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Evolution is the defining feature of living matter. It occurs most fundamentally on the

scale of biomolecules such as DNA and proteins, which carry out all the processes of cells.

How do the physical properties of these molecules shape the course of evolution? We ad-

dress this question using a synthesis of biophysical models, theoretical tools from stochastic

processes, and high-throughput data. We first review some basic features of population and

evolutionary dynamics, focusing especially on fitness landscapes and how they determine

accessible pathways of evolution. We then derive a universal scaling law describing time re-

versibility and steady state of monomorphic populations on arbitrary fitness landscapes. We

use this result to study the evolution of transcription factor (TF) binding sites using high-

throughput data on TF-DNA interactions and genome-wide site locations. We find that

binding sites for a given TF appear to be subjected to universal selection pressures, inde-

pendent of the properties of their corresponding genes, and their binding energy-dependent

fitness is consistent with a simple functional form inspired by a thermodynamic model.

We next consider the properties of evolutionary pathways. We develop a general approach
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for calculating statistical properties of the path ensemble in a stochastic process. We first

demonstrate this approach on a series of simple examples, including evolution on a neutral

network and two reaction rate problems. We then apply these techniques to a model of how

proteins evolve new binding interactions while maintaining folding stability. In particular

we show how the structural coupling of protein folding and binding results in protein traits

emerging as evolutionary “spandrels”: proteins can evolve strong binding interactions that

confer no intrinsic fitness advantage but merely serve to stabilize the protein if misfolding

is deleterious. These observations may explain the abundance of apparently nonfunctional

interactions among proteins observed in high-throughput assays. When there are distinct

selection pressures on both folding and binding, evolutionary paths of proteins can be tightly

constrained so that folding stability is first gained and then partially lost as the new bind-

ing function is developed. This suggests the evolution of many natural proteins is highly

predictable at the level of biophysical traits.
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Preface

The matter making up living things consists of the same basic stuff — ordinary atoms of

protons, neutrons, and electrons — as all the non-living baryonic matter in the universe.

And yet, living matter produces behaviors far more complex than anything exhibited by

non-living matter: living matter can make copies of itself, it can respond to its environment

in complicated ways, it can remember and learn, it can even think about itself and write

these very sentences. So what makes living matter so fundamentally different?

Erwin Schrödinger was one of the first to seriously contemplate biology from the first

principles of physics. In his famous book What is Life? [1], Schrödinger speculated on the

role of entropy in living matter as well as the physical basis of genetics. In the decades

since that prescient work, the interface between physics and biology has become one of

the most fertile areas of scientific research. We now view the astonishing uniqueness of

living matter through the lens of emergence [2–4]: life emerges from the collective behavior

of the diverse molecules making up a cell. But emergence provides only a conceptual

framework, so characterizing the vast range of phenomena in biological systems requires a

program of targeted experiments and modeling. This is the essence of “physical biology,”

which aims to characterize biological phenomena in terms of the underlying physico-chemical

processes [5, 6], and is the philosophy underlying this dissertation.

Here we focus our attention on evolution. Indeed, evolution is the defining feature of

living matter; Theodosius Dobzhansky famously wrote that “Nothing in biology makes

sense except in the light of evolution” [7]. However, a logical addendum to this statement

might be that nothing in evolution makes sense except in the light of physics: evolution

occurs most fundamentally on the scale of biomolecules such as DNA and proteins, which
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carry out all the processes of cells. How do the physical properties of these molecules shape

the course of evolution?

This is the major question driving my Ph.D. research, a synthesis of models from molec-

ular biophysics, mathematical and computational techniques from stochastic processes and

statistical physics, and data from high-throughput experiments. This dissertation summa-

rizes the majority of my work on these topics during graduate school, drawing from the

following papers:

• [8] Manhart M, Haldane A, Morozov AV (2012) A universal scaling law determines
time reversibility and steady state of substitutions under selection. Theor Popul Biol
82:66–76.

• [9] Haldane A, Manhart M, Morozov AV (2014) Biophysical fitness landscapes for
transcription factor binding sites. PLoS Comput Biol 10:e1003683.

• [10] Manhart M, Morozov AV (2013) Path-based approach to random walks on net-
works characterizes how proteins evolve new functions. Phys Rev Lett 111:088102.

• [11] Manhart M, Morozov AV (2014) in First-Passage Phenomena and Their Appli-
cations, eds. Metzler R, Oshanin G, Redner S. (World Scientific, Singapore).

• [12] Manhart M, Morozov AV (2014) Protein folding and binding can emerge as evo-
lutionary spandrels through structural coupling. arXiv:1408.3786.

Material from these papers is reproduced in full or in part, with some small changes and

rearrangements made to produce a consistent, coherent whole. I have excluded some addi-

tional work that is not yet published or does not fit into the main narrative, especially my

collaboration with the group of Gábor Balázsi on the evolution of a synthetic gene network.

We begin Chapter 1 with an introduction to some basic elements of population and

evolutionary dynamics, drawn in part from Ref. 11. We focus especially on the concept

of fitness landscapes and how they determine accessible pathways of evolution. Chapter 2

reproduces Ref. 8 and discusses time reversibility and properties of evolutionary steady

state under natural selection. We derive a universal scaling law that implies a general

form for the steady state distribution of monomorphic populations on arbitrary fitness

landscapes. In Chapter 3 we use these results to study the evolution of transcription factor

v



(TF) binding sites, short segments of DNA that regulate nearby genes by binding to TF

proteins. Using high-throughput in vitro measurements of TF-DNA binding interactions

and a large collection of genomic binding site locations, we find that binding sites for a given

TF appear to be subjected to universal selection pressures, independent of the properties

of their corresponding genes. We are thus able to infer fitness landscapes for these sites

as functions of their binding energy alone. Their energy-dependent fitness is consistent

with a simple functional form inspired by a thermodynamic model, although the inferred

parameters indicate selection pressures beyond the biophysical constraints imposed by TF-

DNA interactions. This chapter is reproduced from Ref. 9.

We next take a detour through stochastic processes and statistical physics to understand

the properties of evolutionary pathways. In Chapter 4 we develop a general path-based

approach to stochastic processes on discrete state spaces, along with an efficient numerical

algorithm for calculating statistical properties of the path ensemble. We demonstrate this

approach on a series of simple examples, including evolution on a neutral network and two

reaction rate problems. This chapter reproduces material from Refs. 10, 11. In Chapter 5

we apply these techniques to a model of how proteins evolve new binding interactions while

maintaining folding stability. We characterize the fitness landscape for these proteins and

the resulting evolutionary dynamics. In particular we show how the structural coupling of

protein folding and binding results in protein traits emerging as evolutionary “spandrels”:

proteins can evolve strong binding interactions that confer no intrinsic fitness advantage but

merely serve to stabilize the protein if misfolding is deleterious. This chapter reproduces

material from Ref. 12. Finally, in Chapter 6 we conclude and provide an outlook for future

work in this area.
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1

Chapter 1

Introduction to Population and Evolutionary Dynamics

We begin with an introduction to the dynamics of populations and evolution. This will es-

tablish concepts and models needed for later chapters as well as provide important context.

Our approach here is theoretical rather than empirical, and reproduces some material from

our review in Ref. 11. For empirical discussions of evolution we refer the reader to stan-

dard expositions both at the organismic scale [13, 14] and at the molecular scale [15, 16].

Additional treatments of the theory can be found in several standard texts [15–20].

1.1 Elementary processes of population dynamics

The fundamental property of living matter is its ability to self-replicate. When an organism

replicates, the information that it transmits to its offspring, which identifies the offspring as

a copy of the parent, is the genotype. We will denote genotype as σ. In natural systems

this genotype is physically encoded in DNA, RNA, or a protein, all of which are chains of

elementary molecular building blocks. Thus we can represent the genotype σ as a sequence

of L characters from an alphabet of size k, where the set of possible molecular building

blocks defines the alphabet; in the absence of deletions and insertions, the total number of

possible genotypes is kL. DNA and RNA molecules store the genotype as a sequence of

the nucleotide bases adenine (A), cytosine (C), guanine (G), and thymine or uracil (T or

U). So a genotype representing a DNA or RNA sequence has k = 4. If the relevant genetic

information is a gene, i.e., it codes for a protein molecule, then we can (almost) equivalently

consider the sequence of amino acids making up the protein. In that case, there are k = 20

possible amino acids at each position in the sequence. A coarser description of genotype,
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applicable when we are considering many different genes across the genome, is to simply

describe the binary state of each gene (k = 2) as either mutated or not mutated relative to

some reference genotype.

A population consists of a large number of organisms, each of which can have a distinct

genotype. Figure 1.1 shows a schematic of a population, where color indicates genotype.

Since individual organisms only survive for short periods, it is not the state of the individuals

but the state of the population that matters: the major goal of population genetics, and

more broadly evolutionary theory, is to describe how the genetic state of a population

changes over time.

In general there are four fundamental processes through which the population changes,

illustrated in Fig. 1.1. The first is asexual birth, in which an organism produces a copy

of itself with the same genotype. The second is death, in which an organism is somehow

degraded or at least can no longer replicate. The third process is mutation, where the

genotype of an organism spontaneously changes; this could happen as an independent event

(e.g., if an organism is exposed to radiation), as shown in the figure, or it could occur as

part of the birth process (e.g., due to errors in DNA replication). The fourth process is

recombination; this can occur in many different ways, but in general it is some process that

mixes two existing genotypes in the population. It is important to note that all of these

processes are stochastic and therefore subject to random fluctuations.

Natural selection is an emergent phenomenon arising from the birth and death pro-

cesses. Some genotypes will on average undergo more birth and less death than other

genotypes. These genotypes will therefore dominate the population over long time scales,

thus appearing to have been “selected” [13]. A genotype that is present in 100% of the pop-

ulation is said to have fixed. It is convenient to define a parameter s, called the selection

coefficient, that characterizes the relative ability of a genotype to dominate a population.

We will provide a more precise definition of s in the context of a specific model below,

but in general it satisfies the operational definition as the exponential growth rate of one
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Figure 1.1: Schematic of population dynamics. Each organism is a dot, with different
colors indicating different genotypes. Organisms in dashed boxes undergo the processes of
asexual birth, death, mutation, and recombination.

genotype σ′ in the presence of another genotype σ. Positive s means the genotype σ′ grows

faster and eventually dominates, while negative s means the genotype σ grows faster and

will dominate. The case of s = 0 means that σ and σ′ are selectively neutral, or equivalent

under natural selection.

Each of the fundamental population processes has a characteristic rate or time scale.

The characteristic rate of natural selection is s (consistent with the operational definition

of the selection coefficient). Let u denote the characteristic rate of mutation and r the

characteristic rate of recombination. These have corresponding time scales s−1, u−1, and

r−1. An additional important time scale is given by the population size N . This is the time

scale of the stochastic fluctuations intrinsic to the population, known as genetic drift.

These basic time scales are important because their relative values determine the quali-

tative dynamics of a population to a large extent. In particular, processes with substantial

separations of time scales decouple, dramatically simplifying the dynamics. For instance,
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if selection occurs more rapidly than the other processes (s� u, r,N−1), then new benefi-

cial mutations will rapidly and assuredly fix in the population. Mutation is therefore too

slow to produce additional mutations before the first one has fixed, which precludes the

existence of many genotypes simultaneously competing in the population (known as “clonal

interference”), and genetic drift is too slow for a random fluctuation to cause the beneficial

mutation to go extinct. Estimating these time scales and using them to simplify models is

a recurring theme in the population genetics and evolutionary literature [21], and this work

will be no exception.

1.2 A “theory of everything” for evolution

It is possible to write down a very general model of population dynamics that incorporates

all these processes. Let n = {nσ} be a list of “occupation numbers,” where nσ is the

number of organisms in the population with genotype σ. The total population size is

therefore N =
∑

σ nσ. It is convenient to define shorthand notation for changes to the

population via birth, death, mutation, and recombination. Let Bσ be a “birth operator”

such that Bσn = {n′σ′}, where n′σ′ = nσ′ + 1 if σ′ = σ and n′σ′ = nσ′ for σ′ 6= σ. We can

similarly define a death operator Dσ and a mutation operator Mσ→σ′ . Note that Bσ and

Dσ are inverses of each other, while M−1
σ→σ′ = Mσ′→σ. We will denote by Rσ+σ′→σ′′ a

recombination operator that creates a recombined genotype σ′′ from σ and σ′, with inverse

operator R−1
σ+σ′→σ′′ . Let P (n, t) be the probability that the population is in state n at time

t. This obeys the following master equation:
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∂

∂t
P (n, t) =

∑

σ

bσ(Dσn, t)(nσ − 1)P (Dσn, t)
︸ ︷︷ ︸

birth

+
∑

σ

dσ(Bσn, t)(nσ + 1)P (Bσn, t)
︸ ︷︷ ︸

death

+
∑

σ,σ′

uσ→σ′(nσ + 1)P (Mσ′→σn, t)

︸ ︷︷ ︸
mutation

+
∑

σ,σ′

rσ+σ′→σ′′nσnσ′P (R−1
σ+σ′→σ′′n, t)

︸ ︷︷ ︸
recombination

−
∑

σ

(bσ(n, t) + dσ(n, t))nσP (n, t)−
∑

σ,σ′

(uσ′,σnσ + rσ+σ′→σ′′nσnσ′)P (n, t),

(1.1)

where uσ→σ′ is the rate of an organism with genotype σ mutating into genotype σ′ and

rσ+σ′→σ′′ is the rate at which two organisms with genotypes σ and σ′ recombine into σ′′.

The birth and death rates bσ(n, t) and dσ(n, t) for an organism with genotype σ capture the

effects of natural selection as previously described. As indicated by the notation, ecological

interactions between subpopulations may cause these rates to depend on the state of the

population (e.g., leading to frequency-dependent selection), and they may also change with

time. Although not included here, it is straightforward to adapt this general model for

other phenomena such as spatial and demographic structure.

In some sense, Eq. 1.1 is a “theory of everything” for evolution. In principle it pro-

vides a complete description of a population’s dynamics over all time scales. However, its

role is similar to that of the many-body Schrödinger equation in physics, which similarly

offers an essentially complete description of the quantum mechanical behavior of an arbi-

trary collection of atoms [3]. However, for any system containing more than just a few

particles, it is presently impossible to solve the Schrödinger equation, either analytically or

computationally. Thus the equation is relegated to a largely symbolic role, and effective

phenomenological models are needed to study specific systems. Similarly, the generalized

evolution equation (Eq. 1.1) is too complicated to be tractable in most cases, and we must
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develop more specialized, simplified models tailored to the specific phenomena under con-

sideration.

But there is also a critical difference between the evolution equation and the Schrödinger

equation. Although the Schrödinger equation is too complicated to solve, we know all of its

terms: we can write explicit mathematical expressions for the kinetic terms and pairwise

Coulomb interactions between the electrons and the nuclei. This is not the case for the

evolution equation. While simple models for mutation and recombination may suffice, the

birth and death terms (the functions bσ(n, t) and dσ(n, t)) are complex: the dependence of

these terms on an organism’s underlying genotype σ must capture how different DNA and

protein sequences affect the complex molecular machinery that enables cells to reproduce

and interact with their environment. Understanding this relationship between genotype

and phenotype — an organismic-scale property such as birth or death rate — is a major

challenge facing modern molecular biology and a primary focus of this work. This particular

relationship between genotype and reproductive success is typically understood through the

notion of a fitness landscape, which we explore in the next section.

1.3 Fitness landscapes

The fitness of a genotype σ is an abstract quantity [13, 22–24] whose precise definition

varies across models and experiments, but in general it is some number that characterizes

the reproductive success of an organism with that genotype. Most notions of fitness fall into

two classes. The first class can be thought of as “probabilistic” fitness, since it can usually be

interpreted as the relative probability of an organism to reproduce [19]. We will mainly use

this type of fitness in this work and denote it as F . Another notion of fitness is “Malthusian”

fitness, which satisfies an operational definition as the relative exponential growth rate of a

population with that genotype. In most models Malthusian fitness is simply the logarithm

of the probabilistic fitness (logF). Moreover, most models depend only on relative fitness

values, i.e., ratios of probabilistic fitnesses or differences of Malthusian fitnesses (equivalent
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under the logarithmic mapping). In particular, the selection coefficient as previously defined

corresponds to a difference of Malthusian fitnesses.

The mapping of all possible genotypes σ to their fitness values F(σ) is known as a

genotypic fitness landscape [22]. We imagine a population as a distribution of genotypes

on this fitness landscape. Natural selection tends to drive the population toward higher

fitness values, while mutation, recombination, and genetic drift tend to randomize the

population. This is analogous to a distribution of particles obeying Brownian dynamics

on a potential energy landscape, where particles experience both a gradient force toward

lower energies along with stochastic fluctuations. Thus, although other forces shape the

evolution of a population as well, the fitness landscape plays a major role. It is therefore

critical to understand its structure over the space of all genotypes.

1.3.1 Global landscape properties

Figure 1.2 shows schematic landscapes illustrating some key global properties. Perhaps

the most salient feature of a landscape is the number of maxima: this is defined as the

number of genotypes where all their mutational neighbors have lower fitness. This property

therefore depends on the available mutational moves an organism can make. For example,

a genotype may be a local fitness maximum with respect to all mutations of single positions

in its sequence, but it may not be a maximum if recombinations or insertions are possible.

In general, a greater number of possible moves increases the connectivity of the genotype

space and will reduce the number of local fitness maxima. The schematic landscapes in

Fig. 1.2 should thus not be taken too seriously, since their two-dimensional structure belies

the high-dimensional space of genotypes.

In Fig. 1.2A we show a landscape with a single global maximum; we therefore expect

populations to tend toward genotypes near this point. In contrast, Fig. 1.2B shows a

landscape with multiple local maxima. In this case populations may experience divergent

outcomes if they end up at different maxima. This has important consequences for the
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Figure 1.2: Global properties of fitness landscapes. Schematic fitness landscapes over
genotype space: (A) smooth landscape with a single maximum, (B) landscape with multiple
local maxima, (C) landscape with large flat (neutral) regions, (D) highly rugged (epistatic)
landscape. Note that real genotype spaces are very high dimensional compared to these
two-dimensional schematics. All plots were made with matplotlib [25].

repeatability of evolution, as discussed in Sec. 1.4.2.

Besides having a well-defined set of maxima, another possibility for global landscape

structure is a series of large flat regions of genotypes with the same or similar fitness values.

These regions are known as neutral networks [26, 27]; “neutral” indicates that genotypes

in these regions are equivalent under selection. Figure 1.2C provides an example of such a

landscape. Populations may have very different dynamics on landscapes with neutral regions

compared to landscapes with well-defined maxima; they may spend long times wandering

flat areas until they reach gradients that drive them up toward a region of higher fitness.

1.3.2 Ruggedness and epistasis

The first three landscape examples in Fig. 1.2 have different global features but locally

are all rather smooth. Figure 1.2D in contrast shows a landscape with very rugged local

structure, resulting in a large number of local minima and maxima. It is clear that a highly

rugged landscape will result in very different evolutionary dynamics. Landscape ruggedness

is equivalent to a genetics concept known as epistasis. Let the genotype σ be represented as

(σ1, σ2, . . . , σL), where σi is the letter at position i ∈ {1, . . . , L}. In general the probabilistic

fitness function F(σ) cannot be decomposed into a product of independent contributions

from each position i or, equivalently, the Malthusian fitness logF(σ) cannot be decomposed

into a sum. This means that the fitness effect of a mutation at a given position may depend

on the state of other positions. If this is true, the positions will be correlated, which can
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Figure 1.3: Qualitative types of epistasis. The four qualitative types of epistasis for a
two-letter, two-position model. From left to right: no epistasis, where each mutation has
the same effect on additive fitness (logF) regardless of the other position, yielding a linear
landscape; magnitude epistasis, where the magnitude (but not the sign) of a mutation’s
additive fitness effect depends on the other position; sign epistasis, where the sign of a
mutation’s fitness effect (beneficial or deleterious) depends on the other position; reciprocal
sign epistasis, where multiple instances of sign epistasis can lead to multiple local fitness
maxima.

be thought of as a coupling between the positions. Mathematically this is reminiscent of a

Hamiltonian for a system of interacting particles.

Epistasis is precisely this interactive coupling in the context of genotypic sequences.

Following convention, we use Malthusian fitness here (logF), and categorize types of epis-

tasis according to the qualitative differences in the additive fitness effects of mutations. We

summarize the four possible cases using a two-letter, two-position model (k = 2, L = 2) in

Fig. 1.3 in which sequence AA evolves into sequence BB, which has the highest fitness. In

the first case on the left of Fig. 1.3, there is no epistasis: the fitness effect of the A → B

substitution at position 2 is the same regardless of the state of position 1, and vice versa.

Thus the Malthusian fitness can be decomposed into a sum of contributions from each site:

logF(σ) = logF1(σ1) + logF2(σ2), i.e., the Malthusian fitness landscape is linear in geno-

type space. A population should therefore be able to easily evolve from AA to the global

maximum at BB.

In the second case of Fig. 1.3, the fitness effect of A → B at position 2 differs in

magnitude but not in sign depending on whether position 1 has A or B. This situation is

known as magnitude epistasis. Note that there are two kinds of magnitude epistasis: an
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“amplifying” or “super-additive” case in which the fitness benefit of a mutation is enhanced

by the presence of other mutations (as shown in the second panel of Fig. 1.3), and the

“diminishing returns” or “sub-additive” case in which the fitness benefit is decreased by

other mutations.

The third case of Fig. 1.3 shows how the A → B substitution at position 2 can have

opposite effects on fitness depending on the state of position 1: it is deleterious if σ1 = A,

but beneficial if σ1 = B. Since the sign of the fitness effect depends on the other position,

this situation is known as sign epistasis. It is equivalent to frustration in the spin models

of statistical physics. Sign epistasis can significantly affect accessibility of genotypes on the

landscape, since the pathway AA → AB → BB requires a deleterious substitution. When

sign epistasis exists at multiple positions, it is known as reciprocal sign epistasis, as

shown in the fourth case of Fig. 1.3. Reciprocal sign epistasis is a necessary condition for

the existence of multiple local maxima [28] (cf. Fig. 1.2B,D). These cases straightforwardly

generalize to higher-dimensional genotype spaces with additional positions and letters.

There is no universal measure to quantify the epistatic ruggedness of fitness land-

scapes [24]. One commonly-used measure is simply the number of local fitness maxima,

since multiple local maxima are indicative of sign epistasis [28]. For binary alphabets

(k = 2), deviations of the Malthusian fitness function from linearity can be quantified by

fitting a linear function and calculating the sum of squares of residuals, known as a rough-

ness parameter [24]. A third option is to consider all pairs of positions and all pairs of

possible letters at those positions, and then classify the resulting sub-landscape for each

combination like those shown in Fig. 1.3. Weinreich and coworkers have more recently

proposed a scheme for quantifying higher-order epistasis that goes beyond the pairwise

couplings described here [29].



11

1.3.3 Empirical landscape reconstructions

What is the structure of fitness landscapes for real organisms? Explicit reconstruction of

a fitness landscape entails engineering organisms with each genotype and measuring their

relative fitnesses. Although great progress has been made in recent years (see Ref. 24 for a

review), the enormous number of possible genotypes limits this to a very small number of

positions (typically 4–9) and possible mutations (typically binary at each position). Thus

fitness measurements are usually only obtained for a few tens or hundreds of genotypes. In

addition, because individual genotype survivability is not directly accessible in experiments,

proxy measures of fitness are employed, such as growth rates and antibiotic resistance.

Many studies have attempted to characterize these empirical landscapes in terms of

their epistatic features, accessibility to adaptation, and correspondence to theoretical mod-

els [24, 30–37]. For example, magnitude epistasis appears to be widespread [36–39], while

substantial sign epistasis appears in fewer examples [31, 32]. The emerging picture supports

a mostly smooth but nonlinear landscape, with limited sign epistasis and therefore a single

or small number of maxima [24, 33, 40]. However, the limited nature of these reconstruc-

tions requires a cautious interpretation. While these experiments may provide insight into

local landscape properties such as epistasis, a clear picture of global properties requires

much more exhaustive sampling of the landscape.

1.3.4 Simple model landscapes

The difficulty of experimentally reconstructing landscapes has spurred the development

of theoretical models. A few simple models have traditionally dominated the field; they

generally consider sequences with binary alphabets (k = 2), in which case genotype space is

a unit hypercube. In Kauffman’s NK (or “LK”) model [34, 41, 42], each of the L positions in

the gene (or genes in the genome) interacts with K other sites chosen by random sampling.

The Malthusian fitness of genotype σ is given by
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logF(σ) =
L∑

i=1

logFi(σi, σn1(i), . . . , σnK(i)), (1.2)

where n1(i), . . . , nK(i) are the randomly-chosen interaction partners of position i. The

single-site fitnesses Fi are obtained by sampling from a continuous distribution; each com-

bination of 2K+1 possible states of the argument corresponds to an independent sampling.

When K = 0, positions do not interact and the landscape is non-epistatic. Because in

this limit the landscape is smooth and has a single maximum, it is sometimes called the

“Mount Fuji” model [43]. The amount of epistasis can be tuned by increasing K to the

maximum value of L − 1. With K = L − 1, the fitnesses of different genotypes are uncor-

related; this model is called the “House of Cards” due to the unpredictable fitness effects

of mutations [44]. Realistically, closely-related genotypes should have correlated fitnesses,

so this limit serves mainly as a null model. Many properties of the NK landscape are

known [41, 45–48]; for example, in the K = L−1 limit the average number of local maxima

is kL/(L(k − 1) + 1) [24].

Another class of models starts from a non-epistatic (Mount Fuji) landscape and adds a

tunable amount of noise to it. For example, in the “rough Mount Fuji” model [43], genotype

σ0 is arbitrarily selected as the global maximum and the fitness of genotype σ is given by

logF(σ) = −θd(σ, σ0) + η(σ), (1.3)

where d(σ, σ0) is the Hamming distance (number of positions that are different) between

genotypes σ and σ0, θ is the average additive fitness cost of each deleterious mutation,

and η(σ) is a zero-mean random variable sampled independently for each sequence σ. The

ruggedness of the landscape is controlled by the ratio of θ to the standard deviation of the

distribution from which the random variables η(σ) are sampled [24].

Another class of models aims to construct landscapes with neutral networks (e.g.,

Fig. 1.2C). These are inspired by observations that most mutations either have no fitness
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effect or are strongly deleterious and thus rapidly removed from the population [15]. One

way to construct neutral networks is equivalent to percolation models in physics [49]: each

genotype is randomly assigned fitness 1 with probability p and fitness zero with probability

1− p [34]. The neutral network is then the connected subset of viable genotypes.

1.3.5 Ab initio biophysical fitness landscapes

Although the aforementioned models have produced a wealth of theoretical results and have

facilitated some analysis of data, their purely phenomenological nature allows for little in-

terpretation of their parameters and includes no basis in the underlying molecular processes

governing cells. From a physical perspective, a major weakness of attempting to directly

construct the genotypic fitness landscape F(σ), either experimentally or theoretically, is

that it relates properties of organisms at very different scales: the genotype σ is essentially

a “microscopic” property of individual DNA or protein molecules, while fitness is a “macro-

scopic” property of a whole organism. Moreover, macroscopic properties of an organism

do not directly depend on microscopic details of genotype anyway; fitness depends on the

properties of at least whole molecules like proteins, and more likely on whole collections of

molecules (e.g., forming metabolic or signaling networks).

This suggests that instead of directly measuring or postulating a genotypic fitness land-

scape, a better approach is to bridge the length scales via intermediate molecular phe-

notypes that are closer in scale to genotypes, and therefore easier to relate, and are also

more closely tied to the actual reproductive ability of the whole organism. Besides its

practical advantages, this approach has the conceptual advantages of incorporating explicit

physico-chemical properties of molecules into evolutionary models, which enables more pre-

cise experiments and unambiguous interpretation of model parameters. Building ab initio

models of evolution based on biophysics has been explored in several contexts over the last

decade [50, 51]. It has been extensively studied for individual proteins [10–12, 27, 35, 52–63]

and protein interaction networks [64–66], as well as for DNA regulatory sites [9, 67–72] and
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small molecular networks [73–77]. This approach is a central focus of this work, and thus

we will discuss it further in subsequent chapters, especially Chapters 3 and 5.

1.4 Pathways of evolution

We now turn to considering how fitness landscapes affect evolutionary dynamics of popula-

tions. Of particular interest are evolutionary paths of populations, which are essential for

understanding the history of natural populations as well as predicting future evolutionary

outcomes. We first define a simple model of evolutionary dynamics to make precise the

notion of evolutionary paths and discuss specific properties of interest.

1.4.1 Simple model of evolutionary dynamics

In general, a population will occupy a distribution of genotypes (see the model in Sec. 1.2).

However, under certain conditions a population may be genetically homogeneous, or mono-

morphic, most of the time. This occurs when new mutations are sufficiently rare that when

a new mutation arises, it is likely to either fix or go extinct before a second mutation arises.

Thus the population is always monomorphic except for these relatively short transition

periods.

A simple argument shows under which conditions this occurs. Let u be the mutation rate,

defined as the probability of mutation per position per generation. Assuming a genotype

of length L and a population of size N , the average time until a mutation arises at any

position in any organism is of order (LNu)−1. We want to compare this to the average

time for a single mutant to fix or go extinct. For a selectively-neutral mutant, fixation and

extinction have conditional average times of order N and logN [78, 79], respectively, with

probabilities 1/N and (N − 1)/N [20, 80]. To leading order in N , the average time until

either fixation or extinction of a mutant is thus logN . The monomorphic limit therefore

holds if this time is much shorter than the mutation waiting time:
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Figure 1.4: Substitution process of a monomorphic population. A monomorphic
population evolves by sequential substitutions, which consist of a single mutation arising
followed by fixation of the mutant. In the figure the population makes one substitution
from red to blue and then another from blue to green.

logN � 1

LNu
, (1.4)

or, equivalently, u � (LN logN)−1 [81, 82]. The monomorphic limit thus requires suffi-

ciently low mutation rates and small population sizes. This is believed to hold for many

natural populations, especially among eukaryotes [15, 83].

Monomorphic populations have dramatically simpler evolutionary dynamics. We can

describe their state at any given time by a single genotype σ (rather than a whole list of oc-

cupation numbers). Consider a vector space with basis elements {|σ〉}, one for each possible

genotype. The probability distribution of an ensemble of populations can be expressed as

a vector |π(t)〉 in this space, where the components 〈σ|π(t)〉 = π(σ, t) give the probability

that a population has genotype σ at time t. This is normalized so that
∑

σ π(σ, t) = 1. The

population changes genotype when a mutation occurs producing a new genotype σ′, which

then fixes in a population of σ; this combined process of mutation and fixation is known as

substitution (see Fig. 1.4). We can define a substitution rate matrix W with elements [15]

〈σ′|W|σ〉 = Nu(σ′|σ) φ(σ′|σ), (1.5)
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where u(σ′|σ) is the rate of genotype σ mutating into σ′ and φ(σ′|σ) is the fixation prob-

ability of a single σ′ mutant in a population of σ. The substitution rate is thus the rate

of producing a single mutant times the probability that the mutant fixes. The probability

distribution of populations therefore obeys the master equation

d

dt
π(σ′, t) =

∑

σ 6=σ′
[〈σ′|W|σ〉 π(σ, t)− 〈σ|W|σ′〉 π(σ′, t)]. (1.6)

If we define the diagonal elements of W as the negative of the total substitution rate out

of that genotype

〈σ|W|σ〉 = −
∑

σ′ 6=σ
〈σ′|W|σ〉, (1.7)

then we can also write the master equation in vector notation, mathematically equivalent

to the Schrödinger equation:

d

dt
|π(t)〉 = W|π(t)〉. (1.8)

The general solution to this equation is therefore expressed as

|π(t)〉 = etW|π(0)〉, (1.9)

where |π(0)〉 is the initial distribution over genotypes.

The exact form of the fixation probability φ(σ′|σ), and hence the substitution rates

(through Eq. 1.5), depends on the underlying population dynamics (Eq. 1.1). In most mod-

els the fixation probability depends only on the relative fitness between the two genotypes.

A convenient parameterization of relative fitness is the selection coefficient. For probabilistic

fitness this is defined as

s =
F(σ′)
F(σ)

− 1. (1.10)
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This ranges from +∞ when F(σ′) is infinitely larger than F(σ) (infinitely beneficial mu-

tation) to −1 when F(σ′) is infinitely smaller (infinitely deleterious). When the fitnesses

are exactly equal, s = 0. Note that when F(σ′) and F(σ) are both close to 1 (the scale-

invariance of probabilistic fitness means it is always possible to scale at least one fitness

value to 1), s ≈ F(σ′)−F(σ).

In general we will assume φ(σ′|σ) = φ(s). For example, the approximate fixation prob-

ability for the Wright-Fisher model of population dynamics is [17, 20, 80]

φWF(s) =
1− e−2s

1− e−2Ns
. (1.11)

The Moran population model, on the other hand, yields

φMoran(s) =
1− (1 + s)−1

1− (1 + s)−N
. (1.12)

We will examine the differences in these fixation dynamics in Chapter 2, but here we sim-

ply describe a few relevant limits. All forms of the fixation probability should satisfy

lims→∞ φ(s) = 1 (for an infinitely beneficial mutation) and lims→−1 φ(s) = 0 (for an in-

finitely deleterious mutation). They should also satisfy φ(0) = 1/N as required by symmetry

of selectively-neutral genotypes. If |s| � 1 for all relevant mutations (fast selection), all

beneficial mutations are essentially guaranteed to fix, while deleterious ones are guaranteed

to be eliminated. Similar to zero-temperature Monte Carlo, the population can only un-

dergo substitutions that increase fitness, and all allowed substitutions occur with the same

rate Nu. When selection is slow compared to generation times but fast compared to genetic

drift (1 � |s| � N−1), φ(s) ≈ s for s > 0 and φ(s) ≈ 0 for s < 0 [19]. Thus deleterious

mutations always get eliminated as before, but beneficial mutations fix at the rate Nus [84].
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1.4.2 The ensemble of evolutionary paths and the predictability of evolution

The simple dynamics presented above enable a precise definition of an evolutionary path.

Since a monomorphic population has only one genotype at a time, we can define the evo-

lutionary path ϕ = {σ0, σ1, . . .} as a time-ordered sequence of genotypes through which

the population passes. Since the precise pathway taken by a population is stochastically

determined, we are usually interested in an ensemble of paths. For example, we may con-

sider the ensemble of paths from an ancestral state of the population to some final state

(e.g., at a fitness maximum). There are many properties of this path ensemble relevant to

evolutionary theory, including the distribution of path lengths, which indicates the number

of substitutions in the genetic sequence, and the distribution of path times, which indicates

the speed of evolution. We may also want to know how the paths are distributed across

genotype or phenotype space. For example, paths may all bottleneck through a particular

state, or be tightly constrained to pass through a particular set of genotypes. Underlying

the importance of many of these quantities is the notion of evolutionary predictability.

The predictability of evolution is a question of paramount importance in biology [85].

If “life’s tape” could be replayed, would we see a completely different outcome because evolu-

tion is a largely stochastic phenomenon, or are accessible evolutionary paths so constrained

that the outcome would have been the same or recognizably similar [14]? This question

is not only of theoretical value in understanding the history of natural populations, but

has practical relevance in predicting the future evolutionary outcomes of populations of

endangered species and infectious diseases. Moreover, the growth of controlled, highly-

parallelized evolution experiments on microbes enables quantitative tests of the concept in

the laboratory [86–88].

There are two major aspects of predictability. The first aspect is the predictability of

intermediate pathways between a fixed initial state and a fixed final state. Here the issue

is assessing the diversity of the relevant path ensemble; if only a single path is available

to a population, then obviously evolution is perfectly predictable, while the existence of
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many equivalent paths means evolution will be more unpredictable. One assessment of this

diversity is simply counting the number of such paths. For example, Weinreich et al. [31]

found that only a small fraction of all possible paths from wild-type E. coli to a strain

resistant to antibiotics was accessible to adaptation. In another approach, Lobkovsky et

al. [35] and Lobkovsky and Koonin [85] devised a measure called mean path divergence:

D =
∑

ϕ1 6=ϕ2

∆(ϕ1, ϕ2)p(ϕ1)p(ϕ2), (1.13)

where the sum is over all pairs of distinct paths ϕ1 and ϕ2 in an ensemble, p(ϕ) is the

probability of path ϕ, and ∆(ϕ1, ϕ2) is the path distance between ϕ1 and ϕ2. The path

distance is defined as the average of the shortest Hamming distances between each genotype

σ1 on path ϕ1 and all genotypes on path ϕ2, and vice versa:

∆(ϕ1, ϕ2) =
1

L[ϕ1] + L[ϕ2]

( ∑

σ1∈ϕ1

argmin
σ2∈ϕ2

d(σ1, σ2) +
∑

σ2∈ϕ2

argmin
σ1∈ϕ1

d(σ2, σ1)

)
, (1.14)

where L[ϕ] is the length (number of substitutions) of path ϕ and d(σ1, σ2) is the Hamming

distance between σ1 and σ2. The divergence therefore captures not only how many paths

are available, but weighs them by their proximity in genotype space.

Besides the diversity of intermediate pathways between fixed endpoints, the second

aspect of predictability is the diversity of final states themselves. Can a population end

up in very different genotypic or phenotypic states under repeated trials, regardless of

the intermediate pathways? In the strong-selection limit, where deleterious and neutral

substitutions never occur, local maxima on the fitness landscape serve as absorbing states

for the population, so they serve as the only possible final states for the population over

sufficiently long times. However, the availability of neutral and deleterious substitutions

complicates this picture.
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Although the concept of predictability has a long history in evolutionary theory, sur-

prisingly little attention has been paid to it in the context of theoretical models, outside of

the few examples cited here. In Chapters 4 and 5 we will present more systematic methods

to quantify different aspects of evolutionary predictability, including the diversity of both

intermediate paths and final states. Our approach is drawn from statistical physics and is

easily applied to a wide range of evolutionary models.
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Chapter 2

Time Reversibility and Evolutionary Steady State under

Selection

In Sec. 1.4.1 we defined a simple model of evolutionary dynamics, that of monomorphic

populations undergoing substitutions on a fitness landscape. In this chapter we explore

properties of time reversibility and steady state in this model, especially in the presence of

strong natural selection. This chapter largely reproduces Ref. 8.

Much theoretical work in population genetics has focused on gradual models of adapta-

tion in which evolutionary change proceeds through selection of mutations with very small

fitness advantage [89]. The idea of the extremely slow rate of phenotypic evolution was pro-

posed by Darwin [13] and subsequently made popular by Fisher [90] in the context of the

infinitesimal model. In more recent decades, experimental evidence such as the molecular

clock and high levels of sequence variation in some proteins suggested that genetic drift,

and not selection, was the key evolutionary driving force. This led to the neutral and nearly

neutral theories of molecular evolution [15, 91, 92].

From the theoretical perspective, a key motivation for weak-selection models is their uni-

versality: many specific models are equivalent in the weak-selection, or diffusion, regime.

This equivalence is observed for the simple Wright-Fisher [90, 93] and Moran [94] models,

which share a diffusion limit with a variety of more elaborate models under the appropriate

mapping of parameters (e.g., [21, 95–100]). Even though the simple Wright-Fisher model is

undoubtedly a gross simplification of natural populations, this universality has driven the

use of its diffusion limit [80, 101], and more generally, the use of exchangeable models [102]

as plausible effective theories in a wide variety of applications.
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However, there is mounting experimental evidence that stronger selection may be com-

mon in nature. Strongly deleterious mutations have long been known to exist, although they

are typically eliminated by selection so efficiently that they play little role in evolutionary

dynamics [15]. Mutations with strong selective advantage, on the other hand, may rou-

tinely occur in organisms faced with novel environments or environmental stresses such as

high temperature [103–106], with early steps in adaptation typically exhibiting larger fitness

gains than later ones. Furthermore, several QTL-mapping experiments have demonstrated

that adaptive evolution frequently involves relatively few genetic changes with large fitness

effects [89, 107, 108]. Using approaches developed in the weak-selection limit to predict

the dynamics of strongly beneficial mutations (such as fixation times and the probability of

fixation) may lead to significant errors [100, 109, 110].

Models attempting to include a wider range of selection strengths are often determin-

istic [111, 112] and therefore exclude populations with non-negligible genetic drift, while

stochastic theories typically demonstrate model-dependent behavior when selection becomes

too strong [113–115], which limits their application to natural systems. Thus there is a need

to study universal properties of classes of stochastic models in which no a priori assumptions

are made about the strength of selection.

In this chapter we investigate such properties, focusing on time reversibility (i.e., detailed

balance) and the steady state of the substitution process. We restrict ourselves to asexual

haploids for simplicity, which includes many populations of single-cell organisms [116–119].

For any time-reversible population model, such as the Moran process, we show that the

substitution rates obey a simple scaling law. This result is exact in the monomorphic limit

and requires no diffusion or weak-selection approximation. For irreversible models, we find

that the scaling law is an accurate approximation for sufficiently weak selection, and in fact

may hold for a large range of selection strengths beyond the classical diffusion limit, as we

show for the simple Wright-Fisher model and its extensions. Since this scaling behavior

is equivalent to time reversibility, this contradicts the belief that selection should break
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reversibility [120].

The scaling law also gives rise to a power-law formula for the steady-state distribution,

which is exact for any reversible model. This generalizes the work of Sella and Hirsh [121],

who obtain this result in the special case of the Moran model. Moreover, we find that

strong selection plays little role in steady state, which is dominated by genetic drift and

weak selection. Since evolutionary behavior in this regime is known to be universal through

established results based on the diffusion approximation, the steady-state formula is ac-

curate within a sizable range of selection strengths for a large class of population models,

including many irreversible ones. The wide range of applicability of the time-reversibility

condition greatly simplifies computational studies of evolutionary dynamics in biological

systems, such as probabilistic phylogenetic inference [122]. Finally, the simple power-law

form of the steady-state distribution allows inference of fitness landscapes from genomic

data in systems for which the steady state is believed to be a good approximation, such as

TF binding sites in yeast [72] (explored further in Chapter 3).

2.1 The scaling law and steady state

We consider the evolution of a population in the monomorphic limit, as described in

Sec. 1.4.1. The genotype σ under consideration defines either an entire genome, or more

realistically, a single locus in a genome (such as a gene or small DNA regulatory site) that

is unlinked to the rest of the genome (linkage equilibrium) by frequent recombination with

rate r, which satisfies r � LNu [123]; here, recombination also includes homologous DNA

transfer such as observed in bacteria. Therefore we can consider the evolution of the locus

independently from the rest of the genome. We assume that the locus is short enough that

recombination does not occur within the locus itself. In general, we are interested in loci

with < 103 nucleotides, which easily meet these conditions. Such loci include short regu-

latory sequences of nucleotides such as TF binding sites as well as coding regions. Viruses

or loci with mutation or recombination hotspots are outside the scope of this model. Note
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that while the locus of interest is unlinked to other genomic sites, there may be epistasis

among the nucleotides or amino acids constituting the locus itself.

The probability distribution for the population’s genotype is defined by a state vector

|π(t)〉 that satisfies the master equation in Eq. 1.8. This Markov process is finite and

irreducible, since there is a nonzero probability of reaching any genotype from any other

genotype in finite time. Hence it has a unique steady-state distribution |π〉 satisfying [124]

W|π〉 = 0, (2.1)

or in terms of the components 〈σ|π〉 = π(σ),

∑

σ

[〈σ′|W|σ〉 π(σ)− 〈σ|W|σ′〉 π(σ′)] = 0. (2.2)

For simplicity we drop the time dependence to indicate the steady state distribution.

The form of this steady-state distribution depends on the underlying population genetics

model that gives the fixation probability φ and hence the substitution rates in Eq. 1.5.

Following the discussion in Sec. 1.4.1, we will assume the fixation probability depends only

on the relative fitness between the mutant and wild-type genotypes and the population size

N . For convenience, here we will parameterize φ = φ(r) in terms of the fitness ratio r rather

than the selection coefficient s (cf. Eq. 1.10):

r =
F(σ′)
F(σ)

= 1 + s. (2.3)

We aim to use arguments from population genetics to study time reversibility (or simply

“reversibility”), which in turn determines the form of the steady state. Time reversibility

is equivalent to detailed balance, a sufficient but not necessary condition for steady state:

〈σ′|W|σ〉 π(σ) = 〈σ|W|σ′〉 π(σ′). (2.4)
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The left- and right-hand sides of this equation are the steady-state probability currents

σ → σ′ and σ′ → σ, respectively. Equation 2.4 means that these currents are exactly

balanced for each pair of genotypes σ and σ′, and hence there are no net currents, consistent

with the notion that it is impossible to distinguish the forward and backward flow of time

in steady state.

Throughout this work, we will assume that neutral evolution — when all genotypes

are selectively neutral relative to each other — is reversible. In the neutral model, the

fixation probability φ(σ′|σ) = 1/N for all σ and σ′, and hence Eq. 1.5 shows that the

neutral substitution rates are just the mutation rates [15]: 〈σ′|W|σ〉 = u(σ′|σ). Let the

steady-state distribution of the neutral substitution process be π0(σ). Then reversibility of

the neutral model is expressed by

u(σ′|σ) π0(σ) = u(σ|σ′) π0(σ′). (2.5)

Many popular neutral models are reversible (see Ref. 122 for a summary), but this is not

guaranteed. This issue will be discussed further in Sec. 2.3.

We now consider the reversibility of the substitution rates under selection. Let us first

define the function

ψ(r) ≡ φ(r)

φ(1/r)
. (2.6)

Hence the ratio of the forward and backward substitution rates between σ and σ′ is

〈σ′|W|σ〉
〈σ|W|σ′〉 =

u(σ′|σ)

u(σ|σ′) ·
φ
(
F(σ′)
F(σ)

)

φ
(
F(σ)
F(σ′)

) =
π0(σ′)
π0(σ)

· ψ
(F(σ′)
F(σ)

)
, (2.7)

where we have invoked the reversibility of the neutral rates (Eq. 2.5). Studying the prop-

erties of the ψ function is the main focus of this chapter: it will determine the existence of
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reversibility under selection and the form of the steady-state distribution. We will investi-

gate both its general properties and its form for specific models.

We will first assume that the substitution rates 〈σ′|W|σ〉 under selection are reversible,

which will completely constrain the form of ψ and the steady state π(σ) under selection. In

this case, 〈σ′|W|σ〉 π(σ) = 〈σ|W|σ′〉 π(σ′), and hence

π(σ′)
π(σ)

=
〈σ′|W|σ〉
〈σ|W|σ′〉 =

π0(σ′)
π0(σ)

· ψ
(F(σ′)
F(σ)

)
. (2.8)

It follows that

ψ

(F(σ′′)
F(σ′)

)
· ψ
(F(σ′)
F(σ)

)
= ψ

(F(σ′′)
F(σ)

)
, (2.9)

that is, ψ generally satisfies ψ(r1)ψ(r2) = ψ(r1r2). Therefore ψ(r) must be a simple power

law:

ψ(r) = rν , (2.10)

for some constant ν [125]. The constant ν can only depend on the population size N , since

this is the only other parameter in our population model. We will refer to Eq. 2.10 as the

scaling law for ψ. Using the definition of ψ(r) (Eq. 2.6), one can show that

ν =
2φ′(1)

φ(1)
= 2Nφ′(1), (2.11)

where φ′(1) = dφ(r)/dr|r=1 and φ(1) = 1/N is the neutral fixation probability.

Now rewriting Eq. 2.8 with our explicit form of ψ,

π(σ′)
π(σ)

=
π0(σ′)
π0(σ)

(F(σ′)
F(σ)

)ν
, (2.12)

we can deduce the steady state:
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π(σ) =
1

Z
π0(σ) (F(σ))ν , (2.13)

where Z is a normalization constant. Note that Eq. 2.13 can be rewritten in the form of a

Boltzmann distribution, with energy replaced by the negative logarithm of fitness:

π(σ) =
1

Z
π0(σ) eν logF(σ). (2.14)

The Boltzmann form in Eq. 2.14 suggests a straightforward analogy with statistical

mechanics [121, 126]. One may think of the evolutionary model defined by Eqs. 1.5 and 1.6

as describing an ensemble of monomorphic populations taking random walks on a fitness

landscape. The ensemble of walkers eventually reaches steady state in genotype space, which

is given by Eq. 2.13 or 2.14. Populations will be driven toward the peaks of the landscape

by selection, which manifests itself as the Fν factor in the steady state; this effect becomes

exponentially stronger as ν increases. This is analogous to energy minimization in statistical

mechanics. However, as in statistical mechanics, we also expect the entropy of states to

affect the steady-state distribution, since typically there are few states with optimal or

near-optimal fitness and many states with low fitness. This density of states is given by

the neutral distribution π0. The corresponding entropy (defined as log π0) competes with

selection the same way energy and entropy compete in statistical mechanics: selection favors

high fitness states while entropy favors low fitness states since there are usually many more

of them. These competing forces reach some balance in the form of a “free fitness” function

that is maximized in the steady state, as described in Refs. 121, 126.

This steady-state formula was derived in the special case of the Moran model by Sella

and Hirsh [121]. We generalize this earlier result by showing that any reversible substitution

process leads to the scaling law for ψ and the steady-state formula of Eq. 2.13. Note that

this conclusion, obtained in the monomorphic limit, requires no additional assumptions,

such as the weak-selection diffusion approximation.



28

We have shown that reversibility implies this scaling law. We now show that the scaling

law implies reversibility: we now assume Eq. 2.10 without assuming reversibility. Then

〈σ′|W|σ〉
〈σ|W|σ′〉 =

π0(σ′)
π0(σ)

(F(σ′)
F(σ)

)ν
. (2.15)

We can combine this with the steady-state condition (Eq. 2.2) to show that

0 =
∑

σ

[〈σ′|W|σ〉 π(σ)− 〈σ|W|σ′〉 π(σ′)]

=
∑

σ

〈σ|W|σ′〉
[
π0(σ′)
π0(σ)

(F(σ′)
F(σ)

)ν
π(σ)− π(σ′)

]
.

(2.16)

Clearly the distribution in Eq. 2.13 satisfies this condition, so it must be the unique steady

state. The reversibility condition (Eq. 2.4) is satisfied as well, and thus the scaling law

implies reversibility.

Therefore, time reversibility and the scaling behavior of ψ are mathematically equivalent,

and both lead to the steady-state formula of Eq. 2.13. This means that we can concentrate

our attention on determining the form of ψ, since its scaling behavior tells us the extent to

which reversibility and Eq. 2.13 hold. Obviously not all models are reversible, so the scaling

law will not hold exactly in those cases. However, we demonstrate below that the scaling

behavior of ψ is at least an approximate feature of a large class of models, and therefore

reversibility and the steady-state formula (Eq. 2.13) provide a good approximation within

a sizable range of selection strengths.

Since it will be more convenient to describe the scaling behavior of ψ on logarithmic

scales, we expand logψ(r) in a power series in log r around the neutral limit (log r = 0):

logψ(r) =
∞∑

j=0

c2j+1

(2j + 1)!
(log r)2j+1 = c1(log r)


1 +

1

c1

∞∑

j=1

c2j+1

(2j + 1)!
(log r)2j


 , (2.17)
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where

ci =

(
di

d(log r)i
logψ(r)

)∣∣∣∣
r=1

. (2.18)

Note that logψ(r) is an odd function in log r (deduced from the definition in Eq. 2.6), and

hence there are only odd powers in the expansion. Since c1 = 2φ′(1)/φ(1) = ν, we can write

logψ(r) = ν(log r)


1 +

1

ν

∞∑

j=1

c2j+1

(2j + 1)!
(log r)2j


 . (2.19)

The scaling behavior of ψ is captured by the first-order term in this expansion. As long

as ν is nonzero, there will always be some neighborhood of selection strengths around the

neutral limit, r = 1, in which the scaling law holds. We give an argument that ν 6= 0 in

Appendix A.1. The argument relies on the universal nature of the diffusion approximation

to a population model. That is, discrete population models can be approximated by a

continuous diffusion equation, and it is known that a large class of population models are

equivalent under this approximation (e.g., [21, 95–100]). The diffusion approximation is

valid for weak-selection strengths: r − 1 = s ∼ O(N−1) [20]. Since the scaling behavior of

ψ appears in the diffusion regime, it is shared by a large class of models.

The diffusion argument in Appendix A.1 also gives us insight into the interpretation

of ν = 2Nφ′(1): it suggests that φ′(1) ∼ O(N0) and therefore ν ∼ O(N). Thus we can

interpret ν as a “scaling” effective population size that is of the same order as the census

population size for fixed-size models or the variance effective population size for more general

models. This is sensible in light of the Boltzmann form of the steady state (Eq. 2.14), which

suggests that 1/ν plays the role of temperature, i.e., the scale of stochastic fluctuations.

There is a range of selection strengths in which the scaling law is approximately valid.

Specifically, we wish to find the range of fitness ratios r, which we will denote as (r−1
0 , r0)

with r0 > 1, such that



30

ν(1∓ ε) log r < logψ(r) < ν(1± ε) log r, (2.20)

where the upper signs are valid for r > 1, the lower signs are valid for r < 1, and ε > 0 is a

small number that we choose to control the accuracy of the power law approximation. This

range is determined by the next coefficient in the expansion of Eq. 2.19,

c3

6ν
=
ν3 − 3ν2N2 + 2νN3 (N − 3φ′′(1)) + 4N5

(
3φ′′(1) + φ(3)(1)

)

12νN6
, (2.21)

where we have evaluated the derivative of logψ(r) in terms of φ(r) and substituted φ(1) =

1/N and ν = 2Nφ′(1). For small ε,

|c3|
6ν

(log r0)2 = ε =⇒ r0 = exp

(√
6νε

|c3|

)
. (2.22)

For any particular model, we need only calculate ν and c3 to obtain the range of selection

strengths (r−1
0 , r0) for which the scaling law is a good approximation.

Even outside of this range, however, deviations from the power law likely lead to negli-

gible errors in estimating the probabilities of extremely unfit genotypes. This is a situation

encountered when the monomorphic population is in steady state on the fitness landscape,

with the majority of time spent in locally optimal high-fitness states from which many

strongly deleterious but no strongly beneficial substitutions can be made. Specifically,

assume that the range of fitness ratios for which the scaling-law approximation is valid,

calculated from Eq. 2.22, is (r−1
0 , r0). Suppose that genotype σ1 has fitness F1 and geno-

type σ2 has fitness less than F1/r0 (r0 > 1), and also assume that they are separated by a

single mutation. By construction, the substitution from σ1 to σ2 is outside the range for

which the power law is a valid approximation. Now suppose that there is a third genotype

σ3 (also separated by a single mutation from σ1) with fitness of exactly F1/r0, so that its

probability is given by Eq. 2.13. Since ψ must be monotonically increasing, the probability
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of the unfit σ2 is bounded from above by the probability of σ3:

π(σ2) <
1

Z
π0(σ3) r−ν0 Fν1 . (2.23)

Then the ratio of π(σ2) to π(σ1) has an upper bound as well:

π(σ2)

π(σ1)
<
π0(σ3) r−ν0 Fν1
π0(σ1) Fν1

' r−ν0 , (2.24)

where the last relation holds because the neutral probabilities π0(σ1) and π0(σ3) are of the

same order of magnitude (under the reasonable assumption that mutation rates within the

locus are all of the same order). Since ν is proportional to the population size, the maxi-

mum fitness ratio r0 in the scaling region need not be very large to generate an enormous

suppression of the unfit genotype in steady state. Thus inaccuracies in the probabilities of

unfit genotypes caused by deviations from the scaling law will be negligible for all practical

purposes.

Furthermore, we can explicitly show that the selection strengths of the dominant sub-

stitutions in steady state are precisely those described by the diffusion approximation. In

steady state, it is sufficient to consider genotypes that have relative probabilities, with re-

spect to the most fit genotype, of at least δ > 0. Then the relevant fitness ratios r are

constrained by r−ν > δ or r < δ−1/ν . Since ν ∼ O(N), we expand in powers of 1/ν to

obtain

r < 1− 1

ν
log δ +O(ν−2). (2.25)

In terms of s = r−1, this implies s ∼ O(ν−1) ∼ O(N−1), which is the selection strength for

which the diffusion approximation is valid [20]. Therefore the steady state of substitutions is

adequately described by the diffusion approximation and thus by the scaling law (Eqs. 2.10

and 2.13). As a result, only the optimal genotype and slightly less fit neighboring states
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have non-negligible probabilities in steady state.

The steady-state distribution of Eq. 2.13 was previously derived for the special cases of

the Moran process by Sella and Hirsh [121] and for the diffusion limit of the Wright-Fisher

model by Sella and Hirsh [121], Lässig [71], and Li [127], among others. Indeed, some form

of this formula can even be found in work by Wright [93]. We have generalized these results

by showing that the steady-state formula holds exactly for any reversible model, not just

the Moran process, without requiring any diffusion approximation. For irreversible models,

we have shown how this result arises as an approximation, and determined its range of

validity. Surprisingly, weak selection dominates steady-state behavior in a wide class of

population models, justifying application of the steady-state formula to systems which may

include mutations with large fitness effects.

2.2 Scaling for specific population models

We now verify the general results of the previous section for specific models, computing the

scaling effective population size ν and the range of selection strengths for which the scaling

law is a good approximation.

2.2.1 The Moran model

Consider a haploid population of fixed size N with two genotypes, A and B, and let n denote

the number of organisms with genotype B. The single time-step transition probabilities of

the Moran model are then [20, 94]

〈n+ 1|P|n〉 =
FB

F̄
n

N

(
1− n

N

)

〈n− 1|P|n〉 =
FA

F̄
n

N

(
1− n

N

)
(2.26)

〈n|P|n〉 = 1− 〈n+ 1|P|n〉 − 〈n− 1|P|n〉,
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Figure 2.1: The scaling law for different population models. We show logψ(r) as
a function of log r for four population models. The scaling law appears as the straight
line logψ(r) = ν log r. (A) The Moran model with N = 1000. Here the scaling law is
exact with ν = N − 1. (B) The simple Wright-Fisher model for N = 1000, calculated
using the numerical procedure from Appendix A.2. The numerical calculation is the dashed
line and the scaling-law prediction is the solid line. Here the scaling law is not exact but
holds as a good approximation for a large range of selection strengths. The scaling effective
population size is ν = 2(N − 1). (C) A modified Wright-Fisher model with population size
N that varies sinusoidally as in Eq. 2.33, with N0 = 100, α = 20 and T = 20 generations.
Simulation results are shown as dots and the scaling law as a solid line. The scaling law is an
accurate approximation with ν = 2(Ne − 1), where Ne =

√
N2

0 − α2 is the harmonic mean
of the census population sizes. Because explicit simulations are required (as opposed to the
numerical procedure used for the simple Wright-Fisher model), poor statistics on deleterious
fixations and beneficial extinctions restricts us to considering smaller population sizes and
range of selection strengths. (D) A model based on Ref. 128, where the mutant and wild-
type may have different variances in offspring number in addition to different means. Here
fitness is defined as µ − σ2/N , where µ is the average number of offspring and σ2 is the
variance. As in (C), we use N = 100 for numerical reasons. The scaling law is deduced by
a linear fit.

where FA and FB are fitnesses of alleles A and B and F̄ = (n/N)FB + (1− n/N)FA is the

average fitness. In this case the probability of fixing a single mutant is [20]

φ(r) =
1− r−1

1− r−N , (2.27)

where r = FB/FA. (This is equivalent to Eq. 1.12.) A straightforward calculation shows

that ψ(r) = φ(r)/φ(1/r) = rN−1 [121]. Hence ν = N − 1 for the Moran model, and the

scaling law holds exactly if the neutral substitution rates are reversible (Fig. 2.1A).
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2.2.2 The Wright-Fisher model

We define the simple Wright-Fisher model [90, 93] analogously with the Moran case. Given

that there are n organisms of genotype B in the current generation, the probability of having

n′ B organisms in the next generation is [20, 129]

〈n′|P|n〉 =

(
N

n′

)
qn
′
(1− q)N−n′ , where q ≡ n

N

FB

F̄ . (2.28)

Unlike the Moran model, the Wright-Fisher model is ill-suited to exact treatment, and

hence the traditional approach to it has been the diffusion approximation. The diffusion

theory yields many results in the neutral and weak-selection regimes [80, 101, 130], such as

the formula for the fixation probability:

φ(r) =
1− e2(1−r)

1− e2N(1−r) , (2.29)

where r = FB/FA (equivalent to Eq. 1.11). However, there are two problems with the

classical diffusion approach. The first is that the jump moment functions [131] M(x, r)

and V (x, r) are typically expanded to the lowest order in r − 1 for the weak-selection

regime (as in Appendix A.1), and so all subsequent calculations, including those leading

to the fixation probability in Eq. 2.29, are not strictly valid for selection strengths beyond

s = r − 1 ∼ O(N−1). This expansion in selection strength, however, is not necessary, as it

is possible to carry out the diffusion approximation using the exact moments derived from

Eq. 2.28. This approach yields accurate results in the polymorphic limit, but fails to give

an accurate formula for the fixation probability. This is due to the inherent breakdown of

diffusion when the underlying discrete nature of the model becomes important, which is

especially pronounced when selection effects are strong.

Since the diffusion approach is unsuitable to describe fixation outside of a fairly narrow

range of selection strengths, we take a more accurate but numerical approach: calculat-

ing fixation probabilities directly from the discrete Markov chain defined in Eq. 2.28 (see
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Figure 2.2: Wright-Fisher fixation probability. Plot of φ(r), the probability that a
single mutant fixes as a function of its fitness ratio with the wild-type. For N = 1000, we
compare an explicit simulation of the Wright-Fisher model with our discrete Markov chain
approach (Eq. A.14) and Kimura’s diffusion approximation (Eq. 2.29). The agreement
between the discrete Markov chain and the simulation is excellent, in contrast with the
noticeable disagreement between the simulation and the diffusion approximation at larger
selection strengths.

Appendix A.2 for details). The end result is an efficient numerical procedure for accurate

calculation of the fixation probability, and hence the ψ function, for any N and r. Fig-

ure 2.2 compares a simulation of φ(r) with this numerical approach along with the diffusion

approximation (Eq. 2.29). The numerical calculation and the simulation match very well

for all selection strengths, but there is noticeable disagreement with the diffusion result

beyond the weak-selection regime.

Now we consider the expansion of ψ(r) for the simple Wright-Fisher model. We know

from diffusion theory that ν = 2Nφ′(1) = 2(N − 1) [80]. Hence the expansion of ψ(r) has

the form

logψ(r) = 2(N − 1) log r +O((log r)3). (2.30)

Thus the power law and the steady state in Eq. 2.13 hold approximately with ν = 2(N−1).

As Appendix A.2 shows, the form of the exact fixation probability is too complex to be

useful for analytical calculations, such as computing c3 in Eq. 2.21 to determine the range of

selection strengths for which the power-law approximation is approximately valid. However,

we can numerically compute this next-order coefficient for a range of N using the method in

Appendix A.2 to obtain derivatives of fixation probabilities for Eq. 2.21. Figure 2.3 shows,
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Figure 2.3: Plot of ψ expansion coefficient. Plot of c3/6ν as a function of N for the
simple Wright-Fisher model, obtained numerically from φ(r) using the procedure described
in Appendix A.2. For realistic N values it rapidly converges to the constant ≈ −0.0093.
This small value means that the scaling-law approximation is valid for a large range of
selection strengths, and its N -independence means that this range does not shrink as N
grows, contrary to the prediction of diffusion theory.

remarkably, that the next-order correction is independent of N for large N . Indeed, as N

increases to realistic values the next-order coefficient rapidly converges to a small value of

c3

6ν
≈ −0.0093. (2.31)

Its smallness means that the scaling law is valid for a large range of selection strengths in

the simple Wright-Fisher model. Indeed, for deviations from the power law of at most 5%,

we set ε = 0.05 in Eq. 2.22 and find that the fitness ratio r is constrained to be between 0.098

and 10.2. This corresponds to a selection coefficient s between −0.9 and 9.2, well beyond the

typical weak-selection limits of ±O(N−1). A numerical calculation of ψ confirms this large

scaling region (Fig. 2.1B). Indeed, using the argument leading to Eq. 2.24, unfit genotypes

that might exhibit deviations from the scaling law will be suppressed by at least a factor of

r−ν0 , where (r−1
0 , r0) is the range of fitness ratios for which the scaling law approximately

holds. If we let r0 ≈ 10.2, even a very conservative N = 200 means that these unfit

genotypes are suppressed by more than 10−402 relative to the most fit genotype.

The N -independence of c3/6ν means that the size of the scaling region does not change

with N . The standard diffusion approach implies a degeneracy of N and s: Ns ∼ O(1),
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so that as N increases, the range of selection strengths that are considered weak shrinks.

This is not intrinsic to the Wright-Fisher model, but is merely an emergent property in the

diffusion limit [21]. Our result, however, shows that the scaling law is valid well beyond

diffusion. In contrast, c3/6ν calculated using Kimura’s diffusion approximation (Eq. 2.29)

is given by:

c3

6ν
= −1

6
N. (2.32)

Since this coefficient grows with N , the scaling region for r shrinks as N increases. This

is consistent with the selection-drift degeneracy predicted by diffusion, but it is clearly

misleading in light of our analysis of the full Wright-Fisher model, since it would erroneously

imply that the scaling law and reversibility hold for an extremely small range of selection

strengths. This provides an example of the danger posed by extrapolating diffusion results

to arbitrary regions of parameter space: the universality of the scaling law is much stronger

than diffusion could predict. While this turns out to be unimportant for steady state, which

is dominated by weak selection, the fact that reversibility approximately holds in systems

with strong selection affects dynamical properties as well.

2.2.3 Other models

Models that share the diffusion limit with the Moran and Wright-Fisher models will also

share the scaling law. This encompasses a wide class of exchangeable models [98, 99, 102].

For instance, many generalizations of the Wright-Fisher model with varying N are known to

have properties equivalent to the simple Wright-Fisher model with some effective population

size Ne [95, 97, 132]. Other generalizations, such as incorporating the effects of subdivided

populations, also lead to equivalencies [96, 100].

As an example we consider the case when N varies periodically. For periods of oscillation

smaller than fixation times, it is known that the Wright-Fisher diffusion results carry over
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with an effective population size Ne equal to the harmonic mean of the census population

sizes [95, 97]. Let the transition probabilities be of the Wright-Fisher form (Eq. 2.28), with

N changing over time according to

N(t) = N0 + α sin

(
2πt

T

)
, (2.33)

where N0 is the average size and T is the period of oscillation. The harmonic mean can be

shown to be Ne =
√
N2

0 − α2. In Fig. 2.1C, we use explicit simulations to compute ψ(r),

and we indeed find scaling behavior with ν = 2(Ne − 1). This slope, predicted through

mapping to the simple Wright-Fisher model, is also obtained by a linear fit to the explicit

simulation. Thus the scaling law still holds. For this model we do not have a numerical

technique for fixation probabilities like the one used for the simple Wright-Fisher model

(Appendix A.2), and explicit simulations prevent accurate statistics on fixation of very

deleterious and extinction of very beneficial mutations, limiting us to a smaller range of

selection strengths. Nevertheless, deviations beyond this smaller range can still be shown

to be negligible in steady state. As Fig. 2.1C shows, the scaling region extends to at least

r0 ≈ 1.08. Therefore any unfit genotypes leading to deviations must be suppressed by at

least a factor of r−ν0 : even for Ne = 200, this is a suppression of 10−14.

Other models beyond the paradigms of exchangeable and Wright-Fisher-type models

may also demonstrate the scaling behavior. For instance, whereas Wright-Fisher and Moran

models typically incorporate selective advantage as a difference in the mean number of

offspring between genotypes, Gillespie proposed to incorporate stochasticity at the level of

selection by allowing for different variances in offspring number [128, 133, 134]. In these

models fitness is characterized by µ− σ2/N , where µ is the mean and σ2 is the variance of

the offspring number for a given allele. Other authors have extended models of this type

to describe spatial variation, age structure, and demographic stochasticity, which may be

important for small populations or populations subdivided into small demes [113–115].
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Here, we simulate a model described by Gillespie [128]. Consider a haploid population of

two genotypes, A and B. Each generation, every individual i produces a number of offspring

1 + Xi, where Xi is a binomially-distributed random variable. This variable has mean µA

and variance σ2
A if i is of type A, or µB and σ2

B if i is of type B. Adding 1 to Xi simply

guarantees that there are at least N total offspring. These offspring are then culled by

sampling without replacement until there is a new generation of exactly N organisms. We

simulate this process to obtain the ψ function (Fig. 2.1D). Fitness ratios r are defined using

the fitness definition fi = µi − σ2
i /N . By repeating the simulation for several population

sizes, we observe that ν is proportional to N (for each N , ν is obtained by a linear fit, one

of which is shown in Fig. 2.1D).

2.3 Discussion

2.3.1 Universality

The notion of universality has been key to the success of population genetics. The remark-

able fact that many population models with varying degrees of complexity share the same

diffusion limit when selection is weak has proven to be a strong justification of their use

as effective phenomenological theories [21, 115]. However, in light of the growing body of

evidence that strong or at least intermediate selection may be important in some systems,

it is desirable to pursue models that make no a priori assumptions about the strength of

selection, and in particular, to find universal properties of such models. Our study shows

that strong-selection effects are negligible in the steady state of the substitution process,

so that the universality of the diffusion limit gives rise to a universal scaling law (Eq. 2.10)

which determines the steady-state distribution (Eq. 2.13). Furthermore, the scaling law

is proven to hold exactly for any reversible process (such as the Moran model) and holds

approximately within a sizable range of selection strengths even for irreversible models. In

some cases, such as the simple Wright-Fisher model, this range is so large that deviations

from it are not practically important. This finding significantly generalizes previous work
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of Refs. 71, 121, 127, among others.

2.3.2 Theoretical significance of time reversibility

The existence of reversibility in the weak-selection limit is not surprising in light of diffusion

theory. Indeed, diffusion models are essentially always reversible [20, 135, 136], and diffusion

is known to adequately capture weak-selection behavior [137]. The fact that reversibility is

broken by some models and not others when selection is strong is also clear. The Moran

process, for instance, is well-known to be exactly reversible in all regimes, as are all models

with tridiagonal transition matrices [20]. The Wright-Fisher model is not exactly reversible,

and indeed we see that reversibility becomes significantly broken beyond a certain selection

strength. In general, we find that the scaling behavior of the ψ function (Eq. 2.6) indicates

the extent to which a model is time reversible.

But besides being a technical convenience, what is the deeper significance of reversibility?

In modern studies of population genetics and evolution, reversibility plays a crucial role in

linking the prospective and retrospective paradigms [138]. Traditional population models

are prospective: the interest is in calculating future properties given the current ones.

However, more recent approaches, especially due to the emergence of large-scale molecular

data, have led to the wide use of the retrospective paradigm, which looks backward in time

from the present. This is the essence of coalescent theory and phylogenetics [122, 139]. Time

reversibility links the prospective and retrospective paradigms and thus has been exploited,

for instance, in studies of age properties [20, 135, 140] and in phylogenetic methods [122].

An additional consequence of reversibility is the nonexistence of net probability currents

in steady state, as guaranteed by Eq. 2.4. That is, reversible Markov models will have no

net probability currents through any cycle of states, since such a current would distinguish

between forward and backward directions in time. What does this mean for evolutionary

models? Consider, for instance, a monomorphic substitution model with three genotypes,

A, B, and C, in order of decreasing fitness. If the substitution process is irreversible, there
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would be a net current around the loop C → B → A → C. The net currents C → B and

B→ A flow from less fit to more fit alleles, but to complete the cycle, there is also a current

A→ C from a more fit allele to a less fit allele. This current must exist in any irreversible

substitution model with selection, a strange consequence of evolutionary irreversibility.

2.3.3 Applications

Models of monomorphic populations evolving through successive substitutions on a fit-

ness landscape have important applications to molecular data, since loci in many asexual

populations are believed to be well-approximated as monomorphic [116–119]. In partic-

ular, population genetics-based approaches allow for inference of biologically meaningful

parameters, such as selection coefficients, as opposed to merely inferring overall substi-

tution rates [120]. A precise form of the steady-state distribution is important in these

applications; for example, it can be used to weigh ancestral nodes in phylogenetic inference

calculations.

Several recent studies of codon usage bias have employed population genetics-based

models of substitution with selection (e.g., [120, 127, 141–145]). Results for the steady-

state distribution using the standard Wright-Fisher diffusion approximation (Eq. 2.29) for

individual codons have been reported that are consistent with Eq. 2.13 in the limit of weak

selection. However, there is growing experimental evidence that big-benefit single mutations

may occur more often than previously thought. Studies on bacteriophages adjusting to

new environmental conditions reported fitness ratios of nearly 4 [103–106], clearly beyond

the diffusion regime. Thus, it is necessary to understand the role of these mutations in

steady state and whether the steady-state distribution predicted from weak-selection must

be modified in such systems. Our theoretical framework has enabled us to show that

mutations with large fitness ratios are negligible in steady state.

Throughout this work we have assumed reversibility of the underlying mutation process.

Reversible models are much more suitable to analytic and computational treatment, and
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thus reversibility is a key feature of many widely-used nucleotide and amino acid mutation

models (e.g., [122, 146–150]). Moreover, Rodŕıguez et al. [151] have shown that it is not

even possible to make self-consistent estimates of substitution rates from pairwise sequence

alignments without assuming reversibility, although some work has been done to treat

this type of molecular data with irreversible models [152]. Nevertheless, mutation rates

are determined by complex biochemical factors (such as replication and error-correcting

machinery), so there is no obvious reason to believe that reversibility must hold.

Our approach can be used to describe arbitrary fitness landscapes for the locus un-

der consideration, including those with a fitness function that depends on the state of the

entire DNA or protein sequence at the locus. Standard models of sequence evolution typ-

ically assume that all nucleotides or amino acids evolve independently of each other [122].

This approximation excludes correlations among sites within a locus and the corresponding

epistatic effects, whose importance is being increasingly emphasized [31, 32, 38, 55].

One application of particular interest is the ability to infer an arbitrary fitness landscape

from sequence data under the assumption of steady state. Indeed, Eq. 2.13 can be inverted

to obtain the fitness function in terms of the neutral distribution and the steady-state

distribution under selection [71, 72]:

log

(
π(σ)

π0(σ)

)
= ν logF(σ)− logZ. (2.34)

Here the left-hand side depends only on genotype distributions that can, in principle, be

obtained from sequence data. Since the scaling effective population size ν and normalization

Z are unknown in real systems, Eq. 2.34 gives logarithmic fitness up to an overall scaling

and shift.

The application of Eq. 2.34 requires an ensemble of loci that have reached evolutionary

steady state. To assess this assumption, we estimate the time required to reach steady

state in our substitution model. As discussed in Sec. 1.4.1, the monomorphic limit requires
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u � (LN logN)−1 for neutral evolution [81, 82]. Assuming that deleterious substitutions

do not affect equilibration towards steady state (due to exponential suppression of their

substitution rates), equilibration times will be dominated by neutral evolution. Equation 1.5

then implies that the neutral substitution rate is equal to the mutation rate.

For sequences consisting of L nucleotides, we can model the locus genotype space as

the vertices of a hypercube in 2L dimensions, since two bits encode a single nucleotide. A

random walk on a hypercube of dimension d with standard connectivity reaches steady state

on the order of d log d steps [153]. However, since the nucleotide sequence space hypercube

is more connected, we may take 2L log(2L) as an upper bound on the required number of

steps. Combining this with the minimum average time to make a single neutral substitution

step, LN logN , we estimate that evolutionary steady state will be reached in the order of

(LN logN)× (2L log(2L)) generations. (2.35)

For small genomic loci (L = O(10) nucleotides) in microbial organisms with generation

times of approximately 10−4 years, an effective population size N ∼ 106 yields an estimated

time to reach steady state of about a million years, a reasonable value on evolutionary

timescales. Moreover, the presence of selection, the additional connectivity of genotype

space compared to a standard hypercube, and a smaller effective population size N will

further shorten this timescale.

Moreover, the genotype space may be projected onto a lower-dimensional subspace.

Previous work has described models of TF binding site evolution in S. cerevisiae in which the

distribution of binding sites has been projected onto free energies of TF-DNA binding [69–

72]. The steady state is expected to be reached more quickly in the one-dimensional energy

space than in the high-dimensional genotype space [72]. Mustonen et al. [72] also find

that energy distributions of binding sites for the same TF in different yeast species are

remarkably similar despite significantly different divergence times, suggesting that these
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distributions have indeed reached evolutionary steady state.

This previous work, however, has relied purely on the diffusion approximation of the

Wright-Fisher model. Such an approximation is not obviously valid in this application,

since strong-selection effects are expected from binding site biophysics: single base pair

mutations may be sufficient to completely inhibit TF binding [154, 155], potentially causing

misregulation of an essential gene. We have demonstrated in this work that strong selection

does not affect the steady state. The universality of the steady-state distribution then

justifies application of Eq. 2.34 to genomic data such as collections of TF binding sites. In

Chapter 3, we will apply these results to evolution of regulatory sites in yeast, exploring

the biophysical origins of the underlying fitness landscapes.
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Chapter 3

Fitness Landscapes of Transcription Factor Binding Sites

Here we apply the results of the preceding chapter to a specific biological system. This

chapter reproduces Ref. 9. As described in Chapter 1, most traditional studies of molecular

evolution rely on simplified models of fitness landscapes [24, 34, 41, 42] or reconstruct the

landscapes empirically based on limited experimental data [24, 31, 32, 36, 37]. However,

fitness landscapes are fundamentally shaped by complex interactions involving DNA, RNA,

proteins, and other molecular species present in the cell. Thus we should be able to cast these

landscapes in terms of biophysical properties such as binding affinities, molecular stabilites,

and degradation rates. The increasing availability of quantitative high-throughput data on

molecular interactions in the cell has led to growing efforts aimed at developing models of

evolution that explicitly incorporate the underlying biophysics [10, 11, 27, 55, 56, 58–60, 67–

72, 156]. These models combine evolutionary theory with physical models of molecular

systems, for example focusing on how protein folding stability or specificity of intermolec-

ular interactions shapes the ensemble of accessible evolutionary pathways and steady-state

distributions of biophysical phenotypes.

Evolution of gene regulation is particularly well-suited to this type of analysis. Gene

activation and repression are mediated by binding of transcription factor proteins (TFs)

to their cognate genomic sites. These binding sites are short nucleotide sequences, typ-

ically 5–25 bp in length, in gene promoters that interact specifically with DNA-binding

domains on the TFs [157]. In eukaryotes, a given TF can have numerous binding sites in

the genome, and many genes are regulated by several TFs [157, 158]. Understanding TF-

mediated regulation is key to understanding complex regulatory networks within eukaryotic
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cells — one of the main challenges facing molecular biology. Moreover, the availability of

high-throughput datasets on the genomic locations of TF binding sites [159–162] and on

TF-DNA energetics [163–166] make it possible to develop biophysical models of evolution

of gene regulation.

In this chapter we consider evolution of TF binding sites in the yeast Saccharomyces

cerevisiae [9]. We study how energetics of protein-DNA interactions affect the structure of

the binding site fitness landscape. In a significant extension of previous work which analyzed

a single yeast TF [72], we consider a collection of 25 S. cerevisiae TFs for which models of

TF binding energetics were built using high-throughput in vitro measurements of TF-DNA

interactions [166]. We focus on 12 TFs for which sufficient data on genomic sites [162]

are also available. We use the model of monomorphic populations undergoing consecutive

substitutions defined in Chapters 1 and 2 to infer fitness landscapes, as a function of TF

binding energy, from observed distributions of TF binding sites in the yeast genome [72].

In contrast to the previous work [72], we rationalize these fitness landscapes in terms of a

simple parametric model based on thermodynamics of TF-DNA binding, obtaining explicit

values of effective evolutionary parameters. Our analysis sheds light on the genome-wide

importance of TF-DNA interactions in regulatory site evolution.

Moreover, we investigate the hypothesis that universal biophysical constraints, rather

than site-specific selective pressures, dominate evolution of regulatory sites. We test the

relationship between TF binding energies and various biological properties, such as the

essentiality of the corresponding gene [167]. We find no clear relationship between physi-

cal and biological properties of TF sites, which indicates that evolution of site energetics

is largely insensitive to site-specific biological functions and is therefore driven by global

biophysical constraints.
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3.1 Biophysical model of TF binding site evolution

3.1.1 Energetics of TF-DNA binding

The probability of a binding site to be bound by a TF is given by the Fermi-Dirac function

of the free energy E of TF-DNA interaction [168]:

pbound(E) =
1

1 + eβphys(E−µphys)
, (3.1)

where βphys is the physical inverse temperature (≈ 1.69 (kcal/mol)−1 at room temperature),

and µphys is the physical chemical potential, a function of the TF concentration. The binding

energy E = E(σ) of a site is a function of its nucleotide sequence, σ = (σ1, . . . , σL), where

L is the length of the site and σi ∈ {A,C,G,T}. Note that pbound(E) ≈ e−βphys(E−µphys)

if E � µphys, resulting in a Boltzmann-like exponential distribution. In the mean-field

approximation, each nucleotide makes an additive contribution to the total energy of the

site [163]. These contributions are parameterized by an energy matrix, whose entries εσii

give the contribution to the total energy from the nucleotide σi at position i:

E(σ) =
L∑

i=1

εσii . (3.2)

Energy matrices can be readily generalized to more complex models of sequence-dependent

energetics, such as those with contributions from dinucleotides, although here for simplicity

we focus on the additive model.

3.1.2 Biophysical model of binding site evolution

We will suppose a binding site evolves according to the monomorphic substitution model

of Chapters 1 and 2, defined by Eqs. 1.5 and 1.6 with steady state given by Eq. 2.13. Since

we are primarily interested in the biophysical aspects of binding site evolution, it is more

convenient to consider evolution in the phenotype space of binding energies by projecting
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Eq. 2.13 via the genotype-phenotype map of Eq. 3.2:

π(E) =
1

Z
π0(E)F(E)ν . (3.3)

Here the binding site fitness F(E) depends only on the binding energy E. As a general

ansatz, we will assume that the fitness depends on the binding energy through the physical

binding probability pbound: F(E) = F(pbound(E)). Further, we assume that an organism

with an always-bound site (pbound = 1, E → −∞) has fitness 1, while an organism with

a site that never binds (pbound = 0, E → +∞) has fitness f0 < 1. Since real sites are

somewhere in between these extremes, a simple hypothesis for the fitness function is an

average of these two fitness values weighted by the thermodynamic probabilities of the site

being bound or unbound:

F(E) = pbound(E) + f0(1− pbound(E)) =
1 + f0e

βphys(E−µphys)

1 + eβphys(E−µphys)
. (3.4)

Equation 3.4 assumes that the fitness function depends linearly on the TF binding proba-

bility pbound, which equals the site’s average occupancy. However, this linear dependence

may be too restrictive. For example, it does not account for the scenario in which a cell

only requires pbound to be above some minimum threshold pmin, such that the fitness equals

1 when pbound > pmin and zero otherwise. To include a wider range of fitness functions, we

extend our model in Eq. 3.4 by treating β and µ as effective fitting parameters (βeff and

µeff) that may deviate from their physical counterparts:

F(E) =
1 + f0e

βeff(E−µeff)

1 + eβeff(E−µeff)
. (3.5)

When βeff = βphys and µeff = µphys, Eq. 3.5 is equivalent to Eq. 3.4 and fitness is linearly

proportional to pbound, but deviations between these effective and physical parameters in-

troduce nonlinear dependence of fitness on pbound. For example, the case in which pbound
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must only exceed a minimum threshold pmin is equivalent to Eq. 3.5 with f0 = 0, βeff →∞,

and µeff = µphys + β−1
phys log((1− pmin)/pmin). For the remainder of the paper, we will focus

on the effective fitness function of Eq. 3.5, which we will use to infer the effective parameters

from data. For simplicity we will drop the explicit “eff” labels on β and µ.

An important feature of Eq. 2.13 is that we may invert it to obtain the fitness function

in terms of the observed steady-state distributions π(σ) and π0(σ), or π(E) and π0(E) in

energy space [71]:

log

(
π(σ)

π0(σ)

)
= ν logF(σ)− logZ =⇒ log

(
π(E)

π0(E)

)
= ν logF(E)− logZ. (3.6)

Thus, given a distribution of evolved binding site sequences π and a neutral distribution π0,

we can use Eq. 3.6 to infer the logarithm of the fitness landscape up to an overall scale and

shift. This can be done without any a priori knowledge of the shape of the fitness function.

Moreover, given a specific functional form of F(E), such as the effective Fermi-Dirac fitness

in Eq. 3.5, we can perform a maximum likelihood fit of the observed sequence distribution

to infer values of parameters β, µ, ν, and f0. The resulting fitted function can be evaluated

by comparison to the general inference in Eq. 3.6.

When 1−f0 � 1, F(E)ν contains an approximate degeneracy in terms of ν(1−f0) ≡ γ,

i.e., all fitness functions with constant γ are approximately equivalent. Indeed, the steady-

state distribution in Eq. 3.3 depends on the quantity F(E)ν , which can be written as:

F(E)ν =
(

1− γ

ν
(1 + e−β(E−µ))−1

)ν
≈ e−γ(1+e−β(E−µ))−1

(3.7)

if γ(1 + e−β(E−µ))−1 � ν or, since 0 ≤ (1 + e−β(E−µ))−1 ≤ 1, if 1 − f0 � 1. Therefore in

this limit, the steady-state distribution π(σ) depends only on the parameter γ and not on

f0 and ν separately.
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This degeneracy in the steady-state distribution is not surprising in light of the under-

lying population genetics, which also provides an interpretation of γ. The quantity 1 − f0

is the selection coefficient s between the two phenotypes of the system, e.g., the bound and

unbound states of the TF binding site. As discussed above, the quantity ν is an effective

population size, which sets the strength 1/ν of genetic drift. When s � 1 and ν � 1,

steady-state properties of the population (e.g., allele frequency distribution, fixation prob-

ability) are described by the diffusion limit and mathematically depend only on Ns, or in

our model, on ν(1 − f0) = γ [20, 21], which quantifies the strength of selection relative to

the strength of drift. When γ > 1, selection is strong relative to drift, while γ < 1 indicates

that selection is relatively weak. Note that only the absolute magnitude of the selection

coefficient s = 1 − f0 is required to be small for this degeneracy to hold; the selection

strength relative to drift, quantified by γ, may still be large.

Two regions of parameter space also exhibit a degeneracy between µ and γ. If µ � E

for all site energies E, all of the observed sites are predicted to be highly occupied and

pbound(E) ≈ 1− eβ(E−µ). We may thus approximate

F(E)ν ≈
(

1− (1− f0)eβ(E−µ)
)ν

≈ 1− ν(1− f0)eβ(E−µ) = 1− (γe−βµ)eβE ,

(3.8)

and thus all fitness functions with constant A1 = γe−βµ are approximately equivalent. One

can thus make µ arbitrarily large (while holding A1 fixed by varying γ) without breaking

the degeneracy. If µ is decreased the degeneracy will eventually break as µ� E is violated.

A similar degeneracy appears when µ � E, as then pbound(E) ≈ e−β(E−µ); if additionally

f0 ≈ 1, then
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F(E)ν ≈
(
f0 + (1− f0)(e−β(E−µ))

)ν

≈ 1− ν(1− f0)e−β(E−µ) = 1− (γeβµ)e−βE .

(3.9)

(We can remove an overall factor of fν0 because the distribution π(E) in Eq. 3.3 is invariant

under an overall rescaling of fitness.) Therefore all fitness functions with A2 = γeβµ are

approximately equivalent in this case. Here, µ can be made arbitrarily negative without

breaking the degeneracy.

Thus, parameter fits fall into three cases for different TFs: If µ� E, TF-DNA binding

energies fit to the right (exponential) end of the Fermi-Dirac function, and we cannot infer

a unique µ. Similarly, if µ� E, TF-DNA binding energies fit to the left (high occupancy)

side of the Fermi-Dirac function, and we again cannot infer µ precisely. However, if µ ≈ E,

neither degeneracy holds and a unique µ can be inferred. Despite the fact that µ cannot

always be predicted, we can unambiguously classify each fit into one of these three cases.

3.1.3 Selection strength and its dependence on biophysical parameters

We now consider how changes to biophysical parameters of the model affect the strength

of selection on binding sites. The selection coefficient for a mutation with small change in

energy ∆E is

s(E) =
F(E + ∆E)

F(E)
− 1 ≈ d logF

dE
∆E. (3.10)

Therefore we can characterize local variations in the strength of selection by considering

s̃(E) = |d logF/dE|, the per-unit-energy local selection coefficient. For the Fermi-Dirac

landscape, we obtain

s̃(E) =

∣∣∣∣
d

dE
logF(E)

∣∣∣∣ =
β(1− f0)z

(1 + z)(1 + f0z)
, where z = eβ(E−µ). (3.11)
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We use the absolute value here since the sign of the selection coefficient is always unam-

biguous, as the Fermi-Dirac function decreases monotonically with energy.

We can also ask how variations in β affect the local strength of selection. Variation of

s̃(E) with β depends qualitatively on both E − µ and whether f0 is zero or nonzero. In

Fig. 3.1 we show logF(E), s̃(E), and the derivative

∂s̃

∂β
=

z(1− f0)

(1 + z)2(1 + f0z)2
[(1− f0z

2) log z + (1 + z)(1 + f0z)]. (3.12)

For f0 = 0 (Fig. 3.1A–C), increasing β increases selection strength for E − µ ≥ 0. Here

the fitness function drops to zero exponentially, and increasing β steepens the exponential

drop. However, for E − µ < 0, the effect of changing β depends on the value of β relative

to E − µ. For large β, increasing β actually decreases selection strength; this is because β

sets the rate at which the Fermi-Dirac function converges to unity, and hence increasing β

flattens the landscape in that region. However, for sufficiently small β, the threshold region

is large enough that increasing β still increases selection. The boundary between positive

and negative values of ∂s̃/∂β are the solutions of the equation ∂s̃/∂β = 0: β(E − µ) =

logW (e−1) ≈ −1.278, where W is the Lambert W-function (Fig. 3.1C).

This situation changes qualitatively in the regime E − µ > 0 when f0 6= 0 (Fig. 3.1D-

F). In this case, for sufficiently large β, increasing β weakens selection. This is different

in the case of nonzero f0 because on the high-energy tail, the fitness is converging to

a nonzero number f0, and thus selection becomes asymptotically neutral. Hence, when

f0 6= 0, increasing β only strengthens selection very close to E − µ = 0. Using Eq. 3.12,

the boundaries in Fig. 3.1F are given by the solutions of (f0z
2− 1) log z = (1 + z)(1 + f0z).

This equation can be solved numerically to obtain two solutions, z∗1 < 1 and z∗2 > 1. The

boundaries in Fig. 3.1F are thus given by the curves β(E − µ) = log z∗1 for E − µ < 0 and

β(E − µ) = log z∗2 for E − µ > 0.
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Figure 3.1: Fitness and selection strength as functions of energy E−µ and inverse
temperature β. Energy is measured with respect to the chemical potential µ. Top row
uses f0 = 0; bottom row uses f0 = 0.99. (A,D) Logarithm of Fermi-Dirac fitness versus
energy for several values of β; note that the high-energy tail looks distinctly different when
f0 is nonzero. (B,E) Per-unit-energy selection strength s̃ versus energy for several values of
β; note that the relative ordering of selection strength curves depends on the value of E−µ.
(C,F) Sign of derivative of selection strength with respect to β, as a function of E − µ and
β. Black boundary in (C) is the curve β(E − µ) = logW (e−1) ≈ −1.278, where W is the
Lambert W-function; the boundaries in (F) are the curves β(E −µ) = log z∗1 ≈ −1.541 and
β(E − µ) = log z∗2 ≈ 1.545, where z∗1 , z∗2 are the solutions to ∂s̃/∂β = 0 (Eq. 3.12) with
f0 = 0.99.
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3.2 Assessment of model assumptions

Two main assumptions inherent in our evolutionary model are monomorphism and steady

state. Here, we assess how violating these assumptions affects inference of evolutionary

parameters β, µ, ν, and f0. To test this, we generate simulated data sets of binding

site sequences evolving under a haploid asexual Wright-Fisher model with the Fermi-Dirac

fitness function (Eq. 3.5; see Appendices B.1 and B.2 for details).

3.2.1 Deviations from the monomorphic limit

To test the effects of polymorphism on the accuracy of our predictions, we perform a set

of simulations for a range of mutation rates u. Each simulation in the set follows the

Wright-Fisher process to the steady state. We construct the observed distribution πobs by

randomly choosing a single sequence from the final population of each simulation, which may

not be monomorphic for larger u (Fig. 3.2A). From πobs, we carry out maximum-likelihood

inference of the fitness landscape as a function of energy using Eq. 3.3 (Fig. 3.2B), as

described in Appendix B.1.

Additionally, for each u we record the average number of unique sequences present in

the population in steady state, and compute the total variation distance (TVD; Eq. B.2

in Appendix B.2) between πobs(E) and the monomorphic prediction π(E) using Eq. 3.3

(Fig. 3.2C). The TVD ranges from zero for identical distributions to unity for completely

non-overlapping distributions. As expected, at low mutation rates the steady-state distri-

bution and the fitness function match monomorphic predictions well. At higher mutation

rates, the TVD starts to increase and Eq. 2.13 overestimates the fitness of low-affinity sites.

The population becomes polymorphic in this limit. With very high mutation rates, πobs

approaches the neutral distribution π0 since the population is largely composed of newly

generated mutants which have not experienced selection. A condition for monomorphism

in a neutrally evolving population is u � (LN logN)−1 (Sec. 1.4.1). Using N = 1000 and

L = 10 as in our simulations yields u � 1.4 × 10−5 in the monomorphic limit, consistent
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Figure 3.2: The monomorphic limit and steady state of a Wright-Fisher model of
population genetics. In (A)–(C) we show results from simulations at various mutation
rates, using a fitness function with f0 = 0.99, β = 1.69 (kcal/mol)−1, and µ = −2 kcal/mol.
Each mutation rate data point is an average over 105 independent runs, as described in
Appendix B.1. Colors from green to orange correspond to increasing mutation rates. (A)
Observed steady-state distributions πobs(E) for various mutation rates. The steady state
π(E) predicted using Eq. 2.13 is shown in gray. (B) Fitness functions F(E) predicted using
observed distributions πobs(E) in Eq. 3.6. The exact fitness function is shown in gray.
Inferred fitness functions are matched to the exact one by using the known population size
N , and setting the maximum fitness to 1.0 for each curve. (C) For each mutation rate, the
total variation distance (TVD) ∆ between πobs(E) and π(E), and the average number of
unique sequences in the population Nunique (the degree of polymorphism) are shown. The
predicted bound (NL logN)−1 on mutation rate required for monomorphism is shown as a
dashed line. In (D)–(F) we show simulations in the monomorphic regime which have not
reached equilibrium, with the same parameters as in (A)–(C) and u = 10−6. Colors from
blue to red correspond to the increasing number of generations. In (F), TVD ∆ is calculated
in energy space as described in Appendix B.2.
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Figure 3.3: Fitted parameters of the Fermi-Dirac function from Wright-Fisher
simulations. In (A)–(C) the fitted values of µ, β and γ = ν(1 − f0) are shown as func-
tions of mutation rate u. For each mutation rate, we generate 200 random samples of 500
sequences from the 105 sequences generated in simulations used in Fig. 3.2A–C. We fit the
parameters of the fitness function on each sample separately by maximum likelihood (see
Appendix B.1). Shown are the averages (points) and standard deviations (error bars) over
200 samples at each mutation rate. The exact values used in the simulation are represented
by horizontal green lines. The predicted bound (LN logN)−1 on mutation rates required
for monomorphism is shown as a vertical dashed line. In (D)–(F) the fitted values of µ,
β, and γ are shown as functions of the number of generations t, for the non-steady state
simulations used in Fig. 3.2D–F. The sampling procedure, the maximum likelihood fit, and
the representation of parameter predictions are the same as in (A)–(C).

with the results in Fig. 3.2C.

We also infer parameters β, µ and γ with a maximum likelihood fit. As expected, all

parameters converge to the exact values in the monomorphic limit (Fig. 3.3A–C). When the

population is not truly monomorphic, µ and β tend to be underestimated on average, with

larger variation in inferred values (larger error bars in Fig. 3.3A,B). For γ, polymorphism

has no clear bias on the average inferred value, although it also appears to increase the

variation.

3.2.2 Deviations from evolutionary steady state

We perform another set of simulations to test the accuracy of our predictions in a population

that has not yet reached steady state. We use the same fitness landscape and population

size, but fix u to 10−6, within the monomorphic limit. At each point in time (measured as
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the number of generations), we construct πobs as described in Appendix B.2 (Fig. 3.2D),

and infer the fitness function (Fig. 3.2E). We also compute the TVD between the observed

distribution πobs and the steady-state prediction (Fig. 3.2F). With time, πobs converges to

the steady state (Eq. 2.13) and the TVD decays to zero, enabling accurate reconstruction of

the fitness function in the region E−µ ≈ 0 (although it still diverges from the exact function

in the high-energy tail, where few sequences are available at steady state). The equilibration

time is expected to be proportional to u−1, or 106 generations; indeed, Fig. 3.2F places the

equilibration timescale at about 4×106 generations. As the population equilibrates, accurate

inference of the fitness function parameters becomes possible (Fig. 3.3D–F). We see that

parameters inferred from a population out of steady state tend to underestimate µ and γ,

and overestimate β.

3.3 Transcription factor binding sites in yeast

We now turn to considering the evolution of TF binding sites in S. cerevisiae. How well

does S. cerevisiae satisfy the assumptions of our evolutionary model? S. cerevisiae is not

a purely haploid organism but rather goes through both haploid and diploid stages. In S.

paradoxus, most of the reproduction is haploid and asexual with 1000 generations spent in

the haploid stage for each generation in the diploid stage, and heterozygosity is low [169].

Based on the analysis of yeast genomes, wild yeast populations show extremely limited

outcrossing and recombination and are geographically distinct [170]. Thus, S. cerevisiae

may be regarded as haploid to a reasonable approximation, with recombination during the

diploid stages unlinking TF binding sites. This is consistent with our model, which assumes

a haploid population and independent evolution of binding sites.

We next consider whether natural populations of S. cerevisiae are within the mutation

rate limits required for monomorphism. The mutation rate for S. cerevisiae has been

estimated to be 0.22× 10−9 mutations per bp per cell division [169]. Assuming binding site

loci of length L = 10, this sets a bound on the effective population size N of 2.7 × 107,
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below which the population will be monomorphic. This is roughly equal to the estimated

effective population size of S. cerevisiae of ≈ 107 individuals [169], based on the analysis

of neutral regions in the yeast genome. Thus it is plausible that S. cerevisiae population

sizes are below or near the limit for monomorphism, justifying the use of our model result

in Eq. 2.13. Furthermore, in S. cerevisiae and S. paradoxus the proportion of polymorphic

sites in a population has been found to be about 0.001 [169, 171, 172], generally with no

more than two alleles segregating at any one site [169]. According to this estimate, we

expect about 1% of binding sites of length 10 bp to be polymorphic, corresponding to an

average polymorphism of 1.01 in Fig. 3.2C.

For S. cerevisiae, the equilibration time estimate is u−1 ≈ 5× 109 generations, or about

2 × 106 years for an estimated 8 generations per day [173]. This is several times less

than the 5–10 million years of divergence time for the most recent speciation event with

S. paradoxus [174]. Thus steady state may plausibly be reached for a fast-reproducing

organism like S. cerevisiae over evolutionary times scales.

3.3.1 Site-specific selection

We obtain curated binding site locations in S. cerevisiae from Ref. 162, and energy matrices

(EMs) from Ref. 166, as described in Appendix B.3. Besides the assumptions of monomor-

phism and steady state, we also require a set of binding sites evolving under universal

selection constraints if we are to infer the fitness landscape using Eq. 3.3. A collection of

sites binding to the same TF is an obvious candidate, since these sites all experience the

same physical interactions with the TF. However, it is possible that selection is site-specific:

rather than evolving on the same fitness landscape, different sites for the same TF may be

under different selection pressures depending on which genes they regulate, their position on

the chromosome, etc. For example, genes under strong selection might require very reliable

regulation, so that their upstream binding sites are selected for tight binding to TFs. In less

essential genes, the requirement of high-affinity binding might be relaxed. Before directly
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applying the evolutionary model, we investigate several of these site-specific scenarios to

determine if any are supported by the data. We perform several direct tests of site-specific

selection by searching for correlations between site TF-binding energies and other properties

of the site or the gene it regulates.

We classify fitness effects of genes using knockout lethality, which is available in the

Yeast Deletion Database [167, 175]. This database classifies genes as either essential or

nonessential based on the effects of gene knockout, and provides growth rates for nonessen-

tial gene knockouts under a variety of experimental conditions. We divide binding sites

of each TF in our data set into two groups: those regulating essential genes and those

regulating nonessential genes.

In Fig. 3.4A we compare mean binding energies of sites regulating essential genes with

those regulating nonessential genes for each TF. Using a null model as described in Ap-

pendix B.4, we find no significant difference (at p = 0.05 level) between the two groups of

sites for any TF except RPN4, for which p = 0.048 and the difference in mean energies is

0.33 kcal/mol. The mean p-value of the null model over all TFs is 0.47. In Fig. 3.4B we

compare the variance of the energy of the sites regulating essential and nonessential genes;

sites regulating essential genes may be selected for more specific values of binding energy

if precise regulation is required. We find no overall trend: for some TFs sites regulating

essential genes have more energy variation than those regulating nonessential genes, but for

other TFs the situation is reversed.

For the sites regulating nonessential genes, we also correlate the site binding energy

with the growth rate of a strain in which the regulated gene was knocked out (Appendix

Table B.1, column B). The Spearman rank correlation between each site’s binding energy

and the regulated gene’s effect on growth rate produces a mean p-value of 0.56. We find no

significant correlation for any TF at p = 0.05 level except MSN2, with p = 0.046.

It is also possible that regulation of highly-expressed genes may be more tightly con-

trolled. Indeed, gene expression level is weakly, though significantly, correlated with gene
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essentiality [176]. We compare the binding energy of sites to the overall expression level of

their regulated genes measured in mid-logphase yeast cells cultured in YPD [176] (Appendix

Table B.1, column C), and again find no correlation using the Spearman rank correlation

except for DAL80 (p = 0.029), with mean p-value of 0.53.

Another measure of the selection pressures on genes is their rate of evolution as measured

by KA/KS , the ratio of nonsynonymous to synonymous mutations in a given gene between

species. According to the neutral theory of evolution, genes which evolve slowly must

be under higher selective pressure, and therefore the sites regulating them might likewise

experience stronger selective pressures. As described in Appendix B.4, we measure the

KA/KS ratio between S. cerevisiae and S. paradoxus protein coding sequences, and compare

it to the binding energy of the sites regulating those genes (Appendix Table B.1, column

D). We find very weak Spearman rank correlations for ATF2, RPN4, GAT1 and CAD1, all

roughly with p = 0.02. We find no other significant correlation at the p = 0.05 level, with

a mean p-value of 0.4.

Similarly, one might expect sites regulating essential genes to be more conserved. How-

ever, we find that the average Hamming distance between corresponding binding sites in

S. cerevisiae and S. paradoxus [162] is no different for sites regulating essential genes than for

those regulating nonessential genes, as shown in Fig. 3.4C. Using the null model described

in Appendix B.4, most TFs are above p = 0.05 with the exceptions of YAP7 (p = 0.04)

and PDR3 (p = 0.009), with an average p-value of 0.31. Similarly, there is no significant

difference in the binding energies of these orthologous sites as determined from the EMs,

as shown in Fig. 3.4D, except for PDR3 (p = 0.01), with mean p-value of 0.42.

We can also consider how the essentiality of the TFs themselves affects the sequences

of their binding sites; for example, essential TFs may constrain their binding sites to a

more conserved sequence motif. We divide 125 TFs from Ref. 162 which had 10 or more

sequences and for which essentiality information was available into 16 essential and 109

nonessential TFs using the Yeast Deletion Database [167, 175], and calculate the sequence
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entropy of binding sites for each TF. The distribution of sequence entropies in Fig. 3.4E

shows no significant difference between essential and nonessential TFs (p = 0.9 for the null

model).

Finally, it is possible that sites experience different selection pressures depending on

their distance to the transcription start site (TSS). Again, we find no significant correlations

between binding energy and distance to the TSS: Spearman rank correlation yields mean

p-value of 0.55 and all p-values above 0.05 (Appendix Table B.1, column E). Overall, we

find no systematic evidence that site-specific properties of binding sites determine their

binding energies. These findings are in broad agreement with a previous report [72], which

suggested that site-specific selection can be ruled out because of the significant variation

in binding affinity between orthologous sites of different species, which was found to be

consistent with the variance predicted by a model including only drift and site-independent

selection.

3.3.2 Inference of biophysical fitness landscapes

The above analysis indicates that the evolution of binding site energies does not depend

significantly on site-specific effects, suggesting that more universal principles govern the

observed distribution of sites binding a given TF. Thus, we can fit a single fitness function

to a collection of TF-bound sites via Eqs. 2.13 and 3.6. Of the 25 TFs considered in the

previous section, here we focus on 12 TFs with > 12 unique binding site sequences.

First we derive the neutral distribution π0(E) of site energies based on mono- and

dinucleotide frequencies obtained from intergenic regions of the S. cerevisiae genome, as

described in Appendix B.5. It has been suggested that L-mers not functioning as regu-

latory sites (e.g., located outside promoters) may be under evolutionary pressure not to

bind TFs [177]; however, consistent with previous reports [72, 178], we find that sequences

sampled from the intergenic regions of the genome are close to the neutral distribution ex-

pected from mono- and dinucleotide frequencies, except for the expected enrichment at low
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energies due to functional binding sites. This distribution is shown in Fig. 3.5A for REB1

and in Appendix Table B.2, column B for all other TFs.

Assuming the observed set of binding site energies for a TF adequately samples the

distribution π(E), we can use our estimate of the neutral distribution π0(E) in Eq. 3.6 to

reconstruct the fitness landscapes as a function of TF binding energy up to an overall scale

and shift (Fig. 3.6). Although the fitness functions may be noisy due to imperfect sampling

of π(E), they nevertheless provide important qualitative insights. In particular, in all cases

fitness decreases monotonically as binding energy increases, indicating that stronger-binding

sites are more fit. That is, we observe no fitness penalty for binding too strongly, at least

within the range of energies spanned by π(E).

Fitted Fermi-Dirac landscapes. For each TF we perform a maximum-likelihood fit

of the binding site data to the distribution in Eq. 2.13 with the Fermi-Dirac landscape of

Eq. 3.5 (Fig. 3.5 for the REB1 example, Table 3.1 and Appendix Table B.2 for all other TFs;

see Appendix B.1 for details). The model of Eq. 3.5 has four fitting parameters: β, µ, ν,

and f0. However, as shown in Sec. 3.1.2, in the 1−f0 � 1 limit the fitness function depends

on γ = ν(1−f0) rather than f0 and ν separately. Thus we also carry out constrained “non-

lethal” Fermi-Dirac fits in which f0 is fixed at 0.99. Note that due to the γ-µ degeneracy, in

some cases µ effectively fits to the limiting cases µ→∞ or µ→ −∞ rather than a specific

value. Because we only fit in the range −20 < µ < 0 (see Appendix B.1), a value of µ ≈ −20

shows that the fit is subject to the µ� E degeneracy, while µ ≈ 0 shows that it is subject

to the µ � E degeneracy. As mentioned above, the input to each fit is a collection of

genomic TF binding sites {σ} [162] and the EM predicted on the basis of high-throughput

in vitro TF-DNA binding assays [166]. The EM allows us to assign a binding energy E(σ)

to each site.

A summary of maximum-likelihood parameter values for all TFs is shown in Table 3.1

and Appendix Table B.2, column D. The variation of log-likelihood with fitting parameters

is shown in Appendix Table B.2, columns G and H. Since for many TFs relatively few
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Figure 3.5: Parametric inference of REB1 fitness landscape. (A) Histogram of ener-
gies of intergenic sites calculated using the REB1 energy matrix (dashed line). The neutral
distribution of sequence energies expected from the mono- and dinucleotide background
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REB1 genomic sites. (C) Histogram of binding site energies and its prediction based on
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distribution.
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TF f0 γ = ν(1− f0) β (in (kcal/mol)−1) E − µ
REB1 0.999 18.2 0.794 ≈ 0
ROX1 0.993 335 0.398 > 0

MET32 0.973 133 0.251 > 0
RPN4 1.01× 10−4 1.58 2.0 ≈ 0

MET31 4.54× 10−5 1.58 1.58 ≈ 0
PDR3 0.988 242 0.251 > 0
YAP7 4.54× 10−5 1.58 1.0 ≈ 0
BAS1 4.54× 10−5 2.51 0.501 ≈ 0
STB5 0.401 150 0.316 < 0
AFT1 4.54× 10−5 3.98 5.01 ≈ 0
CUP9 0.978 219 0.316 > 0
MCM1 0.998 83.1 0.251 > 0

Table 3.1: Summary of unconstrained Fermi-Dirac landscape fits to TF binding
site data. Columns show maximum-likelihood value of f0, γ = ν(1− f0), and β. The last
column shows whether most binding site energies E are lower than the inferred chemical
potential µ, near it, or above it (see Appendix Table B.2 for details).

binding sites are available, in Appendix Table B.3 we evaluate the goodness of fit using

randomly chosen subsets of binding sites and Hessian analysis. Six of the TFs (REB1,

ROX1, MET32, PDR3, CUP9, and MCM1) are in the 1− f0 � 1 regime where only γ can

be inferred unambiguously. Indeed, non-lethal Fermi-Dirac fits with f0 = 0.99 yield very

similar values of log-likelihood and γ (Appendix Table B.2, column D). In all of these cases,

γ is considerably greater than 1, implying that selection is strong compared to drift, and

the effective population size is large (the s� 1, Ns� 1 regime in population genetics).

Five TFs (RPN4, MET31, YAP7, BAS1, and AFT1) have very small values of f0 (Ta-

ble 3.1), indicating that on average, removing their binding sites is strongly deleterious to

the cell. In these cases, the global maximum occurs in the vicinity of f0 = 0, away from

the degenerate region of parameter space (Appendix Table B.2, column H, insets). Note

however that the likelihood surface is always degenerate in the region of parameter space

with 1 − f0 � 1 and γ = constant; this is true even when the global maximum likelihood

does not occur in that region, as observed for these five TFs. Since 1 − f0 ≈ 1, ν ≈ γ,

which is a small value in four out of five cases (Table 3.1). Given the strength of selection,
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small effective population sizes (which indicate that genetic drift is strong) are necessary to

reproduce the observed variation in binding site sequences. Finally, sites for STB5 have an

intermediate value of f0 = 0.401, which means they are under strong selection but are not

necessarily essential.

The fits to the Fermi-Dirac fitness landscapes also provide estimates of the effective

inverse temperature β (Table 3.1). The inferred values of β can be compared to the physical

value at room temperature, βphys = 1.69 (kcal/mol)−1. Ten of the TFs (REB1, ROX1,

MET32, MET31, PDR3, YAP7, BAS1, STB5, CUP9, MCM1) have β’s lower than the

physical value, while in the other two (RPN4, AFT1) β > βphys. In most TFs the fitted

inverse temperature β is far from its physical counterpart, although in several cases the

likelihood function is fairly flat in the vicinity of the peak, indicating that a wider range of

β values is admissible (Appendix Table B.2, column G).

The inferred value of µ relative to the distribution of energies E of the binding sites

tells us in which qualitative regime of the Fermi-Dirac fitness landscape the sites lie. For

five TFs (ROX1, MET32, PDR3, CUP9, MCM1), E − µ > 0, and the sites reside on the

exponential tail of the landscape and are subject to the µ� E degeneracy. For all of these

TFs 1 − f0 � 1, as required by the degeneracy. For a group of six TFs (REB1, RPN4,

MET31, YAP7, BAS1, AFT1), E − µ ≈ 0, so that the sites lie on the bound-unbound

threshold. In this regime, changing the energy of the site through mutations may lead to

a large change in fitness. Finally, E − µ < 0 for STB5, and the sites lie on the high-fitness

plateau and are subject to the µ� E degeneracy. The degeneracies in µ are also illustrated

in Appendix Table B.2, column G.

What does β 6= βphys say about the nature and strength of selection? We address

this question using the local selection coefficient, s̃(E) = |d logF/dE| (Eq. 3.11). The

magnitude of the selection coefficient depends qualitatively on both E − µ and whether f0

is zero or nonzero (Fig. 3.1). For five of the TFs (ROX1, MET32, PDR3, CUP9, MCM1),

f0 6= 0, β < βphys, and E − µ > 0. Thus these TFs are in a regime where decreasing
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β strengthens selection (Fig. 3.1F). In other words, selection is stronger for these binding

sites than expected from purely biophysical considerations. For RPN4 and AFT1, f0 ≈ 0,

β > βphys, and E ≈ µ. Hence ∂s̃/∂β > 0, and selection is again stronger than expected.

STB5 exhibits β < βphys and lies on the high fitness plateau (E−µ < 0), and thus selection

is also stronger than expected. In contrast, REB1, MET31, YAP7, and BAS1 exhibit

β < βphys and lie on the threshold E − µ ≈ 0, and hence selection is weaker than expected

in these three cases.

Fitness landscape model selection. Since the constrained Fermi-Dirac fits have

one fewer adjustable parameter than the unconstrained fits, it is more consistent to do

model selection on the basis of the Akaike information criterion (adjusted for finite-size

samples) [179] rather than log-likelihoods:

AIC = 2(h− logL) +
2h(h+ 1)

n− h− 1
, (3.13)

where h is the number of fitting parameters, L is the likelihood, and n is the number of

data points. For each model we can calculate the AIC, which accounts for both the benefits

of higher log-likelihood and the costs of additional parameters. A better fit is reflected in a

lower AIC value.

Table 3.2 shows the AIC differences between the unconstrained Fermi-Dirac fits (UFD,

h = 4) and the constrained Fermi-Dirac fits with f0 = 0.99 (CFD, h = 3) for each TF.

Positive AIC differences indicate that UFD is more favorable. We also calculate the Akaike

weights w ∝ e−AIC/2, which give the relative likelihood that a given model is the best [179].

For the six TFs in the 1 − f0 � 1 regime, the constrained Fermi-Dirac fits perform

somewhat but not drastically better than the unconstrained Fermi-Dirac fits (Table 3.2).

Indeed, the Akaike weights for the constrained Fermi-Dirac fits exceed the full fits for these

TFs consistently by about a factor of e ≈ 2.7, since their raw likelihoods are essentially

equivalent and they only differ in the number of fitted parameters h. Out of the five TFs
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TF AICCFD − AICUFD AICEXP − AICUFD wUFD wCFD wEXP

REB1 3.054 35.734 0.822 0.178 1.43× 10−8

ROX1 −2.042 34.753 0.265 0.735 7.53× 10−9

MET32 −2.233 10.540 0.246 0.752 0.001
RPN4 5.674 19.959 0.945 0.055 4.38× 10−5

MET31 −1.469 −3.869 0.100 0.208 0.692
PDR3 −2.124 6.123 0.254 0.734 0.012
YAP7 −2.049 10.722 0.264 0.735 0.001
BAS1 −2.107 1.061 0.224 0.644 0.132
STB5 −2.732 −7.145 0.025 0.097 0.879
AFT1 −2.069 6.096 0.259 0.729 0.012
CUP9 −2.251 1.560 0.220 0.679 0.101
MCM1 −3.343 −0.175 0.135 0.718 0.147

Table 3.2: Comparison of fitness function models. For each TF, shown are the AIC
differences between the unconstrained Fermi-Dirac fit (“UFD”), the constrained Fermi-
Dirac fit with f0 = 0.99 (“CFD”), and the exponential fit (“EXP”). Also shown are Akaike
weights w, which indicate the relative likelihood of each model.

for which f0 ≈ 0, YAP7, BAS1, and AFT1 fit slightly better to the constrained Fermi-

Dirac, suggesting that their fitted values of f0 are not significant. For RPN4 and MET31,

the AIC analysis shows preference for the fits with low f0. This preference is especially

strong for RPN4. Both RPN4 and MET31 are listed as nonessential in the Yeast Deletion

Database [167, 175], suggesting either an inconsistency in our analysis or that growth media

tested in Refs. 167, 175 do not reveal essentiality of these TFs.

We may also consider a purely exponential fitness landscape of the form F(E) = eαE .

The reasons for including this case are threefold. First, exponential fitness emerges in the

limit E − µ � 0 of the Fermi-Dirac landscape, the regime into which many of the TF

binding sites fall. Second, the fitness landscapes in Fig. 3.6 appear close to linear on the

logarithmic scale, implying that to a good approximation fitness depends exponentially on

energy. Third, the model has just one fitting parameter, making it a useful null case for

AIC evaluation.

The steady-state distribution π(σ) with exponential fitness is given by
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π(σ) =
1

Z
π0(σ)eναE(σ) =

L∏

i=1

πi0(σi)

Zi
eναε

σi
i , (3.14)

where E(σ) is given by Eq. 3.2, π0(σ) is the neutral probability of sequence σ, πi0(σi) is

the background probability of nucleotide σi at position i, and Zi is a single-site partition

function: π0(σ)/Z =
∏L
i=1 π

i
0(σi)/Zi. Here we assumed that the background probability of

a sequence is a product of probabilities of its constituent nucleotides. In this case, positions

in the binding site decouple and the distribution of sites π(σ) completely factorizes. The

assumption of factorization underlies the common practice of inferring energy matrices from

log-odds scores of observed genomic binding sites [163]. The log-odds score of a nucleotide

σi is defined as

S(σi) = log
pσii

πi0(σi)
= −βεσii − logZi, (3.15)

where pσii is the probability of observing base σi ∈ {A,C,G,T} at position i within the set

of known sites, β is an effective inverse temperature, and Zi is the normalization constant.

Equation 3.15 shows that the log-odds score, which is computed using observed nucleotide

probabilities, is equivalent to εσii (up to an overall scale and shift) under the assumption of

site independence.

We can quantitatively compare the exponential fitness landscape with the unconstrained

and constrained Fermi-Dirac landscapes using the Akaike information criterion, Eq. 3.13.

The AIC analysis shows that the exponential landscape is significantly poorer than the

Fermi-Dirac landscape in all cases except MET31 (Table 3.2), where the exponential fit is

marginally better than the Fermi-Dirac fits, and STB5, where the exponential landscape

does perform much better than the Fermi-Dirac models. This observation provides statis-

tical support for the fitness landscapes of Fermi-Dirac type, and for the non-lethality of

deleting most TFs (the exponential fitness decays to zero rather than a nonzero f0 found

in most of our Fermi-Dirac fits).
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3.4 Discussion

In this work, we have considered how fitness of a single-cell eukaryote S. cerevisiae is affected

by interactions between TFs and their cognate genomic sites. Changing the energy of a site,

or creating new sites in gene promoters may change how genes are activated and repressed,

which in turn alters the cell’s chances of survival. Under the assumptions of a haploid

monomorphic population in which the evolution of binding sites has reached steady state,

the fitness landscape as a function of TF binding energy can be inferred from the distribution

of TF binding sites observed in the genome, using a biophysical model which assigns binding

energies to sites. We use a simple energy matrix model of TF-DNA energetics in which the

energy contribution of each position in the site is independent of all the other positions. The

energy matrix parameters are inferred from a high-throughput data set in which TF-DNA

interactions were studied in vitro using a microfluidics device [166]. We consider two types

of fitness functions: Fermi-Dirac, which appears naturally from considering TF binding as

a two-state process (Eq. 3.1), and exponential, which is motivated by the observation that

for many TFs, the logarithm of fitness appears to decrease linearly as energy increases.

A single fitness landscape for all genomic binding sites of a given TF can only exist in

the absence of site-specific selection. Indeed, it is possible that TF sites experience different

selection pressures depending on the genes they regulate: for example, sites in promoters of

essential genes may be penalized more for deviating from the consensus sequence. In this

case, the fitness function is an average over all sites which evolve under different selection

constraints: as an extreme example, consider the case where each site i has a Fermi-Dirac

fitness function (Eq. 3.5) with different parameters µi, βi, and f i0. The resulting observed

distribution of energies would then be the average of the distributions predicted by Eq. 3.3:

π(E) =
1

Z
π0(E)〈F(E;µi, βi, f

i
0)ν〉i ≡

1

Z
π0(E)F(E; µ̄, β̄, f̄0)ν̄ , (3.16)

which defines the “average” fitness function with effective parameters µ̄, β̄, f̄0, ν̄. Thus
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the fit can be carried out even in the presence of site-dependent selection, but the fitted

parameters correspond to fitness functions of individual sites only in an average sense.

In order to gauge the importance of site-specific selection in TF binding site evolution, we

have performed several statistical tests aimed at discovering correlations between binding

site energies and biological properties of the sites and the genes they regulate. These

tests considered gene essentiality, growth rates of strains with nonessential genes knocked

out, gene expression levels, KA/KS ratios based on alignments with S. paradoxus, and the

distance of the site to the TSS. We find no consistent correlations among these properties,

indicating that for a given TF, the evolution of regulatory sites is largely independent of

the properties of regulated genes and the specific biological functions of the sites.

Previously, low correlations have been observed between essentiality and conservation

of protein and coding sequences [180–186], which has fueled considerable speculation as it

contradicts the prediction of the neutral theory of evolution that higher selection pressures

lead to lower evolutionary rates. It has also been found that the growth rate of strains

with nonessential genes knocked out are significantly (though weakly) correlated with con-

servation of those genes [187]. It has therefore been suggested that selection pressures are

so strong that only the most nonessential genes experience significant genetic drift [180].

Previous studies have also found that gene expression levels are a more reliable (though

still very weak) predictor of selection pressures than essentiality [184], but we do not find

this to be the case for TF binding sites, nor do we observe a significant correlation between

gene expression levels and TF binding energies.

Available data does not rule out the possibility of time-dependent selection in combi-

nation with forms of site-dependent selection for which we have not accounted. In this

scenario, the variation in site binding affinity is not due to genetic drift, but to variable

selection pressures across sites and over time, such that the sites are strongly tuned to par-

ticular binding energies which change from locus to locus. Indeed, there is evidence that

there is frequent gain and loss of TF binding sites and that the gene regulatory network
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is highly dynamic [188–194]. However, it is possible that rapid turnover of binding sites

in eukaryotes may be due to evolution acting on whole promoters rather than individual

binding sites. Many promoters contain multiple binding sites for a single TF, and it may

be that while individual binding sites are lost and gained frequently, the overall binding

affinity of a promoter to a TF may be held constant [195–197]. Our evolutionary model

can account for this scenario using a promoter-level fitness function, which we intend to

consider in future work.

Out of 12 TFs with sufficient binding site data, five have f0 ≈ 0, indicating a large fitness

penalty for deleting such sites. However, this conclusion is strongly supported by the AIC

differences between unconstrained and non-lethal Fermi-Dirac fits for only one TF, RPN4

(Table 3.2). RPN4 is classified as nonessential in the Yeast Deletion Database. It may be

that this misclassification is due to a mismatch between genomic sites, in which the core

GCCACC motif is preceded by TTT, and the energy matrix in which the binding energies

upstream of the core motif are non-specific. We also classify REB1 and MCM1 binding sites

as nonessential, although knocking out these TFs is lethal in yeast. This discrepancy may

be due to a minority of essential sites being averaged with the majority of nonessential sites

to produce a single fitness function, as described above. In addition, although a penalty

for deleting any single site may be small, the cumulative penalty for deleting all sites (or,

equivalently, deleting the TF) may be lethal. Overall, on the basis of AIC we classify 8 out

of 12 TFs correctly (Table 3.2).

We find that in 11 out of 12 cases, fitting an exponential fitness function is less sup-

ported by the data than fitting a Fermi-Dirac function (Table 3.2). This is interesting

since constructing a position-specific weight matrix by aligning genomic sites is a common

practice which implicitly assumes factorization of exponential fitness and independence of

each position in the binding site. Our results show the limitations of this approximation.

It is important to note that a key difference between the Fermi-Dirac fitness landscape

and the exponential landscape is that the former contains magnitude epistasis [11, 32] (i.e.,
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the magnitude of a mutation’s fitness effect depends on the background sequence), while

the latter is non-epistatic. Thus, our results indicate that epistasis is widespread in the

evolution of TF binding sites [72].

Finally, we find that depending on the TF, the distribution of TF binding energies

may fall on the exponential tail, across the threshold region, or on the saturated plateau

where the sites are always occupied (Table 3.1). In the first two categories, variation of TF

concentration in the cell will lead to graded responses, which may be necessary to achieve

precise and coordinated gene regulation. In the third regime, TF binding is robust and not

dynamic. We also find that the fitted inverse temperature β is typically not close to the

value based on room temperature (Table 3.1). This observation suggests selection pressures

in addition to those dictated by the energetics of TF binding to its cognate sites.
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Chapter 4

Statistical Physics of Stochastic Paths

In the previous two chapters we focused on populations in steady state. While some systems

may be reasonably described by steady state, many important questions in evolution are

inherently dynamical. As discussed in Chapter 1, we are interested not just in the eventual

fates of populations, but also the pathways they take to get there. This is of particular

importance for understanding how predictable evolution is [85]. In this chapter we take a

detour to develop some fundamental tools from stochastic processes and statistical physics,

which we will use to understand the evolutionary paths of populations. This chapter is

drawn from Refs. 10, 11, as well as some unpublished material.

A stochastic process describes a system whose dynamics over time is probabilistic

rather than deterministic [131]. In physics the most important example of a stochastic

process is a random walk [198], historically used to describe the motion of a large particle

suspended in a fluid at finite temperature [5]. Although the traditional notion of a random

walk describes the physical motion of a particle in space, by analogy we can think of any

stochastic system as randomly walking through its state space. In this sense random walks

are ubiquitous across physics, chemistry, and biology, including molecular evolution [31–33],

protein folding [199], chemical reactions [200], transport and search in complex media [201,

202], stochastic phenotypes [203], and cell-type differentiation [42, 204, 205].

In this chapter we develop a formalism for stochastic processes that explicitly decomposes

them into sums over all possible paths [10, 11, 206–210]. The formalism is general to any

continuous-time random walk on a discrete state space with arbitrary complexity (e.g., a

simple lattice or a complex network). The approach is particularly well-suited for obtaining
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statistics that describe the diversity of paths, such as the distribution of path lengths and

path entropy. We will first describe the general formalism along with an efficient numerical

implementation, then illustrate the method on a few simple examples.

4.1 The ensemble of stochastic paths

Let S be a discrete set of possible states for a system. A semi-Markov process (also

known as a continuous-time random walk [198]) on S consists of jumps between states

and continuous-time waiting within states. Let Q be the jump matrix, with 〈σ′|Q|σ〉 being

the probability of jumping to σ′ given the current state σ (σ, σ′ ∈ S). The space S equipped

with the jump matrix Q defines a network with directed and weighted edges, so we can think

of this process as a random walk on the network of states. The waiting time distributions

will be denoted by ψ(t|σ), which is the probability density of waiting exactly time t in state

σ before jumping out. Define θ(σ) to be the mean of ψ(t|σ); we will generally assume this is

finite for all σ, although for cases when it is not (e.g., ψ(t|σ) is a power law distribution) it

only invalidates results having to do with mean times. We also define the “partial waiting”

probability Ψ(t|σ) =
∫∞
t dt′ψ(t′|σ) as the probability of waiting at least time t in state σ.

We say this process is “semi-Markovian” in the sense that the jump process is mem-

oryless — the probability of jumping to a new state depends only on the current state

— but the waiting process may not be. Memoryless waiting means that the probability of

waiting an additional time t in a state, given the system has already waited time t0, equals

the probability of just waiting time t in the first place (there is no “memory” of having

waited the original time t0):

Ψ(t+ t0|σ)

Ψ(t0|σ)
= Ψ(t|σ). (4.1)

The only function satisfying this condition is the exponential function; hence a fully-Markov

process has partial waiting probabilities Ψ(t|σ) = e−t/θ(σ) and waiting time distributions
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ψ(t|σ) = e−t/θ(σ)/θ(σ). Non-Markov waiting time distributions will be non-exponential and

can arise due to coarse-graining a Markov process [211–213].

A general semi-Markov process is completely specified by the jump matrix Q and the

waiting time distributions ψ(t|σ). The special case of a fully-Markov process, however, is

usually specified by a rate matrix W, and the probability distribution |π(t)〉 of system states

at time t is given by the master equation as defined in Eq. 1.6. This was the approach of

our evolutionary model in Chapters 1 and 2. The mean waiting times are related to the

rate matrix via

θ(σ) = − 1

〈σ|W|σ〉 =

(∑

σ′

〈σ′|W|σ〉
)−1

, (4.2)

i.e., the inverse total escape rate from σ, while the jump probabilities are

〈σ′|Q|σ〉 = 〈σ′|W|σ〉θ(σ). (4.3)

It is possible to write a generalized master equation, analogous to Eq. 1.6, for the semi-

Markov case [206, 208, 214]; however we omit it here because we will instead study the

dynamics of the process in the path formalism.

4.1.1 The path probability functional

Define a path through state space as the time-ordered sequence of states ϕ = {σ0, σ1, . . . , σ`}.

Suppose the system spends times t0, t1, . . . , t` waiting in each state along the path. The

probability functional of starting in the initial state σ0 and completing the path ϕ (reaching

the final state σ`) no later than time t is

ΠFP[ϕ, t] = π(σ0)

(
`−1∏

i=0

〈σi+1|Q|σi〉
)(

`−1∏

i=0

∫ ∞

0
dti ψ(ti|σi) Θ

(
t−

`−1∑

i=0

ti

))
, (4.4)



78

where the first factor is the initial state probability π(σ0), the second is the product of

jump probabilities, and the third integrates over waiting times while constraining the total

waiting time to be less than t (Θ is the Heaviside step function). We will refer to this as

the “first-passage” path probability (hence the subscript FP), since it considers the path

finished once it has reached the final state. The Laplace transform of Eq. 4.4 results in a

simpler expression through deconvolution [206]:

Π̃FP[ϕ, s] =

∫ ∞

0
dt e−st ΠFP[ϕ, t] =

π(σ0)

s

`−1∏

i=0

〈σi+1|Q|σi〉 ψ̃(s|σi), (4.5)

where ψ̃(s|σi) is the Laplace transform of ψ(t|σi). For a fully-Markov process,

ψ̃(s|σ) =
1

1 + sθ(σ)
, Ψ̃(s|σ) =

θ(σ)

1 + sθ(σ)
, (4.6)

and therefore [207]

Π̃FP[ϕ, s] =
π(σ0)

s

`−1∏

i=0

〈σi+1|Q|σi〉
1 + sθ(σi)

. (4.7)

Other definitions of the path probability functional may be more appropriate in some

cases and are straightforwardly constructed in s-space. For instance, we may want to

consider the probability of observing the system still waiting in final state σ` at time t after

having taken the path ϕ. We will consider this to be the path propagator Πprop[ϕ, t], since

it is related to the overall propagator for the system (defined below). In s-space this is

Π̃prop[ϕ, s] = π(σ0)Ψ̃(s|σ`)
`−1∏

i=0

〈σi+1|Q|σi〉 ψ̃(s|σi). (4.8)

The factor of Ψ̃(s|σ`) accounts for the extra waiting in final state σ`. For the fully-Markov

process,
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Π̃prop[ϕ, s] = π(σ0)
θ(σ`)

1 + sθ(σ`)

`−1∏

i=0

〈σi+1|Q|σi〉
1 + sθ(σi)

. (4.9)

Finally, in the t → ∞ limit we obtain the probability of the path ϕ for any duration

(which does not depend on the waiting time distributions):

Π∞[ϕ] = π(σ0)
`−1∏

i=0

〈σi+1|Q|σi〉, (4.10)

which is just the product of jump probabilities.

4.1.2 Path ensemble averages

Usually we are interested in not a single path but an ensemble Φ of paths that define some

dynamical process; for example, this may be all paths from a set of initial states Si to a set

of final states Sf . We are especially interested in ensembles of first-passage paths, defined

as paths that reach the final states only once. The partition function for the ensemble Φ is

the sum over all path probabilities:

ZΦ(t) =
∑

ϕ∈Φ

Π[ϕ, t]. (4.11)

For the FP path functional in Eq. 4.4, the partition function represents the total probability

of reaching Sf from Si by time t via paths in Φ. For the path propagator (Eq. 4.8), the

partition function represents the total probability of observing the system in any final

state at time t. For the fully-Markov case, the standard propagator is P(t) = etW, where

〈σ′|P(t)|σ〉 gives the total probability of observing the system in state σ′ at time t given

an initial state of σ. (This is essentially the solution to the Markov master equation, i.e.,

Eq. 1.9.) Hence the path partition function must equal this propagator:

〈σ′|etW|σ〉 =
∑

ϕ∈Φ

Πprop[ϕ, t], (4.12)
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where Φ is the ensemble of all paths beginning in σ and ending in σ′. We give a simple

proof of this path decomposition for the fully-Markov case in Appendix C.

Besides total probabilities, we are interested in average properties of the path ensemble.

We define the following path functionals:

L[ϕ] = length (number of jumps) of ϕ, Iσ[ϕ] =





1 if σ ∈ ϕ,

0 otherwise,

T [ϕ] =

`−1∑

i=0

θ(σi), Tσ[ϕ] =

`−1∑

i=0

δσ,σiθ(σi), (4.13)

where δ is the Kronecker delta. We can now express various path statistics as averages

of these functionals over the ensemble. We use a generic path functional Π[ϕ, t] in these

definitions; Eq. 4.4, Eq. 4.8, or other constructions are used depending on the problem of

interest. The average path time is given by [210]

t̄Φ(t) = 〈T (t)〉Φ =
1

ZΦ(t)

∑

ϕ∈Φ

T [ϕ]Π[ϕ, t]. (4.14)

The distribution of path lengths is given by

ρΦ(`, t) =
1

ZΦ(t)

∑

ϕ∈Φ

δ`,L[ϕ]Π[ϕ, t], (4.15)

from which the average length ¯̀
Φ(t) = 〈L(t)〉Φ and standard deviation of length `sdΦ (t) are

readily obtained.

Averages over state-dependent functionals can be used to characterize the spatial struc-

ture of paths. For example, the fraction of time paths spend in a state σ can be expressed

as 〈Tσ(t)〉Φ/t̄Φ(t); this is a normalized distribution over all states σ ∈ S and therefore it

represents the density of states on the paths in the ensemble Φ. The quantity 〈Tσ(t)〉Φ/θ(σ)

gives the average number of visits to state σ. The probability that a path will visit a state



81

σ at all is given by 〈Iσ(t)〉Φ, which we will refer to as the density of paths in the ensemble

Φ. We can also construct the two-point correlation function 〈Iσ′(t)Iσ(t)〉Φ, which gives the

probability of paths passing through both σ and σ′.

In many cases we are interested in the time-independent versions of these quantities, i.e.,

statistical properties of paths taking any amount of time to finish. These can be obtained

as the t→∞ limit of the above expressions, which amounts to replacing Π[ϕ, t] with Π∞[ϕ]

(Eq. 4.10). We will denote these time-independent properties by simply omitting the time

dependence, e.g., limt→∞ t̄Φ(t) = t̄Φ. The convergence of these limits depends on the path

ensemble Φ. For example, if Φ includes all possible paths connecting the initial and final

states, including those that visit the final state multiple times, then these limits generally

diverge: typically, there is no finite average time or length for these paths. However,

restriction to first-passage paths in Φ, as is often our focus, guarantees convergence.

This formalism also allows for development of path thermodynamics. The entropy of

the path ensemble is given by

SΦ(t) =− 1

ZΦ(t)

∑

ϕ∈Φ

Π[ϕ, t] log

(
Π[ϕ, t]

ZΦ(t)

)

=− 〈log Π(t)〉Φ + logZΦ(t).

(4.16)

Indeed, if we define the path Hamiltonian to be

H[ϕ, t] = − log(Π[ϕ, t]), (4.17)

(so that Π[ϕ, t] = e−H[ϕ,t]), we can express the path ensemble free energy as

FΦ(t) = 〈H(t)〉Φ − SΦ(t) = − logZΦ(t). (4.18)
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The partition function ZΦ(t) monotonically increases with time. Therefore the free en-

ergy FΦ(t) monotonically decreases as t → ∞, corresponding to equilibration of the path

ensemble.

For recurrent processes (i.e., where the system will almost surely reach the final states

eventually [212]), limt→∞ZΦ(t) = ZΦ = 1, and hence equilibrium free energy is zero. In

these cases, equilibrium path entropy is equal to the average Hamiltonian. If the ensemble Φ

consists of only a single path with nonzero probability, its entropy is SΦ = 0. This situation

may arise if the process is so constrained that only a single viable pathway exists between

the initial and final states. In contrast, consider a purely random walk on a homogeneous

network with γ nearest neighbors per node. The jump probability between any pair of

neighboring nodes is thus γ−1, so any path ϕ has probability Π∞[ϕ] = γ−L[ϕ], and the

entropy of the ensemble is given by

SΦ = −〈log Π∞〉Φ = ¯̀
Φ log γ. (4.19)

Thus the path entropy depends on two distinct factors: the average path length ¯̀ and the

network connectivity γ. Note that path entropy and the average path Hamiltonian scale

with the average path length, which defines a notion of extensivity in the path ensem-

ble. This is sensible if we think of a path as a gas of particles, where each jump in the

path corresponds to a particle. The path ensemble, which includes paths of many lengths,

therefore is equivalent to the grand canonical ensemble of the gas. In the case of the gas,

extensive quantities like entropy and energy scale with the number of particles, and hence

these quantities here scale with the path length.

4.2 Simple analytical examples

We now illustrate the path formalism on two simple examples.
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4.2.1 Two-state system

Suppose the state space S consists only of two states, σ1 and σ2, with rate matrix

W =



−λ1 λ2

λ1 −λ2


 , (4.20)

where λ1, λ2 > 0. So the total propagator is given by the matrix exponential:

P(t) = etW =
1

λ1 + λ2



λ2 + λ1e

−(λ1+λ2)t λ2(1− e−(λ1+λ2)t)

λ1(1− e−(λ1+λ2)t) λ1 + λ2e
−(λ1+λ2)t


 . (4.21)

Let us now compute the matrix element 〈σ2|P(t)|σ1〉 using the path expansion. The

transition σ1 → σ2 can occur through the following paths:

σ1 → σ2

σ1 → σ2 → σ1 → σ2

σ1 → σ2 → σ1 → σ2 → σ1 → σ2

...

(4.22)

In s-space the path expansion for the propagator has the form

〈σ2|P̃(s)|σ1〉 =
λ1

(s+ λ1)(s+ λ2)
+

λ2
1λ2

(s+ λ1)2(s+ λ2)2
+

λ3
1λ

2
2

(s+ λ1)3(s+ λ2)3
+ · · ·

=
λ1

(s+ λ1)(s+ λ2)

∞∑

`=0

(
λ1λ2

(s+ λ1)(s+ λ2)

)`

=

(
λ1

(s+ λ1)(s+ λ2)

)(
(s+ λ1)(s+ λ2)

(s+ λ1)(s+ λ2)− λ1λ2

)

=
λ1

(s+ λ1)(s+ λ2)− λ1λ2
.

(4.23)

Carrying out the inverse Laplace transform,
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〈σ2|P(t)|σ1〉 =
1

2πi

∮
ds ets〈σ2|P̃(s)|σ1〉 =

λ1

λ1 + λ2
(1− e−(λ1+λ2)t). (4.24)

This matches the matrix exponential solution (Eq. 4.21).

We can also calculate the average number of jumps ¯̀(t) for the transition σ1 → σ2 as a

function of time:

¯̀(t) =
1

Z(t)

∑

ϕ

L[ϕ]Π[ϕ, t]

=

(
λ1 + λ2

λ1(1− e−(λ1+λ2)t)

)
1

2πi

∮
ds ets

λ1

(s+ λ1)(s+ λ2)

∞∑

`=0

(2`+ 1)

(
λ1λ2

(s+ λ1)(s+ λ2)

)`

=
1

(λ1 + λ2)2

(
(λ1 − λ2)2 + 2λ1λ2(λ1 + λ2)t coth

(
1

2
(λ1 + λ2)t

))

(4.25)

In the t � (λ1 + λ2)−1 limit, coth((λ1 + λ2)t/2) ≈ 1 and we get the expected linear time

dependence:

¯̀(t) ≈ 2λ1λ2

(λ1 + λ2)
t. (4.26)

4.2.2 Random walk in one dimension

We now consider a slightly more complex example: an asymmetric random walk on a one-

dimensional lattice. Thus the states can be labeled by integers. Suppose the jump rates

are

〈n′|W|n〉 =





α if n′ = n+ 1,

β if n′ = n− 1,

0 otherwise.

(4.27)

Without loss of generality we consider paths starting at 0 and ending at n > 0. Then any
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path 0 → n must involve n + ` rightward jumps and ` leftward jumps, for ` ∈ {0, 1, . . .}.

The number of paths of length n+ 2` is

(n+ 2`)!

(n+ `)!`!
=

(
n+ 2`

`

)
, (4.28)

since each path can be uniquely specified by a sequence of right and left jumps. Then the

propagator path expansion is

〈n|P̃(s)|0〉 =
∞∑

`=0

(
n+ 2`

`

)
αn+`β`

(s+ α+ β)n+2`+1
. (4.29)

We carry out the inverse Laplace transform term-by-term to obtain

〈n|P(t)|0〉 = e−(α+β)t
∞∑

`=0

(
n+ 2`

`

)
αn+`β`

(n+ 2`)!
tn+2`. (4.30)

We can rewrite this in terms of a modified Bessel function [215]:

〈n|P(t)|0〉 = e−(α+β)t

(
α

β

)n/2 ∞∑

`=0

(
√
αβt)n+2`

(n+ `)!`!
= e−(α+β)t

(
α

β

)n/2
In(2

√
αβt). (4.31)

This agrees with the standard solution of the asymmetric random walk using the charac-

teristic function [131]. We can also calculate the average number of steps:

¯̀(t) = e−(α+β)t

(
α

β

)n/2 ∞∑

`=0

(n+ 2`)
(
√
αβt)n+2`

(n+ `)!`!

= e−(α+β)t

(
α

β

)n/2
(nIn(2

√
αβt) + 2

√
αβtIn+1(2

√
αβt)).

(4.32)
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4.3 Transfer-matrix numerical algorithm

Unfortunately, analytical implementations of the path expansion appear to be limited to

very simple cases such as those in the previous section due to the difficulty of enumerating

over all paths. (For a more sophisticated analytical example, see Ref. 206.) However, the

factorized form of the path probability distribution functional (Eqs. 4.5, 4.7, and 4.10)

permits efficient numerical calculation of path ensemble averages via a recursive algorithm

based on transfer matrices. Here for simplicity we consider the time-independent case,

and thus assume that Φ consists of first-passage paths to guarantee convergence of path

averages. Let |π〉 =
∑

σ π(σ)|σ〉 be the vector of initial state probabilities. For each jump

` and intermediate state σ, we calculate the transfer matrix elements P`(σ) = 〈σ|Q`|π〉,

the total probability of all paths that end at σ in ` steps; T`(σ), the total average time of

all such paths; and Γ`(σ), the total entropy of all such paths. These quantities obey the

following recursion relations:

P`(σ
′) =

∑

nn σ of σ′

〈σ′|Q|σ〉P`−1(σ), (4.33)

T`(σ
′) =

∑

nn σ of σ′

〈σ′|Q|σ〉 [T`−1(σ) + θ(σ)P`−1(σ)] ,

Γ`(σ
′) =

∑

nn σ of σ′

〈σ′|Q|σ〉
[
Γ`−1(σ)− log〈σ′|Q|σ〉P`−1(σ)

]
,

where P0(σ) = π(σ) and T0(σ) = Γ0(σ) = 0 for all σ ∈ S, and the sums run over all nearest

neighbors (nn) σ of σ′. The final states σ ∈ Sf are treated as absorbing to ensure that only

first-passage paths are counted. This procedure can be considered a generalization of the

exact-enumeration algorithm of Ref. 216. Path ensemble averages are then given by
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ZΦ =

∞∑

`=1

∑

σ∈Sf
P`(σ), ρΦ(`) =

1

ZΦ

∑

σ∈Sf
P`(σ), (4.34)

t̄Φ =
1

ZΦ

∞∑

`=1

∑

σ∈Sf
T`(σ), SΦ =

1

ZΦ

∞∑

`=1

∑

σ∈Sf
Γ`(σ).

We can similarly calculate state-dependent quantities such as 〈Iσ〉Φ and 〈Tσ〉Φ. The two

quantities to be recursively updated are P`(σ
′;σ), the total probability of all paths currently

at σ′ at step ` that have visited σ at least once previously, and T`(σ
′;σ), the total average

time that all such paths have spent in σ. These obey the following recursion relations:

P`(σ
′;σ) =





∑

nn σ′′ of σ′

〈σ′|Q|σ′′〉P`−1(σ′′;σ), σ′ 6= σ,

P`(σ), σ′ = σ,

(4.35)

T`(σ
′;σ) =

∑

nn σ′′ of σ′

〈σ′|Q|σ′′〉[T`−1(σ′′;σ) + δσ,σ′′θ(σ
′′)P`−1(σ′′;σ)],

with the initial conditions P0(σ′;σ) = T0(σ′;σ) = 0 for all σ, σ′ ∈ S, σ 6= σ′ (P0(σ;σ) =

π(σ), T0(σ;σ) = 0). Averages are then expressed as

〈Iσ〉Φ =
1

ZΦ

∞∑

`=1

∑

σ′∈Sf
P`(σ

′;σ), 〈Tσ〉Φ =
1

ZΦ

∞∑

`=1

∑

σ′∈Sf
T`(σ

′;σ). (4.36)

Furthermore, we can calculate mean path divergence that characterizes the spatial di-

versity of the paths in Φ:

DΦ =
∞∑

`=1

∑

σ,σ′∈S
d(σ, σ′)P`(σ)P`(σ

′), (4.37)
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where d(σ, σ′) is a distance metric on S. This definition is distinct from that proposed in

Refs. 35, 85 (Eq. 1.13) in that it dynamically calculates distances between points on paths

as they propagate, rather than comparing the minimal distance between complete paths.

Thus for a path that revisits some states multiple times, the divergence with a path that

travels through the same set of states without revisiting any of them will be zero according

to Eq. 1.13, but nonzero with the definition in Eq. 4.37.

This algorithm allows for very general definitions of the path ensemble Φ without having

to explicitly enumerate all the paths. For instance, Φ can include paths that begin and

end at arbitrary sets of states, or are prohibited from passing through arbitrary sets of

intermediate states. The time complexity of the algorithm is O(γNΛ) for ZΦ, ρΦ(`), t̄Φ,

SΦ, and O(γN2Λ) for 〈Iσ〉Φ, 〈Tσ〉Φ, DΦ, where γ is the average number of nearest neighbors,

N is the number of states visited by paths in Φ, and Λ is the cutoff path length. The cutoff

Λ scales with network size N in the same way as the average path length ¯̀
Φ; for simple

random walks, it is known that

Λ ∼ ¯̀
Φ ∼





Ndw/df , dw ≥ df (compact exploration),

N, dw < df (non-compact exploration),

(4.38)

where dw is the dimension of the walk and df is the fractal dimension of the space [202, 217].

Therefore, the algorithm scales as

O(γNΛ) =




O(γN1+dw/df ), dw ≥ df ,

O(γN2), dw < df ,

(4.39)

automatically accounting for the sparseness of network connections. This scaling compares

favorably with standard linear algebra algorithms, which in general require O(N3) opera-

tions [218] to solve the backward equation [199, 219].
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4.4 Example: evolution on a neutral network

As a simple application of this approach, we consider a population evolving on a neutral

network [34], as described in Sec. 1.3.4. In the space of all sequences of length L and with

an alphabet of size k, we assign each sequence fitness 1 with probability p or fitness zero

with probability 1 − p. The subset of fit states connected to each other forms a neutral

network; there can be several disconnected neutral networks in each landscape realization.

All jumps between neighboring fit states occur at the same rate u, and waiting times are

Markovian. We choose L = 8 and a binary alphabet {A,B} (k = 2), which gives 28 = 256

total nodes in the network, and we consider the ensemble Φ of first-passage paths from the

sequence AAAAAAAA to the sequence BBBBBBBB.

Figure 4.1A shows ρΦ(`) for a single realization of this model with p = 0.9. The exponen-

tial tail of ρΦ(`) is a universal feature of first-passage processes on finite spaces [217]; other

path statistics, such as the average time t̄Φ(`) of paths with length `, also show asymptotic

behavior that is exponential for long paths. We can use this feature to determine the cutoff

path length Λ for the algorithm: Λ is set at a length such that ρΦ(`) and t̄Φ(`) are close to

exponential in a region around Λ. Then one need only consider paths with ` < Λ and infer

the contributions of all longer paths from an exponential fit to the tail, which considerably

improves the efficiency of the algorithm. This procedure takes advantage of the fact that

information about longer paths is already contained in the structure of shorter paths; the

longer paths are built on the shorter paths by adding loops. The maximum length Λ of the

shorter paths that must be explicitly calculated depends on the chemical distance between

the initial and final states and the lengths over which the landscape is correlated. This

essentially implements a numerical renormalization scheme on the ensemble of paths [207].

In Fig. 4.1B,C,D we show distributions of the mean path time t̄Φ, mean path length

¯̀
Φ, path length standard deviation `sdΦ , and path entropy SΦ for multiple realizations of

the neutral network with high and low values of p. We see that long paths are likely in
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Figure 4.1: First-passage path ensemble statistics in a neutral network. (A) The
path length distribution ρΦ(`) (solid, blue) and exponential fit (dashed, green) in the interval
[Λ − 5,Λ] for Λ = 25 in a single realization of the neutral network with p = 0.9. (B)
Distribution of mean path times t̄Φ, (C) distribution of mean path lengths ¯̀

Φ and standard
deviations of path lengths `sdΦ , and (D) distribution of path entropies SΦ for p = 0.1 and
p = 0.9. Histograms in (B)–(D) are generated from 104 successful random realizations of
the neutral network for each value of p; a realization is considered successful if both initial
and final states are included in a single connected network.
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these models: dozens of substitutions can occur at each site before the final state is reached.

The larger size of the neutral network for p = 0.9 allows longer paths on average than for

p = 0.1. However, the mean time of paths for the larger neutral network is usually smaller

(Fig. 4.1B), since the increased connectivity of the network leads to shorter waiting times at

individual nodes. Larger p leads to substantially more diversity of paths and path lengths,

as expected due to the increased size and connectivity of the network (Fig. 4.1C,D). Note

that the distributions of ¯̀
Φ and `sdΦ in Fig. 4.1C are nearly the same, owing to the nearly

exponential distribution of ρΦ(`) in this model (cf. Fig. 4.1A).

In an unconstrained sequence space, the number of nearest neighbors is γ = L(k − 1),

and the average path length ¯̀
Φ scales as N = kL (Eq. 4.38). According to Eq. 4.19, the

entropy of paths in sequence space is

SΦ = ¯̀
Φ logL(k − 1) ∼ kL logL(k − 1). (4.40)

When p = 0.9 the neutral network is nearly the size of the entire sequence space, and these

results hold approximately. Indeed, we see that ¯̀
Φ and SΦ differ by roughly a factor of

logL(k − 1) ≈ 2.1 (Fig. 4.1C,D).

4.5 Applications to reaction rate theory

Besides molecular evolution, a particularly important application of the path-based ap-

proach is reaction rate theory [220], which studies rare transitions between metastable

states that model phenomena ranging from protein folding [221] to chemical reactions [200].

In these systems, quantities of interest include not only mean first-passage times and reac-

tion rates but also the spatial distribution of transition paths and identification of kinetic

bottlenecks.

So-called transition state theory is a well-known approach to these problems; however,

it relies on the existence and a priori identification of key transition states [220]. A more
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Figure 4.2: Schematic of reactions between metastable states. The regions A and
B are metastable states. When the system leaves one of these states, it can either follow
a transition path (TP, red) and reach the other metastable state, or it can follow a return
path (RP, blue) and return to the state in which it started. The general aim of reaction
rate theory is to study the statistical properties of the transition path ensemble, especially
their overall rate.

recent development has been transition path sampling [200, 210, 222–225], in which paths

are directly sampled via Monte Carlo to estimate their statistical properties. Similar meth-

ods have been used in phylogenetic analysis of protein sequences [183, 226–229]. These

techniques are based on a finite sample of paths and do not provide natural cutoffs for the

size of the sample, which may lead to noisy estimates of various path statistics. Another

technique, called transition path theory [199, 219, 230–232], relies on explicit solutions to

the backward equation. This approach, though more systematic, does not directly address

the diversity of paths.

We now illustrate our approach on two simple reaction rate problems. In a typical

reaction rate problem, a system has two or more metastable states, usually defined such

that the system in steady state spends almost all of its time in those states. Transitions

between metastable states are therefore rare. Figure 4.2 shows a schematic of a system with

two metastable states. When the system exits one of the metastable states, there are two

possible outcomes: the system can either return to the state in which it started, without

having reached any other metastable state, or it can transition over to another metastable

state. The ensemble of first-passage paths leaving the boundary of one metastable state can

thus be partitioned into two sub-ensembles, one called “return paths” (RP) and another

called “transition paths” (TP).
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Assume there are just two metastable states A and B; it is straightforward to generalize

these results for additional metastable states. Let TP denote the ensemble of transition

paths from A to B and vice versa, while RP denotes the ensemble of return paths for

both A and B [223, 224]. We can use the foregoing formalism and numerical algorithm to

calculate statistical properties of these path ensembles. In particular, define the density of

states on TPs as the probability of observing the system at a state σ, given it is on a TP:

p(σ|TP) =
1

t̄TP
〈Tσ〉TP, (4.41)

where we calculate the probability as the fraction of total time spent at σ. A related

quantity is the TP density, defined as the probability of being on a TP given the system is

observed at σ:

p(TP|σ) =
ZTP〈Iσ〉TP

ZTP〈Iσ〉TP + ZRP〈Iσ〉RP
. (4.42)

These are related via Bayes rule [224]:

p(TP|σ) =
p(σ|TP)p(TP)

π(σ)
, (4.43)

where π(σ) is the steady-state probability of the system being at σ and p(TP) is the prob-

ability of being on a TP at any state. We will generally assume the dynamics of the system

are described by a potential energy function V (σ), and that the system is in thermal equi-

librium with π(σ) = e−βV (σ)/Z, although more general cases are possible. The probability

p(TP) can be calculated as

p(TP) = p(TP|system is in transition region) p(system is in transition region)

=
ZTPt̄TP

ZTPt̄TP + ZRPt̄RP
(1− πA − πB),

(4.44)
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where πA and πB are the equilibrium probabilities of being in metastable states A and B.

The probability of being in the transition region (1−πA−πB) is very small by construction.

We approximate the overall flux of TPs as the probability of being on a TP divided by

the average time of a TP [224]:

λ ≈ p(TP)

t̄TP
=

(1− πA − πB)ZTP

ZTPt̄TP + ZRPt̄RP
. (4.45)

The reaction rates are then given by kA→B = λ/(2πA) and kB→A = λ/(2πB).

4.5.1 Double-well potential in two dimensions

As a simple example we consider a random walk on a two-dimensional square lattice S =

[−1.6, 1.6]× [−1.3, 1.3] with spacing ∆x = 0.05. Let

V (x, y) =
1

6
(4(1− x2 − y2)2 + 2(x2 − 2)2 + ((x+ y)2 − 1)2 + ((x− y)2 − 1)2 − 2) (4.46)

be the potential energy landscape over this space (Fig. 4.3A). The two metastable states

(outlined in Fig. 4.3A) are A = [−1.5,−0.5]× [−0.5, 0.5] and B = [0.5, 1.5]× [−0.5, 0.5]. We

consider Monte Carlo jump rates between nearest neighbors on the lattice:

〈x′, y′|W|x, y〉 = (∆x)−2 min[1, e−β(V (x′,y′)−V (x,y))]. (4.47)

The rates are rescaled by (∆x)−2 so that Brownian dynamics with a fixed diffusion constant

is recovered in the ∆x→ 0 limit.

Figure 4.3B shows the equilibrium distribution π(x, y), the density of states on TPs

p(x, y|TP), and the TP density p(TP|x, y) for several inverse temperatures β. The density of

states on transition paths p(x, y|TP) shows two symmetric channels by which most reactions

between A and B occur. We also show the distribution of TP lengths ρTP(`) in Fig. 4.4A,
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Figure 4.3: Reactions on a two-dimensional double-well potential. (A) Contours
of the potential energy function (Eq. 4.46). The metastable states A and B are shown
as boxes around the energy minima. (B) The equilibrium distribution of states π(x, y),
density of states on TPs p(x, y|TP), and TP densities p(TP|x, y) at different values of
inverse temperature β. The lattice spacing is fixed at ∆x = 0.05.
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which peaks at an intermediate path length but decays exponentially for long paths as

previously argued.

In general, we expect paths to be longer and more diverse at higher temperatures.

However, between β = 5 and β = 1 the paths become shorter and less diverse as T = 1/β

increases (Fig. 4.4B, C). This is a signature of entropic switching [231]: at a critical value of

T , the two most energetically-favored pathways that dominate the low-T behavior become

less favorable than the shorter path through the middle. Entropic switching is reflected in

plots of the relative path divergence, t̄TP, ¯̀
TP, and STP (Fig. 4.4B, C).

We can also calculate the continuous-space limit of the TP flux λ and the reaction rates.

We analytically continue λ as a function of the lattice spacing ∆x:

λ(∆x) = λ0 + λ1∆x+O(∆x2), (4.48)

where λ0 is the continuous-limit flux and ∆x should be smaller then the smallest length

scale of the potential. Indeed, λ(∆x) is linear (Fig. 4.4D), yielding continuous-limit rates

of kA→B = kB→A ≈ 1.3× 10−4. Therefore, one need only calculate λ at a few finite lattice

spacings in order to infer continuous-limit rates.

4.5.2 Triple-well potential on a fractal

As a more complex example, we consider reactions on a fractal in a triple-well potential,

which may serve as a model of transport in disordered media [201]. We embed the Sierpinski

triangle of side length 1 in a two-dimensional triple-well potential:

V (x, y) = 10

3∑

i=1

((x− xi)2 + (y − yi)2)e−5(x−xi)2−5(y−yi)2
, (4.49)

where (x1, y1) = (0, 1/
√

3), (x2, y2) = (1/2,−1/(2
√

3)), and (x3, y3) = (−1/2,−1/(2
√

3))

are the corners of the triangle. The metastable states are defined around these corners and

are shown in Fig. 4.5B. We consider Monte Carlo jump rates as before (Eq. 4.47) but with
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rates rescaled by (∆x)−dw , where ∆x = 2−n (n is the fractal order) is the spacing between

neighboring points on the triangle and dw = log 5/ log 2 is the dimension of a random walk

on the Sierpinski triangle [201].

Figure 4.5B shows that TPs bottleneck in the middle of the three sides of the triangle. As

before, we use analytical continuation to infer the continuous-limit reaction rate k between

any pair of metastable states from finite-order realizations of the fractal, yielding k ≈

2.0× 10−2 (Fig. 4.5A).
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Figure 4.5: Reactions on a Sierpinski triangle embedded in a triple-well potential.
(A) Transition path flux λ as a function of lattice spacing ∆x. As with the double-well
potential, analytic continuation of λ(∆x) allows us to infer the reaction rate k ≈ λ/2 ≈
2.0 × 10−2 between any pair of metastable states in an infinite-order fractal using a few
finite-order realizations. (B) The potential V (x, y), the density of states on TPs p(x, y|TP),
and TP densities p(TP|x, y) for β = 6.
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Chapter 5

Evolution of Protein Binding and Folding Stability

In the previous chapter we developed a general methodology for studying the ensemble of

paths in a stochastic process. We now apply this approach to a model of protein evolution.

This chapter reproduces Ref. 12. Appendix D contains additional material from Refs. 10, 11

on a related model.

Proteins carry out a diverse array of chemical and mechanical functions in the cell,

ranging from metabolism to signaling [233]. Therefore proteins serve as central targets for

natural selection in wild populations, as well as a key toolbox for bioengineers to design

novel molecules with medical and industrial applications [40, 234–237]. For many proteins,

structure is essential for their function [233]: the protein must fold into its native state,

a unique three-dimensional conformation, in order to perform its function, which typically

involves binding a target molecule such as DNA, RNA, another protein, or a small ligand.

Misfolded proteins may also form toxic aggregates and divert valuable protein synthesis and

quality control resources [238–241]. It is therefore imperative that the folded state be stable

against the thermal fluctuations present at physiological temperatures. However, biophysi-

cal experiments and computational studies reveal that most random mutations in proteins

destabilize the folded state [242, 243], including mutations that improve function [243–245].

As a result many natural proteins tend to be only marginally stable, mutationally teetering

at the brink of substantial unfolding [59, 246]. With proteins in such a precarious evolu-

tionary position, how can they evolve new functions while maintaining sufficient folding

stability?
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Directed evolution experiments have offered a window into the dynamics of this pro-

cess [40, 234–237], indicating the importance of compensatory mutations, limited epistasis,

and mutational robustness. Theoretical efforts to describe protein evolution in biophys-

ical terms have focused on evolvability [54, 58], global properties of protein interaction

networks [66, 247], and reproducing observed distributions of protein stabilities and evolu-

tionary rates [55, 57, 59, 61, 62]. However, a subtle but key property of proteins has not

been explored in this context: the structural coupling of folding and binding (the fact that

folding is required for function) implies an evolutionary coupling of folding stability and

binding strength. This raises the possibility that selection acting directly on only one of

these traits may produce apparent, indirect selection for the other. The importance of such

indirect selection for coupled traits was popularized by Gould and Lewontin in their influ-

ential paper on evolutionary “spandrels” [248], defined as traits that evolve in the absence

of direct selection. In particular this includes traits that emerge as byproducts (via indi-

rect selection) when there is direct selection on another property coupled to the spandrel.

Since then the importance of coupling between traits has been explored in many areas of

evolutionary biology [249], including various molecular examples [246, 250–253].

How do coupled traits affect protein evolution? We consider a simple biophysical and

evolutionary model that describes evolution of a new binding interaction in the context of a

directed evolution experiment [40], as a result of gene duplication and divergence [254], or in

response to a change in the protein’s chemical or physical environment, including availability

and concentrations of various ligands [31, 37] and temperature [103, 255]. We postulate a

fitness landscape as a function of two quantitative protein traits: the free energy of folding

(stability) and the free energy of binding a target molecule. This fitness function allows us to

parameterize the distinct selection pressures acting on folding and binding. We then use an

exact numerical algorithm [10, 11] to quantitatively characterize the fitness landscape and

the resulting adaptive paths, addressing key evolutionary questions of epistasis [24, 32, 256],

repeatability [14, 31, 85], and the tempo and rhythm of adaptation [15, 55].
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We find that both binding and folding can readily emerge as evolutionary spandrels:

they evolve as protein traits even in the absence of direct selective advantage. In particular,

proteins can evolve strong binding interactions that confer no intrinsic fitness advantage

but merely serve to stabilize the protein if misfolding is deleterious. The evolution of these

nonfunctional interactions may be highly stochastic: random mutation events can determine

whether or not a protein evolves to bind a ligand. This offers a compelling interpretation

of widespread nonfunctional interactions observed among proteins genome-wide [66, 247].

Moreover, when there are distinct selection pressures on both folding and binding, we predict

strongly-constrained adaptive paths that gain extra stability first and then partially lose it

before new function is acquired. This suggests the evolution of many natural proteins is

highly predictable at the level of folding and binding energy traits.

5.1 Biophysical model of evolution

5.1.1 Protein energetics

We consider a protein with two-state folding kinetics [233]. The protein has an interface that

binds a ligand, such as a small molecule, DNA, RNA, or another protein. If the protein is

folded, it may be bound or unbound, but it cannot form a binding interface in the unfolded

state. Because the protein can bind only when it is folded, the binding and folding processes

are structurally coupled (see Appendix D for an investigation of the model when folding and

binding are not coupled). Under the thermodynamic equilibrium assumption (valid when

protein folding and binding are faster than typical cellular processes), the probabilities of

the three structural states — folded and bound (pf,b), folded and unbound (pf,ub), and

unfolded and unbound (puf,ub) — are given by their corresponding Boltzmann weights:
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State Free energy Probability

folded, bound Ef + Eb pf,b = e
−β(Ef+Eb)

1+e
−βEf+e

−β(Ef+Eb)

folded, unbound Ef pf,ub = e
−βEf

1+e
−βEf+e

−β(Ef+Eb)

unfolded, unbound 0 puf,ub = 1

1+e
−βEf+e

−β(Ef+Eb)

(5.1)

Here β is inverse temperature, Ef is the free energy of folding (also known as ∆G), and

Eb = E′b − µ, where E′b is the binding free energy and µ is the chemical potential of the

target molecule. For simplicity, we will refer to Eb as the binding energy, unless indicated

otherwise. Note that Ef < 0 for intrinsically-stable proteins and Eb < 0 for favorable

binding interactions.

The folding and binding energies depend on the protein’s genotype (amino acid sequence)

σ. We assume adaptation only affects “hotspot” residues at the binding interface [257, 258];

the rest of the protein does not change on relevant time scales because it is assumed to

be already optimized for folding. If positions away from the binding interface can accept

stabilizing mutations (and are not functionally constrained), they may be explicitly included

into the model as “folding hotspots.” In the present study we focus on L binding hotspot

residues which, to a first approximation, make additive contributions to the total folding

and binding free energies [259, 260]:

Ef (σ) = Eref
f +

L∑

i=1

εf (i, σi), Eb(σ) = Emin
b +

L∑

i=1

εb(i, σ
i), (5.2)

where εf (i, σi) and εb(i, σ
i) capture the energetic contributions of amino acid σi at position

i. The reference energy Eref
f is the fixed contribution to the folding energy from all other
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residues in the protein. Furthermore, by construction it is also the total folding energy of

a reference sequence σref, so that εf (i, σi) can be interpreted as the ∆∆G value (change

in folding free energy Ef ) resulting from a single point mutation away from σref. The

parameter Emin
b is equal to the minimum binding energy among all genotypes.

Folding energetics are probed experimentally and computationally by measuring ∆∆G

values, which are the changes in Ef (also known as ∆G) resulting from single point muta-

tions. Values of ∆∆G are observed to be universally distributed over many proteins [242];

consistent with this observation, we sample entries of εf from a Gaussian distribution with

mean 1.25 kcal/mol and standard deviation 1.6 kcal/mol. For the reference sequence σref,

εf (i, σiref) = 0 for all i ∈ {1, . . . , L}, such that Ef (σref) = Eref
f . The parameter Emin

b is

defined as the binding energy of the genotype σbb with the lowest Eb: εb(i, σ
i
bb) = 0 for all

i ∈ {1, . . . , L}. Since binding hotspot residues typically have a 1–3 kcal/mol penalty for mu-

tations away from the wild-type amino acid (this requirement is used to define which residues

make up the hotspot) [257, 258], we sample the other entries of εb from an exponential dis-

tribution defined in the range of (1,∞) kcal/mol, with mean 2 kcal/mol. This distribution is

consistent with alanine-scanning experiments which probe energetics of amino acids at the

binding interface [261]. The exact shape of these distributions, however, is unimportant for

large enough L due to the central limit theorem. We consider L = 6 hotspot residues and a

reduced alphabet of k = 5 amino acids (grouped into negative, positive, polar, hydrophobic,

and other), resulting in 56 = 15625 possible genotypes.

5.1.2 Fitness landscape

We construct a simple fitness landscape based on the molecular traits Ef and Eb. Without

loss of generality, we assume that the protein contributes fitness 1 to the organism if it

is always folded and bound. Let fub, fuf ∈ [0, 1] be the multiplicative fitness penalties for

being unbound and unfolded, respectively: the fitness is fub if the protein is unbound but

folded, and fubfuf if the protein is both unbound and unfolded. Then the fitness of the
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protein averaged over all three possible structural states in Eq. 5.1 is given by

F(Ef , Eb) = pf,b + fubpf,ub + fubfufpuf,ub. (5.3)

This fitness landscape is divided into three nearly-flat plateaus corresponding to the three

protein states of Eq. 5.1, separated by steep thresholds corresponding to the folding and

binding transitions (Fig. 5.1A). The heights of the plateaus are determined by the values of

fub and fuf, leading to three qualitative regimes of the global landscape structure (Fig. 5.1B–

D).

In the first case (Fig. 5.1B), a protein that is perfectly folded but unbound has no fitness

advantage over an unbound and unfolded protein: fub = fubfuf. Thus we say that selection

only acts directly on the binding trait. This regime is realized when either fub = 0 (binding

is essential, e.g., in the context of conferring antibiotic resistance to the cell [31, 262]) or

fuf = 1 (misfolded proteins are not toxic). In contrast, when fub = 1 and 0 ≤ fuf < 1

(Fig. 5.1C), a perfectly folded and bound protein has no fitness advantage over a folded

but unbound protein, and thus this case entails direct selection only for folding. These

proteins are harmful to the cell in the misfolded state (e.g., due to aggregation or significant

costs of degrading unfolded proteins [238–241]), while binding provides no intrinsic fitness

advantage (the protein may have other, functional binding interfaces). Finally, it is also

possible that there are distinct selection pressures on both binding and folding. This occurs

when 0 < fub < 1 and 0 ≤ fuf < 1 (Fig. 5.1D).

It is straightforward to generalize our three-state model to proteins with additional struc-

tural states (other local minima on the folding energy landscape, other binding modes) and

allow for simultaneous adaptation at multiple binding interfaces. Furthermore, the fitness

landscape in Eq. 5.3 can be made an arbitrary nonlinear function of state probabilities.

However, these more complex scenarios would still share the essential features of our basic

model: coupling between folding and binding traits and sharp fitness thresholds between



106

10 5 0 5 10

Ef

10

5

0

5

10

Eb

A
Folded,

unbound
(F≈fub)

Folded, bound
(F≈1)

Unfolded,
unbound
(F≈fubfuf)

10 5 0 5 10

Ef

10

5

0

5

10

Eb

B

10 5 0 5 10

Ef

10

5

0

5

10

Eb

C

10 5 0 5 10

Ef

10

5

0

5

10

Eb

D

4 2 0 2 4

Ef

10

8

6

4

2

0

Eb

E

AA AB

BA

BB

6 5 4 3 2 1 0 1 2

Ef

6

5

4

3

2

1

0

1

2

Eb

F

σ1 σ ′1

σ2 σ ′2

σ3 σ ′3

Figure 5.1: Fitness, selection, and epistasis in energy trait space. (A) Phase dia-
gram of protein structure (Eq. 5.1) and fitness (Eq. 5.3). Dashed lines separate structural
phases of the protein corresponding to plateaus on the fitness landscape; arrows represent
the folding transition (green), binding transition (red), and the coupled folding-binding
transition (blue). Fitness landscapes F(Ef , Eb) with direct selection (B) for binding only
(fub = fuf = 0), (C) for folding only (fub = 1, fuf = 0), and (D) for both binding and
folding (fub = 0.9, fuf = 0). Black contours indicate constant fitness values. The con-
tours are uniformly placed in energy space; fitness differences between adjacent contours
are not all equal. Streamlines indicate the direction of the selection “force” ~∇ logF , with
color showing its magnitude (decreasing from red to blue). (E) Example projection of a
genotype distribution and mutational network into energy space for L = 2 and a two-letter
(k = 2) alphabet. (F) Blue arrows indicate the same mutation on different genetic back-
grounds. When the fitness contours are straight, the mutation is beneficial regardless of
the background (σ1 or σ2). However, with curved contours, the same mutation can become
deleterious (σ3 → σ′3), indicative of sign epistasis. Sign epistasis from curved contours can
give rise to multiple local fitness maxima (e.g., AA and BB in (E)).
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bound/unbound and folded/unfolded states. Thus our qualitative conclusions do not de-

pend on the specific model in Eq. 5.3.

5.1.3 Epistasis and local maxima

For protein sequences of length L with an alphabet of size k, each of the kL possible

genotypes is projected into the two-dimensional trait space of Ef and Eb (Eq. 5.2) and

connected to L(k − 1) immediate mutational neighbors, forming a network of states that

the population must traverse (a simple example is shown in Fig. 5.1E). Adaptive dynamics

are determined by the interplay between the structure of the fitness landscape in the energy

trait space (Fig. 5.1A–D) and the distribution of genotypes in trait space.

This interplay gives rise to the possibility of epistasis and multiple local fitness maxima.

Our model is non-epistatic at the level of the energy traits, since residues make additive

contributions to the total energies Ef and Eb (Eq. 5.2). Thus, mutations can be represented

as vectors in energy space, resulting in the same displacement in energies regardless of the

genetic background on which they occur (Fig. 5.1F). When the fitness contours are straight

parallel lines, there can be no sign epistasis on the fitness landscape: a mutation that is

beneficial on one background will be beneficial on all backgrounds. Magnitude epistasis,

on the other hand, is widespread due to the nonlinear dependence of fitness on folding

and binding energies. Curved fitness contours, which occur near the folding or binding

thresholds in our model (Fig. 5.1B–D), can produce sign epistasis in fitness, giving rise to

multiple local fitness maxima in the genotype space (Fig. 5.1E).

5.1.4 Evolutionary dynamics

We assume a population encoding the protein of interest evolves in the monomorphic limit

(defined in Sec. 1.4.1) as in previous chapters. We moreover consider the strong-selection

limit of N |s| � 1. In this case the Wright-Fisher fixation probability (Eq. 1.11) can be

approximated as
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φ(s) ≈





1− e−2s for s > 0,

0 for s < 0.

(5.4)

The substitution rate is Eq. 1.5 with the above fixation probability. Thus the effective

population size N sets the overall time scale (Nu)−1 of substitutions but does not affect fix-

ation probabilities. In this regime, deleterious mutations never fix and adaptive paths have

a finite number of steps, terminating at a global or local fitness maximum. For compact

genomic units such as proteins, the monomorphic condition is generally met in multicellular

species, although it may be violated in some unicellular eukaryotes and prokaryotes [263].

Sequential fixation of single mutants is also a typical mode of adaptation in directed evo-

lution experiments [40]. For simplicity, we neglect more complex mutational moves such as

indels and recombination.

5.1.5 Validity of the strong-selection approximation

Far from the binding and folding thresholds the fitness landscape becomes flat (Fig. 5.1A)

and the strong-selection assumption of Eq. 5.4 may be violated. To establish the limits of

validity for our model, we calculate average selection coefficients of accessible substitutions

(defined as s = Ffinal/Finitial − 1, where Finitial and Ffinal are the initial and final fitness

values of a substitution), both throughout the landscape and at the local maxima (Fig. 5.2).

The calculations were done for all three regimes of the model described above (Fig. 5.1B–D)

and for a wide range of folding and binding energies. We observe that for typical values of

the effective population size N ∈ (104, 107) [83, 263], the selection strengths in the model

justify our strong-selection approximation for realistic choices of energy parameters.

5.1.6 Quantitative description of adaptation

Although our model accommodates a general evolutionary process with any initial condition

for the protein, for concreteness we focus on a specific but widely-applicable scenario. A
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Figure 5.2: Average selection strength. (A) Average log10 s (s is the selection coefficient)
of all accessible beneficial substitutions as a function of Eref

f and Emin
b = Emin

b1
= Emin

b2
in

the case of direct selection for binding only (fuf = fub = 0). Due to the Eb symmetry of
this case (Fig. 5.1B), we can neglect differences in Emin

b1
and Emin

b2
without loss of generality.

(B) Same as (A) but limited to accessible substitutions that end at local fitness maxima.
(C) Average log10 s of all accessible beneficial substitutions as a function of Emin

b1
and Emin

b2

in the case of selection for folding only (fuf = 0, fub = 1, Eref
f = −5 kcal/mol). (D) Same as

(C) but limited to accessible substitutions that end at local fitness maxima. (E, F) Same as
(C, D) but for Eref

f = 0 kcal/mol. Simultaneous selection for both binding and folding yields

qualitatively similar results. All data points are averages over 104 landscape realizations.
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population begins as perfectly adapted to binding an original target molecule characterized

by an energy matrix εb1 with minimum binding energy Emin
b1

(defining a fitness landscape

F1). The population is then subjected to a selection pressure which favors binding a new

target, with energy matrix εb2 and minimum binding energy Emin
b2

(fitness landscape F2).

The population proceeds to adapt on this new landscape via the substitution dynamics of

Eqs. 1.5 and 5.4. The adaptive paths are first-passage paths leading from the initial state

to a local or global maximum on F2, with fitness increasing monotonically along each path.

Each adaptive path ϕ is a sequence of genotypes connecting the initial state (global

maximum on F1) with the final state (local or global maximum on F2). We calculate

various statistics of the adaptive path ensemble as discussed in Chapter 4. Specifically,

we determine the path-length distribution ρ(`), which gives the probability of taking an

adaptive path with ` amino acid substitutions, and the mean adaptation time t̄. We also

determine Spath (SΦ in the previous chapter), the entropy of the adaptive paths:

Spath = −
∑

ϕ

Π[ϕ] log Π[ϕ], (5.5)

where Π[ϕ] is the path probability functional defined in Eq. 4.10. The path entropy is

maximized when evolution is neutral, resulting in all paths of a given length being accessible

and equally likely: Spath = ¯̀logL(k−1) [11], where k is the size of the amino acid alphabet,

L is the number of residues, and ¯̀ is the average path length.

Finally, we consider ψ(σ), the probability of an adaptive path passing through or ending

at a genotype σ. For final states σ this corresponds to their commitment probability, defined

as the total probability of reaching the final state σ. We calculate the entropy Scom of the

commitment probabilities as

Scom = −
∑

final states σ

ψ(σ) logψ(σ), (5.6)

where the sum is over all final states σ (local fitness maxima). The commitment entropy
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Scom ranges from zero (for a single accessible final state) to logmacc, where macc is the total

number of accessible local maxima on F2.

We calculate these quantities using the exact numerical algorithm defined in Chapter 4.

The substitution rate W (σ′|σ) defines θ(σ) = (
∑

nn σ′ of σW (σ′|σ))−1, the mean waiting

time in genotype σ before a substitution occurs, where the sum is over all genotypes σ′ one

mutation away from σ (nearest mutational neighbors, “nn”). The substitution rates also

determine the probability Q(σ′|σ) = W (σ′|σ)θ(σ) of making the substitution σ → σ′, given

that a substitution occurs out of σ.

For each substitution ` and intermediate genotype σ, we calculate P`(σ), the total prob-

ability of all paths that end at σ in ` substitutions; T`(σ), the total average time of all such

paths; and Γ`(σ), their total entropy. As in Chapter 4, these quantities obey the recursion

relations of Eq. 4.34. We use these transfer matrix objects to calculate the following path

averages:

ρ(`) =
∑

σ∈Sf
P`(σ), ψ(σ) =

Λ∑

`=1

P`(σ), (5.7)

t̄ =
Λ∑

`=1

∑

σ∈Sf
T`(σ) =

Λ∑

`=1

τ(`) =
∑

σ∈S
τ(σ), τ(σ) =

Λ∑

`=1

θ(σ)P`(σ),

Spath =
Λ∑

`=1

∑

σ∈Sf
Γ`(σ), τ(`) =

∑

σ∈S
θ(σ)P`(σ).

The sums are calculated up to a path length cutoff Λ, which we choose such that 1 −
∑Λ

`=1 ρ(`) < 10−6. Note that the calculations for the state-dependent quantities ψ(σ) and

τ(σ) are simplified in this model (compared to the more general cases in Chapter 4) since

the strong-selection dynamics prevents the population from traversing loops in genotype

space.
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5.2 Modes of adaptation

5.2.1 Direct selection for binding only

We first focus on the case where selection only acts directly on the binding trait: fub =

fuffub in Eq. 5.3. This describes proteins with essential binding function (e.g., conferring

antibiotic resistance), or nonessential proteins with a functional binding interface for which

misfolding carries no additional fitness penalty beyond loss of function. This also includes

directed evolution experiments where only function is artificially selected in vitro. The

geometry of the fitness contours in this case is invariant under overall shifts in the binding

energy Eb (Fig. 5.1B); equivalently, the direction (but not the magnitude) of the selection

force (~∇ logF/|~∇ logF|) does not depend on Eb. Thus without loss of generality, we set

Emin
b1

= Emin
b2

in this section. The contours of constant fitness on this landscape are parallel

to the Ef axis when Ef is low, indicating that, as expected, selection acts only on binding

when proteins are sufficiently stable.

However, for marginally-stable proteins (Ef negative but close to zero), the fitness con-

tours begin to curve downward. Most natural proteins appear to fall into this range of

stabilities [59, 246, 264]. Even though selection only acts directly on the binding trait,

this regime of the fitness landscape includes apparent, indirect selection for folding induced

by the structural coupling between folding and binding: the protein can only bind when

folded. Thus, adaptation will produce a trait (more stability) that is neutral at the level of

the fitness function simply because it is coupled with another trait (binding) that is under

selection. Folding stability can therefore be considered an evolutionary spandrel [248]. Pro-

teins may even be intrinsically unstable (Ef > 0) and only fold when bound (Ef +Eb < 0),

which we refer to as binding-mediated stability. In this regime, the fitness contours ap-

proach diagonal lines: selection effectively acts to improve both binding and folding equally

(Fig. 5.1B), even though better folding is not advantageous per se.

An example realization of evolutionary dynamics in the marginally-stable regime is
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shown in Fig. 5.3A,B (see Fig. 5.4 for stable and intrinsically-unstable examples, and

Fig. 5.5 for average distributions of initial, intermediate, and final states). There is typically

just one or two fitness maxima (Fig. 5.3C), with a higher probability of multiple maxima

for marginally-stable proteins that have genotype distributions situated near the region of

curved fitness contours, leading to sign epistasis. Whenever there are multiple maxima,

they are usually all accessible (Fig. 5.3C). For stable proteins, the global maximum almost

always coincides with the best-binding genotype and is usually as far as a randomly-chosen

genotype from the best-folding genotype (Fig. 5.3D; two random sequences are separated

by 1 − 1/k = 0.8 for k = 5). However, as Ef becomes greater, the average distance

between the maxima and the best-binding genotype increases while the average distance

between the maxima and the best-folding genotype decreases, until they meet halfway for

intrinsically-unstable proteins, where effective selection for binding and folding is equally

strong (Fig. 5.3D). In general the maxima lie on or near the Pareto front [77, 265], defined

here as the set of genotypes such that either Ef or Eb cannot be decreased further without

increasing the other (the global maximum is always on the front, while local maxima may

not be). The location of the maxima along the Pareto front varies with the overall regime

of the folding energy (Fig. 5.3A, Fig. 5.4).

As Ef increases, the average distance between initial and final states for adaptation

decreases. As a result the average path length (number of substitutions) decreases as well,

although the variance in path length is relatively constant over all energies (Fig. 5.3E). The

path entropy per-substitution Spath/¯̀ also decreases with Ef : starting closer to the final

state means there are fewer possible beneficial substitutions, resulting in more constraints

on adaptive paths. Note that Spath/¯̀= logL(k− 1) ≈ 3.2 for neutral evolution, more than

twice as large as the path entropy observed in all regimes; this indicates that adaptive paths

are significantly constrained by selection. Finally, the entropy Scom of the commitment

probabilities ranges from zero for a single maximum to ≈ 0.31 in the marginally-stable

regime (Fig. 5.3F). Since the average number of maxima is ≈ 1.9 in this regime (Fig. 5.3C),
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Figure 5.3: Properties of adaptation with direct selection for binding only.
(A) Global distribution of folding and binding energies for all kL = 56 genotypes in a single
realization of the model with a marginally-stable protein (Eref

f = −3 kcal/mol). The black
star indicates the initial state for adaptation (global maximum on F1), red triangles indi-
cate local fitness maxima on F2 (shaded according to their commitment probabilities ψ(σ)),
and the blue crosses indicate best-folding and best-binding genotypes. The magenta line
connects genotypes on the Pareto front, and the black contours indicate constant fitness F2.
(B) The region of energy space accessible to adaptive paths (zoomed in from (A)). Example
paths are shown in blue and green; black circles indicate intermediate states along paths,
sized proportional to their path density ψ(σ); small gray circles are genotypes inaccessible
to adaptation. (C) Average number m of local fitness maxima (solid, green) and average
number macc of local maxima accessible to adaptation (dashed, blue) versus Eref

f . The aver-

age number of maxima is greatest at Eref
f ≈ −3 kcal/mol, where multiple local maxima are

separated by ≈ 2.23 substitutions on average. (D) Average per-residue Hamming distance
between the maxima and the best-folding genotype (δf ; solid, green) and the best-binding
genotype (δb; dashed, blue) versus Eref

f . (E) Average distributions ρ(`) of path lengths

(number of substitutions) ` for stable proteins (Eref
f = −15 kcal/mol), marginally-stable

proteins (Eref
f = −3 kcal/mol), and intrinsically-unstable proteins (Eref

f = 5 kcal/mol).

(F) Per-substitution path entropy Spath/¯̀ (solid, green) and entropy Scom (dashed, blue) of
the final state commitment probability distribution ψ(σ) versus Eref

f . Panel (E) is averaged

over 105 realizations of the model; all other averages are taken over 104 realizations. In all
panels fub = fuf = 0 and Emin

b1
= Emin

b2
= −5 kcal/mol.
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the maximum value of the commitment entropy is log 1.9 ≈ 0.64, over twice as large. This

indicates that even when multiple maxima are present, there is significant bias towards one

of them.

5.2.2 Direct selection for folding only

We next consider proteins for which only folding is directly selected: fub = 1 and 0 ≤ fuf < 1

in Eq. 5.3. This situation may arise if misfolded proteins are toxic, if they impose an in-

creased burden on protein synthesis and quality control machinery, or if misfolding interferes

with another function of the protein besides the binding interaction considered here [238–

241]. Here the binding interface under consideration is nonfunctional in the sense that

binding confers no fitness advantage, although the protein may also have other, functional

binding interfaces. Similar to the previous case, the geometry of the fitness contours and

thus most landscape properties are now independent of Ef (Fig. 5.1C); equivalently, nor-

malized selection force ~∇ logF/|~∇ logF| does not depend on Ef .

When the nonfunctional binding is weak, the fitness contours are parallel to the Eb

axis, indicating that selection acts only on folding (Fig. 5.1C). However, with increasing

binding strength the fitness contours begin to curve such that the effective selection force

attempts to improve both binding and folding equally. Thus binding emerges as an evo-

lutionary spandrel: although it is nonfunctional by itself, adaptation may produce strong

binding anyway due to its coupling with folding. Similar to the previous case with no

misfolding penalty, the weak-binding regime yields a single fitness maximum due to the

lack of sign epistasis (Fig. 5.6A). This maximum predominantly coincides with the best-

folding genotype. However, once the binding interaction becomes stronger (lower Eb), there

is an increased likelihood of multiple local maxima, located between the best-folding and

best-binding genotypes.

Depending on the abundance of the old and new ligands in the cell and their binding

properties, several adaptive scenarios may take place. First, the best-binding strengths
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Figure 5.6: Properties of adaptation with direct selection for folding only. (A) The
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. (C,D) Example landscape with divergent binding fates: there are two
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(negligible binding). All symbols are the same as in Fig. 5.3A,B. The commitment entropy is
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Emin
b1

and Emin
b2

of the old and new targets may be similar in magnitude. If both are weak,

initial and final states are likely to be the best-folding genotype or close to it (Fig. 5.6A); in

this case, there is a high probability that no adaptation will occur (Fig. 5.6B). When Emin
b1

and Emin
b2

are both low, adaptation usually occurs to accommodate the binding specificity

of the new ligand (Fig. 5.6B, Fig. 5.7A). Effective selection favors improving both folding

and binding equally in this regime, even though binding is not under direct selection. Sur-

prisingly, we see that proteins frequently evolve stronger binding at the expense of folding

(bottom panel of Fig. 5.7A). This happens due to the constraints of the genotype-phenotype

map: not enough genotypes are available to optimize both traits simultaneously.

It is also possible to gain or lose binding affinity at the nonfunctional interface through

adaptation. In the first case, the new target has stronger binding than the old one (Emin
b2

<

Emin
b1

). Thus the initial state is the best-folding genotype or close to it, and the protein

adapts toward a genotype with intermediate folding and binding (Fig. 5.7B). As before,

adaptation is tightly constrained by the genotype-phenotype map, sacrificing the trait (fold-

ing stability) under direct selection in order to affect the spandrel (nonfunctional binding

interaction). Effectively, the protein switches from being “self-reliant” to needing a binding

partner to remain viable. In the second case (Emin
b1

< Emin
b2

), the dynamics is opposite: the

initial state is an intermediate genotype between the best-folding and best-binding geno-

type, and the final state is likely to be the best-folding genotype as the binding interface is

effectively lost (Fig. 5.7C). Here, the protein becomes self-reliant. Thus proteins may ac-

quire or lose binding interfaces depending on the availability of ligands (or classes of ligands)

that can participate in binding-mediated stability. More generally, if the protein stability

is initially suboptimal due to an environmental change, the stability may be restored not

only through stabilizing mutations, but also by developing a novel binding interface which

may be specific or non-specific.
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Figure 5.7: Example and average landscapes for direct selection for folding only.
Symbols in top and middle panels are the same as in Fig. 5.3A,B, and the color scheme in
the bottom panels is the same as in Fig. 5.8C and Fig. 5.5. (A) Strong binding to both old
and new targets (Emin

b1
= Emin

b2
= −8 kcal/mol). (B) Weak binding to old target and strong

binding to new target (Emin
b1

= 0 kcal/mol, Emin
b2

= −8 kcal/mol). (C) Strong binding to old

target and weak binding to new target (Emin
b1

= −8 kcal/mol, Emin
b2

= 0 kcal/mol). We use

fub = 1, fuf = 0, and Eref
f = 0 kcal/mol in all cases. In the bottom panels, the landscapes

are averaged over 105 realizations.
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5.2.3 Divergent evolutionary fates

In the region where the fitness contours in Fig. 5.1C are curved, it is possible to have two or

more local maxima accessible to adaptation, with at least one having negative Eb (strong

binding) and at least one having positive Eb (negligible binding) (see Fig. 5.6C,D for an

example landscape). The selection streamlines are divergent in this regime (Fig. 5.1C), lead-

ing to the possibility of maxima that are widely separated in energy space. Thus a protein

may have two fates available to it: one in which it evolves to bind the target and another

in which it does not. The eventual fate of the protein is determined by random mutation

events. Indeed, the distribution of final states is strongly bimodal (Fig. 5.6E), yielding a

sizable probability of divergent fates across a range of binding strengths (Fig. 5.6F).

5.2.4 Simultaneous selection for binding and folding

Finally we consider a general case in which there are distinct selection pressures on both

binding and folding (0 < fub < 1 and 0 ≤ fuf < 1 in Eq. 5.3; Fig. 5.1D). This scenario is

realized when the binding interaction is functional but nonessential, while protein misfolding

entails a fitness penalty beyond mere loss of function. The fitness landscape is divided into

two regions by a straight diagonal contour with fitness fub and slope −1. Below this contour,

the landscape is qualitatively similar to the case of selection for binding only (Fig. 5.1B),

while above the contour the landscape resembles that of the folding-only selection scenario

(Fig. 5.1C). Thus evolutionary dynamics for proteins with favorable binding and folding

energies will largely resemble the case of selection for binding only. However, a qualitatively

different behavior will be observed if the distribution of genotypes straddles the diagonal

contour (Fig. 5.8). This will occur when initial folding stability is marginal and initial

binding is unfavorable. In this case, selection streamlines around the diagonal contour

(Fig. 5.1D) and the genotype-phenotype map tightly constrain the adaptive paths to gain

extra folding stability first, and then lose it as the binding function is improved.
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Figure 5.8: Properties of adaptation with direct selection for both folding and
binding. (A, B) Distribution of folding and binding energies in an example landscape for a
marginally-stable and marginally-bound protein; all symbols are the same as in Fig. 5.3A,B.
(C) Landscape averaged over 105 realizations. Distribution of initial states is shown in green,
intermediate states in blue (weighted by their path densities ψ(σ)), and final states in red
(weighted by their commitment probabilities ψ(σ)). In all panels fub = 0.9, fuf = 0, and
Eref
f = Emin

b1
= Emin

b2
= −4 kcal/mol.

5.2.5 Tempo and rhythm of adaptation

Lastly we consider the temporal properties of protein adaptation. The strength of selection

is the primary determinant of the average adaptation time t̄. If the selection coefficient s

is small (but Ns > 1), the substitution rate W (σ′|σ) in Eq. 1.5 is proportional to s. Thus

the dependence of total adaptation time on the energies Ef and Eb is very similar to the

dependence of selection strength on energies (Fig. 5.2): as selection becomes exponentially

weaker for lower energies, adaptation becomes exponentially slower. The distribution of

total adaptation time over an individual adaptive path is highly nonuniform on average.

For example, in the case of selection for binding only and a marginally-stable protein, the

adaptation time is concentrated at the end of the path, one mutation away from the final

state (Fig. 5.9A,B). Substitutions at the beginning of the path occur quickly because there

are many possible beneficial substitutions and because selection is strong; in contrast, at the

end of the path adaptation slows down dramatically as beneficial mutations are depleted and

selection strength weakens. This behavior is observed in most of the other model regimes

as well.
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Figure 5.9: Distribution of adaptation times over intermediate states. (A) The
same landscape realization as in Fig. 5.3A,B (selection for binding only on a marginally-
stable protein), but with each intermediate state σ sized proportional to τ(σ), the average
time spent in that state. (B) The probability ρ(`) (solid, green) of taking an adaptive
path of exactly ` substitutions and the average time τ(`) (dashed, blue) spent by paths
at the `th substitution, averaged over 105 realizations with fub = fuf = 0, Eref

f = −3

kcal/mol, and Emin
b1

= Emin
b2

= −5 kcal/mol. (C, D) Same as (A, B), but with the landscape
realization used in Fig. 5.8A,B (selection for both binding and folding, fub = 0.9, fuf = 0,
Eref
f = Emin

b1
= Emin

b2
= −4 kcal/mol).
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The exception to this pattern occurs in the case of selection for both binding and folding

in marginally-stable and marginally-bound proteins, due to the unique contour geometry

(Fig. 5.1D). As the adaptive paths wrap around the diagonal contour in the region of high

Eb and low Ef , the landscape flattens, making selection weaker and substitutions slower

(Fig. 5.9C). Thus the intermediate states near the diagonal contour dominate the total

adaptation time, and most of the waiting occurs in the middle of the path rather than

the end (Fig. 5.9D). Adaptation accelerates toward the end of the path as the strength

of selection increases again. If the intermediate slow-down is significant enough, a protein

may not have time to complete the second half of its path before environmental conditions

change, so that it will never actually evolve the new binding function.

5.3 Discussion

Protein folding and binding as evolutionary spandrels. In the decades since Gould

and Lewontin’s influential paper [248], the existence of evolutionary spandrels has emerged

as a critical concept to understand as we attempt to infer evolutionary history from present-

day traits of organisms. There are many possible scenarios in which spandrels can evolve [248,

249], although two key mechanisms are neutral processes, such as genetic drift and biases in

mutation and recombination [266], and indirect selection arising from coupled traits. Here

we have focused on the latter, which we expect to be more important on the short time

scales considered in our model.

Taverna and Goldstein [246] previously argued that the marginal stability of most pro-

teins may be an evolutionary spandrel that evolved not due to direct selection (as argued

by some authors, e.g. Ref. [55]), but due to mutation-selection balance [40, 59, 246]. Our

model more broadly argues that having folding stability at all may be a spandrel for pro-

teins with no misfolding toxicity. Even more striking is the possibility that some binding

interactions may be spandrels that evolved solely to stabilize proteins with toxic misfolding.

The structural coupling of folding and binding has been previously discussed in the context
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of intrinsically-disordered proteins, some of which only acquire an ordered structure upon

binding [267, 268], as described by the high Ef regime of our model. More recently, Dixit

and Maslov [269] studied the role of binding-mediated stability in the yeast proteome, es-

timating the effective extra protein stability conferred by binding. Our model reveals how

readily such nonfunctional binding interactions can evolve in proteins. The coupling between

folding and binding fundamentally arises from the fact that at finite temperature, proteins

fluctuate between different structural states. In particular, we expect more widespread

nonfunctional interactions among proteins with less intrinsic stability and therefore more

sensitivity to thermal fluctuations. It is not possible to directly test this prediction in the

absence of whole-proteome stability measurements, but it is strikingly consistent with avail-

able proteome-wide observations. Specifically, protein abundance is believed to correlate

positively with stability (−Ef ) to explain the observed negative correlation of abundance

with evolutionary rate [57, 61, 62]. Furthermore, models of protein-protein interaction

networks imply that protein abundance also correlates negatively with the number of in-

teractions [66]. Together these argue that stability should indeed be negatively correlated

with the number of interactions, as expected from our model. Experiments on specific

proteins support this finding: for example, destabilizing mutations in E. coli dihydrofolate

reductase (DHFR) were found to be compensated at high temperature by protein binding,

which protected against toxic aggregation [255].

In Appendix D we contrast these findings with a version of the model in which folding

and binding are not coupled, but occur independently. Some regimes produce qualitatively

similar landscapes and adaptive dynamics, but independent folding and binding precludes

the possibility of indirect selection and its consequences.

Pareto optimization of proteins. The Pareto front is a useful concept in problems

of multi-objective optimization [77, 265]. Proteins are one such system, since in general

they must optimize both folding stability and binding affinity for their targets. The Pareto

front in our model consists of the protein sequences along the low Ef , low Eb edge of the
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genotype distribution (Figs. 5.3A, 5.6C, 5.8A, 5.4A,C, 5.7). Pareto optimization assumes

that all states on the front are valid final states for adaptation; this in turn implies that

fitness has linear dependence on the individual traits. However, nonlinear fitness functions

with saturation-like effects will confound this assumption. Indeed, in the case of proteins,

once stability or binding is “good enough,” there should be little selection pressure to

improve it further. Our model shows how this leads to a small subset of genotypes on or

even off the front, usually just one of two, that are true final states for adaptation. Thus

Pareto optimization does not capture a key feature of the underlying biophysics, providing

only a rough approximation to the true dynamics.

Epistasis. Our model also sheds light on the role of epistasis — the correlated effects

of mutations at different sites — in protein evolution. Epistasis underlies the ruggedness of

fitness landscapes and their accessibility to evolving populations [24, 32]. Here we consider

a model of folding and binding energies that is purely additive (Eq. 5.2). Such energies

nevertheless result in epistasis through nonlinear dependence of fitness on energy (Eqs. 5.1

and 5.3). Magnitude epistasis is widespread in our model, while sign epistasis only arises

in regions where the fitness contours are curved (Fig. 5.1E,F). This picture of prevalent

magnitude epistasis but limited sign epistasis is qualitatively consistent with studies of

empirical fitness landscapes [24], and with directed evolution experiments that generally

report high accessibility of protein sequence space [40].

Double mutant experiments indicate that the additive energy model is a good approxi-

mation for residues that are not in direct physical contact [259, 260, 270, 271]. For spatially-

close residues, the mutational effects are largely “sub-additive” (diminishing-returns magni-

tude epistasis): two (de)stabilizing mutations combined will still usually be (de)stabilizing,

but less so than the sum of their individual effects [259, 270]. For example, Istomin et

al. [270] find that while residues separated by more than 6 Å are nearly additive (corre-

lation R2 = 0.97 with a slope of 0.88 between the sum of ∆∆G’s for two single mutants

and ∆∆G for the double mutant), spatially-close residues are substantially sub-additive
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(R2 = 0.84, slope of 0.54). Nonetheless, in regions with straight contours which represent

most of the fitness landscape, sub-additive energies cannot produce sign epistasis; substan-

tial deviations from energy sub-additivity are required to create additional local maxima

or place significant constraints on adaptive paths. Thus it appears that deviations from

energy additivity will not lead to qualitative changes in our model’s predictions.

Repeatability of evolution. Epistasis determines the repeatability of evolution, an

issue of paramount importance in biology [14, 31, 85]. How predictable are the intermediate

pathways and final outcomes for a protein evolving a new binding interaction? We use the

path entropy Spath and the commitment entropy Scom to address these issues quantitatively.

In many cases of the model, we see a diverse ensemble of pathways (high Spath) due to the

minimal sign epistasis, while the entropy Scom of final states is low because there is usually

only a single final state. Thus low sign epistasis gives rise to less predictable intermediate

pathways but highly predictable final outcomes.

However, there are two major exceptions to this pattern. First, for proteins with a

binding interaction under no direct selection, there is a substantial probability of having

multiple local maxima, with at least one having strong binding and another with weak

binding (Fig. 5.6). Here both intermediate pathways and final states are unpredictable

— pure chance, in the form of random mutations, drives the population to one binding

fate or the other. The possibility of nonfunctional interactions randomly evolving must

be accounted for in interpretations of observed protein interactions in naturally-evolved

organisms [66, 247]. The second exception occurs in proteins with direct selection for both

binding and folding. Here there is limited sign epistasis (usually a single maximum), but

the adaptive paths are tightly constrained in energy space (Fig. 5.8), gaining extra stability

first and then losing it as function is improved. Since most natural proteins appear to have

functional binding as well as toxic misfolding, natural protein evolution may be repeatable

at the level of folding and binding energy traits.
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Chapter 6

Conclusion and Outlook

In the foregoing chapters we have combined biophysical models, methods from stochastic

processes and statistical physics, and high-throughput data to address some questions on

the physical principles of evolution at the molecular scale. We have developed theoretical

tools in Chapters 2 and 4 and then applied them to specific systems in Chapters 3 and 5. We

have focused especially on how DNA-protein interactions and protein binding and folding

shape fitness landscapes, and how these landscapes in turn shape the evolutionary pathways

available to populations.

For transcription factor binding sites (Chapter 3), we found a simple model inspired

by thermodynamics adequately captures the observed diversity of binding sites in yeast;

however, the mismatch between the effective parameters of the inferred fitness landscape

and our biophysical expectations implies the importance of other factors beyond simple

DNA-protein interactions in binding site evolution. Additional data on DNA-protein inter-

actions, combined with a more sophisticated model of gene regulation and evolution, will

be necessary to complete this picture.

We also studied a model of protein evolution based on the biophysics of folding and

binding (Chapter 5). When there are distinct selection pressures on both folding and

binding, as is believed to be the case for many natural proteins, our model predicts that

evolutionary paths are tightly constrained at the level of biophysical traits: folding stability

is first gained and then partially lost as the new binding function is developed. We look

forward to directly verifying this qualitative prediction with in vivo or in vitro evolution

experiments.
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But the most important consequence of our model is conceptual: the structural cou-

pling of folding and binding enables protein traits to evolve as “spandrels” in the absence

of direct selection. In particular, proteins can evolve strong binding interactions that con-

fer no intrinsic fitness advantage but merely serve to stabilize the protein if misfolding is

deleterious. This observation is highly suggestive in light of recent experiments showing a

broad-tailed distribution of interaction partners for naturally-evolved proteins, which point

toward widespread nonfunctional interactions. We plan to use this existing high-throughput

data as well as controlled evolution experiments to look for signatures of our model predic-

tions.

However, these are only two areas in which biophysics is being fruitfully applied to

understanding evolution at the molecular scale. The rapid development of this subfield

of physical biology has been spurred by the enormous experimental and computational

advances of the past 20 years. In particular, high-throughput techniques such as whole-

genome sequencing [272], DNA microarrays [164], and microfluidics [166], combined with

massive international databases of molecular properties [264, 273], interactomes [274], and

genomics [275] have revolutionized the field and will likely continue to produce even more

abundant and precise data in the coming years.

The wealth of data will further fuel our efforts to build quantitative models and compre-

hensive theories of living matter, especially in terms of evolution. A multitude of outstand-

ing questions remains. What are the structures of fitness landscapes for complex molecular

networks, such as regulatory and metabolic networks, and how do populations traverse

them? What is the role of population dynamics — such as recombination, clonal interfer-

ence, ecological interactions, demography, and spatial structure — in molecular evolution?

How do collective behaviors seen in microbial colonies and multicellular organisms evolve?

And what can we learn from natural evolution to help us engineer synthetic organisms that

perform useful industrial and medical functions?

It is indeed an exciting time for science at the interface of physics and biology, as
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researchers from a host of traditionally-distinct disciplines unite in pursuit of common goals.

An era of unprecedented growth is upon us as the ambitions of our forerunners such as

Schrödinger come to fruition. It holds the promise to transform not only the technology

in our daily lives, but also our understanding of the most basic question we can ask about

ourselves: what is life?
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Appendix A

Additional Results for the Scaling Law

A.1 The scaling law in the weak-selection limit

Here we present an argument that the leading-order behavior of ψ(r) is always a power

law in the diffusion limit. Since ν = 2Nφ′(1), this is equivalent to showing that φ′(1) 6= 0,

which means that the fixation probability must be locally linear around the neutral limit

r = 1. The fixation probability in the diffusion approximation is given by [80]

φ(r) =

∫ 1/N
0 dx G(x, r)
∫ 1

0 dx G(x, r)
, G(x, r) = exp

(
−2

∫ x

0
dy

M(y, r)

V (y, r)

)
, (A.1)

where M(x, r) and V (x, r) are the first two moments of the change in mutant fraction x

per unit time. Define expansions of the moments:

M(x, r) = M0(x) + (r − 1)M1(x) +O((r − 1)2)

V (x, r) = V0(x) + (r − 1)V1(x) +O((r − 1)2).

(A.2)

Since evolution under pure drift (r = 1) is unbiased, the mean change in mutant fraction

without selection is zero: M0(x) = 0. Substituting these expansions into Eq. A.1 and

expanding to lowest order in r − 1, we obtain

φ(r) =
1

N
+2(r−1)

(
1

N

∫ 1

0
dx

∫ x

0
dy

M1(y)

V0(y)
−
∫ 1/N

0
dx

∫ x

0
dy

M1(y)

V0(y)

)
+O((r−1)2). (A.3)
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Therefore

φ′(1) = 2

(
1

N

∫ 1

0
dx

∫ x

0
dy

M1(y)

V0(y)
−
∫ 1/N

0
dx

∫ x

0
dy

M1(y)

V0(y)

)
, (A.4)

where φ′(1) = dφ(r)/dr|r=1. Note that V1(x) does not appear — the correction to the

second moment by weak selection does not affect the fixation probability expanded to the

lowest order. Thus, barring some coincidental cancellation of terms in Eq. A.4, φ′(1) should

be nonzero as long as M1(x) is nonzero.

To argue that M1(x) 6= 0, we invoke an operational definition of selection strength

described in Chapter 1. Experimental measurements of selection strength are often made

by inferring it as the exponential growth rate of a small mutant sub-population, at least for

microorganisms [276], so we require that the population model show this behavior. If X is

the random variable denoting the fraction of mutants in the population, its deterministic

equation is

d

dt
E[X] = E[M(X, r)], (A.5)

where E[·] is the expected value operator. In the limit of weak selection (r ∼ 1) and small

mutant fraction (X � 1),

d

dt
E[X] ≈ (r − 1)E[M1(X)] ∝ (r − 1)E[X], (A.6)

assuming that M1(x) is linear in x to the lowest order. This yields exponential growth at

a rate proportional to the selection strength s = r− 1. Therefore M1(x) should be nonzero

and hence φ′(1) is nonzero, establishing the power-law behavior of ψ(r) in the limit of weak

selection.

Equation A.4 suggests an interpretation of ν. Under the appropriate rescaling of time

units, the pure drift V0(x) is proportional to 1/N and M1(x) is independent of N . For
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example, this is true in the Wright-Fisher model with generations as the time unit, and it

also holds in the Moran model with the single birth/death time scaled by a factor of N .

Then Eq. A.4 implies that φ′(1) ∼ O(N0), and therefore ν ∼ O(N). This observation can

be generalized to a broader class of models in which V0(x) is proportional to 1/Ne, where

Ne is the variance effective population size [20, 102].

A.2 Exact Wright-Fisher fixation probability from discrete Markov chain

Studying discrete Markov chain properties of the Wright-Fisher model is not new [20].

However, previous work has typically focused on explicit results using spectral theory, with

particular emphasis placed on neutral evolution. In contrast, we will obtain an implicit

result suitable for numerical application. These results will allow investigation of the dy-

namics of the model under large selection effects that are beyond the scope of diffusion

theory.

The transition probabilities 〈n′|P|n〉 from Eq. 2.28 are elements of an (N + 1)× (N + 1)

matrix P. We will adopt the convention in which the final state n′ is the row index and

the initial state n is the column index. Transition probabilities between different states

at different time steps are given by the matrix elements of powers of P. That is, the

probability of transitioning from n to n′ in m generations is given by 〈n′|Pm|n〉. Therefore

the probability of fixation in m generations from initial state n is given by 〈N |Pm|n〉, and

the probability of fixing a single mutant in the infinite time limit is given by

lim
m→∞

〈N |Pm|1〉 = φ(r). (A.7)

This limit can be conveniently expressed by permuting the states to group the transient

states (n = 1, . . . , N − 1) together and the absorbing states (n = 0, N) together. Define

elements of the (N − 1)× (N − 1) submatrix 〈i|A|j〉 = 〈i|P|j〉 for i, j = 1, . . . , N − 1; this

matrix describes transitions between transient states only. Next, define elements of the
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2 × (N − 1) submatrix 〈α|B|i〉 = 〈α|P|i〉 for α = 0, N and i = 1, . . . , N − 1; this matrix

describes single-generation transitions from transient states to absorbing states. Now we

permute the indices to put P in the canonical form [277]:

P =




A 0

B 12


 , (A.8)

where 0 is the (N − 1)× 2 zero matrix and 1k is a k×k identity matrix. We can now easily

compute the infinite time limit:

lim
m→∞

Pm = lim
m→∞




A 0

B 12




m

= lim
m→∞




Am 0

B(1N−1 + A + · · ·+ Am−1) 12




=




0 0

B(1N−1 −A)−1 12


 ,

(A.9)

since Am → 0 as m→∞ and

(1N−1 −A)−1 =
∞∑

j=0

Aj . (A.10)

The fixation probability of a single mutant is given by the element of the matrix

B(1N−1 −A)−1 in the second row (corresponding to the final state n = N) and the first

column (corresponding to the initial state n = 1):

φ(r) = 〈2|(B(1N−1 −A)−1)|1〉. (A.11)

Alternatively, this expression can be expanded in powers of A:
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φ(r) = 〈2|B|1〉+

N−1∑

i=1

〈2|B|i〉〈i|A|1〉+

N−1∑

i,j=1

〈2|B|i〉〈i|A|j〉〈j|A|1〉+ · · · . (A.12)

Each term in the expansion represents the probability of fixing in a certain finite number

of generations: the first term is the probability of fixing in one generation, the second term

is the probability of fixing in two generations, etc.

For small population sizes N , Eq. A.11 can be evaluated explicitly:

N φ(r)

2 r2

1+r2

3 r3(8r3+48r2+6r+1)
8r6+48r5+6r4+65r3+6r2+48r+8

...
...

N rNaN (r)
bN (r)

(A.13)

Empirically we observe that aN (r) is a degree N(N − 2) polynomial and bN (r) is a degree

N(N−1) polynomial. Note that bN (r) appears to be palindromic: bN (r) = rN(N−1)bN (1/r).

Unfortunately, the polynomials in these exact expressions grow increasingly intractable with

N , making a numerical computation of φ(r) the only option. Equation A.11 can be rewritten

as

(1N−1 −A)TuT = BT , (A.14)

where u is the 2 × (N − 1) matrix of fixation and extinction probabilities from all initial

mutant frequencies. The resulting system of linear equations can be efficiently solved to

find u for the arbitrary fitness ratio r. The solution agrees extremely well with explicit

simulations (Fig. 2.2).
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Appendix B

Supplementary Material on Transcription Factor Binding

Site Evolution

B.1 Maximum-likelihood fits of fitness function parameters

For a given TF, let S = {σ} be the set of binding site sequences, and θ = (β, µ, f0, ν) the

parameters of the fitness function (Eq. 3.5). The log-likelihood is given by

logL(S|θ) =
∑

σ∈S
log π(σ|θ) =

∑

σ∈S
log

(
1

Z(θ)
π0(σ)(F(σ|θ))ν

)
, (B.1)

where F is the fitness function, and Z(θ) =
∑

σ π0(σ)(F(σ|θ))ν is the normalization.

Because the log-likelihood function has degenerate or nearly-degenerate regions in the

parameter space of θ, instead of maximizing by gradient ascent we obtain a global map of

the likelihood by calculating the function over a mesh of points in the parameter domain

β ∈ (0.1, 10) generated from β = 10n for n running from −1 to 1 in steps of 0.1, µ ∈ (−20, 0)

in steps of 0.2, ν ∈ (10−3, 105) generated from ν = 10n for n running from −3 to 5 in steps

of 0.1, and f0 ∈ (4.5 × 10−5, 1 − 4.5 × 10−5) generated from f0 = (1 + tanhn)/2 for n

running from −5 to 5 in steps of 0.1. Our predicted maximum is the maximum likelihood

point in the mesh, which is sufficiently fine to estimate all fitting parameters. We have

made the code for this procedure and for the analysis of site-specific selection available at

www.physics.rutgers.edu/~morozov/publications.html.

www.physics.rutgers.edu/~morozov/publications.html
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B.2 A model system to check the assumptions of monomorphism and

steady state

We consider a haploid asexual Wright-Fisher process [20]. The population consists of N =

1000 organisms, each with a single locus of L nucleotides. The new generation is created

by means of a selection step and a mutation step. In the selection step, sequences from the

current population are sampled with replacement, weighted by their fitness, to construct a

new population of size N . In the mutation step, each position in all sequences is mutated

with probability u. For simplicity, the mutation rates between all pairs of nucleotides are

the same.

We characterize the difference between the distribution expected by our model, πexp

(Eq. 2.13), and the distribution observed in simulations, πobs, using the total variation

distance (TVD):

∆(πexp, πobs) =
1

2

∑

x

|πexp(x)− πobs(x)|. (B.2)

The TVD ranges from zero for identical distributions to unity for completely non-overlapping

distributions. We calculate the TVD for the distributions in energy space, where the sum

in Eq. B.2 is over discrete energy bins (we bin the observed sequences by energy by divid-

ing the range from the minimum to the maximum sequence energy for a particular energy

matrix into 100 bins of equal size).

We begin by randomly generating the energy matrix parameters εσii . Each εσii in the

energy matrix is sampled from a uniform distribution and then rescaled such that the

distribution of all sequence energies has standard deviation of 1.0. This is achieved by

dividing all entries in the energy matrix by a factor χ:

χ2 =

L∑

i=1

∑

α∈{A,C,G,T}
π0(α)(εαi − ε̄i)2, (B.3)
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where εαi is the energy matrix element for base α at position i, L = 10 is the binding site

length, ε̄i =
∑

α∈{A,C,G,T} ε
α
i is the average energy contribution at position i, and π0(α) is

the background probability of nucleotide α (π0(α) = 0.25 for all α in our simulations). It

can be shown that χ is the standard deviation of the random sequence energy distributution,

which is approximately Gaussian [68]. We generate the energy matrix once and use it in all

subsequent simulations and maximum likelihood fits.

We perform the Wright-Fisher simulations in a range of mutation rates from u = 10−6

to u = 10−1 with a “non-lethal” Fermi-Dirac fitness function (Eq. 3.5 with f0 = 0.99,

β = 1.69 (kcal/mol)−1, and µ = −2 kcal/mol). We run 105 simulations for each mutation

rate for 100/u + 1000 steps, enough to reach steady state. Each simulation starts from a

monomorphic population with a randomly chosen sequence. We construct the steady state

distribution for each mutation rate by randomly choosing a single sequence from the final

population of each simulation. Collected across all simulations, these are used to construct

a distribution of sequences at each mutation rate. Additionally, we record the average final

number of unique sequences at each mutation rate.

We perform another set of Wright-Fisher simulations with the same fitness function and

energy matrix as above, and u = 10−6. We run 105 simulations, each starting from the same

monomorphic population with a specific sequence of E ≈ 0. At regular intervals in each

simulation, we record a randomly chosen sequence from the population. Collected across all

simulations, these are used to construct a distribution of sequences at each point in time.

B.3 Binding site and energy matrix data

We obtain curated binding site locations for 125 TFs from Ref. 162, which provides a poste-

rior probability that each site is functional based on cross-species analysis. We only consider

sites with a posterior probability above 0.9. For this analysis, we use the Saccharomyces

Genome Database R53-1-1 (April 2006) build of the S. cerevisiae genome.

We obtain position-specific affinity matrices (PSAMs) for a set of 26 TFs from an in
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vitro microfluidics analysis of TF-DNA interactions [166]. This study provides PSAMs for

each TF determined using the MatrixREDUCE package [165]. We convert the elements

of the PSAM wiα to energy matrix elements using εiα = − log(wiα)/β, where β = 1.69

(kcal/mol)−1 at room temperature. For each of these 26 TFs, genomic sites are available

in Ref. 162. We neglect PHO4 since it does not have any binding sites above the 0.9

threshold in Ref. 162, leaving us with 25 TFs for which both an energy matrix and a set of

genomic binding sites are available. We align the binding site sequences from Ref. 162 to

the corresponding energy matrices, choosing the alignment that produces the lowest average

binding energy for the sites.

B.4 Essentiality data

The Yeast Deletion Database classifies genes as essential, tested (nonessential), and un-

available, which number 1156, 6343, and 529, respectively [167, 175]. For each essential or

tested gene, we determine all TF binding sites less than 700 bp upstream of the gene’s tran-

scription start site (on either strand), which we designate as the sites regulating that gene.

Growth rates for nonessential knockout strains are provided under YPD, YPDGE, YPG,

YPE, and YPL conditions, relative to wild-type. We choose the lowest of these growth

rates to represent the fitness effect of the knockout.

To measure the rate of nonsynonymous substitutions, we align the non-mitochondrial,

non-retrotransposon ORFs taken from the Saccharomyces Genome Database R64-1-1 (Febru-

ary 2011) build [275] of S. cerevisiae to those of S. paradoxus using ClustalW [278]. We

measure the rate of nonsynonymous mutations using PAML [279]. We ran PAML with a

runMode of -2 (pairwise comparisons) and the CodonFreq parameter (background codon

frequency) set to 2; we also tested CodonFreq set to zero and obtained very similar results.

We find the rate of nonsynonymous substitutions to be 0.04, and a Spearman rank cor-

relation of −0.16 (p = 10−27) between growth rate of knockouts and the nonsynonymous

substitution rate of the knocked-out gene. This is consistent with the results of Ref. 182,
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which found the rate of substitutions to be 0.04 and the rank correlation between growth

rate and substitution rate to be −0.19 (p = 10−35).

To compare binding energy to evolutionary conservation, we calculate the mean Ham-

ming distance between S. cerevisiae sites and corresponding sites in S. paradoxus [162]. To

test for significance in the difference of mean energies and Hamming distances of sites reg-

ulating essential and nonessential genes, we use a null model which assumes that the sites

were randomly categorized into essential and nonessential. We randomly choose a subset of

the sites in our dataset to be “nonessential,” equal in size to the number of sites regulating

nonessential genes as classified by the Yeast Deletion Database. By repeating this proce-

dure 107 times, we build a probability distribution for the difference in the means of the

nonessential and essential groups. The p-value is the probability of obtaining a difference

in the means greater than the empirically measured value.

B.5 Neutral binding site energy distributions

We construct the neutral probability π0(σ) of a sequence σ with length L as

π0(σ) = π0(σ1)
L∏

i=2

π0(σi−1, σi), (B.4)

where π0(σi) is the background probability of a nucleotide σi, and π0(σi−1, σi) is the back-

ground probability of a dinucleotide σi−1σi. These probabilities are determined from mono-

and dinucleotide frequencies in the intergenic regions of the S. cerevisiae genome (build

R61-1-1, June 2008). We project π0(σ) into energy space using Eq. 3.2 to obtain π0(E),

the neutral distribution of binding energies for sequences of length L.

If intergenic sequences evolve under no selection with respect to their TF-binding energy,

the neutral distribution of site energies should closely match the actual distribution of L-

mer sequences obtained from intergenic regions. Table B.2, column B shows that these two

distributions match very well except at the low-energy tail, which is enriched in functional
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binding sites. Note that accounting for dinucleotide frequencies is important; mononu-

cleotide frequencies alone are insufficient to reproduce the observed distribution [178].

B.6 Supplementary tables
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Table B.1: Full summary of tests for site-specific selection. For 25 TFs we com-
pute TF-DNA interaction energies (in kcal/mol) for each site. Columns from left to right:
(A) Essentiality of the TF according to the Yeast Deletion Database; total number of bind-
ing sites for each TF; total number of sites with unique sequences. The table lists how many
essential and nonessential genes are regulated by each TF, and how many of these genes
have gene expression and S. paradoxus KA/KS ratio data. We also report the mean energy
Ē and the variance V of essential and nonessential sites, and mean Hamming distance d̄
and mean squared energy difference between S. cerevisiae and S. paradoxus sites regulating
essential and nonessential genes. (B) Growth rate in strains with nonessential gene knock-
outs versus energy of TF binding sites regulating the knockout genes. (C) Gene expression
versus energy of TF sites regulating the genes. (D) Ratio of nonsynonymous to synonymous
substitutions (KA/KS) in genes versus energy of their TF regulatory sites. (E) Distance
between each binding site and the closest transcription start site (TSS) versus the energy
of the site. For (B)–(E) we report the Spearman rank correlation ρ between each property
and site energy, along with the p-value.
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Table B.2: Summary of fitness landscape fits to TF binding site data. We consider
12 TFs which have more than 12 unique binding site sequences. Each row corresponds
to a TF, ranked in the decreasing order of the number of unique binding site sequences.
Columns, from left to right: (A) Summary of TF binding site data. (B) Same as Fig. 5A.
(C) Same as Fig. 5B. (D) Fitted values of fitness landscape parameters and maximized
log-likelihoods for the unconstrained fit to the Fermi-Dirac function of Eq. 6 (“UFD”),
constrained fit to the Eq. 6 with f0 = 0.99 (“CFD”), and fit to an exponential fitness
function (“EXP”). (E) Same as Fig. 5C. (F) Same as Fig. 5D. (G) Left panel: Log-likelihood
of the unconstrained Fermi-Dirac model as a function of the effective chemical potential µ.
For reference, the distribution of functional binding site energies (same as in (B)) is shown
on top. Right panel: Log-likelihood as a function of the effective inverse temperature β. For
reference, the inverse room temperature 1.69 (kcal/mol)−1 is shown as the vertical dashed
line. To generate the log-likelihood plots, µ or β were scanned across a range of values while
all the other parameters were re-optimized for each new value of µ or β. (H) Heatmap of
log-likelihood as a function of log ν and − log(1− f0) (note that ν(1− f0) = γ = constant
corresponds to a straight line with slope 1 in these coordinates). For likelihoods that have
a maximum near f0 = 0, insets show a zoomed-in view. To generate the log-likelihood
heatmaps, ν and f0 were scanned across the region shown while the other parameters (β
and µ) were re-optimized at each point separately.
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Table B.3: Estimates of fitting error. For the 12 TFs in Table B.2, we analyze the
quality of fit. Columns, from left to right: (A) Eigenvalues and eigenvectors of the Hessian
of the likelihood function around the fit maxima. Eigenvectors of the Hessian represent
principal directions and the corresponding eigenvalues represent the curvature in those
directions, which should be negative at a local maximum. Positive eigenvalues occur if the
maximizer did not reach a maximum. Here, the degeneracy represented by γ = ν(1− f0) is
apparent as many fits have an eigenvalue close to zero (flat) or even slightly positive in the
direction (ν, f0). For fits subject to the µ-γ degeneracy, one can see a second low eigenvalue
corresponding to the µ direction. For computational reasons the Hessian is evaluated using
transformed variables log ν, µ, log β, and T (f0) = atanh(2f0 − 1). (B) For each TF, 64
subsets of the full data set were generated by randomly selecting half of the binding sites in
the full data set. Maximum likelihood fits were carried out as for the full data set, except
that to reduce computation time the grid spacing in the initial four dimensional parameter
search was doubled. Shown here are histograms of the resulting parameters. Red dashed
lines indicate the maximum likelihood value of each parameter obtained from the full data
set.
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Appendix C

Proof of the Path Expansion for Markov Processes

Here we explicitly show that the path expansion in the fully-Markov case actually sums to

the total propagator (Eq. 4.12). First note that the Laplace transform of the propagator is

∫ ∞

0
dt e−st〈σ′|etW|σ〉 = 〈σ′|(s1−W)−1|σ〉, (C.1)

where 1 is an identity matrix of the same dimension as W. We also note that for two

matrices A and B,

(A−B)−1 = A−1 + A−1BA−1 + A−1BA−1BA−1 + · · · . (C.2)

This can easily be proved by multiplying both sides by A−B.

Now we decompose the full rate matrix W into a component with only the diagonal

elements, Wdiag, and a component with only the off-diagonal elements, Woff, and expand:

(s1−W)−1 = (s1−Wdiag −Woff)−1

= (s1−Wdiag)−1 + (s1−Wdiag)−1Woff(s1−Wdiag)−1

+ (s1−Wdiag)−1Woff(s1−Wdiag)−1Woff(s1−Wdiag)−1 + · · ·

(C.3)

Since
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〈σ′|Woff|σ〉 = (1− δσ′,σ)〈σ′|W|σ〉,

〈σ′|(s1−Wdiag)−1|σ〉 =
δσ′,σ

s− 〈σ|W|σ〉 = δσ′,σ
θ(σ)

1 + sθ(σ)
,

(C.4)

we insert identities of the form 1 =
∑

σ |σ〉〈σ| to obtain

〈σ′|(s1−W)−1|σ〉 = 〈σ′|(s1−Wdiag)−1|σ〉

+
∑

α,β

〈σ′|(s1−Wdiag)−1|β〉〈β|Woff|α〉〈α|(s1−Wdiag)−1|σ〉+ · · ·

= δσ′,σ
θ(σ)

1 + sθ(σ)
+
∑

α,β

δσ′,βθ(σ
′)

1 + sθ(σ′)
(1− δα,β)〈β|W|α〉 δα,σθ(σ)

1 + sθ(σ)
+ · · ·

= δσ′,σ
θ(σ)

1 + sθ(σ)
+ (1− δσ′,σ)

θ(σ′)〈σ′|W|σ〉θ(σ)

(1 + sθ(σ′))(1 + sθ(σ))
+ · · ·

= δσ′,σ
θ(σ)

1 + sθ(σ)
+ (1− δσ′,σ)

θ(σ′)
(1 + sθ(σ′))

〈σ′|Q|σ〉
(1 + sθ(σ))

+ · · · .

(C.5)

This is therefore a sum over individual path propagators in s-space of the form in Eq. 4.9.

Carrying out the inverse Laplace transform on both sides back to the time domain yields

Eq. 4.12.
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Appendix D

Protein Evolution with Independent Folding and Binding

Here we consider a model of protein evolution similar to that in Chapter 5, but in which

folding and binding and structurally-independent traits of the protein. (This is based on

Refs. 10, 11.) The protein thus has four possible structural states (instead of three, cf.

Eq. 5.1), with the following free energies, equilibrium probabilities, and fitnesses:

State Free energy Probability Fitness

folded, bound Ef + Eb
e
−β(Ef+Eb)

1+e
−βEf+e−βEb+e

−β(Ef+Eb)
1

folded, unbound Ef
e
−βEf

1+e
−βEf+e−βEb+e

−β(Ef+Eb)
f0

unfolded, bound Eb
e−βEb

1+e
−βEf+e−βEb+e

−β(Ef+Eb)
f0

unfolded, unbound 0 1

1+e
−βEf+e−βEb+e

−β(Ef+Eb)
f0

(D.1)

The average fitness is therefore:

F(Ef , Eb) =
e−β(Ef+Eb) + f0e

−βEf + f0e
−βEb + f0

e−β(Ef+Eb) + e−βEf + e−βEb + 1
. (D.2)

Figure D.1 shows the fitness landscape in Eq. D.2 as a function of the energy traits Ef
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Figure D.1: Fitness landscape and selection streamlines for independent folding
and binding. Contours are drawn as in Fig. 5.1, but with the fitness function in Eq. D.2
(f0 = 0).

and Eb, along with the streamlines for the selection force (cf. Fig. 5.1). Unconstrained,

populations will tend to follow these selection streamlines in trait space to maximize fitness.

In this case, selection clearly drives the population toward lower Ef and Eb. The geometry

of the fitness contours, or equivalently the selection streamlines, falls into three general

classes depending on the overall regimes of Ef and Eb. For low Ef and high Eb (very stable

but poor binding), the fitness contours are approximately horizontal lines; hence, selection

drives populations toward stronger binding (lower Eb) with little regard for the effect on

Ef , since the protein is already so stable. We think of adaptation in this regime as in

the binding phase, since the need to bind the new target molecule dominates evolutionary

dynamics. Figure D.2A shows an example realization of adaptation in this regime. For high

Ef and low Eb (strong binding but marginally stable), we see the opposite situation: fitness

contours are approximately vertical, and selection drives populations toward more stable

folding (lower Ef ). We refer to this as the folding phase of adaptation (see Fig. D.2C for an

example). In between there is a crossover regime when Ef and Eb are of similar magnitude.

Here the fitness contours have sharp, 90◦ corners, and selection tends to optimize binding

and folding equally (Fig. D.2B).

By varying the overall energy offsets Eref
f and Emin

b we can systematically shift the

model between these different phases. We scan over these parameters and calculate average

properties of the landscape and adaptation in Figs. D.3 and D.4. We see that in the binding
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C Folding phase

Figure D.2: Example landscapes for independent folding and binding. Symbols are
the same as Fig. 5.3A,B. The offsets Eref

f and Emin
b1

= Emin
b2

are different for each realization,
but εf ’s and the two sets of εb’s (one for F1 and another for F2) are the same. (A) Binding
phase, with Eref

f = −17 kcal/mol and Emin
b1

= Emin
b2

= −3 kcal/mol. (B) Crossover regime,

with Eref
f = −9 kcal/mol and Emin

b1
= Emin

b2
= −11 kcal/mol. (C) Folding phase, with

Eref
f = −3 kcal/mol and Emin

b1
= Emin

b2
= −17 kcal/mol. We use f0 = 0, L = 5, and k = 8.
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Figure D.3: Phases of adaptation for independent folding and binding. (A) Av-
erage number m of local fitness maxima as a function of the energy offsets Eref

f and Emin
b .

(B) Average number m of local fitness maxima (solid, green), average Hamming distance δf
between the maxima and the best-folding sequence (dashed, blue), and average Hamming
distance δb between the maxima and the best-binding sequence (dotted, red) for the pa-
rameter subspace Eref

f +Emin
b = −20 kcal/mol. Note that the distance between two random

sequences is 1− 1/k = 0.875, where k = 8 is the alphabet size. All data points are averages
over 5 × 103 realizations; realizations with no adaptation are excluded. We use f0 = 0,
L = 5, and k = 8.

phase, there is typically a single local fitness maximum which coincides with the best-

binding genotype (Fig. D.3). In the folding phase, there are also few local maxima but they

tend to be close in genotype space to the best-folding genotype (Fig. D.3). The crossover

regime, however, has the most epistasis, as indicated by the number of local maxima, the

accessibility of those maxima, and the fraction of fitness landscape realizations in which the

global maximum has the largest commitment probability (Figs. D.3, D.4A). The different

landscape structures in the binding and folding phases lead to substantial differences in

adaptive dynamics. In particular, paths are longer and take more time in the binding phase

compared to the folding phase; they are also more diverse (Fig. D.4C,D). Initial and final

states in the binding phase are separated by longer Hamming distances (Fig. D.4C). In the

folding phase, there is an appreciable probability that no adaptation occurs at all, since the

initial state may coincide with one of the local maxima (Fig. D.4B).
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Figure D.4: Average properties of adaptation for independent folding and bind-
ing. (A) Fraction of local fitness maxima accessible from the initial state (solid, green),
and probability that the global maximum has the largest commitment probability (com-
mittor) among all local maxima (dashed, blue). (B) Probability that the initial sequence
starts at a local maximum resulting in no adaptation (solid, green), and fraction of sequence
space accessible to adaptive paths (dashed, blue). (C) Mean path length ¯̀ (dashed, blue),
maximum possible path length `max (dotted, red), and the average net distance `min be-
tween the initial state and final states (solid, green). On average, proteins undergo twice
as many substitutions as the net distance `min, and the maximum number of substitutions
is three times larger than `min. (D) Path entropy Spath. All quantities in (C) and (D) are
per-residue. The probability of no adaptation in (B) is an average over 2 × 104 landscape
realizations; all other data points are averages over 5 × 103 realizations, and realizations
with no adaptation are excluded.
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[213] Maes C, Netoc̆ný K, Wynants B (2009) Dynamical fluctuations for semi-Markov pro-
cesses. J Phys A: Math Theor 42:365002.

[214] Cox DR (1962) Renewal Theory. (Methuen, London).

[215] Abramowitz M, Stegun IA (1964) Handbook of Mathematical Functions. (Dover, New
York), Tenth edition.

[216] Majid I, ben-Avraham D, Havlin S, Stanley HE (1984) Exact-enumeration approach
to random walks on percolation clusters in two dimensions. Phys Rev B 30:1626–1628.

[217] Bollt EM, ben-Avraham D (2005) What is special about diffusion on scale-free nets?
New J Phys 7:26–47.

[218] Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in
C: The Art of Scientific Computing. (Cambridge, Cambridge), Second edition.
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