A 3-dimensional visualization of PCA on data from the KC/FB-

LC secretome using the top 3 ranked metrics (IL-8, GM-CSF, and RANTES).

The non-sensitizers are shown as circles and the sensitizers are marked as

squares. Sensitizers with weaker potencies (EU, GER, CA, CLD, IE) are

shown in blues, greens, and yellow.  Stronger sensitizers (2AP, HQ, PPD,

DNCB) are shown in the orange to red color range.  The scree plot shows

that most of the separation of the two chemical classes (the variance) is

along the first and second principal component.

In Figure 3.3A, PCA visualization of the data for the top 3 cytokines (MIP-

1β, RANTES, IL-8) that best separate non-sensitizers from weak/moderate

sensitizers with MUTZ-LCs can be observed.  Here, the non-sensitizers appear

to separate poorly from the weak sensitizers. This visually confirms that the

MUTZ-LCs alone is potentially a poor predictor of weak pro-hapten sensitizers

using this panel of identified metrics. In Figure 3.3B, PCA visualization of the

data for the top 3 cytokines that best separate non-sensitizers from

weak/moderate sensitizers with the co-culture can be observed. Unlike the

MUTZ-LCs, there appears to be better separation between the two classes that

confirms the classification performance data. However, there are still some

overlapping regions between the two classes.
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Figure 3. 3 PCA visualization of PCA of non-sensitizers vs. weak/moderate

sensitizers for both A) MUTZ-LCs and B) HaCaT keratinocyte, fibroblasts,

and MUTZ-LC Co-culture. The non-sensitizers (DMSO, SA, SDS) are

indicated by blue circles and the weak/moderate sensitizers (EU, GER, CA,

CLD, IE) are indicated by light blue, green, and yellow. The metrics used to

generate the MUTZ-LC figure were MIP-1β, RANTES, and IL-8 (A). The

signature used to generate the co-culture figure includes IL-8, GM-CSF, and

RANTES (B). Both plots were generated using data from N=4 independent

replicates.

Feature selection was also performed for both culture conditions to identify

metrics that best distinguish between non-sensitizers and strong sensitizers as

well. Figure 3.4A represents the use of the top 5 metrics identified from the

MUTZ-LC cultures with 3 principal components. There is a separation of non-

sensitizers (blue circles) from strong sensitizers (orange and red squares) that is
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in agreement with the classification performance data where 92.9% accuracy

was achieved. Figure 3.4B represents the use of the top 3 metrics identified from

the MUTZ-LC cultures with 3 principal components. Non-sensitizing treatments

(blue circles) cluster closely together away from strongly sensitizing treatment

groups (orange and red squares).

Figure 3. 4 PCA visualization of non-sensitizers vs. strong sensitizers for

both A) MUTZ-LCs and B) HaCaT keratinocyte, fibroblasts, and MUTZ-LC

co-cultures. The non-sensitizers (DMSO, SA, SDS) are indicated by blue

circles and the strong sensitizers (2AP, HQ,PPD, DNCB) are indicated by

orange and red. The metrics used to generate the MUTZ-LC figure were

MIP-1β, MIP-1α, IL-17, and IL-8 (A). The signature used to generate the co-

culture figure includes IL-8, GM-CSF, MIP-1β, and MIP-1α (B). Both plots

were generated using data from N=4 independent replicates.
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3.4 DISCUSSION

Current screening methods for predicting skin sensitizers show variable

accuracies pending on the test panel of chemicals. These assays appear best

suited for detecting hapten sensitizers that are innately electrophilic and bind to

nucleophilic peptides or proteins in the skin to form the antigen-complex that

triggers the ACD response. However, sensitizing chemicals that are not directly

reactive such as pre- and pro-haptens do not see the same success rate as their

hapten counterparts. This is problematic as pre- and pro-hapten chemicals

encompass at least 30% of all known skin allergens [24] [25]. Pre-hapten

sensitizers require abiotic means of activation, such as auto-oxidation, to form

immunogenic products. Pro-haptens require enzymatic conversion to from

reactive intermediates or products that are capable of binding to nucleophilic

peptides in the skin. Keratinocytes in the skin play a major role in metabolizing

xenobiotics and detoxification through phase I and phase II enzymes. Fibroblasts

in the dermis also possess several Cytochrome p450 enzymes and may

participate in xenobiotic metabolism [17, 26].

In this study, we investigated whether HaCaT keratinocytes and dermal

fibroblasts can also be used as a source of metabolism for improving the

sensitization response of MUTZ-LCs cells treated with a panel of pre-/pro-hapten

chemicals.  A co-culture of KCs, FBs, and LCs were sensitized in parallel with

MUTZ-LC cultures that were treated alone. After 48 hours of incubation, the

supernatant was collected and the secretome from both cultures were evaluated.

The Bioplex screen includes a panel of 27 cytokines, chemokines, and growth
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factors. The secretome data was analyzed using support vector machine to

perform feature selection and to build a predictive classification model of

sensitization.

Based on our results, we identified a panel of markers consisting of MIP-

1β, IL-8, MIP-1α, RANTES, and IL-9 for MUTZ-LCs that was found to be 83%

accurate when used together to build a classification model. SVM analysis was

also used to identify metrics that are potentially more sensitive to less potent

allergens. Building a classification model of these metrics highlighted the

limitations of utilizing the MUTZ-LCs alone in identifying weak sensitizers using

secreted metrics as an end point predictor. Previous studies utilizing the MUTZ-

LCs alone in the GARD assay showed that they are capable of distinguishing a

panel of pro-hapten sensitizers from non-sensitizers with changes in gene

expression using a 200 gene signature. Furthermore, MUTZ-LCs treated with

weak pro-haptens eugenol, cinnamic alcohol, and moderate pro-hapten

isoeugenol were able to migrate in response to chemokine CXCL12 [22]. This

indicates that MUTZ-LCs were able to undergo functional changes in response to

weak, pro-hapten sensitizers. Although this is in contrast with our findings, future

dose response studies of these weaker sensitizers could increase classification

performance.

Based on our results, we see that MUTZ-LC secretome can be used to

discriminate between non-sensitizers and pro-hapten sensitizers that are more

potent. The identification of 2AP, PPD, HQ, and DNCB from non-sensitizers was

89.6% accurate with a classification model developed using MIP-1β, MIP-1α, IL-
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17, and IL-8. Thus, we conclude that the MUTZ-LC’s can identify a panel of

sensitizers with 83.3% accuracy from non-sensitizers when using a panel of 5

secreted metrics. However, this approach may not be as sensitive to weak, pro-

hapten sensitizers.

To enhance the metabolism of pro-hapten sensitizers, we established a

co-culture method using HaCaT keratinocytes, dermal fibroblasts, and Mutz-LCs

and observed that the use of IL-8, GM-CSF, and RANTES can accurately identify

sensitizers with 89.6% accuracy. When compared to the MUTZ-LCs treated

alone, a higher accuracy was achieved using fewer cytokine metrics. We also

performed SVM analysis to identify metrics that are potentially more sensitive to

less potent allergens in this co-culture. Using IL-8, RANTES, and GM-CSF

together in the co-culture system led to 84.4% accuracy in correctly

distinguishing weak sensitizers from non-sensitizers. This demonstrates that the

presence of keratinocytes and fibroblasts significantly enhances detection of

weakly sensitizing chemicals as compared with the use of metrics from MUTZ-LC

secretome. Furthermore, we observed that this effect also extended to the

identification of strong sensitizers with the co-culture where the classification

model using IL-8 and GM-CSF together was 92% accurate. These trends

comparing the two culture methods were visually confirmed by PCA. In the

MUTZ-LC scatter plot (Figure 3.1), there was poor separation of non-sensitizers

and sensitizers. However, when PCA was used to visualize the secretome data

from the co-culture, the non-sensitizers grouped together with the weak

sensitizers surrounding this cluster area. Further along the axis of all principal



89

components, the strong sensitizers evaluated scattered distally away from the

non-sensitizer/weak sensitizer cluster region.

Factors of interest that were identified through the SVM feature

selection method include IL-8, GM-CSF, MIP-1β, MIP-1α, RANTES, IL-9, and IL-

17. All of these factors were found to play a role during the clinical manifestation

of ACD and related inflammatory skin disorders such as psoriasis and atopic

contact dermatitis [23, 27-31]. IL-8, MIP-1β, MIP-1α, and RANTES are all

chemokines that recruit both adaptive and innate immune cells. GM-CSF and IL-

17 are 2 factors that are commonly found on ACD lesions and are thought to play

a potential role in remodeling of the skin [14, 32]. IL-8 was identified as one of the

top ranking metrics in both the MUTZ-LC and co-culture conditions. IL-8 is a

potent chemokine that recruits inflammatory cells during ACD such as

neutrophils, natural killer cells, and CD8+ T-cells.  IL-8 secretion was previously

identified as a potential biomarker for skin sensitizers in monocyte derived

dendritic cells, THP-1, and MUTZ-3 cell line [22, 23, 33]. Our work continues to

support this metric as a viable distinguisher of skin sensitizers from non-

sensitizers. However, its performance can be vastly improved when it is coupled

with additional secreted metrics that we’ve identified. MIP-1α and MIP-1β are

chemokines that recruits inflammatory cells involved during ACD such as T-

lymphocytes, natural killer cells, macrophages, and monocytes. This chemokine

is also important in T-cell trafficking in lymph nodes [34]. MIP-1β and MIP-1α

were previously identified in the THP-1 cell line, MUTZ-3 cell line, and MoDCs as

potential biomarkers of sensitization [23, 29]. Here, we report similar findings for
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MUTZ-LCs treated alone and in co-culture with keratinocytes and fibroblasts with

an expanded panel of pro-hapten sensitizers.

Although several of these factors were previously investigated as a

potential screening metrics, there is a consensus that a single biomarker is

unlikely to be predictive of all skin sensitizers. Thus a tiered strategy that

evaluates several different metrics of sensitization together to make an informed

prediction is necessary. As we expand our chemical panel to validate our in vitro

approach and identified molecular signatures, it is feasible that these metrics will

no longer be predictive. This was the case for the GARD assay that initially

utilized a 10 gene signature for predicting skin sensitizers [20]. However, when

this method was adopted by industry and more chemicals were evaluated, the 10

gene signature was expanded to 200 genes. It is feasible that a similar

expansion of secreted proteins or other cellular metrics will be necessary as

more chemicals are evaluated using our co-culture approach.

In this chapter, we continued to show proof of concept that our

feature selection method using the support vector machine enables us to rank

potential sensitization metrics and refine our classification model. Thus, new in

vitro data that evaluated additional cellular metrics can be analyzed by SVM and

incorporated into our final prediction model with ease. We also identified that the

MUTZ-LCs in culture alone can be used to distinguish sensitizing pro-haptens

with 83.3% accuracy when using a combination of MIP-1β, MIP-1α, IL-8,

RANTES, and IL-9. The co-culture of HaCaT, fibroblasts, and MUTZ-LCs can

also be utilized to identify sensitizers with nearly 90% accuracy when IL-8, GM-
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CSF, and RANTES are used. However, the detection of weakly sensitizing pro-

haptens was greater with the co-culture system. Co-culturing keratinocytes,

fibroblasts, and MUTZ-LCs together may be utilized for enhancing the

identification of potential pro-hapten allergens that may not be distinguished

using current dendritic cell based approaches.

This approach is also cost efficient and amenable for high-throughput

screening as compared to the use of skin equivalents. The HaCaT cell line that

was utilized in this study is not formally available for purchase. However, it can

be obtained through DKFZ (Heidelberg, Germany) where the cell line was

originally established [35]. Since HaCaT’s are an immortalized cell line, it can be

rapidly expanded indefinitely and frozen down in liquid nitrogen. If this cell line is

unavailable for use, primary keratinocytes may also be purchased through

several vendors such as the ATCC ($430), Lonza ($424), and LifeTechnologies

($387) [36-38] . These cells can undergo a minimum of 15 population doublings

when properly maintained with the use of growth factors and supplementation.

However, the HaCaT line does not require additional medium supplementation

with a cocktail of growth factors.  Thus, the use of cell lines is an attractive

economic approach as compared to the use of skin equivalents or primary

keratinocytes.  Primary dermal fibroblasts can also be purchased through several

vendors such as ATCC ($234), Lonza ($229), and LifeTechnologies ($365) [36-

38]. These cells can also undergo a minimum of 10-15 population doublings. For

example, a single vial may contain approximately 1 x 106 cells that can be

expanded 10 fold. This generates 10 vials each with 1 x 106 cells that can be
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stored in liquid nitrogen. Each vial can be thawed and subsequently expanded

and passaged up to 10-15 times. Currently, the cell seeding density used in this

study was 1.25 x 105/well in a 96-well plate. Thus, 1.2 x 106 cells are required to

screen up to 8 chemicals where each chemical is evaluated for 4 concentrations

in triplicate on a single 96-well plate. This ultimately can lead to ~80 chemicals

per vial. With 10 frozen vials, this is further expanded to 800 chemicals that can

be screened with an initial purchase of one vial. Combining the two primary cell

types can cost as much as ~$800 initially. However, once a cell bank is

established, up to 800 chemicals can be screened which result in approximately

~$1/per chemical in terms of skin. If only primary dermal cells need to be

purchased due to the use of HaCaT cells that are obtained through donation, this

cost can be further reduced to $300/800 chemicals or $0.38. This is in stark

contrast to the purchase of a single 12-well plate of skin equivalents that can cost

up to ~$450 to screen 1 chemical. Thus, initial screening studies in vitro can

benefit from the use of submerged co-cultures as a viable source of xenobiotic

metabolism with low additional cost.
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CHAPTER 4: DISSERTATION CONCLUSIONS

4.1 SUMMARY OF FINDINGS

There are two general issues that lead to the false prediction of known

skin sensitizers in current in vitro alternatives to animal testing. The first relates to

the poor detection of pre- and pro-hapten sensitizers due to a lack of chemical

activation. The second relates to the use of 1 or 2 cellular metrics that are may

not be sensitive enough to identify a variety of chemicals. To address these

issues, we initially developed a co-culture assay with a full thickness skin model

and MUTZ-3 derived Langerhan’ cells. We also investigated the use of a

submerged co-culture system with keratinocytes, fibroblasts, and MUTZ-LCs as

an approach that is more amenable to high throughput screening with reduced

cost. A variety of cellular metrics such as the secretion of cytokines, chemokines,

and growth factors were evaluated and predictive molecular signatures were

identified using a support vector machine. A predictive classification model of

skin sensitization was developed based on these in vitro results. Thus, a

potential alternative to animal testing is proposed using secreted metrics from a

co-culture system with keratinocytes, fibroblasts, and MUTZ-LCs.

Co-Culture with Full Thickness Skin Equivalent and MUTZ-3 Langerhans’

Cells

To screen potential skin sensitizers in cosmetics and consumer care

products,   many alternatives to in vivo chemical screening have been developed

which generally incorporate a small panel of cellular metrics with only one cell

type involved during sensitization. However, given the underlying complexity of
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ACD, these limited approaches may be insufficient to predict contact sensitizers

accurately. To identify a molecular signature that can further characterize

sensitization, we developed a novel system using RealSkin, a full thickness skin

equivalent, in co-culture with Mutz-3 derived Langerhan’s cells. This system was

used to distinguish a model moderate pro-hapten isoeugenol (IE) and a model

strong pre-hapten p-phenylenediamine (PPD) from irritant, salicylic acid (SA).

Commonly evaluated metrics such as CD86, CD54, and IL-8 secretion were

assessed, in concert with a 27-cytokine multi-plex screen and a functional

chemotaxis assay. Data were analyzed with feature selection methods using

ANOVA, hierarchical cluster analysis, and a support vector machine to identify

the best molecular signature for sensitization. A panel consisting of IL-12, IL-9,

VEGF, and IFN-γ predicted sensitization with over 92% accuracy using this co-

culture system analysis was identified. Thus, a multi-metric approach that utilizes

molecular signature of secreted may be more predictive of contact sensitization

than single biomarkers such as CD86 and CD54 expression.

Co-Culture with HaCaT keratinocytes, dermal fibroblasts and MUTZ-3

Langerhan’s Cells

In an effort to develop an in vitro assay that is more amenable to high

throughput screening while preserving the cellular interactions that occur during

ACD, a co-culture assay that utilizes HaCaT keratinocytes, dermal fibroblasts,

and MUTZ-3 Langerhan’s cells was developed and compared to the treatment of

MUTZ-3 LCs alone. This co-culture approach provides a source of xenobiotic

metabolism to facilitate the conversion of pre-/pro-hapten sensitizers and
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provides inflammatory mediators to activate MUTZ-LCs.  A panel of chemicals

consisting of 3 non-sensitizers (DMSO, SA, SDS) and 9 sensitizers (EU, CA,

GER, IE, CLD, 2-AP, HQ, PPD, DNCB) were dosed to both culture types for 48

hours. After this incubation time, the supernatant was collected and evaluated

with a Bioplex screen that includes up to 27 cytokines, chemokines, and growth

factors. These secreted metrics were evaluated using the SVM feature selection

method and the top ranked factors were used to develop classification models.

We identified a panel of markers consisting of MIP-1β, IL-8, MIP-1α , RANTES,

and IL-9 for MUTZ-LCs that was found to be 83% accurate when used together

to build a classification model. To enhance the metabolism of pro-hapten

sensitizers, we established a co-culture method using HaCaT keratinocytes,

dermal fibroblasts, and Mutz-LCs and observed that the use of IL-8, GM-CSF,

and RANTES can accurately identify sensitizers with 89.6% accuracy. The co-

culture of KC, FB, and MUTZ-LCs showed greater accuracy than the use of

MUTZ-LCs alone. Potency analysis showed that this was due to the poor

classification of weak sensitizers from non-sensitizers for MUTZ-LCs alone. The

presence of KC and FBs in the culture promotes the proper identification of weak

pro-hapten sensitizers. This is likely due to the additional source of xenobiotic

metabolism to convert pro-haptens and the cross-talk of inflammatory cytokines

amongst KCs, FBs, and MUTZ-LCs.

4.2 LIMITATIONS

Skin Equivalents
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In chapter 2, we evaluated the use of a full thickness skin equivalent

together with MUTZ-LCs. There are several key benefits of using tissue

engineered skin equivalents over traditional, submerged cell cultures. Skin

equivalents provide a more physiologically relevant platform with a differentiated

epidermis and dermis that resembles the 3-D architecture of in vivo tissue.

Furthermore, culturing these constructs at the air-liquid interface enables topical

formulations of chemicals to be evaluated. This is especially important for

chemicals that may be poorly soluble in water. Despite these benefits, compared

to other cell based in vitro assays, a co-culture assay that utilizes a full thickness

skin equivalent is undoubtedly more time, labor, and resource intensive if the skin

equivalents are developed in house. Skin equivalents developed in house often

require protocols that utilize a large quantity of cell culture reagents and may take

weeks to form a fully differentiated stratum corneum barrier[1]. These

inconveniences could be significantly reduced if the skin equivalents are

purchased directly through a vendor.

Although RealSkin is currently not available for purchase through Episkin,

there are full thickness skin equivalents available on market such as MatTek’s

EpidermFT and AST2000 that may be utilized in a similar fashion[2] [3].

Epidermal equivalents may also be used in a co-culture model where epidermal

equivalents such as MatTek EpiDerm™, SkinEthic™ EpiSkin, and SkinEthic™

RHE [4] The Episkin model is available for purchase in a 12-well format at an

estimated cost of ~$450/test kit/chemical [5]. It is estimated that nearly 20,000

new compounds will require sensitization information by 2018, according to the
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guidelines placed by REACH, the European community regulation on chemicals

and their safe use [6].  A basic cost analysis for this class of new chemicals

entering the market yields 20,000 x ~$450 = ~$9 million for just the cost of skin

alone. This high cost and limited availability of reconstructed skin models are

largely due to lengthy protocols that are labor intensive and performed by trained

personnel.

Limitations of Cell Lines

The use of cell lines in vitro provides many advantages necessary for

performing high throughput screening studies. This includes the ability to store

them in liquid nitrogen, to rapidly expand them when needed, to produce

reproducible results due to the use of a single donor source, and to maintain

them at relatively low cost.  However, a major caveat of using traditional

submerged cell cultures is the inability to screen chemicals that are poorly

soluble in aqueous medium. Furthermore, with a single donor source, it is difficult

to assess how the results will translate to a heterogeneous population. In our

studies, the MUTZ-3 cell line was used as a source of dendiritc cells and the

HaCaT cell line was used as a source of keratinocytes. The dermal fibroblasts

utilized in Chapter 3 are primary cells isolated from foreskin. The full thickness

skin equivalent evaluated in Chapter 2 used both primary keratinocytes and

primary fibrboblasts.

The HaCaT line is an immortalized keratinocyte cell line and it is currently

utilized in the KeratinoSens assay with a reporter gene for the antioxidant

response element [7]. HaCaT KCs express several key phase I enzymes
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involved in xenobiotics such as CYP1A1, CYP1 B1, CYP3A, and COX[8].

CYP1A1 is particularly important in generating reactive intermediates from pro-

haptens such as eugenol, isoeugenol, and geraniol [9, 10].  HaCaT KCs also

possess phase II enzymes involved in detoxification such as glutathione-S-

transferases, n-acetyltransferase, and UDP-glucuronosyltransfers [11]. When

comparing the phase I metabolic enzyme activities of HaCaT KCs and tissue

engineered epidermal equivalent with excised skin, and epidermal equivalent and

excised skin showed superior activity levels of enzymes such as CYP enzymes

[8]. 2014). Additionally, when comparing the phase II enzyme activities between

cell lines and ex vivo skin, cell lines exhibit greater phase II enzyme activity [11].

Thus, it is feasible that the higher activity of phase II detoxifying enzymes can

lead to de-activation of pre-haptens and haptens with the use of HaCaT KCs.

This detoxification effect was previously observed in a study where we evaluated

the use of sensitizer treated HaCaT KC conditioned medium to activate the

MUTZ-LCs (data not shown). Chemicals that undergo rapid detoxification such

as CA, PPD, and DNCB were unable to stimulate IL-8 secretion from conditioned

medium treated MUTZ-LCs. However, directly co-culturing the HaCaT KCs,

dermal FBs, and MUTZ-LCs together addressed this delicate balance of

providing the reactive hapten intermediates to MUTZ-LCs in a timely fashion

before the chemical is detoxified.

The MUTZ-3 cell line was used as a source of dendritic cells in our

present study. Although the MUTZ-3 cell line appears to be closer to monocyte

derived DCs than THP-1 cells in gene expression studies, there are still some
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potential limitations to note[12]. For example, MUTZ-3 cells show impaired ability

to react to classic immunogens such as LPS, Poly(I:C), and Pam3SCK. This is

due to the lower gene expression of Toll-like receptors 2, 3, and 4 (TLR2, TLR3,

and TLR4) in MUTZ-3 cells as compared to monocyte derived DCs[13].

Interestingly in the GARD assay, other members of the TLR family (TLR6 and

TLR9) were included in the panel of 200 genes for predicting sensitization [14].

There is evidence that metal contact allergens such as nickel, cobalt, and

palladium bind to TLR-4 and induce activation of dendritic cells [15]. Although

nickel sulfate was correctly identified in the GARD assay and in a CXCL12

migration assay that utilize the MUTZ-3 cell line, it is feasible that additional

metal sensitizers that ligate with TLR-4 may not be correctly identified as skin

sensitizers using the MUTZ-3 cell line[16].

Limitations of Selected Metrics

In our studies evaluating several different in vitro cultures configurations,

we found that each culture method had a unique molecular signature that was

most predictive. In the co-culture system with the full thickness skin equivalent

and MUTZ-LCs, IL-12, IFN-γ, IL-9, and VEGF were identified as a panel of

interest using a panel of 4 chemicals.   In the submerged co-culture assay, IL-8,

GM-CSF, and RANTES were identified. When MUTZ-LCs were treated alone,

MIP-1β, MIP-1α , IL-8, and IL-17 were the most predictive combination of factors.

All of these factors that were identified are implicated in ACD in vivo in

both animal models and humans[17-23]. Factors such as IL-12, IFN-γ, IL-9, and

GM-CSF influence T-cell recruitment, stimulation, proliferation, and



103

differentiation. Other factors such as IL-8, RANTES, MCP-1, MIP-1α , and MIP-

1β are all potent chemokines that recruit both specific and non-specific

leukocytes such as T-cells, neutrophils, macrophages, and natural killer cells to

mediate the inflammatory response during ACD. Several of these metrics such

as IL-8, MIP-1β, and MIP-1α were previously explored in literature as single read

out metrics of sensitization across various DC cell sources such as peripheral

blood monocytes, THP-1, and MUTZ-3 [16, 21, 24]. Although additional

chemicals will need to be screened to validate whether these secreted metrics

are truly predictive of skin sensitization, we have developed a computational

method to continuously compare these metrics with new ones that can be

evaluated. As we expand our chemical panel, it is feasible that these metrics

we’ve identified will face similar problems that the developers of the GARD assay

encountered. The GARD study initially utilized a 10 gene signature for predicting

skin sensitizers [14]. However, when this method was adopted by industry and

more chemicals were evaluated, the 10 gene signature was expanded to 200

genes. It is feasible that a similar expansion of secreted proteins or other cellular

metrics will be necessary as more chemicals are evaluated using our co-culture

approach.  However, if we are able to identify a smaller panel of secreted soluble

proteins that are easily detectable by ELISA and  is predictive of skin

sensitization and their respective potencies using our feature selection approach

to compare different metrics, it may be less labor and resource intensive than

nucleic acid based protocols.
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It is widely established that a single biomarker is unable to accurate

identify all known skin allergens due to the diverse nature of these chemical. Skin

sensitizers are diverse in the manner at which they form the immunogen. Hapten

sensitizers are directly reactive due to their electrophilicity. Other sensitizers such

as pre-haptens and pro-haptens require either abiotic or enzymatic conversion to

form reactive intermediates or products that are able to bind to nucleophilic

peptides. Not only are skin sensitizers diverse in how they form the antigen

complex, but they also are diverse in terms of the differential intra-cellular

pathways that are activated such as nrf2, p38 MAPK, JAK/STAT, and NF-kB

[25].  Thus, the downstream products of these activated pathways can vary and

this is likely a contributing factor why a single metric is insufficient. This is

especially clear in the KeratinoSens assay that only measures nrf2 activation that

occurs when sensitizers preferentially bind to cysteine on sensor protein, Keap1.

Therefore, chemicals that do not activate this particular pathway were not

properly identified [26]. This is also likely the reason why the GARD assay that

utilizes a 200 gene signature to predict sensitization shows promising predictive

power. Current measures to approach this issue of chemical diversity also

include combining different established assays together to improve the accuracy

of correctly identifying sensitizers. By combining in silico screening, peptide

binding, KeratinoSens, mMUSST, and hCLAT, the overall performance of the

classification model was improved to 94%[27].  However, this process could be

further streamlined and optimized if biomarkers that are now known to be poorly

predictive such as CD86 and CD54 are discarded and newer, more sensitive
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metrics are evaluated instead in combination with in silico and in chemico

approaches.

4.3 FUTURE DIRECTION

Assay Optimization and Validation

Three in vitro culture methods were assessed and the best performing

systems were the 2 co-culture methods. Although both co-culture methods are

able to predict sensitizers with high accuracy (≥90%), there are still additional

studies that can be done to further optimize these assays before validating it with

an extended panel of chemicals. In a previous study optimizing the IL-18 assay

with the NCTC2544 cell line, several culture parameters were identified that

could influence the proper identification of sensitizers [28]. Key factors that were

identified include the cell density of keratinocytes, adhesion time before chemical

treatment, and duration of chemical treatment. These are all culture parameters

that we can optimize in the future as well as the seeding ratio between the

keratinocytes, dermal fibroblasts, and the MUTZ-LCs.

For the full thickness skin equivalent co-culture method, the optimal

number of Mutz-LCs to skin equivalent should be evaluated. The duration of

treatment that is topically applied to the full thickness skin equivalent may also be

an important factor that can be influenced by the chemical’s permeation rate.

Further studies can utilize HPLC methods to assess transcutaneous permeation

of the compounds as another metric of importance. Once these cultures are fully

optimized, we can validate our system by screening more chemicals of different

potencies and sensitizer class. A reference list of chemicals available from
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ECVAM and the LLNA data bases could be utilized [29, 30]. We have already

evaluated all of the recommended pre-/pro-haptens from ECVAM on validating in

vitro methods for detecting skin sensitizers. Once our chemical panel is further

expanded, we can perform in-house validation studies to train and test our

classification model with different subsets of chemicals. We envision that both

co-culture methods can be used together as a tiered strategy where high

throughput studies are initially performed using the submerged cell cultures.

Furthermore, we can continue to refine our classification model as more in vitro

data is generated. Ultimately, it is clear that a single assay and cellular metric of

sensitization is insufficient as a stand-alone predictor, and that tiered strategies

using a battery of assays improve the overall accuracy of identify known skin

sensitizers [27, 31]. Thus, we envision our type of co-culture system to be utilized

as a second tier assay following in silico or peptide binding screening methods.

Unlike studies where a battery of assays with different cell sources, metrics, and

cell specifications are evaluated separately, we envision a more streamlined

system where several key in vivo sensitization steps such as metabolism,

keratinocyte and fibroblast activation, and dendritic cell maturation can all be

measured within a single assay system.

Functional Assays

In our study, we found that a panel of secreted factors was predictive of

skin sensitization for the MUTZ-LCs and co-culture assays with either full

thickness skin equivalents or submerged keratinocytes and fibroblasts.

However, a readout of biomarker expression may not be a true test of functional
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activity of the MUTZ-LCs. In chapter 2, we evaluated the MUTZ-LCs chemotactic

response towards CCL19 in a trans-well migration assay. Although chemotaxis

towards CCL19 may be predictive for IE and PPD, this assay is cumbersome and

difficult to scale up, and the chemokine gradient is unstable over time. Despite

these limitations with trans-well chemotaxis, the CXCL12/CCL5 migration assay

that utilizes MUTZ-LCs shows promising results at accurately distinguishing a

small panel of sensitizers in an inter-laboratory validation study [32]. Thus, this

migration assay can also be performed in the future to confirm the functionality of

the MUTZ-LCs sensitized in our co-culture system. An alternative functional test

that may be even more indicative of LC maturation is to co-culture sensitized

MUTZ-LCs with T-cells and evaluate T-cell stimulation and proliferation [33].

Since allergic contact dermatitis is ultimately a T-cell mediated disease,

functional assays that measure T-cell stimulation in vitro as an alternative to the

Local Lymph Node Assay should be incorporated in future studies.
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