
PARTITION IDENTITIES ARISING FROM THE
STANDARD A(2)

2 -MODULES OF LEVEL 4

BY DEBAJYOTI NANDI

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Robert L. Wilson

and approved by

New Brunswick, New Jersey

October, 2014



ABSTRACT OF THE DISSERTATION

Partition Identities Arising from the Standard
A(2)

2 -Modules of Level 4

by Debajyoti Nandi

Dissertation Director: Robert L. Wilson

In this dissertation, we propose a set of new partition identities, arising from a twisted

vertex operator construction of the level 4 standard modules for the affine Kac-Moody

algebra of type A(2)
2 . These identities have an interesting new feature, absent from

previously known examples of this type.

This work is a continuation of a long line of research of constructing standard modules

for affine Kac-Moody algebras via vertex operators, and the associated combinatorial

identities. The interplay between representation theory and combinatorial identities

was exemplified by the vertex-algebraic proof of the famous Rogers-Ramanujan-type

identities using standard A(1)
1 -modules by J. Lepowsky and R. Wilson. In his Ph.D.

thesis, S. Capparelli proposed new combinatorial identities using a twisted vertex

operator construction of the standard A(2)
2 -modules of level 3, which were later proved

independently by G. Andrews, S. Capparelli, and M. Tamba-C. Xie.

We begin with an obvious spanning set for each of the level 4 standard modules for

A(2)
2 , and reduce this spanning set using various relations. Most of these relations come

from certain product generating function identities which are valid for all the level 4

modules. There are also other ad-hoc relations specific to a particular module of level 4.

In this way, we reduce our spanning sets to match with the graded dimensions of the
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said modules as closely as possible. We conjecture and present strong evidence for three

partition identities based on the spanning sets for the three standard A(2)
2 -modules of

level 4.

One surprising result of our work is the discovery of relations of arbitrary length.

Consequently, the partitions corresponding to these spanning sets cannot be described

by difference conditions of finite length.

The spanning set result proves one inequality of the proposed identities. There is

strong evidence for the validity of the conjecture (i.e., the opposite inequality), since it

has been verified to hold for partitions of n ≤ 170, and n = 180, 190 and 200.
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Chapter 1

Introduction

In this work, we conjecture and present strong evidence for possible partition identities

arising from the standard modules of level 4 for the affine Lie algebra A(2)
2 using a twisted

vertex operator construction. Historically, the discovery of vertex operator constructions

of representations of affine Lie algebras was motivated by a conjectured interplay between

classical partition identities and standard modules for affine Kac-Moody Lie algebras.

The first famous example of such interplay arises from the Rogers-Ramanujan

identities, which may be stated as follows:

(i) The number of partitions of a nonnegative integer n in which the differ-

ence between any two successive parts is at least 2 is the same as the number

of partitions of n into parts congruent to 1 or 4 modulo 5.

(ii) The number of partitions of a nonnegative integer n in which the

difference between any two successive parts is at least 2 and such that the

smallest part is at least 2 is the same as the number of partitions of n into

parts congruent to 2 or 3 modulo 5.

A connection between the congruence conditions and standard modules for A(1)
1 was dis-

covered by J. Lepowsky and S. Milne [LM78]. A vertex operator theoretic interpretation

and proof of the Rogers-Ramanujan identities, “explaining” the difference conditions,

was given by Lepowsky and R. Wilson in [LW82, LW84]. They used monomials, acting

on a highest weight vector, in certain new operators whose indices reflected the difference

conditions. They extended their work to all the standard A(1)
1 -modules in [LW82, LW84,

LW85], giving a vertex-algebraic interpretation of a family of Rogers-Ramanujan-type

identities, discovered by B. Gordon, G. Andrews and D. Bressoud. The case for the
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level 2 standard A(1)
1 -modules was described by certain “difference-one” conditions

(where adjacent parts have difference at least one). For level 3 it was described by

“difference-two” conditions (where adjacent parts have difference at least two). For levels

greater than 3, the description changed into “difference-two-at-a-distance” and parity

conditions, reflecting the sum sides of the Gordon-Andrews-Bressoud identities.

The linear independence of the relevant monomials (applied to a highest weight

vector) for standard A(1)
1 -modules of level greater than 3 was not proved in the sequel

[LW82, LW84, LW85]. This problem was solved by A. Meurman and M. Primc [MP87],

providing a vertex-algebraic proof of the Gordon-Andrews-Bressoud identities beyond

the case of Rogers-Ramanujan identities.

In his Ph.D. thesis [Cap88], S. Capparelli proposed a pair of combinatorial iden-

tities based on the standard A(2)
2 -modules of level 3. He also demonstrated that the

construction of the level 2 standard modules for A(2)
2 in this way gives rise to another

vertex operator theoretic interpretation of the classical Rogers-Ramanujan identities

(see also [Cap92, Cap93]). It was believed that once a few low level cases for standard

A(2)
2 -modules had been successfully analyzed in this way, a general construction for all

levels would emerge. However, the cases for A(2)
2 turned out to be much harder and

subtler than those for A(1)
1 which had been extensively studied. One of Capparelli’s

identities, arising from the level 3 standard A(2)
2 -modules, may be stated as follows:

The number of partitions of a nonnegative integer n into parts different

from 1 and such that the difference of two successive parts is at least 2, and

is exactly 2 or 3 only if their sum is a multiple of 3, is the same as the

number of partitions of n into parts congruent to ±2,±3 modulo 12.

A q-series proof of this identity was given by G. Andrews [And94], proving Capparelli’s

conjecture. Capparelli also provided a direct vertex operator theoretic proof of his

identities by proving the linear independence of his spanning sets in [Cap96]. M. Tamba

and C. Xie [TX95] independently gave another vertex operator theoretic proof of

Capparelli’s identities. See [Lep07] for more details.

In this work, we give combinatorial interpretations of the graded dimensions of the
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three inequivalent standard A(2)
2 -modules of level 4. The level 4 case turns out to be

much more difficult and subtle even compared to the level 3 case, showing even more

surprising results.

A partition can be thought of as a non-increasing sequence of positive integers. A

partition (m1, . . . ,ms) is said to satisfy a difference condition [d1, . . . , ds−1] if

mi − mi+1 = di for all 1 ≤ i ≤ s − 1. The partition identities we propose, based

on the three inequivalent standard A(2)
2 -modules of level 4, may be stated as follows:

(i) The number of partitions of a nonnegative integer n into parts different

from 1 and such that there is no sub-partition satisfying the difference

conditions [1], [0, 0], [0, 2], [2, 0] or [0, 3], and such that there is no sub-

partition with an odd sum of parts satisfying the difference conditions [3, 0],

[0, 4], [4, 0] or [3, 2∗, 3, 0] (where 2∗ indicates zero or more occurrence of 2),

is the same as the number of partitions of n into parts congruent to ±2,±3

or ±4 modulo 14.

(ii) The number of partitions of a nonnegative integer n such that 1, 2 and

3 may occur at most once as a part, and such that there is no sub-partition

satisfying the difference conditions [1], [0, 0], [0, 2], [2, 0] or [0, 3], and such

that there is no sub-partition with an odd sum of parts satisfying the difference

conditions [3, 0], [0, 4], [4, 0] or [3, 2∗, 3, 0] (where 2∗ indicates zero or more

occurrence of 2), is the same as the number of partitions of n into parts

congruent to ±1,±4 or ±6 modulo 14.

(iii) The number of partitions of a nonnegative integer n into parts different

from 1 and 3, such that 2 may occur at most once as a part, and such that

there is no sub-partition satisfying the difference condition [3, 2∗] (where 2∗

denotes zero or more occurrence of 2) ending with a 2, and such that there

is no sub-partition satisfying the difference conditions [1], [0, 0], [0, 2], [2, 0]

or [0, 3], and such that there is no sub-partition with an odd sum of parts

satisfying the difference conditions [3, 0], [0, 4], [4, 0] or [3, 2∗, 3, 0], is the

same as the number of partitions of n into parts congruent to ±2,±5 or ±6
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modulo 14.

Each of the above statements corresponds to computing the graded dimension of a

level 4 standard A(2)
2 -module in two ways—from the principal specialization of the Weyl-

Kac character formula given by the numerator formula (see [LM78, Lep78]) (describing

the “congruence conditions”) and an explicit construction of a graded basis for the

module (describing the “difference conditions” and “initial conditions”).

The graded dimension, given by the principal specialization of the Weyl-Kac character

formula and the numerator formula of [LM78, Lep78], can be factored as χ(q) =

H(q)F (q), as a formal power series in q, where F (q) is the series that counts the

partitions with the “congruence conditions.” The extra factor H(q) is similar to the

“fudge factor” in [LM78, LW82, LW84, LW85]. In their works, Lepowsky and Wilson

used a certain “vacuum space” and certain "Z-operators” to cancel out the “fudge factor.”

We show an equivalent cancellation without using such a “vacuum space.”

In this dissertation, we prove the appropriate “spanning set” result. The starting

point is a certain obvious spanning set, parametrized by two sets of partitions. The

elements of this spanning set can be described as products of two types of operators—the

“negative Heisenberg operators” and the “X(•) operators”—acting on a highest weight

vector v0. The partitions describe the degrees and the order of these operators applied

to v0. We show that no relations among the “negative Heisenberg operators” exist and

that these operators are accounted for by the “fudge factor” H(q). The only relations,

therefore, come from the relations among the X(•) operators acting on v0.

We eliminate extraneous elements from this spanning set based on these relations.

The resulting pruned spanning set can be described as parametrized by the set of all

partitions which do not contain certain “forbidden” sub-partitions. The most surprising

result in our work was the discovery of forbidden sub-partitions of arbitrary lengths.

These forbidden partitions can be described by the “difference conditions” mentioned

above. In all previously known analogous situations arising from representations of affine

Kac-Moody algebras, the forbidden partitions could be described by difference conditions

of bounded length. For example, in the Rogers-Ramanujan identities and Capparelli’s

identities, the difference conditions are of length one (reflecting the difference between
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adjacent parts). In our case, there are forbidden partitions satisfying arbitrarily long

difference conditions. These difference conditions are the same for the all standard

A(2)
2 -modules of level 4. The differentiating factors are then the “initial conditions”

associated with the three inequivalent level 4 standard modules.

If the resulting spanning set is linearly independent, then the product side given by

F (q) may be expressed as
∑
n≥0Anq

n, where An is the number of partitions of n not

containing any forbidden sub-partitions. We call these partitions “allowed” partitions.

Our spanning set result states that in each of the above cases, the number of

partitions of n described by various initial and difference conditions is greater than or

equal to the number of partitions of n into parts satisfying the corresponding modulo

14 conditions. Experimental evidence shows that the equality holds for n ≤ 170, as well

as for n = 180, 190 and 200.

It is interesting to note how we discovered the family of “exceptional” forbidden

partitions of arbitrary lengths (i.e., partitions of an odd number satisfying the difference

conditions [4, 0], [3, 2∗, 3, 0]). We set out to compare the graded dimension of the

(4, 0)-module (one of the level 4 standard modules), with the spanning set we got after

eliminating partitions into parts different from 1 (the initial condition for this module),

and the other partitions containing forbidden sub-partitions, using relations similar to

what Capparelli used in [Cap88, Cap93]. We found the first discrepancy at n = 13,

and the next one at n = 19. In each case, there was an extra partition in our pruned

spanning set compared to what the corresponding graded dimension would suggest.

From certain “periodicity properties” of our relations, we could infer that we must have

missed a forbidden triplet (partition into 3 parts). The smallest such triplet surviving

in our spanning set (for n = 13) was (7, 3, 3). We then eliminated (7, 3, 3) and all its

2-translates (i.e., partitions of the form (7 + 2k, 3 + 2k, 3 + 2k), k ≥ 0). We compared

our resulting spanning set with the graded dimension again, and noticed that the next

two discrepancies were at n = 21 and n = 29, and in each case there was one extra

partition in our spanning set. Once again, the “periodicity properties” suggested that

we must have missed a forbidden quadruplet (i.e., a partition into 4 parts). Eliminating

the smallest surviving quadruplet and its 2-translates gave us a contradiction, i.e., we
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got a smaller number of partitions in the spanning set than required by the graded

dimension, for n sufficiently large. Therefore, we proceeded to eliminate the second

quadruplet, which was (9, 6, 3, 3), and its 2-translates. Proceeding in similar fashion, a

clear pattern emerged for the family of forbidden partitions of arbitrary lengths.

The task of proving that these partitions are indeed forbidden turned out to be

very subtle. Unlike in [Cap88, Cap93], we needed to keep track of terms containing

“positive Heisenberg elements” in the relations that we used. In the case of the level 3

standard modules, the forbidden partitions arose directly from certain generating function

identities. In our case, we obtain “longer” relations by multiplying similar generating

function identities by suitable operators. The “exceptional” forbidden partitions of

arbitrary length arise from these relations. Also, the initial conditions are significantly

more difficult for level 4 than for level 3.

As illustrated by all of these phenomena, the level 4 theory for A(2)
2 is much more

complex than the level 3 theory.

Now we give a brief overview of this dissertation.

In Chapter 2, we recall the basic definitions and results to describe the twisted vertex

operator construction of the principally graded realization of the algebra A(2)
2 . This is a

simplification of the general case, based on vertex operator calculus, described in [Lep85,

Fig87, Cap92, Cap93, FLM87, FLM88, DL96], specialized to our specific case of A(2)
2 .

In Chapter 3, we recall the basic notions about standard modules for an affine Lie

algebra and show that any level 4 standard module can be thought of as embedded in

the tensor product of 4 copies of the basic module. We also recall the graded dimensions

of these modules given by the principal specialization of the Weyl-Kac character formula

and the numerator formula (see [Lep78, LM78] for more details).

In Chapter 4, we present the framework—some notations, definitions and results—on

which the rest of the dissertation depends. First, we present a few definitions, notations

and results related to partitions and generalized partitions (i.e., any sequence of integers,

not necessarily positive, in non-increasing order). Then we describe certain standard

monomials—parametrized by these partitions and generalized partitions—in certain

operators and the structure of the standard modules in terms of the action of these
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monomials on a highest weight vector. We also present a number of substantial tools

and techniques that we use repeatedly in the later chapters.

In Chapter 5, we present the “product generating function” identities that hold in

any level 4 standard module (more generally, on the tensor product of 4 copies of the

basic module). These identities are analogous to those used in [Cap88, Cap92, Cap93]

for the standard A(2)
2 -modules of level 3. We also present the coefficients of the standard

monomials that appear in these “product generating function” identities.

Chapter 6 is devoted to finding forbidden partitions using the product generating

function identities mentioned above. There are two types of forbidden partitions. Those

that follow directly from the product generating function identities, similar to those

in the level 3 case in [Cap88, Cap92, Cap93], are called “regular” forbidden partitions.

Interestingly, there are other forbidden partitions of arbitrary length (starting from

length 3) satisfying a simple pattern of difference conditions. There are no analogues of

this type of forbidden partitions in any of the previous cases. We call them “exceptional”

forbidden partitions. These exceptional forbidden partitions follow from new relations

obtained by multiplying the product generating function identities by suitable operators.

In Chapter 7, we describe the “initial conditions” for each of the three inequivalent

level 4 standard modules for A(2)
2 . These come from certain ad-hoc relations specific

to each of the particular standard A(2)
2 -modules of level 4, needed to match the graded

dimensions of “low degrees.”

Finally, in Chapter 8, we summarize our main results and our three (conjectured)

partition identities arising from the three level 4 standard A(2)
2 -modules.

Some of the computations used in the proofs were performed using computer programs

in Maple. We also wrote a C (standard C99) program to verify the validity of our

partition identities. We have collected all the programs that we used in the appendices.

In Appendix A, we present the Maple worksheet and the Maple source files that we

used (mainly in Chapter 6 and Chapter 7) for the computations of the relations.

In Appendix B, we present our Maple source files for computations in noncommutative

algebras. We also present two Maple worksheets showing the computations used in some

of the proofs (notably, in Chapter 7). The Maple programs implementing the operations
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(addition, multiplication, etc..) in noncommutative algebras were based on the NCFPS

(noncommutative formal power series) package of D. Zeilberger (see [Zei12, BRRZ12]).

The algorithm to apply substitution rules to straighten out an out-of-order monomial

is based on the Maple codes of M. Russell (see [Rus13]). His program was for a finite

number of substitution rules over a finite alphabet. We modified his program to work

with an infinite number of substitution rules (based on finitely many patterns) over an

infinite indexed alphabet.

In Appendix C, we present our C program (written in C99 standard) to verify our

partition identities up to n ≤ 200. (Note that we have done the verification only for

n ≤ 170 and for n = 180, 190 and 200. It may take more than 24 hours to complete

the computation for n = 200.) We used the “accelerated ascending rule” algorithm of

J. Kelleher (see [Kel06]) to generate all partitions of a nonnegative integer n.
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Chapter 2

Preliminaries

In this chapter, we will discuss briefly the principally graded realization of the affine Lie

algebra A(2)
2 using twisted vertex operators. The general set-up has been described in

[FLM88, FLM87] in a more general setting. We will also follow closely the notations

used in [Cap88, Cap92, Cap93]. Here we present the case of A(2)
2 , which is much simpler

than the general case.

We start with the root lattice A2, and construct a central extension of this root

lattice to describe A(2)
2 . Since this extension splits, much of the complication that arises

in the general construction can be simplified. For detailed description of the general

construction see [FLM88, FLM87, Cap88, Cap92, Cap93, LW84, Lep78, Lep85, Fig87,

DL96].

2.1 Formal Calculus

In this section, we will give a brief overview of the formal calculus used in this dissertation.

We only quote a few results. For details and the proofs see [FLM88, Cap92, LL04].

Let V be any vector space over C. Denote by (EndV )[[z, z−1]] the space of formal

Laurent series in z with coefficients in EndV . The elements of (EndV )[[z, z−1]] are

denoted using “function” notation:

f(z) =
∑
n∈Z

fnz
−n.

Definition 2.1.1. A (possibly infinite) subset S ⊂ EndV is called summable if the set{
f ∈ S

∣∣ fv 6= 0
}
is finite for all v ∈ V .

Remark. If S ⊂ EndV is summable then
∑
f∈S f is a well-defined operator on V .
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Henceforth we assume that V is graded, i.e., V =
∐
n∈Z Vn, where Vn denotes the

set of all homogeneous elements in V of degree n.

Definition 2.1.2. An endomorphism f ∈ EndV is called homogeneous of degree d if it

maps elements of Vn into Vn+d for all n ∈ Z.

Proposition 2.1.3. Let f(z), g(z) ∈ (EndV )[[z, z−1]]. Assume that

(i) fn, gn are homogeneous operators of degree n on V for all n ∈ Z,

(ii) [fn, gm] = 0 for all n,m ∈ Z,

(iii) V is bounded above (or, below), i.e., there exists N ∈ Z such that Vn = 0 for all

n > N (or, n < N).

Then f(z)g(z) is a well-defined element of (EndV )[[z, z−1]].

Proof. Assume that V is bounded above with highest degree N . For each k ∈ Z, the

coefficient of z−k in f(z)g(z) is
∑
n+m=k fngm. For a homogeneous vector v ∈ V of

degree d, the sum

∑
n+m=k

fngmv =
∑

n+m=k
m≤N−d

fngmv =
∑

n+m=k
m,n≤N−d

gmfnv

has only finitely many nonzero terms.

The proof for the case where V is bounded below is similar.

We now recall the limit notation. Let (EndV )[[z±1
1 , . . . , z±1

n ]] denote the space of all

formal Laurent series in commuting indeterminates z1, . . . , zn with coefficients in EndV .

Write

f(z1, . . . , zn) =
∑

i1,...,in∈Z
f(i1, . . . , in) z−i11 · · · z−inn .

Definition 2.1.4. Define the limit as all the indeterminates are set to z by

lim
zi→z

f(z1, . . . , zn) =
∑
k∈Z

 ∑
i1,...,in∈Z
i1+···+in=k

f(i1, . . . , in)

 z−k,
provided the the family {

f(i1, . . . , in)
∣∣∣ i1 + · · ·+ in = k

}
is summable for all k ∈ Z.
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Following [FLM88], we observe the following convention:

(z1 + z2)n = zn1

(
1 + z2

z1

)n
,

where the latter factor is to be expanded as a binomial series. Of course, this matters

only when n is not a positive integer. For example,

1
z1 + z2

= z−1
1

(
1− z2

z1
+
(
z2
z1

)2
− · · ·

)
. (2.1.1)

We quote a few useful properties of the limit below. For proofs see [FLM88, Cap92,

LL04].

Proposition 2.1.5.

(1) Let f = f(z1, . . . , zm) be a formal Laurent series such that limzi→z f exists. If

P = P (z1, . . . , zm) is a Laurent polynomial, then limzi→z Pf exists and

lim
zi→z

Pf =
(

lim
zi→z

P

)(
lim
zi→z

f

)
.

(2) Let f = f(z1, . . . , zm, w1, . . . , wn) be a formal Laurent series such that

limzi,wj→z f exists. Then

lim
zi,wj→z

f = lim
zi→z

(
lim
wj→z

f

)
.

Proposition 2.1.6. Assume that V is bounded above (or, below). Let f(z1), g(z2) be

formal Laurent series in the two commuting indeterminates z1 and z2, such that the

coefficients fn, gn are homogeneous operators of degree n on V . Let p = p(z1, z2) be a

Laurent polynomial with constant coefficients such that

p(z1, z2)[f(z1), g(z2)] = 0.

Then the limit

lim
z1,z2→z

p(z1, z2)f(z1)g(z2)

exists.

We recall two very useful Laurent series with constant coefficients to be used later

in our exposition. The first is the “delta function,”

δ(z) =
∑
n∈Z

zn. (2.1.2)
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Let D denote the differential operator D = z d
dz . Then,

D δ(z) =
∑
n∈Z

nzn. (2.1.3)

We quote the following well known properties of δ(z) and D δ(z).

Proposition 2.1.7. Let f(z) be any Laurent polynomial over any algebra over C, and

a ∈ C× be a nonzero constant. Then we have

(i) f(z)δ(z) = f(1)δ(z), or more generally, f(z)δ(a−1z) = f(a)δ(a−1z), and in

particular, (1− a−1z)δ(a−1z) = 0;

(ii) f(z) D δ(z) = f(1) D δ(z)− (D f)(1)δ(z), or more generally,

f(z) D δ(a−1z) = f(a) D δ(a−1z)− (D f)(a)δ(a−1z),

and in particular, (1− a−1z)2 D δ(a−1z) = 0.

Proof. It can be easily proved on each monomial zk of f(z). For details see [FLM88].

2.2 Vertex Operators

In this section, we describe the vertex operators used in the construction of A(2)
2 . We

follow the general method as described in [FLM88, FLM87, Lep85, LW84, LW85, Cap88,

Cap92, Cap93, Fig87, DL96], simplifying the process as applicable to the case of A(2)
2 .

Let Φ be the A2 root system with basis ∆ = {α1, α2}. Let L = Zα1 + Zα2 be the

root lattice of A2, equipped with a symmetric Z-bilinear form 〈 · , · 〉, where 〈αi, αi〉 = 2

for i = 1, 2, and 〈α1, α2〉 = −1. Note that the angle between α1 and α2 is 2π
3 .

Let ν be the automorphism of L of order 6 acting as a rotation on the root system

by π
3 . On the basis elements of ∆, ν(α1) = α1 + α2, ν(α2) = −α1. Clearly, ν6 = 1, and

〈ν3α, α〉 = −〈α, α〉 ∈ 2Z for all α ∈ L. Note that

∑
p∈Z6

νpα = 0, for all α ∈ L. (2.2.1)

Let h = C
⊗

Z L. The form 〈 · , · 〉 can be linearly extended to h. Let ω be a primitive

sixth root of unity. For concreteness, we may choose

ω = eiπ/3 = 1
2 +
√

3
2 i.
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For n ∈ Z, set

h(n) =
{
x ∈ h

∣∣∣ νx = ωnx
}
. (2.2.2)

For n ≡ m (mod 6), ωn = ωm and h(n) = h(m). Thus the expressions ωp and h(p) have

obvious well-defined meaning for p ∈ Z6. We have

h =
∐
p∈Z6

h(p). (2.2.3)

Note that h(n) = 0 unless n ≡ ±1 (mod 6). Therefore,

h = h(1)
⊕

h(−1) (2.2.4)

is the eigenspace decomposition for the action of ν on h.

Viewing h as an abelian Lie algebra, construct the ν-twisted affine Lie algebra

h̃ = h̃[ν] =
∐
n∈Z

(
h(n) ⊗ t

n/6
)
⊕ Cc⊕ Cd

=
∐
n∈1

6Z

(
h(6n) ⊗ tn

)
⊕ Cc⊕ Cd,

(2.2.5)

with the following brackets:

[x⊗ ti/6, y ⊗ tj/6] = i
6〈x, y〉δi+j,0c,

[d, x⊗ ti/6] = i
6x⊗ t

i/6,

[c, x⊗ ti/6] = [c, d] = 0,

(2.2.6)

for all i, j ∈ Z, x ∈ h(i), y ∈ h(j).

Consider the commutator subalgebra s of h̃[ν]

s =
∐
n∈Z
n6=0

(
h(n) ⊗ t

n/6
)
⊕ Cc =

∐
n∈Z

n≡±1 (mod 6)

(
h(n) ⊗ t

n/6
)
⊕ Cc, (2.2.7a)

and the subalgebras

s± =
∐
n∈Z
±n>0

(
h(n) ⊗ t

n/6
)
⊕ Cc, (2.2.7b)

b = b[ν] =
∐
n∈Z
n≥0

(
h(n) ⊗ t

n/6
)
⊕ Cc⊕ Cd

= s+ ⊕ Cc⊕ Cd (since h(0) = 0).

(2.2.7c)
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Then s is a Heisenberg subalgebra in the sense that its commutator, [s, s] = Cc is

1-dimensional and coincides with its center.

Consider C as a 1-dimensional b[ν]-module on which s+ and d act trivially, and c

acts as identity. Form the induced h̃[ν]-module

S = U
(
h̃[ν]

)
⊗U(b) C ∼= S(s−). (2.2.8)

Then S is an irreducible module for the Heisenberg subalgebra s (see [FLM88]).

The action of d defines a 1
6Z-grading on S

S =
∐

n∈− 1
6N

Sn. (2.2.9)

For α ∈ h and n ∈ Z define α(n) as the projection of α on to h(n). Then α(n) = 0 unless

n ≡ ±1 (mod 6). For n ∈ Z, define the operator α(n) = α(n) ⊗ t
n/6 on S.

Definition 2.2.1. Define a pair of Laurent series in z1/6 with coefficients in End(S),

E±(α; z) = exp

 ∑
n∈ 1

6Z
±n>0

α(6n)z
−n

n



= exp

6
∑
n∈Z
±n>0

α(n)z
−n/6

n

 .
(2.2.10)

Notation 2.2.2. Fix an α ∈ h. For n ∈ Z, denote by

E(n) = Eα(n) =


Coefficient of z−n/6 in E+(α; z) if n ≥ 0,

Coefficient of z−n/6 in E−(α; z) if n ≤ 0.
(2.2.11a)

Remark. Notice that the constant term in both E+(α; z) and E−(α; z) is 1 (the identity

operator on S). Therefore E(0) = 1 is well-defined. The operator E(n) is homogeneous

of degree n
6 . We also have E(1) = 6α(1) and E(−1) = −6α(−1).

Thus,

E+(α; z) =
∑
n∈Z
n≥0

Eα(n)z−n/6, (2.2.12a)

E−(α; z) =
∑
n∈Z
n≥0

Eα(−n)zn/6. (2.2.12b)



15

Proposition 2.2.3. For α, β ∈ h, we have

E+(α; z1)E−(β; z2) = E−(β; z2)E+(α; z1)
∏
p∈Z6

(
1− w−p z

1/6
2

z
1/6
1

)〈νpα,β〉
. (2.2.13)

Proof. Follows from [Proposition 3.4 of LW84, p. 224].

The last factor in (2.2.13) is to be expanded as a power series in
(
z2
z1

)1/6
. We will

use the function notation as a short-hand for its power series expansion for brevity. Let

Q0[α, β]
P0[α, β] =

∏
p∈Z6

(
1− ω−p z

1/6
2

z
1/6
1

)〈νpα,β〉
, (2.2.14)

where Q0 = Q0[α, β] and P0 = P0[α, β] are relatively prime polynomials in
(
z2
z1

)1/6
with

constant term 1, depending on the roots α, β. We present below a few concrete cases.

For α ∈ h with 〈α, α〉 = 2, and letting x =
(
z2
z1

)1/6
:

Q0[α, α]
P0[α, α] = (1− x)2(1− ω−1x)(1− ω−5x)

(1− ω−2x)(1− ω−3x)2(1− ω−4x)

= (1− x)6(1− x6)
(1− x2)3(1− x3)2 ,

(2.2.15a)

Q0[α, να]
P0[α, να] = (1− x)(1− ω−1x)2(1− ω−2x)

(1− ω−3x)(1− ω−4x)2(1− ω−5x) , (2.2.15b)

Q0[α, ν2α]
P0[α, ν2α] = (1− ω−1x)(1− ω−2x)2(1− ω−3x)

(1− x)(1− ω−4x)(1− ω−5x) , (2.2.15c)

Q0[α,−α]
P0[α,−α] = (1− ω−2x)(1− ω−3x)2(1− ω−4x)

(1− x)2(1− ω−1x)(1− ω−5x)

= (1− x2)3(1− x3)2

(1− x)6(1− x6) .

(2.2.15d)

The construction of the vertex operator X(a; z) (to be described in what follows),

simplifies a lot from the general construction, as described in [FLM88, FLM87, Lep85,

Cap92, Cap93], using the following properties of our special case:

(a) ν is fixed point free, i.e., h(0) = 0,

(b)
∑
p∈Z6

νpα = 0 for α ∈ L,

(c)
〈∑

p∈Z6
pνpα, β

〉
∈ 6Z for α, β ∈ L,

(d) the central extension L̂ (as defined below) splits.
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Define the alternate bilinear map C : L× L→ C∗ by

C(α, β) = (−1)〈
∑

νpα,β〉ω〈
∑

pνpα,β〉, (2.2.16)

where the sums range over p ∈ Z6. Note that C(α, β) = 1 for any α, β ∈ L by (b) and

(c) above. There is a unique (up to equivalence) central extension of L

1→ 〈ω〉 → L̂
−→ L→ 0 (2.2.17)

by the cyclic group generated by ω with the commutator map C, i.e.,

aba−1b−1 = C(ā, b̄) for a, b ∈ L̂. (2.2.18)

We use additive notation for the abelian group L, and multiplicative notation for the

extension L̂ which is not abelian in general.

For A(2)
2 , since C(α, β) = 1 for all α, β ∈ L, the above extension splits. Therefore,

L̂ = 〈ω〉×L is the direct product of groups, and is abelian. However, we continue to use

the multiplicative notation to be consistent with the notations used for the general case.

Let ν̂ be the lifting of ν to L̂ fixing ω, such that

(ν̂a) = νā for a ∈ L̂, (2.2.19)

ν̂a = a ⇐⇒ νā = ā. (2.2.20)

In our case, the extension splits, and therefore ν̂(ωp, α) = (ωp, να) under the identifica-

tion of L̂ with the direct product 〈ω〉 × L.

Let L̂ act on S = S(s−) as follows:

a.s = ωps, for a = (ωp, α) ∈ L̂, s ∈ S. (2.2.21)

Definition 2.2.4. For a ∈ L̂, define the corresponding vertex operator X(a; z) with

coefficients in EndS as follows:

X(a; z) = 6−〈ā,ā〉/2σ(ā)E−(−ā; z)E+(−ā; z)a, (2.2.22)

where σ(α) = σ(να) is a normalizing constant depending on α ∈ L, defined by

σ(α) = 2−〈α,α〉/2(1− ω−1)〈να,α〉(1− w−2)〈ν2α,α〉. (2.2.23)
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For α ∈ L with 〈α, α〉 = 2, the above formula simplifies to

σ(α) = 2−1(1− ω−1)(1− ω−2)−1

= ω0
√

3
6

(2.2.24)

where ω0 = 1√
3(1 + ω) = eiπ/6 is a 12-th root of unity with ω = ω2

0.

Since the these elements α of L play an important role, we shall use the following

notations:
L2 =

{
α ∈ L

∣∣∣ 〈α, α〉 = 2
}
,

L̂2 =
{
a ∈ L̂

∣∣∣ 〈ā, ā〉 = 2
}
.

(2.2.25)

More generally,
Ln =

{
α ∈ L

∣∣∣ 〈α, α〉 = n
}
,

L̂n =
{
a ∈ L̂

∣∣∣ 〈ā, ā〉 = n
}
.

(2.2.26)

We have the following properties:

X(ν̂a; z) = lim
z1/6→ω−1z1/6

X(a; z), (2.2.27)

DX(a; z) = −[d,X(a; z)], (2.2.28)

where D = z d
dz .

For α ∈ L, define
α(z) =

∑
n∈Z

α(n)z−
n
6−1,

α+(z) =
∑
n∈Z
n>0

α(n)z−
n
6−1

α−(z) =
∑
n∈Z
n<0

α(n)z−
n
6−1

(2.2.29)

We will now present the commutator formula for the vertex operators. The details

can be found in [Lep85, Cap92, Cap93, FLM87, DL96] in a more general setting, with

slightly different notations.

It is sometimes useful to parametrize the vertex operators in terms of the elements

of L, instead of L̂. This is easy in our case, since the extension L̂ splits. However, the

formula becomes more transparent if we follow the more general case. The constants

in this formula depend on some normalized sections and normalized cocycles of the
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extension. For this reason we will describe the general process, and simplify for our case,

whenever appropriate.

Let e : L→ L̂ be a normalized section, i.e., ēα = α. and e0 = 1 for all α ∈ L. Then

there is a normalized cocycle εC : L× L→ 〈ω〉 associated with C, defined by

eαeβ = εC(α, β)eα+β for α, β ∈ L, (2.2.30)

satisfying
εC(α, β)εC(α+ β, γ) = εC(β, γ)εC(α, β + γ),

εC(0, 0) = 1,
εC(α, β)
εC(β, α) = C(α, β).

(2.2.31)

In our case, take eα = (1, α) ∈ L̂. Therefore, εC(α, β) = 1 for all α, β ∈ L. Also define

the map η : Z6 × L→ 〈ω〉 by

ν̂eα = η(p, α)eνpα, (2.2.32)

which, in our case, simplifies to η(p, α) = 1 for all p ∈ Z6 and α ∈ L.

Define ε2 : L× L→ 〈ω〉 by

ε2(α, β) = (−1)〈
∑

νpα,β〉ω−〈
∑

pνpα,β〉, (2.2.33)

where the sums range over −3 < p < 0. Therefore, the above formula simplifies to

ε2(α, β) = (−1)〈ν−1α+ν−2α,β〉ω〈ν−1α+2ν−2α,β〉. (2.2.34)

This map satisfies
ε2(α, β)
ε2(β, α) = (−1)〈α,β〉C(α, β)−1. (2.2.35)

Define ε : L× L→ 〈ω〉 by

ε(α, β) = ε2(α, β)εC(α, β), for all α, β ∈ L. (2.2.36)

This is a normalized cocycle associated with the bilinear map (−1)〈α,β〉. In our case,

the map ε reduces to ε2.

Using the above notation, we set X(α; z) = X(eα; z). For α ∈ L, a = eα we have

X(α; z) = 6−〈α,α〉/2σ(α)E−(−α; z)E+(−α; z),

X(a; z) = 6−〈ā,ā〉/2σ(ā)E−(−ā; z)E+(−ā; z).
(2.2.37)
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For α ∈ L2, the constant in front of the above equations simplifies to ω0
√

3
6 by (2.2.24).

Notation 2.2.5. Write the coefficient of z−n/6 in X(a; z) (respectively, in X(α; z)) as

X(a;n) ∈ EndS, (respectively, X(α;n) ∈ EndS).

X(a; z) =
∑
n∈Z

X(a;n)z−n/6,

X(α; z) =
∑
n∈Z

X(α;n)z−n/6.
(2.2.38)

X(a, n) (respectively, X(α;n)) is a well-defined operator on S of degree n
6 .

Remark. With this notation, we have

X(νkα;n) = ωknX(α;n), (2.2.39)

for all n, k ∈ Z.

With the above simplifications the commutator formula of [Lep85] becomes:

Proposition 2.2.6. Let α, β ∈ L2. Set I(n) = {p ∈ Z6 | 〈νpα, β〉 = n}, for n ∈ Z.

Then, setting x =
(
z2
z1

)1/6
, we have

[X(α; z1), X(β; z2)] = 1
6
∑

p∈I(−1)
ε(νpα, β)X(νpα+ β; z2)δ

(
ω−px

)
+ 1

62 ε(−β, β) c
∑

p∈I(−2)
D δ

(
ω−px

)
− 1

6ε(−β, β)
∑

p∈I(−2)
z2β(z2)δ

(
ω−px

)
,

(2.2.40)

where c = 1 ∈ EndS, is the identity endomorphism.

Because of (2.2.27), and the symmetry of L2 with respect to ν, it is enough to

know the commutator [X(α; z1), X(α, z2)]. We present the formula with the constants

simplified below.

Corollary 2.2.7. For α ∈ L2, we have

[X(α; z1), X(α; z2)] = ω2

6 X(να; z2)δ(ω−2x)− ω2

6 X(ν−1α; z2)δ(ω2x)

+ ω

36cD δ(−x)− ω

6 z2α(z2)δ(−x),
(2.2.41)

where x =
(
z2
z1

)1/6
.
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Proof. Use

I(−1) =
{
p ∈ Z6

∣∣∣ 〈νpα, α〉 = −1
}

= {±2},

I(−2) =
{
p ∈ Z6

∣∣∣ 〈νpα, α〉 = −2
}

= {3},

ν2α+ α = να,

ν−2α+ α = ν−1α,

ε(ν2α, α) = ω2,

ε(ν−2α, α) = −ω2,

ε(−α, α) = ω

in the above Proposition 2.2.6.

We need a few more commutator relations. Recall the “delta function” Laurent

series as defined in (2.1.2). Define the following related Laurent series:

δ+(z) =
∑
n>0

zn, (2.2.42a)

δ−(z) =
∑
n>0

z−n, (2.2.42b)

δ{±1}(z) =
∑
n≡±1
(mod 6)

zn, (2.2.42c)

δ+
{±1}(z) =

∑
n>0

n≡±1 (mod 6)

zn, (2.2.42d)

δ−{±1}(z) =
∑
n>0

n≡±1 (mod 6)

z−n. (2.2.42e)

Also recall the operator D: zn 7→ nzn. Define the inverse operator

D−1 : zn 7→ zn

n
, (2.2.43)

for n 6= 0.

Recall the operator on S given by α(n) = α(n) ⊗ t
n/6 for n ∈ Z, and the Laurent

series α(z), α+(z) and α−(z) defined in (2.2.29). Note that α(n) is the coefficient of

z−n/6 in zα(z).
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With these notations, we have

E+(−α; z) = exp
(
D−1 zα+(z)

)
,

E−(−α; z) = exp
(
D−1 zα−(z)

)
.

(2.2.44)

Proposition 2.2.8. For α ∈ h we have

[z1α
−(z1), E+(−α; z2)] = E+(−α; z2) δ−{±1}(x), (2.2.45a)

[z1α
+(z1), E−(−α; z2)] = E−(−α; z2) δ+

{±1}(x), (2.2.45b)

where x =
(
z2
z1

)1/6
.

Proof. Let D−1
2 denote the operator as defined in (2.2.43) operating on the variable z2.

Then

[z1α
−(z1), E+(−α; z2)] =

[
z1α
−(z1), exp

(
D−1

2 z2α
+(z2)

)]
= exp

(
D−1

2 z2α
+(z2)

)
· [z1α

−(z1),D−1
2 z2α

+(z2)]

= exp
(
D−1

2 z2α
+(z2)

)
·D−1

2 [z1α
−(z1), z2α

+(z2)]

= exp
(
D−1

2 z2α
+(z2)

)
·D−1

2
∑
n>0

[α(−n), α(n)]zn/61 z
−n/6
2

= exp
(
D−1

2 z2α
+(z2)

)
·D−1

2
∑
n>0

n≡±1 (mod 6)

(
−n6

)
z
n/6
1 z

−n/6
2

= exp
(
D−1

2 z2α
+(z2)

)
·
∑
n>0

n≡±1 (mod 6)

z
n/6
1 z

−n/6
2

= E+(−α; z2) δ−{±1}(x).

The second equation follows from similar calculation.

Corollary 2.2.9. For α ∈ L2,

[z1α
−(z1), X(α; z2)] = X(α; z2) δ−{±1}(x), (2.2.46a)

[z1α
+(z1), X(α; z2)] = X(α; z2) δ+

{±1}(x), (2.2.46b)

where x =
(
z2
z1

)1/6
.
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Proof. Follows from the Proposition 2.2.8, the definition (2.2.37) of X(α; z) and the

fact that

[z1α
−(z1), E−(−α; z2)] = 0,

[z1α
+(z1), E+(−α; z2)] = 0.

Corollary 2.2.10. For α ∈ L2,

[z1α(z1), X(α; z2)] = X(α; z2)δ{±1}(x),

where x =
(
z2
z1

)1/6
.

Proof. Follows from Corollary 2.2.9 and the fact that zα(z) = zα−(z) + zα+(z).

For completeness, we give the following formula which will be useful later.

Proposition 2.2.11. Let α ∈ L2. Then we have

E+(−α; z1)X(α; z2) = Ψ(x)X(α; z2)E+(−α; z1), (2.2.47a)

X(α; z1)E−(−α; z2) = Ψ(x)E−(−α; z2)X(α; z1), (2.2.47b)

where Ψ(x) = Q0[−α,−α]
P0[−α,−α] = Q0[α,α]

P0[α,α] is a power series, and P0, Q0 are polynomials in

x =
(
z2
z1

)1/6
as defined in (2.2.14) and (2.2.15a).

Proof. Follows from the definition of X(α; z) (2.2.37) and Proposition 2.2.3.

The following corollary of the above proposition is particularly important for the

later discourse.

Corollary 2.2.12. Let X(n) = X(α;n), E′(n) = E(−α;n) and Ψ(n) be the coefficient

of xn =
(
z2
z1

)n/6
in Ψ(x). Then

X(−m)E′(−n) =
n∑
k=0

Ψ(k)E′(−(n− k))X(−(m+ k)), (2.2.48)

for m,n ∈ Z, n ≥ 0.

Proof. The result follows from (2.2.47b), by comparing the coefficient of zm/61 z
n/6
2 on

both sides, and the fact that E−(−α; z2) only has the nonnegative powers of z1/6
2 .
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Since Ψ(x) = Q0[α,α]
P0[α,α] plays a very important role, we give the first few terms of Ψ(x).

Ψ(x) = 1− 6x+ 18x2 − 36x3 + 54x4 − 66x5 + 72x6 − 78x7 + . . . . (2.2.49)

We present the following commutation relations which will be needed later to show

explicitly the isomorphism of the algebra A(2)
2 with the vertex operator representation.

Proposition 2.2.13. Fix any α ∈ L2. Let X(n) = X(α;n). Then we have, for

m,n ∈ Z,

[α(m), α(n)] = m

6 δm+n,0 c, if m,n ≡ ±1 (mod 6) (2.2.50a)

[α(m), X(n)] = X(m+ n), if m ≡ ±1 (mod 6), (2.2.50b)

[X(m), X(n)] = ω2

6
(
ωn−m − ωm−n

)
X(m+ n)

− ω

6 (−1)mα(m+ n)

+ δm+n,0
ω

36(−1)mmc.

(2.2.50c)

In particular,

[X(0), X(1)] = −ω0
√

3
6 X(1)− ω

6α(1), (2.2.50d)

[X(0), X(−1)] = ω0
√

3
6 X(−1)− ω

6α(−1), (2.2.50e)

[X(1), X(−1)] = ω0
√

3
6 X(0)− ω

36c, (2.2.50f)

where ω = eπi/3 and ω0 = eπi/6 (primitive 6th and 12th roots of unity respectively, such

that ω2
0 = ω).

Proof. The first equation (2.2.50a) follows from (2.2.6). Equation (2.2.50b) follows from

Corollary 2.2.10 by equating the coefficients of z−m/61 z
−n/6
2 on both sides. Equation

(2.2.50c) follows from Corollary 2.2.7 by equating the coefficients of z−m/61 z
−n/6
2 on both

sides.

The next three special cases follows from (2.2.50c) with the simplification

ωn−m − ωm−n =



0 if n−m ≡ 0, 3 (mod 6)
√

3i if n−m ≡ 1, 2 (mod 6)

−
√

3i if n−m ≡ 4, 5 (mod 6)

(2.2.51)
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(using i = ω3
0 and ω = ω2

0).

2.3 The Algebra A(2)
2

In this section, we present a brief description of the affine Lie algebra of the type A(2)
2 in

terms of the generators and relations (see [Kac90] for more details). Then we describe

the principal realization of this algebra using vertex operator representation on S (see

[FLM88, Lep85]), with the explicit image of the generators under this isomorphism.

The algebra ĝ of the type A(2)
2 is the Kac-Moody algebra associated with the

generalized Cartan matrix

A =

 2 −4

−1 2

 , (2.3.1)

with the Lie algebra generators h0, h1, e0, e1, f0, f1 and the relations

[hi, hj ] = 0,

[hi, ej ] = aijej ,

[hi, fj ] = −aijfj ,

[ei, fj ] = δijhi,

(ad ei)−aij+1ej = 0 (for i 6= j),

(ad fi)−aij+1fj = 0 (for i 6= j),

(2.3.2)

for all i, j ∈ {0, 1}, where aij denotes the (i, j)-th entry of the above generalized Cartan

matrix A (indexed from 0). It follows from the relations that c = h0 + 2h1 is central.

The principal 1
6Z-gradation of ĝ is given by assigning

deg hi = 0,

deg ei = 1/6,

deg fi = −1/6,

(2.3.3)

for all i ∈ {0, 1}.

It is sometimes useful to work with the extended algebra g̃ of type A(2)
2 . g̃ is the

extension of ĝ by a degree derivation d:

g̃ = ĝ⊕ Cd, (2.3.4)
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with the brackets

[d, x] = (deg x)x, (2.3.5)

for any x ∈ ĝ of homogeneous degree. Note that ĝ = [g̃, g̃] is the commutator subalgebra

of g̃. The advantage of working with the the extended algebra g̃ is that the gradation

becomes intrinsic.

Now we describe the principal realization of A(2)
2 using the vertex operators defined

in the previous section (§ 2.2). Although, this construction as described in [FLM88,

Lep85] is quite deep and complicated, it is a lot simpler for the case of A(2)
2 because of

the simplification that happens in this particular case. We give a very brief description,

simplified for this particular case.

Recall that in § 2.2, we started with the even lattice L of type A2. Define a Lie

algebra g as the direct sum

g = h
⊕
α∈L2

Cxα, (2.3.6)

with the brackets [h, h] = 0, [h, xα] = 〈h, α〉xα, and

[h, h] = 0, (2.3.7a)

[h, xα] = 〈h, α〉xα, (2.3.7b)

[xα, xβ] =



ε(α,−α)α if α+ β = 0

ε(α, β)xα+β if 〈α, β〉 = −1

0 if 〈α, β〉 ≥ 0,

(2.3.7c)

for h ∈ h and α, β ∈ L2. Then g is a Lie algebra (see [FK80, Seg81, FLM88]). Extend

the automorphism ν of h to g by (recall η(p, α) from (2.2.32)):

νxα = η(1, α)xνα

= xνα (since η ≡ 1 in this case),
(2.3.8)

and the form 〈 , 〉 by

〈h, xα〉 = 0, (2.3.9a)

〈xα, xβ〉 =


ε(α,−α) if α+ β = 0

0 if α+ β 6= 0
(2.3.9b)
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for h ∈ h and α, β ∈ L2. Then 〈 , 〉 is g-invariant and preserved by ν. Furthermore, g is

semisimple (g ∼= sl3), since L2 spans h.

Note that ν6 = 1. Let

g(n) =
{
x ∈ g

∣∣∣ νx = ωnx
}

(2.3.10)

denote, if nontrivial, the eigenspace for the eigenvalue ωn, n ∈ Z. Form the ν-twisted

affine Lie algebra

g̃[ν] =
∐
n∈Z

g(n) ⊗ t
n/6 ⊕ Cc⊕ Cd (2.3.11)

with the brackets

[x⊕ ti/6, y ⊕ tj/6] = [x, y]⊗ t(i+j)/6 + i
6〈x, y〉δi+j,0 c,

[d, x⊕ ti/6] = i
6x⊕ t

i/6,

[c, d] = [c, x⊕ ti/6] = 0,

(2.3.12)

where i, j ∈ Z, x ∈ g(i), y ∈ g(j).

Define

x(α; z) =
∑
n∈Z

(
(xα)(n) ⊗ t

n/6
)
z
−n/6, (2.3.13)

where (xα)(n) denotes the projection of xα onto g(n).

The operators Eα(n), X(α;n) ∈ EndS, for α ∈ L2 and n ∈ Z, define a representation

of h̃[ν] on S. By Theorem 9.1 of [Lep85] this representation of h̃[ν] on S extends uniquely

to an irreducible Lie algebra representation of g̃[ν] on S such that

x(α; z) 7→ X(α; z)

for all α ∈ L2.

The Lie algebra g̃[ν] can be shown to be isomorphic to the principal (1
6Z-graded)

realization of the affine Lie algebra g̃ of type A(2)
2 (see [Fig87, Kac90]). Here, we will

show this fact directly using the generators and relations of A(2)
2 .

Proposition 2.3.1. Fix any α ∈ L2. Let X(n) = X(α;n), for n ∈ Z. The following

map establishes the representation of g̃[ν] on S as the principal (1
6Z-graded) realization

of A(2)
2
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h0 7→ 4
√

3
ω0
X(0) + 2

3c,

h1 7→ −2
√

3
ω0
X(0) + 1

6c,

e0 7→ −2
√

2
ω0
X(1) + 2

√
2√
3 α(1),

e1 7→ 2
ω0
X(1) + 1√

3α(1),

f0 7→ 2
√

2
ω0
X(−1) + 2

√
2√
3 α(−1),

f1 7→ − 2
ω0
X(−1) + 1√

3α(−1),

d 7→ d,

(2.3.14)

where ω0 =
√
ω = eiπ/6, and c is the identity operator on S.

Proof. The defining relations can be directly verified using the commutation relations

in Proposition 2.2.13. (Also see §B.1).

Remark. Note that X(n), α(n) ∈ g̃[ν]. However, the operators E(n), in general, need

not be in the Lie algebra, but in the universal enveloping algebra, U(g̃[ν]).

We end this section with the definition of three subalgebras of g̃ = g̃[ν].

h̃0 = span
{
x ∈ g̃

∣∣∣ deg x = 0
}
, (2.3.15a)

n± = span
{
x ∈ g̃

∣∣∣ ± (deg x) > 0
}
. (2.3.15b)

Then

g̃ = n− ⊕ h̃0 ⊕ n+. (2.3.16)

Note that h̃0 is the subalgebra spanned by X(0), c and d (c is the identity operator on S).

The subalgebra n+ (respectively, n−) is spanned by X(n), α(n) for n > 0 (respectively,

n < 0). In terms of the Chevalley generators, h̃0 is the subalgebra generated by h0, h1

and d; and n+ (respectively, n−) is the subalgebra generated by e0 and e1 (respectively,

f0 and f1).
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Chapter 3

Standard Modules

The main objects of our study are the level 4 standard modules for the algebra g̃ = g̃[ν]

of type A(2)
2 .

In § 3.1 we recall the basic notions and terminology from the general representation

theory of Kac-Moody algebras. We also show that the standard modules of level 4 can

be thought of as submodules of the tensor product of four copies of the “basic module.”

In § 3.2 we present the graded dimensions for the three standard modules of level 4. See

[Kac90], [Lep78] for more details.

3.1 Basic Notions

Recall the subalgebras h̃0, n− and n+ of zero, negative and positive degree respectively

in g̃, as defined in (2.3.15).

Let V be a g̃-module and Λ ∈ (h̃0)∗. Assume that Λ(d) = 0. V is called a highest

weight module with highest weight Λ, if it is generated by an element v0 6= 0 (called a

highest weight vector) such that

(i) n+ · v0 = 0,

(ii) h · v0 = Λ(h)v0 for all h ∈ h̃0.

The highest weight vector v0 is unique up to multiplication by a nonzero scalar.

An element Λ ∈ (h̃0)∗ is called dominant integral if Λ 6= 0 and Λ(hi) ∈ Z≥0 for

i = 0, 1, where hi are the elements as described in § 2.3.

V is called a standard module if

(i) it is a highest weight module with highest weight Λ,

(ii) it is irreducible,

(iii) Λ is dominant integral.
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Given a dominant integral weight Λ, there is a unique standard module with highest

weight Λ, up to equivalence.

Notation 3.1.1. For a dominant integral weight Λ, denote by L(Λ) the standard

module with highest weight Λ.

Recall the Chevalley generators h0, h1, e0, e1, f0, f1, as described in § 2.3. Define the

elements h∗0, h∗1 ∈ (h̃0)∗:

h∗i (hj) = δij , h∗i (d) = 0, for i, j ∈ {0, 1}. (3.1.1)

Recall that we have c = h0 + 2h1. Therefore, Λ(c) ∈ N, if Λ is dominant integral.

Level of the standard module L(Λ) is the positive integer Λ(c) = Λ(h0) + 2Λ(h1).

There is only one, up to equivalence, level 1 standard module called the basic module.

It is the standard module of highest weight h∗0.

Notation 3.1.2. We denote the basic module of A(2)
2 by U = L(h∗0).

Let V be a standard module of highest weight Λ with a highest weight vector v0.

Let ki = Λ(hi), i = 0, 1. Then

f
k0+1
0 v0 = f

k1+1
1 v0 = 0. (3.1.2)

Consider C as a one-dimensional representation of h̃0 ⊕ n+, such that hi · 1 = Λ(hi) for

i = 0, 1 and n+ · 1 = 0. Denote by

M(Λ) = U (g̃[ν])⊗U(h̃0⊕n+) C

the Verma module with highest weight Λ. As a vector space

M(Λ) ∼= U(n−).

Then, L(Λ) ∼= M(Λ)/W (Λ), where

W (Λ) = U(n−)fk0+1
0 v0 + U(n−)fk1+1

1 v0.

There are three level 4 standard modules (up to equivalence) for A(2)
2 . They are

L(4h∗0), L(2h∗0 + h∗1) and L(2h∗1). Now we will show that the level 4 standard A(2)
2 -

modules are contained in the tensor product of four copies of the basic module U . First,
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we need a couple of lemmas. The first one records various straightening relations in

A(2)
2 .

Lemma 3.1.3. Let U be a basic module for A(2)
2 with a highest weight vector u0 ∈ U .

Then we have
h0u0 = u0, h1u0 = 0,

e0u0 = 0, e1u0 = 0,

f2
0u0 = 0, f1u0 = 0.

(3.1.3)

and
h0f0u0 = f0h0u0 − 2f0u0 = −f0u0,

h1f0u0 = f0h1u0 + f0u0 = f0u0,

e0f0u0 = f0e0u0 + h0u0 = u0,

e1f0u0 = f0e1u0 = 0,

h0f1u0 = f1h0u0 + 4f0u0 = 5f1u0,

h1f1u0 = f1h1u0 − 2f1u0 = −2f1u0,

e0f1u0 = f1e0u0 = 0,

e1f1u0 = f1e1u0 + h1u0 = 0.

(3.1.4)

Proof. This follows from the Serre relations (2.3.2) among the Chevalley generators of

A(2)
2 , together with (3.1.2) and the definition of highest weight.

Lemma 3.1.4. The submodule of U ⊗ U generated by v0 = f0u0 ⊗ u0 − u0 ⊗ f0u0 is

isomorphic to L(h∗1), where u0 is a highest weight vector of U .

Proof. We need to show that h0v0 = 0, h1v0 = v0, e0v0 = e1v0 = 0.

Using Lemma 3.1.3, we have

h0(f0u0 ⊗ u0) = h0f0u0 ⊗ u0 + f0u0 ⊗ h0u0

= −f0u0 ⊗ u0 + f0u0 ⊗ u0

= 0,

and similarly, h0(u0 ⊗ f0u0) = 0. Thus, h0v0 = 0.
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Now,

h1(f0u0 ⊗ u0) = h1f0u0 ⊗ u0 + f0u0 ⊗ h1u0

= f0u0 ⊗ u0,

and similarly, h1(u0 ⊗ f0u0) = u0 ⊗ f0u0. Therefore, h1v0 = v0.

Using Lemma 3.1.3

e0(f0u0 ⊗ u0) = e0f0u0 ⊗ u0 = u0 ⊗ u0,

and similarly, e0(u0 ⊗ f0u0) = u0 ⊗ u0. Therefore, e0v0 = 0.

And finally,

e1(f0u0 ⊗ u0) = e1f0u0 ⊗ u0 = 0.

Thus, e1v0 = 0.

Therefore, we have proved that v0 is a highest weight vector for h∗1. Then the

submodule of U ⊗ U generated by v0 is isomorphic to the standard module L(h∗1).

Notation 3.1.5. We use the following notation for brevity:

U⊗4 = U ⊗ U ⊗ U ⊗ U.

Proposition 3.1.6. Let U be the basic module for A(2)
2 with a highest weight vector u0.

Let v0 = f0u0 ⊗ u0 − u0 ⊗ f0u0 ∈ U ⊗ U , as defined in Lemma 3.1.4.

(i) The submodule of U⊗4 generated by u0 ⊗ u0 ⊗ u0 ⊗ u0 is isomorphic to L(4h∗0).

(ii) The submodule of U⊗4 generated by v0 ⊗ u0 ⊗ u0 is isomorphic to L(2h∗0 + h∗1).

(iii) The submodule of U⊗4 generated by v0 ⊗ v0 is isomorphic to L(2h∗1).

Proof. Let V = U ⊗ U ⊗ U ⊗ U . Fix a highest weight vector u0 ∈ U .

(i) Let v = u0 ⊗ u0 ⊗ u0 ⊗ u0. Then, we have

h0(v) = h0u0 ⊗ u0 ⊗ u0 ⊗ u0 + u0 ⊗ h0u0 ⊗ u0 ⊗ u0

+ u0 ⊗ u0 ⊗ h0u0 ⊗ u0 + u0 ⊗ u0 ⊗ u0 ⊗ h0u0

= 4v,
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by (3.1.3) and (3.1.3). Clearly, h1v = e0v = e1v = 0. Thus, v is a highest weight vector

for 4h∗0. Therefore, the submodule of V generated by v is isomorphic to the standard

module L(4h∗0).

(ii) Let v = v0 ⊗ u0 ⊗ u0. Using Lemma 3.1.3 and Lemma 3.1.4, we have

h0v = h0v0 ⊗ u0 ⊗ u0 + v0 ⊗ h0u0 ⊗ u0 + v0 ⊗ u0 ⊗ h0u0

= 2v0 ⊗ u0 ⊗ u0

= 2v,

h1v = h1v0 ⊗ u0 ⊗ u0 + v0 ⊗ h1u0 ⊗ u0 + v0 ⊗ u0 ⊗ h1u0

= v0 ⊗ u0 ⊗ u0

= v,

e0v = e0v0 ⊗ u0 ⊗ u0 + v0 ⊗ e0u0 ⊗ u0 + v0 ⊗ u0 ⊗ e0u0

= 0,

e1v = e1v0 ⊗ u0 ⊗ u0 + v0 ⊗ e1u0 ⊗ u0 + v0 ⊗ u0 ⊗ e1u0

= 0

Thus, v is a highest weight vector for 2h∗0 +h∗1. Therefore, the submodule of V generated

by v is isomorphic to the standard module L(2h∗0 + h∗1).

(iii) Let v = v0 ⊗ v0. Using Lemma 3.1.3 and Lemma 3.1.4, we have

h0v = h0v0 ⊗ v0 + v0 ⊗ h0v0

= 0,

h1v = h1v0 ⊗ v0 + v0 ⊗ h1v0

= 2v0 ⊗ v0

= 2v,

e0v = e0v0 ⊗ v0 + v0 ⊗ e0v0

= 0,

e1v = e1v0 ⊗ v0 + v0 ⊗ e1v0

= 0.
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Thus, v is a highest weight vector of weight 2h∗1. Therefore, the submodule of V

generated by v is isomorphic to the standard module L(2h∗1).

3.2 The Graded Dimensions

In this section, we present the graded dimension formula, obtained from the principal

specialization of the Weyl-Kac character formula and the numerator formula of [LM78,

Lep78], for each of the three standard A(2)
2 -modules of level 4.

We adopt the following alternative notations for these modules.

(4, 0)-module = L(4h∗0), (3.2.1a)

(2, 1)-module = L(2h∗0 + h∗1), (3.2.1b)

(0, 2)-module = L(2h∗1). (3.2.1c)

Let V be any standard module of level k with highest weight Λ. The structure of V

is the same under the actions of g̃ and ĝ, since d is not in the commutator subalgebra of

g̃. The action of d defines a 1
6Z-grading on V . Denote the subspace of all homogeneous

elements of degree n
6 by

Vn =
{
v ∈ V

∣∣∣∣ [d, v] = n

6 v
}
, (3.2.2)

for n ∈ Z, n ≤ 0. It follows that deg v0 = 0 (since Λ(d) = 0), dimV0 = 1, dimVn <∞

(for n ≤ 0), and

V =
⊕
n≤0

Vn.

Definition 3.2.1. The graded dimension, which we denote by χΛ(q), is a formal power

series in the indeterminate q with nonnegative integer coefficients:

χΛ(q) =
∞∑
n=0

(dimV−n)qn (3.2.3)

Let ρ ∈ (h̃0)∗ be such that ρ(h0) = ρ(h1) = 1 and φ = Λ + ρ. Let

JΛ =
{
n ∈ N

∣∣∣ n 6≡ φ(c),±φ(h0),±φ(h1),±φ(h0 + h1) (mod 2φ(c))
}
, (3.2.4)
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and

KΛ =


{
n ∈ N

∣∣ n ≡ φ(h0) (mod 2φ(c))
}

if Λ(h0) = Λ(h1),

∅ if Λ(h0) 6= Λ(h1).
(3.2.5)

Using the numerator formula (see [LM78, Lep78]) and the principal specialization of

the Weyl-Kac character formula, we have

χΛ(q) =
∏
n∈N

n≡±1 (mod 6)

(1− qn)−1 ∏
n∈JΛ

(1− qn)−1 ∏
n∈KΛ

(1− qn). (3.2.6)

Note that for level 4 standard modules of A(2)
2 , we always have Λ(h0) 6= Λ(h1).

Proposition 3.2.2. The graded dimensions of the three level 4 standard modules for

A(2)
2 are given by:

(4,0)-module: Λ = 4h∗0

χ(4,0)(q) = χΛ(q) =
∏
n∈N

n≡±1 (mod 6)

(1− qn)−1∏
n∈N

n≡±2,±3,±4
(mod 14)

(1− qn)−1, (3.2.7)

(2,1)-module: Λ = 2h∗0 + h∗1

χ(2,1)(q) = χΛ(q) =
∏
n∈N

n≡±1 (mod 6)

(1− qn)−1∏
n∈N

n≡±1,±4,±6
(mod 14)

(1− qn)−1, (3.2.8)

(0,2)-module: Λ = 2h∗1

χ(0,2)(q) = χΛ(q) =
∏
n∈N

n≡±1 (mod 6)

(1− qn)−1∏
n∈N

n≡±2,±5,±6
(mod 14)

(1− qn)−1, (3.2.9)

Proof. Follows from straightforward application of (3.2.6).

Let Λ = k0h
∗
0 + k1h

∗
1 ∈ (h̃0)∗ be such that k0, k1 ∈ Z≥0 and k0 + 2k1 = 4. We will

use the following notations for convenience.

Notation 3.2.3. (i) (For Λ = 4h∗0)

I(4,0) = IΛ =
{
n ∈ N

∣∣∣ n ≡ ±2,±3,±4 (mod 14)
}
, (3.2.10)
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(ii) (For Λ = 2h∗0 + h∗1)

I(2,1) = IΛ =
{
n ∈ N

∣∣∣ n ≡ ±1,±4,±6 (mod 14)
}
, (3.2.11)

(iii) (For Λ = 2h∗1)

I(0,2) = IΛ =
{
n ∈ N

∣∣∣ n ≡ ±2,±5,±6 (mod 14)
}
. (3.2.12)

Notation 3.2.4. We define the following formal power series in q:

H(q) =
∏
n∈N

n≡±1 (mod 6)

(1− qn)−1, (3.2.13)

and

FΛ(q) =
∏
n∈IΛ

(1− qn)−1, (3.2.14)

for Λ as above. We will also use the notation FΛ(n) (respectively, H(n)), for n ≥ 0, to

denote the coefficient of qn in FΛ(q) (respectively, H(q)).

Remark. FΛ(n) is the number of partitions of an integer n ≥ 0 into parts from the set

IΛ.

Therefore, we can rewrite the graded dimension in Proposition 3.2.2 as

χΛ(q) = H(q)FΛ(q). (3.2.15)

We will use the notation χΛ(n), n ≥ 0, to denote the coefficient of qn in χΛ(q).
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Chapter 4

The Framework

In this chapter, we lay out the framework—definitions, notations and a few results—on

which the rest of this dissertation depends. We present a number of useful tools and

techniques that we use repeatedly in the later discourse. The content of this chapter is

valid for standard modules of any positive level. Throughout this chapter, let V denote

a standard module for g̃ with highest weight Λ, and a highest weight vector v0.

We would like to describe the elements of the universal enveloping algebra U = U(g̃)

as linear combinations of the “standard monomials” which are parametrized by certain

partitions and “generalized partitions.” We would also like to describe the structure of

V in terms of the action of the above mentioned monomials on the higest weight vector

v0.

In § 4.1, we present the definitions, notations, and a few results related to partitions

and generalized partitions.

In § 4.2, we describe a standard monomial basis for the universal enveloping algebra

U , parametrized by the partitions and generalized partitions as defined in § 4.1. We also

describe a filtration on U and present a few straightening lemmas in U , which will be

useful in the later discourse, with respect to this filtration.

In § 4.3, we describe two filtrations on V and investigate the structure of V in terms

of the actions of the standard monomials (as described in § 4.2) on v0 with respect to

these filtrations. We give a spanning set for V , whose elements are parametrized by

certain partitions, and show that a subset of this spanning set, parametrized by a certain

restricted subset of partitions, is a basis for V . This enables us to “factor out” the factor

H(q) in the graded dimension formula (3.2.15) and only use the second factor FΛ(q)

when comparing our spanning sets for “tightness” against the corresponding graded



37

dimension.

In § 4.4, we describe a number of substantial tools and techniques that we use

repeatedly in the later discourse. These tools and techniques are used to process various

relations among the elements of the spanning sets (presented in § 4.3) and eliminate the

extraneous elements thereof.

4.1 Tuples and Partitions

In this section, we set up the notations and definitions related to tuples, partitions and

generalized partitions, and present a few related results which will be used later in this

dissertation.

Notation 4.1.1. We denote the set of all tuples of integers by

Z∗ =
{
µ = (m1, . . . ,ms)

∣∣∣ s ∈ Z≥0, m1, . . . ,ms ∈ Z
}
.

Similarly, N∗ denotes the set of all tuples of positive integers.

Notation 4.1.2. Let µ = (m1, . . . ,ms) ∈ Zs be any tuple of integers. We define the

length and the size of µ by

l(µ) = s, (4.1.1)

|µ| =
s∑
i=1

mi, (4.1.2)

respectively. For 1 ≤ i ≤ s, we refer to mi as a part of µ.

Notation 4.1.3. Let µ = (m1, . . . ,ms) ∈ Zs and σ ∈ Sym(s) be a permutation of

{1, . . . , s}. Then define σ(µ) by

σ(µ) = (mσ(1), . . . ,mσ(s)).

Notation 4.1.4. For µ ∈ Z∗, we denote µ̄ as the rearrangement of µ in non-increasing

order, i.e., µ̄ = (m′1, . . . ,m′s) = σ(µ) for some permutation σ of {1, . . . , s}, such that

m′1 ≥ · · · ≥ m′s.
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Definition 4.1.5. Define an equivalence relation (∼) on Z∗ by

µ1 ∼ µ2 if l(µ1) = l(µ2) and µ2 = σ(µ1) for some σ ∈ Sym(l(µ1)),

for µ1, µ2 ∈ Z∗.

Definition 4.1.6 ((Generalized) Partition). A partition of a nonnegative integer n into

positive parts is an equivalence class in N∗ under ∼, such that |µ| = n for any µ in that

equivalence class.

Similarly, a generalized partition of an integer n is an equivalence class in Z∗, such

that |µ| = n for any µ in that equivalence class.

Thus, every (generalized) partition can be uniquely represented by a tuple arranged in

non-increasing order. We will henceforth identify a partition (or a generalized partition)

with a tuple of positive integers (or any integers) arranged in non-increasing order.

Remark. Notice that, for example, (2), (2, 0), (2, 0, 0), etc. are all considered different

generalized partitions.

Notation 4.1.7. We denote the set of all partitions by

P =
{

(m1, . . . ,ms)
∣∣∣ s ∈ Z≥0, mi ∈ N for all 1 ≤ i ≤ s, m1 ≥ · · · ≥ ms

}
. (4.1.3)

Similarly, the set of all generalized partitions is denoted by

Q =
{

(m1, . . . ,ms)
∣∣∣ s ∈ Z≥0, mi ∈ Z for all 1 ≤ i ≤ s, m1 ≥ · · · ≥ ms

}
. (4.1.4)

We will also need the following subset of P later:

O =
{

(m1, . . . ,ms) ∈P
∣∣∣ m1, . . . ,ms ≡ ±1 (mod 6) for all 1 ≤ i ≤ s

}
(4.1.5)

Notation 4.1.8. Let X be any subset of Q (e.g., P,Q, or O). We will use the

following notations (unless otherwise mentioned):

Xs =
{
µ ∈X

∣∣∣ l(µ) = s
}
, (4.1.6)

X (n) =
{
µ ∈X

∣∣∣ |µ| = n
}
, (4.1.7)

X (n, s) = Xs(n) = X (n) ∩Xs. (4.1.8)
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It will be sometimes useful to describe the partitions using “difference conditions.”

Definition 4.1.9 (Difference condition). We say that a partition µ = (m1, . . . ,ms) ∈P

satisfies the difference condition

∆ = [d1, . . . , ds−1],

if mi −mi+1 = di, for 1 ≤ i ≤ s− 1.

We may add a “±” sign at the end of d1 to denote if the first part is required to

be even/odd. For example, [3−, 3, 0] denotes the partitions satisfying the difference

condition [3, 3, 0] and having an odd entry as the first part. Therefore, the partitions

(9, 6, 3, 3), (11, 8, 5, 5), . . . , etc. satisfy [3−, 3, 0], but the partition (8, 5, 2, 2) does not.

Also, we may add a “∗” as a superscript to an entry, say di, in the difference condition

to denote zero or more occurrence of that entry. For example, [3, 2∗, 3, 0] denotes the

difference conditions where 2∗ can be expanded to an arbitrary (including zero) number

of 2’s. Examples of partitions satisfying [3, 2∗, 3, 0] include (9, 6, 3, 3), (11, 8, 6, 3, 3),

(13, 8, 6, 3, 3), . . . , etc..

We now define a few operations on Z∗.

Definition 4.1.10 (Scaling). For µ = (m1, . . . ,ms) ∈ Zs and n ∈ Z define the scaling

of µ by n as

nµ = (nµ1, . . . , nµs). (4.1.9)

Definition 4.1.11 (Concatenation). For µ1 = (m1, . . . ,mr) ∈ Zr and µ2 = (n1, . . . , ns)

∈ Zs, define the concatenation of µ1 with µ2 as

µ1 · µ2 = µ1µ2 = (m1, . . . ,mr, n1, . . . , ns) ∈ Zr+s. (4.1.10)

Definition 4.1.12 (Translation). For (m1, . . . ,ms) ∈ Zs and n ∈ Z, define the transla-

tion of µ by n (we will typeset n as boldface n for clarity) as

µ+ n = (m1 + n, . . . ,ms + n). (4.1.11)

Definition 4.1.13 (Composition). For µ1, µ2 ∈ Z∗, define the composition of µ1 with

µ2 as

µ1 ◦ µ2 = µ1µ2 ∈ Q (4.1.12)
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Definition 4.1.14 (Sub-partition). We say µ ∈ Z∗ is a sub-tuple of µ′ ∈ Z∗, denoted

µ |= µ′, if each part of µ appears in µ′ with more or equal number of times than it

appears in µ.

We say µ is a strict sub-tuple of µ′, denoted µ ` µ′, if µ |= µ′ and µ 6= µ′.

If both µ, µ′ ∈ Q and µ |= µ′ (respectively, µ ` µ′), we say that µ is a generalized

sub-partition (respectively, strict generalized sub-partition) of µ′.

Similarly, if both µ, µ′ ∈ P and µ |= µ′ (respectively, µ ` µ′), we say that µ is a

sub-partition (respectively, strict sub-partition) of µ′.

Remark. We will use the same symbols (“|=” or “ `”) to denote both (strict) sub-tuple,

generalized sub-partition or sub-partition—the only difference is in where µ, µ′ belong.

Definition 4.1.15 (Prefix). We say that µ ∈ Zr is a prefix of µ′ ∈ Zs, if r ≤ s and

µ′ = µµ1 for some µ1 ∈ Zs−r. We say that µ is strictly a prefix of µ′, if it is a prefix

and µ 6= µ′.

Definition 4.1.16 (Suffix). Similarly, we say that µ ∈ Zr is a suffix of µ′ ∈ Zs, if r ≤ s

and µ′ = µ1µ for some µ1 ∈ Zs−r. µ is strictly a suffix of µ′, if it is a prefix and µ 6= µ′.

Notation 4.1.17 (Lexicographic ordering). For µ = (m1, . . . ,mr) ∈ Zr and µ′ =

(n1, . . . , ns) ∈ Zs, we say that µ is lexicographically smaller than µ′ (denoted by µ ≺ µ′)

if either of the following holds:

(i) µ is strictly a prefix of µ′, or

(ii) there is an 1 ≤ i ≤ min(r, s) such that m1 = n1, . . . , mi−1 = ni−1 and mi < ni.

We use the following definition from [Cap88, Cap92, Cap93] to introduce a well-order

on P.

Definition 4.1.18 (Ordering on Z∗). For µ, µ′ ∈ Z∗, we say that µ is smaller than µ′

(denoted µ < µ′), if one of the following holds:

(i) l(µ) > l(µ′),

(ii) l(µ) = l(µ′) and |µ| > |µ′|,

(iii) l(µ) = l(µ′), |µ| = |µ′| and µ ≺ µ′.
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Remark. The restriction of the relation (<) on P is a (reverse) well-order, in the sense

that every nonempty subset of P has a largest element. The empty partition ∅ is the

largest element in P. Therefore, one can use induction on P. However, this is not a

well-order on Q.

Notation 4.1.19. Let µ(s)
i (n) denote the i-th smallest partition in Ps(n) with respect

to “<”.

Definition 4.1.20 (A partial order on Zs). Let µ = (m1, . . . ,ms), µ′ = (m′1, . . . ,m′s) ∈

Zs. We will write µ� µ′, if mi ≤ m′i for all 1 ≤ i ≤ s. We will write µ� µ′, if µ� µ′

and µ 6= µ′.

Remark. Notice that, on Zs, µ� µ′ implies that µ ≺ µ′.

The following results about tuples and partitions will be used later to straighten out

an out-of-order monomial in terms of the standard monomials defined in § 4.2.

Lemma 4.1.21. For ν ∈ Zs, ν � ν.

Proof. Let ν = (n1, . . . , ns) and ν = (n′1, . . . , n′s). If ν = ν then there is nothing to

prove. Assume that ν 6= ν. Let k be the first index where they differ. Then we must

have nk < n′k (otherwise, it won’t be out of place). Thus the result follows.

Lemma 4.1.22. Let µ ∈ Qs and ν ∈ Zs. If µ ≺ ν, then µ ≺ ν.

Proof. We have µ ≺ ν � ν (by Lemma 4.1.21).

Lemma 4.1.23. Let µ ∈ Qs and ν ∈ Zs. If µ� ν, then µ � ν.

Proof. Let µ = (m1, . . . ,ms), ν = (n1, . . . , ns) and ν = (n′1, . . . , n′s).

By the hypothesis, we have m1 ≥ · · · ≥ ms, and mi ≥ ni for all i ≤ s with at least

one strict inequality. Let k be the first index where µ and ν differ. Therefore, mi = ni

for all i < k and mk > nk. If ν = ν, then we have the desired result.

Therefore, assume that ν 6= ν. Then we have n′i = ni for all i < k, since ni ≥ nj for

all i < k and j ≥ k (ni = mi ≥ mk > nk, and ni = mi ≥ mj ≥ nj). This shows that

k < s, since otherwise ν is already in non-increasing order (i.e., ν = ν).
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The above computation also shows that if nk is out of place, then it must be

exchanged with an element of ν occurring further to the right, i.e., n′k = nl > nk for

some l > k. However, if nk is not out of place, i.e., if n′k = nk, then we have the desired

result, µ � ν.

Therefore, we assume that nk is out of place, i.e., n′k = nl > nk for some l > k. Let ν ′

be the sequence obtained from ν by exchanging the k-th and the l-elements. Obviously,

ν ′ = ν, and ν ′ also satisfies the original hypothesis that µ� ν ′, since mk ≥ ml ≥ nl and

ml ≥ nl > nk.

If mk > nl = n′k then we have the result. If mk = nl = n′k, then we repeat this

argument using ν ′ in place of ν. Note that the first place where µ and ν ′ differs is now

after (greater than) k.

Thus, by finitely many application of the above argument, we arrive at the desired

conclusion.

Lemma 4.1.24. Let µ ∈ Q and ν ∈ Z∗. If µ < ν, then µ < ν.

Proof. Notice that l(ν) = l(ν) and |ν| = |ν|. Therefore, if µ < ν holds because of either

l(µ) > l(ν), or l(µ) = l(ν) and |µ| > |ν|, then µ < ν.

Therefore, assume that l(µ) = l(ν), |µ| = |ν| and µ ≺ ν. Then the result follows

from Lemma 4.1.22.

4.2 Standard Monomials

In this section, we present a standard monomial basis for the universal enveloping

algebra U = U(g̃), parametrized by certain partitions and generalized partitions. We

also present a few straightening lemmas that will be useful later. First, we need to

define the following elements in U .

Fix any α ∈ L2. Let X(n) = X(α;n) (see Notation 2.2.5) and E(n) = Eα(n) (see

Notation 2.2.2) for all n ∈ Z.

Notation 4.2.1. For µ = (m1, . . . ,ms) ∈ Zs, we define the elements α(µ), E(µ), X(µ) ∈
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U(g̃) by

α(µ) = α(m1) . . . α(ms), (4.2.1)

E(µ) = E(m1) . . . E(ms), (4.2.2)

X(µ) = X(m1) . . . X(ms), (4.2.3)

respectively.

Remark. Notice that α(µ) = 0, unless each part mi ≡ ±1(mod 6). Also note that each

of these elements, unless zero, has degree |µ|/6.

We have seen from Proposition 2.3.1 that the set{
α(n)

∣∣∣ n ∈ Z, n ≡ ±1 (mod 6)
}⋃{

X(n)
∣∣∣ n ∈ Z

}⋃
{c, d} (4.2.4)

spans g̃. By PBW Theorem, the universal enveloping algebra U = U(g̃) is the span of

the monomials in these generators.

For convenience, we recall all the commutators (Lie brackets) of the generators in

(4.2.4) in one place.

Proposition 4.2.2. We have the following commutations in g̃:

(i) c is central.

(ii) For n ∈ Z, [d, α(n)] = n
6α(n) and [d,X(n)] = n

6X(n).

(iii) For m,n ∈ Z with m,n ≡ ±1(mod 6), [α(m), α(n)] = m
6 δm+n,0 c.

(iv) For m,n ∈ Z with m ≡ ±1(mod 6), [α(m), X(n)] = X(m+ n).

(v) For m,n ∈ Z,

[X(m), X(n)] = ω2

6
(
ωn−m − ωm−n

)
X(m+ n)

− ω

6 (−1)mα(m+ n)

+ δm+n,0
ω

36(−1)mmc.

(4.2.5)

The coefficient to X(m+ n) simplifies to

ω2

6
(
ωn−m − ωm−n

)
=



0 if n−m ≡ 0, 3 (mod 6),

−ω0
√

3
6 if n−m ≡ 1, 2 (mod 6),

ω0
√

3
6 if n−m ≡ 4, 5 (mod 6).

, (4.2.6)
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where ω = eπi/3 and ω0 = eπi/6.

Proof. The first two brackets follow from the definition. For the last three see Proposi-

tion 2.2.13.

Using these commutators (Lie brackets) of the generators, any monomial (in the

generators (4.2.4)) can be “straightened out” so as to express it as a linear combination

of monomials of the form:

α(−λ)X(−µ)α(λ′)cmdn, (4.2.7)

where λ, λ′ ∈ O, µ ∈ Q and m,n ∈ Z≥0. These monomials are called the standard

monomials. And the set of standard monomials form a basis for U(g), called the

standard monomial basis. Notice that α(−λ) ∈ U(s−) and α(λ′) ∈ U(s+). We will

refer to elements of s−U(s−) (respectively, s+U(s+)) as negative (respectively, positive)

Heisenberg elements.

We will use the following filtration on U (see [LW84]) to simplify the calculations in

the straightening lemmas to be described later.

Definition 4.2.3 (s-filtration on U). For j ∈ Z, set

U (j) = 0 if j < 0,

U (0) = U(s),

and for j > 0,

U (j) = Span
{
x1 · · ·xn ∈ U

∣∣∣ xi ∈ g̃, at most j of the elements xr lie outside s
}
,

where s is the Heisenberg subalgebra as defined in (2.2.7a).

We clearly have

0 = U (−1) ⊂ U (0) ⊂ U (1) ⊂ · · · ⊂ U (4.2.9)

and

U =
⋃
j≥0
U (j). (4.2.10)

Remark. If we express an x ∈ U (s), s > 0, as a linear combination of the standard

monomials (4.2.7), then the number of X(•)s appearing in each term can be at most s.
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Now we present a few straightening lemmas in U = U(g̃).

Lemma 4.2.4 (Straightening out X(•)s). Let µ ∈ Zs, and σ ∈ Sym(k) be a permutation

of the indices {1, . . . , s}. Then in U(g̃), we have

X(−µ)−X(−σµ) ∈ U (s−1). (4.2.11)

In particular,

X(−µ) ≡ X(−µ̄) mod U (s−1). (4.2.12)

Proof. The result follows easily by multiple applications of Proposition 4.2.2(v).

The following is a general fact which will be used on U .

Lemma 4.2.5. Let A be any associative algebra. Let y, x1, . . . , xs ∈ A. Then

[y, x1 · · ·xs] =
s∑
i=1

x1 · · ·xi−1[y, xi]xi+1 · · ·xs. (4.2.13)

Proof. The result follows from the fact that bracketing by y is a derivation.

The following lemmas shows how to straighten out an out-of-order monomial involving

Heisenberg elements.

Lemma 4.2.6 (Moving α(±n)). Let n ∈ N with n ≡ ±1(mod 6) and µ ∈ Q. If

µ = (m1, . . . ,ms), define µ(i−) = (m1, . . . ,mi−1) and µ(i+) = (mi+1, . . . ,ms) (by

convention, µ(1−) = µ(s+) = ∅). Then, we have

X(−µ)α(−n) = α(−n)X(−µ)−
l(µ)∑
i=1

X(−µ(i−))X(−(mi + n))X(−µ(i+)), (4.2.14)

and

α(n)X(−µ) = X(−µ)α(n) +
l(µ)∑
i=1

X(−µ(i−))X(−(mi − n))X(−µ(i+)). (4.2.15)

Proof. The result follows from Lemma 4.2.5 and Proposition 4.2.2(iv).

Remark. (i) When we move a single negative Heisenberg generator α(−n) to the left

past X(−µ), we get a bunch of terms, for each of which exactly one part mi, 1 ≤ i ≤ l(µ),

of µ gets increased by n. Thus, the resulting µ′s that appear in the sum of the RHS of

(4.2.14) (note that µ′ could be out of order and not in Q) satisfy the following properties:

µ′ � µ, µ′ � µ, µ′ � µ (by Lemma 4.1.22).
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(ii) When we move a single positive Heisenberg generator α(n) to the right past

X(−µ), we get a bunch of terms, for each of which exactly one part mi, 1 ≤ i ≤ l(µ), of

µ gets decreased by n. Thus, the resulting µ′s that appear in the sum of the RHS of

(4.2.15) (note that µ′ could be out of order and not in Q) satisfy the following properties:

µ′ � µ, µ′ ≺ µ, µ′ ≺ µ (by Lemma 4.1.23).

Lemma 4.2.7 (Moving α(−λ)). Let λ ∈ O with |λ| > 0 and µ ∈ Qs(n). Then the

monomial X(−µ)α(−λ) can be straightened out in the form:

X(−µ)α(−λ) =
∑

λ′∈O, λ′|=λ
µ′∈Zs µ′�µ

|µ′|=|µ|+|λ|−|λ′|

aλ′,µ′ α(−λ′)X(−µ′) (4.2.16)

≡
∑

µ′′∈Qs
µ′′�µ

|µ′′|=|µ|+|λ|

b∅,µ′′X(−µ′′) +
∑
λ′∈O,

λ′|=λ, λ′ 6=∅
µ′′∈Qs, µ

′′�µ
|µ′′|=|µ|+|λ|−|λ′|

bλ′,µ′′α(−λ′)X(−µ′′) mod U (s−1), (4.2.17)

where aλ′,µ′ and bλ′,µ′′ are constants with aλ,µ = bλ,µ = 1. Furthermore, the second

equation (4.2.17) is obtained from the first (4.2.16) by rearranging out of order X(−µ′)s

into X(−µ′′)s using Lemma 4.2.4, and we may take

bλ′,µ′′ =
∑

aλ′,µ′ , (4.2.18)

where the sum is taken over all µ′ appearing in the sum of (4.2.16) such that µ′ = µ′′.

The sums in (4.2.16) and (4.2.17) are finite.

Proof. The first equation (4.2.16) follows easily from Lemma 4.2.6(4.2.14) by induction

on l(λ). Notice that the µ′ that appear as a result of repeated application of (4.2.14),

are gotten from µ by increasing various of its parts by various combinations of parts of

λ.

We obtain the second equation (4.2.17) from the first (4.2.16) by straightening out

each out-of-order X(−µ′) occurring in the RHS of (4.2.16) into X(−µ′′) (i.e., by taking

µ′′ = µ′) using Lemma 4.2.4. Notice that by Lemma 4.1.22, all µ′′s that arise this way

are lexicographically bigger than µ, except when µ′′ = µ′ = µ. Also notice that we have

broken up the terms in (4.2.17) into two sums depending on whether they contain any

negative Heisenberg element or not.



47

The rest of the assertion are obvious.

Lemma 4.2.8 (Moving α(λ)). Let λ ∈ O with |λ| > 0 and µ ∈ Qs(n). Then the

monomial α(λ)X(−µ) can be straightened out in the form:

α(λ)X(−µ) =
∑

λ′∈O, λ′|=λ
µ′∈Zs µ′�µ

|µ′|=|µ|−|λ|+|λ′|

aλ′,µ′ X(−µ′)α(λ′) (4.2.19)

≡
∑

µ′′∈Qs
µ′′≺µ

|µ′′|=|µ|−|λ|

b∅,µ′′X(−µ′′) +
∑
λ′∈O,

λ′|=λ, λ′ 6=∅
µ′′∈Qs, µ

′′�µ
|µ′′|=|µ|−|λ|+|λ′|

bλ′,µ′′X(−µ′′)α(λ′) mod U (s−1), (4.2.20)

where aλ′,µ′ and bλ′,µ′′ are constants with aλ,µ = bλ,µ = 1. Furthermore, the second

equation (4.2.20) is obtained from the first (4.2.19) by rearranging out of order X(−µ′)s

into X(−µ′′)s using Lemma 4.2.4, and we may take

bλ′,µ′′ =
∑

aλ′,µ′ , (4.2.21)

where the sum is taken over all µ′ appearing in the sum of (4.2.19) such that µ′ = µ′′.

The sums in (4.2.19) and (4.2.20) are finite.

Proof. The first equation (4.2.19) follows easily from Lemma 4.2.6(4.2.15) by induction

on l(λ). Notice that the µ′ that appear as a result of repeated application of (4.2.15),

are gotten from µ by decreasing various of its parts by various combinations of parts of

λ.

We obtain the second equation (4.2.20) from the first (4.2.19) by straightening out

each out-of-order X(−µ′) occurring in the RHS of (4.2.19) into X(−µ′′) (i.e., by taking

µ′′ = µ′) using Lemma 4.2.4. Notice that by Lemma 4.1.23, all µ′′s that arise this way

are lexicographically smaller than µ, except when µ′′ = µ′ = µ. Also notice that we

have broken up the terms in (4.2.20) into two sums depending on whether they contain

any positive Heisenberg element or not.

The rest of the assertion are obvious.
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4.3 Structure of the Standard Modules

In this section, we will analyze the structure of V in terms of the vertex operators

(or the standard monomials described in § 4.2) acting on the highest weight vector v0.

We present a spanning set parametrized by the partitions in O and P. We define a

P-filtration on V based on the well-order “>” on P, and an s-filtration on V based on

the s-filtration on U . We also show the existence of a basis parametrized by partitions

in O and irreducible partitions in P. This enables us to use only the second factor

FΛ(q) in the graded dimension formula (3.2.15) when comparing our spanning sets for

“tightness.” We also present a few results related to the action of various elements of U

on V with respect the filtrations defined on V .

Recall that n+.v0 = 0 and h̃0v0 ∈ Cv0 (See § 3.1).

Definition 4.3.1 (s-filtration on V ). For s ∈ Z≥0, define

V (s) = U (s)v0 (4.3.1)

Clearly, V (r) ⊂ V (s) if r ≤ s, and V =
⋃∞
s=0 V

(s).

Lemma 4.3.2. Let λ ∈ O and µ ∈ Qs.

(i) If λ 6= ∅ then α(λ)v0 = 0.

(ii) If µ contains a negative term then X(−µ)v0 = 0.

(iii) If µ contains 0 as a part then X(−µ)v0 ∈ V (s−1).

Proof. (i) If λ ∈ O with λ 6= ∅, then we have α(λ) ∈ n+U(n+).

(ii) Let µ = (m1, . . . ,ms) ∈ Q with at least one negative part. Since µ is arranged

in non-increasing order, therefore ms < 0. Therefore, X(−ms) ∈ n+U(n+).

(iii) Let µ = (m1, . . . ,ms) ∈ Q. Then ms ≤ 0 (since µ contains 0). If ms < 0 then

X(−µ)v0 = 0. If ms = 0, then X(−ms) = X(0), and X(0)v0 ∈ Cv0.

Proposition 4.3.3. The set

{
α(−λ)X(−µ)v0

∣∣∣ λ ∈ O, µ ∈P
}

(4.3.2)

is a spanning set for V .
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Proof. Since v0 generates V as a U(g̃)-module, therefore V = U(g̃)v0. The result follows

from Lemma 4.3.2 and the fact that the standard monomials (4.2.7) form a basis for

U(g̃). Notice that c acts as a scalar multiplication on V and dv0 = 0.

Lemma 4.3.4. V (s) = Span
{
α(−λ)X(−µ)v0

∣∣ λ ∈ O, µ ∈P, l(µ) ≤ s
}
.

Proof. The assertion follows immediately from the definition of V (s) (Definition 4.3.1),

and Proposition 4.3.3.

Definition 4.3.5 (Filtration on V by P). For µ ∈P, set

V(µ) =


0 if µ = ∅,∑
µ′>µ

U(s−)X(−µ′)v0 otherwise.
(4.3.3)

Then we clearly have V(µ) ⊂ V(µ′) if µ ≥ µ′, and

V =
⋃
µ∈P

V(µ). (4.3.4)

For brevity we will use the following terminologies.

Definition 4.3.6 (Reducible). A partition µ ∈ P, or the vector X(−µ)v0 is called

reducible if X(−µ)v0 ∈ V(µ). More generally, we say that µ is reducible by partitions

greater than µ0 ∈P, if X(−µ)v0 ∈ V(µ0). We say that a partition is µ is irreducible if µ

is not reducible, i.e., X(−µ)v0 6∈ V(µ).

Notation 4.3.7. Denote by

RΛ =
{
µ ∈P

∣∣∣ X(−µ)v0 ∈ V(µ)
}
, (4.3.5)

the set of all reducible partitions, and

A Λ = P \RΛ, (4.3.6)

the set of all irreducible partitions.

Definition 4.3.8 (Forbidden). A partition µ ∈P is called forbidden, if any partition

having µ as a sub-partition is reducible, i.e., X(−µµ∗)v0 ∈ V(µµ∗), for all µ∗ ∈P.
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Remark. We will reduce the spanning set (4.3.2) further based on the structure of V .

Later in this section we will show that for µ ∈P, if µ is reducible then the elements

α(−λ)X(−µ)v0 can be removed from the spanning set (4.3.2) for all λ ∈ O. We will

also show that if we remove all such vectors from the spanning set, then the resulting

subset is a basis.

Lemma 4.3.9. If µ ∈P, then V (r) ⊂ V(µ) for all r < l(µ).

Proof. We have

U (r)v0 =
∑
µ′∈P
l(µ′)≤r
λ∈O

Cα(−λ)X(−µ′)v0.

Each µ′ in the above sum is larger than µ (since, l(µ′) ≤ r < l(µ)). Thus the result

follows.

The following proposition plays a very important role in the exposition later (cf.

[Cap88, Cap92, MP87]).

Proposition 4.3.10. Let µ ∈ Q and µ′ ∈ Z∗. If µ < µ′ then X(−µ′)v0 ∈ V(µ).

Proof. Let s = l(µ′) ≤ l(µ) (since µ′ > µ). If µ′ ∈ Q \P, then by Lemma 4.3.2 and

Lemma 4.3.9,

X(−µ′)v0 ∈ V (s−1) ⊂ V(µ).

Assume that µ′ ∈P. By Lemma 4.1.24, µ < µ′. Therefore,

X(−µ′)v0 ∈ V(µ).

By Lemma 4.2.4,

X(−µ′)v0 ≡ X(−µ′)v0 mod V (s−1).

Using Lemma 4.3.9 and the fact that s ≤ l(µ), we have V (s−1) ⊂ V(µ). Therefore, we

have X(−µ′)v0 ∈ V(µ).

We will now proceed to show that all elements of the form α(−λ)X(−µ)v0, where

λ ∈ O and µ ∈ P is reducible (i.e., µ ∈ RΛ) can be removed from the spanning set

(4.3.2). In fact, we will show that the resulting set (as described below) is a basis.
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Notation 4.3.11. Recall Notation 4.3.7. We define

BΛ =
{
α(−λ)X(−µ)v0

∣∣∣ λ ∈ O, µ ∈ AΛ
}
. (4.3.7)

But, first, we need a few auxiliary lemmas.

Proposition 4.3.12. The action of the Heisenberg subalgebra preserves the P-filtration

on V , i.e.,

U(s)V(µ) ⊂ V(µ), (4.3.8)

for any µ ∈P. Furthermore, for any µ ∈P,

s+X(−µ)v0 ∈ V(µ). (4.3.9)

Proof. We first show the second assertion (4.3.9). Take any n > 0. It is enough to show

that α(n)X(−µ)v0 ∈ V(µ). Using Lemma 4.2.6 (4.2.15), α(n)X(−µ)v0 can be written as

a finite sum of vectors of the form X(−µ′)v0, where µ′� µ. If µ′ contains a non-positive

entry then, by Lemma 4.3.2, X(−µ′)v0 ∈ V (s−1), where s = l(µ). Otherwise, µ′ ∈P,

l(µ′) = l(µ), |µ′| < |µ| and therefore, µ′ > µ. In both cases, X(−µ′)v0 ∈ V(µ) (using

Lemma 4.3.9 in the first case, and Lemma 4.1.24 in the second). This proves the result.

Now we will prove the first assertion (4.3.8). Clearly, U(s−)V(µ) ⊂ V(µ), by the

definition of V(µ) (Definition 4.3.5). Take any n > 0, λ ∈ O and µ′ ∈P with µ′ > µ. It

is enough to show that α(n)α(−λ)X(−µ′)v0 ∈ V(µ).

Let m be the number of times n appears as a part in the partition λ. Then, using

the bracket formula Proposition 4.2.2 (iii), we have

[α(n), α(−λ)] = mn

6 cα(−λ′), (4.3.10)

where λ′ is the partition obtained from λ by deleting one occurrence of the part n, and

c is the central element in s acting on V as the scalar Λ(c)

Therefore,

α(n)α(−λ)X(−µ′)v0 = α(−λ)α(n)X(−µ′)v0 + mn

6 cα(−λ′)X(−µ′)v0. (4.3.11)

The second term α(−λ′)X(−µ′) ∈ V(µ), since µ′ > µ. For the first term, notice that

α(n)X(−µ′)v0 ∈ V(µ′) ⊂ V(µ) by (4.3.9), and therefore, α(−λ)α(n)X(−µ′)v0 ∈ V(µ).

This completes the proof.
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We will need the following elementary lemma.

Lemma 4.3.13. Let λ1 6= λ2 be two distinct partitions of a positive integer n. Then

there exists a part which occurs in λ1 more often than it occurs in λ2.

Proof. Let mi(j) denote the number of times j occurs as a part in the partition λi,

i = 1, 2; 1 ≤ j ≤ n. (Take mi(j) = 0 if j does not appear as a part in λi). Then, we

have

n =
n∑
j=1

m1(j)j =
n∑
j=1

m2(j)j. (4.3.12)

Assume, to the contrary, that m1(j) ≤ m2(j), for all 1 ≤ j ≤ n. By (4.3.12), we must

have m1(j) = m2(j) for all j. This contradicts our assumption that λ1 6= λ2.

Lemma 4.3.14. Let λ ∈ O.

(1) α(λ)α(−λ)X(−µ)v0 ≡ CX(−µ)v0 mod V(µ), for some constant C 6= 0.

(2) If λ0 6= λ with |λ0| = |λ|, then α(λ0)α(−λ)X(−µ)v0 ∈ V(µ),

Proof. (1) We prove this by induction on l(λ). If λ = ∅, then the statement is

vacuously true with C = 1.

Assume that l(λ) > 0. Let n1, n2, . . . , ns be the parts appearing in λ with multiplici-

ties k1, . . . , ks > 0. If s > 1, then we have

α(λ)α(−λ)X(−µ)v0 = α(n1)k1α(−n1)k1 · · ·α(ns)ksα(−ns)ksX(−µ)v0

≡ CX(−µ)v0 mod V(µ)

(4.3.13)

for some C 6= 0, by repeated application of the induction hypothesis.

Therefore, we may assume that λ = (n, . . . , n), with n appearing k times. Let λ′ be

the partition with only part n appearing k − 1 times. We have

α(λ)α(−λ)X(−µ)v0 = α(λ′)α(n)α(−λ)X(−µ)v0 (4.3.14)

= α(λ′)α(−λ)α(n)X(−µ)v0 + kn

6 cα(λ′)α(−λ′)X(−µ)v0

≡ 0 + CX(−µ)v0 mod V(µ),

for some C 6= 0, using (4.3.11), (4.3.9) and the induction hypothesis.
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(2) Let n be a part in λ0 which appears k0 times in λ0, and k times in λ (k may

be 0), such that k0 > k. Such a part exists by Lemma 4.3.13. Let λ′0 be the partition

obtained from λ0 by deleting all occurrences of n. Similarly, let λ′ be the partition

obtained from λ by deleting all occurrences of n, if any. Now,

α(λ0)α(−λ)X(−µ)v0 = α(λ′0)α(−λ′)α(n)k0−kα(n)kα(−n)kX(−µ)v0 (4.3.15)

Using part (1), α(n)kα(−n)kX(−µ)v0 ≡ CX(−µ)v0 mod V(µ) for some C 6= 0. Using

(4.3.9),

α(n)k0−kα(n)kα(−n)kX(−µ)v0 ≡ Cα(n)k0−kX(−µ)v0

≡ 0 mod V(µ). (4.3.16)

Applying Proposition 4.3.12 (4.3.8), we obtain

α(λ0)α(−λ)X(−µ)v0 ∈ V(µ). (4.3.17)

Recall Notation 4.3.7 and Notation 4.3.11.

Proposition 4.3.15. The set

BΛ =
{
α(−λ)X(−µ)v0

∣∣∣ λ ∈ O, µ ∈ A Λ
}
.

is a basis for V = L(Λ)

Proof of Proposition 4.3.15. Let S be the spanning set of V as given in (4.3.2),

S =
{
α(−λ)X(−µ)v0

∣∣∣ λ ∈ O, µ ∈P
}
. (4.3.18)

First, we show the linear independence of BΛ. If BΛ is not linearly independent then

there exists a relation of vectors in BΛ. Because V is graded, we may assume that all

vectors appearing in this relation are homogeneous of degree −n/6, for some n > 0. We

write this relation as ∑
λ∈O,µ∈A Λ

|λ|+|µ|=n

cλ,µα(−λ)X(−µ)v0 = 0, (4.3.19)
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where cλ,µ are constants. Let µ0 be the least partition in A Λ that appears in the above

relation with nonzero coefficient. Clearly, µ0 6= ∅, since the set
{
α(−λ)v0

∣∣ λ ∈ O
}
is

linearly independent. Let n0 = |µ0| > 0. Let

Oµ0 =
{
λ ∈ O

∣∣∣ cλ,µ0
6= 0

}
⊂ O(n− n0). (4.3.20)

Then (4.3.19) can be expressed as

∑
λ∈Oµ0

cλα(−λ)X(−µ0)v0 ≡ 0 mod V(µ0), (4.3.21)

where cλ = cλ,µ0
6= 0. If Oµ0 = {∅}, then (4.3.21) reduces to c∅X(−µ0)v0 ≡ 0

mod V(µ0). Therefore X(−µ0)v0 ∈ V(µ0), contradicting our assumption that µ0 ∈ A Λ.

Therefore, assume that n− n0 > 0.

Choose λ0 ∈ Oµ0 arbitrarily. We multiply α(λ0) to the left of (4.3.21). Using

Lemma 4.3.14, we have

∑
λ∈Oµ0

cλα(λ0)α(−λ)X(−µ0)v0 ≡ cλ0
CX(−µ0)v0 mod V(µ0), (4.3.22)

for some C 6= 0. Thus we arrive at a contradiction that X(−µ0)v0 ∈ V(µ0) (or, equiva-

lently, µ0 ∈ RΛ). This completes the proof of linear independence of BΛ.

Now it remains to prove that BΛ is a spanning set. This is obvious since, we obtain

BΛ by removing elements of S using linear relations. However, we can give an alternative

proof using induction on the well-ordered set (P, >).

It is enough to show that every vector v = α(−λ)X(−µ)v0 ∈ S can be expressed as

a linear combination of vectors in BΛ, for any λ ∈ O and µ ∈P. The base case for our

induction, µ = ∅, is trivial, since α(−λ)v0 ∈ B.

Fix a µ ∈P and assume the result for µ′ > µ. If µ ∈ A Λ there is nothing to prove.

Assume that µ ∈ RΛ. But then v ∈ V(µ). Therefore, by induction hypothesis, v is in

the span of BΛ.

Assume that V = L(Λ) is a level 4 standard module with highest weight Λ, and a

highest weight vector v0. We finish this section with a few useful observations related to

the graded dimension (3.2.15) of V ,

χΛ(q) = H(q)FΛ(q). (4.3.23)
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LetχΛ(n),H(n) and FΛ(n) be the coefficient of qn inχΛ(q),H(q) and FΛ(q) respectively,

for n ≥ 0. (see Notation 3.2.4). Let BΛ(q) be the generating function counting the

number of elements in BΛ of degree −n/6,

BΛ(q) =
∑
n≥0

BΛ(n)qn. (4.3.24)

Also recall Notation 4.1.8 and Notation 4.3.7.

Lemma 4.3.16. Let n be a positive integer. Then, we have

(1) χΛ(n) = BΛ(n),

(2) FΛ(n) = |A Λ(n)|.

Proof. The first equality is obvious, since BΛ is a basis for V by Proposition 4.3.15.

For the second equality, observe that

BΛ(q) =

∑
n≥0

O(n)qn
∑

n≥0
|A Λ(n)|qn

 = H(q)
∑
n≥0
|A Λ(n)|qn (4.3.25)

Since B(q) = XΛ(q) = H(q)FΛ(q), the result follows by canceling out the common factor

H(q).

Corollary 4.3.17. Let S′Λ be a subset of the spanning set (4.3.2) of V = L(Λ), given

by

S′Λ =
{
α(−λ)X(−µ)v0

∣∣∣ λ ∈ O, µ ∈P ′
Λ

}
, (4.3.26)

where A Λ ⊂P ′
Λ ⊂P. Then, for every n ≥ 0, we have

FΛ(n) ≤
∣∣P ′

Λ(n)
∣∣ . (4.3.27)

Furthermore, if the equality holds for every n ≥ 0, then P ′
Λ = A Λ and S′Λ is a basis for

V .

Proof. This is an obvious consequence of Lemma 4.3.16 and the fact that A Λ ⊂P ′
Λ.

4.4 Tools and Techniques for Working with Relations

In this section, we describe a few tools and techniques that we will be using to discover

reducible partitions from various relations among vectors in the spanning set (4.3.2).
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These relations can be classified into two categories. The relations coming from various

generating function identities, presented in Chapter 5, are valid for all level 4 standard

modules. For each generating function, the coefficient of zn/6, n ≥ 0, gives us a family of

relations among homogeneous operators on V of degree −n/6. Applying these relations

on v0 (or, on X(−µ∗)v0), we obtain a family of relations for the vectors in the spanning

set. The reducible partitions that arise this way are, in fact, “forbidden” partitions, in

the sense that they cannot occur anywhere as a sub-partition in an irreducible partition.

There are, however, relations among the spanning set vectors that are not coming from

the operator identities. These relations are specific to a particular standard module of

level 4. We describe these relations in Chapter 7.

We will first show that any partition ending with a reducible partition is also reducible.

Then, we will investigate conditions that we need on the operator identities that give

rise to “forbidden” partitions.

Even though we will be applying the tools and techniques for the level 4 standard

modules, the arguments presented here are valid for any standard module. The compu-

tations shown here are to be thought of taking place in Ū , the image of the universal

enveloping algebra U in EndV via the representation U → EndV .

The following result shows that if µ0 ∈P is reducible, then any partition µ ∈P

ending with µ0 is also reducible.

Proposition 4.4.1. Let µ0, µ1 ∈P such that µ = µ1µ0 ∈P. If µ0 is reducible then

so is µ, i.e.,

X(−µ0)v0 ∈ V(µ0) =⇒ X(−µ)v0 ∈ V(µ). (4.4.1)

Proof. Assume that X(−µ0)v0 ∈ V(µ0). Then, we may write

X(−µ0)v0 =
∑
λ∈O

µ′∈P, µ′>µ0
|µ′|=|µ0|−|λ|

aλ,µ′ α(−λ)X(−µ′)v0,

where aλ,µ′ are constants. We apply X(−µ1) on both sides of the above equation.

Notice that, if l(µ′) < l(µ0), then clearly the term

X(−µ1)α(−λ)X(−µ′)v0 ∈ V (l(µ)−1) ⊂ V(µ).
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Therefore, assume that l(µ′) = l(µ0). We need to straighten out X(−µ1)α(−λ) using

Lemma 4.2.7. Therefore, the term X(−µ1)α(−λ)X(−µ′)v0 can be expressed as

X(−µ1)α(−λ)X(−µ′)v0 =
∑

λ′∈O,λ′|=λ
µ′′∈Qs, µ

′′�µ1
|µ′′|=|µ1|+|λ|−|λ′|

bλ′,µ′′ α(−λ′)X(−µ′′)X(−µ′)v0,

where s = l(µ1). Notice that l(µ′′µ′) = l(µ1µ0) = l(µ). If λ′ 6= ∅, then we have

|µ′′|+ |µ′| < |µ1|+ |λ|+ |µ′| = |µ1|+ |µ0| = |µ|,

and hence, µ′′µ′ > µ. If λ′ = ∅, then we have |µ′′µ′| = |µ| and µ′′µ′ � µ1µ0 = µ. Thus,

in either case µ′′µ′ > µ. By Proposition 4.3.10, the terms

α(−λ′)X(−µ′′)X(−µ′)v0 ∈ V(µ).

This completes the proof.

Remark. Notice that in the hypothesis of the above Proposition 4.4.1 we require that

µ = µ1µ0 ∈P, i.e., µ is in non-increasing order. This condition can not be relaxed by

replacing µ = µ1µ0. For example, if X(−6)v0 = α(−1)X(−5)v0, then after applying

X(−1) and rearranging we get

X(−6,−1)v0 ≡ α(−1)X(−5,−1)v0 −X(−5,−2)v0 mod V (1).

However (5, 2) 6> (6, 1).

Now, we proceed to investigate the criteria on an operator identity so that the

relation gives rise to “forbidden” partitions. We start with a few straightening lemmas.

Notation 4.4.2. Throughout this section, let T (−n) ∈ Ū (s) denote an arbitrary stan-

dard monomial of degree −n/6, i.e.,

T (−n) = α(−λ1)X(−µ)α(λ2) ∈ Ū (s) (4.4.2)

for some λ1, λ2 ∈ O and µ ∈P such that

l(µ) ≤ s, (4.4.3)

|µ|+ |λ1| − |λ2| = n. (4.4.4)



58

Notation 4.4.3. We fix µ0 ∈Ps(n) and µ∗ ∈P. Let

µ̃ = µ0µ∗, (4.4.5)

t = l(µ̃). (4.4.6)

We will now describe the action of the standard monomial T (−n) on a vector

v = X(−µ∗)v0 modulo the subspace V(µ̃). But, first, we need the following elementary

observation.

Lemma 4.4.4. Let µ1, µ2, µ∗ ∈ Q with µ1 ≺ µ2. µ1µ∗ ≺ µ2µ∗.

Proof. We can characterize the lexicographic ordering in terms of the multiplicity of

each part as follows.

Let mµ(k) denote multiplicity of k as a part in µ. Note that mµ(k) is taken to be 0

if k does not appear in µ as a part.

Then ν1 ≺ ν2 holds if and only if mν1
(k0) < mν2

(k0), where

k0 = max
{
k ∈ Z

∣∣∣ mν1
(k) 6= mν2

(k)
}
.

This is obvious, since ν1, ν2 are arranged in non-increasing order.

Now, notice that for any µ ∈ Q,

mµµ∗
(k) = mµ(k) +mµ∗

(k),

for all k. Thus, the conclusion is obvious.

Lemma 4.4.5. Recall Notation 4.4.3. Let T (−n) be as defined in Notation 4.4.2 such

that µ contains a non-positive integer as a part. Then

T (−n)X(−µ∗)v0 ∈ V (t−1) ⊂ V(µ̃). (4.4.7)

Proof. This follows immediately from Lemma 4.3.2.

Lemma 4.4.6. Recall Notation 4.4.3. Let µ ∈P such that µ > µ0. Then

X(−µ)X(−µ∗)v0 ∈ V(µ̃) (4.4.8)
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Proof. The conclusion is obvious if either l(µ) < l(µ0), or l(µ) = l(µ0) and |µ| < |µ0|.

Therefore, assume that l(µ) = l(µ0), |µ| = |µ0| and µ � µ0.

By Lemma 4.4.4, we have µµ∗ � µ0µ∗ = µ̃. Thefore, the result follows after

rearranging the X(•) operators using Lemma 4.2.4.

Lemma 4.4.7. Recall Notation 4.4.3. Let T (−n) be as defined in Notation 4.4.2, such

that λ1 6= ∅. Then

T (−n)X(−µ∗)v0 ∈ V(µ̃). (4.4.9)

Proof. If l(µ) < l(µ0), then the result is obvious. Assume that l(µ) = l(µ0) = s. We

have,

T (−n) = α(−λ1)X(−µ)α(λ2), (4.4.10)

|µ| = n− |λ1|+ |λ2| < n+ |λ2|, (4.4.11)

since |λ1| > 0 by assumption. Note that |µ0| = n by assumption in Notation 4.4.3.

The vector T (−n)X(−µ∗)v0 can be straightened out, using Lemma 4.2.8, in the

form

T (−n)X(−µ∗)v0 =
∑

µ′∈Q,µ′≺µ∗
l(µ′)=l(µ∗)
|µ′|=|µ∗|−|λ2|

b∅,µ′ α(−λ1)X(−µ)X(−µ′)v0. (4.4.12)

Notice that l(µµ′) = l(µ0µ∗) = l(µ̃) and

|µµ′| = |µ|+ |µ′| < n+ |λ2|+ |µ′| = |µ0µ∗|. (4.4.13)

Therefore µµ∗ > µ̃. The conclusion follows from Proposition 4.3.10

Lemma 4.4.8. Let T (−n) = X(−µ)α(λ2) be as defined in Notation 4.4.2 with λ1 = ∅,

λ2 6= ∅, and either l(µ) < l(µ0) = s or µ � µ0. Recall Notation 4.4.3. Then

T (−n)X(−µ∗)v0 ∈ V(µ̃). (4.4.14)

Proof. If l(µ) < l(µ0), then the result is obvious.

Assume that l(µ) = l(µ0) = s. Using Lemma 4.2.8, We can express T (−n)X(−µ∗)v0

as

T (−n)X(−µ∗)v0 =
∑

µ′∈Q,µ′≺µ∗
l(µ′)=l(µ∗)
|µ′|=|µ∗|−|λ2|

b∅,µ′X(−µ)X(−µ′)v0 (4.4.15)
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Since, µ � µ0, we have µµ′ � µ0µ∗. By Lemma 4.4.4, µµ′ � µ̃. Since, l(µµ′) = l(µ̃) and

|µµ′| = |µ̃|, therefore, µµ′ > µ̃. The result follows immediately.

Let R(−n) = 0 be a relation among homogeneous operators of degree −n/6. Assume

that R(−n) ∈ Ū (s). These relations typically come from the generating function identities

presented in Chapter 5. We will apply the relation R(−n) = 0 on a vector of the form

v = X(−µ∗)v0, where µ∗ ∈P.

In what follows we will describe the vectors R(−n)X(−µ∗)v0 modulo the subspace

V(µ̃) (Recall Notation 4.4.3). We think of µ0 as the lowest term that we want to keep

track in our calculation.

Remark. Notice that if

µ1 ≺ µ2 ≺ . . . µk

are lowest k partitions of Ps(n), then

µ1µ∗ ≺ µ2µ∗ ≺ · · · ≺ µkµ∗

have the same relative order in Ps+l(µ∗)(n+ |µ∗|) (see Lemma 4.4.4).

In general, any operator R(−n) ∈ Ū (s) can be expressed as a sum of standard

monomials classified into three categories:

(A) the terms having no Heisenberg element—terms of the form X(−µ), µ ∈ Q(n),

l(µ) ≤ s.

(B) the terms containing negative Heisenberg element(s)—terms of the form

α(−λ1)X(−µ)α(λ2), (4.4.16)

µ ∈ Q, λ1 6= ∅, λ2 ∈ O, such that |µ|+ |λ1| − |λ2| = n and l(µ) ≤ s; and

(C) the terms having no negative Heisenberg element, but having some positive

Heisenberg element(s)—terms of the form

X(−µ)α(λ2), (4.4.17)

µ ∈ Q, λ2 6= ∅ ∈ O, such that |µ| − |λ2| = n and l(µ) ≤ s.
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Notation 4.4.9. Let R(−n) ∈ Ū (s) be a homogeneous operator of degree −n/6 on V .

We will write R(−n) as

R(−n) ≡ A(−n) +B(−n) + C(−n) mod Ū (s−1), (4.4.18)

where

A(−n) =
∑

µ∈Qs(n)
aµX(−µ) (4.4.19)

is the sum of all terms of type (A) modulo Ū (s−1)

B(−n) =
∑

λ1,λ2∈O
λ1 6=∅

µ∈Qs(n−|λ1|+|λ2|)

bλ1,µ,λ2
α(−λ1)X(−µ)α(λ2) (4.4.20)

is the sum of all terms of type (B) modulo Ū (s−1), and

C(−n) =
∑

λ∈O, λ 6=∅
µ∈Qs(n+|λ|)

cµ,λX(−µ)α(λ) (4.4.21)

is the sum of all terms of type (C) modulo Ū (s−1).

Now we will analyze which terms in R(−n) are nontrivial when applied on a vector

of the form v = X(−µ∗)v0 modulo V(µ̃) (see Notation 4.4.3).

Proposition 4.4.10. Recall Notation 4.4.3 and Notation 4.4.9. We have

A(−n)X(−µ∗)v0 ≡
∑

µ∈Ps(n)
µ�µ0

aµX(−µ)X(−µ∗)v0

≡
∑

µ∈Ps(n)
µ�µ0

aµX(−µµ∗)v0 mod V(µ̃).

(4.4.22)

Proof. We apply each term in A(−n) on v = X(−µ∗)v0. The result follows from

Lemma 4.4.5, Lemma 4.4.6 and Lemma 4.2.4.

Proposition 4.4.11. Recall Notation 4.4.3 and Notation 4.4.9. We have

B(−n)X(−µ∗)v0 ∈ V(µ̃). (4.4.23)

Proof. The result follows immediately from Lemma 4.4.7.
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Proposition 4.4.12. Recall Notation 4.4.3 and Notation 4.4.9. We have

C(−n)X(−µ∗)v0 ≡
∑

λ∈O, λ 6=∅
µ∈Ps(n+λ)

µ≺µ0

cµ,λX(−µ)α(λ)X(−µ∗)v0 mod V(µ̃). (4.4.24)

Proof. The result follows immediately from Lemma 4.4.5 and Lemma 4.4.8.

Remark. We will see in Chapter 6 that to show that a partition µ0 is forbidden we will

need

C(−n)X(−µ∗)v0 ∈ V(µ̃).

In what follows, we will describe which terms in C(−n) can be ignored (or under

what conditions way may ignore C(−n) entirely), modulo V(µ̃). But, first, we need the

following notations.

Notation 4.4.13. For µ0 ∈Ps(n) and k ∈ N, let

S µ0 =
{
µ ∈P

∣∣∣ l(µ) = l(µ0), |µ| > |µ0|, µ ≺ µ0
}
,

S
µ0
k =

{
µ ∈ S µ0

∣∣∣ |µ| = |µ0|+ k
}
.

Notation 4.4.14. Let , µ∗, µ0 and µ̃ as defined before. Then define

Cµ0(−n) =
∑

λ∈O, λ 6=∅
µ∈S

µ0
|λ|

cµ,λX(−µ)α(λ),

C
µ0
k (−n) =

∑
λ∈Ok, λ 6=∅
µ∈S

µ0
k

cµ,λX(−µ)α(λ),

Below, we note a few obvious, but noteworthy facts.

(i) The set S µ0 is finite, and S
µ0
k = ∅ for k sufficiently large.

(ii) Note that Proposition 4.4.12 can be written as

C(−n)X(−µ∗)v0 ≡ Cµ0(−n)X(−µ∗)v0 mod V(µ̃).

Also note that

Cµ0(−n) =
∑
k>0

C
µ0
k (−n),

and Cµ0
k (−n) = 0 for k sufficiently large (follows from (i)).
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(iii) If S µ0 = ∅, then Cµ0(−n) = 0. In this case C(−n) can be ignored, in the sense

that C(−n)X(−µ∗)v0 ≡ 0 mod V(µ̃).

Assume that S µ0 6= ∅. Let k be the largest integer such that S
µ0
k 6= ∅. Then

S
µ0
j = ∅, for all j > k.

Lemma 4.4.15. Let k be as described above. If every µ ∈ S
µ0
k is reducible by partitions

greater than µ0, then the terms in Cµ0
k (−n) can be ignored, in the sense that

C
µ0
k (−n)X(−µ∗)v0 ≡ 0 mod V(µ̃).

Proof. Let µ ∈ S
µ0
k . Let λ ∈ O(k), such that X(−µ)α(λ) is a term in Cµ0

k (−n). Since

µ is reducible by partitions greater than µ0, we can write

X(−µ) ≡ A′ +B′ + C ′ mod U (s−1), (4.4.25)

where

A′ =
∑

µ′∈Qs(n+k)
µ′�µ0

a′µ′X(−µ′), (4.4.26)

B′ =
∑

λ′1,λ
′
2∈O

λ′1 6=∅
µ′∈Qs(n+k−|λ′1|+|λ′2|)

b′λ′1,µ′,λ′2
α(−λ′1)X(−µ′)α(λ′2), (4.4.27)

C ′ =
∑

λ′∈O, λ′ 6=∅
µ′∈Qs(n+k+|λ′|)

c′µ′,λ′X(−µ′)α(λ′) (4.4.28)

Now

X(−µ)α(λ)X(−µ∗)v0 = A′α(λ)X(−µ∗)v0

+B′α(λ)X(−µ∗)v0

+ C ′α(λ)X(−µ∗)v0.

(4.4.29)

By Proposition 4.4.12 and hypothesis, we have

A′α(λ)X(−µ∗)v0 ∈ V(µ̃),

and by Proposition 4.4.11, we have

B′α(λ)X(−µ∗)v0 ∈ V(µ̃).
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A typical term in C ′X(−µ∗)v0 is of the form

X(−µ′)α(λ′)α(λ)X(−µ∗)v0, (4.4.30)

where λ′ ∈ O(k′), k′ 6= 0, and µ′ ∈ Ps(n + k + k′). But according to our hypothesis,

S
µ0
k+k′ = ∅. Therefore, µ′ � µ0. Thus,

X(−µ′)α(λ′)α(λ)X(−µ∗)v0 ∈ V(µ̃),

by Lemma 4.4.8 as required.

We now generalize the above lemma. Recall k is the largest integer with S
µ0
k 6= ∅.

Lemma 4.4.16. Assume that S µ0 6= ∅ (Recall Notation 4.4.13). Let k ∈ N be the

largest such that S
µ0
k 6= ∅. Let 1 ≤ j ≤ k. If every µ ∈ S

µ0
i , i ≥ j, is reducible by

partitions greater than µ0, then the terms in Cµ0
j (−n) can be ignored, in the sense that

C
µ0
j (−n)X(−µ∗)v0 ≡ 0 mod V(µ̃).

Proof. We will use backward finite induction on j. We have already proved the statement

for j = k in Lemma 4.4.15. Assume j < k, and that the result is true for all k ≥ j′ > j.

The induction step is exactly the same as in the proof of Lemma 4.4.15, except for

the last step, where we use the induction hypothesis.

Let µ ∈ S
µ0
j . Let λ ∈ O(j), such that X(−µ)α(λ) is a term in Cµ0

j (−n). Since µ is

reducible by partitions greater than µ0, we can write

X(−µ) ≡ A′ +B′ + C ′ mod U (s−1), (4.4.31)

where

A′ =
∑

µ′∈Qs(n+j)
µ′�µ0

a′µ′X(−µ′), (4.4.32)

B′ =
∑

λ′1,λ
′
2∈O

λ′1 6=∅
µ′∈Qs(n+j−|λ′1|+|λ′2|)

b′λ′1,µ′,λ′2
α(−λ′1)X(−µ′)α(λ′2), (4.4.33)

C ′ =
∑

λ′∈O, λ′ 6=∅
µ′∈Qs(n+j+|λ′|)

c′µ′,λ′X(−µ′)α(λ′) (4.4.34)
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Now

X(−µ)α(λ)X(−µ∗)v0 = A′α(λ)X(−µ∗)v0

+B′α(λ)X(−µ∗)v0

+ C ′α(λ)X(−µ∗)v0.

(4.4.35)

By Proposition 4.4.12 and hypothesis, we have

A′α(λ)X(−µ∗)v0 ∈ V(µ̃),

and by Proposition 4.4.11, we have

B′α(λ)X(−µ∗)v0 ∈ V(µ̃).

A typical term in C ′X(−µ∗)v0 is of the form

X(−µ′)α(λ′)α(λ)X(−µ∗)v0, (4.4.36)

where λ′ ∈ O(j′), j′ 6= 0, and µ′ ∈Ps(n+ j + j′). If µ′ � µ0 then we are done. Assume

that µ′ ∈ S
µ0
j+j′ But then by the induction hypothesis,

X(−µ′)α(λ′)α(λ)X(−µ∗)v0 ∈ V(µ̃),

as required.

We summarize our results below.

Proposition 4.4.17. Recall Notation 4.4.3, Notation 4.4.9, Notation 4.4.13 and Nota-

tion 4.4.14. Then we have

R(−n)X(−µ∗)v0 ≡
∑

µ∈Ps(n)
µ�µ0

aµX(−µµ∗)v0

+
∑

λ∈O, λ 6=∅
µ∈Ps(n+|λ|)

µ≺µ0

cµ,λX(−µ)α(λ)X(−µ∗)v0 mod V(µ̃),
(4.4.37)

where aµ, cµ,λ are constants from the definition of R(−n), as defined in Notation 4.4.9.

In particular, if either

(i) S µ0 = ∅, i.e., there is no µ ≺ µ0 with |µ| > n, or
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(ii) every µ ∈ S µ0 (i.e., µ ∈Ps with µ ≺ µ0 and |µ| > n), is reducible by partitions

greater than µ0,

then

C(−n)X(−µ∗)v0 ∈ V(µ̃), (4.4.38)

and therefore,

R(−n)X(−µ∗)v0 ≡
∑

µ∈Ps(n)
µ�µ0

aµX(−µµ∗)v0 mod V(µ̃). (4.4.39)

Proof. The first assertion follows directly from Lemma 4.4.5, Proposition 4.4.10, Propo-

sition 4.4.11 and Proposition 4.4.12.

For the second assertion, if S µ0 = ∅ then the statement is obvious, since

Cµ0(−n) = 0.

If every µ ∈ S µ0 is reducible by partitions greater than µ0, then

C(−n)X(−µ∗)v0 ∈ V(µ̃).

by Lemma 4.4.16 (with j = 1).

Remark. The above proposition shows that the only standard monomials in R(−n)

(along with the coefficients) that we need to keep track when we apply R(−n) to the

vector X(−µ∗)v0 modulo the subspace V(µ̃), where µ∗ ∈P is arbitrary, are of the form

X(−µ) (µ ∈ Ps(n), µ � µ0), and X(−µ)α(λ) (µ ∈ Ps(n + |λ|), µ ≺ µ0). We will be

using this argument extensively in Chapter 6.

Remark. Sometimes, we will create new relations by multiplying R(−n) on the left by

a suitable X(−µ′). Notice that the standard monomials of type (A), and the terms

of type (C) remain of the same type when we do this multiplication. However, after

straightening out, some of the terms in X(−µ′)B(−n) may yield terms of the type (A),

in addition to terms of the type (B).
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Chapter 5

Generating Function Identities

We will use (4.3.2) as the starting point for the spanning set for any level 4 standard

module. To reduce the set further, we need relations among the elements in this set.

These relations come from certain generating function identities.

In § 5.1, we define the “product” generating functions X(α1, . . . , αs; z) ∈ U (s)[[z±1/6]]

for s ∈ N, α1, · · · , αs ∈ L. These generating functions are intuitively thought of as the

“product” of X(α1; z), . . . , X(αs; z). Obviously, the product X(α1; z) · · ·X(αs; z) does

not exist, as the individual factors are doubly infinite series in z±1/6.

In § 5.2, we describe the action of these product generating functions on the basic

module U . We derive a few identities by “conjugating” the generating function X(β; z)

with the exponential generating functions E±(α; z). These calculations are to be viewed

in (EndU)[[z±1/6]], via the representation U → EndU .

In § 5.3, we work out the action of the “product” generating functions on the tensor

product module, U⊗4. We derive the identities by “conjugating” (note that this is not a

conjugation in the strict sense) these generating functions by E±(α; z). Since each of

the level 4 standard modules are sub-modules of U⊗4, these identities are valid for any

level 4 standard module V .

For each n ∈ Z, the coefficient of z−n/6 in a product generating function is a

homogeneous operator of degree n/6 in the image of U inside EndV , via the representation

U → EndV . This is called the homogeneous component of degree n/6 of the said product

generating function. We can express them in terms of the standard monomials (4.2.7)

using various straightening lemmas described in §4.2, as necessary. In §5.4, we compute

the coefficients of monomials of the form X(−µ), µ ∈ Q, in this expression for those

product generating functions that are involved in the identities presented in § 5.3.
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For the first two sections, the details in more generality can be found in [Cap88,

Cap92]. The computations in § 5.3 are in similar spirit as [Cap92].

5.1 Definitions: The Product Generating Functions

All calculations in this section are done inside U(g̃)[[z±1/6]]. Recall from Chapter 2, U(g̃)

can be thought of embedded in EndS, via the isomorphism Proposition 2.3.1.

Recall from (2.2.37),

X(α; z) = 6−〈α,α〉/2σ(α)E−(−α; z)E+(−α; z), (5.1.1)

for α ∈ L, where (recall from (2.2.23))

σ(α) = 2−〈α,α〉/2(1− ω−1)〈να,α〉(1− ω−2)〈ν2α,α〉. (5.1.2)

In particular, σ(0) = 1, and X(0; z) = 1 on U(g̃). For α ∈ L2, σ(α) = ω0
√

3
6 . By abuse

of notation, we will denote σ = ω0
√

3
6 for convenience.

For α, β ∈ L2, define

In(α, β) =
{
p ∈ Z6

∣∣∣ 〈νpα, β〉 = n
}
, (5.1.3a)

I±(α, β) =
{
p ∈ Z6

∣∣∣ ± 〈νpα, β〉 > 0
}
. (5.1.3b)

Notice that I(n) = In(α, β), in the notation of Proposition 2.2.6. Also recall the following

polynomials in x =
(
z2
z1

)1/6
:

P0[α, β](x) =
∏

p∈I−(α,β)

(
1− ω−px

)−〈νpα,β〉
, (5.1.4a)

Q0[α, β](x) =
∏

p∈I+(α,β)

(
1− ω−px

)〈νpα,β〉
, (5.1.4b)

as used in Proposition 2.2.3 and (2.2.14). Recalling that 〈α, β〉 = ±1,±2 for α, β ∈ L2,

we can further simplify P0 and Q0 as

P0[α, β](x) =
∏

p∈I−1(α,β)
(1− ω−px)

∏
p∈I−2(α,β)

(1− w−px)2, (5.1.5a)

Q0[α, β](x) =
∏

p∈I1(α,β)
(1− ω−px)

∏
p∈I2(α,β)

(1− w−px)2. (5.1.5b)

Recall the notion of limit as defined in Definition 2.1.4. For simplicity, we are going

to use the following convention:
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Notation 5.1.1. Let Z(z1, . . . , zs) ∈ A[[z±1/6
1 , . . . , z

±1/6
s ]] be any expression (where A is

any algebra over C). We will use the following notation

limZ(z1, . . . , zs) = lim
z

1/6
1 ,··· ,z

1/6
s →z1/6

Z(z1, . . . , zs),

for abbreviation.

Notation 5.1.2. Throughout, we will use the abbreviation

x =
(
z2
z1

)1/6

,

or more generally,

xij =
(
zj
zi

)1/6

, for i < j,

unless otherwise mentioned.

Proposition 5.1.3. For α, β ∈ L2, there exists a Laurent polynomial P (x) = P [α, β](x)

with constant coefficients such that the limit

limP (x)X(α; z1)X(β; z2)

exists.

Proof. Using Proposition 2.1.6 it enough to find P (x) such that

P (x)[X(α; z1), X(β; z2)] = 0. (5.1.6)

From Proposition 2.2.6, we see that each term in the expansion of [X(α; z1), X(β; z2)]

contains one of the following factors: δ(ω−px) for p ∈ I−1(α, β), D δ(ω−px) for p ∈

I−2(α, β), or δ(ω−px) for p ∈ I−2(α, β). Note that for α, β ∈ L2, 〈α, β〉 can only assume

the values ±1,±2.

Using Proposition 2.1.7 and (5.1.5), we see that

P0[α, β](x)δ(ω−px) = 0 for p ∈ I−1(α, β),

P0[α, β](x) D δ(ω−px) = 0 for p ∈ I−2(α, β).
(5.1.7)

Therefore, we can take P (x) to be any multiple of P0(x) by a Laurent polynomial.
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Remark. Sometimes we may want P = limP (x) 6= 0. This is only possible if P0[α, β](x)

doesn’t have any factor of (1− x), which is the case when 〈α, β〉 > 0.

Remark. Also, from the above proof, it is obvious that P (x) only depends on the

angle between α and β. We will denote the choice of P (x) by P〈α,β〉(x), depending on

α, β ∈ L2.

Definition 5.1.4. For α, β ∈ L2, and P as in Proposition 5.1.3. Then we define

X(α, β; z) = XP (α, β; z) = limP (x)X(α, z1)X(β, z2).

Remark. We will drop the subscript P , if the choice of P is not important and there is

no danger of confusion.

Remark. In view of Proposition 5.1.3, the order of α and β in X(α, β; z) does not matter.

The product generating function can be generalized for more than two factors.

Definition 5.1.5. Let αi, . . . , αs ∈ L2. Denote by

xij =
(
zj
zi

)1/6

,

for 1 ≤ i < j ≤ s. Let

Pij = P〈αi,αj〉(xij),

and

P =
∏

1≤i<j≤s
Pij .

Then we define the product generating function

X(α1, . . . , αs; z) = X(α1, . . . , αs; z) = limPX(α1, z1) · · ·X(αs, zs).

Notation 5.1.6. If α1 = · · · = αs = α, then denote XP (α1, . . . , αs; z) by X(s)(α; z).

Remark. Notice that the product generating function X(α1, . . . , αs; z) ∈ U (s).

5.2 Identities on the Basic Module

In this section, we describe the action of the product generating functions on the basic

module, U . The generating functions X(α; z), E±(α; z), and the product generating
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functions X(α1, . . . , αs; z) are thought of as generating functions with coefficients in

EndU .

Proposition 5.2.1. Let α, β ∈ L2. Then on the basic module U we have

X(α, β; z) = 6〈α,β〉σ(α)σ(β)
σ(α+ β)AX(α+ β; z),

where

A = lim Q0
P0
P,

P0 = P0[α, β](x), Q0 = Q0[α, β](x), and P = P〈α,β〉(x).

Proof. First, notice that A exists because P is a multiple of P0. Using (5.1.1) and

Proposition 2.2.3, we have

X(α; z1)X(β; z2) = σ(α)σ(β)
6(〈α,α〉+〈β,β〉)/2

E−(−α; z1)E+(−α; z1)E−(−β; z2)E+(−β; z2)

= σ(α)σ(β)
6(〈α,α〉+〈β,β〉)/2

Q0
P0
E−(−α; z1)E−(−β; z2)E+(−α; z1)E+(−β; z2)

= 6〈α,β〉σ(α)σ(β)
σ(α+ β)

Q0
P0

6−〈α+β,α+β〉/2 σ(α+ β)

× E−(−α; z1)E−(−β; z2)E+(−α; z1)E+(−β; z2)

Now multiply both sides by P , and take the limit to get

X(α, β; z) = 6〈α,β〉σ(α)σ(β)
σ(α+ β)AX(α+ β; z).

Corollary 5.2.2. Let α, β ∈ L2. If 〈α, β〉 > 0, then X(α, β; z) = 0 on the basic module

U . In particular, X(2)(α; z) = 0 on U .

Proof. If 〈α, β〉 > 0, then Q0 contains a factor of (1 − x). Therefore limQ0 = 0, and

hence A = 0.

Remark. If α, β ∈ L2, with 〈α, β〉 = −1, then α+ β ∈ L2.

We state the generalizations of Proposition 5.2.1 and Corollary 5.2.2, which follow

easily from similar arguments.

Proposition 5.2.3. Let α1, . . . , αs ∈ L2. Then on the basic module U we have

X(α1, . . . , αs; z) =
∏

1≤i<j≤s
6〈αi,αj〉

σ(αi)σ(αj)
σ(αi + αj)

AijX(α1 + · · ·+ αs; z),
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where

Aij = lim
Q0[αi, αj ]
P0[αi, αj ]

P〈αi,αj〉.

Corollary 5.2.4. Let α1, . . . , αs ∈ L2. If 〈αi, αj〉 < 0 for some 1 ≤ i < j ≤ s, then

X(α1, . . . , αs; z) = 0 on the basic module U .

We need the following generating function identities on the basic module to discover

the identities on the standard modules of level 4. The following identity is to be thought

of as the result of “conjugating” X(β; z) by the exponentials E±(α; z).

Proposition 5.2.5. Let α, β ∈ L. On the basic module U , we have

E−(α; z)X(β; z)E+(α; z) = 6〈α,α〉/2−〈α,β〉 σ(β)
σ(α− β)X(β − α; z).

Proof. Using (5.1.1), we have

E−(α; z)X(β; z)E+(α; z) = 6−〈β,β〉/2σ(β)E−(α; z)E−(−β; z)E+(−β; z)E+(α; z)

= 6−〈β,β〉/2

6−〈α−β,α−β〉/2
· σ(β)
σ(α− β)

×
(
6−〈α−β,α−β〉/2σ(α− β)E−(α− β; z)E+(α− β; z)

)
= 6〈α,α〉/2−〈α,β〉 σ(β)

σ(α− β)X(β − α; z),

since σ(−α) = σ(α).

Notation 5.2.6. Since σ(α) only depends on the length of α, we will denote, by abuse

of notation, σ = σ(α) = ω0
√

3
6 for any α ∈ L2 (see (2.2.24)).

Corollary 5.2.7. Let α ∈ L2. On the basic module U , we have

(i) E−(α; z)E+(α; z) = 6
σX(−α; z),

(ii) E−(α; z)X(α; z)E+(α; z) = σ
6 1,

(iii) E−(α; z)X(ν±1α; z)E+(α; z) = X(ν±2α; z),

where 1 is the identity operator on U .

Proof. (i) Take β = 0 in Proposition 5.2.5. Notice that σ(0) = 1, and X(0; z) = 1

on U .

(ii) Take β = α in Proposition 5.2.5.

(iii) Take β = ν±1α in Proposition 5.2.5.
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5.3 Identities on the Level 4 Standard Modules

In this section, we will derive the generating function identities similar to Proposition 5.2.5

and Corollary 5.2.7 on any level 4 standard module V . By Proposition 3.1.6 any level

4 standard module is contained inside the tensor product of four copies of the basic

module. Therefore, these identities can be viewed in EndU⊗4. Conceptually, these

identities can be thought of as the result of “conjugating” (not in the strict sense) various

product generating functions X(β1, . . . , βs; z) with the exponentials E±(α; z). These

computations are done in the same spirit as [Cap92].

Let U be the basic module, and U⊗4 = U ⊗U ⊗U ⊗U be the tensor product module.

Since the components of X(α; z), for α ∈ L2, are elements of the Lie algebra g̃, X(α; z)

acts on U⊗4 as a primitive element:

X(α; z) = X(α; z)⊗ 1⊗ 1⊗ 1 + 1⊗X(α; z)⊗ 1⊗ 1

+ 1⊗ 1⊗X(α; z)⊗ 1 + 1⊗ 1⊗ 1⊗X(α; z),
(5.3.1)

where X(α; z) is viewed as an operator on U⊗4 on the RHS, and as an operator on U

on the LHS.

On the other hand, the exponential generating function E±(α; z), for α ∈ L, acts on

U⊗4 as a group-like element:

E±(α; z) = E±(α; z)⊗ E±(α; z)⊗ E±(α; z)⊗ E±(α; z), (5.3.2)

where E±(α; z) is viewed as an operator on U⊗4 on the LHS, and as an operator on U

on the RHS.

The identities presented in this section, are obtained by “conjugating” various product

generating functions X(α1, . . . , αs; z) by E±(α; z). In the presentation below, we will

classify the results by s, i.e., by the highest number of factors in the product generating

function occurring in the identity. We will call this number as the degree of the identity.

We will present one degree 2 identity and four degree 3 identities on U⊗4. We start with

the degree 2 identity.

Proposition 5.3.1. Let α ∈ L2. Then on U⊗4 we have

E−(α; z)X(2)(α; z)E+(α; z) = X(2)(−α; z).
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Proof. The polynomial P in the definition of X(2)(α; z) and X(2)(−α; z) are the same,

since 〈α, α〉 = 〈−α,−α〉. By Corollary 5.2.2, if both X(α; z)s (or X(−α; z)s) act on the

same tensorand of U⊗4 then it yields 0. Therefore, on U⊗4,

X(2)(α; z) = 2P

X(α; z)⊗X(α; z)⊗ 1⊗ 1 + · · ·
total 6 similar terms

 ,
because there are

(4
2
)
possible way to distribute the two X(α; z)s in 4 tensorands without

having two of them acting on the same tensorand, and we get two copies for each term

having X(α; z)s acting on similar positions. Similarly,

X(2)(−α; z) = 2P

X(−α; z)⊗X(−α; z)⊗ 1⊗ 1 + · · ·
total 6 similar terms

 .
By “conjugating” X(2)(α; z) by E±(α; z) on U⊗4, we get

LHS = 2P
(
E−(α; z)X(α; z)E+(α; z)⊗ E−(α; z)X(α; z)E+(α; z)

⊗ E−(α; z)E+(α; z)⊗ E−(α; z)E+(α; z)

+ · · · (5 similar terms)
)

= 2P
(
1⊗ 1⊗X(−α; z)⊗X(−α; z) + · · · (5 similar terms)

)
,

using Corollary 5.2.7. This is precisely the same as the RHS.

We present the four degree 3 identities below.

Proposition 5.3.2. Let α ∈ L2. Then on U⊗4 we have

E−(α; z)X(3)(α; z)E+(α; z) = 6P
(
σ

6

)2
X(−α; z).

Proof. Let P be the polynomial in the definition of X(3)(α; z). Then, on U⊗4, we have

X(3)(α; z) = 6P

X(α; z)⊗X(α; z)⊗X(α; z)⊗ 1 + · · ·
total 4 similar terms

 .
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Now “conjugating” X(3)(α; z) with E±(α; z) on U⊗4, we get

LHS = 6P
(
E−(α; z)X(α; z)E+(α; z)⊗ E−(α; z)X(α; z)E+(α; z)

⊗ E−(α; z)X(α; z)E+(α; z)⊗ E−(α; z)E+(α; z)

+ · · · (3 similar terms)
)

=
(
σ

6

)2
6P

(
1⊗ 1⊗ 1⊗X(−α; z) + · · · (3 similar terms)

)
= 6P

(
σ

6

)2
X(−α; z) = RHS,

using Corollary 5.2.7.

Proposition 5.3.3. Let α ∈ L2. Then on U⊗4 we have

E−(α; z)X(α, α, να; z)E+(α; z) =
(
σ

3P 1P 2

)
X(−α, ν2α; z).

Proof. Let P〈α,β〉 denote the polynomial so that P〈α,β〉[X(α; z1), X(β; z2)] = 0. Then we

can use PL = P2(x12)P1(x13)P1(x23), in the definition of X(α, α, να; z), and PR = P1(x)

in the definition of X(−α, ν2α; z).

Since, each of the pairwise inner products of the roots among α, α, να are positive,

only terms where each of X(α; z) and X(να; z) acts on distinct tensorands of U⊗4

survive (by Proposition 5.2.1), when acting on U⊗4. Therefore we have

X(α, α, να; z) = 2P1
2
P2

X(α; z)⊗X(α; z)⊗X(να; z)⊗ 1 + · · ·
total 12 similar terms

 ,
and

X(−α, ν2α; z) = P1

X(−α; z)⊗X(ν2α; z)⊗ 1⊗ 1 + · · ·
total 12 similar terms

 ,
on U⊗4.

“Conjugating” X(α, α, να; z) by E±(α; z), we get

LHS = 2P1
2
P2
(
E−(α; z)X(α; z)E+(α; z)⊗ E−(α; z)X(α; z)E+(α; z)

⊗ E−(α; z)X(να; z)E+(α; z)⊗ E−(α; z)E+(α; z)

+ · · · (11 similar terms)
)

=
(
σ

6

)
2P1

2
P2
(
1⊗ 1⊗X(ν2α; z)⊗X(−α; z) + · · · (11 similar terms)

)
=
(
σ

3P1P2

)
X(−α, ν2α; z) = RHS,
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using Corollary 5.2.7.

Proposition 5.3.4. Let α ∈ L2. Then on U⊗4 we have

E−(α; z)X(α, να, να; z)E+(α; z) = X(−α, ν2α, ν2α; z).

Proof. Using the same notation as before, let P = P1(x12)P1(x13)P2(x23) in the definition

of both X(α, να, να; z) and X(−α, ν2α, ν2α; z).

Then on U⊗4, we have

X(α, να, να; z) = 2P

X(α; z)⊗X(να; z)⊗X(να; z)⊗ 1 + · · ·
total 12 similar terms

 ,
and

X(−α, ν2α, ν2α; z) = 2P

X(−α; z)⊗X(ν2α; z)⊗X(ν2α; z)⊗ 1 + · · ·
total 12 similar terms

 .
“Conjugating” X(α, να, να; z) by E±(α; z), we get

LHS = 2P
(
E−(α; z)X(α; z)E+(α; z)⊗ E−(α; z)X(να; z)E+(α; z)

⊗ E−(α; z)X(να; z)E+(α; z)⊗ E−(α; z)E+(α; z)

+ · · · (11 similar terms)
)

= 2P
(
1⊗X(ν2α; z)⊗X(ν2α; z)⊗X(−α; z) + · · · (11 similar terms)

)
= X(−α, ν2α, ν2α; z) = RHS,

using Corollary 5.2.7.

Proposition 5.3.5. Let α ∈ L2. Then on U⊗4 we have

E−(α; z)X(α, να, ν−1α; z)E+(α; z) = X(−α, ν2α, ν−2α; z).

Proof. Using the same notation as before, let P = P1(x12)P1(x13)P−1(x23) in the

definition of both X(α, να, ν−1α; z) and X(−α, ν2α, ν−2α; z).

Let P0 = P0[να, ν−1α] and Q0 = Q0[να, ν−1α]. Using Proposition 5.2.1, we have

X(να, ν−1α; z) = σ

6AX(α; z),

X(ν2α, ν−2α; z) = σ

6AX(−α; z),
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where A = P−1
Q0
P 0

is a constant as defined in Proposition 5.2.1. Therefore, both X(να; z)

and X(ν−1α; z) may act on the same tensorand of U⊗4. The same is true for X(ν2α; z)

and X(ν−2α; z).

Thus on U⊗4, we have, letting B = limP1(x12)P1(x13)P−1(x23)Q0(x23)
P0(x23) ,

X(α, να, ν−1α; z) = P

X(α; z)⊗X(να; z)⊗X(ν−1α; z)⊗ 1 + · · ·
total 24 similar terms


+ 2B

X(α; z)⊗X(α; z)⊗ 1⊗ 1
total 6 similar terms

 ,
and

X(−α, ν2α, ν−2α; z) = P

X(−α; z)⊗X(ν2α; z)⊗X(ν−2α; z)⊗ 1 + · · ·
total 24 similar terms


+ 2B

X(−α; z)⊗X(−α; z)⊗ 1⊗ 1
total 6 similar terms

 .
The result follows from “conjugating” X(α, να, ν−1α; z) by E±(α; z), and using Corol-

lary 5.2.7.

Remark. In the above proof, P = 0, but B 6= 0.

Remark. Since, we are free to multiply the polynomials P by any scalar, and since

P 1, P 2 6= 0, we will assume without loss of generality that P1 = P2 = 1. This will make

the computation of the coefficients more convenient. Similarly, we will scale P−1 in such

a way that makes B = 1 in Proposition 5.3.5.

5.4 Coefficients

In this section, we compute the coefficient of X(−µ) in various product generating

functions which are involved in the degree 2 or 3 identities presented in § 5.3.

The coefficient of z−n/6 in X(α1, . . . , αs; z) ∈ U (s)[[z±n/6]] gives the homogeneous

component of degree n
6 . For A2, any β ∈ L2, can be expressed as νkα (where α ∈ L2

is our chosen fixed root). By (2.2.39), X(β;m) = ωkmX(m). Thus, the homogeneous

component of degree n
6 consists of terms of the form X(−µ), where µ ∈ Zs, with

|µ| = n. Of course, the parts of µ could be out of order — we need to use Lemma 4.2.4
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to straighten out X(−µ) in order to express it in terms of the standard monomials.

From Lemma 4.2.4, it follows that X(−µ) ∈ X(−µ̄) + U (s−1), i.e., X(−µ) ≡ X(−µ̄)

mod U (s−1). (µ̄ ∈ Q is the result of rearranging µ in non-ascending order).

Lemma 5.4.1. Let µ = (p, q) ∈ Q2(n).

(i) The coefficient of X(−µ) in X(2)(α; z) expressed in terms of the standard mono-

mials is

c
(2)
a (µ) =


1 if p = q,

2 if p 6= q.

(5.4.1)

(ii) The coefficient of X(−µ) in X(2)(−α; z) expressed in terms of the standard

monomials is

c
(2)
b (µ) =


1 if p = q,

2(−1)p+q if p 6= q.

(5.4.2)

Proof. (i) If p = q then there is only one way to get the term X(−p)X(−q). If p 6= q

then there are two terms X(−p)X(−q) and X(−q)X(−p) which corresponds to X(−µ)

after possible straightening out by Lemma 4.2.4. The result follows from the definition

of X(2)(α; z).

(ii) The proof is similar to (i), keeping in mind that X(−α;−p) = (−1)pX(α;−p).

Remark. The coefficient of X(−µ), µ = (p, q) ∈ Q in X(2)(α; z) can be easily computed

as the coefficient of x2, if p = q; or the coefficient of xy, if p 6= q, in the polynomial (x+y)2

in two commuting variables. Similarly, the coefficient of X(−µ) in X(2)(−α; z) is the co-

efficient of x2, if p = q; or the coefficient of xy in the polynomial ((−1)px+ (−1)qy)2. We

used this method to compute the coefficients in the Maple worksheet (see Appendix A).

Definition 5.4.2. We call a function, f : Qk → C periodic with periodicity m (or,

m-periodic, for brevity), if f(µ) = f(µ+ m) for all µ ∈ Qk, i.e., if f is invariant under

increasing/decreasing each part by m.

Corollary 5.4.3. c(2)
a and c(2)

b are 1-periodic functions on Q2.
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Proof. It is obvious from the formulae in Lemma 5.4.1.

Notation 5.4.4. For µ ∈ Q, we denote by #µ the number of distinct parts in µ.

Lemma 5.4.5. For µ = (p, q, r) ∈ Q3(n), let a be the most frequent part in µ, b be the

next most frequent part (if any), and c be the least frequent part (if any). If p, q, r are

all distinct, we may simply take a = p, b = q and c = r. If two of p, q, r are the same,

then take a to be the one that is repeated twice, and b the unique one. If p = q = r, take

a = p.

(i) The coefficient of X(−µ) in X(3)(α; z) expressed in terms of the standard mono-

mials is given by

c
(3)
1 (µ) =



1 if #µ = 1,

3 if #µ = 2,

6 if #µ = 3.

(5.4.3)

(ii) The coefficient of X(−µ) in X(α, α, να; z) expressed in terms of the standard

monomials is given by

c
(3)
2 (µ) =



ω−a if #µ = 1,

2ω−a + ω−b if #µ = 2,

2(ω−a + ω−b + ω−c) if #µ = 3.

(5.4.4)

(iii) The coefficient of X(−µ) in X(α, να, να; z) expressed in terms of the standard

monomials is given by

c
(3)
3a (µ) =



ω−2a if #µ = 1,

ω−2a + 2ω−a−b if #µ = 2,

2(ω−a−b + ω−b−c + ω−c−a) if #µ = 3.

(5.4.5)

(iv) The coefficient of X(−µ) in X(−α, ν2α, ν2α; z) expressed in terms of the stan-

dard monomials is given by

c
(3)
3b (µ) =



ω−7a if #µ = 1,

ω−4a−3b + 2ω−5a−2b if #µ = 2,

2(ω−3a−2b−2c + ω−2a−3b−2c + ω−2a−2b−3c) if #µ = 3.

(5.4.6)
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(v) The coefficient of X(−µ) in X(α, να, ν−1α; z) expressed in terms of the standard

monomials is given by

c
(3)
4a (µ) =



ω−6a = 1 if #µ = 1,

ω−6a + ω−5a−b + ω−a−5b if #µ = 2,
(
ω−5a−b + ω−a−5b + ω−5b−c

+ ω−b−5c + ω−5c−a + ω−c−5a
) if #µ = 3.

(5.4.7)

(vi) The coefficient of X(−µ) in X(−α, ν2α, ν−2α; z) expressed in terms of the

standard monomials is given by

c
(3)
4b (µ) =



ω−9a = (−1)−a if #µ = 1,

ω−6a−3b + ω−5a−4b + ω−7a−2b if #µ = 2,
(
ω−3a−2b−4c + ω−3a−4b−2c

+ ω−4a−3b−2c + ω−2a−3b−4c

+ ω−2a−4b−3c + ω−4a−2b−3c
) if #µ = 3.

(5.4.8)

Proof. The proof is similar to the proof of Lemma 5.4.1. Let a, b, c be as defined above,

with the following convention that b and c be 0 when they are not defined (i.e., if #µ = 1

or 2). We note that the coefficient of X(−µ) in X(νiα, νjα, νkα; z) can be extracted as

the coefficient of x3, x2y or xyz in the polynomial(
ω−iax+ ω−iby + ω−icz

) (
ω−jax+ ω−jby + ω−jcz

) (
ω−kax+ ω−kby + ω−kcz

)
depending on whether #µ is 1, 2 or 3, respectively.

Remark. Let C : Q3 → C be any one of the above coefficient functions (viz., c(3)
1 , c(3)

2 ,

c
(3)
3a , c

(3)
3b , c

(3)
4a or c(3)

4c ). Then each term in C(µ) can be expressed as a power of ω. The

exponents of ω are linear in a, b, c, of the form m1a+m2b+m3c. Note that the sum

m = m1 +m2 +m3 is constant for all terms and all cases (i.e., #µ = 1, 2 or 3). Therefore,

if we increase each part in µ by 1, the exponent increases by m, giving us a factor of

ωm. Thus we have,

C(µ+ 1) = ωmC(µ).

The following periodicity properties follow from this observation.
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Corollary 5.4.6. Let µ ∈ Q3.

(i) c(3)
1 has periodicity 1:

c
(3)
1 (µ+ 1) = c

(3)
1 (µ).

(ii) c(3)
2 has periodicity 6:

c
(3)
2 (µ+ 1) = ω−1c

(3)
2 (µ).

(iii) c(3)
3a has periodicity 3:

c
(3)
3a (µ+ 1) = ω−2c

(3)
3a (µ).

(iv) c(3)
3b has periodicity 6:

c
(3)
3b (µ+ 1) = ω−1c

(3)
3b (µ).

(v) c(3)
4a has periodicity 1:

c
(3)
4a (µ+ 1) = c

(3)
4a (µ).

(vi) c(3)
4b has periodicity 2:

c
(3)
4b (µ+ 1) = −c(3)

4b (µ).
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Chapter 6

Forbidden Partitions

In this chapter, we discover the forbidden partitions using the relations coming from the

degree 2 and degree 3 identities in Chapter 5. The results of this chapter are valid for

all level 4 modules. Let V denote a level 4 standard module for g̃ with highest weight Λ,

and a highest weight vector v0.

The generating function identities are of the form R(z) = 0, where R(z) ∈ Ū (s)[[z±6]]

(s = 2, 3), where Ū is the image of U in EndV . Given any such identity, the homogeneous

component of degree −n/6 (i.e., the coefficient of zn/6 in R(z)), denoted R(−n), gives us

a relation among homogeneous operators of degree −n/6 on V :

R(−n) = 0.

Recall the notations and results from Chapter 4. In particular, we will rely heavily

on Proposition 4.4.17. Recall that we call a partition µ ∈P reducible if X(−µ)v0 ∈ V(µ)

(Definition 4.3.6). Proposition 4.4.1 shows that any partition that ends with a reducible

partitions is also reducible. By Proposition 4.3.15, we may remove elements of the form

α(λ)X(−µ)v0 from the spanning set (4.3.2) if µ ∈P is reducible, for all λ ∈ O.

Recall the notion of “forbidden” partition from Definition 4.3.8. We call a partition µ

forbidden, if any partition having µ as a sub-partition (not just suffix) is also forbidden.

This is stronger than the result of Proposition 4.4.1. To show that µ is forbidden, we

are going to apply our relation R(−n) ∈ Ū (s) on a vector X(−µ∗)v0 for an arbitrary

µ∗ ∈P.

The results presented in this chapter are valid for any level 4 standard module, since

the generating function identities (see Chapter 5) that we are going to use are valid on

U⊗4.
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In the following discussion a “term” refers to a summand of R(−n) expressed as

the standard monomial α(λ1)X(−µ′)α(λ2), for some λ1, λ2 ∈ O, µ′ ∈ Q, such that

n = |µ′| + |λ1| − |λ2| and l(µ′) ≤ s. Alternatively, a “term” may also refer to one of

the form E′(−i)X(−µ′)E′(j), for some i, j ≥ 0, µ′ ∈ Q, n = |µ′|+ i− j and l(µ′) ≤ s,

where E′(n) = E(−α;n). (Since, E′(±i) can be expressed as a linear combination of

α(±λ), with |λ| = i).

Recall from Notation 4.4.9 that the terms in R(−n) can be classified into three

categories: type (A) (having no Heisenberg element), type (B) (having a negative

Heisenberg element) and type (C) (having a positive Heisenberg element, but no negative

Heisenberg element). Proposition 4.4.17 shows that only certain terms in A(−n) and

C(−n) are relevant for our calculation. The rest of the terms, therefore, can be ignored

(modulo a suitable subspace V(µ̃)).

In section § 6.1, we show that any partition containing two consecutive integers as

parts are forbidden. These are coming from the degree 2 generating function identities

in § 5.3.

In section § 6.2, we show that the first three (i.e., the least three with respect to

“<” on P) triplets of n are forbidden. In addition if n is odd, the fourth triplet is also

forbidden. These are coming from the degree 3 identities in § 5.3.

The results of these two sections are analogous to the results of [Cap88, Cap93]

for level 2 and 3 modules. We call the partitions shown to be forbidden in these two

sections as regular forbidden partitions.

The interesting aspect of level 4 module is that there are forbidden partitions of

arbitrary length (starting from length 3) following a simple pattern. We call these

forbidden partitions as exceptional forbidden partitions. These partitions do not arise

directly from the generating function identities. The relevant operator relations are

obtained by multiplying R(−n) (coming from the degree 2 generating function identity)

by a suitable X(−µL) on the left, and/or a suitable X(−µR) on the right.

In § 6.3, we discuss the exceptional forbidden triplets. These are of the form

(k + 4, k, k), for k odd, i.e., satisfying difference condition (see Definition 4.1.9) [4−, 0].

The partition (5, 1, 1) also satisfy the same difference condition, however, it is also the
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4-th partition of the odd integer 7, and it can be thought of a regular forbidden triplet.

In § 6.4, we discuss the longer exceptional forbidden partitions. These partitions

satisfy the difference condition (see Definition 4.1.9 [3−, 2∗, 3, 0], where 2∗ denote zero

or more occurrence of 2. Examples of such partitions include

(9, 6, 3, 3), (11, 8, 6, 3, 3), (13, 10, 8, 6, 3, 3), . . . .

Notice that if the first part is not odd then the partition ends with a regular forbidden

triplet of difference condition [3−, 0] (the 4-th triplet of an odd integer). Therefore,

either way, any partition containing a sub-partition satisfying the difference condition

[3, 2∗, 3, 0] is forbidden.

In § 6.5, we summarize the results of this chapter in one place, to be quoted later for

convenience. We also add some observations about the “periodicity properties” of the

forbidden partitions presented in this chapter.

Recall the notations and the tools and techniques described in § 4.4.

6.1 Forbidden Pairs

In this section, we prove that pairs (i.e., partition into two parts) of the form (k + 1, k)

(i.e., satisfying the difference condition [1]) are forbidden. Thus, any vector of the form

α(λ)X(−µ)v0, λ ∈ O, µ ∈ P such that µ contains two consecutive integers as parts,

can be removed from the spanning set (4.3.2). These results come from the degree 2

identity Proposition 5.3.1.

Consider the following generating function in (EndV )[[z±1/6]]

R(2)(z) = X(2)(α; z)− E−(−α; z)X(2)X(−α; z)E+(−α; z). (6.1.1)

Then the identity Proposition 5.3.1 can be expressed as

R(2)(z) = 0. (6.1.2)

Let R(2)(−n) ∈ Ū (2) denote the homogeneous component of R(2)(z) of degree −n/6. Then

R(2)(z) =
∑
n∈Z

R(2)(−n)zn/6. (6.1.3)
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Therefore, we have

R(2)(−n) = 0 ∈ EndV, (6.1.4)

for all n.

Recall the coefficient functions c(2)
a and c(2)

b from Lemma 5.4.1. Let c(2) : Q2 → C be

the function given by

c(2)(µ) = c
(2)
a (µ)− c(2)

b (µ), (6.1.5)

for all µ ∈ Q2. From Lemma 5.4.1, we see that

c(2)
(
µ

(2)
1 (n)

)
=


0 if n is even,

4 if n is odd.
(6.1.6)

Let E′(n) = E(−α;n), for all n ∈ Z. Notice that, for n > 0, E′(±n) is a linear

combination of elements of the form α(±λ), λ ∈ O(n).

Also recall the notations A(−n), B(−n), C(−n) for a given R(−n) from Nota-

tion 4.4.9. In this case, we have (modulo Ū (1))

A(2)(−n) =
∑

µ∈Q2(n)
c(2)(µ)X(−µ), (6.1.7a)

B(2)(−n) = −
∑

i>0, j≥0
µ∈Q2(n−i+j)

c
(2)
b (µ)E′(−i)X(−µ)E′(j), (6.1.7b)

C(2)(−n) = −
∑
j>0

µ∈Q2(n+j)

c
(2)
b (µ)X(−µ)E′(j). (6.1.7c)

Thus, we have

R(2)(−n) ≡ A(2)(−n) +B(2)(−n) + C(2)(−n) mod Ū (1), (6.1.8)

for all n.

Let µ(2)
1 (n) denote the least partition in P2(n). Then

µ
(2)
1 (n) =


(k, k) if n = 2k (k ≥ 1),

(k + 1, k) if n = 2k + 1 (k ≥ 1).
(6.1.9)

Note that µ(2)
1 (n+ 2) = µ

(2)
1 (n) + 1 (see Definition 4.1.12).
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We take µ0 = µ
(2)
1 (n), in the context of § 4.4 as in Notation 4.4.3. In the notation of

Notation 4.4.13, we have

S µ0 = ∅, (6.1.10)

Proposition 6.1.1. Partitions of the form (k+1, k), i.e., partitions containing difference

condition [1] are forbidden.

Proof. Let µ0 = µ
(2)
1 (2k + 1) = (k + 1, k) for some k > 0. Let µ∗ ∈ P be arbitrary

and µ̃ = µ0µ∗ (as in Notation 4.4.3). We want to prove that µ̃ is reducible, i.e.,

X(−µ̃)v0 ∈ V(µ̃).

Since R(2)(z) = 0, we have, in particular,

R(2)(−2k − 1) = 0.

By Proposition 4.4.17, since S µ0 = ∅, we have

0 = R(−2k − 1)X(−µ∗)v0 ≡ 4X(−µ0µ∗)v0 = 4X(−µ̃)v0 mod V(µ̃).

Therefore, X(−µ̃)v0 ∈ V(µ̃), as required.

6.2 Regular Forbidden Triplets

In this section, we prove that the first three triplets (i.e., partitions into three parts) of

any n > 0 are forbidden. In addition, if n is odd, then the fourth triplet is also forbidden.

We will prove this in two steps. First we show that these partitions are reducible. Then

we will use this result to show that these partitions are, in fact, forbidden using the

Proposition 4.4.17. These forbidden triplets are “regular” in the sense that they follow

directly from the the four degree 3 generating function identities Proposition 5.3.2,

Proposition 5.3.3, Proposition 5.3.4 and Proposition 5.3.5.

Let µ(3)
i (n) denote the i-th smallest partition of n into three parts. We list the first

four partitions below for n sufficiently large.
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µ
(3)
1 (n) = (k, k, k)

µ
(3)
2 (n) = (k + 1, k, k − 1)

µ
(3)
3 (n) = (k + 1, k + 1, k − 2)

µ
(3)
4 (n) = (k + 2, k − 1, k − 1)


if n = 3k, k > 2, (6.2.1a)

µ
(3)
1 (n) = (k + 1, k, k)

µ
(3)
2 (n) = (k + 1, k + 1, k − 1)

µ
(3)
3 (n) = (k + 2, k, k − 1)

µ
(3)
4 (n) = (k + 2, k + 1, k − 2)


if n = 3k + 1, k > 2, (6.2.1b)

µ
(3)
1 (n) = (k + 1, k + 1, k)

µ
(3)
2 (n) = (k + 2, k, k)

µ
(3)
3 (n) = (k + 2, k + 1, k − 1)

µ
(3)
4 (n) = (k + 2, k + 2, k − 2)


if n = 3k + 2, k > 2. (6.2.1c)

The above pattern for first four triplets holds for n ≥ 9. We list below the the

triplets for n < 9.

P3(3) = {(1, 1, 1)} (6.2.2a)

P3(4) = {(2, 1, 1)} (6.2.2b)

P3(5) = {(2, 2, 1), (3, 1, 1)} (6.2.2c)

P3(6) = {(2, 2, 2), (3, 2, 1), (4, 1, 1)} (6.2.2d)

P3(7) = {(3, 2, 2), (3, 3, 1), (4, 2, 1), (5, 1, 1)} (6.2.2e)

P3(8) = {(3, 3, 2), (4, 2, 2), (4, 3, 1), (5, 2, 1)} (6.2.2f)
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Consider the following generating functions in (EndV )[[z±1/6]].

R
(3)
1 (z) = X(3)(α; z), (6.2.3a)

R
(3)
2 (z) = X(α, α, να; z), (6.2.3b)

R
(3)
3 (z) = X(α, να, να; z)− E−(−α; z)X(−α, ν2α, ν2α; z)E+(−α; z), (6.2.3c)

R
(3)
4 (z) = X(α, να, ν−1α; z)− E−1(−α; z)X(−α, ν2α, ν−2α; z)E+(−α; z). (6.2.3d)

Using Proposition 5.3.2, Proposition 5.3.3, Proposition 5.3.4 and Proposition 5.3.5, we

have

R
(3)
i (z) = 0 ∈ (EndV )[[z±1/6]], (6.2.4)

for 1 ≤ i ≤ 4. Let R(3)
i (−n) ∈ Ū (3) denote the homogeneous component of R(3)

i (z) of

degree −n/6, i.e.,

R
(3)
i (z) =

∑
n∈Z

R
(3)
i (−n)zn/6. (6.2.5)

Therefore, we have

R
(3)
i (−n) = 0, (6.2.6)

for all n.

Recall the coefficient functions c(3)
1 , c(3)

2 , c(3)
3a , c

(3)
3b , c

(3)
4a and c(3)

4b from Lemma 5.4.5.

Define the following functions on Q3 by

c
(3)
1 (µ) = c

(3)
1 (µ), (6.2.7a)

c
(3)
2 (µ) = c

(3)
2 (µ), (6.2.7b)

c
(3)
3 (µ) = c

(3)
3a (µ)− c(3)

3b (µ), (6.2.7c)

c
(3)
4 (µ) = c

(3)
4a (µ)− c(3)

4b (µ). (6.2.7d)

Remark. Observe that c(3)
4 (µ) = 0 if |µ| is even.

By Corollary 5.4.6, we have c(3)
i (µ) = c

(3)
i (µ+ 6). Since for the first four triplets of

n, n ≥ 9, follows the pattern (6.2.1), therefore we have

µ
(3)
j (n+ 18) = µ

(3)
j (n) + 6, (6.2.8)

and

c
(3)
i

(
µ

(3)
j (n+ 18)

)
= c

(3)
i

(
µ

(3)
j (n)

)
, (6.2.9)
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for 1 ≤ i ≤ 4, 1 ≤ j ≤ 4 and n ≥ 9. Also, for uniformity, define the functions

c
(3)
1b , c

(3)
2b : Q3 → C

µ 7→ 0.
(6.2.10)

Define A(3)
i (−n), B(3)

i (−n) and C(3)
i (−n) modulo Ū (2), corresponding to R(3)

i (−n) as

in Notation 4.4.9 by

A
(3)
i (−n) =

∑
µ∈Q3(n)

c
(3)
i (µ)X(−µ), (6.2.11a)

B
(3)
i (−n) = −

∑
i>0, j≥0

µ∈Q3(n−i+j)

c
(3)
ib (µ)E′(−i)X(−µ)E′(j), (6.2.11b)

C
(3)
i (−n) = −

∑
j>0

µ∈Q3(n+j)

c
(3)
ib (µ)X(−µ)E′(j). (6.2.11c)

Notice that B(3)
i (−n) = C

(3)
i (−n) = 0 for i = 1, 2. Thus, we have

R
(3)
i (−n) ≡ A(3)

i (−n) +B
(3)
i (−n) + C

(3)
i (−n) mod Ū (2), (6.2.12)

for all n.

Proposition 6.2.1. The smallest three triplets of any n > 0 are reducible. If n is odd,

then the fourth smallest triplet is also reducible.

Proof. We only need to prove this statement for finitely many 3 ≤ n ≤ 26, because of

the periodicity properties as discussed in (6.2.8). Note that P3(n) = ∅ unless n ≥ 3.

The basic idea is to use all four relations coming from the degree 3 identities. We

take µ0 = µ
(3)
k (n), where k = 4 if n is odd and the partition exist, k = 4 if n is even and

the partition exist, or the largest k (for n ≤ 5) such that the corresponding partition

exist. Let and µ∗ = ∅ in the context of Notation 4.4.3.

To treat all cases uniformly, we will adopt the convention that X(−µ(3)
j (n)) = 0 if

the corresponding partition does not exist for j ≤ 4. (e.g., µ(3)
2 does not exist for n = 3).

In that case, µ0 is going to be largest partition that is defined (e.g., µ0 = µ
(3)
1 for n = 3).

Since R(3)
i (−n) = 0, we have, using Proposition 4.4.17,

0 = R
(3)
i (−n)v0 ≡

4∑
j=1

ci
(
µ

(3)
j (n)

)
X
(
−µ(3)

j (n)
)
v0 mod V(µ0), (6.2.13)
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for 1 ≤ i ≤ 4. We collect the coefficients in the matrix

M(n) =


c

(3)
1 (µ(3)

1 ) . . . c
(3)
1 (µ(3)

4 )
... . . . ...

c
(3)
4 (µ(3)

1 ) . . . c
(3)
4 (µ(3)

4 )

 , (6.2.14)

(the last few columns may be absent, if the corresponding partition does not exist). We

row-reduce this matrix to M ′(n). The computations for a few initial n’s are shown in

the Maple worksheet attached in Appendix A §A.1.

By the periodicity property (6.2.8), we have

M(n+ 18) = M(n), (6.2.15)

for n ≥ 9. However, the row-reduced matrix M ′(n) has stronger periodicity:

M ′(n+ 6) = M ′(n), (6.2.16)

for n ≥ 9. The computation shows that M ′(n) contains a principal identity matrix

of rank 4 if n is odd, and of rank 3 if n is even, for n ≥ 7, with the 1’s on the main

diagonal. For n ≤ 6, the rank is same as the number of partitions in P3(n). Therefore,

we have the desired result.

Remark. Notice that the first two triplets of any n ≥ 3 follow the same patterns as

shown in (6.2.1). Only for µ(3)
3 (6) = (4, 1, 1) and µ(3)

4 (7) = (5, 1, 1) fall outside these

patterns.

Proposition 6.2.2. The least three triplets of any n > 0 are forbidden. If n is odd,

then the fourth smallest triplet is also forbidden.

Thus, any partition that contains a sub-partition satisfying the difference conditions

[1], [0, 0], [0, 2], [2, 0], [0, 3], [3−, 0], [0−, 4]; (6.2.17)

or that contains (4, 1, 1) or (5, 1, 1) as a sub-partition are reducible.

Proof. The second part of the statement is just paraphrasing the first part along with

Proposition 6.1.1. (Note that many of the first four triplets contain a forbidden pair).
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Let µ∗ ∈P be arbitrary. We need to show that

X

(
−µ(3)

j (n)µ∗
)
v0 ∈ V(

µ
(3)
j (n)µ∗

), (6.2.18)

where j ≤ 4 if n is odd, j ≤ 3 if n is even.

Fix n ≥ 3. We take µ0 = µ
(3)
k (n), where k = 4 if n ≥ 7 is odd, or k = 3 if n ≥ 7 is

even, or k is the largest integer such that µ(3)
k (n) exists if n ≤ 5. Recall Notation 4.4.3.

Then, it is enough to show that

X

(
−µ(3)

j (n)µ∗
)
v0 ∈ V(µ̃), (6.2.19)

where j ≤ 4 if n is odd, j ≤ 3 if n is even.

Recalling Notation 4.4.13, we have

S
µ0
1 =

{
µ

(3)
1 (n+ 1), µ(3)

2 (n+ 1)
}
, (6.2.20a)

S
µ0
2 =

{
µ

(3)
1 (n+ 2)

}
, (6.2.20b)

S
µ0
k = ∅, if k > 2. (6.2.20c)

(as long as the corresponding partition exists, and omit if it does not). Therefore, by

Proposition 6.2.1, we can conclude that all partitions in S µ0 are reducible by partitions

larger than µ0. By Proposition 4.4.17, we have

0 = R
(3)
i (−n)X(−µ∗)v0 ≡

4∑
j=1

ci
(
µ

(3)
j (n)

)
X

(
−µ(3)

j (n)µ∗
)
v0 mod V(µ̃), (6.2.21)

Now, we proceed the same way as in the proof of Proposition 6.2.1. Notice that the

coefficient matrix M(n) is the same as in (6.2.14). And therefore, the conclusion follows

similarly as shown in the proof of Proposition 6.2.1.

Remark. We will see in Chapter 7 that any partition ending with (1, 1) is reducible in

all level 4 standard modules. (We will see that in the (4, 0)- and (0, 2)-modules any

partition ending with (1) is reducible, and in (2, 1)-module any partition ending with

(1, 1) is forbidden). Thus the exceptions (4, 1, 1) and (5, 1, 1) to the difference conditions

in the statement of the above proposition can be ignored as initial conditions.
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6.3 Exceptional Forbidden Triplets

In this section, we will prove that triplets of the form (k + 4, k, k), where k ∈ N is

odd, are forbidden, i.e., partitions containing a sub-partition satisfying the difference

condition (see Definition 4.1.9) [4−, 0] are reducible. We call them exceptional in the

sense that the result does not follow directly from the degree 3 identities alone, but

in conjunction with the degree 2 identity. Note that the forbidden triplet (5, 1, 1) also

follows the same pattern, but the result follows from the degree 3 identities directly

(§ 6.2), and in that sense, it is regular. Therefore, in this section, we only need to prove

the result for k ≥ 3 odd.

We discovered these forbidden triplets experimentally by eliminating the reducible

partitions in P(n) containing any forbidden pairs or triplets from § 6.1 and § 6.2, and

then comparing the result with F(4,0)(n) (see Notation 3.2.4) using Corollary 4.3.17,

for n ≥ 0. Let P ′ be the result of removing the partitions containing forbidden pairs

and triplets. We noticed that the first place where |P ′(n)| 6= F(4,0)(n) was for n = 13.

In this case, we had an extra partition in P ′(13). We get an extra partition next in

P ′(19). The gap of 6 (by the periodicity properties of the forbidden pairs and triplets)

suggested that we missed a forbidden triplet. The least triplet left in P ′(13) was the

partition (7, 3, 3).

The triplet (k + 4, k, k), where k ≥ 3, is the sixth smallest triplet of n = 3k + 4. We

set µ0 = µ
(3)
6 (n) (recalling Notation 4.1.19) in the settings of § 4.4 and in Notation 4.4.3.

Therefore, in our computation, we only keep track of the first six triplets. We list them

below for reference.
µ

(3)
1 (n) = (k + 2, k + 1, k + 1),

µ
(3)
2 (n) = (k + 2, k + 2, k),

µ
(3)
3 (n) = (k + 3, k + 1, k),

µ
(3)
4 (n) = (k + 3, k + 2, k − 1),

µ
(3)
4 (n) = (k + 3, k + 3, k − 1),

µ
(3)
4 (n) = (k + 4, k, k).

(6.3.1)

We will also need to keep track of first four terms with positive Heisenberg elements.
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Therefore we list below the first four triplets of n+ 1.

µ
(3)
1 (n+ 1) = (k + 2, k + 2, k + 1),

µ
(3)
2 (n+ 1) = (k + 3, k + 1, k + 1),

µ
(3)
3 (n+ 1) = (k + 3, k + 2, k),

µ
(3)
4 (n+ 1) = (k + 3, k + 3, k − 1).

(6.3.2)

Recall the relations given by R(2)(z) = 0, R(3)
1 (z) = 0, R(3)

2 (z) = 0, R(3)
3 (z) = 0 and

R
(3)
4 (z) = 0 (see (6.1.1), (6.2.3)), and the various coefficient functions from (6.1.5) and

(6.2.7).

We get a fifth relation (of degree 3) by multiplying a degree 2 relation by an

appropriate X(•) operator on the left. Let

R
(3)
5 (−n) = R5(−n) = X(−k − 3)R(2)(−2k − 1). (6.3.3)

Also recall the notations A(−n), B(−n), C(−n) for a given R(−n) from Nota-

tion 4.4.9. Therefore, R(2)(−2k − 1) can be expressed, modulo Ū (1), as

A(2)(−2k − 1) =
∑

µ∈Q2(2k+1)
c(2)(µ)X(−µ), (6.3.4a)

B(2)(−2k − 1) = −
∑

i>0, j≥0
µ∈Q2(2k+1−i+j)

c
(2)
b (µ)E′(−i)X(−µ)E′(j), (6.3.4b)

C(2)(−2k − 1) = −
∑
j>0

µ∈Q2(2k+1+j)

c
(2)
b (µ)X(−µ)E′(j), (6.3.4c)

Therefore, we have

R(2)(−2k − 1) ≡ A(2)(−2k − 1) +B(2)(−2k − 1) + C(2)(−2k − 1) mod Ū (2). (6.3.5)

Now, let us look at the terms of X(−k− 3)A(2)(−2k− 1) after rearranging the X(•)

operators using Lemma 4.2.4. In view of Proposition 4.4.17, we only need consider the

terms involving µ ∈P3(3k + 4) such that µ � µ0 = (k + 4, k, k). Notice that

(k + 3) · µ(2)
1 (2k + 1) = (k + 3, k + 1, k) = µ

(3)
3 (n) (6.3.6a)

(k + 3) · µ(2)
2 (2k + 1) = (k + 3, k + 2, k − 1)= µ

(3)
4 (n) (6.3.6b)

(k + 3) · µ(2)
3 (2k + 1) = (k + 3, k + 3, k − 2)= µ

(3)
5 (n) (6.3.6c)
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Therefore, modulo Ū (2), we have

X(−k − 3)A(2)(−2k − 1) = 4X
(
−µ(3)

3 (n)
)

+ 4X
(
−µ(3)

4 (n)
)

+ 4X
(
−µ(3)

5 (n)
)

+ . . . (6.3.7)

keeping track of only the relevant terms (using Lemma 5.4.1 for the coefficients).

Let us now look at the terms of X(−k − 3)B(3)(−2k − 1) after rearranging the X(•)

operators by Lemma 4.2.4. In view of Proposition 4.4.11 and Proposition 4.4.17, we will

only keep track of the terms that do not have any negative Heisenberg element, and

only those that involve µ ∈ P3(3k + 4) such that µ � µ0 = (k + 4, k, k). Recall the

formula in Corollary 2.2.12. In particular, we have

X(−m)E′(−1) = E′(−1)X(−m)− 6X(−m− 1), (6.3.8)

for any m ∈ Z.

A typical term in B(2)(−2k − 1) is of the form

E′(−i)X(−µ′)E′(j) i > 0, j ≥ 0, and µ′ ∈P2(2k + 1− i+ j), (6.3.9)

Using (6.3.8), we see that if i > 1 then the resulting term will yield

µ = (k + 3 + i) · µ′ � µ0 = (k + 4, k, k), (6.3.10)

and hence, we may ignore these terms.

If j > 0, i = 1 in (6.3.9), then µ′ ∈P2(2k + j). The resulting

µ = (k + 4) · µ′ � µ0 = (k + 4, k, k), (6.3.11)

since j ≥ 1, and hence, we may ignore these terms.

Therefore, the only relevant term in B(3) is for i = 1, j = 0 and µ′ = µ
(2)
1 (2k) = (k, k),

in (6.3.9), which yields the term X(−µ) for

µ = (k + 4, k, k) = µ
(3)
6 (n). (6.3.12)

Therefore, keeping only the relevant terms according to Proposition 4.4.17, we have,

modulo Ū (2),

X(−k − 3)B(3) = 6X
(
−µ(3)

6 (n)
)

+ . . . (6.3.13)
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since the coefficient to E′(−1)X(−(k, k)) in B(2)(−2k − 1) is −1 (by Lemma 5.4.1).

We now analyze the terms of X(−k − 3)C(2)(−2k − 1) which are relevant for the

computation in Proposition 4.4.17. A typical term in C(2)(−2k − 1) is of the form

X(−µ′)E′(j), j > 0, µ′ ∈P2(2k + 1 + j). (6.3.14)

Therefore, the result of the multiplication is

X(−k − 3)X(−µ′)E′(j), j > 0, µ′ ∈P2(2k + 1 + j). (6.3.15)

In view of Proposition 4.4.17, we only need to keep track of those terms of the form

(6.3.15), such that

µ = (k + 3) · µ′ ≺ µ0, (6.3.16)

where µ′ ∈ P2(2k + 1 + j), j > 0, and µ is not reducible by partition larger than

µ0 = (k + 4, k, k).

Recalling the notation from Notation 4.4.13, we have

S
µ0
1 =

{
µ

(3)
i (n+ 1)

∣∣∣ 1 ≤ i ≤ 4
}

(6.3.17a)

S
µ0
2 =

{
µ

(3)
i (n+ 2)

∣∣∣ 1 ≤ i ≤ 3
}

(6.3.17b)

S
µ0
3 =

{
µ

(3)
1 (n+ 3), µ(3)

2 (n+ 3)
}

(6.3.17c)

S
µ0
i =

{
µ

(3)
1 (n+ i)

}
for i = 4, 5 (6.3.17d)

S
µ0
i = ∅ for i > 5. (6.3.17e)

by Proposition 6.2.2 (or from the proof of it), we see that every triplet in S
µ0
j , for j ≥ 2,

are reducible by partitions larger than µ0. Thus, we only need the terms involving

µ ∈ S
µ0
1 .

We have j = 1 in the notation of (6.3.16). We list the first few pairs of 2k + 2.

P2(2k + 2) = {(k + 1, k + 1), (k + 2, k), (k + 3, k − 1), (k + 4, k − 2), . . . }
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Now if we add (k + 3) in these pairs and reorder (if necessary), we get

(k + 3, k + 1, k + 1) = µ
(3)
2 (n+ 1),

(k + 3, k + 2, k) = µ
(3)
3 (n+ 1),

(k + 3, k + 3, k − 1) = µ
(3)
4 (n+ 1),

(k + 4, k + 3, k − 2) � µ0 (ignore).

We also need to keep track of the coefficients, −c(2)
b

(
µ

(2)
i (2k + 2)

)
, for 1 ≤ i ≤ 3.

From Lemma 5.4.1, we have

− c(2)
b

(
µ

(2)
i (2k + 2)

)
=


−1 for i = 1,

−2 for i > 1.
(6.3.18)

Let us abbreviate,

µi = µ
(3)
i (n), (6.3.19a)

µ′i = µ
(3)
i (n+ 1). (6.3.19b)

Therefore, we have (only showing the terms of interest)

X(−k − 3)C(2)(−2k − 1)

= −X(−µ′2)E′(1)− 2X(−µ′3)E′(1)− 2X(−µ′4)E′(1) + . . . .

(6.3.20)

We summarize the result of the above computations below.

Proposition 6.3.1. Let k ≥ 3, and n = 3k+ 4. Let µi = µ
(3)
i (n), and µ′i = µ

(3)
i (n+ 1).

Then we have a fifth relation among the homogeneous operators in U (3) of degree −n/6:

R
(3)
5 (−n) = X(−k − 3)R(2)(−2k − 1) = 0, (6.3.21)

which can be expressed as(
4X(−µ3) + 4X(−µ4) + 4X(−µ5) + 6X(−µ6) + . . .

)
−
(
X(−µ′2) + 2X(−µ′3) + 2X(−µ′4) + . . .

)
E′(1) = 0,

(6.3.22)

only showing the terms that are relevant according to Proposition 4.4.17.
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Remark. The coefficients in the above relation R(3)
5 (−n) are invariant under increasing

k by 1 (since the coefficients for degree 2 relations are 1-periodic). The only place, so

far, we used the fact k is odd, is to show that S
µ0
1 contains a partitions that is not

reducible (the fourth triplet of n+ 1).

Now, we are ready to use this relation along with the other four regular relations of

degree 3.

Theorem 6.3.2. The triplets of the form (k + 4, k, k) are forbidden for k odd. Equiva-

lently, partitions containing difference condition [4−, 0] are forbidden.

Proof. If k = 1, (5, 1, 1) is the fourth triplet of 7, and is forbidden by Proposition 6.2.2.

Assume that k ≥ 3 odd and set n = 3k + 4. Let µ∗ ∈ P be arbitrary. We set

µ0 = µ
(3)
6 (n) = (k + 4, k, k) and µ̃ = µ0µ∗ in the notation of Notation 4.4.3. We need to

show that X(−µ̃)v0 ∈ V(µ̃).

For abbreviation, we will use µj = µ
(3)
j (n), and µ′j = µ

(3)
j (n+ 1). Also we will use

the following abbreviations for the coefficient functions, ci = c
(3)
i and c′i = c

(3)
ib , for i ≤ 4.

(Note that c′i = 0 for i ≤ 2).

Using the five degree 3 relations, we have

R
(3)
i (−n)X(−µ∗)v0 = 0, (6.3.23)

for 1 ≤ i ≤ 5. We will express the above relations modulo V(µ̃) using Proposition 4.4.17.

Based, on the discussion in this section, using Proposition 4.4.17, (6.3.23) can be

expressed as

6∑
j=1

ci(µj)X
(
µjµ∗

)
v0 −

4∑
j=1

c′i(µ′j)X(−µ′j)E′(1)X(−µ∗)v0 ≡ 0 mod V(µ̃), (6.3.24a)

for 1 ≤ i ≤ 4, and

6∑
j=1

ajX
(
µjµ∗

)
v0 −

4∑
j=1

bjX(−µ′j)E′(1)X(−µ∗)v0 ≡ 0 mod V(µ̃), (6.3.24b)

where a1 = a2 = 0, a3 = a4 = a5 = 4, a6 = 6, b1 = 0, b2 = 1 and b3 = b4 = 2, are the

constants coming from R
(3)
5 (−n) as shown in Proposition 6.3.1.
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We can further simplify the last four terms in the above equations (6.3.24), using the

four regular degree 3 relations R(3)
i (−n− 1) = 0, i ≤ 4, to reduce X(−µ′j), if possible.

Therefore, we add the relations

R
(3)
i (−n− 1)E′(1)X(−µ∗)v0 = 0, (6.3.25)

for 1 ≤ i ≤ 4. When expressed the above relations modulo V(µ̃), using Proposition 4.4.17,

we get
4∑
j=1

ci(µ′j)X(−µ′j)E′(1)X(−µ∗)v0 ≡ 0 mod V(µ̃), (6.3.26)

for 1 ≤ i ≤ 4.

We collect the coefficients of the linear equations in (6.3.24) and (6.3.26) modulo

V(µ̃) in a 9× 10 matrix:

c1(µ1) . . . . . . c1(µ6)
... . . . . . . ...

c4(µ1) . . . . . . c4(µ6)

0 0 4 4 4 6

0 . . . . . . 0
... . . . . . . ...

0 . . . . . . 0

−c′1(µ′1) . . . . . . −c′1(µ′4)
... . . . . . . ...

−c′4(µ′1) . . . . . . −c′4(µ′4)

0 −1 −2 −2

c1(µ′1) . . . . . . c1(µ′4)
... . . . . . . ...

c4(µ′1) . . . . . . c4(µ′4)



. (6.3.27)

Notice that if we increase k by 6, the coefficients in the corresponding matrix are exactly

the same (by Corollary 5.4.3 and Corollary 5.4.6).

Let M ′(k) be the reduced row-echelon form of the above matrix. Then M ′(k) is, in

fact, invariant under k 7→ k + 2 (see §A.1). We present below the matrix M ′(k) upto

the fifth row: 

1 0 0 0 2 0

0 1 0 0 −3 0

0 0 1 0 −1/2 0

0 0 0 1 3/2 0

0 0 0 0 0 1

0 0 0 −1

0 0 0 3/2

0 0 0 0

0 0 0 −1/4

0 0 0 0


. (6.3.28)

Notice that in the fifth row, the coefficients to all terms with positive Heisenberg elements

(the last four columns) are zero. Therefore, by Proposition 4.4.17, we have the desired
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result

X(−µ̃)v0 ≡ 0 mod V(µ̃).

6.4 Exceptional Forbidden Partitions of Arbitrary Length

In this section, we will prove that partitions of the form

µmk =
(
k + 6 + 2m, k + 3 + 2m, . . . , k + 3

m+ 1 parts

, k, k
)
∈Pm+4

(
k(m+ 4) + (m+ 3)2

)
,

(6.4.1)

for k odd and m ≥ 0 are forbidden, i.e., any partition containing a sub-partition with the

difference condition (see Definition 4.1.9) [3−, 2∗, 3, 0], where 2∗ denotes zero or more

occurrence of 2 (for µmk above 2 is repeated m times in the corresponding difference

condition), is reducible. Notice that if k is even then these partition contains the

(regular) forbidden triplet (k + 3, k, k) = µ(4)(3k + 3) (difference condition [3−, 0]), and

therefore, µmk is anyway forbidden if k is even.

The proof of the result for µ0
k follows from the degree 2 identity and the results

about the exceptional forbidden triplets. For m > 0, the result follows from the degree

2 identity and the result for µm−1
k+2 . Therefore, it is only natural to prove this result by

induction.

Also note that all identities we are using are coming from the degree 2 identity and

the degree 3 identities of § 5.3. All coefficients used in the calculation are invariant

under increasing every part by 2. (The proofs of Proposition 6.2.1, Proposition 6.2.2

and Theorem 6.3.2 show that, in the row-reduced form, we get equivalent relations if we

increase each part by 2). Therefore, it follows that if the result is true for µmk then it is

true for µmk+2 as well.

Therefore, it is enough to prove the result for k = 3. We choose k = 3 instead of

k = 1 because this is the most general case. If we take k = 1, some of the relevant

partitions belong to Q \P, and therefore can be ignored. Also we will see in Chapter 7

that any partition ending with (1, 1) is reducible in all level 4 standard modules because

of the initial conditions. Therefore, µm1 will be reducible in any case (notice that µm1

must be the suffix, as it ends with 1).
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Let πmk be the prefix of µmk of length m+ 1 obtained by omitting the last three parts

of µmk ,

πmk =
(
k + 6 + 2m, k + 3 + 2m, . . . , k + 5

m parts

)
∈Pm+1

(
k(m+ 1) + (m+ 3)2 − 3

)
.

(6.4.2)

Let µ′0 = (k + 3, k, k), so that µmk = πmk µ
′
0. Let

n = k(m+ 4) + (m+ 3)2, (6.4.3a)

n′ = n− (3k + 3) = k(m+ 1) + (m+ 3)2 − 3, (6.4.3b)

s = m+ 4, (6.4.3c)

s′ = s− 3 = m+ 1. (6.4.3d)

Then, µmk ∈Ps(n) and πmk ∈Ps′(n′).

Recall the notation E′(n) = E(−α;n). Also recall R(2)(z) from (6.1.1), A(2), B(2)

and C(2) from (6.1.7), such that

R(2)(−i) ≡ A(2)(−i) +B(2)(−i) + C(2)(−i) mod Ū (1). (6.4.4)

for all i ∈ N. By Proposition 5.3.1, we have

R(2)(−i) = 0 ∈ EndV. (6.4.5)

We will now create two relations Rm,k(−n) = 0 and R′m,k(−n) = 0, where,

Rm,k(−n) = X(−πmk )X(−2k − 2)R(2)(−2k − 1) ∈ Ū (s) (6.4.6)

R′m,k(−n) = X(−πmk )R(2)(−2k − 3)X(−k) ∈ Ū (s) (6.4.7)

are homogeneous operators of degree −n/6.

Recall the tools and techniques described in §4.4. We set µ0 = µmk as in Notation 4.4.3.

We will now write out the terms of Rm,k(−n) and R′m,k(−n) that are relevant in the

context of Proposition 4.4.17, when applying them on X(−µ∗)v0, for any µ∗ ∈ P

arbitrary, i.e., the terms in Rm,k(−n) and R′m,k(−n) of the form X(−µ) such that

µ � µ0, or of the form X(−µ)E(j) such that µ ≺ µ0.
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We will write X−µ for X(−µ), for better readability. Then, using the coefficients

from Lemma 5.4.1 and Proposition 2.2.11, we have

Rm,k(−n) = X(−πmk )X−(k+2)R
(2)(−2k − 1)

= X(−πmk )X−(k+2)

{[
4X−(k+1,k) + 4X−(k+2,k−1) + . . .

]
− E′(−1)

[
X−(k,k) + . . .

]
−
[
X−(k+1,k+1) + 2X−(k+2,k) + . . .

]
E′(1)

−
[
2X−(k+2,k+1) + . . .

]
E′(2)

}

= X(−πmk )
[
4X−(k+2,k+1,k) + 4X−(k+2,k+2,k−1) + 6X−(k+3,k,k) + . . .

]
−X(−πmk )

[
X−(k+2,k+1,k+1) +X−(k+2,k+2,k)

]
= 4X(−πmk )X−(k+2,k+1,k) + 4X(−πmk )X−(k+2,k+2,k−1)

+ 6X(−πmk )X−(k+3,k,k) + . . .

(6.4.8)

Notice, that the terms with positive Heisenberg elements are reducible by partitions

larger than µ0, since the partitions (k+ 2, k+ 1, k) and (k+ 2, k+ 2, k− 1) are reducible

by partitions larger than (k + 3, k, k) (see the proof of Proposition 6.2.1).

Similar calculation shows that

R′m,k(−n) = X(−πmk )R(2)(−2k − 3)X(−k)

= 4X(−µmk )X−(k+2,k+1,k) + 6X(−µmk )X−(k+2,k+2,k−1)

+ 4X(−µmk )X−(k+3,k,k) + . . .

(6.4.9)

with no significant positive Heisenberg elements (in view of Proposition 4.4.17).

Proposition 6.4.1 (Base case: m = 0). The partition µ0
k = (k + 6, k + 3, k, k), for

k > 0 odd are forbidden.

Alternatively, partitions having a sub-partition satisfying the difference condition

[3−, 3, 0] are reducible.

Proof. As explained before, it is enough to prove for the case k = 3. Note that the

coefficients in (6.4.8) and (6.4.9) are the same for all k. Therefore, the result is true



102

under the translation µ 7→ µ + 2. (we will be using k is odd in the later part of the

proof).

Let R = R(−21) = R0,3(−21) and R′ = R′(−21) = R′0,3(−21) (see (6.4.6), (6.4.7)).

Let µ0 = µ0
3, and µ∗ ∈P be arbitrary (recall Notation 4.4.3 in § 4.4). We will apply

Proposition 4.4.17. Note that there are no significant terms with positive Heisenberg

elements in either R(−21) or R′(−21). We have

R = 4X−(9,5,4,3) + 4X−(9,5,5,2) + 6X−(9,6,3,3) + · · · = 0

R′ = 4X−(9,5,4,3) + 6X−(9,5,5,2) + 4X−(9,6,3,3) + · · · = 0
(6.4.10)

Subtracting the above equations, we get

R′′ = R−R′ = −2X−(9,5,5,2) + 2X−(9,6,3,3) + · · · = 0. (6.4.11)

Notice that (9, 5, 5) is an exceptional forbidden triplet. Therefore it is reducible by

partitions larger than or equal to (9, 6, 4). Therefore, X−(9,5,5,2) is reducible by partition

larger than µ0. (Following the proof of Theorem 6.3.2, we see that this reduction

doesn’t involve any significant term with positive Heisenberg element). Now, applying

Proposition 4.4.17, we get the desired result. (Notice, that it is the reduction of (9, 5, 5)

where we need the fact that k is odd.)

Theorem 6.4.2. Recall µmk from (6.4.1). The partitions µmk are forbidden for m ≥ 0

and k ≥ 1 odd.

Alternatively, any partition having a sub-partition satisfying the difference condition

[3−, 2∗, 3, 0] (where 2∗ denotes zero or more occurrence of 2) are reducible.

Proof. We prove by induction on m. As induction hypothesis we assume that µm′k′ can

be reduced by partition larger than itself without adding any significant term with

positive Heisenberg elements (in the context of Proposition 4.4.17), for all m′ < m and

k′ odd.

The base case, m = 0, follows from Proposition 6.4.1.

Assume that m > 0. We follow the computations done in the proof of Proposi-

tion 6.4.1, upto (6.4.11), with R = Rm,k(−n), R′ = R′m,k(−n), µ0 = µmk . Therefore, we
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have

R′′ = −2X(−πmk )X−(k+2,k+2,k−1) + 2X(−πmk )X−(k+3,k,k) + · · · = 0 (6.4.12)

Notice that

πmk · (k + 2, k + 2, k − 1) = µm−1
k+2 · (k − 1), (6.4.13)

and

πmk · (k + 3, k, k) = µmk . (6.4.14)

Therefore, we can rewrite (6.4.12) as

− 2X
(
−µm−1

k+2

)
X(−k + 1) + 2X (−µmk ) + · · · = 0. (6.4.15)

We can reduce the first term (since k + 2 is odd) in the above equation using induction

hypothesis without adding any significant term with positive Heisenberg elements. Notice

that if µ > µm−1
k+2 such that l(µ) = l

(
µm−1
k+2

)
and |µ| =

∣∣∣µm−1
k+2

∣∣∣ then
µ � µm−1

k+2 � π
m
k , (6.4.16)

and therefore,

µm−1
k+2 · (k − 1) > µmk . (6.4.17)

Thus, µm−1
k+2 · (k − 1) is reducible by partition larger than µ0 = µmk

The result follows from Proposition 4.4.17 (applied on an arbitrary µ∗ ∈P).

6.5 Summary of Forbidden Partitions for Level 4 Modules

In this section we summarize the results of this chapter and record some general

observations regarding forbidden partitions. Throughout this section, let V = L(Λ) be

a level 4 standard module with highest weight Λ, and a highest weight vector v0.

Notation 6.5.1. Let R(L4) ⊂ P denote the set of all partitions µ ∈ P such that µ

contains a sub-partition from the following list:

(a) (4, 1, 1),

(b) any partition satisfying one of the following difference conditions:

(i) [1];
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(ii) [0, 0], [0, 2], [2, 0], [0, 3], [3−, 0], [0−, 4], [4−, 0];

(iii) [3−, 2∗, 3, 0], where 2∗ denotes zero or more occurrence of 2.

Let P(L4) = P \R(L4).

Remark. R(L4) is a set of partitions that are reducible for all level 4 standard modules.

We summarize the results of this chapter along with a few useful observations in the

following proposition. Recall Notation 4.3.7, Notation 3.2.4.

Proposition 6.5.2. (1) The set

S′ =
{
α(−λ)X(−µ)v0

∣∣∣ λ ∈ O, µ ∈P(L4)
}

(6.5.1)

is a spanning set for any level 4 standard module V with a highest weight vector v0.

(2) A Λ ⊂P(L4) and FΛ(n) ≤
∣∣∣P(L4)(n)

∣∣∣ for all n ≥ 0.

(3) If µ ∈P does not contain the sub-partition (4, 1, 1), then we have

µ ∈ R(L4) =⇒ µ+ 2 ∈ R(L4), (6.5.2)

and for any µ ∈P,

µ ∈P(L4) =⇒ µ+ 2 ∈P(L4). (6.5.3)

Proof. The first two assertions follow from Corollary 4.3.17 in conjunction with Propo-

sition 6.1.1, Proposition 6.2.2, Theorem 6.3.2 and Theorem 6.4.2.

For the third assertion, observe that all the difference conditions in Notation 6.5.1

are invariant under µ 7→ µ+ 2. Only exception, is the forbidden partition (4, 1, 1) that

does not satisfy any of the difference condition listed above.
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Chapter 7

Initial Conditions

In this chapter we will discuss the “initial conditions” for each of the three level 4

standard modules of g̃. These conditions states that a partition is reducible if it contains

certain forbidden suffices. Therefore, these conditions do not have the “translation”

properties (Proposition 6.5.2(3)) that we saw in the case of forbidden partitions of

Chapter 6.

In §7.1, § 7.2 and §7.3, we investigate the initial conditions for the (4, 0)-, (2, 1)- and

the (0, 2)-module respectively.

Recall that ω = eiπ/3 and ω0 = eiπ/6 are primitive 6-th and 12-th roots of unity

respectively. Also recall Definition 4.3.6, Notation 6.5.1.

See Appendix B to find the details of the computer assisted computations used in

the following sections.

7.1 Initial Condition for the (4, 0)-module

In this section, let Λ = 4h∗0. Let V = L(Λ) be the standard module of highest weight Λ

with a highest weight vector v0. We will show that vectors of the form α(−λ)X(−µ)v0,

where λ ∈ O, µ ∈P having 1 as a part, can be removed from the spanning set (6.5.1).

Proposition 7.1.1. If µ ∈P is a partition containing 1 as a part, then µ is reducible.

Proof. Note that if 1 is a part of µ, then it must occur at the end. Therefore, by

Proposition 4.4.1, it is enough to show that X(−1)v0 ∈ V((1)).

On V , we have f1v0 = 0. Replacing f1 in terms of the vertex operators via

Proposition 2.3.1, we get

− 2
ω0
X(−1)v0 + 1√

3
α(−1)v0 = 0, (7.1.1)
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or

X(−1)v0 = ω0
√

3
6 α(−1)v0. (7.1.2)

Thus, the result follows.

Remark. Recall Notation 6.5.1. We could also prove this by comparing our spanning set

(6.5.1) against the graded dimension using Corollary 4.3.17. We have FΛ(1) = 0, but

|P(L4)(1)| = 1. (P(L4)(1) = {(1)}). Therefore X(−1)v0 must be in V((1)) = V (0).

7.2 Initial Conditions for the (2, 1)-Module

In this section, let Λ = 2h∗0 + h∗1. Let V = L(Λ) be the standard module of highest

weight Λ with a highest weight vector v0. In this section we will show that vectors of

the form α(−λ)X(−µ)v0, where λ ∈ O, µ ∈P having 1, 2 or 3 twice as a part, can be

removed from the spanning set (6.5.1).

We used Maple programs to straighten out various monomials in the proofs below.

These programs and the Maple worksheet used to carry out these computations are

presented in Appendix B.

Lemma 7.2.1. In the (2, 1)-module V , we have X(−1)2v0 ∈ V((1,1)).

Proof. In the (2, 1)-module, we have f2
1 v0 = 0. We can write this relation in terms of

the α(•) and X(•) operators using Proposition 2.3.1, and then straighten out the terms

using the bracket formulae in Proposition 4.2.2. This yields the following relation

X(−1)2v0 = −ω0
√

3
6 X(−2)v0 + ω0√

3
α(−1)X(−1)v0 −

ω

12α(−1)2v0. (7.2.1)

Since the RHS belongs to V((1,1)), this gives us the desired result.

Remark. Alternatively, we could have used Corollary 4.3.17 to argue that we have an

extra partition in P(L4)(2) (recall Notation 6.5.1). Therefore, one of the partitions, (2)

or (1, 1) must be reducible in the (2, 1)-module. If we assume that (2) is reducible, then

by Proposition 4.4.1, any partition ending with a 2 must also be reducible. Let P ′ be

the set of partitions in P(L4) not containing any partition ending with a 2. We get
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2 = |P ′(7)| < F(2,1)(7) = 3, contradicting Corollary 4.3.17. Therefore, (2) cannot be

reducible, and by elimination, (1, 1) must be reducible.

Lemma 7.2.2. In the (2, 1)-module V , we have X(−2)2v0 ∈ V((2,2)).

Proof. In the (2, 1)-module, we have f3
0 v0 = 0. We rewrite this relation in terms of the

α(•) and X(•) operators using Proposition 2.3.1. Then we apply the relation (7.2.1)

and straighten out the terms using the bracket relations in Proposition 4.2.2. We obtain

X(−2)X(−1)v0 = − ω0√
3
α(−1)X(−2)v0 + ω0

√
3

2 α(−1)2X(−1)v0. (7.2.2)

This does not give us anything new—it just shows that (2, 1) is a reducible partition.

However, we are going to use this to simplify the next relation, f4
0 v0 = 0. Once again

we rewrite this relation in terms of the α(•) and X(•) operators, apply the rewriting

rules (7.2.1) and (7.2.2), and straighten out the terms using the bracket relations in

Proposition 4.2.2. This gives us the following relation:

X(−2)2v0 = −4
3X(−3)X(−1)v0 −

ω0
√

3
18 X(−4)v0

+ ω02
√

3
9 α(−1)X(−3)v0 − ω0

√
3α(−1)2X(−2)v0

+ ω04√
3
α(−1)3X(−1)v0 + ω

12α(−1)4v0.

(7.2.3)

Thus, the desired result follows.

Remark. Alternatively, we could use Corollary 4.3.17 and Proposition 4.4.1 to prove

that (2, 2) is reducible. We have an extra partition in P(L4)(4) after removing reducible

partitions of 4 ending with (1, 1). The partitions in P(L4)(4) that does not end with (1, 1)

are (2, 2), (3, 1) and (4). If we assume that (4) is reducible, then we get a contradiction for

the partitions of n = 8. If we assume that (3, 1) is reducible then we get a contradiction

for the partitions of n = 9. Therefore, by elimination, (2, 2) must be reducible.

Lemma 7.2.3. In the (2, 1)-module V , X(−3)2v0 ∈ V((3,3)).

Proof. The proof is similar to that of Lemma 7.2.2. We will use the following two

additional relations in the (2, 1)-module:

f5
0 v0 = 0, f6

0 v0 = 0.
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From f5
0 v0 = 0, expressing it in terms of the operators α(•) and X(•), simplifying

and straightening out the terms using the bracket relations and the rewriting rules

(7.2.1), (7.2.2), (7.2.3), we get

X(−3)X(−2)v0 = −X(−4)X(−1)v0 + α(−1)X(−3)X(−1)v0

− ω0
√

3
6 α(−1)X(−4)v0 + ω0√

3
α(−1)2X(−3)v0

− ω0
√

3
2 α(−1)3X(−2)v0 + ω0

√
3

2 α(−1)4X(−1)v0

+ ω

20α(−1)5v0 + ω

30α(−5)v0.

(7.2.4)

From f6
0 v0 = 0, expressing it in terms of the operators α(•) and X(•), simplifying

and straightening out the terms using the bracket relations and the rewriting rules

(7.2.1), (7.2.2), (7.2.3), (7.2.4), we get

X(−3)2v0 = 2X(−5)X(−1)v0 −
ω0
√

3
6 X(−6)v0

− 6α(−1)X(−4)X(−1)v0 + ω02√
3
α(−1)X(−5)v0

+ 6α(−1)2X(−3)X(−1)v0 − ω0
√

3α(−1)2X(−4)v0

+ ω0
√

3α(−1)3X(−3)v0 −
ω03
√

3
5 α(−1)5X(−1)v0

− ω0
√

3
15 α(−5)X(−1)v0 −

ω

6α(−5)α(−1)v0.

(7.2.5)

Since the terms on the RHS of the above equation belong to V((3,3)), the result follows.

Remark. We were unable to find a proof by contradiction and elimination (as we could

for the previous two cases) based on Proposition 4.4.1 and Corollary 4.3.17. We could

not find any contradiction if we assumed that (6) is reducible. This is why we decided

to give a direct proof.

Proposition 7.2.4. In the (2, 1)-module any partition ending with (1, 1), (2, 2) and

(3, 3) are reducible.

Proof. By Proposition 4.4.1, it is enough to show that (1, 1), (2, 2) and (3, 3) are reducible.

Therefore, the result follows from Lemma 7.2.1, Lemma 7.2.2 and Lemma 7.2.3.
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7.3 Initial Conditions for the (0, 2)-Module

In this section, let Λ = h∗0 + 2h∗1. Let V = L(Λ) be the standard module of highest

weight Λ with a highest weight vector v0. We will show that partitions having 1 or 3 as

a part, or having 2 as a part twice are reducible. Furthermore, any partition ending

with (5, 2), (7, 4, 2), (9, 6, 4, 2), . . . etc. are also reducible.

Lemma 7.3.1. In the (0, 2)-module V, we have X(−1)v0 ∈ V (0).

Proof. In the (0, 2)-module, we have f0v0 = 0. Using Proposition 2.3.1, we have

X(−1)v0 = − ω0√
3
α(−1)v0. (7.3.1)

Lemma 7.3.2. In the (0, 2)-module V, we have X(−3)v0 ∈ V((3)).

Proof. In the (0, 2)-module we have f3
1 v0 = 0. Expressing this relation in terms of the

operators α(•) and X(•), simplifying and straightening out using the bracket relations

Proposition 4.2.2 and the rewriting rule (7.3.1), we get

X(−3)v0 = 3
2α(−1)X(−2)v0 + ω0

√
3

4 α(−1)3v0. (7.3.2)

Thus, the result follows.

Remark. The above two lemmas could also be argued based on the graded dimension

formula, using Proposition 4.4.1 and Corollary 4.3.17.

Lemma 7.3.3. In the (0, 2)-module V, we have X(−2)2v0 ∈ V((2,2)).

Proof. In the (0, 2)-module V, we have f4
1 v0 = 0. Expressing this relation in terms

of the operators α(•) and X(•), simplifying and straightening out using the bracket

relations Proposition 4.2.2 and the rewriting rules (7.3.1) and (7.3.2), we get

X(−2)2v0 = −ω0
√

3
2 X(−4)v0 + ω0

√
3α(−1)2X(−2)v0 + ω3

4 α(−1)4v0. (7.3.3)

Therefore, the result follows immediately.
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Remark. The above lemma could also be argued based on the graded dimension formula,

using Proposition 4.4.1 and Corollary 4.3.17. We have an extra partition in P(L4)(4)

after removing partitions ending with a 1 or a 3. Therefore, one of the two partitions

(2, 2) or (4) must be reducible. If we assume that (4) is reducible, then we arrive at a

contradiction for the partitions of n = 8.

The following initial conditions are consequence of the interplay of Lemma 7.3.2 and

other reducible partitions in R(L4) that ends with a 3.

Lemma 7.3.4. In the (0, 2)-module V , the following partitions

(5, 2), (7, 4, 2), (9, 6, 4, 2), (11, 8, 6, 4, 2), . . . , etc..

are reducible. Notice that all these partitions satisfy the difference condition [3, 2∗] (here

2∗ denotes zero or more occurrence of 2), and end with the lowest part 2.

Proof. First, we will show that X(−5)X(−2)v0 ∈ V((5,2)). Using the degree 2 relation

R(2)(−7)v0 = 0 (6.1.3), we have

X(−4)X(−3)v0 +X(−5)X(−2)v0 ≡ 0 mod V((5,2)). (7.3.4)

Applying the operator X(−4) on both sides of (7.3.2), we also have

X(−4)X(−3)v0 ≡
3
2X(−5)X(−2)v0 mod V((5,2)). (7.3.5)

Combining (7.3.4) and (7.3.5) gives us the desired result.

Now, we will prove the result for (7, 4, 2). We proceed in the same fashion as in

the proof of Theorem 6.3.2, except this time we need to keep track of terms involving

partitions upto (7, 4, 2) (one additional term). See the corresponding matrix in row-

reduced form in §A.1. The result shows that,

X(−(7, 3, 3))v0 ≡ 0 mod V((7,4,2)). (7.3.6)

However, applying X(−7)X(−3) on both sides of (7.3.2), we get

X(−(7, 3, 3))v0 ≡
3
2X(−(7, 4, 2))v0 mod V((7,4,2)). (7.3.7)

Combining (7.3.7) and (7.3.6) gives us the desired result.
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Now, we will prove the general case. Let µ0 be a partition satisfying the difference

condition [3, 2∗] (with at least two occurrence of 2) and ending with a 2.

We will follow similar computations as done in §6.4. Recall the notations µmk (6.4.1),

πmk (6.4.2), Rm,k (6.4.6) and R′m,k (6.4.7). Also recall (6.4.3).

Let µm2 be the partition obtained by replacing the suffix (4, 2) of µ0 by (3, 3), where

m = l(µ0)− 4 ≥ 0. Then, we have l (µm2 ) = l(µ0), and |µm2 | = |µ0|. And, µ0 is the next

smallest partition of n into s parts after µm2 .

Therefore, we need to keep track of an extra term in each of (6.4.8) and (6.4.9).

Therefore, we have (applying to v0)

4X(−πm2 )X−(5,4,3)v0 + 4X(−πm2 )X−(5,5,2)v0

+ 6X(−πm2 )X−(6,3,3)v0 + 12X(−πm2 )X−(6,4,2)v0 ≡ 0 mod V(µ0), (7.3.8)

4X(−πm2 )X−(5,4,3)v0 + 6X(−πm2 )X−(5,5,2)v0

+ 4X(−πm2 )X−(6,3,3)v0 + 12X(−πm2 )X−(6,4,2)v0 ≡ 0 mod V(µ0). (7.3.9)

Subtracting (7.3.9) from (7.3.8), we get

− 2X(−πm2 )X−(5,5,2)v0 + 2X(−πm2 )X−(6,3,3)v0 ≡ 0 mod V(µ0). (7.3.10)

Notice that πmk · (5, 5) = µm−1
k+2 , and therefore, the first term in the above equation can

be reduced by partitions larger than µ0. Also, πmk · (6, 3, 3) = µmk . Following the same

argument, as in the proof of Theorem 6.4.2, we obtain

X(−πm2 )X−(6,3,3)v0 ∈ V(µ0). (7.3.11)

However, by (7.3.2), we have

X(−πm2 )X−(6,3,3)v0 ≡
3
2X(−πm2 )X−(6,4,2)v0 mod V(µ0). (7.3.12)

But πmk · (6, 4, 2) = µ0. Therefore, combining (7.3.11) and (7.3.12), we obtain the desired

result:

X(−µ0)v0 ∈ V(µ0).
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Proposition 7.3.5. For the (0, 2)-module, any partition ending with a 1 or 3, or ending

with the sub-partition (2, 2) or one of the following sub-partitions:

(5, 2), (7, 4, 2), (9, 6, 4, 2), (11, 8, 6, 4, 2), . . . , etc..,

(i.e., sub-partitions satisfying the difference condition [3, 2∗] and ending with a 2) is

reducible.

Proof. The result follows from Lemma 7.3.1, Lemma 7.3.2, Lemma 7.3.3, Lemma 7.3.4

and Proposition 4.4.1.
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Chapter 8

Partition Identities

In this chapter, we summarize our main results and propose three new partition identities.

These results prove one inequality of the the proposed identities. We have also verified

the partition identities for partitions of n, for n ≤ 170, and n = 180, 190 and 200. The

C program used for the verification is included in Appendix C. This demonstrates a

strong evidence for the validity of these partition identities.

8.1 The Main Result

Let V = L(Λ) be a level 4 standard module for g̃ of highest weight Λ, and a highest

weight vector v0, where Λ = (4, 0), (2, 1) or (0, 2). Recall Definition 4.1.9, Notation 3.2.4,

Notation 4.3.7 and Notation 6.5.1.

Let R′(4,0) ⊂P be the set of all partitions in R(L4) and all partitions that end with

(1). Let P(4,0) = P \R′(4,0).

Let R′(2,1) ⊂P be the set of all partitions in R(L4) and all partitions that end with

(1, 1), (2, 2) or (3, 3). Let P(2,1) = P \R′(2,1).

Let R′(0,2) ⊂ P be the set of all partitions in R(L4) and all partitions that end

with (1), (3), (2, 2), or that end with a sub-partition ending with a 2 and satisfying

the difference condition [3, 2∗], where 2∗ denotes zero or more occurrence of 2. Let

P(0,2) = P \R′(0,2).

Theorem 8.1.1. Let V = L(Λ) be a level 4 standard module for g̃ of highest weight Λ,

and a highest weight vector v0, where Λ = (4, 0), (2, 1) or (0, 2). Then, with the notations

described above, the set

SΛ =
{
α(−λ)X(−µ)v0

∣∣∣ λ ∈ O, µ ∈PΛ
}

(8.1.1)
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is a spanning set for V . Furthermore,

FΛ(n) ≤
∣∣∣PΛ(n)

∣∣∣ , (8.1.2)

for all n ≥ 0. The equality holds in (8.1.2) for all n ≥ 0 if and only if the set (8.1.1) is

a basis for V . (The equality is verified for n ≤ 170 and n = 180, 190 and 200.)

Proof. From Proposition 6.5.2, Proposition 7.1.1, Proposition 7.2.4 and Proposition 7.3.5,

we have

R′Λ ⊂ RΛ,

and therefore,

A Λ ⊂PΛ.

Thus, the result follows from Corollary 4.3.17.

Paraphrasing the above theorem, the three (conjectured) partition identities are

presented below.

Λ = (4,0): The number of partitions of n ≥ 0 with parts congruent to ±2,±3,±4

modulo 14 is less than or equal to the number of partitions of n into parts greater than

1, and having no sub-partition with difference condition [1], [0, 0], [0, 2], [2, 0], [0, 3],

[3−, 0], [0−, 4], [4−, 0] or [3, 2∗, 3, 0]. The equality holds for all n ≥ 0 if and only if the

set (8.1.1) is a basis of V = L(4, 0). Furthermore, the equality has been verified to hold

for n ≤ 170, n = 180, 190 and 200.

Λ = (2,1): The number of partitions of n ≥ 0 with parts congruent to ±1,±4,±6

modulo 14 is less than or equal to the number of partitions of n not ending with (1, 1),

(2, 2) or (3, 3), and having no sub-partition with difference condition [1], [0, 0], [0, 2],

[2, 0], [0, 3], [3−, 0], [0−, 4], [4−, 0] or [3, 2∗, 3, 0]. The equality holds for all n ≥ 0 if and

only if the set (8.1.1) is a basis of V = L(2, 1). Furthermore, the equality has been

verified to hold for n ≤ 170, n = 180, 190 and 200.

Λ = (0,2): The number of partitions of n ≥ 0 with parts congruent to ±2,±5,±6

modulo 14 is less than or equal to the number of partitions of n not ending with (1),

(2, 2) or (3), and not ending with a partition satisfying the difference condition [3, 2∗]

that ends with (2), and having no sub-partition with difference condition [1], [0, 0], [0, 2],
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[2, 0], [0, 3], [3−, 0], [0−, 4], [4−, 0] or [3, 2∗, 3, 0]. The equality holds for all n ≥ 0 if and

only if the set (8.1.1) is a basis of V = L(0, 2). Furthermore, the equality has been

verified to hold for n ≤ 170, n = 180, 190 and 200.
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Appendix A

Computation of the Relations

In this appendix, we present the maple programs that we used to compute the relations

and their computations.

In §A.1, we present the Maple worksheet showing examples of our calculations that

were used in Chapter 6 and Chapter 7. The worksheet uses the codes from three other

Maple source files presented in the subsequent sections.

In §A.2, we present the Maple source file containing the programs used to generate

the list of partitions of a positive integer n into k parts in the decreasing lexicographical

order (see Notation 4.1.17). The algorithm we implemented is from [Cha11].

In §A.3, we present the Maple source file containing the programs used to compute

the coefficients of X(−µ) in various product generating functions, as described in § 5.4.

In § A.4, we present the Maple source file containing various procedures used to

automate our calculations of the relations used in the Maple worksheet presented in

§A.1.

A.1 Maple Worksheet for Computing Relations

In this section, we present the Maple worksheet showing examples of our calculations

that were used in Chapter 6 and Chapter 7. The worksheet uses the codes from three

other Maple source files presented in the subsequent sections. All three source files

(named, chat.txt, coeffs.txt and test.txt) must be saved in the same working

directory as this Maple worksheet.



> > 

> > 

> > 

> > 

(1)(1)

read `cha.txt`:
read `coef.txt`:
read `test.txt`:

with(LinearAlgebra):

# Examples of degree 3 relations.

for n from 3 to 16 do
  print(n);
  print(truncate(listkPartitions(n,3),4));
  print(deg3(n));
  print("-----------------------");
end do:

3

"-----------------------"
4

"-----------------------"
5

"-----------------------"
6
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(1)(1)

"-----------------------"
7

"-----------------------"
8

"-----------------------"
9

"-----------------------"
10

"-----------------------"
11

118



(1)(1)

"-----------------------"
12

"-----------------------"
13

"-----------------------"
14

"-----------------------"
15

"-----------------------"
16
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(2)(2)

> > 

(1)(1)"-----------------------"

# Computation of the Matrix from the proof of the degree 3
# exceptional triplets.
#
for n from 13 to 25 by 6 do
  print(n);
  print(truncate(listkPartitions(n,3),6));
  print(truncate(listkPartitions(n+1,3),4));
  print(deg3ex(n));
  print("-----------------------");
end do:

13

"-----------------------"
19
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(3)(3)

(2)(2)

> > 

(1)(1)

"-----------------------"
25

"-----------------------"

# Computation of the matrix for the initial condition
# of the (0,2)-module showing that (7,4,2) is reducible.
#
n := 13;
L := truncate(listkPartitions(n, 3), 7);
for i from 1 to 4 do
  r[i] := map(c||i, L);
end do:
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(2)(2)

> > 

(3)(3)

(1)(1)

r[5] := [0$7]:
L1 := listkPartitions(7,2);
for i from 1 to 7 do
  for x in L1 do
    if L[i] = sort([6,op(x)], `>`) then
      r[5][i] := r[5][i] + c(x);
    end if;
  end do:
end do:
L2 := listkPartitions(6,2);
for i from 1 to 7 do
  for x in L2 do
    if L[i] = sort([7,op(x)], `>`) then
      r[5][i] := r[5][i] + 6*cb(x);
    end if;
  end do:
end do:
M := Matrix([seq(r[i], i=1..5)]):
ReducedRowEchelonForm(M);
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A.2 Maple Codes to Generate Partitions

In this section, we present the source file containing the codes used to generate the list

of partitions of a positive integer n into k parts in the decreasing lexicographical order

(see Notation 4.1.17). The algorithm we implemented is from [Cha11]. Partitions are

represented as a non-increasing list of positive integers.

Listing A.1: cha.txt
#################################################################

#

# File: cha.txt

#

# Author : Debajyoti Nandi

#

# Generating Partitions of n into k parts , based on

# Sung -Huyk Cha , " Recursive algorithms for generating

# partitions of an integer ", 2011

#

# Link:

# http :// support .csis.pace.edu/ CSISWeb /docs/ techReports /

# techReport280 .pdf

#

#

# The main functions :

# listkPartitions (n,k): lists the partitions of n into k

# parts in ascending lexicographic order. A partition is

# represented as a non - increasing list (aka , descending

# composition ).

#

# Example : listkPartitions (8 ,3)

# => [[3 ,3 ,2] ,[4 ,2 ,2] ,[4 ,3 ,1] ,[5 ,2 ,1] ,[6 ,1 ,1]]

#

# allPartitions (n): lists all partitions of n, in ascending

# order (with respect to ">" on P). Each partition is

# represented as a non - increasing list.

#

# Example : allPartitions (5)

# => [[1 ,1 ,1 ,1 ,1] ,[2 ,1 ,1 ,1] ,[2 ,2 ,1] ,[3 ,1 ,1] ,[3 ,2] ,[4 ,1] ,[5]]

#

#################################################################
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# The maximum number to be partitioned

_N := 100;

# The list to hold the current partition being generated

_p := [0 $_N ];

# The list to hold the generated partitions

_L := [];

# resetL (): Resets the global variable _L

_resetL := proc ()

global _L := [];

end proc;

# _P(n,k,visit ): - Generates partitions of n into k parts ,

# and calls the function visit () each time a partition is

# generated .

#

_P := proc(n,k,visit)

if n >= k then

_R(n, k, n-k+1, 1, visit );

end if;

end proc;

# _R(n,k,s,t,visit ): Recursive backbone of _P(), generates

# partitions of n into k parts , with the largest part s,

# (t is the position index where this partitions is to be

# added in _p). visit () is as above.

#

# The following invariant is always true:

# ceil(n/k) <= s <= n-k+1.

#

_R := proc(n,k,s,t,visit)

global _p;

local i;

if k=1 then

_p[t] := n;

visit(t);

return ;
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end if;

for i from ceil(n/k) to s do

_p[t] := i;

_R(n-i, k-1, min(i, n-i-k+2), t+1, visit );

end do;

end proc;

# _listIt (t) - The visitor function that puts the constructed

# partition into the list _L , t is the length of the current

# partition .

#

_listIt := proc(t)

global _p , _L;

_L := [op(_L), _p [1..t]];

end proc;

# listkPartitions (n,k): Returns a list of partitions of n into

# k parts. The partitions are represented as non - increasing

# lists. The partitions are arranged in ascending

# lexicographical order.

#

# Example : listkPartitions (8 ,3)

# => [[3 ,3 ,2] ,[4 ,2 ,2] ,[4 ,3 ,1] ,[5 ,2 ,1] ,[6 ,1 ,1]]

#

listkPartitions := proc(n,k)

global _L;

local L;

_restetL ();

_P(n,k, _listIt );

L := _L;

_resetL ();

return L;

end proc;

# allPartitions (n): lists all partitions of n, in ascending

# order (with respect to ">" on P). Each partition is

# represented as a non - increasing list.

#

# Example : allPartitions (5)

# => [[1 ,1 ,1 ,1 ,1] ,[2 ,1 ,1 ,1] ,[2 ,2 ,1] ,[3 ,1 ,1] ,[3 ,2] ,[4 ,1] ,[5]]
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#

allPartitions := proc(n)

local L := [], k;

for k from n to 1 by -1 do

L := [op(L), op( listkPartitions (n,k))];

end do;

return L;

end proc;

A.3 Maple Codes to Compute the Coefficients

Here, we present the source file containing the codes used to compute the coefficients of

X(−µ) in various product generating functions, as described in § 5.4.

Listing A.2: coeffs.txt
################################################################

#

# File: coeffs .txt

#

# Author : Debajyoti Nandi

#

# This file includes code for generating the coefficients

# of X(-L) in various generating function identities , L is

# a partition of n.

#

# _genCoeff (deg , Spec , L):

# This procedure computes the coefficient of X(-L) in the

# product generating function (of degree deg)

# X(v^i.a)X(v^j.a)...

# deg = # of factors

# Spec = [i,j...] the powers of nu (v) that appears above

# L = a partition of n into deg parts.

#

# ca(L): coefficient of X(-L) (L is a partition into two parts)

# in X(a,a) [Spec =[0 ,0]];

#

# cb(L): coefficient of X(-L) (L is a partition into two parts)

# in X(-a,-a) [Spec =[3 ,3]]

#

# c(L): coefficient of X(-L) (L is a partition into two parts)
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# in X(a,a) - E^-(-a)X(-a,-a)E^+(a)

#

# c1a(L): coefficient of X(-L) (L is a triplet ) in

# X(a,a,a) [Spec =[0 ,0 ,0]]

#

# c1b(L): 0 (the LHS has deg = 1 < 3)

#

# c1(L): same as c1a

#

# c2a(L): coefficient of X(-L) (L is a triplet ) in

# X(a,a,v.a) [Spec =[0 ,0 ,1]]

#

# c2b(L): 0 (the LHS has deg = 2 < 3)

#

# c2(L): same as c2a;

#

# c3a(L): coefficient of X(-L) (L is a triplet ) in

# X(a,v.a,v.a) [Spec =[0 ,1 ,1]]

#

# c3b(L): coefficient of X(-L) (L is a triplet ) in

# X(-a,v^2.a,v^2.a) [Spec =[3 ,2 ,2]]

#

# c3(L): coefficient of X(-L) (L is a triplet ) in

# X(a,a,v.a) - E^-(-a)X(-a,v^2.a,v^2.a)E^+(-a)

#

# c4a(L): coefficient of X(-L) (L is a triplet ) in

# X(a,v.a,v^( -1).a) [Spec =[0 ,1 , -1]]

#

# c4b(L): coefficient of X(-L) (L is a triplet ) in

# X(-a,v^2.a,v^( -2).a) [Spec =[3 ,2 , -2]]

#

# c4(L): coefficient of X(-L) (L is a triplet ) in

# X(a,v.a,v^( -1).a) - E^-(-a)X(-a,v^2.a,v^( -2).a)E^+(-a)

#

################################################################

# _genCoeff (deg , Spec , L):

# This procedure computes the coefficient of X(-L) in the

# product generating function (of degree deg)

# X(v^i.a)X(v^j.a)...

# deg = # of factors
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# Spec = [i,j...] the powers of nu (v) that appears above

# L = a partition of n into deg parts.

#

_genCoeff := proc(deg , Spec , L)

local i, x, m, M, L1 , Vars , C, P;

local w := exp (2* Pi*I/6);

if deg <> nops(Spec) or deg <> nops(L) then

return FAIL;

end if;

# distinct elements of L

L1 := [op({op(L)})];

# m[x] = multiplicity of x in L

for x in L1 do

m[x] := nops( select (‘=‘, L, x));

end do;

# sort the list of multiplicities

M := sort ([ seq(m[x], x in L1)],‘>‘);

# sort the parts in L by multiplicities .

L1 := sort(L1 , (x,y)-> m[x]>m[y] or (m[x]=m[y] and x>y));

# generating the appropriate polynomial

Vars := [seq(‘x ‘||i, i=1.. nops(L1 ))];

for i from 1 to deg do

C[i] := [seq(w^(- Spec[i]*x), x in L1 )];

P[i] := ‘+‘(seq(C[i][j]* Vars[j], j=1.. nops(L1 )));

end do;

P[0] := ‘*‘(seq(P[i], i=1.. deg ));

# return the appropriate coefficient

return evalc( coeftayl (P[0], Vars = [0 $nops(L1)], M));

end proc;

################################################################

#

# Coefficients in the degree 2 identities :

#
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ca := L -> _genCoeff (2, [0,0], L);

cb := L -> _genCoeff (2, [3,3], L);

c := L -> evalc(ca(L)-cb(L));

################################################################

#

# Coefficients in the degree 3 identities :

#

c1a := L -> _genCoeff (3, [0,0,0], L);

c1b := L -> 0;

c1 := c1a;

c2a := L -> _genCoeff (3, [0,0,1], L);

c2b := L -> 0;

c2 := c2a;

c3a := L -> _genCoeff (3, [0,1,1], L);

c3b := L -> _genCoeff (3, [3,2,2], L);

c3 := L -> evalc(c3a(L) - c3b(L));

c4a := L -> _genCoeff (3, [0,1,-1], L);

c4b := L -> _genCoeff (3, [3,2,-2], L);

c4 := L -> evalc(c4a(L) - c4b(L));

A.4 Other Codes Used in the Maple Worksheet

We present below the Maple source file containing various procedures used to automate

our calculations of the relations used in the Maple worksheet presented in §A.1.

Listing A.3: test.txt
################################################################

#

# File: test.txt

#

# Author : Debajyoti Nandi

#

# The programs here can be used to automate the analysis

# of various deg 2 and 3 relations . Used in the proofs of
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# various forbidden partitions .

#

# truncate (L,k): returns a truncated list from L upto k

# elements

#

# deg3(n): Uses the 4 relations of degree 3 on the least 4

# partitions of n. Returns a row reducede matrix

# from the coefficients . j-th column corresponds

# to the the j-th least partition of n into 3 parts.

#

# deg3ex (n): Computes the row reduced matrix in the

# calculation of the exceptional triplets . Input should

# be of the form n = 3k+1, n >= 13. The j-th column ,

# 1 <= j <= 6, corresponds to the term X(-Lj),

# where Lj is the j-th least partition of n into 3 parts.

# The j-th column , 7 <= j <= 10, corresponds to the term

# X(-Lj)E(1), where Lj is the j-th least partition of

# (n+1) into k parts.

#

################################################################

# truncate (L,k): truncates the list L up to length k

truncate := (L,k) -> if k<nops(L) then L[1..k] else L end if;

# deg3(n): presents the row - reduced form of the deg -3 relations

# upto the term corresponding to the 4th triplet of n.

#

deg3 := proc(n)

local L, i, r;

L := truncate ( listkPartitions (n ,3) ,4);

for i from 1 to 4 do

r[i] := map(c||i, L);

end do;

return ReducedRowEchelonForm ( Matrix ([ seq(r[i], i =1..4)]));

end proc;

# deg3ex (n): computes the row - reduced matrix used in the

# proof of the exceptional forbidden triplets of n.

#

deg3ex := proc(n)

local L1 , L2 , S1 , S2 , S3 , k, i, x, r;
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# We must have: n = 3*k+4, n >= 13

if n mod 3 <> 1 or n < 13 then

return FAIL;

end if;

k := (n -4)/3;

# first 4 rows

L1 := truncate ( listkPartitions (n,3), 6);

L2 := truncate ( listkPartitions (n+1,3), 4);

for i from 1 to 4 do

r[i] := [op(map(c||i, L1)), op(map(-c||i||b, L2 ))];

end do;

# 5th row

S1 := listkPartitions (2*k+1, 2);

r[5] := [0 $10 ];

for i from 1 to 6 do

for x in S1 do

if L1[i] = sort ([k+3, op(x)],‘>‘) then

r[5][i] := r[5][i] + c(x);

end if;

end do;

end do;

S2 := listkPartitions (2*k, 2);

for i from 1 to 6 do

for x in S2 do

if L1[i] = sort ([k+4, op(x)],‘>‘) then

r[5][i] := r[5][i] - ( -6)* cb(x);

end if;

end do;

end do;

S3 := listkPartitions (2*k+2, 2);

for i from 1 to 4 do

for x in S3 do

if L2[i] = sort ([k+3, op(x)],‘>‘) then

r [5][6+ i] := r [5][6+ i] - cb(x);

end if;

end do;

end do;
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# 6th -9th rows

for i from 6 to 9 do

r[i] := [0$6 , op(map(c||(i-5), L2 ))];

end do;

# matrix

return ReducedRowEchelonForm ( Matrix ([ seq(r[i], i =1..9)]));

end proc;
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Appendix B

Computation in Noncommutative Algebra

In this appendix, we present the maple programs we used to straighten out monomials

in non-commuting variables. We have used the data structure and algorithms in

NCFPS (noncommutative formal power series) package [Zei12] of D. Zeilberger with

minor modifications (also see [BRRZ12]). The algorithm to apply substitution rules to

straighten out an out-of-order monomial is based on the algorithm and Maple codes of

M. Russell (see [Rus13]). His program was for finitely many substitution rules over a

finite alphabet. We modified Russel’s code to implement infinitely many rules (based on

finitely many patterns) over an infinite indexed alphabet.

In § B.1, we present the Maple worksheet to verify the isomorphism in Proposi-

tion 2.3.1. In §B.2, we present the Maple worksheet to carry out the computations used

in the proofs of various initial conditions in Chapter 7.

The above Maple worksheets require other Maple source files for manipulating formal

polynomials in non-commuting variables and applying substitution rules. We also need

the Maple source files implementing all the substitution rules that we require for our

computations.

In §B.3, we present the Maple source files to manipulate and straighten out formal

polynomials in non-commuting indexed variables. In §B.4, we present our Maple source

files implementing the substitution rules that we require for our computations. In §B.5,

we present our Maple source files containing miscellaneous useful procedures used in the

above mentioned Maple worksheets. All these supporting Maple source files must be

saved in the same working directory as the Maple worksheets.
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B.1 Verification of the Isomorphism

In this section, we present the worksheet to verify the isomorphism in Proposition 2.3.1.

The worksheet requires the files npolyio.txt, npolyops.txt, npolysubs.txt from

§B.3; the file A22-rules.txt from §B.4; and the file misc.txt from §B.5. These files

should be saved in the same directory as the worksheet.



> > 

> > 

(1)(1)

> > 

> > 

> > 

(4)(4)

> > 

(2)(2)

> > 

(3)(3)

> > 

read `npolyio.txt`:
read `npolyops.txt`:
read `npolysubs.txt`:
read `A22-rules.txt`:
read `misc.txt`:

w := exp(Pi*I/3):
w0 := exp(Pi*I/6):

h0 := parsePoly(h[0]): h1 := parsePoly(h[1]):
e0 := parsePoly(e[0]): e1 := parsePoly(e[1]):
f0 := parsePoly(f[0]): f1 := parsePoly(f[1]):

H0 := evalc(rewritePoly(h0,Risom)): 
H1 := evalc(rewritePoly(h1,Risom)): 
E0 := evalc(rewritePoly(e0,Risom)): 
E1 := evalc(rewritePoly(e1,Risom)): 
F0 := evalc(rewritePoly(f0,Risom)): 
F1 := evalc(rewritePoly(f1,Risom)): 

### Checking: 

seq(seq(
  writePoly(evalcPoly(rewritePoly(b(H||i, H||j), Rvop))),
i=0..1), j=0..1);

### Checking: 

seq(seq(
  writePoly(evalcPoly(rewritePoly( 
    addPoly(b(H||i, E||j), sMulPoly(-A22[i,j],E||j)), Rvop))),
i=0..1), j=0..1);

### Checking: 

seq(seq(
  writePoly(evalcPoly(rewritePoly( 
    addPoly(b(H||i, F||j), sMulPoly(A22[i,j],F||j)), Rvop))),
i=0..1), j=0..1);

### Checking: 

seq(seq(
  writePoly(evalcPoly(rewritePoly( 
    addPoly(b(E||i, F||j), 
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> > 

(4)(4)

> > 

(5)(5)

> > 

(6)(6)

      sMulPoly(-delta(i,j),H||i)), Rvop))),
i=0..1), j=0..1);

### Checking: 

Y := E;
i,j := 0,1:
writePoly(evalcPoly(rewritePoly(adpow(-A22[i,j]+1, X||i, X||j),
Rvop)));
i,j := 1,0:
writePoly(evalcPoly(rewritePoly(adpow(-A22[i,j]+1, X||i, X||j),
Rvop)));

0
0

### Checking: 

Y := F;
i,j := 0,1:
writePoly(evalcPoly(rewritePoly(adpow(-A22[i,j]+1, X||i, X||j),
Rvop)));
i,j := 1,0:
writePoly(evalcPoly(rewritePoly(adpow(-A22[i,j]+1, X||i, X||j),
Rvop)));

0
0
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B.2 Computations for the Proofs of the Initial Conditions

In this section, we present the Maple worksheet to carry out the computations used in

the proofs of various initial conditions in Chapter 7. The worksheet requires the files

npolyio.txt, npolyops.txt, npolysubs.txt from §B.3; the files A22-rules.txt and

A22-L4-iniRules.txt from §B.4; and the file misc.txt from §B.5. These files should

be saved in the same directory as the worksheet.

Note that as we discover a new relation in this worksheet, we have added them to

the file A22-L4-iniRules.txt progressively.



(3.2)(3.2)

(3.1)(3.1)

> > 

> > 

(2.3)(2.3)

(2.1)(2.1)
> > 

(3.3)(3.3)

> > 

> > 

> > 

> > 

(2.2)(2.2)

> > 

Setup
read `npolyio.txt`:
read `npolyops.txt`:
read `npolysubs.txt`:
read `A22-rules.txt`:
read `misc.txt`:
read `A22-L4-iniRules.txt`:

w := exp(Pi*I/3):
w0 := exp(Pi*I/6):

For the (4,0)-module
 # We have,  

p := f[1].v[0]: P:= parsePoly(p): is0inV(P,"40");
true

Q := rewritePoly(P, Risom union Rvop);

# Normalize
Q0 := sMulPoly((sqrt(3)+I)/4, Q): writePoly(Q0);

 The above relations shows that (1) is reducible.

For the (2,1)-module
 # We have,  

p := (f[1]^2).v[0]: P := parsePoly(p): is0inV(P,"21");
true

Q := rewritePoly(P, Risom union Rvop);

 # Normalize

Q0 := sMulPoly(-(sqrt(3)+I)^2/16,Q): writePoly(Q0);
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> > 

(3.5)(3.5)

> > 

> > 

(3.4)(3.4)

(3.3)(3.3)

(3.6)(3.6)

> > 

> > 

(3.8)(3.8)

(3.7)(3.7)

The above relation shows that (1,1) is reducible.
We have added the above rule as 'rini21a' in A22-L4-iniRules.txt.

# We have, 

We will add rini21a in our substitution rules to reduce the above.

p := (f[0]^3).v[0]: P := parsePoly(p): is0inV(P,"21");
true

Q := rewritePoly(P, Risom union Rvop union {rini21a});

# Normalize Q
Q0 := sMulPoly((sqrt(3)+I)^2/(96*sqrt(6)), Q):
writePoly(Q0);

We have added the above rule as 'rini21b' in A22-L4-iniRules.txt.

# We have, 

We will add rini21b in our substitution rules to reduce the above.

p := (f[0]^4).v[0]: P := parsePoly(p): is0inV(P,"21");
true

Q := rewritePoly(P, Risom union Rvop 
       union {rini21a, rini21b});
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> > 

> > 

(3.12)(3.12)

(3.9)(3.9)

(3.11)(3.11)

(3.3)(3.3)

(3.10)(3.10)

> > 

> > 

# Normalize
Q0 := sMulPoly(-(sqrt(3)+I)^2/576, Q): writePoly(Q0);

The above relation shows that (2,2) is reducible.
We have added the above rule as 'rini21c' in A22-L4-iniRules.txt.

# We have, 

We will add rini21c in our substitution rules to reduce the above.

p := (f[0]^5).v[0]: P := parsePoly(p): is0inV(P,"21");
true

Q := rewritePoly(P, Risom union Rvop 
       union {rini21a, rini21b, rini21c});

# Normalize
Q0 := sMulPoly(-(sqrt(3)+I)^2/(1920*sqrt(6)), Q):
writePoly(Q0);
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> > 

> > 

(3.9)(3.9)

(3.13)(3.13)

(3.3)(3.3)

> > 

(3.15)(3.15)

> > 

(3.14)(3.14)

We have added the above rule as 'rini21d' in A22-L4-iniRules.txt.

# We have, 

We will add rini21d in our substitution rules to reduce the above.

p := (f[0]^6).v[0]: P := parsePoly(p): is0inV(P,"21");
true

Q := rewritePoly(P, Risom union Rvop 
       union {rini21a, rini21b, rini21c});

Q0 := sMulPoly((sqrt(3)+I)^2/3840, Q): writePoly(Q0);
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(4.1)(4.1)

(4.5)(4.5)

> > 

> > 

(4.2)(4.2)

> > 

(3.9)(3.9)

(3.3)(3.3)

> > 

> > 

(4.7)(4.7)

> > 
(4.4)(4.4)

(4.3)(4.3)

> > 

> > 

(4.6)(4.6)

(3.15)(3.15)

 The above relations shows that (3,3) is reducible.

For the (0,2)-module
# We have, 

p := f[0].v[0]: P := parsePoly(p): is0inV(P,"02");
true

Q := rewritePoly(P, Risom union Rvop);

# Normalize
Q0 := sMulPoly(-(sqrt(3)+I)/(4*sqrt(2)), Q):
writePoly(Q0);

 The above relations shows that (1) is reducible.
 We have added the above rule as 'rini02a' in A22-L4-iniRules.txt.

 # We have, 

 We will add rini02a in our substitution rules to reduce the 
above.

p := (f[1]^3).v[0]: P := parsePoly(p): is0inV(P,"02");
true

Q := rewritePoly(P, Risom union Rvop union {rini02a});

# Normalize
Q0 := sMulPoly((sqrt(3)+I)/24, Q): writePoly(Q0);

 The above relations shows that (3) is reducible.
 We have added the above rule as 'rini02b' in A22-L4-iniRules.txt.

 # We have, 

 We will add rini02b in our substitution rules to reduce the 
above.

p := (f[1]^4).v[0]: P := parsePoly(%): is0inV(P,"02");
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(3.9)(3.9)

(4.8)(4.8)

> > 

(4.9)(4.9)

(3.3)(3.3)

> > 

> > 

(4.7)(4.7)

(3.15)(3.15)

true

Q := rewritePoly(P, Risom union Rvop 
       union {rini02a, rini02b});

# Normalize
Q0 := sMulPoly(-(sqrt(3)+I)^2/120, Q): writePoly(Q0);

 The above relaton shows that (2,2) is forbidden.
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B.3 Maple Codes for Noncommutative Polynomials

In § B.3, we present the Maple source files to manipulate and straighten out formal

polynomials in non-commuting variables. The data structure and algorithms for various

operations on noncommutative polynomials are based on the NCFPS (noncommutative

formal power seires) package of D. Zeilberger [Zei12, BRRZ12].

Here we list three Maple files: npolyio.txt, npolyops.txt and npolysubs.txt.

We present our Maple program to convert a noncommutative polynomial between

mathematical notation and the internal data structure (using lists, see [Zei12]) below.

Listing B.1: npolyio.txt
#################################################################

#

# File: npolyio .txt

#

# Author : Debajyoti Nandi

#

# Input and Output of Noncommutative Polynomials

# ==============================================

#

# This maple programs read a polynomial ( assumed noncommutative )

# in certain format and converts it to an internal data structure

# representing this polynomial . The data structure used is the

# same as that used in NCFPS of Zeilberger :

#

# Link: http :// www.math. rutgers .edu /~ zeilberg / tokhniot /NCFPS

#

# The purpose of this file is to make the input/ output

# of noncommutative polynomials easier to human beings .

#

# Data Structure

# ==============

#

# Monomial : A monomial is a ( noncommutative ) product in

# indeterminates . A monomial is represented as a list.

# For example , x.y.y.x -> [x,y,y,x]

#

# Term: A term is a constant times a monomial , i.e., t=c*m,

# where c is a constant and m is a monomial . A term is
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# represented as t = [c, m].

# For example , -2x.y.x -> [-2, [x,y,x]].

#

# Polynomial : A polynomial is a sum of terms , represented as a

# list of monomials : p = [t1 ,t2 ,... , tn]

# For example , x.y-y.x -> [[1 ,[x,y]], [-1,[y,x]]].

#

# Input Format

# ============

#

# Constant terms: A constant term must be inputed as c*Id.

#

# Terms: If the coefficient is 1, then it can be ommited .

# Otherwise , input in the form: ( examples )

# 3*(x.y.y.x), (y^2).z, a*(x.x.y.x), 2*Id etc.

# Note that if a symbol is used for the constant it is assumed

# to be a commutative symbol ("a" in the third example above)

# A bracket must be used if more than one symbol is multiplied

# in the monomial .

#

# Polynomial : ( Example )

# 3*(x.y.y.x) - 2*x + z.x.y + 5*Id.

# 3*((x^2).y.z)

#

# This polynomial will be read and converted ot internal data

# structure as:

# [[3 ,[x,y,y,x]], [-2,[x]], [1,[z,x,y]], [5 ,[]]]

# [[3 ,[x,x,y,z]]]

#

# Output Format

# =============

#

# An internal representation of a noncommutative polynomial

# is converted back to maple expression using ’*’ and ’.’.

# For example ,

# [[2 ,[]] , [-1,[x,y]] + [1,[y,y]]] --> 2 - x.y + y^2.

#

# Provides

# ========

#

# parsePoly (f): returns the internal representation of the
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# noncommutative polynomial f (see "input format " above ).

#

# writePoly (P): returns an expression using ’*’ and ’.’

# to express the internal representation of a noncommutative

# polynomial P in better -to -read format (see " output format ").

#

# Disclaimer

# ==========

#

# No sanity check is done. No error message is issued if

# the input is invalid (not conforming to the "input format "

# above ).

#

#################################################################

### Input ###

# splitPow (p): If p is a power in an indeterminate , then it splits

# it into a sequence of factors .

# Example : x^3 -> x,x,x

splitPow := proc(p)

if p::‘^‘ then

return seq(op(1,p), i=1.. op(2,p));

else

return p;

end if;

end proc;

# splitMono (m): Splits a monomial m, returning a list of its

# factors .

# Examples : x.x.y.x -> [x,x,y,x], Id -> []

splitMono := proc(m)

if m = Id then

return [];

elif m::‘.‘ then

return map(splitPow , [op (1.. , m)]);

else

return [ splitPow (m)];
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end if;

end proc;

# splitTerm (t): Splits a term into a list with the coefficient

# as the first element , and the monomial as the second .

# Examples :

# 2*(x.y) -> [2, x.y], 3*Id -> [3, Id], x.y.y -> [1, x.y^2]

splitTerm := proc(t)

if t::‘*‘ then

return [‘*‘(op (1.. nops(t)-1, t)), op(-1,t)];

else

return [1,t];

end if;

end proc;

# splitPoly (f): Splits a polynomial f into terms

# Example : x.y.y.x + 2*x - Id -> [x.y^2.x, 2*x, -Id]

splitPoly := proc(f)

if f::‘+‘ then

return [op (1.. , f)];

else

return [f];

end if;

end proc;

# parsePoly (f): reads a polynomial in the input format , and

# returns its representation in the above data structure .

# Example :

# x.y.y.x + 2*x - Id -> [[1, [x,y,y,x]], [2, [x]], [-1, []]]

parsePoly := proc(f)

local P := [], T, t, L;

T := splitPoly (f);

for t in T do

L := splitTerm (t);
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if t <> 0 then

P := [op(P), [L[1], splitMono (L [2])]];

end if;

end do;

return P;

end proc;

#################################################################

### Output ###

# writeMono (m): expresses a monomial using ‘.‘

# Example : [x,y,y,x] -> x.y^2.x

writeMono := proc(m)

return ‘.‘(op(m));

end proc;

# writeTerm (t): expresses a term as prduct of the constant and

# the monomial using ‘*‘

# Example : [a, [x.y.y.x]] -> a * x.y^2.x

writeTerm := proc(t)

return t[1] * writeMono (t[2]);

end proc;

# writePoly (f): expresses an internal representation of a

# polynomial f in human readable format .

# Example :

# [[1, [x,y,y,x]], [2, [x]], [-1, []]] -> x.y^2.x + 2*x - 1

writePoly := proc(F)

local L := map(writeTerm , F);

return ‘+‘(op(L));

end proc;

The file below is a slight modification of Zeilberger’s NCFPS package [Zei12].

Listing B.2: npolyops.txt
################################################################
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#

# File: npolyops .txt

#

# Operations on Noncommutative Polynomials

# ========================================

#

# Author : Debajyoti Nandi

#

# Inspired by Zeilberger (NCFPS)

# http :// www.math. rutgers .edu /~ zeilberg / tokhniot /NCFPS

#

# This is slightly modified version of Prof. D. Zeilberger ’s

# NCFPS package . A few extra procedures added to suit our

# purpose .

#

# The internal representation of noncommutative polynomials

# is done using lists , same as in NCFPS package .

#

# Provides

# ========

#

# (F,G: noncommutative polynomials ,

# c: constnat ,

# m: monomial ,

# t: term)

#

# simplifyPoly (F): Simplifies F by collecting terms with the

# same monomial . Additionaly , the returned polynomial has

# terms arranged in decreasing order of degree ( number of

# indeterminates in a monomial ).

#

# addPoly (F,G): Adds F and G.

#

# subtractPoly (F,G): F-G.

#

# sMulPoly (c,F): c*F ( scalar multiplication )

#

# multPoly (F,G): F.G ( multiplication )

#

# coeffPoly (m,F): coefficient of m in F.

#
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# subsPoly (S,F): simplifies the coeffs in F using substitution

# rules S (using the Maple builtin function "subs ").

# Example :

# F := [[w^3, [x]]] (eqv. to (w^3)*x),

# S := w^6=1

# subscPoly (S,F) = [[-1,[x]]] (eqv. to -x).

#

# evalcPoly (F): simplifies the coeffs in F using evalc ().

#

# coeffPoly (m,P): Finds the coefficient of the monomial m

# in the polynomial P. Returns 0 if the monomial is not present .

################################################################

# simplifyPoly (F): simplifies F.

# -- Slight modification of " Pashet " form NCFPS package .

# -- Returned polynomials has terms sorted by degree .

# (these modifications ensures that the order of the monomials

# is optimal for the type of substitution rules we have for

# our computations . For example , the substitution rules

# based on the Lie brackets reduce the number of variables

# when we commute them. Thus we want to straighten out

# the longest monomial first .)

simplifyPoly := proc(F)

local t, m, md , i, T, T1 , L, M, M1 , C;

# M: collection of monomials in F

M := {seq(t[2], t in F)};

for m in M do

C[m] := 0;

end do;

for t in F do

# collecting coeffs

C[t[2]] := C[t[2]] + t[1];

end do;

# T: collection of nonzero terms

T := [];

for m in M do

if C[m] <> 0 then
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T := [op(T), [C[m], m]];

end if;

end do;

# Boundary case: T = []

if T = [] then

return [];

end if;

# Simplify the constants (they maybe symbolic )

for t in T do

C[t[2]] := simplify (C[t [2]]);

end do;

# M1: collection of monomials with nonzero coeff ( sorted )

M1 := [seq(t[2], t in T)];

M1 := sort(M1);

# T1: terms in T sorted by monomials

T1 := [seq ([C[m], m], m in M1 )];

# Sorting by degree :

#md: max degree (md >= 0)

md := max(seq(nops(t[2]) , t in T1 ));

# L[i]: nonzero terms of degree i

for i from 0 to md do

L[i] := [];

end do;

for t in T1 do

L[nops(t[2])] := [op(L[nops(t[2])]) , t];

end do;

# Keep this order for faster processing in our case

return [seq(op(L[i]), i=md..0, -1)];

end proc;

################################################################
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# sMulPoly (c,F): c*F ( scalar multiplication )-- simplified .

# -- Same as "sMul" from NCFPS.

sMulPoly := proc(c, F)

local i;

return simplifyPoly ([ seq ([c*F[i][1] , F[i][2]] , i=1.. nops(F))]);

end proc;

################################################################

# multPoly (F,G): F.G ( multiplication )-- simplified

# -- Same as "Mul" in NCFPS.

multPoly := proc(F, G)

return simplifyPoly ([ seq(seq(

[fx [1]* gx[1], [op(fx [2]) , op(gx [2])]] ,

fx in F), gx in G)

]);

end proc;

################################################################

# addPoly (F,G): F+G ( addition )-- simplified .

# -- Same as " Khaber " from NCFPS

addPoly := proc(F,G)

return simplifyPoly ([op(F), op(G)]);

end proc;

################################################################

# subtractPoly (F,G): F-G ( subtraction )-- simplified .

subtractPoly := proc(F,G)

return addPoly (F, sMulPoly (-1,G));

end proc;

################################################################

# coeffPoly (m,F): coefficient of monomial m in polynomial F.
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coeffPoly := proc(m,F)

local t, F1 := simplifyPoly (F);

for t in F1 do

if t[2] = m then

return t[1];

end if;

end do;

return 0;

end proc;

################################################################

# subscPoly (S,F): simplifies the coeffs in F using substitution

# rules S (using "subs "), and evalc ().

# Example :

# F := [[w^3, [x]]] (eqv. to (w^3)*x),

# S := w^6=1

# subscPoly (S,F) = [[-1,[x]]] (eqv. to -x).

subscPoly := proc(S,F)

local t, P := [];

for t in F do

P := [op(P), [evalc(subs(S, t[1])) , t [2]]];

end do;

return simplifyPoly (P);

end proc;

################################################################

# evalcPoly (F): simplifies the coeffs in F using evalc ().

evalcPoly := proc(F)

local t, P := [];

for t in F do

P := [op(P), [evalc(t[1]) , t [2]]];

end do;

return simplifyPoly (P);

end proc;

################################################################
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# coeffPoly (m,P): Finds the coefficient of the monomial m

# in the polynomial P. Returns 0 if the monomial is not present .

# Example : coeffPoly ([x,y], [[2 ,[x,y]], [1,[x]]]) = 2

#

coeffPoly := proc(m, P)

local Q;

Q := select (x->x[2]=m, P);

Q := simplifyPoly (Q);

if nops(Q) = 0 then

return 0;

elif nops(Q) > 1 then

return FAIL;

end if;

return Q [1][1];

end proc;

We present the program to apply substitution rules. The algorithm and the Maple

codes are adapted from M. Russel’s [Rus13]. We have modified his algorithm to allow

infinite number of rules (over indexed alphabet). We have added a few other procedures

to suit our purpose. We have desiged the implementation in such a way that the main

procedure subsRule() does not have to be changed, if we decide to code the substitution

rules in a different way.

Listing B.3: npolysubs.txt
################################################################

#

# File: npolysubs .txt

#

# Rewriting Noncommutative Polynomials Using Substitution Rules

# ============================================================

#

# Author : Debajyoti Nandi

#

# This file codes rewriting noncommutative polynomials using

# substitution rules of monomials . For example , if we have

# the rule x.y.x=1, then x.x.y.x.y reduces to x.y.

#

# Rules

# =====
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#

# Rules are of the form

# Monomial --> Polynomial

#

# Assume that R is a rule (or a patterns of similar rules)

# m --> P, where m is a monomial , and P is a polynomial .

#

# Rules are coded ( implemented ) as a triplet :

# R := [len , find (), substt ()],

# where:

# len: the length (or degree ) of the monomial m;

# find(F): finds first place matching the monomial m in the

# polynomial F;

# substt (m): returns the RHS P, (m assumed be the LHS of R).

#

# Special thanks to Matthew Russels for pointing out NCFPS

# package , and getting me started .

#

# Requires : npolyio .txt.

#

# Provides

# ========

#

# rewritePoly (F,Rules ): Rewrites the polynomial F, using

# rules in the set (or list) of rules in Rules. If this

# procedure terminates , then it returns a reduced polynomial

# where no more matching rules in Rules applies . There is

# no guarantee that this will terminate , in case there are

# cyclical substitutions possible with the rules.

#

# lenRule (R): returns the length of the monomial on the LHS

# of the rule R.

#

# findMatchRule (m,R): finds the first place in the monomial m,

# where the rule R applies .

#

# subsRule (m,R): returns the RHS ( polynomial ) of the rule R.

#

# Note

# ====

#
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# Note monomials may be composed of indexed variables

# ( infinitely many indeterminates ), but rules should be

# described by finitely many patterns . See the file

# "A22 -rules.txt" for examples .

#

# The last three procedures are used so that rewritePoly (),

# does not have to be changed , if one decides to re - implement

# rules. In that case , only the last three auxiliary

# procedures need to be modified .

#

################################################################

# lenRule (R): degree of the monomial on the LHS of the rule R.

lenRule := R -> R[1];

# findMatchRule (m,R): finds the first place in the monomial m,

# where the rule R applies .

findMatchRule := (m,R) -> R[2](m);

# subsRule (m,R): returns the RHS of the rule (m --> P).

subsRule := (m,R) -> R[3](m);

################################################################

rewritePoly := proc(F,Rules)

local AllDone , NotDone , found , R, pre , suf , m, G, H, t, i;

AllDone := []; #terms that are straightened

NotDone := simplifyPoly (F); #terms that are not yet straightened

while NotDone <> [] do

t := NotDone [1];

H := [];

found := false; # no matching rule found

for R in Rules while not found do

i := findMatchRule (t[2], R);

if i > 0 then

found := true;

pre := t [2][1..i -1];

m := t[2][i.. lenRule (R)+i -1];

suf := t[2][ lenRule (R)+i..];
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G := subsRule (m,R);

H := multPoly ( multPoly ([[t[1], pre ]], G), [[1, suf ]]);

end if;

end do;

NotDone := simplifyPoly ([op (2.. , NotDone ), op(H)]);

if not found then

AllDone := [op( AllDone ), t];

end if;

end do;

AllDone := simplifyPoly ( AllDone );

return simplifyPoly ( AllDone );

end proc;

B.4 Substitution Rules

In this section, we present our Maple source files implementing the substitution rules that

we require for our computations. These rules are split into two files: A22-rules.txt

and A22-L4-iniRules.txt

These rules (except for the substitution rules coming from the initial conditions of

Chapter 7) are presented in the Maple file below. The rules are divided into six sections

in the Maple file. See the documentation in the Maple file below for the description of

these rules.

Listing B.4: A22-rules.txt
################################################################

#

# File: A22 -rules.txt

#

# Author : Debajyoti Nandi

#

# This files includes all rules needed for computations

# in the algebra $A_2 ^(2)$, or in their level 4 standard

# modules .

#

# Note:

# w: 6th primitive root of unity ,
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# w0: 12 the primitive root of unity (s.t. w0^2 = w).

# In this file their values are not set.

#

# Types of Rules

# ==============

#

# (Sec A): Rules given by the mapping of the Chevalley

# generators in terms of vertex operators .

# Risom = the set of rules in Sec A.

#

# (Sec B): Bracket rules of the vertex operators .

# Rvop = the set of rules in Sec B.

#

# (Sec C): Bracket rules of the chevalley generators .

# Rgen = the set of rules in Sec C.

#

# (Sec D): Rules for all std modules , given by , positive degree

# elements of A2 (2) annihilates the highest weight vector

# v[0] (i.e., e[i].v[0] = 0 for i=0 ,1).

# We don ’t need the corresponding rules in terms of the

# vertex operators , since we will only use negative

# degree operators (when applying in terms of the vertex

# operators ) on v[0].

#

# (Sec E): Rules spicific to level 4 standard modules (i.e.,

# h[0].v[0] = k0*v[0], h[1].v[0] = k1*v[0] in the

# (k0 ,k1)- module ). Note that the conditions

# (f[0]^( k0 +1)).v[0] = (f[1]^( k1 +1)).v[0] = 0

# follows from the action of h on v[0] and the Lie

# brackets of the Chevalley generators .

# -- (Sec E40 ): for (4,0)- module ;

# -- (Sec E21 ): for (2,1)- module ;

# -- (Sec E02 ): for (0,2)- module .

# These rules are also in terms of the Chevalley generators only.

#

# RgenV <k0 ,k1 >: The set of rules for the (k0 ,k1)- modules

# in terms of the Chevalley generators . These rules

# enables us to express any vector in V as a

# linear combination of vectors of the form

# f[n1 ]..f[nk].v[0]; n[1] ,... ,n[k] = 0,1.

# These rules are union of the rules in Sec C, Sec D, and
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# Sec E<k0 ,k1 >.

#

# Auxiliary data/ functions :

# -- A22: generalized Cartan Matrix for A2 (2);

# -- delta(i,j): delta function ;

# -- d6(i): 1 (if i congruent to 1,-1 mod 6), 0 ( otherwise ).

# -- omega(i,j): (w ^2/6)*( w^(j-i) - w^(i-j))

#

# Note: (1) We use the rules "Risom" and "Rvop" to check the

# isomorphism of $A2 (2)$,in terms of the vertex operatros .

# (2) We use rules "Rgen", "RgenV <k0 ,k1 >" and "Rvop" for our

# investigation of initial conditions in various level 4

# standard modules .

############################ Sec: A #############################

# (Sec A): Rules given by the mapping of the Chevalley

# generators in terms of the vertex operators .

# rh0: h[0] --> (4* sqrt (3)/ w0)*X[0] + (2/3)* c

rh0 := [

1, # length

proc(m) #find in m

local i;

for i from 1 to nops(m) do

if m[i] = h[0] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[4* sqrt (3)/w0 ,[X[0]]] , [2/3 ,[c]]]

];

# rh1: h[1] --> (-2* sqrt (3)/ w0)*X[0] + (1/6)* c

rh1 := [

1, # length
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proc(m) #find h[1] in m

local i;

for i from 1 to nops(m) do

if m[i] = h[1] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[ -2* sqrt (3)/w0 ,[X[0]]] , [1/6 ,[c]]]

];

# re0: e[0] --> (-2* sqrt (2)/ w0)*X[1] + (2* sqrt (2)/ sqrt (3))*a[1]

re0 := [

1, # length

proc(m) #find

local i;

for i from 1 to nops(m) do

if m[i] = e[0] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[ -2* sqrt (2)/w0 ,[X[1]]] , [2* sqrt (2)/ sqrt (3) ,[a [1]]]]

];

# re1: e[1] --> (2/ w0)*X[1] + (1/ sqrt (3))*a[1]

re1 := [

1, # length

proc(m) #find match

local i;

for i from 1 to nops(m) do

if m[i] = e[1] then

return i;
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end if;

end do;

return 0;

end proc ,

# substt

m -> [[2/w0 ,[X[1]]] , [1/ sqrt (3) ,[a [1]]]]

];

# rf0: f[0] --> (2* sqrt (2)/ w0)*X[-1] + (2* sqrt (2)/ sqrt (3))*a[-1]

rf0 := [

1, # length

proc(m) #find

local i;

for i from 1 to nops(m) do

if m[i] = f[0] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[2* sqrt (2)/w0 ,[X[ -1]]] , [2* sqrt (2)/ sqrt (3) ,[a[ -1]]]]

];

# rf1: f[1] -> (-2/w0)*X[-1] + (1/ sqrt (3))*a[-1]

rf1 := [

1, # length

proc(m) #find

local i;

for i from 1 to nops(m) do

if m[i] = f[1] then

return i;

end if;

end do;

return 0;

end proc ,
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# substt

m -> [[ -2/w0 ,[X[ -1]]] , [1/ sqrt (3) ,[a[ -1]]]]

];

Risom := {rh0 ,rh1 ,re0 ,re1 ,rf0 ,rf1 };

############################ Sec: B #############################

# (Sec B): Bracket rules of the vertex operators .

d6 := i -> if i mod 6 in {1 ,5} then 1 else 0 end if;

omega := (i,j) -> if j-i mod 6 in {0 ,3} then 0

elif j-i mod 6 in {1 ,2} then -w0*sqrt (3)/6

else w0*sqrt (3)/6

end if;

# rcx: c.x --> x.c (x=X[*] or a[*])

rcx := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if m[i]=c and (op(0,m[i+1])=a or op(0,m[i+1])=X) then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[1 ,[m[2],m [1]]]]

];

# raa: a[i].a[j] --> a[j].a[i] + (delta(i+j ,0)*i/6)*c, i>j

raa := [

2, # length

proc(m) #find

local i;
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for i from 1 to nops(m)-1 do

if op(0,m[i])=a and op(0,m[i+1])=a and

op(1,m[i]) > op(1,m[i+1]) then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> simplifyPoly ([[1 ,[m[2],m[1]]] ,

[delta(op(1,m[1])+ op(1,m[2]) ,0)* op(1,m[1])/6 ,[c]]])

];

# raX: a[i].X[j] --> X[j].a[i] + d6(i)*X[i+j], i>0

raX := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if op(0,m[i])=a and op(0,m[i+1])=X and op(1,m[i])>0 then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> simplify ([[1 ,[m[2],m[1]]] ,

[d6(op(1,m[1])) , [X[op(1,m[1])+ op(1,m [2])]]]])

];

# rXa: X[i].a[j] --> a[j].X[i] - d6(j)*X[i+j], j<0

rXa := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if op(0,m[i])=X and op(0,m[i+1])=a and op(1,m[i+1]) <0 then
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return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> simplify ([[1 ,[m[2],m[1]]] ,

[-d6(op(1,m[2])) , [X[op(1,m[1])+ op(1,m [2])]]]])

];

# rXX: X[i].X[j] --> X[j].X[i] + omega(i,j)*X[i+j]

# -(( -1)^i*d6(i+j)*w/6)*a[i+j]

# + (( -1)^i*i*delta(i+j ,0)*w/36)*c, i>j

rXX := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if op(0,m[i])=X and op(0,m[i+1])=X and

op(1,m[i]) > op(1,m[i+1]) then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> simplify ([[1 ,[m[2],m[1]]] ,

[omega(op(1,m[1]) , op(1,m[2])) ,[X[op(1,m[1])+ op(1,m[2])]]] ,

[ -( -1)^ op(1,m[1])* d6(op(1,m[1])+ op(1,m [2]))* w/6,

[a[op(1,m[1])+ op(1,m[2])]]] ,

[( -1)^ op(1,m[1])* op(1,m[1])* delta(op(1,m[1])+ op(1,m[2]) ,0)*

w/36, [c]]])

];

Rvop := {rcx ,raa ,raX ,rXa ,rXX };

############################ Sec: C #############################
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# (Sec C): Bracket rules of the Chevalley generators .

# Generalized Cartan ’s Matrix for A2 (2)

A22 := table ([(0 ,0)=2 , (0 ,1)= -4 , (1 ,0)= -1 , (1 ,1)=2]);

# delta function

delta := (i,j) -> if i=j then 1 else 0 end if;

# rhh: h[0].h[1] --> h[1].h[0]

rhh := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if m[i..i+1] = [h[0],h[1]] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[1 ,[h[1],h [0]]]]

];

# rhe: h[i].e[j] --> e[j].h[i] + a22[i,j]*e[j], i,j=0,1

rhe := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if op(0,m[i])=h and op(0,m[i+1])=e then

return i;

end if;

end do;

return 0;

end proc ,

# substt
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m -> [[1 ,[m[2],m[1]]] , [A22[op(1,m[1]) , op(1,m[2])] ,[m [2]]]]

];

# rhf: h[i].f[j] --> f[j].h[i] - A22[i,j]*f[j], i,j=0,1

rhf := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if op(0,m[i])=h and op(0,m[i+1])=f then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[1 ,[m[2],m[1]]] , [-A22[op(1,m[1]) , op(1,m[2])] ,[m [2]]]]

];

# ref: e[i].f[j] --> f[j].e[i] + delta(i,j)*h[i]

ref := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if op(0,m[i])=e and op(0,m[i+1])=f then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> simplifyPoly ([[1 ,[m[2],m[1]]] ,

[delta(op(1,m[1]) , op(1,m[2])) ,[h[op(1,m [1])]]]])

];

Rgen := {rhh ,rhe ,rhf ,ref };
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############################ Sec: D #############################

# (Sec D): Rules for all std modules , given by , positive degree

# elements of A2 (2) annihilates the highest weight vector

# v[0] (i.e., e[i].v[0] = 0 for i=0 ,1).

# We don ’t need the corresponding rules in terms of the

# vertex operators , since we will only use negative

# degree operators (when applying in terms of the vertex

# operators ) on v[0].

# rev: e[*].v[0] --> 0

rev := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if op(0,m[i])=e and m[i+1]=v[0] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> []

];

############################ Sec: E #############################

# (Sec E): Rules spicific to level 4 standard modules (i.e.,

# h[0].v[0] = k0*v[0], h[1].v[0] = k1*v[0] in the

# (k0 ,k1)- module ). Note that the conditions

# (f[0]^( k0 +1)).v[0] = (f[1]^( k1 +1)).v[0] = 0

# follows from the action of h on v[0] and the Lie

# brackets of the Chevalley generators .

### (Sec E40 ): for (4,0)- module ;

# rh0v40 : h[0].v[0] --> 4*v[0]
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rh0v40 := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if m[i..i+1] = [h[0],v[0]] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[4 ,[v [0]]]]

];

# rh1v40 : h[1].v[0] --> 0

rh1v40 := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if m[i..i+1] = [h[1],v[0]] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> []

];

RgenV40 := Rgen union {rev , rh0v40 , rh1v40 };

### (Sec E21 ): for (2,1)- module ;

# rh0v21 : h[0].v[0] --> 2*v[0]

rh0v21 := [
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2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if m[i..i+1] = [h[0],v[0]] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[2 ,[v [0]]]]

];

# rh1v21 : h[0].v[0] --> v[0]

rh1v21 := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if m[i..i+1] = [h[1],v[0]] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[1 ,[v [0]]]]

];

RgenV21 := Rgen union {rev , rh0v21 , rh1v21 };

### (Sec E02 ): for (0,2)- module ;

# rh0v02 : h[0].v[0] --> 0

rh0v02 := [

2, # length
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proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if m[i..i+1] = [h[0],v[0]] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> []

];

# rh1v02 : h[1].v[0] --> 2*v[0]

rh1v02 := [

2, # length

proc(m) #find

local i;

for i from 1 to nops(m)-1 do

if m[i..i+1] = [h[1],v[0]] then

return i;

end if;

end do;

return 0;

end proc ,

# substt

m -> [[2 ,[v [0]]]]

];

RgenV02 := Rgen union {rev , rh0v02 , rh1v02 };

The following file contains the replacement rules coming from the initial conditions

(as described in the proofs of Chapter 7).

Listing B.5: A22-L4-iniRules.txt
################################################################

#
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# File: A22 -L4 - iniRules .txt

#

# Author : Debajyoti Nandi

#

# This file contains the replacement rules coming

# from the initial conditions as described in the proofs

# of Chapter 7 ( Initial Conditions ).

#

################################################################

##################### For the (4,0)- module #####################

#

# rini40a : Coming from f[1].v[0] = 0 in (4,0)- module .

# X[ -1].v[0] --> (w0*sqrt (3)/6)* a[ -1].v[0]

#

rini40a := [

2, # length

proc(m) #find

if m[ -2..] = [X[-1],v[0]] then

return nops(m)-1;

end if;

return 0;

end proc ,

# substt

m -> [[w0*sqrt (3)/6 ,[a[-1],v [0]]]]

];

##################### For the (2,1)- module #####################

#

# rini21a : Coming from (f [1]^2). v[0] = 0 in (2,1)- module

# X[ -1].X[ -1].v[0] --> (-w0*sqrt (3)/6)* X[ -2].v[0]

# + (w0*sqrt (3)/3)* a[ -1].X[ -1].v[0]

# + (-w/12)*a[ -1].a[ -1].v[0]

#

rini21a := [

3, # length

proc(m) #find

if m[ -3..] = [X[-1],X[-1],v[0]] then
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return nops(m)-2;

end if;

return 0;

end proc ,

# substt

m -> [[-w0*sqrt (3)/6 , [X[-2],v[0]]] ,

[w0/sqrt (3), [a[-1],X[-1],v[0]]] ,

[-w/12, [a[-1],a[-1],v [0]]]]

];

# rini21b : Coming from (f [0]^3). v[0] = 0 in (2,1)- module .

# X[ -2].X[ -1].v[0] --> (-w0/sqrt (3))*a[ -1].X[ -2].v[0]

# + (w0*sqrt (3)/2)* a[ -1].a[ -1].X[ -1].v[0]

#

rini21b := [

3, # length

proc(m) #find

if m[ -3..] = [X[-2],X[-1],v[0]] then

return nops(m)-2;

end if;

return 0;

end proc ,

# substt

m -> [[-w0/sqrt (3), [a[-1],X[-2],v[0]]] ,

[w0*sqrt (3)/2 , [a[-1],a[-1],X[-1],v [0]]]]

];

# rini21c : Coming from (f [0]^4). v[0] = 0 in (2,1)- module .

# (X[ -2])^2.v[0] --> ( -4/3)*X[ -3].X[ -1].v[0]

# + (-w0*sqrt (3)/18)* X[ -4].v[0]

# + (w0 *2* sqrt (3)/9)* a[ -1].X[ -3].v[0]

# + (-w0*sqrt (3))*( a[ -1]^2).X[ -2].v[0]

# + (w0 *4/ sqrt (3))*( a[ -1]^3).X[ -1].v[0] + (w /12)*( a[ -1]^4).v[0]

#

rini21c := [

3, # length

proc(m) #find
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if m[ -3..] = [X[-2],X[-2],v[0]] then

return nops(m)-2;

end if;

return 0;

end proc ,

# substt

m -> [[ -4/3 , [X[-3],X[-1],v[0]]] ,

[-w0*sqrt (3)/18 , [X[-4],v[0]]] ,

[w0 *2* sqrt (3)/9 , [a[-1],X[-3],v[0]]] ,

[-w0*sqrt (3), [a[-1]$2 ,X[-2],v[0]]] ,

[w0 *4/ sqrt (3), [a[-1]$3 ,X[-1],v[0]]] ,

[w/12, [a[-1]$4 ,v [0]]]]

];

# rini21d : coming from (f [0]^5). v[0] = 0 in (2,1)- module .

# Re -write rule for X[ -3].X[ -2].v[0] ...

#

rini21d := [

3, # length

proc(m) #find

if m[ -3..] = [X[-3],X[-2],v[0]] then

return nops(m)-2;

end if;

return 0;

end proc ,

# substt

m -> [[-1, [X[-4],X[-1],v[0]]] , [1, [a[-1],X[-3],X[-1],v[0]]] ,

[-w0*sqrt (3)/6 , [a[-1],X[-4],v[0]]] ,

[w0/sqrt (3), [a[-1]$2 ,X[-3],v[0]]] ,

[-w0*sqrt (3)/2 , [a[-1]$3 ,X[-2],v[0]]] ,

[w0*sqrt (3)/2 , [a[-1]$4 ,X[-1],v[0]]] ,

[w/20, [a[-1]$5 ,v[0]]] , [w/30, [a[-5],v [0]]]]

];

# rini21e : Coming from (f [0]^6). v[0] = 0 in (2,1)- module

# Replacement rule for X[ -3].X[ -3].v[0] --> ...

#

rini21e := [
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3, # length

proc(m) #find

if m[ -3..] = [X[-3],X[-3],v[0]] then

return nops(m)-2;

end if;

return 0;

end proc ,

# substt

m -> [[2, [X[-5],X[-1],v[0]]] , [-w0*sqrt (3)/6 , [X[-6],v[0]]] ,

[-6, [a[-1],X[-4],X[-1],v[0]]] ,

[w0 *2/ sqrt (3), [a[-1],X[-5],v[0]]] ,

[6, [a[-1]$2 ,X[-3],X[-1],v[0]]] ,

[-w0*sqrt (3), [a[-1]$2 ,X[-4],v[0]]] ,

[w0*sqrt (3), [a[-1]$3 ,X[-3],v[0]]] ,

[-w0 *3* sqrt (3)/5 , [a[-1]$5 ,X[-1],v[0]]] ,

[-w0*sqrt (3)/15 , [a[-5],X[-1],v[0]]] ,

[-w/6, [a[-5],a[-1],v [0]]]]

];

##################### For the (0,2)- module #####################

#

# rini02a : Coming from f[0].v[0] = 0 in (0,2)- module

# Replacement rule for X[ -1].v[0] --> ...

#

rini02a := [

2, # length

proc(m) #find

if m[ -2..] = [X[-1],v[0]] then

return nops(m)-1;

end if;

return 0;

end proc ,

# substt

m -> [[-w0/sqrt (3), [a[-1],v [0]]]]

];
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# rini02b : Coming from (f [1]^3). v[0] = 0 in (0,2)- module

# Replacement rule for X[ -3].v[0] --> ...

#

rini02b := [

2, # length

proc(m) #find

if m[ -2..] = [X[-3],v[0]] then

return nops(m)-1;

end if;

return 0;

end proc ,

# substt

m -> [[3/2 , [a[-1],X[-2],v[0]]] ,

[w0*sqrt (3)/4 , [a[-1]$3 ,v [0]]]]

];

# rini02c : Coming from (f [1]^4). v[0] = 0 in (0,2)- module

# Replacement rule for (X[ -2]^2).v[0] --> ...

rini02c := [

3, # length

proc(m) #find

if m[ -3..] = [X[-2],X[-2],v[0]] then

return nops(m)-2;

end if;

return 0;

end proc ,

# substt

m -> [[-w0*sqrt (3)/2 , [X[-4],v[0]]] ,

[w0*sqrt (3), [a[-1]$2 ,X[-2],v[0]]] ,

[w*3/4 , [a[-1]$4 ,v [0]]]]

];

B.5 Other Miscellaneous Maple Codes Used

In this section, we present the auxiliary Maple source file misc.txt which includes

miscellaneous procedures used in our Maple worksheets.
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Listing B.6: misc.txt
#################################################################

#

# File: misc.txt

#

# Author : Debajyoti Nandi

#

# Miscellaneous Procedures Used Elsewhere

# =======================================

#

# In this file , we list a few procedures used in the Maple

# worksheets else where.

#

# Provides :

# =========

# b(F, G): Lie bracket of F, G ( noncommutative polynomials )

#

# adpow(k, F, G): ((ad F)^k).G

#

# is0inV (u, T): checks if the monomial (f[0], f[1]) acting

# v[0] is 0 in the std module V of type T, where

# T = "40" , "21" or "02".

#

# genseq (k): generates all binary sequences of length k.

#

# genF(s): given a binary sequence s, it maps the sequence

# into the monomial in f[0] and f[1] acting on v[0].

#

#################################################################

# b(F,G): [F,G] (Lie bracket )

b := (F,G) -> subtractPoly ( multPoly (F,G), multPoly (G,F));

# adpow(k,F,G): (ad F)^k.G

adpow := proc(k,F,G)

local i, H := G;

for i from 1 to k do

H := b(F,H);

end do;

return H;

end proc;
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# is0inV (u,T): Checks if a homogeneous vector u of negative

# degree (user ’s responsibility to enforce this)

# in V (std module of type T, T="40" , "21" or "02")

# by checking if e[0].v = e[1].v = 0. Here , v is

# assumed to be in terms of the Chevalley generators

# acting on the highest weight vector v[0].

#

# Requires : npolyops .txt , npolysubs .txt , A22 -rules.txt

#

is0inV := proc(u,T)

local U := simplifyPoly (u), Rules := RgenV ||T;

# boundary checks

if nops(U)=1 and U [1][2] = [v[0]] then

return false;

elif U = [] then

return true;

end if;

# recursive checks

if is0inV ( rewritePoly ( multPoly ([[1 ,[e[0]]]] ,U),Rules),T) and

is0inV ( rewritePoly ( multPoly ([[1 ,[e[1]]]] ,U),Rules),T) then

return true;

end if;

return false;

end proc;

# Generates binary sequences of length k

# Example : genseq (3) = [[0, 0], [0, 1], [1, 0], [1, 1]]

#

genseq := proc(k)

if k=0 then return [[]] end if;

return [seq(seq ([i,op(L)], L in genseq (k -1)) , i =0..1)];

end proc;

# Converts a binary seq [i1 ,... , in] into f[i1 ]...f[in].v[0]

# (as a noncommutative polynomial using list)

# Example : genF ([1 ,0]) = [[1 ,[f[1],f[0],v [0]]]]

#
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genF := proc(sq)

local s, m := [];

for s in sq do

m := [op(m), f[s]];

end do;

return [[1, [op(m),v [0]]]];

end proc;
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Appendix C

Verification of the Partition Identities

In this appendix, we present the C program that we used to verify the three partition

identities presented in Chapter 8. We have verified the results upto n ≤ 170, and for

n = 180, 190 and 200. (Note that the computation for n = 200, may take more than 24

hours to complete).

We used Kelleher’s algorithm from [Kel06] to generate all partitions of n. We used

the accelerated ascending rule algorithm. This algorithm produces partitions as a

non-decreasing list. When a partition is generated we filter it out based on the criteria

presented in Chapter 8.

The program is split into two files. In § C.1, we present the main file (written in

C with C99 standard) verify.c implementing Kelleher’s accelerated ascending rule

algorithm to generate partitions, and our “visitor” function to check if the generated

partition should be counted for each of the standard A(2)
2 -modules of level 4 (based on

the criteria presented in Chapter 8).

In §C.2, we list the file data.h, which contains data about P(n) (see Notation 4.1.7)

and FΛ(n) (see § 3.2, Notation 3.2.4) for 0 ≤ n ≤ 200, where Λ = 4h∗0, 2h∗0 + h∗1 or 2h∗1.

These numbers were generated using power series expansion (using the Maple package

powseries) of the product side FΛ(q) (Notation 3.2.4).

C.1 File: verify.c

In this section, we present the main file (written in C with C99 standard) verify.c

implementing Kelleher’s accelerated ascending rule algorithm to generate partitions,

and our “visitor” function to check if the generated partition should be counted for each

of the standard A(2)
2 -modules of level 4 (based on the criteria presented in Chapter 8).
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To compile save this file and the auxiliary file data.h from §C.2 in the same working

directory. To compile and run on a GNU/Linux machine, use the following commands.

$ cc -std=c99 verify.c -o verify

$ ./verify

Listing C.1: verify.c
/**************************************************************\

File: verify .c

Author : Debajyoti Nandi

Email: nandi@math . rutgers .edu

Description :

Verifies the three partition identities (up to n <= 200).

The program implements Kelleher ’s accelAscRule algorithm

to generate partitions . Once a partition is generated ,

the function fltrCnt () then checks to see if the partition

is allowed in each of the three level 4 standard modules ,

and counts .

Note (1):

To compile with cc and run

$ cc -std=c99 verify .c -o verify

$ ./ verify

Enter the min and max of the range over which to check ,

(min <= n <= max ).

Note (2):

Compile with -DPRINT flag to display the " allowed "

partitions .

Warning : The above is only useful for debugging with

small values of n. Otherwise , the output will be

overwhelmingly verbose .

\**************************************************************/

# include <stdio.h>

# include <stdlib .h>
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# include "data.h"

/*

* visitor function type to be called after a partition

* has been generated .

*/

typedef void (* Visitor ) (int p[], int k, long * counts );

/*

* Kelleher ’s [Kel06] accelerated ascending rule algorithm

* to generate partitions of ’n’ > 0. The visitor

* function ’f’ is called once a partition is generated .

* ’counts ’ is an array , used by ’f’ to counts the number

* of " allowed " partitions in each of the three cases.

*/

long long accelAsc (int n, Visitor f, long * counts );

/*

* Prints the partition (which is produced as a

* non - decreasing sequence ) in reverse order , ie ,

* in the non - increasing order. ’k’ is the length

* of the generated partition .

*/

void printRev (int p[], int k);

/*

* ’fltrCnt ()’ is the visitor function implementation

* to check if the partitions are " allowed " or not

* for each of the three cases. If a partition is allowed ,

* it is then counted for the appropriate module .

*/

void fltrCnt (int p[], int k, long * counts );

/* Various states , used in the definition of fltrCnt () */

enum states_fltrCnt {

F40 = 1, /* reducible for (4,0)- module */

F21 = 2, /* reducible for (2,1)- module */

F02 = 4, /* reducible for (0,2)- module */

FL4 = 7, /* reducible for all level 4 modules */

S03 = 8, /* entered [2* ,3 ,0] diff condn */

S2 = 16, /* entered [2*] diff condn starting at 2 */
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ODD = 32, /* current entry is odd */

};

int main(int argc , char *argv []) {

int min , max;

long cnts [3];

long long count;

printf (" Starting from: ");

scanf ("%d", &min );

printf (" Ending at: ");

scanf ("%d", &max );

for (int n=min; n<= max; n++) {

printf (" Computing Partitions of n=%d...\n", n);

count = accelAsc (n, fltrCnt , cnts );

if (X[n] != count) printf ("**");

printf ("\ tAll =%13 lld\tGot =%13 lld\n", X[n], count );

if (X40[n] != cnts [0]) printf ("**");

printf ("\ tX40 =%13 ld\tGot =%13 ld\n", X40[n], cnts [0]);

if (X21[n] != cnts [1]) printf ("**");

printf ("\ tX21 =%13 ld\tGot =%13 ld\n", X21[n], cnts [1]);

if (X02[n] != cnts [2]) printf ("**");

printf ("\ tX02 =%13 ld\tGot =%13 ld\n", X02[n], cnts [2]);

printf ("\n");

}

return 0;

}

void printRev (int a[], int k) {

int i;

printf ("[");

for (i=0; i<k; i++) {

if (i >0) {

printf (" ,");

}

printf ("%d", a[k-i -1]);

}

printf ("]\n");

}
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long long accelAsc (int n, Visitor f, long * counts ) {

int k, j, i, x, y;

int a[n];

long long count =0;

counts [0] = counts [1] = counts [2] = 0;

if (n == 0) {

f(a, 0, counts ); /* null partition */

return 1;

}

for (i=0; i<n; i++) {

a[i] = 0;

}

k = 1;

y = n -1;

while (k != 0) {

x = a[k -1] + 1;

k--;

while (2*x <= y) {

a[k] = x;

y = y - x;

k++;

}

j = k + 1;

while (x <= y) {

a[k] = x;

a[j] = y;

f(a, k+2, counts ); /* generated a partition */

count ++;

x++;

y--;

}

a[k] = x + y;

y = x + y - 1;

f(a, k+1, counts ); /* generated a partition */

count ++;

}

return count;

} /* End of accelAsc () */
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void fltrCnt (int p[], int k, long * counts ) {

/*

Partitions are represented as non - decreasing lists.

(2 ,5 ,6) <=> (6 ,5 ,2) read R to L

if currently reading the 3rd index (6), then

cur = 6

prv = 5

d = 1

d1 = 3

States :

ODD => Whether cur is odd or not

S03 => current diff condn is [2* ,3 ,0]

S2 => current diff condn is [2*] starting at 2

F40 => partition is reducible for (4,0)- module

F21 => partition is reducible for (2,1)- module

F02 => partition is reducible for (0,2)- module

FL4 => partition is reducible for all level 4 modules .

IC:

(1) => sets F40 & F02

(3) => sets F02

(1,1), (3 ,3) => sets F21

(2 ,2) => sets F21 & F02

[3 - ,2*] starting with 2 => sets F02

ALL:

[1],

[0,0], [0,2], [2,0], [0,3],

[3-,0], [0-,4], [4-,0],

[3 - ,2* ,3 ,0]

=> sets FL4 (ie , returns )

States switching :

S03:

sets when diff conds reaches [3,0],

resets when

d == 3 and cur is ODD => sets FL4

otherwise if d != 2.
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S02:

sets when the first entry is 2,

resets when

d == 3 (no need to check ODD) => sets F02

otherwise if d != 2.

ODD:

sets when cur is odd ,

resets when cur is even.

*/

int cur; /* current part being read */

int prv; /* previous part read */

int d; /* difference = cur - prv */

int d1 = -1; /* last difference */

char s = 0; /* Bits of "s" represent different states */

for (int i=0; i<k; i++) {

cur = p[i];

if (cur % 2)

s |= ODD;

else

s &= ~ODD;

if (i == 0) { /* we are reading the 1st entry */

switch (cur) {

case 1:

s |= (F40|F02 );

break;

case 2:

s |= S2;

break;

case 3:

s |= F02;

break;

default :

break;

}

} else { /* reading 2nd or further to the left */

d = cur - prv;

if ((d==1) || (d==0 && d1 ==0) || (d==0 && d1 ==2)

|| (d==2 && d1 ==0) || (d==0 && d1 ==3)

|| ((s & ODD) && d==3 && d1 ==0)
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|| ((s & ODD) && d==0 && d1 ==4)

|| ((s & ODD) && d==4 && d1 ==0)

|| ((s & S03) && d==3 && (s & ODD )))

return ;

if (s & S2) {

switch (d) {

case 2:

break;

case 3:

s |= F02;

if ((s & FL4 )== FL4) return ;

s &= ~S2;

break;

default :

s &= ~S2;

break;

}

}

if ((s & S03) && d != 2)

s &= ~S03;

else if (d==3 && d1 ==0)

s |= S03;

if ((i ==1)&&( cur == prv )&&( cur ==1 || cur ==3)) {

s |= F21;

if ((s & FL4 )== FL4) return ;

} else if ((i ==1)&&( cur == prv )&&( cur ==2)) {

s |= (F21|F02 );

if ((s & FL4 )== FL4) return ;

}

d1 = d;

} /* End of if (i==0) */

prv = cur;

} /* End of for(i) */

if (!(s & F40 )) {

counts [0]++;

#ifdef PRINT

printf ("(4 ,0) - module : ");

printRev (p, k);

#endif

}

if (!(s & F21 )) {
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counts [1]++;

#ifdef PRINT

printf ("(2 ,1) - module : ");

printRev (p, k);

#endif

}

if (!(s & F02 )) {

counts [2]++;

#ifdef PRINT

printf ("(0 ,2) - module : ");

printRev (p, k);

#endif

}

} /* End of fltrCnt () */

C.2 File: data.h

In this section, we present the file data.h, which contains data about P(n) (see

Notation 4.1.7) and FΛ(n) (see § 3.2, Notation 3.2.4) for 0 ≤ n ≤ 200, where Λ = 4h∗0,

2h∗0 + h∗1 or 2h∗1. These numbers were generated using power series expansion (using the

Maple package powseries) of the product side FΛ(q) (Notation 3.2.4).

Listing C.2: data.h
/**************************************************************\

File: data.h

Author : Debajyoti Nandi

Email: nandi@math . rutgers .edu

Description :

Contains the data about the graded dimensions of the level 4

standard modules for A2 (2).

XMN[n] = the coefficient of q^n in the second product

expansion (F_{\ Lambda }(q)) of the graded dimension

of the (M,N)- module .

MN = 40, 21 or 02.
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X40[n] is the number of partitions of n into

parts congruent to +/ -{2 ,3 ,4} modulo 14.

X21[n] is the number of partitions of n into

parts congruent to +/ -{1 ,4 ,6} modulo 14.

X02[n] is the number of partitions of n into

parts congruent to +/ -{2 ,5 ,6} modulo 14.

X[n] is the number of all partitions of n.

Note:

These numbers are directly computed from the expansion of

the corresponding product formula (using Maple package

" powseries ").

0 <= n <= MAX -1 (MAX =201 defined below ).

We checked the equality of the spanning set for n <= 170.

\**************************************************************/

# ifndef DATA_H

# define DATA_H

# define MAX 201 /* one plus the max */

/* Needs at least 32 bit */

const long X40[MAX] = {1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 6, 5, 9, 7,

12, 11, 17, 15, 23, 21, 31, 29, 41, 39, 55, 52, 71, 70, 93, 91,

120, 119, 154, 154, 196, 198, 250, 252, 314, 321, 395, 404, 494 ,

508, 615, 635, 762, 790, 943, 978, 1159 , 1209 , 1423 , 1485 , 1740 ,

1821 , 2121 , 2224 , 2577 , 2708 , 3126 , 3286 , 3776 , 3980 , 4554 , 4802 ,

5477 , 5783 , 6571 , 6945 , 7865 , 8321 , 9397 , 9945 , 11197 , 11865 ,

13320 , 14118 , 15812 , 16770 , 18735 , 19879 , 22155 , 23520 , 26159 ,

27774 , 30824 , 32746 , 36268 , 38532 , 42601 , 45273 , 49961 , 53104 ,

58501 , 62193 , 68407 , 72724 , 79863 , 84922 , 93117 , 99012 , 108418 ,

115289 , 126066 , 134057 , 146394 , 155676 , 169796 , 180546 , 196682 ,

209140 , 227565 , 241953 , 262984 , 279596 , 303570 , 322717 , 350025 ,

372071 , 403164 , 428496 , 463857 , 492964 , 533149 , 566517 , 612163 ,

650394 , 702190 , 745936 , 804669 , 854678 , 921244 , 978328 , 1053701 ,
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1118837 , 1204125 , 1278328 , 1374785 , 1459264 , 1568262 , 1664337 ,

1787425 , 1896597 , 2035525 , 2159436 , 2316120 , 2456690 , 2633289 ,

2792562 , 2991505 , 3171854 , 3395806 , 3599839 , 3851793 , 4082447 ,

4365758 , 4626262 , 4944619 , 5238677 , 5596211 , 5927823 , 6329149 ,

6702882 , 7153082 , 7573964 , 8078710 , 8552370 , 9117990 , 9650628 ,

10284088 , 10882725 , 11591784 , 12264060 , 13057354 , 13811892 ,

14698931 , 15545230 , 16536585 , 17485229 , 18592642 , 19655289 ,

20891688 , 22081420 , 23461150 , 24792263 , 26331227 , 27819720 ,

29535426 , 31198920 , 33110760 , 34968805 , 37098243 , 39172364 ,

41543017 , 43857204 , 46495191 , 49075706 , 52009892 , 54885951 ,

58148084};

const long X21[MAX] = {1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10,

11, 14, 15, 20, 21, 27, 29, 37, 40, 49, 53, 66, 71, 86, 93, 113,

122, 146, 158, 188, 204, 240, 260, 306, 332, 386, 419, 487, 528 ,

609, 661, 760, 825, 943, 1023 , 1168 , 1267 , 1438 , 1560 , 1767 ,

1916 , 2162 , 2344 , 2639 , 2860 , 3209 , 3476 , 3894 , 4217 , 4708 ,

5097 , 5682 , 6148 , 6836 , 7394 , 8207 , 8874 , 9828 , 10621 , 11746 ,

12689 , 14003 , 15121 , 16665 , 17986 , 19788 , 21348 , 23455 , 25293 ,

27745 , 29905 , 32766 , 35302 , 38621 , 41592 , 45453 , 48926 , 53399 ,

57455 , 62639 , 67368 , 73360 , 78862 , 85794 , 92189 , 100180 , 107602 ,

116823 , 125422 , 136034 , 145987 , 158200 , 169704 , 183731 , 197007 ,

213120 , 228427 , 246893 , 264519 , 285686 , 305955 , 330174 , 353460 ,

381161 , 407883 , 439521 , 470148 , 506274 , 541345 , 582526 , 622644 ,

669581 , 715421 , 768846 , 821178 , 881958 , 941644 , 1010713 ,

1078717 , 1157172 , 1234590 , 1323598 , 1411652 , 1512596 , 1612653 ,

1727012 , 1840620 , 1970107 , 2098992 , 2245472 , 2391561 , 2557186 ,

2722651 , 2909739 , 3097001 , 3308240 , 3520000 , 3758301 , 3997592 ,

4266275 , 4536476 , 4839180 , 5144052 , 5484912 , 5828670 , 6212188 ,

6599520 , 7030829 , 7466949 , 7951648 , 8442383 , 8986794 , 9538617 ,

10149685 , 10769785 , 11455329 , 12151724 , 12920294 , 13701879 ,

14563118 , 15439763 , 16404234 , 17386918 , 18466449 , 19567341 ,

20774941 , 22007525 , 23357735 , 24736987 , 26245747 , 27788242 ,

29473390 , 31197471 , 33078570 , 35004574 , 37103408 , 39253822 ,

41594347 , 43994022 , 46602870 , 49279318 , 52185710 , 55169310 ,

58405745 , 61730037 , 65332175 , 69034230 , 73041596};

const long X02[MAX] = {1, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 6, 4,

8, 6, 11, 9, 15, 12, 20, 17, 26, 23, 35, 31, 45, 41, 58, 54, 75,

70, 96, 91, 121, 117, 154, 149, 193, 189, 242, 239, 302, 299,

375, 375, 463, 466, 572, 577, 702, 712, 859, 876, 1049 , 1072 ,
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1277 , 1310 , 1548 , 1594 , 1875 , 1934 , 2262 , 2340 , 2723 , 2825 ,

3271 , 3398 , 3920 , 4081 , 4685 , 4887 , 5592 , 5839 , 6656 , 6962 ,

7908 , 8284 , 9379 , 9833 , 11103 , 11654 , 13116 , 13782 , 15473 ,

16270 , 18218 , 19173 , 21416 , 22557 , 25137 , 26489 , 29458 , 31063 ,

34466 , 36366 , 40275 , 42510 , 46989 , 49620 , 54749 , 57839 , 63706 ,

67319 , 74032 , 78257 , 85916 , 90846 , 99594 , 105327 , 115302 ,

121966 , 133332 , 141065 , 154005 , 162955 , 177684 , 188036 ,

204771 , 216726 , 235748 , 249522 , 271114 , 286975 , 311469 , 329709 ,

357475 , 378409 , 409874 , 433884 , 469493 , 496997 , 537294 , 568750 ,

614307 , 650257 , 701730 , 742769 , 800888 , 847671 , 913268 , 966560 ,

1040520 , 1101165 , 1184537 , 1253465 , 1347369 , 1425654 , 1531362 ,

1620192 , 1739117 , 1839800 , 1973535 , 2087573 , 2237838 , 2366892 ,

2535676 , 2681578 , 2871034 , 3035871 , 3248420 , 3434499 , 3672822 ,

3882693 , 4149796 , 4386347 , 4685500 , 4951920 , 5286847 , 5586662 ,

5961417 , 6298600 , 6717710 , 7096653 , 7565130 , 7990684 , 8514112 ,

8991718 , 9576197 , 10111869 , 10764269 , 11364646 , 12092472 ,

12764978 , 13576575 , 14329409 , 15233989 , 16076195 , 17083983 ,

18025646 , 19147834 , 20200078 , 21449166 , 22624261 , 24013932 ,

25325521 , 26870925 , 28334046 , 30051881 , 31683105 , 33591834};

/* Needs at least 64 bit */

const long long X[MAX] = {1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42,

56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002 , 1255 ,

1575 , 1958 , 2436 , 3010 , 3718 , 4565 , 5604 , 6842 , 8349 , 10143 ,

12310 , 14883 , 17977 , 21637 , 26015 , 31185 , 37338 , 44583 , 53174 ,

63261 , 75175 , 89134 , 105558 , 124754 , 147273 , 173525 , 204226 ,

239943 , 281589 , 329931 , 386155 , 451276 , 526823 , 614154 , 715220 ,

831820 , 966467 , 1121505 , 1300156 , 1505499 , 1741630 , 2012558 ,

2323520 , 2679689 , 3087735 , 3554345 , 4087968 , 4697205 , 5392783 ,

6185689 , 7089500 , 8118264 , 9289091 , 10619863 , 12132164 , 13848650 ,

15796476 , 18004327 , 20506255 , 23338469 , 26543660 , 30167357 ,

34262962 , 38887673 , 44108109 , 49995925 , 56634173 , 64112359 ,

72533807 , 82010177 , 92669720 , 104651419 , 118114304 , 133230930 ,

150198136 , 169229875 , 190569292 , 214481126 , 241265379 , 271248950 ,

304801365 , 342325709 , 384276336 , 431149389 , 483502844 , 541946240 ,

607163746 , 679903203 , 761002156 , 851376628 , 952050665 ,

1064144451 , 1188908248 , 1327710076 , 1482074143 , 1653668665 ,

1844349560 , 2056148051 , 2291320912 , 2552338241 , 2841940500 ,

3163127352 , 3519222692 , 3913864295 , 4351078600 , 4835271870 ,

5371315400 , 5964539504 , 6620830889 , 7346629512 , 8149040695 ,

9035836076 , 10015581680 , 11097645016 , 12292341831 , 13610949895 ,
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15065878135 , 16670689208 , 18440293320 , 20390982757 , 22540654445 ,

24908858009 , 27517052599 , 30388671978 , 33549419497 , 37027355200 ,

40853235313 , 45060624582 , 49686288421 , 54770336324 , 60356673280 ,

66493182097 , 73232243759 , 80630964769 , 88751778802 , 97662728555 ,

107438159466 , 118159068427 , 129913904637 , 142798995930 ,

156919475295 , 172389800255 , 189334822579 , 207890420102 ,

228204732751 , 250438925115 , 274768617130 , 301384802048 ,

330495499613 , 362326859895 , 397125074750 , 435157697830 ,

476715857290 , 522115831195 , 571701605655 , 625846753120 ,

684957390936 , 749474411781 , 819876908323 , 896684817527 ,

980462880430 , 1071823774337 , 1171432692373 , 1280011042268 ,

1398341745571 , 1527273599625 , 1667727404093 , 1820701100652 ,

1987276856363 , 2168627105469 , 2366022741845 , 2580840212973 ,

2814570987591 , 3068829878530 , 3345365983698 , 3646072432125 ,

3972999029388};

#endif
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