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ABSTRACT OF THE DISSERTATION 

Methods for Robust Calibration of Traffic Simulation Models  

by SANDEEP MUDIGONDA 

 

Dissertation Director 

Kaan Ozbay 

 

Well-calibrated traffic simulation model predictions can be highly valid if various 

conditions arising due to time-of-day, work zones, weather, etc. are appropriately 

accounted for during calibration. Calibration of traffic simulation models for various 

conditions requires larger datasets to capture the stochasticity. In this study we use 

datasets spanning large time periods to, especially, incorporate variability in traffic flow 

and speed. However, large datasets pose computational challenges. With the increase in 

number of stochastic factors, the numerical methods suffer from curse of dimensionality.  

We propose a novel methodology to address the computational complexity in 

simulation model calibration under highly stochastic traffic conditions. This methodology 

is based on sparse grid stochastic collocation, which treats each stochastic factor as a 

different dimension and uses a limited number of points where simulation is performed. 

A computationally-efficient interpolant is constructed to generate the full distribution of 

the simulated output. We use real-world examples to calibrate for different times of day 

and conditions and show that proposed methodology is more efficient than traditional 
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Monte Carlo-type sampling. We validate the model using a hold-out dataset and also 

show the drawback of using limited data for macroscopic simulation model calibration. 

Modelers could often face situations with limited data in calibrating for a 

particular condition, often when using traffic sensor data. We augment the current data 

with other sources when sensor data is missing.  

For calibrating microscopic traffic simulation models needing customized models 

augmenting the default modeling, require detailed site-specific data. In such cases same 

generic calibration methodology may not be applicable and specialized formulations are 

required. We propose the use of a simulation-based optimization (SBO) framework for 

calibration of toll plaza models that economizes on data requirements. The novelty of the 

SBO framework is that parameters corresponding to unavailable data can be used as 

calibration parameters. Using case studies the benefits of the SBO framework are 

demonstrated. Furthermore, we combine the sampling and interpolation using stochastic 

collocation with the SBO framework. Using this hybrid framework, we perform 

calibration to obtain distribution of output from the toll plaza model that closely follows 

the observed measures at the toll plaza.  
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CHAPTER 1. INTRODUCTION  

1.1 Background 

Traffic simulation models are computational tools based on certain mathematical 

principles that govern traffic flow. Over the past century, traffic models came through a 

significant amount of development. They have increased in complexity ranging from a 

simple input-output type model to macroscopic models to highly-detailed microscopic 

simulation model. The microscopic models represent each car separately with a number 

of complex parameters. In highway transportation, micro simulation tools such as 

CORSIM (Kim and Rilett (2003)), PARAMICS (Ma and Abduhai (2002), Zhang et al. 

(2008), Lee and Ozbay (2009), Yang and Ozbay (2011)), and VISSIM (Menneni et al. 

(2008)), AIMSUN (Hourdakis et al. (2003)) among others, allow traffic engineers and 

planners assess the performance of existing roadway systems in a detailed manner by 

constructing a model of the existing facilities, such as toll plazas, signalized and 

unsignalized intersections and traffic circles, as well as to predict the effects of potential 

operational or infrastructure changes.  

The purpose of constructing a computational model for traffic networks is that the 

model’s outputs are representative of real-world traffic conditions. The traffic conditions 

are dependent on many factors such as time, weather, road geometry, pavement 

condition, unpredictable factors such as accidents, etc. The availability of a simulation 

model that accurately represents different traffic conditions is of paramount importance 

for any analysis involving traffic modeling. Thus, the value of these tools lies in their 
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ability to stochastically simulate drivers’ behavior, such as lane changing, car following, 

gap acceptance and route choice. The functions or rules that govern drivers’ decisions in 

simulation software tools need to be fine-tuned to reproduce field conditions. Despite the 

advances in computing power and the ability of available simulation tools to represent 

complex driver behavior, simulation modeling and analysis is still a long and painstaking 

procedure, requiring extensive field data for validation/calibration.  

Model verification, calibration and validation are important steps in the 

development of a valid simulation model, and crucial for ensuring reliable information is 

gathered from these models.  

Model verification means building the model correctly. This stage deals with 

accurately transforming the model concept from a simulation flowchart into a model 

specification using a computer program (Balci (1997)). Model calibration is the process 

to obtain a desired confidence level where the model and its results are reasonable for the 

objective it was developed for. The validation process ascertains that the output data 

obtained from the simulation model driven by the input data are close to the real system 

output data. When comparing the system and model output data, if there are substantial 

differences in the comparison, some correction factors are added in the input data. Then 

the model and system output data are compared again. This iterative procedure of input 

modification to meet the target output measures is called “calibration”. In this study, for 

the sake of brevity, we use “calibration” as a generic term to describe the validation and 

calibration process.  
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The outputs of traffic simulation models are derived from a particular set of 

mathematical equations and relationships given a specific input data. The input data 

consists of two main groups of data: physical input data Is (e.g., volume counts, origin-

destination demands, capacity and physical features of roadway sections) and driver 

specific parameters Cs (i.e., adjustable components of driver behavior such as free flow 

speed, reaction time, mean headway, etc.). Output from a simulation model can be 

expressed as equation (1.1).  

: ( , ) | ,

( , ) functional specification of the internal models in a simulation system

 simulation output given the input data and calibrated parameters,

margin of error betwee

obs s s sim s s

s s

sim

O f I C O I C

f I C

O





 





 n simulation output and observed field data, and,

observed field data.obsO 

 
(1.1) 

The process of calibration entails adjusting the calibration parameters (Cs) so that 

the error between the output from simulation and field conditions is minimized as shown 

in equation (1.2),  

min ( , ( , ))

where,

, - observed and simulated outputs 

 - parameter set 

 - error functions for outputs

S

obs sim s s
C

obs sim

S

U O O I C

O O

C

U

 (1.2) 

In transportation engineering an error statistic often used is Geoffrey E. Havers 

(GEH) statistic, which is very similar, but less rigorous, to the statistic used by 

statisticians and economists for forecasting called Theil’s U index of inequality (Theil, 

1961). GEH and Theil’s U index are of the form shown in equation (3). Another 

commonly used error statistic for calibration of simulation models is root mean square 
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percent error (RMSPE) shown in equation (1.3). 
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1.3) 

FHWA’s Traffic Analysis Toolbox recommends that if GEH < 4 for link volumes 

for 85% of the links and average travel times are within 15% of observed values, then it 

is considered as a satisfactorily calibrated model (Dowling et al. (2004)). Theil’s U index 

varies between 0 and 1, with 0 showing a perfect model and 1 implying a completely 

wrong prediction. In order to achieve this level of calibration for various conditions 

(peak, off-peak, weekends, workzone conditions, normal and inclement weather, under 

accident, and other events), detailed level of data is required. 

1.2 Motivation 

Traditionally traffic simulation models are used to study scenarios for a certain 

time period of a so called “typical day”. However, as shown in Ozbay et al. (2014), the 

determination of a typical day is not a trivial task or a typical day may not even exist in 

reality. The above assertion is based on the distribution and spread of traffic demand. 

However, the actual traffic flows along the section of interest would also vary based on 

many conditions such as, work zones, driver/vehicular variability and other unobserved 
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phenomena. Thus, the existence of a “typical” day in the supply-side traffic output is also 

not always likely. Limited data captures only a few specific conditions, or is a dilute 

sample of different conditions. As depicted in Figure 1-1, using only smaller samples of 

data will not accurately capture variation in traffic data.  

Thus, calibration parameters estimated using limited sample data are not always 

representative of all possible conditions of the simulated system and might thus result in 

inaccurate predictions. Hence, it is expected that the model predictions will only be 

accurate for those specific conditions. Using these models for conditions other than the 

ones for which calibration data was available for would not yield accurate results. As 

mentioned earlier, variability can be incorporated within inputs (demands) Is and 

calibration parameter set (supply) Cs during different periods of the day, work zone 

activity, weather conditions, driver population composition, highway geometry, etc.  In 

order to obtain accurate predictions from a traffic simulation model, it is important to 

consider not only the demand- and supply-side variations from various conditions, but 

also the variation of demand- and supply-side variations within each type of condition. 

Hence, the typical day scenario might not be the best scenario to test the effectiveness of 

operational strategies. Moreover, there is an increasing trend for using well-calibrated 

simulation models as predictive tools for real-time traffic control (Vasudevan and 

Wunderlich (2013), Yelchuru et al. (2013), USDOT ICM, Olyai (2011), Dion et al. 

(2009)). Clearly, these simulation models have to work under a combination of 

conditions that will considerably deviate from the typical day scenario. 
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Figure 1-1 Illustration of various traffic conditions for which data is required 

for calibration (adapted from (Wunderlich (2002)) 

Traditional sources of traffic data used in the calibration of traffic models are 

either limited by the availability of the data that only cover typical conditions or may not 

be reliable enough. However, with the advent of new information technologies, 

unprecedented wealth of calibration data is on the fingertips of users by means of smart 

phones, GPS-equipped devices, and RFID readers. This, in turn, has led to massive 

amount of passively collected location and event data for various time periods. These 

data provide an opportunity to validate and calibrate traffic simulation models for a 
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variety of spatio-temporal conditions. 

There were studies that captured traffic variability: Li et al. (2009), Ngoduy 

(2011), Zhong and Sumalee (2008), Jabbari, Liu (2012), Lee and Ozbay (2009), to name 

a few. In cases where large sources of data spanning different conditions are available, to 

capture the stochasticity in traffic conditions, there is an increase in number of factors of 

stochasticity. However, the increase in the number of factors affecting stochasticity 

increases the dimensionality of the calibration process. This in turn results in increased 

computational effort required in calibrating traffic simulation models for different 

conditions such as variability within weekday/weekend, and seasonal variability, and 

special situations including adverse weather, work zones, etc. Thus depending on the size 

of the network and number of stochastic dimensions, traditional Monte Carlo-type 

sampling approaches can become prohibitive in terms of computational effort. It may not 

be possible at all to simulate the output for each and every possible realization of 

parameter and input. Also, all possible points in the stochastic space of simulation output 

may not have the corresponding observed data. Thus it is important to obtain an effective 

sampling and interpolation methodology for predicting output accurately but with lower 

computational effort. 

A number of simulation approaches exist to model roadway sections with varying 

degree of resolution i.e. microscopic, mesoscopic and macroscopic. Hence, an effective 

framework needs to be built around the existing simulation (macroscopic or microscopic) 

models in order to facilitate the robust calibration by taking all types of variation in 

traffic conditions, albeit, taking into account the computational effort required. 
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The data to account for the traffic variability can come from many different 

sources. Sensor station data is one of the most commonly used and available data among 

these sources. However, sensor station data is a point data i.e. it represents flow or speed 

of traffic at a single point of the freeway. If a sensor is located in the part of a freeway 

where there is no entry or exit ramps close by the spatial variation of flow may not be 

large. But if the sensor is located close to an exit or entry ramp, the variation of flow 

before and after the ramp is high. If the objective is to capture all forms of variability in 

traffic, this spatial variation is also of significance.  

Additionally, there may be instances where the data from the sensor is missing 

due to sensor malfunction. To combat such cases, other data sources are needed to 

supplement the sensor data. In addition to sensor stations that detect vehicles on the 

freeway, there are other vehicle identification technologies available. The infrared tag 

used in electronic toll collection is one source of data, used to a widely by TRANSCOM. 

Another technology which has gained popularity recently is the GPS sensor, attached 

either to the vehicle or available through the drivers’ smart phones. All these sources 

provide a rich source of traffic data such as flow, speed and travel time. Each of these 

data can be used, synergistically, in the robust calibration of traffic simulation models. 

Depending on the quality of the dataset, it is established in literature (Mathison, 1988) 

that using multiple data sources increases the validity of the model. This type of data 

fusion for calibration will be another important aspect of this study. 

Traffic simulation models can be used to model freeway sections to urban 

networks to sections with specific geometric features such as toll plazas, traffic circles, 
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etc. As far as the current state-of-practice goes, freeways and urban networks do not, 

usually, involve much customization on the part of the modeler. The customization, 

usually, includes adjusting and/or overriding the underlying algorithms for car-following, 

gap acceptance, lane changing, etc. In most simulation tools and packages these 

algorithms are based on data collected from freeway sections – hence the relative ease in 

customization. 

On the other hand modeling sections that involve specific geometric features can 

be quite complex.  The complexity can be due to changing driver behavior at that 

particular geometry or a set of traffic control measures. So the underlying algorithms in 

the simulation models must be extended or overridden to incorporate this new behavior. 

This process requires data collection that is site-specific for different conditions. The data 

collection in itself can be quite cumbersome. Hence extensive calibration of these models 

will be an extremely time-consuming task. If, for instance, the model involves a large 

freeway section with some specific geometric features, such as a toll plaza, then 

executing an iteration may be time-consuming as well. Calibrating and running such 

large customized simulation models in a robust manner calls for different type of 

methodology. 

In this dissertation, the customized microscopic simulation model chosen is that 

of multi-lane toll plazas. Simulation modeling of toll plaza operations is a very 

demanding task due to drivers' complex lane selection. Because most available 

microscopic simulation software packages do not have credible toll plaza models, some 

of these studies developed customized toll plaza simulation models (Junga (1990), Correa 
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et al. (2004), Danko and Gulewicz (1991), Burris and Hildebrand (1996) and Astarita et 

al. (2001)). The drawback of customized models is the fact that they are standalone 

models and not integrated in the rest of the traffic network. Others studies used 

commercially available microscopic simulation software such as VISSIM, PARAMICS 

and used a number of parameters provided by the default simulation engine in the 

software (Al-Deek et al. (2000), Chien et al. (2005), Ceballos and Curtis (2004), 

Nezamuddin and Al-Deek (2008)). However, these parameters are generic parameters 

and may not directly reflect the specific parameters involved in the drivers’ decision 

making at the toll plaza. In addition, all of the developed models represent barrier-type 

toll plazas only. When toll plazas are located at separate locations away from the 

mainline - unlike barrier toll plazas - there are additional factors that influence drivers' 

lane selection decisions. 

One of the motivation for this current study stems from need for developing a 

better toll plaza simulation model that can address the above shortcomings of the existing 

tools. This requires modeling drivers’ lane choices accurately. A driver’s lane choice at a 

toll plaza is based on several factors including queue length, number of lanes changes 

required, and the direction of entry and exit in and out of the toll plaza. Estimation of a 

driver lane choice model bears two problems: One is the extent of data required to 

develop a statistically significant model. Collecting such extensive data is possible using 

video cameras; yet often this endeavor is not necessarily practical because of the wide 

area of coverage needed to capture and extract the required variables. Second concern is 

transferability, in other words whether the model would be valid for other time periods of 
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the day or days of the week or when there is a change in vehicular composition or in the 

lane configuration of toll plazas. 

Hence generic calibration methodology may not be applicable to these customized 

microscopic traffic simulation models. Specialized optimization framework is required to 

combat the issue of unavailability of data for calibration for various conditions. 

1.3 Outline of the Dissertation  

In this dissertation, we propose a novel and practical framework for the 

calibration of traffic simulation models for various traffic conditions and a robust 

mechanism to predict simulation output for many different conditions. Following are the 

sections of the dissertation. 

Chapter 2 presents a review of literature on calibration studies for traffic 

simulation models. Also presented are some of the approaches used to simulate 

stochasticity in traffic simulation. Literature on modeling complex toll plazas using 

microscopic simulation models is also presented. 

Chapter 3 presents various contributions made in this dissertation. 

Chapter 4 illustrates the need for incorporating stochastic inputs and parameters in 

traffic simulation. It also presents the methodology for incorporating stochasticity in 

macroscopic traffic simulation models. Initially, it presents exploration of output data to 

categorize into various distinguishable groups or clusters. Subsequently for each output 

cluster, the numerical methods using the computationally-efficient sparse grid stochastic 

collocation for discretizing the stochasticity of input and parameter distributions are 

illustrated. Finally, the optimization method using simultaneous perturbation stochastic 
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approximation (SPSA) for calibrating the said traffic simulation models is discussed. 

Chapter 5 demonstrates the application of the proposed methodology for 

calibrating a freeway section using real-world data. Also, Chapter 5 demonstrates the 

proposed framework for larger freeway section when some data is missing. Alternative 

sources of data are used to supplement the data in the calibration process. 

Chapter 6 shows the calibration methodology for microscopic modeling of 

customized complex toll plazas using a data-driven lane choice heuristic and a 

simulation-based optimization (SBO) framework. Also in the chapter we demonstrate, via 

case studies, the usefulness of the SBO framework when data is partially available or not 

available. The SBO framework is extended further to incorporate the ability to estimate 

stochastic output using the computationally-efficient sparse grid stochastic collocation. 

Finally, in Chapter 7 we present the conclusions of the calibration methodologies 

proposed in this dissertation. We also discuss the direction of the future work using these 

methodologies. 
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CHAPTER 2. LITERATURE REVIEW  

Traffic simulation models vary in their degree of complexity and level of detail. 

Based on the level of detail, the models can be classified as, macroscopic, mesoscopic 

and microscopic simulation models. The complexity and time consumed to execute the 

models increase in the same order, namely, macroscopic, mesoscopic and microscopic 

simulation models. While microscopic simulation models provide an ideal platform for 

detailed modeling, the number of parameters involved in the modeling and thus the effort 

in calibration is greater. The data required for simulating different conditions using the 

microscopic model is difficult to obtain or may not be available. 

 

Figure 2-1 Traffic simulation model complexity 
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A summary of literature in calibration of traffic simulation models is presented in 

the next subsection. 

2.1 Calibration of simulation models of Freeway and Urban networks 

There has been extensive amount of work related to the calibration of microscopic 

traffic simulation models. Ding (2003), Gardes et al. (2002), Ma and Abdulhai (2002), 

and Lee et al. (2001) used mean target headway and mean reaction time as the parameters 

to be calibrated. Hourdakis et al. (2003) and Mahut et al. (2004) calibrated global and 

local parameters, and Toledo et al. (2004) and Jha et al. (2004) used origin-destination 

(O-D) flows and driver behavior parameters as calibration parameters.  

Depending on the scale and complexity of the simulation model, estimating the 

objective function for the calibration process can get quite expensive, in terms of time 

and resources. There have been different methodologies used in the optimization problem 

i.e. the calibration process.  

Lee et al. (2001), Schultz and Rilett (2004), Park and Qi (2005), and Ma and 

Abdulhai (2002) used genetic algorithms (GAs) to calibrate microscopic simulation tools. 

Kim and Rilett (2003) used the simplex algorithm as the calibration methodology, while 

Kundé (2002) used the Simultaneous Perturbation Stochastic Approximation (SPSA) 

algorithm to calibrate a model developed in DynaMIT-P, a mesoscopic simulation tool. 

Bayesian optimization is another possible approach in the optimization problem. 

The advantage of this approach is that is combines the models and a sampling criteria. 

Bayyari et al. (2004) proposed a Bayesian approach that takes into account the 

variability i.e. distribution in demand, turn count and measurement errors therein. Lee 
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and Ozbay (2008) proposed a Bayesian approach that takes into account the variability in 

demand and uses the SPSA to optimize the parameters. 

The selection of parameters to be calibrated and the methodology followed are 

very important aspects of the overall calibration process. Ding (2003), Gardes et al. 

(2002), Lee et al. (2001), Toledo et al. (2004), Jha et al. (2004), Kim and Rilett (2003), 

Schultz and Rilett (2004), Hourdakis et al. (2003), Park and Qi (2005), Ma and Abdulhai 

(2002), Duong et al (2010), Yang and Ozbay (2011), Korcek et al. (2012), Henclewood et 

al. (2013), Punzo et al. (2013), and Ge and Menendez (2013) used microscopic 

simulation tools. In each study, model parameters were selected and various 

methodologies adopted for calibration, such as the SPSA algorithm (Ding (2003), Kundé 

(2002), Balakrishna et al. (2007), Ma et al. (2007) , Lee and Ozbay (2009), Yang and 

Ozbay (2011)), Genetic algorithm (Lee et al. (2001), Schultz and Rilett (2004), Park and 

Qi (2005), Ma and Abdulhai (2002), Cheu et al. (1998), Kim et al. (2005), Duong et al 

(2010), Korcek et al. (2012)), and simplex algorithm (Kim and Rilett (2003)). Error 

statistics used were mean absolute error (MAE) (Ding (2003), Kim and Rilett (2003). Ma 

and Abdulhai (2002), Schultz and Rilett (2004), Lee and Ozbay (2009), Duong et al 

(2010), Korcek et al. (2012)), root-mean-square error (Kundé (2002), Hourdakis et al. 

(2003), Qin and Mahmassani (2004), Balakrishna et al. (2007), Yang and Ozbay (2011), 

Punzo et al. (2013), GEH (Zhang et al. (2008), Punzo et al. (2013). Kundé (2002) and 

Qin and Mahmassani (2004) used mesoscopic simulation tools in the validation process. 

In this chapter, comprehensive reviews of previous calibration studies are summarized in 

Table 2-1. 
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Table 2-1 Summary of Literature on Calibration of Microscopic Traffic Simulation Models 

Authors  Complexity; 

Simulation 

Tool 

Calibrated Parameters  Optimization  

Methodology  

Type of  

Roadway  

Section  

Performance 

outputs  

Validation  

Measure  

Data Used in Calibration 

Lee et al. 

(2001)  

Micro; 

PARAMICS  

Mean target headway,  

mean reaction time  

Genetic  

algorithm  

Freeway  Occupancy,  

Flow  

N/A   

Gardes et al. 

(2002)  

Micro; 

PARAMICS  

Mean target headway,  

mean reaction time  

N/A  Freeway  Speed,  

Volume  

N/A  15-min counts during AM peak on 

19-mile freeway section 

Ma and 

Abdulhai 

(2002) 

Micro; 

PARAMICS  

Mean headway, mean  

reaction time, feedback, 

perturbation, familiarity 

Genetic  

algorithm  

Urban  Traffic  

counts  

MAE  Detector data for 1 hr during AM 

peak 

Kundé (2002)  Macro; 

DynaMIT-P 

 Speed–density  

relationship, Capacity  

Box complex,  

SPSA  

Network  Free-flow,  

Minimum  

RMSE   

Ding (2003)  Micro; 

PARAMICS  

Mean target headway,  

mean reaction time  

SPSA  

algorithm  

Freeway  Flow,  

density  

MAE   

Kim and Rilett 

(2003)  

CORSIM,  

TRANSIMS  

CORSIM: Car- 

following factors,  

driver’s aggressiveness  

factor  

TRANSIMS: O-D  

matrix, PT1 parameters  

Simplex  

algorithm  

Freeway  Volume  MAER  Data 5 loop detector stations for 

13.9-mile section of freeway for 1 

hr. during AM, PM and off peak 

Hourdakis et  
al. (2003)  

Micro; 

AIMSUN 

 Global, local  

parameters  

Trial and  

error  

Freeway  Volume  RMSP  5-min. data from 21 detector 

stations for a 12-mile freeway 

section during PM peak for 3 days 

Schultz and  
Rilett (2004)  

Micro; 

CORSIM  

Driver behavior  

parameters,  

vehicle performance  

parameters  

Automated  

Genetic  

algorithm  

Freeway  Volume,  

Travel time  

MAE  Data 5 loop detector stations for 

13.9-mile section of freeway for 1 

hr. during AM and PM peaks 

Jha et al.  
(2004)  

Micro; 

MITSIMLab  

Parameters of the  

driving behavior models  

and route choice model,  

O-D flows, habitual  

Iterative  

approach  

Urban  

Network  

Travel time  N/A  Detector data for 15 days for AM 

and PM peaks on a large urban 

network 

1
6
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Mahut et al. 

(2004)  

Macro; 

EMME/2  

Local parameters, global 

parameters  

Dynamic 

MSA 

equilibration  

algorithm  

Urban 

Network  

Travel time, 

Counts  

N/A  10-min counts for 1 hr. during AM 

peak 

Toledo et al.  

(2004)  

Micro; 

MITSIMLab  

O-D flow,  

behavioral parameters  

GLS 

optimization  

Freeway  

and  

arterial  

Speed,  

Density  

RMSE,  

RMSP,  

MAE,  

MAPE  

Data from 68 detector stations on 3 

freeways for 5 weekdays 

Qin and 

Mahmassani  

(2004)  

Macro; 

DYNASMA  

RT-X  

N/A  Transfer 

function 

model  

Freeway 

Network  

Speed  RMSE  Data from 7 detector stations on 3 

freeways during AM peak for 5 

weekdays 

Park and Qi  

(2005)  

Micro; 

VISSIM  

Eight parameters  Genetic  

algorithm  

Intersectio

n  

Average  

travel time  

N/A  Detector data for 1 hr. during PM 

peak for 3 days 

Kim et al.  

(2005)  

Microscopic  

Simulation  

Various microscopic  

simulation parameters  

in VISSIM  

Genetic  

Algorithm  

with Non- 

parametric  

statistical test  

Freeway  Travel  

Time  

Distribution  

N/A  Travel time data for 1 hr. during 

AM peak on 1.1 km. freeway 

section 

Balakrishna  

et al. (2007)  

Micro; 

MITSIMLab  

Driver behavior model  

parameters  

SPSA 

algorithm  

Freeway,  

Parkway  

Traffic  

Counts  

RMSN,  

RMSPE,  

15 min. data from 33 detector 

stations 

Ma et al.  

(2007)  

Microscopic  

simulation  

Global parameters  

(Mean target head,  

mean reaction time etc)  

Local parameters (link  

headway factor, link  

reaction factor, etc.)  

SPSA 

algorithm  

Freeway  Capacity  N/A  Detector data for 1 hr. during PM 

peak 

Zhang et al. 

(2008) 

Micro; 

PARAMICS 

Mean target headway, 

mean reaction time, 

driver awareness, 

aggressiveness 

SPSA 

algorithm 

 

Urban 

Freeway 

network 

Flow, 

Occupancy 

GEH 5-min detector count during PM 

peak for 7 days 

Lee and Ozbay 

(2009) 

Micro; 

PARAMICS 

Mean target headway, 

mean reaction time 

enhanced-

SPSA 

Freeway Speed, Counts MAE 5-min detector count during AM 

peak for 16 days  

1
7
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Duong et al 

(2010) 

Micro; 

VISSIM 

Headway, reaction time, 

standstill distance, max. 

look ahead distance, 

safety distance, 

acceleration parameters 

Genetic 

Algorithm 

Freeway Speed, 

volume, 

surrogate 

safety 

measures 

MAE for 

speed and 

volume 

NGSIM trajectory data for US-

101for 40 min. 

Yang and 

Ozbay (2011) 

Micro; 

PARAMICS 

Headway, reaction time, 

queue gap, speed, link 

headway, signpost, 

aggressiveness, 

awareness, memory 

SPSA Freeway traffic 

conflict, lane 

change, 

volume and 

speed 

RMSPE for 

speed, 

volume, 

lane change 

and conflict 

NGSIM trajectory data for US-101 

for 15 min. 

Korcek et al. 

(2012) 

Meso Free flow speed, speed at 

capacity, capacity, jam 

density 

Genetic 

Algorithm 

Freeway speed, 

density, flow 

MAE for 

speed, 

density, 

flow 

Loop detector data from two 

freeways in Czech and Slovak 

Republic for one year 

Henclewood et 

al. (2013) 

Micro Combinations of 

parameter sets 

N/A 

(determine the 

best 

combination  

of parameters) 

Freeway Travel time 

distribution 

Kolmogoro

v-Smirnov , 

and 

heuristic 

form fit 

tests 

NGSIM trajectory data for 

Peachtree Street in Atlanta, Georgia 

for 30 min. 

Punzo et al. 

(2013)  

Micro follower’s maximum 

desired speed and 

acceleration, acceleration 

rate, desired distance, 

minimum time headway 

OptQuest 

Multi-start 

Freeway Speed RMSE and 

IMSE of 

speed 

NGSIM trajectory data for I-180 

Ge and 

Menendez 

(2013) 

Micro Average Standstill 

Distance, Additive Part 

of Desired Safety 

Distance, Multiplicative 

Part of Desired Safety 

Distance, Accepted 

Deceleration (Trailing), 

Lane Change Distance, 

Emergency Stop 

Distance 

Quasi-OTEE Urban 

network 

Travel Time Difference 

in Travel 

time 

Travel times on 20 road sections in 

the Zurich inner city network 

1
8
 



19 

 

 

 

 

Ding (2003) performed a calibration study of a microscopic simulation model 

developed using PARAMICS. She used mean target headway and mean reaction time as 

the key parameters to be calibrated, since these two parameters affect the car following 

and lane-changing models. SPSA was used as the optimization algorithm, and the relative 

error of density and flow was used as the objective function. The selection of these 

parameters was based on the previous work of Sanwal et al. (1996). 

Ma and Abdulhai (2002) performed a calibration study of microscopic simulation 

models based on combinatorial parametric optimization using a GA. They used 

GENOSIM (a GA-based simulation-optimization system) to solve a combinatorial 

parametric optimization problem; it minimized the relative error between field data and 

simulation output by searching for an optimal value of microsimulation parameters. Ma 

and Abdulhai (2002) employed four types of GAs—namely, simple GA, steady-state GA, 

crowding GA, and an incremental GA. In the case of the simple GA, the population was 

displaced with new individuals; on the other hand, in the steady state GA, some parts of 

the population overlapped with new individuals. The crowding-based GA was the same 

as the simple GA type in selection and reproduction, but replacement was discriminated. 

As the objective function, the MAE of the difference between real-world and simulated 

traffic was used. 

Gardes et al. (2002) performed a calibration and application study of a 

PARAMICS model of Interstate 680, located in the San Francisco Bay Area. In order to 

calibrate input parameter values, significant checks and changes were performed for four 

major categories: network (network geometry, signposting, link speeds), demand (vehicle 
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proportions, vehicle mean top speed), overall simulation configuration (time steps per 

seconds, speed memory), and driver behavior factors (mean target headway, mean 

reaction time). Gardes et al. (2002) then included a new ramp-metering strategy, in 

addition to auxiliary lanes and an HOV lane, to evaluate a range of operational strategies 

applicable to the modeled network. 

Lee et al. (2001) calibrated the parameters of a PARAMICS model of a Southern 

California network using a GA. Mean target headway and mean reaction time were 

employed as key parameters. Mean target headway affects the acceleration and 

deceleration times of each vehicle and mean reaction time affects the acceptable gap of 

the lane-changing model. Using a GA, a number of input parameters were repeatedly 

generated until the parameters were optimized. As a fit test, the differences between 

occupancy and volume, as obtained from the PARAMICS model and field data, were 

used. 

Kundé (2002) conducted a calibration study of a supply simulator that is a part of 

DynaMIT-P, a mesoscopic traffic simulator. He studied various methodologies classified 

into three categories—namely, path search methods, pattern search methods, and random 

methods. Path search methods estimate a direction to move, from an initial vector to an 

improved point. Response Surface Methodology (RMS) and SA are major path search 

methods, and pattern search methods—such as the Hooke and Jeeves method, the Nelder 

and Mead (simplex search) method, and the Box Complex method—search for a 

characteristic or pattern from the observations. Random search methods look for an 

improved point, without the aid of previous information. The stochastic ruler algorithm, 
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stochastic comparison method, and simulated annealing are random search methods. 

The calibration methodology used by Kundé (2002) involves three stages, at the 

disaggregate level, the sub-network level, and the entire network level. The first stage of 

the methodology is used to calibrate a study of speed-density relationships and the 

capacities of each segment. The second stage is performed when an accurate O-D can be 

collected from the sensors. In the last step, the stochastic optimization problem is carried 

out, which is the calibration at the entire network level. At this stage, the Box Complex 

method and the SPSA algorithm are employed. 

Kim and Rilett (2003) performed a calibration study of micro-simulation 

modeling using the simplex algorithm. Two micro-simulation models—namely CORSIM 

and TRANSIMS—were tested using the simplex algorithm. The CORSIM O-D matrix—

which uses the CORSIM O-D estimation model and the automatic vehicle identification 

(AVI) O-D matrix—is the information maximization estimation model they used. In this 

calibration study, the parameters used in TRANSIMS were the O-D matrix and the PT 

parameters, described as the deceleration probability (PT1), the lane-change probability 

(PT2), and the plan look-ahead distance (PT3). CORSIM calibration parameters were car-

following factors, acceleration/deceleration factors, and lane-changing factors. Both 

CORSIM and TRANSIMS were calibrated when parameter sets were default values. 

Preliminary calibrations for the AM, PM, or off-peak time periods were conducted using 

the simplex algorithm mean absolute error ratio (MAER) was used to compare observed 

CORSIM and TRANSIMS volumes. Models calibrated via the simplex approach were 

found to have a lower MAER than the models that used default values. 
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Schultz and Rilett (2004) conducted the calibration of a microscopic simulation 

model using the FHWA’s corridor simulation model (CORSIM), and also used the 

distribution of car-following sensitivity factors as the main calibration parameter. Car-

following sensitivity factors included driver behavior characteristics that depended on the 

car ahead, with specified sensitivity. The author classified different car-following 

sensitivity factors and identified them to explain variability among driver types. A GA 

was used for the calibration methodology and the new distribution was examined to fit 

the data. For the car-following sensitivity analysis, the author outlined two alternatives 

that were lognormal and normal car-following sensitivity analyses, and compared those 

with initial distributions. 

Jha et al. (2004) performed a calibration of a large-scale network using 

MITSIMLab, a micro traffic simulation model. They calibrated driving behavior 

parameters with a single freeway section without considering route choice. After driving 

behavior parameters were calibrated, the values were fixed; the calibration work of route-

choice parameters, an estimation of O-D flows, and habitual travel times was then jointly 

performed for a large-scale network, using an iterative solution approach. As the function 

of the calibration process, the travel times of field data were compared with the output of 

the simulation model. 

Toledo et al. (2004) performed a calibration study of microscopic traffic 

simulation models. They focused on the interactions of O-D flow estimations and 

calibrations of behavior parameters. He proposed an iterative solution approach that starts 
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with habitual travel times, because O-D flow estimation needs to generate an assignment 

matrix based on route-choice behavior and experienced travel times. Habitual travel times 

are important variables in solving a driver’s route-choice problems. The assignment 

matrix was generated based on these travel times, and O-D flow estimation was 

performed using a generalized least squares (GLS) formulation. The new O-D matrix is 

used to recalibrate route choice and driving behavior parameters, and this iterative 

procedure was repeated to minimize the least square error. To demonstrate the efficiency 

of this approach, it was applied to two different case studies developed with the use of 

MITSIMLab, a microscopic traffic simulation model (Toledo et al. (2004), Jha et al. 

(2004)). In the first case study, O-D flows were known and route choice was not present 

in the network. In this case, driving behavior was the only parameter to calibrate. As a 

function of the fit test, the RMSE, the root-mean-square percent error (RMSP), the MAE, 

and the mean absolute percent error (MAPE) of the difference between observed and 

simulated speed measurements were used. For the other case study, O-D flow estimations 

and calibration work with regard to the travel time coefficient of the route choice were 

performed. As a function of the fit test, Toledo et al. (2004) used RMSE and MAE to 

compare the observed and simulated counts. Both of the case studies were good fits. 

Hourdakis et al. (2003) proposed a calibration procedure for microscopic traffic 

simulation models for a 20-km freeway section in Minneapolis. For this calibration study, 

they divided the simulator parameters into global parameters such as length, width, 

desired speed, maximum acceleration/deceleration, and minimum headway, as well as 

local parameters like the speed limits along individual sections of the freeway model. 
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Global parameters were closely related to the performance of the entire model, and local 

parameters affected specific parts of the network. Hourdakis et al. (2003) divided the 

calibration process into volume-based calibrations and speed-based calibrations. The 

objective of volume-based calibrations was to obtain the volumes from simulation that 

were as close to the real-world counts as possible; the objective of the speed-based 

calibrations was to obtain the speeds from simulation that were as close to the real-world 

speeds as possible. The sum of the squared errors was used as the optimization technique 

to calibrate the simulator parameters, and traffic volumes were used as an objective 

function to be minimized. 

Park and Qi (2005) performed a calibration of a microscopic and stochastic 

simulation model developed in VISSIM, based on a parameter optimization using a GA. 

The traffic simulator included car-following and lane-changing logic, as well as the 

signal state generator that can decide signal control logic. The location was the 

intersection of U.S. Route 15 and U.S. Route 250 in Virginia, and the average travel time 

was used as the measure of effectiveness. In order to acquire an accurate simulation 

result, the acceptable ranges of eight parameters were determined and multiple simulation 

runs performed to reduce the stochastic variance with default parameter values. A GA 

approach was applied to calibrate parameter values. In order to verify whether the 

calibrated parameters were statistically significant, a t-test and visualization check were 

also performed. 

Cheu et al. (1998) performed a calibration of a FRESIM-based model of a 

Singapore expressway, using GAs. The existing representative optimization algorithms 
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used a gradient approach that lacks robustness. This algorithm has only one solution, and 

this may lead only to a local solution; therefore, a GA was applied to reduce this problem 

and find a global solution. The calibration work was performed for a 5.8-km section of 

the Ayer Rajar Expressway in Singapore. The parameters calibrated for FRESIM are 

free-flow speed and driver behavior parameters. As a fit test, Average Absolute Error 

(AAE) was used between FRESIM simulation output and field data from the loop 

detector. 

Milam (2005) recommends guidelines for the calibration and validation of traffic 

simulation models. The calibration requires modifying traffic control operations, traffic 

flow characteristics, and driver behavior. He summarizes the default values of the 

parameters to be calibrated in CORSIM, as well as their effective range. The parameters 

presented in the validation guidelines were traffic volume, average travel time, average 

travel speed, freeway density, and average and maximum vehicle queue lengths. The 

author recommends each parameter’s acceptable range of error between CORSIM 

simulation results and field data. Tables 2.2 and 2.3 show the calibrations and their 

effective range and validation guidelines. 

Dowling et al. (2004) recommend the calibration/validation of microsimulation 

models in three steps. The simulation model is first calibrated for capacity and then 

traffic flow, both at a bottleneck section. Finally, the model is calibrated for system 

performance at the entire network level. According to the author, for the capacity 

calibration procedure, the capacity of the given model was estimated by counting the 

maximum possible flow rate of the target section, and parameters that directly affect the 
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capacity were selected. The mean squared error (MSE) was used for the objective 

function, and the optimal parameter values were obtained at the point where the MSE 

was minimized. In the case of matching observed traffic flow, the route choice algorithm 

parameters were adjusted until predicted volumes fit field counts. Finally, overall traffic 

performance was compared with various field data, including travel time, queue lengths, 

and duration of queuing. As an example of satisfying the three-step application, Dowling 

et al. (2004) used the sample problem offered by Bloomberg et al. (2003), which 

compared six simulation models with the Highway Capacity Manual (HCM). 

Mahut et al. (2004) performed calibration work based on the dynamic traffic 

assignment (DTA) model. DTA is a procedure where network users choose the best 

route, to minimize overall travel cost. The DTA model used in this study is based on an 

iterative approach, where flows are updated with successive iterations that are based on 

travel times from the simulation model. The EMME/2 software package was used to 

calibrate a DTA trip table that was modified through a matrix adjustment. As part of the 

verification process, three consecutive 15-minute counts were compared with calibrated 

model results. 

Qin and Mahmassani (2004) performed a calibration study of dynamic speed-

density relationships by using data collected from Interstate Freeways I-5 and I-405 in 

California. They estimated the parameters to find the minimum discrepancy between 

observed and simulated speed, using transfer function, one-regime modified 

Greenshields, and two-regime modified Greenshields models. The RMSE of speed was 

used as a goodness-of-fit test. As a result of the comparison, the transfer function 
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approach was found to be more accurate than static modified Greenshields models in 

estimating dynamic traffic speed. 

Lee and Ozbay (2009) proposed a Bayesian sampling approach in conjunction 

with the application of the SPSA stochastic optimization method. The enhancement in the 

calibration procedure is by considering statistical data distribution. A microscopic 

simulation model based on PARAMICS, was used in conjunction with the proposed 

methodology. The calibration was performed with the data obtained from a complete 

input distribution for a section of I-880 freeway in California. 

Duong et al (2010) proposed a calibration and validation prodecure for the 

performance of safety measures in microscopic traffic simulation models. The authors 

used a multi-criteria optimization methodology using Genetic algorithm. The objective 

function in the optimization procedure includes the mean squared difference of speed and 

volumes as two competing objectives. The authors implemented their procedure for a 

freeway section on US-101 with an on- and off-ramps, which is a part of Next Generation 

Simulation (NGSIM) initiative. The authors compared a surrogate safety measure of 

crash prediction index predicted from the model that is calibrated using single criteria 

optimization and multi-criteria optimization. The authors found that the model calibrated 

using MOP that the set of parameters for which the model has minimum error in speed is 

not the same for minimum error in volume or minimum error in crash prediction index. 

Yang and Ozbay (2011) proposed an optimization approach to calibrate a traffic 

simulation model for rear-end traffic conflict risk analysis on highways. The proposed 

calibration approach is developed based on the stochastic gradient approximation 
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algorithm to find optimal parameters. The calibration methodology accounts for multiple 

calibration criteria using traffic conflict, lane change, traffic count and speed. Simulated 

operational measurements and traffic conflict risk in terms of surrogate safety 

measures are quantified and compared with observations derived from real-world vehicle 

trajectory data from the NGSIM program. The calibrated traffic model has been validated 

by using independent vehicle trajectory data saved as a hold-out sample. The results show 

that the fine-tuning of parameters using the proposed calibration approach can 

significantly improve the performance of the simulation model to describe actual traffic 

conflict risk and operational performances. 

Korcek et al. (2012) proposed an effective calibration method for a simple 

microscopic traffic simulation model. The proposed model is based on the cellular 

automaton, which can easily be accelerated. Genetic algorithm was used to find suitable 

parameters of the CA model for a given field data. For those test road segments, we 

increased the precision of simulator by 20.09% in average in comparison with a manually 

updated and tuned model. With the proposed procedure, the authors claim that it is 

possible to readjust the model to given field data. 

Henclewood et al. (2013) employed a Monte Carlo approach to generate 

candidate parameter  sets for calibration. This procedure was applied to calibrate the 

VISSIM model of the NGSIM study area. One thousand potential parameter sets were 

generated and these parameter set simulations were evaluated against a robust set of 

calibration criteria to determine which were calibrated. Two calibration criteria were 

applied: 1) evaluation of startup and saturation flow and 2) statistical evaluation of travel 
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time distributions. The parameter sets that satisfy both these criteria are considered as  

adequately calibrated The results suggest that parameters determining distance between 

cars under various conditions are dominant meeting the evaluation criteria. The results 

suggest that this approach offers a robust and effective method of calibrating simulation 

models where disaggregate level vehicle data are available. 

Punzo et al. (2013) propose a time-series based approach to evaluate the overall 

performance of the simulation model in the objective function. Observed traffic 

measurements are indeed autocorrelated, and thus methods applicable to independent 

observations cannot be adopted. Spectral analysis, by means of estimated correlograms, is 

applied here instead, to study time series data generated by simulated stochastic models. 

As a result, the objective function of the optimization problem reproduces the distance 

between the spectra of the real and the simulated traffic measure. Minimizing this 

distance allows having a simulated trajectory that reproduces as better as possible the 

actual dynamics involved in the car-following process and which is not concerned with 

local “compensation” effects typical of the GOF usually applied in car-following 

calibrations 

Ge and Menendez (2013) propose a Sensitivity Analysis (SA) as a preliminary 

step for the model calibration. Through SA the modeler can obtain a better knowledge 

about the relationship between the model inputs and outputs, and hence focus on the most 

important parameters for further calibration. An improved SA method, quasi-Optimized 

Trajectories Elementary Effects method, was proposed that was applied in a case study to 

screen the most important parameters of VISSIM. The results show that the use of SA as 
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a screening approach can be an effective way to deal with large and complex model 

calibrations. In addition, they show that the proposed SA method is accurate and efficient 

for other networks and simulation models. 

2.2 Stochastic macroscopic traffic simulation models 

While microscopic simulation models provide an ideal platform for detailed 

modeling, the data required for different conditions is difficult to obtain or may not be 

available. Additionally, the model building, calibrating and executing may be time-

consuming and computationally expensive. When studying the effects of various 

stochasticities, we are going to focus on macroscopic models because they are mainly 

mathematical models that do not have the extended level of heuristics incorporated like 

the microscopic models that attempt to capture driver level decisions such as lane change, 

familiarity, etc.  Hence, most of the previous studies focusing on capturing and modeling 

traffic variability have used macroscopic simulation models.  

2.2.1 Macroscopic First-order Traffic Flow Models 

Macroscopic models involving traffic flow are represented by a set of partial 

differential equations (PDE) (such as the conservation of traffic flow). The first-order 

macroscopic traffic flow model can be formulated as shown in equation (2.1). 

  0         Conservation of vehicles

~ ( )             Flow-density relationship

( ,0) ( )            Initial Conditions

( , ) ( )             Boundary Conditions

t x
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The first two equations represent the conservation of flow and the flow-density 

relationship. The third shows the spatial distribution of density/vehicles at 0t  . The 

fourth is the boundary conditions representing the inflow and outflow at various points i  

of the roadway section to be modeled.  

The flow-density relationship shown in equation (2.1) is also called as the traffic 

flow fundamental diagram. The fundamental diagram between flow and density follows a 

concave shape. It can be used to determined quantities such as the maximum flow rate 

and maximum density that can be reached on a roadway section. These quantities 

characterize the roadway section and are important in the solving the first order traffic 

flow model. 

Solutions to equation (2.1) are dependent of the differentiability of the initial 

conditions ( )I x . Thus only weak solutions, constrained by the “correct” compression 

and rarefaction wave speeds, are admissible (Leveque, 1992). Solutions to macroscopic 

traffic flow models follow the numerical methods for solving hyperbolic PDEs. More 

popular among these methods is the Godunov scheme also known, in the traffic 

simulation parlance, as the cell transmission model (CTM) due to Daganzo (1994). This 

involves discretization of the roadway into cells as shown in Figure 2-2. Each cell has a 

capacity and can “sending” and “receiving” functions governed by the fundamental 

traffic flow diagram.  
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Figure 2-2 Discretization of Highway 

The solution to CTM can be represented by estimating the discretized form of 

density using flow as shown in equation (2.2) (Daganzo (1994)). 

1
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(2.2) 

This method is equivalent to the numerical method developed for gas dynamics 

calculations by Godunov (1959). Godunov’s method involves solving a series of 

Riemann problems forward in time at each discretized space section or cell. For a 

conservation law represented by, 

 ( ) 0t xu f u u     

the Godunov’s solution is given by equation (2.3), (Leveque (1992)) 
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(2.3) 

In the conservation law, if u  is represented by density  from the traffic flow 

equation then in equation (2.3) F is the flow q . The quantities
n

iU in equation (2.3) are 

number of vehicles in cell i at time tn and
1n

iU 
represents number of vehicles in cell i at 

time tn+1 respectively. The quantities 1( , )n n

i iF U U in equation (2.3) represent flow 

entering and 1( , )n n

i iF U U  represents flow leaving cell i at time tn respectively. Hence,  

1 1[ ( , ) ( , )]n n n n

i i i iF U U F U U   is net flow into cell i at time tn which is nothing but ( )iy t

from equation (2.2). 

2.2.2 Summary of Studies on Stochastic First-order Models  

Variability in traffic is a very important aspect to be captured in the modeling 

approach. The variability could be a result of the change in: 

1. demand, 

2. vehicle composition, 

3. driver behavior, 

4. other unobservable factors. 
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The variability in demand can easily be captured by varying the boundary 

conditions of the corresponding models. In order to capture variability in vehicle 

composition, different vehicle classes can be used in either macroscopic, mesoscopic 

(such as cellular automata) or microscopic modeling approaches. Each vehicle class with 

a bounded speed, acceleration and deceleration parameters is supposed to model the 

stochasticity due to vehicle composition. The influence of driver behavior on traffic 

variability is an area that is still being explored and models thus created have only been 

ad-hoc. The stochasticity due to unobservable factors is usually modeled as a noise or 

error in the modeling parameters. 

The macroscopic modeling methodology, as compared with others, is easier to 

implement and faster to execute. Hence capturing the stochasticity in traffic, due to all or 

most of the above mentioned factors is more tractable using macroscopic modeling 

approach. A brief summary of literature on stochastic macroscopic models is presented 

below.  

Boel and Mihaylova (2006) proposed a stochastic compositional model by 

extending the cell-transmission model (CTM) by means of adding white noise to the 

speed that is estimated using the speed-flow fundamental diagram (FD). Boel and 

Mihaylova (2006) introduced stochasticity into the CTM by introducing noise terms into 

the sending and receiving functions. For very light traffic flow, they used binomial 

distribution for the noise term. For very heavy traffic flow, they used Gaussian 

distribution. For traffic conditions between very light and very dense, the authors’ model 
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is not well-defined. 

A similar approach was performed by Sumalee et al. (2009) with a framework 

based on CTM with stochastic demand and flow-density relationship. Sumalee et al. 

(2009) introduced a stochastic CTM by using random variables in the sending and 

receiving functions via random parameters for the free-flow speed, jam density and 

backward wave speed of the fundamental diagram. In addition, the authors utilized the 

switching-mode model proposed by Munoz et al. (2003) to deal with the non-linear 

nature of the fundamental diagram. 

Bladin et al. (2010) similarly formulated an approach using a noise term to the 

speed in the speed-density fundamental diagram. The fundamental diagram was divided 

into free-flow and congested regime. This noise term was introduced in the speed term of 

the congested regime. 

Kim and Zhang (2008) constructed a stochastic flow-density curve that can be 

applied to macroscopic traffic flow models of first or second order. The basis of the 

stochastic flow-density curve is the random fluctuations of gap time and reaction times 

and, transitions between traffic states on the fundamental diagram. 

Li et al. (2009) also constructed a stochastic speed-density relationship and 

applied it to a first order traffic flow model. The stochasticity is in the form of a noise 

term to the free-flow speed. The first order model based on the stochastic speed-density 

function was evaluated using Monte Carlo simulations of a finite difference numerical 

scheme. 

Wang et al. (2009) developed a stochastic speed-density relationship following a 
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spectral decomposition of covariance of speed as a function of density. 

Khoshyaran and Lebaque (2009) formulated a framework for capturing variability 

using second order traffic flow model that is in the same mould as Aw-Rascle-Zhang 

(ARZ) model.  

Ngoduy (2011) has also developed a stochastic first order model using different 

classes of vehicles whose behavior influences the variability in traffic. The model is an 

extension of first-order model by including a free flow speed term derived from a 

stochastic capacity derived from a Weibull distribution. Monte Carlo simulations of a 

numerical scheme were performed in the implementation. 

Jabari and Liu (2012) incorporated stochasticity into CTM by representing 

number of vehicles in a cell as a counting process which is expressed as a random 

function of time headway.  

A comparison of various aspects of these models can be seen in Table 2-2. 

All of these models capture stochasticity by means of obtaining the simulation 

output for each condition separately, by means of Monte Carlo-type exhaustive 

simulation runs. Depending on the size of the network this approach can become 

computationally expensive and time-consuming. 

Table 2-2 Summary of Literature on Stochastic Macroscopic Traffic 

Simulation Models 

Authors  Type of Model  Solution 

Methodology  

Stochastic 

Parameter 

Data Used in 

Calibration 

Boel and 

Mihaylova 

(2006) 

First-order Godunov scheme or 

CTM 

Noise in speed-

density FD 

Loop detector data 

on a freeway section 
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2.3 Calibration of Traffic Simulation Models with Specialized Model Components 

Macroscopic models provide a simpler platform on an aggregate level of modeling 

for building simulation models on a bigger scale. On the other hand, microscopic 

simulation models present other challenges due to their very detailed nature.  In addition 

to considering stochasticities observed in basic traffic flow parameters, there is a need to 

consider the effect of special geometric characteristics of the individual components of 

the modeled network such as merge locations on freeways and traffic circles, lane 

configurations for toll plazas, etc.  Moreover, user behavior in relation to these specific 

geometric characteristics need to be captured by calibrating model parameters such as, 

mean reaction time, mean headway, route choice parameters, aggressiveness and 

familiarity of drivers with the system, etc.  

Microscopic simulation models of freeways have been studied extensively as 

Kim and 

Zhang (2008) 

Flow-density 

curve 

Only validation of 

fundamental diagram 

Free flow 

speed, jam 

density 

NGSIM data 

Khoshyaran 

and Lebaque 

(2008) 

Second order 

(ARZ-type) 

Godunov scheme  A model is proposed 

but not implemented 

Li et al. (2009) First order Essentially non-

oscillatory (ENO) 

Free flow 

speed 

Loop detector data 

Sumalee et al. 

(2009) 

First-order mode 

switching 

Godunov scheme Free flow 

speed, jam 

density, wave 

speed 

Loop detector data 

for 7 hours on three 

days in two years 

Bayen et al. 

(2010) 

First-order Godunov scheme Jam density A model is proposed 

but not implemented 

Ngoduy et al. 

(2010) 

Multi-class first 

order 

Godunov scheme Free flow 

speed, jam 

density 

 

Jabari and Liu 

(2012) 

First-order Godunov scheme Jam density Compared with CTM 
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discussed in the literature review in the previous section. The calibration of these models 

involves calibrating parameters for car-following such as mean reaction time and target 

headway, parameters for lane change and gap acceptance and even parameters for route 

choice.  

Microscopic simulation models involving specialized modeling of geometric 

features also involve many parameters. For example, Ozbay et al. (2006) modeled and 

calibrated a microscopic simulation model of New Jersey Turnpike (NJTPK) including 

its 26 toll plazas. The modeling process involved customization of driver behavior at the 

toll plazas based on entry and exit ramps. Along with the global mean reaction time and 

headway the other parameters used in the calibration process were link-level reaction 

time and headway at the toll plazas. 

Mudigonda et al. (2009) developed a generic approach for modeling toll plazas 

and calibrated the models for different toll plazas. Their methodology entails modeling 

the drivers’ lane choice decision process using a linear utility model. The utility model is 

expressed as a function of the entry ramp of the driver, the queue at each toll booth of the 

toll plaza and the exit ramp that the driver intends to take after exiting the toll plaza (as 

shown in equation (2.4)).  

e e x x q q

i i i iU p p p      (2.4) 

 

Where, i
ep , i

xp , i
qp are the probabilities of choosing lane i depending on the 

approach ramp (e), exit direction (x) and the queue conditions (q) respectively, and e , 

x , q  are the weights for each variable where 1 qxe  . They evaluated their 
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algorithm for three different types of toll plazas, namely, one with two entry and exit 

ramps, two entry and one exit ramp and one entry and one exit (barrier) toll plaza. The 

authors implemented the model in PARAMICS and compared the lane usage at the toll 

plazas (example shown in Figure 2-3). These lane usages are during the peak hour on 

specific days. In order to predict the outputs such as, lane usage and lane delays during 

other time periods and lane configurations, the data may not be available or too tedious to 

collect.  

 

Figure 2-3 Lane Usage Comparison using customized Toll Plaza Driver 

Behavior Methodology (Mudigonda et al. (2009)) 

Ozbay et al. (2010) modeled the driver behavior at the toll plazas on the New 

Jersey Turnpike using a discrete choice model. They use approach ramp, exit ramp and 
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queue lengths at the toll booths as the model parameters as shown in equation (2.5). 

1

1 exp ( )
i q q

i i i i

P
b a p c R


   

 
(

2.5) 

The variable i
qp  , in effect, represents how much less queue the lane i has. The 

variable R is a binary variable with 0R if vehicle is approaching the toll plaza from the 

toll plaza through the middle, 1R otherwise. The authors implemented the model in 

PARAMICS. 

Nezamuddin and Al-Deek (2007) modeled the Holland East Plaza on SR408 in 

Orlando Florida using PARAMICS micro-simulation package. The authors used many 

different default model parameters mean reaction time and headway, next lanes, lane 

choice rules, etc and calibrated the model using ramp and link volumes. 

Bartin et al. (2005) developed customized models for simulating traffic circles 

with different traffic controls and driver behavior. Apart from the normally used 

parameters of global reaction time and headway, the authors developed gap acceptance 

models for the gap acceptance behavior of drivers at the merge locations of traffic circles. 

The probability of accepting a gap is modeled as a probit model, 

Re

Re RePr ( )
Acc j

Acc Acc j j

Acc

V V
ob V V

V g

 

 

 
      

 

 

 (2.6) 

Vi is the observed part of the gap utility function, εi is the observed part of the gap 

utility function for acceptance (i=Acc) and rejected (i=Rej) gaps. Φ is the standard 

cumulative normal function. g is gap, α, β probit model coefficients. 

Vaiana et al. (2007) used VISSIM to build a microscopic simulation models for 
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roundabouts in Italy. In the modeling procedure, the authors used parameters such as 

approach speed, circulating flow, circulating radius of roundabout, and width of the 

splitter island.  

Previous studies that aimed at developing toll plaza simulation models is 

summarized in Table 2-3.  

Table 2-3 Summary of Toll Plaza Simulation Literature 

Study Simulation Tool Features Validation 

Junga (1990) GPSS (Standalone, 

Macroscopic) 

Lane assignment based on 

queue and payment type 

 

Validated for barrier 

tolls only. 

Correa et al. (2004) TOLLSIM (Standalone, 

Macroscopic) 

Lane assignment based on 

shortest queue 

Validated for barrier 

tolls only. 

Danko and Gulewicz 

(1991) 

Spreadsheet (Standalone, 

Macroscopic) 

Lane assignment based on 

shortest queue 

 

Validated for barrier 

tolls only. 

Burris and Hildebrand 

(1996) 

Standalone, Microscopic Lane assignment based on 

Queue length, and Proximity 

of the preferred payment-type 

lane 

Validated for barrier 

tolls only. 

Al Deek et al. (2000) Standalone, Microscopic Queue length, Faster vehicle 

always changes lane. Reaction 

times, service times and 

arrivals from field data 

Validated for barrier 

tolls only. 

Astarita et al. (2001) Standalone, Microscopic Utility model based on: 

Aggressiveness of drivers, 

Queue length and Number of 

lanes to cross to reach at a 

particular lane 

Validated for barrier 

tolls only. 

Chien et al. (2005) PARAMICS 

(Microscopic) 

Default PARAMICS driver 

behavior, lane changing 

models.  

Validated for barrier 

tolls only. 

Ceballos and Curtis (2004) VISSIM (Microscopic) Default VISSIM parameters. 

Lane selection based on queue, 

payment type.  

Validated for parking 

toll plaza. 

Ozbay et al. (2006) and 

Bartin et al. (2007) 

PARAMICS 

(Microscopic) 

Customized PARAMICS 

driver behavior, path-based 

lane changing models.  

Validated for non-

barrier and barrier tolls 

on NJTPK. 

Nezamuddin and Al-Deek 

(2007) 

PARAMICS 

(Microscopic) 

Default PARAMICS driver 

behavior, lane changing 

models.  

Validated for barrier 

tolls only. 

Mudigonda et al. (2009) PARAMICS 

(Microscopic) 

Utility-based lane choice 

model as a function of 

approach ramp, exit ramp and 

queue.  

Validated for different 

barrier and non-barrier 

tolls. 

Ozbay et al. (2006) and Bartin et al. (2007) developed a toll plaza model in 
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Paramics that is integrated with the freeway model of NJTPK. It was shown in Ozbay et 

al. (2006) that the default Paramics lane selection at toll plazas was not sufficient to 

simulate real-world toll plaza operations. Therefore, the default lane selection at toll 

plazas was improved using Paramics Application Programming Interface (API). The 

authors developed a path-based lane choice model that takes into account the ramp 

drivers select after crossing toll plaza. 

As an extension of Ozbay et al. (2006) and Bartin et al. (2007), Mudigonda et al. 

(2009) proposed a model that enhances the modeling of the drivers’ decision making at a 

toll plaza. By the use of Application Programming Interface (API) feature of 

PARAMICS, positives from both standalone models (natural decision making process) 

and the microscopic simulators (detailed car-following and gap acceptance models) are 

combined.  

From the above summary of literature on the simulation of complex traffic flow 

features, it can be inferred that modeling of all these additional features of driver 

behavior requires many parameters. In turn, the number of parameters that are needed to 

be adjusted in order to calibrate the simulation model multiply. This increases the number 

of scenarios to be evaluated to obtain a robust calibrated model. This in turn increases the 

complexity of the experimental design of traffic simulation models. Hence, there is a 

need for a procedure that can reduce the number of scenarios in evaluating the complex 

simulation models albeit without significant loss in predictive accuracy of the model. 

 



43 

 

 

 

 

CHAPTER 3. ISSUES IN CALIBRATION OF TRAFFIC 

SIMULATION MODELS AND CONTRIBUTIONS OF THIS 

DISSERTATION 

Traffic simulation models are mathematical abstractions of the transportation 

system in which output is derived from a particular set of mathematical equations and 

relationships given a specific input data. The input data consists of two main groups of 

data: physical input data Is (e.g., volume counts, capacity and physical features of 

roadway sections) and driver specific parameters Cs (i.e., adjustable components of driver 

behavior such as free flow speed, reaction time, mean headway, etc.). Output from a 

simulation model can be expressed as equation (1.1). The process of calibration entails 

adjusting the calibration parameters (Cs) so that the error between the output from 

simulation and field conditions is minimized as shown in equation (1.2). 

In order to capture variability in modeling and simulating traffic simulation 

models, stochasticity in both input (Is) and calibration parameters (Cs) need to be 

considered. In order to model the stochasticity in inputs, i.e., demand-side variability, 

demands from various time periods have to be obtained. Additionally, the supply-side 

variability, similarly, involving observed outputs, such as speeds and flows, during 

various time periods are also needed. Traditionally, observed output data comes from 

traffic roadway sensors. However, the accuracy of traffic sensor data may not be good all 

the time (Rajagopal and Varaiya (2007), Li and Li (2009)). In such cases, alternative 

sources of data may be needed to supplement the sensor data. 
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For calibrating microscopic traffic simulation models, specifically, those that 

require several customized models augmenting the default modeling, requires data in 

much greater detail. Customization of microscopic models is required when the default 

modeling capability is inadequate. Such customization is performed often for modeling 

traffic circles (Bartin et al. (2005), Vaiana et al. (2007)), toll plazas (Astarita et al. (2001), 

Ozbay et al. (2006) and Mudigonda et al. (2009)), freeway merging sections (Yang et al. 

(2006), Gardes et al. (2002), Yang and Ozbay (2011)), etc. Thus the same generic 

calibration methodology may not be applicable to traffic simulation models of much 

greater detail. The detailed data for calibrating such models may need to be collected via 

video data captured at specific locations of the section to be modeled. Such data may not 

always be available. Thus better means and methods to calibrate such models for various 

conditions are required. 

From the discussion above and the review of literature in the chapter 2 the 

following are the important issues identified in the calibrating traffic simulation models 

for various conditions:  

1. Characterizing demand- and supply-side variation 

2. Stochastic modeling – computational complexity 

3. Calibration of microscopic simulation models requiring customization 

4. Performing calibration to address limited data availability 

Below, we present a short description of each identified issue and in the end 

present the contributions of this dissertation. Figure 3-1 illustrates the flowchart of the 

proposed calibration methodology and various contributions of this dissertation.  
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Figure 3-1 Flowchart of the Research Methodology and Contributions 

Presented in the Dissertation 

In chapter 4, the methodology employed in the calibration of macroscopic models 

using stochastic collocation is presented. In chapter 5, case studies for the implementation 

of the proposed calibration methodology are presented. Chapter 6 presents the calibration 

of customized microscopic simulation models and the simulation-based optimization 

(SBO) framework also illustrating the methodology using case studies. The SBO 

framework is extended further to incorporate the ability to estimate stochastic output 

using the computationally efficient sparse grid stochastic collocation. 
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3.1 Capturing Demand-side and Supply-side Variation  

Based on the discussions above, making accurate predictions using traffic 

simulation models requires calibration data over much greater span of time as compared 

to the studies described in the previous chapter. Most of the past traffic calibration is 

based on the assumption of a typical weekday or weekend day at best (Kim and Rilett 

(2003),Ma and Abdulai (2002),Hourdakis et al. (2003),Toledo et al. (2004),Qin and 

Mahmassani (2004),Balakrishna et al. (2007)). Variations in traffic data are twofold. One 

is the demand-side variation, also characterized as variation of input to the simulation 

model. Second is the supply-side variation such as speed, flow, etc., characterized as 

variation in parameters of the simulation model. It is important to capture the variations 

in both these  

Ozbay et al. (2014) and Mudigonda and Ozbay (2015) analyzed demand and 

sensor data to investigate whether representative days do exist in traffic. Depending on 

how close or distant the demand or speed values are to each other, attempt is made to 

classify the demand or speed data for each time period into clusters. Chapter 4.1 presents 

the clustering methods used to group and classify the observed inputs and outputs. Using 

clustering approach the demand-side and supply-side variation is studied. In chapter 5, 

case studies using freeway section from NJTPK are used to obtain the demand- and 

supply-side variation for the section. Each cluster represents a group of demands that are 

similar to each other and can be represented by the centroid of the cluster. The basic 

hypothesis is that the greater the number of clusters, the lower is the likelihood of 

existence of a “typical” day. The analysis illustrates that the existence of a “typical” day 
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in traffic demand is not always likely. Hence, to obtain accurate predictions from a traffic 

simulation model, it is important to consider not only the demand from various clusters, 

but also the variation of demand within each cluster. The above discussion is based on the 

distribution and spread of traffic demand. However, the actual traffic flows along the 

section of interest would also vary based on many conditions such as, work zones, 

driver/vehicular variability and other unobserved phenomena.  

For each of the cluster, the proposed calibration methodology is applied to obtain 

the optimal set of parameters that represents the observed output distribution as closely. 

Thus, when building a credible traffic simulation model, it is important to capture 

variations on demand-side and supply-side. This variation includes not only different 

groups into which the demand and supply fall into, but also the variation within each 

group. 

3.2 Computational Complexity  

After acquiring the demand- and supply-side variability, the next step would be to 

incorporate it into the simulation modeling framework. Since the demand- and supply-

side variability could follow any distribution, an analytical solution may not readily exist. 

Hence, numerical methods have to be adopted to solve the traffic simulation problem 

with variability.  

There were studies that captured traffic variability (Li et al. (2009), Ngoduy 

(2011), Zhong and Sumalee (2008), Jabbari, Liu (2012), Lee and Ozbay (2009)) to name 

a few. The computational models used to solve for this stochastic traffic simulation 

problem use a Monte Carlo (MC)-type independent sampling for various traffic 
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conditions. However, the increase in the number of factors affecting stochasticity 

increases the dimensionality of the calibration process. This in turn results in increased 

computational effort required in calibrating traffic simulation models for different 

conditions such as variability within weekday/weekend, and seasonal variability, and 

special situations including adverse weather, work zones, etc. 

It may not be possible at all to simulate the output for each and every possible 

realization of parameter and input. Also, all possible points in the stochastic space of 

simulation output may not have the corresponding observed data. Solution methods that 

use repeated intensive sampling for various dimensions in the stochastic space are not 

desirable in the construction of robust methods for calibration of traffic simulation 

models. Hence, it is important to obtain an effective sampling and interpolation 

methodology for predicting output accurately but with lower computational effort. 

Alternative methods to mitigate the issues of computational complexity need to be 

explored. 

To address the above issues of computational burden, in chapter 4, a sampling and 

interpolation methodology using stochastic collocation is proposed. This approach uses 

the output from deterministic model runs and interpolates to obtain furthermore outputs 

without actually running the model. The traditional Monte Carlo-type sampling has a 

convergence rate of the order of O(1/√M) (Loh (1996)), where M simulation runs for 

various traffic conditions. Convergence rate of the interpolant is of the order, O(M
-

2
|log2M|

3(N-1)
) (for piecewise linear basis), O(M

-k
|log2M|

(k+2)(N-1)
) (for k-polynomial basis) 

where M is the total number of collocation points, Q-th order of interpolation, N-
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dimensions and k-polynomial basis. This rate can be controlled by the interpolation level 

and polynomial order k (Ganapathysubramaniam and Zabaras (2007), Klimke (2006)).  

In chapter 5, case studies that use freeway section at interchange 7 of the NJTPK as 

the modeling section, are presented. The proposed calibration methodology is applied to 

this model for various traffic conditions. These traffic conditions are determined by the 

clustering approach mentioned in the previous subsection. The observed flow distribution 

is closely matched using the calibrated set of parameters using the proposed 

methodology. The calibrated parameters are also validated using a hold out dataset. 

Additionally, we show, that computational efficiency of the proposed methodology as 

compared to more commonly used Monte Carlo method is shown empirically.  

3.3 Calibration of microscopic simulation models with customization 

In the previous subsection, the computational complexity that the numerical 

methods capturing stochasticity suffer from is illustrated. This problem is further 

exacerbated when microscopic traffic simulation models require additional 

customization. Customization of microscopic models is required when the default 

modeling capability is inadequate. Such customization is performed often for modeling 

traffic circles (Bartin et al. (2005), Vaiana et al. (2007)), toll plazas (Astarita et al. (2001), 

Ozbay et al. (2006) and Mudigonda et al. (2009)), freeway merging sections (Yang et al. 

(2006), Gardes et al. (2002), Yang and Ozbay (2011)), etc. Thus the same generic 

calibration methodology may not be applicable to traffic simulation models of much 

greater detail such as the toll plaza models. 

Calibration of such customized microscopic models for various conditions has 
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two primary difficulties. First is the number of parameters, not only default model 

parameters but also customization parameters, which need adjustment when calibrating. 

Second, is the availability of detailed data required for such detailed modeling for various 

conditions. An alternative calibration approach that can economize on the data 

requirement will be very useful. 

In chapter 6, we propose the use of a simulation-based optimization framework 

for calibration of toll plaza models. The toll plaza modeling approach proposed in 

Mudigonda et al. (2009) is adopted. The flexibility of this SBO framework is that it can 

be used with the toll plaza modeling approach: 

 in cases where site-specific video data is available to estimate all the required 

parameters of the toll plaza model 

 when only partial data to estimate these parameters are available 

 or even when no data is available. 

The novelty of the SBO framework is that whichever data is not available, the 

corresponding parameters can be used as calibration parameters. 

Using case studies the benefits, mentioned above, of the SBO framework are 

demonstrated. Furthermore, we combine the sampling and interpolation using stochastic 

collocation (proposed in chapter 4) with the SBO framework. Using this hybrid 

framework, we calibrate the parameters to obtain distribution of output from the toll plaza 

model that closely follows the observed measures at the toll plaza.  
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3.4 Calibration with limited data 

Modelers could often face situations when calibrating for a particular condition that 

there may be some data missing and only limited data is available. Missing data often 

arises when using traffic sensor data. Traffic sensors may be malfunctioning or not 

accurately recording the speed or flow data. In chapter 5, the use of alternative sources of 

data when sensor data is missing is demonstrated. This aspect is elaborated using a larger 

freeway section of eight miles encompassing interchanges 7 and 7A of NJTPK. On this 

section few sensors have 25% of missing data and one with 70% missing. To mitigate 

this issue, ETC data is used to estimate the section travel times. In the proposed 

calibration methodology, travel times are used as an additional output measure.  

Limited data availability could be a more ubiquitous issue when calibrating 

microscopic models that require detailed data (such as video data) at specific sites of the 

section of interest. An example could be the need for video data downstream of a toll 

plaza to calibrate the user behavior downstream of the toll plaza. To deal with such 

issues, as mentioned in the previous subsection, a SBO framework is proposed to 

calibrate toll plaza models. The novelty of this framework is that when some of the data 

is unavailable, the parameters associated with the unavailable data can be used as 

parameters in the calibration process.  
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CHAPTER 4. METHODOLOGY FOR CALIBRATION OF 

MACROSCOPIC TRAFFIC SIMULATION MODELS 

A simulation model, like any mathematical model, can be represented as a 

prediction model using a set of parameters along with an additive error term. This error 

term can further be split into a sum of modeling and estimation errors as shown in 

equation (4.1). The modeling error represents how accurately the model can capture 

various aspects of traffic flow whereas the estimation error represents how accurately the 

created model can reproduce various traffic parameters, such as flow, density and speed.  

( , ) ( ( ), , ) ( ) ( )

where, 

 - vector of outputs observed

 - vector of outputs predicted by the model

( ) - parameter vector

 - modeling error

 - estimation error

 - dependent variable

S S S M E

S

M

E

I C I

C

  Ξ x μ x x ε x ε x

Ξ

μ

x

ε

ε

x  (space and time)

 - vector of inputsSI

 
(4.1) 

 

The estimation performed by simulation can be depicted using equation (4.1). It 

can be seen that the vector of observed outputs Ξ  is approximated by simulation outputμ

. μ  is a function of input vector SI  and parameter set ( )SC x . Translating to traffic 

simulation models, the outputs are flows, densities, travel times etc., the inputs, SI , are 

demand entering the freeway or arterial that is being modeled, the parameter set, ( )SC x , 
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can be free flow speed, jam density, or reaction time, headway, etc. It can be noted that 

the inputs represent the demands and parameter set depicts the supply on the freeway or 

arterial of interest.  

The variability in observed traffic metrics,Ξ , and simulation output,μ , is a result 

of variability in inputs SI (demands) and parameter set ( )SC x (supply) during different 

time periods of the day, different weather conditions, different driver population 

composition, different geometry, etc. Other stochastic factors that could influence traffic 

dynamics include, the unpredictability of driver behavior and vehicular performance, 

random and unquantifiable events affecting drivers, random and unquantifiable of the 

driving environment and factors such as choice of destination and path.  

When accounting for variability in traffic simulation, the stochasticity can be 

captured by making the inputs ( ( )SI  ) and parameter set ( ( , )SC x ) stochastic. The 

stochasticity resulting from other unquantifiable and random factors can be represented 

by the modeling error Mε . 

In this chapter we give a detailed explanation of the methodology that we propose 

for modeling inputs ( ( )SI  ) and parameter set ( ( , )SC x ) stochastically in the calibration 

of macroscopic simulation models. As mentioned in chapter 3 of this dissertation, the 

problems that are identified for a robust calibration of traffic macroscopic simulation 

models are the following: 

1. Characterizing demand- and supply-side variation 

2. Modeling stochasticity 
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3. Parameter Optimization for calibration  

4. Calibration using limited data via fusion of multiple sources of data  

Each of these issues and possible solution methodologies are discussed in the 

subsequent sub-sections. 

4.1 Supply- and Demand-side Variation  

As mentioned in the previous chapter, analysis of demand data distribution can 

provide a useful insight into whether representative days do exist in traffic. For this 

purpose 15-minute demand data extracted from E-ZPass data from the New Jersey 

Turnpike (NJTPK) for a year is analyzed as an example. Depending on how close or 

distant the demand values for each 15-minute time interval are to each other, attempt is 

made to classify the demand data for each time period into clusters. Each cluster 

represents a group of demands that are similar to each other and can be represented by the 

centroid of the cluster. The basic hypothesis is that the greater the number of clusters, the 

lower is the likelihood of existence of a “typical” day. 

In order to separate or classify the section outputs, we use clustering techniques. 

Clustering techniques are usually applied in initial investigation of data. However, it is an 

effective method to separate data into groups by minimizing variance within the group 

and maximizing variance between groups. The section output that falls into a group can 

be considered to be subjected to similar conditions. Hence, the simulation inputs and 

parameters that can be used to generate these conditions are similar. For clustering time 

series data, some of the common algorithms used are K-means clustering, hierarchical 

clustering and fuzzy c-means clustering (Liao (2005)). For the electronic toll collection 
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data, we use K-means clustering. In order to determine the optimum number of demand 

clusters, silhouette statistics are generated for each of the links. Silhouette statistics show 

how dissimilar a particular demand value is from its demand cluster centroid. 

There are 28 interchanges on NJTPK spread over different spacing. Considering 

the roadway between each interchange as a link, there are 65 links in northbound and 

southbound directions on the NJTPK system. For the purpose of clustering demand, the 

15-minute demand data between September 2011 and August 2012 for 5 AM – 9 PM is 

analyzed. 

It can be seen from Table 4-1 that there are links for which the demand falls into 

multiple clusters. 24 links have demand falling into two optimal clusters, 32 links have 

three clusters and so on. More than 63% of the link demands have three or more clusters. 

Among these clusters there are different weekend or weekday demand distributions. This 

means that considering a single distribution of demand for a weekday or weekend is not 

sufficient to accurately calibrate a simulation model that can be used throughout the year. 

Table 4-1: Distribution of number of links on NJTPK and optimum number 

of clusters  

Optimum Number 

of Clusters 

Number of Links 

2 24 

3 32 

4 7 

5 1 

6 1 
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Figure 4-1. Illustration of clustered demand for four different links on 

NJTPK  

In order to show the representativeness of the clusters, we show the frequency of 

observations vs. their cluster number. Figure 4-2 depicts the likelihood of an observation 

(i.e., the demand on a link for a day in the whole year) to fall into a particular cluster. It 

shows that 35% of observations fall into clusters one or two and 20% of demands fall into 

four other clusters. Although 35% of observations do fall into one or two clusters, the 

distribution of the observations within the cluster is fairly large, as can be seen from the 

spread of observed demands around the clustered demand in Figure 4-2. 
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Figure 4-2. Frequency of number of observations for all links in each cluster 

In order to capture various supply-side traffic conditions, we use the traffic sensor 

data. As mentioned in the earlier, traditionally, an arbitrarily chosen day or few days from 

the sample has been used for calibration. However, as depicted in Figure 1-1, this may 

not be representative of the speed and flow variation of the section. In order to capture 

the true variation in speed and flow of the section, we would require using the output 

from a much larger sample of the population. The variation in the output of the freeway 

section could be due to reasons such as time of day, weather, construction, incidents, 

geometry, or even due to differences in acceleration or deceleration of drivers. One or 

more of these conditions could result in variation of the section output. It is prudent to 

calibrate the simulation model separately for each of such condition resulting in the 

observed output.  

Simulation inputs form the demand-side of the freeway section and simulation 
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parameters form the supply-side of the freeway section. The variation in the observed 

output of a freeway section could be a result of variation in either of the supply- or 

demand-side of the freeway section. In general, changes in speed (at least free flow 

speed) is a result of changing pavement condition, geometry or surrounding conditions, 

and thus is a property of the supply-side of the freeway section. Unlike speed, flow 

output is a function of both supply-side as well as demand-side of the freeway section. 

Thus, in this study, we use the speed output for separate the conditions that govern the 

supply-side of the freeway section. Subsequently, to capture the demand-side variation, 

we consider the variation in demand to capture the variation in output within each supply-

side condition. 

In this study, we use a hybrid of electronic toll collection (ETC) data for demand 

and traffic sensor data for speed and flow. The ETC data is collected for all toll ways in 

the U.S. and in New Jersey. Taking toll facilities in New Jersey as an example, New 

Jersey Turnpike (NJTPK) is spread over 150 miles with 28 interchanges and 366 toll 

lanes. Garden State Parkway (GSP) is about 170 miles long with 50 toll plazas and 236 

toll lanes. Each freeway carries up to 400,000 vehicles per day (NJTA (2013)). The ETC 

data is collected at toll plazas on these freeways. (NJTA (2013)) The ETC dataset 

consists of the individual vehicle-by-vehicle entry and exit time data. It also consists of 

the information regarding the lane through which each vehicle was processed (both E-

ZPass and Cash users), vehicle types, number of axles, etc. 

Speed output from the traffic sensors is used to categorize various traffic 

conditions. The demand from the ETC data is obtained for various clusters of traffic 
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conditions so as to use a distribution of demand for each condition. The simulation is 

performed using the clustered demand data distribution and simulation output of flow and 

density is compared to the observed distribution from sensor data. 

Thus the traditional approach of calibrating for a typical day is not sufficient, 

especially, if the calibrated models are used as predictive models. Hence, to obtain 

accurate predictions from a traffic simulation model, it is important to consider not only 

the demand-side variation but also and supply-side variation. Additionally, the demand- 

and supply-side variation within each cluster is also essential. 

4.2 Modeling Stochasticity 

When accounting for variability in traffic simulation, the stochasticity can be 

captured by making the inputs ( ( )SI  ) and parameter set ( ( , )SC x ) stochastic. Below we 

describe the stochastic modeling of inputs and parameter set. 

4.2.1 Quantification of Stochastic Inputs 

The data used in some of the recent studies in the calibration of traffic simulation 

models are shown in Table 4-2. This is a summary of the data used in the literature 

presented in Table 2-1.  It spans about three to 16 days during AM and/or PM peaks. 

Thus, these data may be limited to specific conditions or may be a diluted sample of few 

conditions. This approach of using limited demand in the calibration process is a 

deterministic approach. Hence the models calibrated using such data and the predictions 

from such models are not robust enough.  
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Table 4-2 Data used in Calibration of Traffic Simulation Models 

Study Data  

Hourdakis et al. (2003)  5-min. data; 21 detector stations; 12-mile 

freeway section; PM peak; 3 days 

Jha et al. (2004)  Detector data;15 days; AM and PM 

peaks; large urban network 

Toledo et al. (2004)  68 detector stations; 3 freeways; 5 

weekdays 

Qin and Mahmassani (2004)  7 detector stations; 3 freeways; AM 

peak; 5 weekdays 

Kim et al. (2005)  Travel time data for 1 hr.; AM peak;1.1 

km. freeway section 

Balakrishna et al. (2007)  15 min. data; 33 detector stations 

Zhang et al. (2008) 5-min detector count; PM peak; 7 days 

Lee and Ozbay (2009) 5-min detector count; AM & PM peaks ; 

16 days 

Duong et al (2010) NGSIM trajectory data for US-101 for 

40 min. 

Korcek et al. (2012) Loop detector data from two freeways in 

Czech and Slovak Republic for one year 

Ge and Menendez (2013) Travel times on 20 road sections in the 

Zurich inner city network 

 

In order to illustrate the variability in traffic demand over time, the distribution of 

demand over different sampling time periods can be shown. The distribution of flow for a 

loop detector at milepost 60.3 on the NJTPK for the month of April 2011 during the 

weekday AM peak period is used for this purpose. Figure 4-3 shows the fitted normal 

distribution probability density curve for one day, one week and one month. The 

coefficient of variation for these time periods is also shown in Figure 4-3. It should be 

noted that normal distribution is not the best fit for the data but it is used to illustrate the 
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increasing spread (variance) as the sampling time period increases, which is illustrated by 

the increasing coefficient of variation.  

 

Figure 4-3  Fitted Normal Distribution for one day, one week and one month 

of loop detector data at milepost 61.2 northbound direction on NJTPK 

As mentioned in the section on characterizing demand-side variation, the demand 

from the ETC data is obtained for various clusters of traffic conditions. Since this 

demand is from many different days, the demand-side variation is captured as a 

distribution for each condition. This input (demand) drawn from a distribution is a 

representative sample for the traffic supply conditions The simulation is performed using 
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the clustered demand data distribution and stochastic simulation output of flow and 

density are generated. 

4.2.2 Quantification of Stochastic Parameter Set 

It is assumed that the traffic processes are represented by the first-order model 

with just the conservation of flow (equation (2.1)). Note, however, that the framework 

presented herewith can be applied to second-order models or simulation model of any 

detail. Given this assumption, the uncertainty in traffic can be incorporated by 

introducing stochasticity into the second, third and fourth condition of equation (2.1). 

This stochasticity could span in space and time as well. 

The second aspect of incorporating stochasticity, after demand, is stochastic 

parameters. The parameter uncertainty in traffic can be incorporated by introducing 

stochasticity into the second and third conditions of equation (2.1). This stochasticity 

could span in space and time as well.  

In order to illustrate the stochastic variation in parameters, consider the 

discretization of the highway that is being modeled as shown in Figure 4-4. The highway 

is divided into n sections. Stochasticity in the boundary condition would mean that the 

demand could be drawn from a distribution of demands on the highway from different 

days for the same modeling time period. Stochasticity in the fundamental flow-density 

(q-k) relationship, ( )f  , means, that the maximum flow, free flow speed and jam density 

could be drawn from a distribution rather than using fixed values. Stochastic fundamental 

flow-density relationship is evidenced from various loop detector data and also proposed 
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by studies such as Kim and Zhang (2009), Muralidharan et al. (2011). Stochasticity in 

time would mean that the parameters that go into the model may vary with time of day. 

Lee (2008) has considered the stochasticity in boundary conditions and time in his 

methodology. Additionally, it can be observed from studies such as Lee and Ozbay 

(2008), Balakrishna et al. (2008), Zhong (2010) calibration traffic simulation models for 

different time periods/conditions could result in different sets of parameters. Stochasticity 

in space would mean that, instead of using the same set of parameters for the whole 

highway, each section could have a different set of parameters. Hence it would be more 

appropriate to derive/obtain a distribution of the parameters based on the type of 

condition. Note that this distribution can span both in the temporal (time of day, season, 

weather, etc.) and spatial (changing geometry or pavement condition in different parts of 

the network) dimensions. However, the variability in traffic conditions has been modeled 

using Monte Carlo-type exhaustive simulations representing each and every condition. 

But this approach, depending on the size of the network, could be computationally time-

consuming. 

 

Figure 4-4 Discretization of a Highway Section 
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The stochastic version of the macroscopic traffic flow model in equation (4.2) can 

be shown as a stochastic partial differential equation (SPDE), 

 ( , , ) ( , , ) 0

( , , )

D: deterministic -  domain

: stochastic space

~ ( , ) : fundamental relationship for -th output cluster
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(4.2) 

written in short as, 

( : , , ) 0B x t  ρ  (4.3) 

 

Thus the parameter set is defined as a stochastic function of time and location and 

having a probability density function ( , )t

ip   . Thus, the set of parameters of interest with 

stochasticity can be expressed as ( ( ( )), ( ), ( ))B

I if       . Note that there can be 

additional parameters in ( )f  based on which regime of traffic flow the stochasticity is 

modeled. In the language of measure theory, ( ( ( )), ( ), ( ))B

I if       belongs to a 

probability space ( , , )A P whose event space is   and is equipped with σ-algebra A

and probability measure P . Thus for , we intend to solve for 

( , , ) :x t D   such that equation (4.2) is satisfied. Using this framework, the next 

three sections describe a generic solution methodology for solving the first-order traffic 

flow model with stochastic parameters. 
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4.2.3 Solving the Stochastic Traffic Flow Model 

In the case of models of physical processes represented by a set of partial 

differential equations (such as the conservation of traffic flow), uncertainty can be 

incorporated by modeling the process as an SPDE. The uncertainty in various parameters 

is modeled using various numerical methods. Among these numerical methods, 

quantification of uncertainty in model parameters and, initial and boundary conditions is 

an actively researched area.  

The solution methods to solve the SPDEs can broadly be classifies into Monte 

Carlo-type statistical methods and non-statistical methods. Monte Carlo-type methods do 

not approximate the solution space. They use the deterministic solution method to 

repetitively solve the problem at each sample point of the stochastic space. Non-statistical 

methods approximate the solution space and model the stochasticity in the approximated 

space. Stochastic spectral methods are examples of non-statistical methods and are 

among the more effective and recently explored approaches.  

While choosing the method of solution for the SPDEs, it is important to consider 

the computational complexity involved in the problem. 

4.2.3.1 Complexity in Design of the Traffic Simulation Experiment 

Calibration of traffic simulation model entails repeated execution of the 

simulation by varying the supply-side parameters and demand-side inputs until the error 

in outputs is minimized according to certain criteria. With so many variables, it is 

necessary to have a systematic approach to determine which parameters are important 

and how many replications of the simulation are necessary. Also, it is important to find 
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the effect of each of these parameters and/or any interaction between them, before 

running the simulations for the combinations of parameters. This is the process generally 

called the experimental design. 

Suppose there are k parameters. One approach is to vary the level of one 

parameter and keep all other k -1 parameters fixed. However, this is not an efficient 

approach and it may not be effective in determining the interaction between the 

parameters. A more efficient method is to have two levels for each parameter and execute 

the simulation at each of the 2
k
 number of combinations. This approach is called the 2

k
 

factorial design. (Law and Kelton (2003)) 

When designing for an experiment with 2 distinct values in the discretized form 

for the n stochastic inputs (demands) would involve a full-factorial design i.e. with 2
n
 

replications. Additionally, the model has, say, 2 parameters with l and m distinct values 

(traffic conditions), the number of replications would be m*l*2
n
. 

Furthermore, due to the stochastic nature of the inputs, just two levels of inputs 

may not be enough.  The objective of the simulation is to approximate the mean   with 

 . The precision, , can be expressed as /    . For statistically significant 

results, the number of replications needed to be at a level of precision γ, estimated 

standard deviation S, and t-statistic for M-1 degrees of freedom, significance level α is 

given in equation (4.4) (Law and Kelton (2003))  

2

1,1 /2 *Mt S
n





  
  
 

 (4.4) 

Most studies capturing stochasticity in computational traffic models use a Monte 
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Carlo (MC)-type independent sampling of M simulation runs for various traffic 

conditions. However, the convergence rate for MC-type method or Latin hypercube 

sampling is slow, O(1/√M) (Loh (1996)). 

To illustrate the computational burden for MC-type sampling, suppose we intend 

to simulate a freeway section with an on- and off-ramp. There are three independent 

demand inputs, namely, mainline, on- and off-ramp demands. Let’s suppose there are two 

stochastic parameters sampled at 10 points each and let’s also suppose that the standard 

deviation of demand is 140. To achieve a precision of 100 veh/hr in flow at 90% level of 

significance, the number of replications for variance reduction is 8. Thus the total number 

of runs required is 10*10*8
3
 = 51,200. If each run takes 5 s (for instance), then the 

computational time taken = 71 hrs. If we want to increase our precision to further reduce 

the variance, the number of runs and computational time increases exponentially, as 

illustrated in Figure 4-5. 

 

Figure 4-5 Illustration of number of runs required for statistically significant 
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results using MC-type sampling with number of parameters and precision of 

estimation 

In cases where large sources of data spanning different conditions are available, to 

capture the stochasticity in traffic conditions, there is an increase in number of factors of 

stochasticity. This in turn increases the dimensionality of the calibration process. Thus 

depending on the size of the network and number of stochastic dimensions, MC-type 

sampling approaches can become prohibitive in terms of computational effort. It may not 

be possible at all to simulate the output for each and every possible realization of 

parameter and input. Also, all possible points in the stochastic space of simulation output 

may not have the corresponding observed data. Thus it is important to obtain an effective 

sampling and interpolation methodology for predicting output accurately but with lower 

computational effort. Thus solution methods that use repeated intensive sampling for 

various dimensions in the stochastic space are not desirable in the construction of robust 

methods for calibration of traffic simulation models. Alternative methods to mitigate the 

issues of computational complexity need to be explored. 

4.2.3.2 Stochastic Spectral Methods 

Stochastic spectral methods provide an effective alternative to computationally-

intensive Monte Carlo methods. In this method each stochastic factor is treated as another 

dimension. The spectral methods involve decomposing the infinite dimensional solution 

domain  is approximated by an N-dimensional space  . This N-dimensional space is 

spanned by orthogonal polynomials i such that 0{ ( )}  for 1,...,N

i i ispan i N     . The 
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choice of the type of polynomial is made depending on the PDF ( ( ))i ip   . This process is 

called as generalized polynomial chaos (g-PC) expansion and is used as a basis for 

spectral methods. Polynomial chaos methods were first investigated by Ghanem and 

Spanos (1991) in finite element modeling of solids. g-PC methods have been successfully 

applied to stochastic modeling of elastic materials, conduction of heat (Wan and 

Karniadakis (2005)), incompressible flows (Xiu and Karniadakis (2003), Mathelin et al. 

(2005)), etc. Implementation of these methods to flows involving discontinuities (such as 

vehicular traffic flow) is an actively researched area.  

Once these polynomials are obtained, the g-PC approximation of the solution

( , )x ξ is obtained as a projection onto the space using a linear combination of the 

orthogonal polynomials that span the space  as in equation (4.5),  

1

( , ) ( , ) ( ( )),  
M

P

N m m m

m

N P
x x M

N
   



 
    

 
ξ ξ  (4.5) 

where the coefficient ( , )m x ξ is given by ( , ) ( , ) ( ) ( )m mx x p dy  ξ ξ ξ ξ . g-PC 

solution methods essentially entail estimating the coefficient ( , )m x ξ . Thus, using the g-

PC expansion equation (4.5) can be written as, 

1

( ( , ) ( ) : , , ) 0
M

m m m m

m

B x x t  


  ξ  (4.6) 

By projecting it onto the polynomial basis m ,i.e., transferring the stochasticity 

from the dependent variables to the basis polynomials, it can be written as equation (4.7), 

1

( ( , ) : , , ), 0,
M

m m m

m

N P
B x x t M

N




 
     

 
 ξ ξ  (4.7) 

where ,a b denotes the inner product of functions a and b . This method of 
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projection is called as the stochastic Galerkin approach (Ghanem and Spanos (1991)). 

Thus, in the stochastic Galerkin method, the spatial and time domain are approximated 

using a finite element discretization and the stochastic space is also approximated using a 

g-PC approximation as shown in equation (4.5). The equation (4.7) is equivalent to a set 

of M coupled deterministic set of PDEs. The coupled nature of equation (4.7) makes the 

solution method non-trivial since the M coupled deterministic PDEs are dependent on 

each other. Hence regular solution methods for deterministic PDEs cannot be applied for 

solving equation (4.7). A methodology using the existing solution methods for 

deterministic PDEs is more generic and useful. Stochastic collocation is one such method 

and is explained in the next subsection. 

4.2.3.3 Stochastic Collocation Method 

An alternative approach to using stochastic spectral methods is to have a finite 

element approximation for the spatial domain and approximate the multi-dimensional 

stochastic solution space using interpolating functions along with deterministic solutions 

in each independent dimension. These interpolating functions are so chosen to be 

mutually orthogonal so that the resulting equations are decoupled. This approach is called 

the collocation approach, using which we can compute the deterministic solution at 

various points in the stochastic space and then build an interpolated function that best 

approximates the required solution over the stochastic solution space. Stochastic 

collocation can be used to greatly reduce the computational burden without foregoing the 

modeling accuracy that much. Instead of executing the simulation for each and every 

condition i.e., using a Monte Carlo-type of exhaustive simulation runs, the interpolating 
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functions can be used to approximate the output at the intermediate conditions.  In 

addition, the time consumed by the collocation approach can be further reduced by 

parallelizing the simulation under each condition, since each of them may be independent 

of the other. 

The central tenet of the collocation method is to construct an interpolation 

function for the dependent variables using their values at particular points in the 

stochastic space. The difference with the stochastic spectral methods is that they 

approximate the stochastic solution space using g-PC expansion of orthogonal 

polynomials of random variables.  

Stochastic collocation involves decomposing or parameterizing the model outputs 

using N independent random variables, { ( )}, 1,...,i i N  ξ at prescribed set of 

collocation points. In other words the infinite dimensional solution domain  is 

approximated by an N-dimensional space  . The probability density function of each 

random variable ( )i   can be defined as

( ) :  for 1,...,  and ( )i i

i i ip i N        . The joint density for ξ can be 

written as 
1

( ) ( )
N

i

i

i

p p 


ξ  and the corresponding support as
3

1

N

i

i

    . This 

representation can be extended to any N-dimensional space based on the set of 

parameters. Thus for ξ , we solve for ( , , ) :p x t Dξ such that equation (4.5) is 

satisfied for ( , , )p x t Dξ , the space-time domain. So, the output can be expressed as

1( , , ( )) ( , , ( ),..., ( ))Nx t x t    ρ ξ ρ ,  
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(4.8) 

Thus estimating the output at a generic point entails estimating the coefficients j

, i.e., the integrals shown in equation (4.8). This is accomplished by some deterministic 

integration techniques by approximating the stochastic N-dimensional space ( )

1

Q
k

k
ξ , 

by means of an interpolation function built using deterministic solutions evaluated at each 

of a set ofQ  collocation points. One such cubature is using the Lagrangian interpolation 

of ( , )x ξ can be shown as equation (4.9), (Xiu and Hesthaven, 2005; Babuska, Nobile, 

Tempone, 2007) 

( )

1

ˆ ( , ) ( , ) ( ), ,
Q

j N

j j

j

LI x x L x D   


    ξ ξ ξ  (4.9) 

where 
( )( ) ,1 ,j

k kjL j k Q  ξ are Lagrangian polynomials and ( )k x is the 

deterministic solution at a given point
( )k
ξ . In other words, at any point ξ the 

Lagrangian interpolation approximates  by ̂ . Substituting this to SPDE shown in 

equation (4.5), gives, 

Since ( )jL ξ are orthogonal interpolating functions, the above equation, in the 

interpolation form, becomes into Q deterministic decoupled equations, 

( ) ( )( ( , ) : , , ) 0, 1,...,j j

jB x x t j Q      (4.10) 
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Thus stochastic collocation is classified as a non-intrusive method since the 

deterministic equations are not coupled and the numerical methods applicable in solving 

deterministic form of PDEs can be applied directly. 

Although the deterministic integration approaches are fairly straightforward, the 

implementation in multi-dimensional space is not trivial. Computationally efficient 

schemes to approximate the multi-dimensional stochastic space, such as the Smolyak 

algorithm (Ganapathysubramanian and Zabaras, 2007), are available. Smolyak algorithm 

reduces the number of collocation pointsQ  in multiple dimensions by using tensor 

products of each one-dimensional interpolants in a particular way shown below.  

Consider the one-dimensional interpolant for function f using the set of points 

used as ( )k .  

1

( ) ( ) ,

( ) deterministic soluation at ,

interpolation basis polynomial,

no. of nodes at level of interpolation .

im
i

j j

j

j j

j

i

U f f L

f

L

m i



 













 (4.11) 

However, when extending to multiple dimensions, since each stochastic 

dimension is independent, the interpolant in N-dimensions involves tensor products of 

one dimensional interpolants 1 ,..., Nii
U U . The multi-dimensional tensor product can be 

written as  
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 (4.12) 

It can be seen that the tensor product in equation (4.12) requires 
1 *...* Nm m

evaluations. 

The Smolyak algorithm constructs a sparse interpolant ,q NA ( N is the stochastic 

dimensions and q N is the order of interpolation) using a product of one-dimensional 

functions (Klimke (2006)) is in equation (4.13), 

1

1

,

1

1,

1 1

1
( 1) ( ... )

where 

0,

,..., :  one dimensional interpolants

( ,..., ) with ... ,

N

N

q ii

q N

q N q

N N

ii

N N

N
A U U

q

A

U U

i i i i



   



 
      

 



   


i

i i

i i

 
(4.13) 

Here, , 1,...,ki k N  is the level of interpolation in dimension k. Smolyak 

algorithm builds the multi-dimensional interpolant using one-dimensional interpolants of 

order , 1,...,ki k N  with the constraint that across all dimensions, the sum 1 ... Ni i  i  

follows 1q N q   i . This same sparse interpolation can be shown using an 

incremental interpolant 
1 0; 0i i iU U U    as, 



75 

 

 

 

 

1 1

, 1,( ) ( ... )( ) ( ) ( ... )( )N Ni ii i

q N q N

q q

A f f A f f

 

         
i i

 (4.14) 

Thus to construct the interpolant , ( )q NA f (in equation (4.13)) from scratch, we 

need to compute the function at the nodes covered by the sparse grid 

1 ( )( )

, 1 1( ... )Nii

q N

q

H


   
i

 . Thus this interpolation process allows us to utilize all the 

previous interpolants generated. Using appropriate points such that 
( )

1

i is nested, 

( ) ( 1)

1 1

i i  , an extension from the i-th interpolant to i+1 only needs the evaluation at 

points that are unique to 
( 1)

1

i . Thus the Smolyak algorithm provides great savings in 

computational resources. 

It can be seen that determining the grid ,q NH is an important part of the Smolyak 

algorithm for interpolation. The distribution of points on the grid is usually performed 

using piecewise linear basis functions (Clemshaw-Curtis grid) or polynomial basis 

functions (Chebyshev-Gauss-Lobatto grid). Examples of these grids are shown in Figure 

4-6. In cases where the original function is relatively smooth and higher accuracies are 

required, the polynomial bases are recommended (Klimke (2006)). Since the smoothness 

of the simulation output is not known, we use the piecewise linear bases. More 

specifically, we use the Clemshaw-Curtis grid for basis for constructing the interpolant. 



76 

 

 

 

 

 

Figure 4-6 (a) Clemshaw-Curtis grid in two-dimensions, (b) Polynomial basis 

grid in two-dimensions, (c) Polynomial basis grid in three-dimensions 

Thus the stochastic collocation points at various points in the grid are used to 

discretize the stochastic dimension of the dependent variables. Also as shown in equation 

(4.12) and equation (4.13), the interpolation schemes can be used to predict the outputs at 

intermediate points where traffic data may not be available. An illustration of the 

discretization of the stochastic space using a Clemshaw-Curtis grid in two dimensions is 
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shown in Figure 4-7. 

 

Figure 4-7: Example of approximation of stochastic space by collocation 

points 

The advantage of this recursive/nested structure is that to increase the order of 

interpolation (accuracy) we can use all the deterministic solutions from the previous 

steps: Aq-1,N, by adding a few more deterministic solutions. When new data is available, 

additional deterministic solutions can be evaluated and accuracy of interpolant is 

improved. 

Convergence rate of the interpolant is of the order, O(M
-2

|log2M|
3(N-1)

) (for 
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piecewise linear basis), O(M
-k

|log2M|
(k+2)(N-1)

) (for k-polynomial basis) where M is the 

total number of collocation points. This rate can be controlled by the interpolation level 

q-N and polynomial order k (Ganapathysubramaniam and Zabaras (2007), Klimke 

(2006)). Thus, we show, empirically, that convergence of this interpolant is better than 

the more commonly used Monte Carlo method. 

The methodology described in this subsection illustrates the solution approach to 

stochastic macroscopic traffic PDE. However, the parameters in the PDE need to be 

optimized to calculate the flows and densities close to the observed values. This 

optimization procedure is described in the next subsection. 

4.3 Parameter Optimization 

The output generated from a macroscopic traffic simulation model is the density, 

speed and flow over time at different sections of the roadway section or network. When 

constructing a robust simulation model, the objective is to obtain accurate outputs for 

varying conditions. In other words, the parameters for the simulation model are to be 

estimated by minimizing the error in the simulated and observed outputs. As a part of this 

exercise, the set of parameters that best represent each condition have to be estimated. 

This presents a stochastic inverse problem. 

The stochastic collocation points in the grid (illustrated in the previous 

subsection) are used to discretize the stochastic dimension of stochastic inputs as well as 

stochastic parameters. The process involved in the estimation of calibrated parameters is 

described below. 

From each realization of the parameter set, using the demand distribution as an 
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input, the simulation output distribution (e.g., flow or density distribution) is generated. 

This distribution is compared with the observed output distribution and using a test 

statistic (such as the test statistic from the Kolmogorov-Smirnov (KS) test), the error is 

estimated. This error is used as an objective function and is minimized as part of the 

multi-objective parameter optimization forming the stochastic inverse problem is shown 

in equation (4.16), using the simultaneous perturbation stochastic approximation (SPSA) 

algorithm (Spall (1992)).  

min ( , ( , ))

where,

, - observed and simulated outputs 

 - parameter set

 - error functions for outputs

S

obs sim s s

obs sim

S

U O O I

O O

U






 (4.15) 

The methodology employed to solve the inverse problem in equation (4.15) 

depends on the ease and feasibility in calculating the gradient of the function to be 

minimized in equation (4.15). For instances where the gradient is tractable the 

optimization can be performed using methods such as steepest decent algorithm. In cases 

of problems with lower dimension of parameters, such as freeway sections with lower 

uncertainty and/or sections with lesser number of on- and off-ramps set the gradient is 

tractable. However, in order to calculate the gradient the solution search space needs to 

be discretized and sampled. Although there are fairly efficient sampling schemes such as 

Latin hypercube sampling, the size of the sample space could get very large with increase 

in number of variables (on-ramp, off-ramp demands, etc.). Therefore, stochastic 

approximation methods can be used to approximate the gradient using with minimal 
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sampling required. The gradient can be approximated using finite difference methods 

(Kiefer and Wolfowitz (1952)) or the more efficient simultaneous perturbation stochastic 

approximation (SPSA) algorithm (Spall (2003)). The sampling for parameter updating is 

performed using successive averaging developed by Robbins and Monro (1951).  

In this study the inverse problem of finding the parameters is solved using the 

SPSA algorithm.  The SPSA algorithm has been used extensively in dynamic O-D matrix 

estimation (Cipriani et al. (2011)), traffic control (Spall and Chin (1997), Ma et al 

(2007a)), solving the stochastic inverse problem in the calibration process (Lee and 

Ozbay (2008), Balakrishna et al. (2007), Ma et al. (2007b)) and network analysis 

(Ozguven and Ozbay (2008)). The SA algorithm normally focuses on finding the vector 

value  , which either minimizes the loss function ( )L   or makes the gradient 

equation ( )g   equal to zero. The SPSA is an applicable stochastic optimization method 

for multivariable equations, and the standard SPSA algorithm has the following form 

(Spall (2003)): 

1
ˆ ˆ ˆˆ ( )k k k k ka g     (4.16) 

Here, ˆˆ ( )k kg  is the SP of the gradient ( )
L

g


 


estimated, based on the loss 

function measurements, at ˆ
k  at the k

th
 iteration. ka indicates the step size and is a 

nonnegative scalar coefficient. The basic solution to an optimization problem is to 

minimize the loss function ˆ ˆˆ( ( ))k k k kL a g   at the k
th

 iteration. The new value of  , 

obtained for every iteration, is calculated by subtracting the product of step size and the 
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gradient at the present value from the previous value of  . 

The gradient approximation ˆˆ ( )k kg  is the most important part of the SPSA 

algorithm. With Stochastic Perturbation (SP), loss measurements are obtained by 

randomly perturbing the elements of ˆ
k . Assuming that  is p -dimensional, the 

Stochastic Perturbation (SP) gradient approximation can be shown in the following form: 

1
1 1

1

2

1

ˆ ˆ ˆ ˆˆ ˆ( ( )) ( ( ))

2

ˆ ˆ ˆ ˆˆ ˆ( ( )) ( ( ))ˆˆ ( )
2

ˆ ˆ ˆ ˆˆ ˆ( ( )) ( ( ))

2

k k k k k k k k

k k k

k

k k k k k k k k
k k

k

kpk k k k k k k k

k kp

L a g L a g

c

L a g L a g
g

c

L a g L a g

c







       
 

   
            
     
     
          

 
  

 
(4.17) 

Here, the, p -dimensional random perturbation vector, 

1 1 1

1 2

T

k k k kp

         Δ is a user-specified vector for which the components of 

kΔ are normally distributed ±1 Bernoulli variables. Here, kc is a positive scalar. 

The problem of minimizing ( )L  for a differentiable loss function is equivalent to 

finding a solution of the gradient approximation ( ) 0
L

g


  


. The loss function for 

this study is a standard quadratic measure, ( ) |TL E x x     . |TE x x  denotes an 

expected value that is conditional on the set of controls with weights   (Spall (1997)). 

The SPSA algorithm is not a greedy algorithm i.e., it does not result in the optimal 

solution, but converges quickly towards the optimal solution. Also it requires only two 

iterations to compute the gradient at each point. 
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The objective function in equation (4.15) can have two components, error in flow 

and error in density at each section. It is likely that during the optimization procedure 

each of the errors could conflict with each other. In other words, one set of parameters 

could reduce the error in flow which the other set could increase the error. This may 

result in oscillation of the optimal solution. Thus there are multiple objective functions 

that need to be optimized. 

 1

2

( , ( ))
min ( ) min

( , ( ))t t

Ob S

i i t

t Ob S

i i t

U q q
F

U   

 
   

 

 

This problem constitutes the methodology of multi-criteria optimization problems 

(MOP). Generally, the solution methods for MOP are classified as scalarization 

approaches and Pareto-approaches (Steuer (1986)). Scalarization approaches attempt to 

convert the vector form of the objective function to a scalar form. This conversion is 

based on using preferences for each objective in the form of weighting or other additional 

constraints (Ehrgott (2005)). The Pareto-approaches search the solution space based on 

the preferences a posteriori. In this study, we adopt a weighting mechanism for each 

objective i.e. error. Thus the new formulation of the inverse problem can be expressed as 

shown in equation (4.18). In equation (4.18) the weight parameter w  signifies the 

importance in the calibration process that can be assigned to each error measure. The 

weights can be assigned values of the variance in flows and densities observed. 
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1

min ( , ( )) ( , ( ))

where,

, - observed and simulated flows at location 

, - observed and simulated densities for location 

 - parameter set for time period 

t

N
Ob S k Ob S k

i i t i i t

i

Ob S

i i

Ob S

i i

k

t

wU q q w U

q q i

i

 

 




  





1 2

1 2

 and iteration 

,  - weights for the error measures

,  - functions representing the error in flow and density

t k

w w

U U

 
(4.18) 

To summarize the proposed approach, first the output data exploration is 

performed to categorize output into statistically separable clusters. For each output 

cluster, a corresponding input/demand-side distribution and parameter/supply-side 

distribution are generated. These distributions are discretized using the stochastic 

collocation method. For each realization of the parameter set, the simulation is performed 

and the output distribution is generated using the demand-side distribution. This is 

compared to the observed distribution and error statistic is generated. If the error statistic 

is not satisfactory, the parameter set is updated using the SPSA algorithm (Spall (1992)) 

and the output distribution is re-generated. A schematic representation of the sequence of 

steps in our proposed methodology is shown as a flowchart in Figure 4-8. The main 

advantages of using this proposed calibration methodology are the following: 

1. Flexibility in applying to any type of traffic simulation (1
st
 order, 2

nd
 order, 

meso/microscopic, etc.), 

2. Computationally more efficient than MC-type exhaustive sampling methods with 

effective interpolant to generate full distribution of simulation output.  

3. Time consumed by the collocation approach can be further reduced by 
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parallelizing the simulation under each condition, 

4. Nested form of the algorithm is useful in refining the interpolant as and when 

there is new data available. 

 

Figure 4-8 The logic of the proposed calibration methodology 

Efficient collocation methods improve efficiency of solving PDE-based 

simulation model compared to Monte-Carlo methods. This resulted in the recent 

development of stochastic gradient-based tools for performing optimization (Sankaran 

(2009); Zabaras and Ganapathysubramanian (2008)) that significantly improve efficiency 

compared to Monte-Carlo methods. Methods for solving stochastic inverse problems 

(Faverjon and Ghanem (2006)) have also been recently developed. The proposed 
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methodology is designed along similar lines. 

The simulation output ( , )jx t is obtained at each of these points, jt , is a result of 

discretization of stochastic space using stochastic collocation and SPSA optimization for 

the parameters. Thus evaluating ( , )jx t  requires multiple simulation runs for 

considering the stochastic inputs. Thus the output at each of the collocation points is a 

distribution rather than a single point value. The output at any of the intermediate points 

is obtained using the interpolation scheme shown in equations equation (4.12) and 

equation (4.13). 

In the next chapter we present several case studies illustrating the application of 

the proposed calibration methodology. 
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CHAPTER 5. CASE STUDIES USING PROPOSED 

CALIBRATION METHODOLOGY 

In order to illustrate the proposed calibration methodology to capture stochastic 

variation in traffic conditions, a three-lane section of the NJTPK turnpike at interchange 7 

is chosen. Although, microscopic traffic simulation tools, such as PARAMICS or 

VISSIM, provide a detailed and relatively accurate platform for modeling, the model 

building, calibration and execution can be very time consuming. When studying the 

effects of various stochasticities, we are going to focus on a first order macroscopic 

traffic simulation model to model the traffic flow in the section. The stochastic version of 

the first order macroscopic traffic flow model can be represented as follows.  

 ( , , ) ( , , ) 0

( , , )

D: deterministic -  domain

: stochastic space

~ ( , ) : fundamental relationship for -th output cluster

( , ) ( , ) :  stochastic demand in cell  for -th

t x

i

B

i j j i

x t x t

x t D

x t

q v f i

x t t j i

 



  

  

   

 







ρ ρv

ρ

 output cluster

 (5.1) 

We discretize the time and space for the model using the cell transmission model. 

A schematic representation of the discretized simulated section, the stochastic input and 

model parameters is shown in Figure 5-1. 
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Figure 5-1: Schematic representation of the study section 

In order to capture various traffic conditions, we use the traffic sensor data 

between for every 5 minutes between January 1, 2011 and August 31, 2011.This is, 

however, a very large dataset and can be considered as the population. We use a smaller 

sample of peak period during the months of April and May 2011 for calibration and use 

other parts of the larger dataset for validation. Even this sample of peak period during the 

months of April and May 2011 has a wide range of variation in speed and flow, as can be 

seen in Figure 5-2. Traditionally, an arbitrarily chosen day or days from this sample is 

used for calibration. However, as can be seen in Figure 5-2, this may not be 

representative of the speed and flow variation of the section. In order to capture the true 

variation in speed and flow of the section, we would require using the output from the 

whole sample.  

As mentioned in the methodology section, in order to separate or classify the 

section outputs, we use k-means clustering. We followed the steps mentioned below in 

the clustering process: 

1. Set up a desired number of clusters. 
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2. Group speed data from various days into clusters so as to minimize the sum of the 

differences between the day values and the mean for each cluster. (the procedure 

involved in k-means clustering) 

3. As mentioned in the methodology section, the objective is to minimize the 

differences between data within clusters and maximize the difference between 

clusters. Hence, if the coefficient of variation (CoV) is more than 0.25 for any 

cluster, increase the number of clusters.   

5.1 AM Peak Calibration Results 

From Figure 5-2 (a), it can be seen that the speed output fell into two distinct 

groups with CoV less than 0.25 for within each group. Hence, we consider two distinct 

supply-side conditions in calibrating the macroscopic model for the AM weekday peak. 

There are 24 and 19 days, respectively, falling under clusters 1 and 2. This shows that the 

possible reason for significant number of days with lower speed in cluster 1 is some 

activity that consistently takes place, such as long-term construction or maintenance 

activity. We did not observe significant variation in speeds due to weather. It is likely that 

the demand-side could have been impacted due to weather. Thus considering the 

distribution of demand during all the days encompasses the variation due to weather 

conditions as well.  

We calibrate the first order simulation model for each of these conditions 

separately and estimate the corresponding optimal parameters. Due to the variation in 

speed (shown in Figure 5-2 (a)), in this case study we propose to have a stochastic 

fundamental diagram that has a stochastic free flow speed. The distribution of the free 
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flow speed is assumed to be Gaussian (Zhong and Sumalee (2008), Mihaylova and Boel 

(2006)). Thus the mean (μvf) and standard deviation (σvf) of free flow speed form a part of 

the parameter set to be estimated along with critical density (ρmax) and jam density (ρjam). 

 

Figure 5-2 (a) Illustration of Speed Data Variation for AM weekday Peak 

period during April and May 2011 (b) Distribution of demand for each condition 

(cluster) for the mainline section at interchange 7 of NJTPK during AM weekday 

peak 

To capture the demand-side variation, we obtain the demand distribution from 

days falling into each cluster. The variation in demand at this section is captured using 

the ETC data for every 5 minutes between January 1, 2011 and August 31, 2011. The 

demand variation corresponding to each condition/cluster during the AM weekday peak 

period is shown in Figure 5-2 (b). Additionally, the on- and off-ramp demand 

distributions are also generated using the ETC data. 

Thus for each cluster, the distribution of demand during each 15-minute time 
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period is generated as illustrated in Figure 5-3. The calibration of the macroscopic 

simulation model is performed for AM peak (7-9AM). As mentioned in the methodology, 

with the demand distribution as an input, for each realization of the parameter set, the 

simulation output flow distribution is generated for cells 2 and 5 in Figure 5-1. This 

distribution is compared with the observed flow distribution at locations corresponding to 

cells 2 and 5, and using a test statistic (such as the test statistic from the KS test), the 

error is estimated. This error is used as an objective function and is minimized using the 

SPSA algorithm. The result of calibration is demonstrated using the comparison of 

simulated and observed flow. 

 

Figure 5-3 Schematic depiction of demand distribution at various sampled 
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time intervals 

For this study, the Clemshaw-Curtis grid (two-dimensional version of which can 

be seen in Figure 4-7) is selected as the appropriate sparse grid to discretize the stochastic 

demand. The simulation is calibrated using the demand values at each of these grid 

points. The objective function for calibration is the test statistic used in the Kolmogorov-

Smirnov test at 90% significance, maximum separation between two distributions. As 

mentioned in equation (4), a sparse grid interpolation is performed for the output of the 

simulation and a Smolyak interpolant is constructed. Distribution of simulated flows is 

obtained by repeated evaluation of the Smolyak interpolation function. The simulated 

flow distribution is compared to the observed distribution from the sensor data.  

The comparison of observed and simulated flow distributions in cells 2 and 5 

(Figure 5-1) from the calibrated model for AM weekday peak period for condition 1 is 

shown in Figure 5-4 (a). We noticed during the process of calibration that some cells 

have different calibrated parameter set from the others. In other words, the stochasticity 

in simulation parameter set is not only temporal but also spatial. The calibrated 

parameters ([μvf, σvf ρmax, ρjam]) for AM weekday peak period for condition 1 are [53 2.11 

85 150, 62 1.93 82 150] in appropriate units. The objective function (KS test statistic) 

after calibration is calculated as 0.09. 

In order to compare the efficiency of the stochastic collocation approach, the 

distribution of simulated flow after model calibration is also generated using Monte Carlo 

sampling method. In order to achieve the flow distribution, the SC approach required 

4034 evaluations for various stochastic demand combinations. However, using a MC-
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type sampling required 180,000 runs of the simulation model. The reason, as mentioned 

earlier, is due to the ability to construct efficient Smolyak interpolant that uses the 

simulation output from much fewer runs.  

 

Figure 5-4 (a) Comparison of observed and simulated link flow distributions 

during AM peak period for condition 1 (b) Comparison of observed and simulated 

link flow distributions during AM weekday peak period for condition 2 

The comparison of observed and simulated flow distributions in cells 2 and 5 

(Figure 5-1) from the calibrated model for AM weekday peak period for condition 2 is 

shown in Figure 5-4 (b). Similar to condition 1, we noticed during the process of 

calibration that some cells have different calibrated parameter set from the others. In 

other words, the stochasticity in simulation parameter set is not only temporal but also 

spatial. The calibrated parameters ([μvf, σvf ρmax, ρjam]) for AM peak period for condition 2 

are [50 1.64 83 150, 70 1.58 100 150] in appropriate units. The objective function after 

calibration is 0.08. 
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As in the first condition, the distribution of simulated flow after model calibration 

is also generated using Monte Carlo sampling method.  In order to achieve the flow 

distribution, the SC approach required 3330 evaluations for various stochastic demand 

combinations. However, when using a MC-type simulation 180,000 samples were 

required. 

The motivation behind using data from a variety of conditions is to capture the 

stochasticity in traffic conditions. To illustrate the drawback of using limited data, we 

compare the distribution of flow for AM period by using only one day’s speed and flow 

to calibrate the AM peak model. The simulated flow distributions (shown in Figure 5-5) 

from limited data model does not match, not only the AM peak flow data under cluster 

one but also the AM peak flow data under cluster two. In addition, the objective function 

after calibration is 0.25. The objective function (test statistic of KS test) for calibration 

using the data from 43 days for condition 1 and 2, respectively, are 0.09 and 0.08. This 

illustrates the drawback in using limited data for model calibration and the importance of 

considering stochasticity in traffic conditions when calibrating traffic simulation models.  
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Figure 5-5 Comparison of observed and simulated link flow distributions 

using limited data in calibrating AM peak period 

5.2 PM Peak Calibration Results 

Similar to the AM weekday peak, clustering of speed data for PM (4-6PM) peak 

periods weekday is performed. Unlike the AM peak, the PM peak period speed data fell 

into six clusters. However, speed data from 33 out of 43 days (78% of data) fell into two 

clusters with CoV less than 0.25 for within each cluster. The CoV for the other clusters 

was in the range of 0.3-0.7. Also, the frequency of number of days within each cluster is 

not more than 4, indicating the speed data corresponding to these days as outliers due to 

work zone conditions or incidents. Hence, we use the two major clusters are 

representative clusters. Figure 5-6 shows the speed variation among the two major 
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clusters during PM weekday peak period. Hence, we consider two distinct supply-side 

conditions in calibrating the macroscopic model for the PM peak. 

 

Figure 5-6 Illustration of Speed Data Variation for PM weekday Peak period 

during April and May 2011 at interchange 7 of NJTPK 

The comparison of observed and simulated flow distributions in cells 2 and 5 

(Figure 5-1) from the calibrated model for PM weekday peak period for condition 1 is 

shown in Figure 5-7(a). Similar to AM peak, we noticed during the process of calibration 

that some cells have different calibrated parameter set from the others. In other words, the 

stochasticity in simulation parameter set is not only temporal but also spatial. The 

calibrated parameters ([μvf, σvf ρmax, ρjam]) for PM weekday peak period for condition 1 

are [52 4.16 83 150, 62.2 2.85 90 150] in appropriate units. The objective function after 
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calibration is 0.08. In order to achieve the flow distribution, the SC approach required 

1506 evaluations for various stochastic demand combinations. However, a MC-type 

sampling method to achieve the same accuracy required 180,000 runs of the simulation 

model. 

 

Figure 5-7 (a) Comparison of observed and simulated link flow distributions 

during PM weekday peak period for condition 1 (b) Comparison of observed and 

simulated link flow distributions during PM weekday peak period for condition 2 

The comparison of observed and simulated flow distributions in cells 2 and 5 

(Figure 5-1) from the calibrated model for PM weekday peak period for condition 2 is 

shown in Figure 5-7(b). Similar to AM peak, we noticed during the process of calibration 

that some cells have different calibrated parameter set from the others. In other words, the 

stochasticity in simulation parameter set is not only temporal but also spatial. The 

calibrated parameters ([μvf, σvf ρmax, ρjam]) for PM weekday peak period for condition 2 

are [48 2.26 80 150, 65 3.32 87 150] in appropriate units. The objective function after 
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calibration is 0.05. In order to achieve the flow distribution, the SC approach required 

4034 evaluations for various stochastic demand combinations. However, using a MC-

type sampling required 180,000 runs of the simulation model. 

In order to validate the estimated parameters using the proposed calibration 

methodology, we chose the month of July. Using the clusters generated for the speed 

observations for the weekday PM peak speed data April and May, we classify the speed 

data in July at interchange 7. This process resulted in 80% of the data falling into cluster 

two among the clusters generated for April and May. We generate the demand 

distributions for the mainline, on- and off-ramps using the ETC data for the days falling 

into the aforementioned cluster. Then we run the simulation separately for each clusters 

using the corresponding parameter set and demand distributions. The comparison of flow 

distributions is shown in Figure 5-8. The values of the objective function (KS test 

statistic) are 0.084. 
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Figure 5-8 Validation of estimated parameters by comparison of flow 

distributions for major weekday PM peak days in July 

5.3 Illustration of Proposed Calibration Methodology with Limited Data  

5.3.1 Introduction 

As noted in the first section, the lack of data near an entry or exit ramp, toll plaza, 

lane drop  (merge), traffic circles,  work zones, or in general road sections that are 

challenging to model (due to difference in grade, low visibility) may lead to the model 

not capturing the complexity of traffic flow for these sections. This drawback is more 

pronounced in macroscopic models which, unlike the microscopic models, do not take 

into account the movements or decisions of each individual vehicle. However, 
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macroscopic models are much simpler to build and consume much less time and 

computational resources than microscopic models. Thus it can be said that the modeling 

error equation (4.1) for macroscopic models is higher than for microscopic models. 

Also, the speed and flow data collected using traffic detectors is not very reliable. 

In cases where the availability of sensor data is limited or unreliable, alternative sources 

of data have to be combined and supplemented with sensor data. This fused dataset is 

more accurate. 

Aside from temporal variability, the traffic conditions can show spatial variability. 

As an illustration the speed-flow scatter plots for two traffic sensors separated by one 

mile for a single day on a three-lane section of the NJTPK is shown in Figure 5-9. The 

free flow speed ( fv ) and maximum flow ( maxq ) show significant differences for the two 

locations. 
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Figure 5-9 Spatial Variation of Traffic Flow 

This brings up the question of using sensor station data in the calibration process. 

Sensor station data is one of the most commonly used and available data. However, 

sensor station data is a point data i.e. it represents flow or speed of traffic at a single point 

of the freeway. If a sensor is located in the part of a freeway where there is no entry or 

exit ramps close by the spatial variation of flow may not be large. But if the sensor is 

located close to an exit or entry ramp, the variation of flow before and after the ramp is 

high. If the objective is to capture all forms of variability in traffic, this spatial variation is 

also of significance. One of the approaches by which this aspect of spatial variation will 

be addressed is by choosing the appropriate discretization scheme depending on the 

location of the sensor. 
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 In addition to sensor stations that detect vehicles on the freeway, there are 

other vehicle identification technologies available. The infrared tag used in electronic toll 

collection is one source of data, used to a widely by TRANSCOM. Each of these data can 

be used, synergistically, in the robust calibration of traffic simulation models. Depending 

on the quality of the dataset, it is established in literature (Mathison, 1988) that using 

multiple data sources increases the validity of the model. This type of data fusion for 

calibration will be another important aspect of this study. 

5.3.2 Illustrative Example and Discussion 

The stochasticity in space for the parameter vector is evidenced by a calibration 

study performed as part of this study. The study section is a three lane, 8-mile section of 

the New Jersey Turnpike covering interchanges, 7 and 7A in the northbound direction of 

traffic flow. A schematic representation of the section can be seen in Figure 5-10. Also 

shown is the cell discretization of the section into 11 cells. Sensor data for flow and speed 

is available for each mile along the section. A macroscopic first order simulation model is 

built for this section for the same time period as the data used to calibrate the freeway 

section in section 4.2. For this time period, sensor data for four locations is available. 

However, since this data is from traffic sensors, the speed and flow data is missing for 

20% of the time for one sensor and around 5% of time. Additionally, the data from 

sensors may not be as accurate (Rajagopal and Varaiya (2007), Li and Li (2009)). 
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Figure 5-10 Schematic representation and data availability of the model of 

NJTPK between interchanges 7 and 7A  

In order to mitigate the issue of missing and partly inaccurate data, we use the 

travel time estimated from the ETC data. The travel time between interchange 7 and 7A 

is estimated for the month of April for every five minutes during the PM peak period (4-6 

PM). Using ETC travel time as another calibration measure would result in a more robust 

model due to two reasons. Firstly, the ETC data is continuously available and the exact 

time of exit and entry at every toll plaza of the interchange of each and every vehicle is 

available. Secondly, travel time data is a measure which has a much greater spatial extent 

than speed data collected as a point measure using sensor data. Also, travel time is an 

important measure when using simulation models as predictive tools. 

We use the same two representative clusters during the PM peak from the 

previous chapter for the purpose of calibration. The demand and travel time distribution 

data is also separately collected for the two clusters. The same methodology described in 

section 3 is used to calibrate the freeway section depicted in Figure 5-10. However, we 
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use flow and travel time as output measures in the calibration process. 

The comparison of observed and simulated flow distributions from the calibrated 

model for PM weekday peak period for condition 1 is shown in Figure 5-11. Similar to 

AM and PM peaks, the stochasticity in simulation parameter set is not only temporal but 

also spatial. The calibrated parameters ([μvf, σvf ρmax, ρjam]) for PM weekday peak period 

for condition 1 for cells [{1,2}; {3,4,5}; {6} and; {7,8}] are [52 4.16 83 150; 65 7 90 

150; 70 17 90 150; 66 15 90 150] in appropriate units. The objective function after 

calibration for flow is 0.08 and 0.15 for travel time. In order to achieve the flow 

distribution, the SC approach required 15,121 evaluations for various stochastic demand 

combinations. However, a MC-type sampling method to achieve the same accuracy 

required 200,000 runs of the simulation model. 

 

Figure 5-11 Comparison of observed and simulated (a) flow distribution and 

(b) travel time distribution during PM peak for interchange 7-7A freeway section of 

NJTPK 
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As compared to the calibrated parameters using only flow data from sensor data, 

the variance in free flow speed is higher when flow and travel time data are used for 

calibration. The likely reason for this finding is the differences in speeds between 

different lanes and also differences in speeds among different vehicle types. The variance 

in speed over smaller sections among different lanes and/or vehicle types may not be as 

pronounced as in the smaller section. However, variation among different lanes and 

vehicle types would be more pronounced over larger section. Hence, since we use travel 

time, which is a measure with greater spatial extent than point flow data, the variance in 

speed is higher.  
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CHAPTER 6. CALIBRATION OF MICROSCOPIC TRAFFIC 

SIMULATION MODEL OF TOLL PLAZAS 

As mentioned in the previous chapters, for building robust traffic simulation 

models the calibration process has to be performed for many different conditions. This 

applies to both macroscopic and microscopic models. In this chapter, we adopt 

simulation-optimization approach to the calibration of a microscopic simulation model of 

a toll plaza similar to the one presented in chapter 4 and 5. This approach is a variant of 

the calibration approach presented the previous chapters in this dissertation in that it 

formulates a special simulation-based optimization problem targeted to the calibration of 

a multi-lane toll plaza model. The prime motivation of this dissertation is that it is 

important to consider variability in both the inputs, Is, demand-side variability, as well as 

calibration parameters, Cs, supply-side variability. Hence, is essential to consider demand 

from various days than using average demands or demands from a smaller sample. Thus, 

in this chapter we consider demands from many days in the calibration process. 

In chapter 4, the computational complexity the numerical methods capturing 

stochasticity suffer from is illustrated. This problem is further exacerbated for 

microscopic traffic simulation models, specifically, those that require several customized 

models augmenting the default modeling, requires data in much greater detail. 

Customization of microscopic models is required when the default modeling capability is 

inadequate. Customization of microscopic models is required when the default modeling 

capability is inadequate. Such customization is performed often for modeling traffic 
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circles (Bartin et al. (2005), Vaiana et al. (2007)), toll plazas (Astarita et al. (2001), 

Ozbay et al. (2006) and Mudigonda et al. (2009)), freeway merging sections (Yang et al. 

(2006), Gardes et al. (2002), Yang and Ozbay (2011)), etc. Thus the same generic 

calibration methodology may not be applicable to traffic simulation models of much 

greater detail such as the toll plaza models. The detailed data for calibrating such models 

may need to be collected via video data captured at specific locations of the section to be 

modeled. Such data may not always be available. Thus better means and methods to 

calibrate such models for various conditions are required. 

One important contribution of this chapter is its emphasis on the importance of 

the development of specialized optimization formulations for different kind of simulation 

calibration problems.  This is aimed at demonstrating the difficulties in using a generic 

calibration approach for all kinds of simulation models. Moreover, we also discuss the 

idea of calibration with missing data in the same way we discussed in Chapter 5. 

Furthermore, we extend the proposed SBO framework to be combined with the 

computationally-efficient sparse grid stochastic collocation method to generate 

distribution of outputs rather than average values.  

Accurate modeling of toll plazas can suffer from the lack of adequate models in 

off-the-shelf traffic simulation packages. Despite having a representative modeling 

methodology for toll plaza lane choice, it is imperative that these models are calibrated 

appropriately for different conditions. Calibration entails adjusting the model parameters 

so that the toll plaza simulation output (such as lane usage, throughput, etc.) matches the 

observed output within a certain amount of error. However, when there is no observed 
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output available, for instance for evaluating a proposed toll plaza design, we need a 

framework to evaluate the performance of the design. In this study, we present a 

simulation-based optimization (SBO) framework that  

 applies a data-driven lane choice decision heuristic model proposed in an 

earlier study (Mudigonda et al. (2009)) by the authors for modeling lane 

selection behavior at toll plazas, 

 provides the flexibility of,  

o using existing individual lane choice data, if available, as input to the 

SBO framework,  

o using lane choice measures in the heuristic model as calibration 

parameters in the SBO framework when lane choice data is partly or 

completely not available. 

We use the electronic toll collection (ETC) data from NJTPK to illustrate the 

usefulness of the proposed SBO framework.  Since these data used in the lane choice 

heuristic are easily and continuously available, the coefficients of the lane choice 

heuristic can be obtained and the model can be calibrated for different times of the day 

and days of the week. Thus this SBO framework allows the modeler to generate 

simulated lane choice behavior similar to the observed behavior using easily and 

abundantly available ETC data.  

We use the toll plaza at Interchange 14A of the NJTPK for case studies with data 

partially available or not available. We show the usefulness of the SBO framework for 

toll plaza model calibration. Additionally, we mine the existing data on drivers’ lane 
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decision making to establish a system-wide measure to characterize toll plaza 

performance. This system-wide measure is also useful as an objective in modeling 

proposed toll plaza designs where there are no lane choice data available. 

6.1 Modeling and Calibration Methodology  

The variables that influence the drivers’ lane choice decision making process at 

toll plazas are: 

(1) Approach direction of vehicles to toll plaza: In general, drivers tend to use 

the toll lanes closer to their current lanes. Depending on which direction they approach a 

toll plaza from, the possibility of reaching a toll lane that is far from their current lane is 

lower. For example, in Figure 6-1, using approach 1 are likely to choose lanes that are on 

the right side of the toll plaza where conditions permit and vice versa. This stems from 

the fact that drivers try to avoid excessive weaving at the toll plaza entrance where 

vehicles access the plaza from different directions. 

(2) Exit direction of vehicles after leaving toll plaza: Drivers tend to select 

lanes that are close to their exit locations to avoid excessive weaving at the downstream 

of the toll plaza. However, this is not as significant a variable as the approach ramp 

measure, because drivers have a better view of the relative position of other vehicles 

when they leave the plaza as opposed to approaching the plaza from different ramps.  

(3) Queue Lengths at toll plaza: It could be claimed that drivers choose shorter 

queues to reduce their wait times at the toll plaza. They could possibly change their 

decisions based on the perceived wait times.  

(4) Vehicle Type: Depending on the whether the vehicles is car or a truck or bus, 
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the maneuverability varies. This in turn influences the lane choice of vehicles at the toll 

plaza. 

 

Figure 6-1 Schematic representation of approach, exit directions and lane 

types at a toll plaza 

A heuristic model to evaluate the lane choice measure (LCM) of each lane is 

formulated based on the variables mentioned earlier in this section, which were also 

proposed in an earlier study by Mudigonda et al. (2009). The LCM of a given lane i  can 

be modeled as a linear function shown in equation (6.1): 
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 (6.1) 

When a driver approaches the toll plaza, the driver makes a decision about which 

lane to choose based on their LCM and selects the lane with maximum LCM. The LCM 

for approach direction and based on exit i.e., proportion of vehicles choosing lane i based 

on which approach or exit they choose, can be calculated from toll transaction data or 

revealed through video data of the toll plaza. Thus, these LCM’s can be either estimated 

from data if available, or used as a calibration parameter in case the video data of toll 

plaza is unavailable. The measure for queue is estimated as the proportion of number of 

vehicles in lane i to the total number of vehicles in the lane of the same transaction type 

as the given vehicle. The default values for α
e
, α

x
, α

q
, are issued an initial value of 0.4, 0.1 

and 0.5, respectively. These values are based on the relative importance of each variable 

in the lane selection and visual verification of the simulation. For a more detailed 

description of the heuristic please see (Mudigonda et al. (2009)). 

6.1.1 Simulation-based Optimization Framework for Calibration of Lane Choice 
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Models at Toll Plazas 

The LCM heuristic described above is implemented into a SBO framework. The 

SBO framework will be applied to calibrate the toll plaza model when partial data are 

available. When no data are available, the SBO framework is used to establish a system-

wide measure to characterize toll plaza performance. This system-wide measure is also 

useful as an objective in modeling proposed toll plaza designs where there is no lane 

choice data available.  

6.1.1.1 SBO Framework for Partial Data  

The simulation output using the parameters for the LCM methodology can be 

expressed as follows: 

,

ˆ( , , ) (simulation model) ( , )

observed input data (origin-destination demand, 

geometric design, operational rules, service time),

estimated  set of parameters ( exits  and lanes

Obs Obs
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x

j i
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   ) for 

cumulative lane selection decision measure,

other calibration parameters, 

ˆ  simulation output estimated,

 observed outputObs

i

C

S
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(6.2) 

As mentioned earlier in the proposed methodology, calculating LCM based on 

approach or exit direction requires appropriate data. It is not possible to have this data for 

all cases. So, for instance, consider the case where the data is available to calculate LCM 

based on entry direction but not for exit direction. Such cases can be considered as those 

where partial data is available for the LCM model. In such cases the LCM based on exit 

direction can be included as parameters to be estimated from the calibration process. The 
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optimization problem involved in calibrating the toll plaza model i.e., estimating the 

parameters (θ) when partial data is available can be expressed as shown in equation (6.3). 

The outputs estimated using the SBO framework for the toll plaza are lane usage 

percentages and, throughputs. 

lane 
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(6.3) 

We assume that there is equal importance given to the percent error in each 

output, lane usage and throughput. Since the lane measures based on exit is proportion of 

vehicles choosing lane i based on the exit, there is a constraint on parameters p
x
 for all 

lanes to add up to 1 for each exit.  

6.1.1.2 Hybrid SBO Framework using Stochastic Collocation 

The SBO framework for calibrating the toll plaza model when partial data is 

available (shown in section 6.1.1.1), uses average lane usage at the toll plaza as the 
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output measure in the calibration process. However, the calibration can be performed for 

many different days to obtain calibrated parameters for a much more generic data rather 

than average output measures. In order to achieve this objective, we use distributions of 

inputs i.e. consider the demand-side variability. The demand-side variability is 

discretized using the computationally efficient sparse grid stochastic collocation 

methodology, elaborated in section 4.2. The same methodology is used to interpolate and 

generate the distribution of output i.e. lane usage distribution given the demand 

distribution. The lane usage distribution is compared to the observed lane usage 

distribution for each lane and the error between them is minimized in the objective 

function for this hybrid SBO framework shown in equation (6.4) 

lane 
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(6.4) 

6.1.1.3 SBO Framework for Unavailable Data  

Proposed design of toll plazas are always hypothetical cases. For such cases there 

is no available data for LCM based either on entry or exit. Thus, in addition to the 

existing parameters, the lane probabilities for approach and exit are also included in the 

SBO framework. Since the LCM based on exit is proportion of vehicles choosing lane i 
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based on the entry (exit), there is a constraint on parameters p
ej

i (p
xj

i) for all lanes to add 

up to 1 for each entry (exit).  

During the design of the toll plaza a system-wide measure is required to 

characterize the toll plaza performance. Also, in proposed toll plaza designs there is no 

data available on drivers’ LCM. And establishing a system-wide measure would help is 

estimating the ideal LCM’s behind the drivers’ decision making.  The ideal way to 

establish this measure is to mine the observed data and construct a likely measure that is 

minimized in the observed LCM data. This measure can be constructed using a 

reasonable assumption that the drivers’ objective is to minimize a combination of travel 

times and number of lane changes. The number of lane changes is a surrogate to the 

drivers’ consideration for safety. Thus the system measure is a weighted sum of travel 

time and number of lane changes as shown in equation (6.4).  
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(6.5) 

In equation (6.4) it is assumed that the driver population is homogenous with 

respect to their choice of the linear combination of travel time and number of lane 

changes. The weight for number of lane changes, firstly, serves to have both travel time 

and lane changes to a similar scale of magnitude. The second use is to signify the relative 

importance of travel time and number of lane changes likely to be in the driver behavior. 

If we are able to validate a particular weighted average of travel time and number of lane 

changes as the one that represents the system-wide measure behind drivers’ lane decision 

making, then that weighted average can be used as the objective function to be minimized 

for proposed toll plaza designs. 

For this purpose, we estimate the objective function of the SBO framework as a 

weighted average of mean travel time and mean number of lane changes with the weights 
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being variable. For each set of weights, we minimize the multi-objective function and 

compare the LCM measures estimated using the SBO framework the observed measures 

from video data. The hypothesis is that the particular weighted objective function for 

which the optimized LCM measures closely mimic the observed measures, then it can be 

considered as the likely objective behind the drivers’ decision making.  

6.1.1.4 Optimization Methodology in Calibration 

The problems described in equations (6.3) and (6.4) are minimization problems. 

One of the main complications of this problem is that simulation is used as the “function” 

to quantify values in the objective function so this is a simulation-optimization problem 

without a closed form objective function.  The solution for the SBO is thus evaluated 

using simultaneous perturbation stochastic approximation (SPSA) algorithm (Spall 

(1992)), described in Chapter 3, that is shown to work well for simulation-optimization 

problems (Zhang et al. (2008), Yang and Ozbay (2011), Balakrishna et al. (2007)). The 

optimization parameters, entry and exit lane decision measures, and weights, are used for 

calibrating the heuristic methodology. The fact that the calibration parameters are 

continuous and the objective function is differentiable with respect to the parameters, aids 

in the evaluation of the gradient for the SPSA. We recognize that the calibration is a 

constrained optimization problem. SPSA has been used in other constrained optimization 

problem before. (Zhang et al. (2008), Yang and Ozbay (2011), Balakrishna et al. (2007)) 

The SPSA algorithm described above is useful for unconstrained optimization 

problems. However, the optimization problem for the calibration of the toll plaza model 

shown in equation (6.2) is a constrained optimization problem with constraints 
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 on parameters. Use of SPSA for constrained optimization problems 

usually involves a projection of any infeasible point during the search of parameters, onto 

the feasible parameter space. In this study we use the constrained SPSA algorithm 

proposed by Sadegh (1997). The updated set of parameters at each iteration in estimated 

using a projection P(θ) of an infeasible point θ onto the parameter space G,  

1
ˆ ˆ ˆˆ( ( )),

ˆˆ ˆ

Coefficient matrix in the constraints shown in eq. (3)
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(6.6) 

The projection P is defined as point P(θ) in G closest to point θ. In order to 

account for cases where ˆ ˆ but k k k kG c G     , at each iteration a closed set Gk 

contained within G is constructed only to estimate the gradient. The gradient is adjusted 

so that the parameter set θk does not violate the constraints. This adjustment is based on 

projection and restoration moves prescribed in Rosen (1960). For further details please 

refer to Sadegh (1997) and Rosen (1960). 

6.2 Case Studies using the SBO Framework 

In this study, our focus is to model the driver behavior at the toll plazas which are 

not located on the mainline. Examples of such facilities are toll plazas on NJTPK, Garden 

State Parkway (GSP) in New Jersey and NY Thruway, and Pennsylvania Turnpike. These 

are located away from the mainline. The toll plazas are connected to several ramps from 

different directions of the mainline, thus increasing the complexity of the lane choice 

behavior. In this study we use the toll plaza at interchange 14A of the NJTPK (shown in 
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Figure 6-2) to illustrate the usefulness of the proposed SBO framework. 

We implement the lane choice measure heuristic models developed in Mudigonda et 

al. (2009) to realistically model the driver behavior at the toll plazas as part of  a 

customized toll plaza model developed  using PARAMICS micro-simulation package. 

PARAMICS’ API is used to implement the model to simulate the driver behavior at a toll 

plaza using the following modeling inputs:  

1. Toll plaza geometry was obtained using satellite images as overlays.  

2. Toll plaza lane configuration, namely E-ZPass and manual (cash) toll payment 

was obtained from the NJTPK. 

3. Origin-Destination demand Matrix was created using the Electronic Toll 

Collection (ETC) dataset with individual vehicle-by-vehicle entry, exit time and 

transaction lane.  

4. Service time distribution was obtained from data from earlier studies (Bartin et al. 

(2007)) where it was shown that it follows a lognormal probability distribution.  

The ETC dataset consists of the individual vehicle-by-vehicle entry and exit time 

data. It also consists of the information regarding the lane through which each vehicle 

was processed (both E-ZPass and Cash users). It should be noted that NJTPK is a closed 

system tolled highway. Vehicles enter the mainline through an entry toll plaza at an 

interchange located separately from the mainline. Similarly, they exit the highway 

through an exit toll plaza, each interchange therefore has entry and exit toll lanes. Hence, 

in NJTPK, LCM based on the approach ramp can be deduced from the ETC dataset. 

LCM based on the exit direction, on the other hand, are not readily available from the 
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ETC dataset. This is because vehicles are out of the NJTPK system after crossing the toll 

plaza and the information as to which exit direction they choose are not revealed in the 

transaction data. Therefore, exit choices can be obtained only with video data. We 

collected the detailed movement of vehicles involving different combinations of vehicle 

type, approach ramp, lane choice, exit direction, for the exit toll plaza at interchange 14A 

of NJTPK for the PM peak period. 
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Figure 6-2 Interchange 14A Exit Toll Plaza Simulation Model Developed in 

PARAMICS and Lane Schematics 

The calibration and optimization framework presented in the Methodology 

section is implemented in MATLAB. The simulation model, constructed in PARAMICS, 
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is run in a batch mode and incorporated into the calibration framework in MATLAB, 

summarized in Figure 6-3.  First, we present a case study of the application of the SBO 

calibration framework for calibrating the toll plaza at interchange 14A in NJTPK. The 

second case study is validating the likely objective of the drivers when making their 

decision at the toll plaza using the LCM framework. 

 

Figure 6-3 Flowchart illustrating the SBO framework 
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6.2.1 Case Study 1: Calibration of 14A Toll Plaza with Partial Data 

From Figure 6-2 it can be seen that the exit toll plaza at interchange 14 has seven 

lanes with two entries and three exits. The LCM for each of the seven lanes, i, at the toll 

plaza involves two entry measures p
ej

i (j=1,2) , three exit measures p
xj

i (j=1,2,3)  and one 

queue measure p
q

i.  

The first application of the calibration framework is performed during the AM 

peak period (6-9 AM) for the interchange 14A toll plaza depicted in Figure 6-2. During 

this period, the measure for choosing a lane based on the entry direction p
ej

i (j=1,2, 

i=1,…,7) is known from the ETC data. The measure for queue p
q

i is measured during the 

simulation. But the measure for choosing a lane based on exit direction p
xj

i (j=1,2,3, 

i=1,…,7)  is not known, since the video data is available from the PM period. So all the 

measures based on exit direction, 21 in number, are chosen as parameters for calibration. 

Each run of the SBO framework is performed for multiple replications to obtain 90% 

significance. 

As mentioned in Spall (1992), the number of iterations required for reaching a 

near-optimal set of parameters is dependent on the starting values. To this end, the 

duration of calibration is divided into each hour, 6-7, 7-8, 8-9 AM. The starting value for 

8-9AM is the calibrated parameter set of 7-8AM and so on. The starting value for 6-7 

AM is chosen as all θk|k=1 = 0.25. 

The value of objective function, namely, percent error in lane usage, after the 

iterations and number of iterations used is shown in Table 6-1. Using the calibrated set of 

parameters from the previous time period, significantly improves the objective function 
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of the calibration process for the subsequent time period. This can be seen from the 

number of iterations required to reach the objective function value. 

Table 6-1 Details of the calibration output 

Time period 6-7 AM 7-8 AM 8-9 AM 

Number of 

iterations 

50 50 50 

Objective function 

(% error in lane 

usage) 

0.210 0.108 0.13 

The lane usage for each time period is shown in Figure 6-4. The correlation 

between observed and simulated lane usage for 6-7AM is 96% and for 7-8 and 8-9AM is 

98.3%. 
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Figure 6-4 Comparison of AM lane usage observed, estimated using 

calibrated LCM model and PM period data  

As mentioned earlier, the LCM model can be adaptable whenever video data for 

the lane measures is available or using the LCM measures as parameter in the calibration 

when video data is absent. To show the benefit of calibration, we compare the objective 

function, namely, percent error in mean lane usage for the AM peak period using (a) 

calibrated LCM parameters as shown in Figure 6-4, and, (b) LCM calculated from video 

data from PM peak period. This comparison showed that the objective function for AM 

period estimated using PM LCM data as 0.242 and 0.15 when calibration is used. 

Additionally, the correlation between observed and simulated lane usage for AM period 

estimated using PM LCM data is, for 6-7AM is 90%, 7-8AM 95% and 8-9AM 89% as 

opposed to 96%, 98.3% and 98% respectively when LCM are estimated using calibration. 

These lane usages are compared in Figure 4.  

This result clearly illustrates the need for calibrating the simulation model for 

different time periods. It also shows that the calibration parameters estimated for one time 

period may not be able to replicate the output for another time period. 

6.2.2 Case Study 2: Calibration of 14A Toll Plaza with Partial Data using the hybrid 

SBO framework considering demand-side variability 

To illustrate the use of the hybrid SBO framework we use the same scenario as 

case study 1 i.e. calibration during the AM peak period (6-9 AM) for the interchange 14A 

toll plaza depicted in Figure 6-2. However, instead of using average lane usage as the 
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calibration measure, we generate the distribution of lane usage for each lane. The lane 

usage distribution is generated using the computationally-efficient sparse grid stochastic 

collocation approach. In addition, the demand-side variability is also considered. 

For modeling the demand-side variability, we generate the demand distributions 

for AM weekday peak period for the months of August and September 2011. There is 

demand entering via two ramps (as shown in Figure 6-5), one from NJTPK and another 

from Holland Tunnel (HT). Each of this demand includes E-ZPass vehicles and cash 

vehicles. Thus there are four components of demand, as shown in Figure 6-5. The 5-

minute demand distribution for the two NJTPK demands and two HT demands are shown 

in Figure 6-5. 

 

Figure 6-5 Demand-side variability at interchange 14A toll plaza 
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Figure 6-6 Demand distributions at 14A toll plaza during AM weekday peak 

period 

As mentioned in case study 1, during this period, the measure for choosing a lane 

based on the entry direction p
ej

i (j=1,2, i=1,…,7) is known from the ETC data. The 
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measure for queue p
q

i is measured during the simulation. But the measure for choosing a 

lane based on exit direction p
xj

i (j=1,2,3, i=1,…,7)  is not known, since the video data is 

not available. So all the measures based on exit direction, 21 in number, are chosen as 

parameters for calibration. 

The comparison of observed and simulated lane usage distribution after 

calibration is shown in Figure 6-7. The value of the objective function, sum over all lanes 

of KS test statistics comparing observed and simulated lane usage distribution is 0.52.  

 

Figure 6-7 Observed and simulated lane utilization distributions for 14A toll 

plaza model calibrated using hybrid SBO for AM weekday peak 
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The generation of the simulated distributions required only 65 runs of the 

microscopic simulation model. However, the number of runs required for an MC-type 

sampling are 9,000. In terms of computational time, since each run takes about 111 s. The 

total time taken to generate the simulated LU distributions is 2 hours. The same time 

when using an MC-type sampling is 162.5 hours. 

6.2.3 Case Study 3: Using SBO framework for Case with No Data Available for 14A 

Toll Plaza 

As mentioned in the Methodology section, when no data is available, it is 

necessary to understand the measure that the drivers tend to optimize during their lane 

choice process. The purpose of the second case study is to validate and establish a 

system-wide measure behind the drivers’ lane decision making at the toll plaza. For this 

purpose, we estimate the objective function of the SBO framework as a weighted average 

of mean travel time and mean number of lane changes with the weights being variable. 

For each set of weights, we minimize the multi-objective function and compare the LCM 

estimated using the SBO framework the observed LCM from ETC and video data. In 

order to validate the system-wide measure, we run the simulation for PM period but 

without using any of the available data for entry or exit LCM. The hypothesis is that the 

particular weighted objective function for which the optimized LCM measures closely 

mimic the observed measures, then it can be considered as the likely objective behind the 

drivers’ decision making. 

From Figure 6-1 it can be seen that the exit toll plaza at interchange 14 has seven 

lanes with two entries and three exits. The LCM (please refer to eq. 1) for each of the 
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seven lanes, i, at the toll plaza involves two entry measures p
ej

i (j=1,2) , three exit 

measures p
xj

i (j=1,2,3)  and one queue measure p
q

i. As an application we implement the 

SBO framework during the PM peak period (5-6 PM) for the interchange 14A toll plaza 

for which ETC and video data are available. During this period, the LCM for choosing a 

lane based on the entry direction p
ej

i (j=1,2, i=1,…,7) is known from the ETC data. The 

LCM for choosing a lane based on exit direction p
xj

i (j=1,2,3, i=1,…,7)  is available from 

video data collected. The LCM for queue p
q

i is measured during the simulation based on 

the queue at each lane. This measure could not be estimated from video data due to the 

lack of the appropriate camera angle. Hence the measures based on entry direction (14 in 

number) and exit direction (21 in number) and the weights assigned to the entry, exit and 

queue measures (α
e
, α

x
, α

q
), 38 in total are chosen set of parameters. These parameters are 

used with the SBO framework and compared with the observed values of these LCM’s. 

Each run of the SBO framework is performed for multiple replications to obtain 90% 

significance. The SPSA algorithm for optimization is performed for 50 iterations. The 

comparison of the observed and optimized LCM is shown in Table 6-2. The LCM in each 

column for the purple rows (E-ZPass lanes) and white rows (Cash lanes) add up to 1 

separately. 

Table 6-2 (a) Observed and Simulated LCM Based on Approach Ramp for 

Interchange 14A 

Lane No. From 14 From Holland Tunnel 

 Observed Optimized Observed Optimized 

1 0.50 1.000 0.05 0.000 

2 0.45 0.465 0.10 0.294 
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3 0.35 0.326 0.20 0.184 

4 0.35 0.000 0.45 0.395 

5 0.25 0.000 0.50 0.605 

6 0.15 0.156 0.30 0.294 

7 0.00 0.053 0.40 0.228 

(b) Observed and Simulated LCM Based on Exit Direction for Interchange 

14A 

Lane No. To 53
rd

 St To NJ 440 To Ave E 

 Observed Optimized Observed Optimized Observed Optimized 

1 0.60 0.699 0.15 0.384 0.00 0.116 

2 0.55 0.409 0.35 0.187 0.05 0.399 

3 0.40 0.200 0.30 0.170 0.15 0.209 

4 0.25 0.150 0.42 0.293 0.35 0.218 

5 0.15 0.151 0.43 0.324 0.65 0.666 

6 0.05 0.409 0.20 0.353 0.30 0.222 

7 0.00 0.181 0.15 0.300 0.50 0.170 

(c) Optimized entry, queue and exit weights 

Entry Weight Queue Weight Exit Weight 

0.42 0.42 0.15 

 

The LCM’s do not exactly match the observed data but from Table 1, the general 

trend is that drivers closer to each entry ramp tend to chosen lanes closer to that ramp. 

Similarly, for the exit ramp users tend to choose lanes closer to the exit direction, albeit to 

a lesser extent than entry. This is the same trend observed in the LCM estimated from the 

video data collected for the PM peak, as can be seen from Table 6-2. The correlation 

between the observed and simulation optimized LCM’s is 0.6. The default values of 

weights used in the LCM model (in equation [1]), α
e
, α

x
, α

q
 are 0.4, 0.1, and 0.5. The 

values estimated from the SBO framework for the PM period (shown in Table 6-2(c)) are 

fairly close to the default values. Thus this validates the default values of the weights 
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assumed based on the authors’ judgment. 

The average system travel time observed from the video data for PM period is 

around 25 seconds. The simulated mean system travel time is 24.9 seconds. Hence, the 

LCM estimated using the SBO framework closely replicated the observed mean travel 

time. The linear combination of travel time and number of lane changes that yields the 

above results is 0.5 * travel time + 8 * number of lane changes. This measure can be used 

as an objective that is minimized for the toll plaza system as a whole when evaluating 

proposed toll plaza designs. 

Clearly, there could be multiple system measures (combination of travel time and 

number of lane changes) that can be implemented to match the simulated and observed 

LCM measures from the observed data. Thus a bi-level optimization framework to 

establish the best system measure can be developed to address this issue. 
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

The predictions of a well-calibrated traffic simulation model will be robust and 

reliable if the predictions made for various most likely real-world conditions are accurate. 

Variations in traffic conditions can arise due to many factors such as time of day, 

weather, existence of work zones, etc. Calibration of simulation models for a realistic 

range of traffic conditions requires larger than traditionally used datasets capturing the 

stochasticity in traffic conditions. Although larger datasets provides greater variation in 

data, this approach poses a challenge in terms of computational effort. With the increase 

in number of stochastic factors, numerical methods employed for calibration of 

simulation models suffer from the curse of dimensionality. If, for example, traditional 

MC-type sampling is used, the computational effort required to simulate and calibrate 

traffic simulation models for various conditions could become intractable (as illustrated 

in Figure 4-5).  

In this study, we use electronic toll collection data and sensor data for which 

period from January to August, 2011 to capture various traffic conditions. Also, we 

propose a novel calibration methodology to encapsulate stochasticity into macroscopic 

traffic simulation models and their calibration with much lower computational effort. We 

use stochastic collocation, a type of stochastic spectral method, to capture stochasticity in 

traffic. This method treats each stochastic factor as a separate dimension. Each dimension 

is discretized using a set of collocation points and an interpolant for the output is 

constructed using the simulation output at these points. In particular, we use the Smolyak 
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sparse grid interpolation method due to the high number of stochastic dimensions. 

The main advantages of using this methodology are the following: 

1. Flexibility in applying to any type of traffic simulation (1
st
 order, 2

nd
 order, 

meso/microscopic, etc.), 

2. Computationally more efficient than MC-type exhaustive sampling methods with 

effective interpolant, 

3. Time consumed by the collocation approach can be further reduced by 

parallelizing the simulation under each condition, 

4. Nested form of the algorithm is useful in refining the interpolant as and when 

there is new data available. 

To demonstrate the usefulness of our methodology, we test it for an on-ramp-off-

ramp section of NJTPK in the vicinity of interchange 7. The variation in supply- and 

demand-side parameters and inputs at this section is captured using the ETC and sensor 

data for every 5 minutes between January 1, 2011 and August 31, 2011. In order to 

calibrate the model we use the AM peak period during April and May 2011. The supply-

side variation is observed to be clustered into groups. The speed data is divided into 

clusters using k-means algorithm into two conditions during the AM and PM peak. Due 

to a significant number of days falling into each cluster, (24 and 19 for AM and 20 and 

13 for PM), it is likely that the variation we observed is due to long-term construction or 

maintenance activity. We did not observe significant variation in speeds due to weather. 

It is likely that the demand-side could have been impacted due to weather. Thus 

considering the distribution of demand during all the days encompasses the variation due 
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to weather conditions as well.  

The proposed methodology is applied to calibrate a macroscopic first order traffic 

simulation model for AM peak (7-9AM) and PM peak (4-6PM) for each 

condition/cluster. For calibrating the simulation model, we use the test statistic from the 

KS test for flow distributions on the link as the objective function. This objective 

function is minimized using the SPSA optimization algorithm (Spall (1992)). Due to the 

variation in speed (shown in Figure 5-2), in this case study we propose to have a 

stochastic fundamental diagram that has a Gaussian free flow speed distribution. Thus the 

mean (μvf) and standard deviation (σvf) of free flow speed form a part of the parameter set 

to be estimated along with critical density (ρmax) and jam density (ρjam). We show that the 

comparison of simulated and observed flow distributions for the weekday AM and PM 

peak period for both conditions match well. We obtain completely different parameter 

sets not only for each condition but also two different parameters for different sections of 

the freeway section. For AM, PM peak and conditions 1 and 2 the parameter sets are, 

respectively, as [53 2.11 85 150, 62 1.93 82 150], [50 1.64 83 150, 70 1.58 100 150], [52 

4.16 83 150, 62.2 2.85 90 150], and [48 2.26 80 150, 65 3.32 87 150]. Additionally, we 

notice that the stochasticity in parameters is not only limited to time but also space. We 

show that the proposed methodology requires much fewer replications – about 98% less – 

than MC-type sampling approach. Also we illustrate the advantage the proposed 

calibration approach by comparing simulated flow distributions generated from a model 

calibrated with a large set of demand and flow data and a model calibrated using limited 

days’ data. We validate the parameters estimated using the proposed methodology by 
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running the model for the weekday PM peak days in July. The KS test statistic obtained 

for the flow distributions in July are 0.084. 

Speed and flow data from traffic sensors may not be the most reliable source of 

data. Poorly functioning sensors could lead to erroneous data or missing data. In order to 

mitigate this issue of limited availability of sensor data, we supplement the flow data 

from sensors by extracting the travel time data from ETC data. To illustrate the proposed 

calibration methodology using multiple data sources, we use an eight-mile section 

between interchange 7 and 7A for calibration using macroscopic model. We show that 

similar to the smaller section considered earlier we observed spatial and temporal 

stochasticity of parameters. However, the calibrated variance in free flow speed is higher 

when considering travel time as a calibration measure. The likely reason for this finding 

is the differences in speeds between different lanes and also differences in speeds among 

different vehicle types. The variance in speed over smaller sections among different lanes 

and/or vehicle types may not be as pronounced as in the smaller section. However, 

variation among different lanes and vehicle types would be more pronounced over larger 

section. Hence, since we use travel time, which is a measure with greater spatial extent 

than point flow data, the variance in speed is higher. 

Calibration of microscopic simulation models involves much higher number of 

stochastic factors than macroscopic models. Modeling sections that involve specific 

geometric features can be quite complex. The complexity can be due to changing driver 

behavior at that particular geometry or a set of traffic control measures. So the underlying 

algorithms in the simulation models must be extended or overridden to incorporate this 
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new behavior. This process requires data collection that is site-specific for different 

conditions. The data collection in itself can be quite cumbersome Hence extensive 

calibration of these models will be an extremely time-consuming task. If, for instance, the 

model involves a large freeway section with some specific geometric features, such as a 

toll plaza, then executing an iteration may be time-consuming as well. Calibrating and 

running such large customized simulation models in a robust manner calls for a different 

type of methodology. 

In this dissertation, we present a simulation-based optimization framework for the 

calibration and design of toll plazas. In order to model the drivers’ decision making at the 

toll plaza realistically, we use an intuitive toll plaza lane choice model. This model is 

validated in a previous study by the authors. The simulation-optimization approach for 

the calibration of a microscopic simulation model of a toll plaza is a variant of the 

calibration approach presented in the previous chapters of this dissertation in that it 

formulates a special SBO problem targeted to the calibration of a multi-lane toll plaza 

model. The same generic calibration methodology may not be applicable to traffic 

simulation models of much greater detail such as the toll plaza models. The detailed data 

for calibrating such models may need to be collected via video data captured at specific 

locations of the section to be modeled. However, such data may not always be available. 

Thus better means and methods to calibrate these specialized models for various 

conditions are required. We emphasize the importance of the development of specialized 

optimization formulations for different kind of simulation calibration problems.  This is 

aimed at demonstrating the difficulties in using a generic calibration approach for all 
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kinds of simulation models. Thus, the SBO framework provides the flexibility for 

 using existing data, if available, as input to the SBO framework,  

 employing unavailable or partially available data the modeler can use the 

unavailable inputs as calibration parameters. 

Using the proposed SBO framework, we also discuss the idea of calibration with 

missing data in the same way we discussed in Chapter 5. Furthermore, we extend the 

proposed SBO framework to be combined with the computationally-efficient sparse grid 

stochastic collocation method to generate distribution of outputs rather than average 

values. 

We implement this framework in MATLAB by running PARAMICS in a batch 

mode and modifying the lane choice measure (LCM) model parameters using the 

framework. We implement the SBO framework for three cases,  

(a) when partial data is available and average lane usage is the output measure,  

(b) when partial data is available and lane usage distribution is the output 

measure, and,  

(c) when no data is available.  

When partial data is available we use the SBO framework to calibrate the model 

parameters for the AM peak period for that toll plaza at interchange 14A. We use the 

error defined as the difference between the simulated and observed mean lane usage 

summed over all lanes as the objective in the minimization problem of calibration. The 

simulated lane usage at the toll plaza closely matches the observed lane usage. In order to 

illustrate the importance of calibrating the simulation model for different time period, we 
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compare the simulation output for the AM period for the two cases (a) using the LCM 

estimated from PM period when video data is available, and (b) estimating the LCM 

using calibration. This comparison showed that the objective function for AM period 

when PM data is used as 0.242 and 0.15 when calibration is used. Additionally, the 

correlation between observed and simulated lane usage for AM period estimated using 

PM LCM data is, for 6-7AM is 90%, 7-8AM 95% and 8-9AM 89% as opposed to 96%, 

98.3% and 98% respectively when LCM are estimated using calibration. 

We extend the SBO framework by combining the sampling and interpolation 

approach based on the stochastic collocation (proposed in chapter 4) with the SBO 

framework. Using this hybrid framework, we calibrate simulation parameters to obtain 

distribution of output from the toll plaza model that closely follows the observed 

measures at the toll plaza. Regular SBO framework uses average lane usage as a measure 

in the calibration process. However, the calibration can be performed for many different 

days to obtain calibrated parameters for a much more generic data rather than average 

output measures. In order to achieve this objective, we use distributions of inputs for AM 

weekday peak period for the months of August and September 2011 and discretize the 

demand-side variability using the computationally-efficient sparse grid stochastic 

collocation methodology. The same methodology is used to interpolate and generate the 

distribution of output i.e. lane usage distribution given the demand distribution. The lane 

usage distribution is compared to the observed lane usage distribution for each lane and 

the KS test statistic between them is minimized in the objective function for this hybrid 

SBO framework. The value of the objective function, namely, sum over all lanes of KS 
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test statistics comparing observed and simulated lane usage distribution is 0.52.  

The generation of the simulated distributions required only 65 runs of the 

microscopic simulation model. However, the number of runs required for an MC-type 

sampling approach is 9,000. In terms of computational time, since each run takes about 

111 s., the total time taken to generate the simulated lane usage distributions is 2 hours. 

The same time when using an MC-type sampling is estimated to be 162.5 hours. This 

reduction in computational time is a significant benefit of the proposed calibration 

methodology. This finding is especially important when it is applied to a microscopic 

simulation model that takes longer time to complete a run than macroscopic models. 

When designing a toll plaza, i.e. the case when no data is available, a system-wide 

measure is required to characterize the toll plaza performance. Establishing a system 

measure would help to understand the measure that the drivers tend to optimize during 

their lane choice process. The ideal way to establish this measure is to mine the observed 

data and construct a likely measure that is minimized in the observed LCM data. This 

measure can be constructed using a reasonable assumption that the drivers’ objective is to 

minimize a combination of travel times and number of lane changes. The number of lane 

changes is a surrogate to the drivers’ consideration for safety. Thus the objective function 

is a weighted sum of travel time and number of lane changes. The hypothesis is that the 

particular weighted objective function for which the optimized LCM measures closely 

mimic the observed measures then it can be considered as the likely objective behind the 

drivers’ decision making. We also use the SBO framework to validate the likely system 

measure behind the drivers’ decision making at a toll plaza.  
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The LCM estimated using the SBO follows the observed trend of drivers closer to 

the entry ramp choosing the lanes closer to the ramp and vice versa. Additionally, the 

default weights assigned to entry, exit and queue, 0.4, 0.1, 0.5 are close to the optimized 

weights of 0.42, 0.15, 0.42 respectively. The observed mean system travel time of 25s is 

closely replicated by the simulated value of 24.9s. The result of the validation is that, the 

objective behind the drivers’ decision making is 0.5 * travel time + 8 * number of lane 

changes. This measure can be used as an objective that is minimized for the toll plaza 

system as a whole when evaluating proposed toll plaza designs. 

The proposed calibration methodology could have a larger impact in microscopic 

simulation models. Some PARAMICS microscopic simulation models described in 

Ozbay et al. (2013) such as the NJTPK and Jersey City models have about 2000 links 

with 100,000 vehicles traveling at any given time. Running one hour of such complex 

models takes about 30 minutes. Calibrating these models using an MC-type sampling 

method is computationally impossible for obvious reasons. Thus the proposed 

methodology can be a very useful approach for calibrating microscopic traffic simulation 

models with varying complexity. This will be one of the major future directions.  

The following is a summary of the future work planned based on the findings and 

work conducted in this dissertation: 

1. The stochastic collocation framework described in the methodology section will 

be extended using Bayesian methodology. The sparse grid interpolation will be 

used in an adaptive setting using methods described in Gerstner and Griebel 

(2003) that can be flexible when greater number of points are required in certain 
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dimensions. This updated methodology will be applied to a larger scale network. 

2. The stochasticity in the q-k relationship, ( )f  , can also vary across lanes. This 

could be due to reasons such as, presence of on and off-ramps, presence of 

concrete barriers due to work zone conditions, etc. However, in order use 

different ( )f   for different lanes, the commonly-used Eulerian formulation for 

solving the first order macroscopic model, i.e. the cell transmission model will not 

be sufficient. Instead, a lagrangian formulation will be used to incorporate multi-

lane variations. Lagrangian formulation has been shown to be able to model the 

multi-lane variations. (Laval and Leclercq (2008), van Wageningen-Kessels et al. 

(2011)).  Applying a Lagrangian formulation can be useful in not only modeling 

lane changes in a better fashion but, it can also be useful in estimating larger 

spatial measures such as travel time more accurately. 

3. Models with Limited Data - Hierarchical Models and Data Fusion using Bayesian 

framework: The problem of limited data availability will be simulated by not 

using data for some sections of the real-world data. The data requirement for the 

macroscopic model will be supplemented using the section flows and speeds from 

the microscopic model and/or real world data using a hierarchical model structure. 

 

For extending the SBO framework for the toll plazas, there can be multiple 

system measures (combination of travel time and number of lane changes) that can be 

implemented to match the simulated and observed LCM measures from the observed 

data. Hence, as part of future work, we intend to frame the validation of possible 
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objective behind the drivers’ lane decision process as a bi-level optimization problem. 

The first level is to find the optimal combination of weights for travel time and number of 

lane changes representing the drivers’ decision making. This combination of weights is 

used to frame an objective function. The second level involves minimizing this objective 

function using the LCM model parameters as variables. Another modification would be 

to relax the assumption of homogenous driver population with the same linear 

combination for travel time and number of lane changes, by considering multiple driver 

classes. 
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