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In this dissertation, we propose a set of new partition identities, arising from a twisted
vertex operator construction of the level 4 standard modules for the affine Kac-Moody
algebra of type Ag). These identities have an interesting new feature, absent from
previously known examples of this type.

This work is a continuation of a long line of research of constructing standard modules
for affine Kac-Moody algebras via vertex operators, and the associated combinatorial
identities. The interplay between representation theory and combinatorial identities
was exemplified by the vertex-algebraic proof of the famous Rogers-Ramanujan-type
identities using standard Agl)—modules by J. Lepowsky and R. Wilson. In his Ph.D.
thesis, S. Capparelli proposed new combinatorial identities using a twisted vertex
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operator construction of the standard A;z -modules of level 3, which were later proved
independently by G. Andrews, S. Capparelli, and M. Tamba-C. Xie.

We begin with an obvious spanning set for each of the level 4 standard modules for
AgQ), and reduce this spanning set using various relations. Most of these relations come
from certain product generating function identities which are valid for all the level 4

modules. There are also other ad-hoc relations specific to a particular module of level 4.

In this way, we reduce our spanning sets to match with the graded dimensions of the
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said modules as closely as possible. We conjecture and present strong evidence for three
partition identities based on the spanning sets for the three standard Ag)-modules of
level 4.

One surprising result of our work is the discovery of relations of arbitrary length.
Consequently, the partitions corresponding to these spanning sets cannot be described
by difference conditions of finite length.

The spanning set result proves one inequality of the proposed identities. There is
strong evidence for the validity of the conjecture (i.e., the opposite inequality), since it

has been verified to hold for partitions of n < 170, and n = 180, 190 and 200.
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Chapter 1

Introduction

In this work, we conjecture and present strong evidence for possible partition identities
arising from the standard modules of level 4 for the affine Lie algebra AéQ) using a twisted
vertex operator construction. Historically, the discovery of vertex operator constructions
of representations of affine Lie algebras was motivated by a conjectured interplay between
classical partition identities and standard modules for affine Kac-Moody Lie algebras.

The first famous example of such interplay arises from the Rogers-Ramanujan

identities, which may be stated as follows:

(i) The number of partitions of a nonnegative integer n in which the differ-
ence between any two successive parts is at least 2 is the same as the number

of partitions of n into parts congruent to 1 or 4 modulo 5.

(i)  The number of partitions of a monnegative integer n in which the
difference between any two successive parts is at least 2 and such that the
smallest part is at least 2 is the same as the number of partitions of n into

parts congruent to 2 or 3 modulo 5.

A connection between the congruence conditions and standard modules for Agl) was dis-

covered by J. Lepowsky and S. Milne [LM7§|. A vertex operator theoretic interpretation
and proof of the Rogers-Ramanujan identities, “explaining” the difference conditions,
was given by Lepowsky and R. Wilson in [LW82, [LW84]. They used monomials, acting
on a highest weight vector, in certain new operators whose indices reflected the difference
conditions. They extended their work to all the standard Agl)—modules in [LW82, |[LW84
LW85|, giving a vertex-algebraic interpretation of a family of Rogers-Ramanujan-type

identities, discovered by B. Gordon, G. Andrews and D. Bressoud. The case for the



level 2 standard Agl)—modules was described by certain “difference-one” conditions
(where adjacent parts have difference at least one). For level 3 it was described by
“difference-two” conditions (where adjacent parts have difference at least two). For levels
greater than 3, the description changed into “difference-two-at-a-distance” and parity
conditions, reflecting the sum sides of the Gordon-Andrews-Bressoud identities.

The linear independence of the relevant monomials (applied to a highest weight
vector) for standard Agl)—modules of level greater than 3 was not proved in the sequel
[LW82, |[LW84), LW85]. This problem was solved by A. Meurman and M. Primc [MP87],
providing a vertex-algebraic proof of the Gordon-Andrews-Bressoud identities beyond
the case of Rogers-Ramanujan identities.

In his Ph.D. thesis [Cap88|, S. Capparelli proposed a pair of combinatorial iden-
tities based on the standard Ag2)—modules of level 3. He also demonstrated that the
construction of the level 2 standard modules for AgQ) in this way gives rise to another
vertex operator theoretic interpretation of the classical Rogers-Ramanujan identities
(see also [Cap92, Cap93]). It was believed that once a few low level cases for standard
Ag)—modules had been successfully analyzed in this way, a general construction for all
levels would emerge. However, the cases for AéQ) turned out to be much harder and
subtler than those for Agl) which had been extensively studied. One of Capparelli’s

identities, arising from the level 3 standard Ag)—modules, may be stated as follows:

The number of partitions of a nonnegative integer n into parts different
from 1 and such that the difference of two successive parts is at least 2, and
is exactly 2 or 3 only if their sum is a multiple of 3, is the same as the

number of partitions of n into parts congruent to +2, £3 modulo 12.

A g-series proof of this identity was given by G. Andrews [And94|, proving Capparelli’s
conjecture. Capparelli also provided a direct vertex operator theoretic proof of his
identities by proving the linear independence of his spanning sets in [Cap96]. M. Tamba
and C. Xie [TX95] independently gave another vertex operator theoretic proof of
Capparelli’s identities. See [Lep07] for more details.

In this work, we give combinatorial interpretations of the graded dimensions of the



three inequivalent standard Agz)—modules of level 4. The level 4 case turns out to be

much more difficult and subtle even compared to the level 3 case, showing even more
surprising results.

A partition can be thought of as a non-increasing sequence of positive integers. A
partition (mq,...,m,) is said to satisfy a difference condition [dy,...,d,_q] if
m; —m;pq = d; for all 1 <4 < s — 1. The partition identities we propose, based

on the three inequivalent standard Ag)—modules of level 4, may be stated as follows:

(i) The number of partitions of a nonnegative integer n into parts different
from 1 and such that there is no sub-partition satisfying the difference
conditions [1], [0,0], [0,2], [2,0] or [0,3], and such that there is no sub-
partition with an odd sum of parts satisfying the difference conditions [3,0],
[0,4], [4,0] or [3,2*,3,0] (where 2* indicates zero or more occurrence of 2),
is the same as the number of partitions of n into parts congruent to £2, 43

or +4 modulo 14.

(ii) The number of partitions of a nonnegative integer n such that 1, 2 and
3 may occur at most once as a part, and such that there is no sub-partition
satisfying the difference conditions [1], [0,0], [0,2], [2,0] or [0,3], and such
that there is no sub-partition with an odd sum of parts satisfying the difference
conditions [3,0], [0,4], [4,0] or [3,2*%,3,0] (where 2* indicates zero or more
occurrence of 2), is the same as the number of partitions of n into parts

congruent to £1,+4 or £6 modulo 14.

(iii) The number of partitions of a nonnegative integer n into parts different
from 1 and 3, such that 2 may occur at most once as a part, and such that
there is no sub-partition satisfying the difference condition [3,2*] (where 2*
denotes zero or more occurrence of 2) ending with a 2, and such that there
is no sub-partition satisfying the difference conditions [1], [0,0], [0, 2], [2,0]
or [0,3], and such that there is no sub-partition with an odd sum of parts
satisfying the difference conditions [3,0], [0,4], [4,0] or [3,2*,3,0], is the

same as the number of partitions of n into parts congruent to £2,£5 or +6



modulo 14.

Each of the above statements corresponds to computing the graded dimension of a
level 4 standard Ag)—module in two ways—from the principal specialization of the Weyl-
Kac character formula given by the numerator formula (see [LMT78| Lep78]) (describing
the “congruence conditions”) and an explicit construction of a graded basis for the
module (describing the “difference conditions” and “initial conditions”).

The graded dimension, given by the principal specialization of the Weyl-Kac character
formula and the numerator formula of [LMT78|, [Lep78|, can be factored as X (q) =
H(q)F(q), as a formal power series in g, where F'(q) is the series that counts the
partitions with the “congruence conditions.” The extra factor H(q) is similar to the
“fudge factor” in [LM78, [LW82, LW84, LW8&5]. In their works, Lepowsky and Wilson
used a certain “vacuum space” and certain "Z-operators” to cancel out the “fudge factor.”
We show an equivalent cancellation without using such a “vacuum space.”

In this dissertation, we prove the appropriate “spanning set” result. The starting
point is a certain obvious spanning set, parametrized by two sets of partitions. The
elements of this spanning set can be described as products of two types of operators—the
“negative Heisenberg operators” and the “X (o) operators”—acting on a highest weight
vector vg. The partitions describe the degrees and the order of these operators applied
to vy. We show that no relations among the “negative Heisenberg operators” exist and
that these operators are accounted for by the “fudge factor” H(q). The only relations,
therefore, come from the relations among the X (e) operators acting on vj.

We eliminate extraneous elements from this spanning set based on these relations.
The resulting pruned spanning set can be described as parametrized by the set of all
partitions which do not contain certain “forbidden” sub-partitions. The most surprising
result in our work was the discovery of forbidden sub-partitions of arbitrary lengths.
These forbidden partitions can be described by the “difference conditions” mentioned
above. In all previously known analogous situations arising from representations of affine
Kac-Moody algebras, the forbidden partitions could be described by difference conditions
of bounded length. For example, in the Rogers-Ramanujan identities and Capparelli’s

identities, the difference conditions are of length one (reflecting the difference between



adjacent parts). In our case, there are forbidden partitions satisfying arbitrarily long
difference conditions. These difference conditions are the same for the all standard
Agz)—modules of level 4. The differentiating factors are then the “initial conditions”
associated with the three inequivalent level 4 standard modules.

If the resulting spanning set is linearly independent, then the product side given by
F(q) may be expressed as > n>0Ang", where A,, is the number of partitions of n not
containing any forbidden sub-partitions. We call these partitions “allowed” partitions.

Our spanning set result states that in each of the above cases, the number of
partitions of n described by various initial and difference conditions is greater than or
equal to the number of partitions of n into parts satisfying the corresponding modulo
14 conditions. Experimental evidence shows that the equality holds for n < 170, as well
as for n = 180, 190 and 200.

It is interesting to note how we discovered the family of “exceptional” forbidden
partitions of arbitrary lengths (i.e., partitions of an odd number satisfying the difference
conditions [4,0], [3,2%,3,0]). We set out to compare the graded dimension of the
(4,0)-module (one of the level 4 standard modules), with the spanning set we got after
eliminating partitions into parts different from 1 (the initial condition for this module),
and the other partitions containing forbidden sub-partitions, using relations similar to
what Capparelli used in |[Cap88, |Cap93|. We found the first discrepancy at n = 13,
and the next one at n = 19. In each case, there was an extra partition in our pruned
spanning set compared to what the corresponding graded dimension would suggest.
From certain “periodicity properties” of our relations, we could infer that we must have
missed a forbidden triplet (partition into 3 parts). The smallest such triplet surviving
in our spanning set (for n = 13) was (7, 3,3). We then eliminated (7, 3,3) and all its
2-translates (i.e., partitions of the form (7 + 2k, 3 + 2k, 3 + 2k), k > 0). We compared
our resulting spanning set with the graded dimension again, and noticed that the next
two discrepancies were at n = 21 and n = 29, and in each case there was one extra
partition in our spanning set. Once again, the “periodicity properties” suggested that
we must have missed a forbidden quadruplet (i.e., a partition into 4 parts). Eliminating

the smallest surviving quadruplet and its 2-translates gave us a contradiction, i.e., we



got a smaller number of partitions in the spanning set than required by the graded
dimension, for n sufficiently large. Therefore, we proceeded to eliminate the second
quadruplet, which was (9,6, 3, 3), and its 2-translates. Proceeding in similar fashion, a
clear pattern emerged for the family of forbidden partitions of arbitrary lengths.

The task of proving that these partitions are indeed forbidden turned out to be
very subtle. Unlike in [Cap88, |Cap93|, we needed to keep track of terms containing
“positive Heisenberg elements” in the relations that we used. In the case of the level 3
standard modules, the forbidden partitions arose directly from certain generating function
identities. In our case, we obtain “longer” relations by multiplying similar generating
function identities by suitable operators. The “exceptional” forbidden partitions of
arbitrary length arise from these relations. Also, the initial conditions are significantly
more difficult for level 4 than for level 3.

As illustrated by all of these phenomena, the level 4 theory for Ag) is much more
complex than the level 3 theory.

Now we give a brief overview of this dissertation.

In we recall the basic definitions and results to describe the twisted vertex
operator construction of the principally graded realization of the algebra Ag). This is a
simplification of the general case, based on vertex operator calculus, described in [Lep85,
Fig87), |Cap92, Cap93, [FLMS87, FLMS88, DLI6|, specialized to our specific case of A§2).

In we recall the basic notions about standard modules for an affine Lie
algebra and show that any level 4 standard module can be thought of as embedded in
the tensor product of 4 copies of the basic module. We also recall the graded dimensions
of these modules given by the principal specialization of the Weyl-Kac character formula
and the numerator formula (see |[Lep78, [LM78| for more details).

In we present the framework—some notations, definitions and results—on
which the rest of the dissertation depends. First, we present a few definitions, notations
and results related to partitions and generalized partitions (i.e., any sequence of integers,
not necessarily positive, in non-increasing order). Then we describe certain standard
monomials—parametrized by these partitions and generalized partitions—in certain

operators and the structure of the standard modules in terms of the action of these



monomials on a highest weight vector. We also present a number of substantial tools
and techniques that we use repeatedly in the later chapters.

In we present the “product generating function” identities that hold in
any level 4 standard module (more generally, on the tensor product of 4 copies of the
basic module). These identities are analogous to those used in [Cap88, |Cap92, |Cap93]
for the standard Aég)—modules of level 3. We also present the coefficients of the standard
monomials that appear in these “product generating function” identities.

is devoted to finding forbidden partitions using the product generating
function identities mentioned above. There are two types of forbidden partitions. Those
that follow directly from the product generating function identities, similar to those
in the level 3 case in [Cap88, |Cap92) |(Cap93|, are called “regular” forbidden partitions.
Interestingly, there are other forbidden partitions of arbitrary length (starting from
length 3) satisfying a simple pattern of difference conditions. There are no analogues of
this type of forbidden partitions in any of the previous cases. We call them “exceptional”
forbidden partitions. These exceptional forbidden partitions follow from new relations
obtained by multiplying the product generating function identities by suitable operators.

In we describe the “initial conditions” for each of the three inequivalent
level 4 standard modules for AgQ). These come from certain ad-hoc relations specific
to each of the particular standard A§2)—modules of level 4, needed to match the graded
dimensions of “low degrees.”

Finally, in we summarize our main results and our three (conjectured)
partition identities arising from the three level 4 standard Ag)—modules.

Some of the computations used in the proofs were performed using computer programs
in Maple. We also wrote a C (standard C99) program to verify the validity of our

partition identities. We have collected all the programs that we used in the appendices.

In we present the Maple worksheet and the Maple source files that we

used (mainly in |[Chapter 6| and [Chapter 7)) for the computations of the relations.

In[Appendix B] we present our Maple source files for computations in noncommutative
algebras. We also present two Maple worksheets showing the computations used in some

of the proofs (notably, in [Chapter 7). The Maple programs implementing the operations



(addition, multiplication, etc..) in noncommutative algebras were based on the NCFPS
(noncommutative formal power series) package of D. Zeilberger (see |Zeil2, BRRZ12]).
The algorithm to apply substitution rules to straighten out an out-of-order monomial
is based on the Maple codes of M. Russell (see [Rusl3]). His program was for a finite
number of substitution rules over a finite alphabet. We modified his program to work
with an infinite number of substitution rules (based on finitely many patterns) over an
infinite indexed alphabet.

In we present our C program (written in C99 standard) to verify our
partition identities up to n < 200. (Note that we have done the verification only for
n < 170 and for n = 180,190 and 200. It may take more than 24 hours to complete
the computation for n = 200.) We used the “accelerated ascending rule” algorithm of

J. Kelleher (see [Kel06]) to generate all partitions of a nonnegative integer n.



Chapter 2

Preliminaries

In this chapter, we will discuss briefly the principally graded realization of the affine Lie
algebra Ag) using twisted vertex operators. The general set-up has been described in
[FLMS88, [FLM8&7] in a more general setting. We will also follow closely the notations
used in |[Cap88, |Cap92, |Cap93|. Here we present the case of Ag), which is much simpler
than the general case.

We start with the root lattice Ay, and construct a central extension of this root
lattice to describe Ag). Since this extension splits, much of the complication that arises
in the general construction can be simplified. For detailed description of the general
construction see [FLMS88, [FLMS87, |Cap88, |Cap92, |Cap93, [LW84, Lep78, |Lep85| Fig87,

DL96).

2.1 Formal Calculus

In this section, we will give a brief overview of the formal calculus used in this dissertation.
We only quote a few results. For details and the proofs see [FLMS8S| |Cap92, [LLO4].

Let V be any vector space over C. Denote by (End V)[[z, 27 !]] the space of formal
Laurent series in z with coefficients in End V. The elements of (End V)[[z,27!]] are
denoted using “function” notation:

flz) =) far™
neL

Definition 2.1.1. A (possibly infinite) subset S C End V' is called summable if the set

{feS| fv#0} is finite for all v € V.

Remark. 1f S C End V' is summable then };cg f is a well-defined operator on V.
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Henceforth we assume that V' is graded, i.e., V = [],,cz V,,, where V,, denotes the

set of all homogeneous elements in V' of degree n.

Definition 2.1.2. An endomorphism f € EndV is called homogeneous of degree d if it

maps elements of V,, into V,,, 4 for all n € Z.

Proposition 2.1.3. Let f(z),g(z) € (End V)[[z,271]]. Assume that
(i) fn, g, are homogeneous operators of degree n on 'V for alln € Z,
(ii) [fny,9m] =0 for all n,m € Z,
(iii) V is bounded above (or, below), i.e., there exists N € Z such that V,, = 0 for all
n>N (or,n <N).

Then f(2)g(z) is a well-defined element of (End V)[[z, 27 1]].

Proof. Assume that V is bounded above with highest degree N. For each k € Z, the
coefficient of z7% in f(2)g(z) is 3, tm=k fngm- For a homogeneous vector v € V' of
degree d, the sum

Z Ingmv = Z Ingmv = Z Gm [V

n+m=k n+m=Fk ntm==k
m<N-—d m,n<N—d

has only finitely many nonzero terms.

The proof for the case where V is bounded below is similar. O

We now recall the limit notation. Let (End V)[[2f}, ..., 2F!]] denote the space of all
formal Laurent series in commuting indeterminates zq, . .., z, with coefficients in End V.
Write

f(z1>"'azn): Z f(ilw'win)zl_zl"'Z;Z"-

i1y €L

Definition 2.1.4. Define the limit as all the indeterminates are set to z by

lim f(zl,...,zn)zz Z flir,..yiy) 27k

kez | iy,...i,€Z
i+t =k

provided the the family
{Flrooin)| it Hin =k}

is summable for all k € Z.
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Following |[FLMSS]|, we observe the following convention:

z n
(21 + 29)" = 27 (1 + 2) ;
21

where the latter factor is to be expanded as a binomial series. Of course, this matters

only when n is not a positive integer. For example,

1 2
21 +Z2 21 21

We quote a few useful properties of the limit below. For proofs see [FLM88| (Cap92,

LLO4).

Proposition 2.1.5.

(1) Let f = f(21,---,2m) be a formal Laurent series such that lim, _,, f ewists. If
P = P(z,...,2y) is a Laurent polynomial, then lim, _,, Pf exists and
tim Py =t P ) (Jim 7).
(2) Let f = f(z1,...y2m,W1,...,w,) be a formal Laurent series such that

hmzhwj_,zf exists. Then

m = Jim ().
Proposition 2.1.6. Assume that V is bounded above (or, below). Let f(z1), g(z2) be
formal Laurent series in the two commuting indeterminates z; and zy, such that the

coefficients f,,, g, are homogeneous operators of degree n on V. Let p = p(zy,29) be a

Laurent polynomial with constant coefficients such that

p(21, 22)[f(21), 9(22)] = 0.

Then the limit
lim  p(zq,22)f(21)9(22)

Z1,20—%

exists.

We recall two very useful Laurent series with constant coefficients to be used later

in our exposition. The first is the “delta function,”

5(z)=>_ 2" (2.1.2)

neL
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Let D denote the differential operator D = z%. Then,

Dd(z) = an". (2.1.3)

neL

We quote the following well known properties of §(z) and D ().

Proposition 2.1.7. Let f(z) be any Laurent polynomial over any algebra over C, and
a € C* be a nonzero constant. Then we have

(i) f(2)8(z) = f(1)6(2), or more generally, f(2)5(a"'2) = f(a)é(a™'z2), and in
particular, (1 —a='2)6(a"12) = 0;

(ii) f(2)Dd(z) = f(1)D6(2) — (D f)(1)d(z), or more generally,
f(z)Dé(a""'2) = f(a) Dé(a™"2) — (D f)(a)d(a™"2),
and in particular, (1 —a=12)?Dé(a"12) = 0.

Proof. Tt can be easily proved on each monomial 2* of f(z). For details see [FLM8S§|. [

2.2 Vertex Operators

In this section, we describe the vertex operators used in the construction of A§2). We
follow the general method as described in [FLMS88, FLM87, Lep85, [LW84, LW85|, |Cap88|,
Cap92, |Cap93, [Fig87, IDLI6], simplifying the process as applicable to the case of AéQ).
Let ® be the A, root system with basis A = {ay, as}. Let L = Zay + Zay be the
root lattice of Ay, equipped with a symmetric Z-bilinear form (-, -), where (a;, ;) = 2
for i = 1,2, and (aq,a9) = —1. Note that the angle between o and «y is %’T
Let v be the automorphism of L of order 6 acting as a rotation on the root system
by %. On the basis elements of A, v(a;) = a; + ag, v(ay) = —ay. Clearly, 1% =1, and
(3a,a) = —(a,a) € 2Z for all a € L. Note that
Z vPa =0, forallaelL. (2.2.1)
PELg
Let h = C®, L. The form (-, +) can be linearly extended to . Let w be a primitive

sixth root of unity. For concreteness, we may choose

im/3 — 1 + ﬁl
2 2

W =e€
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For n € Z, set
bin) = {:L’ €h ’ v = w”m} . (2.2.2)

For n =m (mod 6), w" = w™ and b,) = bh,). Thus the expressions w? and b, have

obvious well-defined meaning for p € Zg. We have

b= 1] by (2.2.3)

PEZg

Note that h(,) = 0 unless n = &1 (mod 6). Therefore,

b=bay @b (2.2.4)

is the eigenspace decomposition for the action of v on bh.

Viewing b as an abelian Lie algebra, construct the v-twisted affine Lie algebra

h=n =11 (h(n) ® t”/ﬁ) & Cc® Cd

neL
(2.2.5)
=TT (bom @ ") ® Cew Cd,
nG%Z
with the following brackets:
[SC ® tZ/Ga Yy tj/G] = %<IL’, y>6i+j,00’
[d, z @t = tr @t/ (2.2.6)
e, @7 = [e, d] =0,
for all i,j € Z, x € by, y € by
Consider the commutator subalgebra s of hv]
s=I[(bw®t”) @Ce=]] (b @t") @ Ce. (2.27a)
neL nez
n#0 n==41 (mod 6)
and the subalgebras
sp =[] (b @ ") @ Ce, (2.2.7b)
nez
+n>0
b=>0bv] = H (b(n) ® t"/S) ®Cco Cd
= (2.2.7¢)

=5, ®Cc@®Cd (since hy =0).
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Then s is a Heisenberg subalgebra in the sense that its commutator, [s,s5] = Cc is
1-dimensional and coincides with its center.
Consider C as a 1-dimensional b[r]-module on which s, and d act trivially, and ¢

acts as identity. Form the induced h[v]-module
S = u(’r}[y]) Suw) C = S(s_). (2.2.8)

Then S is an irreducible module for the Heisenberg subalgebra s (see [FLMS8S]).

The action of d defines a %Z—grading on S

S =1] S (2.2.9)

ne—éN
For o € h and n € Z define a,) as the projection of « on to b,). Then a(,) = 0 unless

n ==+1 (mod 6). For n € Z, define the operator a(n) = a(,) ® t"/% on S.

Definition 2.2.1. Define a pair of Laurent series in z"/® with coefficients in End(S),

z—n

E*(a;2) = —
(cv; 2) = exp Za(Gn) -

nE%Z

£n>0 (2.2.10)

—n/g
=exp |6 Z a(n)z

neL
+n>0

n

Notation 2.2.2. Fix an o € §h. For n € Z, denote by

Coefficient of 2~/ in Et(a;2) if n >0,
E(n)=E,(n) = (2.2.11a)

Coefficient of z™"/® in E~(a;z) if n <O0.

Remark. Notice that the constant term in both ET (a;2) and E~(a; 2) is 1 (the identity
operator on S). Therefore E(0) = 1 is well-defined. The operator E(n) is homogeneous

of degree ¢. We also have E(1) = 6a(1) and E(—1) = —6a(—1).

Thus,
Ef(a;2) =Y E,(n)z """, (2.2.12a)
neL
n>0
E~(;z) =Y E,(—n)2"". (2.2.12b)
nel

n>0
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Proposition 2.2.3. For o, 8 € h, we have

1/6 (vPa,B)
lW(MZﬁE@k@)Zlf(&ZﬁE+&u%)II<1— p§m> S 213)
PELg 1
Proof. Follows from [Proposition 3.4 of LW84, p. 224]. O

1/6
The last factor in (2.2.13)) is to be expanded as a power series in (%) / . We will

use the function notation as a short-hand for its power series expansion for brevity. Let

1/6 <Vpa76>
Qole, 5] . J)
—_— = 1-— p 2.2.14
Po[a’/ﬁ:l pgz[6< w 1/6 ’ ( )

1/6
where Qg = Qpla, 5] and Py = Pyla, 8] are relatively prime polynomials in (‘%) / with
constant term 1, depending on the roots «, 3. We present below a few concrete cases.

1 6
For o € h with (o, ) = 2, and letting x = (;) /
(1-

Qolesal _ (1= 2)2(1 —w )1 —wa)
Pyla,a] (1 —w=2x)(1 — *395) (1—w )

(2.2.15a)
(1= z)%(1 — %)
(1 —22)3(1 — 23)2’

Qola,val (1 —z)(1—w™ 12)2(1 — w™22)

Pyla,val (1 —w32)(1 —w4z)2(1 — woz)’ (2:2.15b)
Qole, el (1 —wz)(1 —w22)*(1 — w>2) .
Pylo,v2al (1 —2)(1 —wz)(1 —wdz) (2:2.15¢)
Qola, —a] _ (1—-w22)(1 —w32)?(1 —w )

a, —a —7)2(1 —wlz)(1 —w oz
Fola, —a (1—z)2(1 )1 ) (2.2.154)

(12?1 —a?)?
(1= )1 —ab)

The construction of the vertex operator X (a;z) (to be described in what follows),
simplifies a lot from the general construction, as described in [FLMS88, FLMS87, [Lep85,
Cap92, |(Cap93|, using the following properties of our special case:

a) v is fixed point free, i.e., by =0,

¢ < pezZg PV a,B>E6Zfora,ﬁ6L

(a)

(b) Ypez,VPa=0fora €L,

()

(d) the central extension L (as defined below) splits.
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Define the alternate bilinear map C': L x L — C* by
Cla, B) = (—1)( X v7eh) y(Lpras) (2.2.16)

where the sums range over p € Zg. Note that C(«, 8) = 1 for any «, 5 € L by (]ED and

above. There is a unique (up to equivalence) central extension of L
1= (w)—»L>L—0 (2.2.17)
by the cyclic group generated by w with the commutator map C), i.e.,
aba~'b~ = C(a,b) fora,be L. (2.2.18)

We use additive notation for the abelian group L, and multiplicative notation for the
extension L which is not abelian in general.

For A(QQ)7 since C(a, 8) =1 for all «, 5 € L, the above extension splits. Therefore,
L= (w) x L is the direct product of groups, and is abelian. However, we continue to use
the multiplicative notation to be consistent with the notations used for the general case.

Let U be the lifting of v to L fixing w, such that

(Da) =va forac L, (2.2.19)
va=a < va=a. (2.2.20)
In our case, the extension splits, and therefore U(w?P, o) = (wP, va) under the identifica-

tion of L with the direct product (w) x L.

Let L act on S = S(s_) as follows:
a.s =wPs, fora=(wP,a)el, ses. (2.2.21)

Definition 2.2.4. For a € f), define the corresponding vertex operator X (a;z) with

coefficients in End S as follows:
X(a;2) = 6~ “"Po(a)E~ (—a; 2) EY (—a; 2)a, (2.2.22)
where o(a) = o(va) is a normalizing constant depending on « € L, defined by

2

O'(Oz) _ 2—(a,a)/2(1 o wfl)(ua,a)(l o w72)<1/ oe,oz>‘ (2223)
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For o € L with (o, o) = 2, the above formula simplifies to

ola) =211 -wH(1 —w?)!

(AJO\/g
6

(2.2.24)

where wy = %(1 + w) = €"/% is a 12-th root of unity with w = w?.

Since the these elements « of L play an important role, we shall use the following

notations:
LQZ{QGLI (a,a>:2},
(2.2.25)
ng{aeL‘ (a,a) =2}
More generally,
L, = {aEL‘ <a,a>:n},
(2.2.26)
L,= {aEL‘ <@,a):n}.
We have the following properties:
X(va; z) = lim  X(a;2), (2.2.27)
216 w—1,Y/6
D X(a;z) = —[d, X (a; 2)], (2.2.28)
d
where D = z .
For o € L, define
alz) = Z an)z"671,
neZ
at(z) = Z a(n)z" 57!
= (2.2.29)
n>0
a (z)= Z an)z"6
neZ
n<0

We will now present the commutator formula for the vertex operators. The details
can be found in [Lep85|, (Cap92, |Cap93, [FLMS87, DLI6] in a more general setting, with
slightly different notations.

It is sometimes useful to parametrize the vertex operators in terms of the elements
of L, instead of L. This is easy in our case, since the extension L splits. However, the
formula becomes more transparent if we follow the more general case. The constants

in this formula depend on some normalized sections and normalized cocycles of the
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extension. For this reason we will describe the general process, and simplify for our case,
whenever appropriate.
Let e : L — L be a normalized section, i.e., e, = a. and e = 1 for all @ € L. Then

there is a normalized cocycle e : L x L — (w) associated with C', defined by
eaeﬁ = 50(&, ﬁ)ea—‘rﬂ fOI' «, B S L7 (2230)

satisfying
ec(a, Blec(a+ B,7) = ec(B,v)ec(a, B+ ),

£c(0,0) =1, (2.2.31)
60(0[,B) _ o
ec(Ba) Cle ).

In our case, take e, = (1,a) € L. Therefore, ec(a,B) =1 for all a, B € L. Also define
the map 7 : Zg x L — (w) by

I/)ea = 77(]97 O‘)eupaa (2232)

which, in our case, simplifies to n(p,a) =1 for all p € Zg and o € L.

Define €9 : L x L — (w) by
eola, B) = (—1)(Zv7eb),~(EpraB) (2.2.33)

where the sums range over —3 < p < 0. Therefore, the above formula simplifies to

eala, B) = (—1)v ot Pas) (v et 2 8). (2.2.34)
This map satisfies
62(Oé,ﬁ) —_ (_1\{B) -1
7. 0) =(-1) C(a, B) . (2.2.35)

Define € : L x L — (w) by
e(a, B) = eq(a, B)ec(a, B), forall o, 5 € L. (2.2.36)

This is a normalized cocycle associated with the bilinear map (—1){*%. In our case,
the map e reduces to €.

Using the above notation, we set X («;z) = X(e,;2). For a € L, a = e, we have

X(o;2) =6 o(0)E™ (—a; 2) BT (—os 2),
(2.2.37)
X(a;2) = 6~ “"Po(a)E~ (—a; 2) BT (—a; 2).
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For a € Ly, the constant in front of the above equations simplifies to “’OT\/g by (2.2.24]).

Notation 2.2.5. Write the coefficient of 2=/% in X (a; 2) (respectively, in X (a;2)) as
X(a;n) € End S, (respectively, X (a;n) € End S).
X(a;2) = Z X(a;n)z""",
ner (2.2.38)
X(a;2) = Z X(a;n)z 5.

neL

X (a,n) (respectively, X (a;n)) is a well-defined operator on S of degree .
Remark. With this notation, we have
X(Fa;n) = WX (a;n), (2.2.39)

for all n, k € Z.

With the above simplifications the commutator formula of |[Lep85] becomes:

Proposition 2.2.6. Let a,5 € Ly. Set I(n) = {p € Z¢g | (v, B8) =n}, for n € Z.
1/6
; — (2
Then, setting x = (21) , we have

Ze(ypa, B)X (VP + B; 29)0 (w Px)

pel(-1)

+ @5(—6,5) c ZDé (w™Px) (2.2.40)

pel(=2)

— ée(—ﬁ,ﬁ) > 2B(22)6 (wPz),

pel(=2)

| =

[X(a;21), X (B 20)] =

where c =1 € End S, is the identity endomorphism.

Because of (2.2.27), and the symmetry of L, with respect to v, it is enough to
know the commutator [X («a; 21), X («, z3)]. We present the formula with the constants

simplified below.

Corollary 2.2.7. For o € Ly, we have

2 w2

X (0 21), X (0.29)] = = X (v 25)8(w %) = =X (v 05 20)3(w2)
. . (2.2.41)
+ %CD 6(—x) — 62204(22)5(*90),
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Proof. Use
[(-1) = {pezs| Wra,a)=-1}={+2},
[(-2) = {peZs| (Fa,a)=-2} =3},
Va+a= vao,
vl 04 a = Z/_Ia,
c(Va,a) = w?
(v 2o, a) = —w?,
e(—a,a) =w
in the above |Proposition 2.2.6] O

We need a few more commutator relations. Recall the “delta function” Laurent

series as defined in ([2.1.2)). Define the following related Laurent series:

5t (z) =) 2", (2.2.42a)

n>0
5 (z)=> 2", (2.2.42b)
n>0
Spany(z) =) 2", (2.2.42¢)
n=%+1
(mod 6)
0y (2) = ;)z”, (2.2.42d)
n=%£1 (mod 6)
gy (2) = Z>:Oz—". (2.2.42¢)
n=:i:1n (mod 6)

Also recall the operator D: 2™ — nz™. Define the inverse operator

D2 T (2.2.43)
n

for n # 0.
Recall the operator on S given by a(n) = o) ® t"/¢ for n € 7, and the Laurent
series a(z), at(z) and o~ (2) defined in (2.2.29). Note that a(n) is the coefficient of

27" in za(z).
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With these notations, we have

E(—a;z) = exp (Dfl za+(z)) ,

(2.2.44)
E™(—a;z) = exp (D_l za_(z)) :
Proposition 2.2.8. For a € hh we have
(2107 (21), BT (—as 29)] = E¥ (—a 29) 6y (), (2.2.45a)
210t (1), B (—ai 29)] = B~ (=5 22) 8y, ), (2.2.45b)

where x = (2—2)1/6.

21

Proof. Let Dy 1 denote the operator as defined in ([2.2.43)) operating on the variable z,.
Then

7107 (21), B (=5 25)] = |07 (21), exp (Dy ! 200 ()]

( ) [5107(21). D3 20 ()

= exp (D2_1 2204+(Z2)) ' D2_1[2’1047(31)a 207 (2)]
( ) D3 Y la(=n),a(m)# %
( )

n=%£1 (mod 6)

= exp (D7 20 (25)) - 0 202"

n>0
n==£1 (mod 6)
= E"(—a; 2) 5{_11}(9”)'
The second equation follows from similar calculation. ]
Corollary 2.2.9. For a € Lo,
[z107 (21), X (03 20)] = X (a5 22) 014, (@), (2.2.46a)
(210 (21), X (05 20)] = X (@3 29) 8 (2), (2.2.46D)
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Proof. Follows from the [Proposition 2.2.8| the definition (2.2.37)) of X («;z) and the

fact that

(2107 (21), B (=3 22)] = 0,

[2107 (21), BT (—a;25)] = 0. u
Corollary 2.2.10. For a € Lo,
[z10(21), X (a; 22)] = X (a; 22)0 113 (@),

where x = (Z—Q)l/ﬁ.

21

Proof. Follows from |Corollary 2.2.9(and the fact that za(z) = za™(2) + za™(2). O

For completeness, we give the following formula which will be useful later.

Proposition 2.2.11. Let o € Ly. Then we have

EY(—a;21)X (05 29) = U(2) X (a5 29) BT (—a; 21), (2.2.47a)
X(;21)E™ (—a;29) = ¥(z)E™ (—a; 29) X (5 21), (2.2.47b)
where ¥(x) = %g[[:z::g}] = jQ)g[[g:z]] is a power series, and Py, Qg are polynomials in

1/6 .
T = (%) as defined in (2.2.14) and (2.2.15a)).

Proof. Follows from the definition of X («;z) (2.2.37)) and [Proposition 2.2.3] O

The following corollary of the above proposition is particularly important for the

later discourse.

Corollary 2.2.12. Let X(n) = X(a;n), E'(n) = E(—a;n) and ¥(n) be the coefficient
of " = (Z—2)n/6 in U(z). Then

21

X(=m)E'(-=n) = > _W(k)E'(—=(n — k)X (—(m + k)), (2.2.48)
k=0

formne Z, n>0.

Proof. The result follows from ([2.2.47b)), by comparing the coefficient of zT / 6z;/ ° on

both sides, and the fact that E~(—«; 2z5) only has the nonnegative powers of z;/ O
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Since ¥(z) = % plays a very important role, we give the first few terms of ¥(z).

U(z) =1 — 62 + 1822 — 362> + 54z — 6625 + 7220 — 7827 4 .. .. (2.2.49)

We present the following commutation relations which will be needed later to show

explicitly the isomorphism of the algebra AgQ) with the vertex operator representation.

Proposition 2.2.13. Fiz any o € Ly. Let X(n) = X(a;n). Then we have, for

m,n € Z,
[a(m), a(n)] = % SminoC  if myn=+1 (mod 6) (2.2.50a)
la(m), X(n)] = X(m+n),  ifm=+1 (mod 6), (2.2.50b)
(X (m), X )] = (@ ) X )
_ %(—1)ma(m +n) (2.2.50c)

w
B e (—1) e
In particular,

Woﬁ

[X(0), X (1)] = - 22X (1) - %a(l), (2.2.50d)

[X(0), X(—1)] = “06\/§X(—1) - %a(—l), (2.2.50¢)
woV3 w

(X(1),X(-1)] = 06 X(0) = gee, (2.2.50f)

where w = €"* and wy = €™/% (primitive 6th and 12th roots of unity respectively, such

that w3 = w).

Proof. The first equation ([2.2.50a)) follows from ([2.2.6]). Equation (2.2.50b)) follows from

|Corollary 2.2.10| by equating the coefficients of z; "/ %2 "% on both sides. Equation

([2.2.50d) follows from |Corollary 2.2.7| by equating the coefficients of z; ™/ 2y "/% on both

sides.

The next three special cases follows from ([2.2.50c|) with the simplification
0 if n—m=0,3 (mod 6)

WM =™ =030 ifn—m=1,2 (mod 6) (2.2.51)

—V/3i ifn—m=4,5 (mod 6)
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(using i = wi and w = w3). O

2.3 The Algebra Ag)

In this section, we present a brief description of the affine Lie algebra of the type Ag) in

terms of the generators and relations (see [Kac90| for more details). Then we describe
the principal realization of this algebra using vertex operator representation on S (see
[FLMS8, |Lep85]), with the explicit image of the generators under this isomorphism.

(2)

The algebra g of the type A" is the Kac-Moody algebra associated with the

generalized Cartan matrix

A= , (2.3.1)
-1 2

with the Lie algebra generators hg, hq, €, €1, fo, f1 and the relations

[hi, hj] =0,
[hi, e5] = aije;,
[, [i] = —ai; [,
’ 7 (2.3.2)
[eiafj] = 5ijhia

(ad ei)iaij+1€j = 0 (fOI' 7’ 7é j)7

(ad f;) "t f; =0 (for i # j),
for all 4,5 € {0, 1}, where a;; denotes the (7, j)-th entry of the above generalized Cartan
matrix A (indexed from 0). It follows from the relations that ¢ = hy + 2h; is central.

The principal %Z—gradation of g is given by assigning

degh; = 0,
dege; = 1/6, (233)
deg f; = —1/s,

for all i € {0,1}.
It is sometimes useful to work with the extended algebra g of type Ag) . g is the

extension of g by a degree derivation d:

g=g¢Cd, (2.3.4)
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with the brackets

[d,z] = (degz) x, (2.3.5)

for any = € g of homogeneous degree. Note that g = [g, g] is the commutator subalgebra
of g. The advantage of working with the the extended algebra g is that the gradation
becomes intrinsic.

Now we describe the principal realization of A(QQ) using the vertex operators defined
in the previous section . Although, this construction as described in [FLMS88,
Lep85| is quite deep and complicated, it is a lot simpler for the case of A§2) because of
the simplification that happens in this particular case. We give a very brief description,
simplified for this particular case.

Recall that in [§ 2.2] we started with the even lattice L of type A,. Define a Lie

algebra g as the direct sum

g=bh P Ca,, (2.3.6)

a€Ll,
with the brackets [h,h] =0, [h,z,] = (h, @)z, and

[b,b] =0, (2.3.7a)
[hv xa] = <h7 a>$a7 (237b)
e(a,—a)a  ifa+p=0

[a,zg] = e(a, B)rorp if (o, B) = —1 (2.3.7¢)

0 if (o, 8) > 0,
for h € h and «, B € Ly. Then g is a Lie algebra (see [FK80, Seg81) FLMS88]). Extend

the automorphism v of ) to g by (recall n(p, «) from (2.2.32))):

VI = 77(17 a)xz/a

(2.3.8)
=2, (since n = 1 in this case),
and the form (, ) by
(h,z,) =0, (2.3.9a)
ela,—a) ifa+p=0
(To,28) = (2.3.9Db)
0 ifa+p8#0
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for h € h and a, B € Ly. Then (, ) is g-invariant and preserved by v. Furthermore, g is
semisimple (g = sl3), since Ly spans b.

Note that 5 = 1. Let
On) = {m €g ‘ vr = w”:c} (2.3.10)

denote, if nontrivial, the eigenspace for the eigenvalue w”, n € Z. Form the v-twisted
affine Lie algebra

gv] =[] 9y @t @ Cee Cd (2.3.11)
neZ

with the brackets
[zt y @t = [z,y] @ "7 + Lz, y)diy 00,
[d,z @t = itz @t (2.3.12)
[e,d] = [c,x ® 7] =0,
where ,j € Z, x € 83y, Y € 9(j)-
Define
w(agz) =) ((xa)(n) ® t"/ﬁ) 27", (2.3.13)

neL

where (z,,)(,) denotes the projection of z, onto g(,).
The operators E,(n), X (o;n) € End S, for aw € Ly and n € Z, define a representation
of h[v] on S. By Theorem 9.1 of [Lep85] this representation of h[v] on S extends uniquely

to an irreducible Lie algebra representation of g[v] on S such that
z(a;z) = X(a; 2)

for all a € L,.
The Lie algebra g[v] can be shown to be isomorphic to the principal (%Z—graded)
realization of the affine Lie algebra g of type A(22) (see [Fig87, Kac90]). Here, we will
2

show this fact directly using the generators and relations of Aj".

Proposition 2.3.1. Fiz any « € Ly. Let X(n) = X(a;n), for n € Z. The following
map establishes the representation of glv] on S as the principal (%Z—gmded) realization

of AgQ)
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wWo
co = —22X(1) + 22a(1),
er = ZX (1) + Ja(l), (2.3.14)
fo = 22X (-1) + 22a(-1),
fi = =5 X(=1) + Fra(-1),

d—d,

where wy = /w = €%, and ¢ is the identity operator on S.

Proof. The defining relations can be directly verified using the commutation relations

in [Proposition 2.2.13| (Also see [§ B.1)). O]

Remark. Note that X (n),a(n) € glv]. However, the operators E(n), in general, need

not be in the Lie algebra, but in the universal enveloping algebra, U(g[v]).

We end this section with the definition of three subalgebras of g = g[v].

Eozspan {xEﬁ’ dega:zO}, (2.3.15a)
n, = span {ac € ﬁ‘ + (degx) > 0 } . (2.3.15b)

Then
g=n_@bydn,. (2.3.16)

Note that by is the subalgebra spanned by X (0), ¢ and d (¢ is the identity operator on S).
The subalgebra n_ (respectively, n_) is spanned by X (n), a(n) for n > 0 (respectively,
n < 0). In terms of the Chevalley generators, 60 is the subalgebra generated by hg, by

and d; and n (respectively, n_) is the subalgebra generated by eq and e; (respectively,

fo and fy).
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Chapter 3

Standard Modules

The main objects of our study are the level 4 standard modules for the algebra g = g[v]
of type Ag).

In we recall the basic notions and terminology from the general representation
theory of Kac-Moody algebras. We also show that the standard modules of level 4 can
be thought of as submodules of the tensor product of four copies of the “basic module.”

In we present the graded dimensions for the three standard modules of level 4. See
[Kac90|, |Lep78|] for more details.

3.1 Basic Notions

Recall the subalgebras 607 n_ and n_ of zero, negative and positive degree respectively
in g, as defined in ([2.3.15)).

Let V be a g-module and A € (hy)*. Assume that A(d) = 0. V is called a highest
weight module with highest weight A, if it is generated by an element vy # 0 (called a
highest weight vector) such that

(i) ny-v9 =0,
(ii) k- vy = A(h)vy for all h € by,
The highest weight vector vy is unique up to multiplication by a nonzero scalar.

An element A € (ho)* is called dominant integral if A # 0 and A(h;) € Zq for
1 = 0,1, where h; are the elements as described in

V is called a standard module if

(i) it is a highest weight module with highest weight A,
(ii) it is irreducible,

(iii) A is dominant integral.
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Given a dominant integral weight A, there is a unique standard module with highest

weight A, up to equivalence.

Notation 3.1.1. For a dominant integral weight A, denote by L(A) the standard

module with highest weight A.

Recall the Chevalley generators hg, hy, €g, €1, fo, f1, as described in Define the

elements A, hi € (ho)*:

Recall that we have ¢ = hg + 2h;. Therefore, A(c) € N, if A is dominant integral.

Level of the standard module L(A) is the positive integer A(c) = A(hg) + 2A(hy).
There is only one, up to equivalence, level 1 standard module called the basic module.

It is the standard module of highest weight hj).

Notation 3.1.2. We denote the basic module of Agz) by U = L(hj).

Let V be a standard module of highest weight A with a highest weight vector vy.
Let kl = A(hl), = 0, 1. Then

rotlyy = ity = 0. (3.1.2)

Consider C as a one-dimensional representation of by & n 4, such that h; -1 = A(h;) for

t=0,1and n, -1 =0. Denote by

®u<60@“+) ¢

the Verma module with highest weight A. As a vector space

Then, L(A) = M(A)/W(A), where
W(A) = Un_) f5 vy + Un_) f7 .

There are three level 4 standard modules (up to equivalence) for Aéz) . They are
L(4hy), L(2hs + 1) and L(2h%). Now we will show that the level 4 standard A{Y-

modules are contained in the tensor product of four copies of the basic module U. First,
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we need a couple of lemmas. The first one records various straightening relations in

AP,

Lemma 3.1.3. Let U be a basic module for Ag) with a highest weight vector ug € U.

Then we have

houg = ug, hyug =0,
€olUp = 0, €1Ug = 0, (313)

foug =0,  frug=0.
and
ho foug = fohouo — 2foug = — fouo,
hy foug = fohiuo + foug = fouo,
eofouo = foeouo + houg = uy,
e1 foug = foerug = 0,
(3.1.4)
ho frug = frhoug + 4 foug = 5 fiug,
hy frug = fihiug — 2f1ug = —2f1uy,
eofrug = fregug = 0,
erfiug = frerug + hyug = 0.
Proof. This follows from the Serre relations (2.3.2)) among the Chevalley generators of
AgQ), together with (3.1.2)) and the definition of highest weight. O

Lemma 3.1.4. The submodule of U ® U generated by vy = foug ® ug — ug @ foug s

isomorphic to L(hY), where ug is a highest weight vector of U.

Proof. We need to show that hgvg = 0, hivg = v, egug = €199 = 0.

Using we have

ho(fouo @ ug) = hofoug ® ug + foug ® houg
= —foup ® uy + foug ® ug

:07

and similarly, ho(ug ® fyug) = 0. Thus, hgvg = 0.
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Now,
by (foup ® ug) = hy foug @ ug + foug @ hqug
= foup ® up,
and similarly, hy(ug ® foug) = ug ® foug. Therefore, hyvy = vy.
Using
eo(fouo ® ug) = eg foug ® ug = ug ® uy,

and similarly, ey(ug ® foug) = ug ® ug. Therefore, equg = 0.

And finally,
e1(foup @ ugp) = ey foug ® ug = 0.

Thus, e;vg = 0.
Therefore, we have proved that vy is a highest weight vector for hj. Then the

submodule of U ® U generated by v is isomorphic to the standard module L(h}). O

Notation 3.1.5. We use the following notation for brevity:
U =UoUeU®eU.

Proposition 3.1.6. Let U be the basic module for Ag) with a highest weight vector uy.
Let vy = foug @ ug — ug ®@ foug € U @ U, as defined in [Lemma 3.1.4)
(i) The submodule of US* generated by uy ® uy ® ug ® ug is isomorphic to L(4h).
(i) The submodule of U®* generated by vy ® uy ® ug is isomorphic to L(2h§ + h7}).

(iii) The submodule of U®* generated by vy ® v, is isomorphic to L(2hY).

Proof. Let V=U®U ® U ® U. Fix a highest weight vector ug € U.

(i) Let v = uy ® ug ® uy ® ug. Then, we have
ho(v) = hOUO & Ug & Uq & Ug + Ug & ho’U,O & Uq ® Uq

+U0®U0®h0UO®U0+U0®U0®U0®h0uO

= 4w,
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by (3.1.3)) and (3.1.3)). Clearly, hqv = egv = e;v = 0. Thus, v is a highest weight vector

for 4h{. Therefore, the submodule of V' generated by v is isomorphic to the standard
module L(4hg).

(ii) Let v = vy ® ug ® ug. Using [Lemma 3.1.3[and [Lemma 3.1.4] we have

hov = hgvy ® ug ® ug + vy ® houg ® ug + vy ® ug ® houg
= 2vp @ ug @ ug
= 2v,

hiv = hivy ® ug @ ug + vy ® hyug ® ug + vy @ ug & hyug
= 19 Q@ ug @ ug
=,

€V = €Uy @ Uy @ Uy + Vg & eqlig Q Uy + Vg @ Uy K el
=0,

e1v = €19y Q@ Ug @ ug + Vg & e1ug @ ug + vg & ug & ejug

=0

Thus, v is a highest weight vector for 2hj 4 h]. Therefore, the submodule of V' generated

by v is isomorphic to the standard module L(2h{ + h7}).

(iii) Let v = vy ® vg. Using|Lemma 3.1.3| and [Lemma 3.1.4] we have

hov = hgvg ® vg + v9 ® hgvg
=0,

hiv = hivy ® vy + vy ® hivg
= 20y ® vy
= 2v,

eV = egUg @ Vg + vy & ey
=0,

e1v = €19y Q Vg + vg ® €17

=0.
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Thus, v is a highest weight vector of weight 2h]. Therefore, the submodule of V

generated by v is isomorphic to the standard module L(2h}). O

3.2 The Graded Dimensions

In this section, we present the graded dimension formula, obtained from the principal
specialization of the Weyl-Kac character formula and the numerator formula of [LM78,

Lep78], for each of the three standard AéQ)—modules of level 4.

We adopt the following alternative notations for these modules.

(4,0)-module = L(4hg), (3.2.1a)
(2,1)-module = L(2h{ + hY), (3.2.1b)
(0,2)-module = L(2h7). (3.2.1c)

Let V' be any standard module of level k with highest weight A. The structure of V'
is the same under the actions of g and g, since d is not in the commutator subalgebra of
g. The action of d defines a %Z—grading on V. Denote the subspace of all homogeneous

elements of degree § by

n

Vn:{UEV‘ [d,v]:g }, (3.2.2)

for n € Z, n < 0. It follows that degvy = 0 (since A(d) =0), dimVy =1, dimV,, < oo

(for n < 0), and

V=V,

n<0
Definition 3.2.1. The graded dimension, which we denote by X, (¢), is a formal power

series in the indeterminate ¢ with nonnegative integer coefficients:

Xala) = i(dim V_n)q" (3.2.3)

n=0

Let p € (hy)* be such that p(hg) = p(hy) =1 and ¢ = A + p. Let

In={neN| nz o), £6(hy), £6(hy), £6(hg + h) (mod 26(c)) },  (3.2.4)
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and

{neN| n=d¢(hg) (mod 2¢(c))} if A(hg) = A(hy),
Ky = (3.2.5)

0 if A(hg) # A(hy).
Using the numerator formula (see [LM78, Lep78|) and the principal specialization of
the Weyl-Kac character formula, we have

Xal@)=JJa-a")" J] =)' J] =M. (3.2.6)

neN neJdy nek,
n=+1 (mod 6)

Note that for level 4 standard modules of Agz), we always have A(hg) # A(hq).
Proposition 3.2.2. The graded dimensions of the three level 4 standard modules for

A§2) are given by:

(4,0)-module: A = 4h]

X (1,0)(@) = Xala) = H ! H (1—¢", (3.2.7)
n= :I:{L%rIr\llod 6) n= :|:2 :I:S +4
(mod 14)

(2,1)-module: A =2h{+ h}

X@21)(@) = Xala) = [[ax-em H (1—qg" 1, (3.2.8)
n= :I:{L%rilod 6) n= il i4 +6
(mod 14)

(0,2)-module: A = 2h}

X(0,2)(@) = Xala) = [[ax-em H 1—q¢" 1, (3.2.9)
n= :I:{L%rilod 6) n= i2 i5 +6
(mod 14)
Proof. Follows from straightforward application of ([3.2.6)). O

Let A = kOhEk) —+ klhf S (Eo)* be SUCh that k‘o, kl - ZZO and ko + 2k1 = 4 We WIH

use the following notations for convenience.

Notation 3.2.3. (i) (For A = 4h)

Iy =1Ip={n €N| n=12243 +4 (mod 14) }, (3.2.10)
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(i) (For A = 2hg + h)

oy =In={ne N] n=+1,44,46 (mod 14) |, (3.2.11)
(ifi) (For A = 2h})

ooy =In={ne N] n=+2,45,46 (mod 14) |, (3.2.12)

Notation 3.2.4. We define the following formal power series in g:

H(q)=[[(1-¢m7, (3.2.13)
neN
n=+1 (mod 6)
and
Falg) = [0 =7, (3.2.14)
nEIA

for A as above. We will also use the notation F)(n) (respectively, H(n)), for n > 0, to

denote the coefficient of ¢ in F)(q) (respectively, H(q)).

Remark. Fj(n) is the number of partitions of an integer n > 0 into parts from the set

I).

Therefore, we can rewrite the graded dimension in [Proposition 3.2.2] as

Xa(@) = H(q)Fa(q)- (3.2.15)

We will use the notation X ,(n), n > 0, to denote the coefficient of ¢™ in X, (¢).
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Chapter 4

The Framework

In this chapter, we lay out the framework—definitions, notations and a few results—on
which the rest of this dissertation depends. We present a number of useful tools and
techniques that we use repeatedly in the later discourse. The content of this chapter is
valid for standard modules of any positive level. Throughout this chapter, let V' denote
a standard module for g with highest weight A, and a highest weight vector vy,.

We would like to describe the elements of the universal enveloping algebra U = U(g)
as linear combinations of the “standard monomials” which are parametrized by certain
partitions and “generalized partitions.” We would also like to describe the structure of
V in terms of the action of the above mentioned monomials on the higest weight vector
V.

In we present the definitions, notations, and a few results related to partitions
and generalized partitions.

In we describe a standard monomial basis for the universal enveloping algebra
U, parametrized by the partitions and generalized partitions as defined in We also
describe a filtration on U and present a few straightening lemmas in I/, which will be
useful in the later discourse, with respect to this filtration.

In we describe two filtrations on V' and investigate the structure of V' in terms
of the actions of the standard monomials (as described in on vy with respect to
these filtrations. We give a spanning set for V', whose elements are parametrized by
certain partitions, and show that a subset of this spanning set, parametrized by a certain
restricted subset of partitions, is a basis for V. This enables us to “factor out” the factor
H(q) in the graded dimension formula and only use the second factor F)(q)

when comparing our spanning sets for “tightness” against the corresponding graded
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dimension.

In [§ 4.4 we describe a number of substantial tools and techniques that we use
repeatedly in the later discourse. These tools and techniques are used to process various
relations among the elements of the spanning sets (presented in and eliminate the

extraneous elements thereof.

4.1 Tuples and Partitions

In this section, we set up the notations and definitions related to tuples, partitions and
generalized partitions, and present a few related results which will be used later in this

dissertation.

Notation 4.1.1. We denote the set of all tuples of integers by

Z*:{,u:(ml,...,ms)

SEZZCI? my,...,Mg GZ}
Similarly, N* denotes the set of all tuples of positive integers.

Notation 4.1.2. Let = (my,...,m,) € Z° be any tuple of integers. We define the

length and the size of u by
() =s, (4.1.1)
S
=3 mi, (41.2)
i=1
respectively. For 1 <i < s, we refer to m; as a part of p.

Notation 4.1.3. Let u = (my,...,m,) € Z° and o € Sym(s) be a permutation of

{1,...,s}. Then define o(u) by

(i) = (Mg(1ys - - s Mg(s))-

Notation 4.1.4. For u € Z*, we denote p as the rearrangement of p in non-increasing
order, i.e., i = (mf,...,m}) = o(u) for some permutation o of {1,...,s}, such that

my > >ml.
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Definition 4.1.5. Define an equivalence relation (~) on Z* by

f1 ~ fig if I(p1) = l(p2) and pg = o(p1) for some o € Sym(l(p1)),
for py, pg € Z*.

Definition 4.1.6 ((Generalized) Partition). A partition of a nonnegative integer n into
positive parts is an equivalence class in N* under ~, such that |u| = n for any p in that
equivalence class.

Similarly, a generalized partition of an integer n is an equivalence class in Z*, such

that |u| = n for any p in that equivalence class.

Thus, every (generalized) partition can be uniquely represented by a tuple arranged in
non-increasing order. We will henceforth identify a partition (or a generalized partition)

with a tuple of positive integers (or any integers) arranged in non-increasing order.

Remark. Notice that, for example, (2),(2,0),(2,0,0), etc. are all considered different

generalized partitions.

Notation 4.1.7. We denote the set of all partitions by

9:{(m1,...,m8)

s € Z»g, m; € Nforall 1 <i<s, my 2---2m8}. (4.1.3)
Similarly, the set of all generalized partitions is denoted by

Q:{(ml,...,ms)

SGZZO,miEZforalllSigs,mlz‘uzms}. (4.1.4)
We will also need the following subset of & later:
ﬁ:{(ml,...,ms) € ,@’ mi,...,mg==%1 (mod 6) for all 1 gigs} (4.1.5)

Notation 4.1.8. Let 2" be any subset of 2 (e.g., &, 2, or €). We will use the

following notations (unless otherwise mentioned):
%sz{ue%\zm):s}, (4.1.6)

%(n)z{ué%’“ﬂ:n}, (4.1.7)

2 (n,s) = Z,(n)=Z(n)NZ,. (4.1.8)
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It will be sometimes useful to describe the partitions using “difference conditions.”

Definition 4.1.9 (Difference condition). We say that a partition u = (mq,...,m,) € &

satisfies the difference condition
A= [dla s vds—l]v

it m; —m; 1 =d;, for 1 <i<s—1.

We may add a “+” sign at the end of d; to denote if the first part is required to
be even/odd. For example, [3—,3,0] denotes the partitions satisfying the difference
condition [3, 3, 0] and having an odd entry as the first part. Therefore, the partitions
(9,6,3,3), (11,8,5,5), ..., etc. satisfy [3—,3,0], but the partition (8,5,2,2) does not.

Also, we may add a “x” as a superscript to an entry, say d;, in the difference condition
to denote zero or more occurrence of that entry. For example, [3,2*,3,0] denotes the
difference conditions where 2* can be expanded to an arbitrary (including zero) number
of 2’s. Examples of partitions satisfying [3,2*,3,0] include (9,6, 3,3), (11,8,6,3,3),
(13,8,6,3,3), ..., etc..

We now define a few operations on Z*.

Definition 4.1.10 (Scaling). For p = (mq,...,m,) € Z° and n € Z define the scaling
of i by n as

np = (Npy, ..., i) (4.1.9)
Definition 4.1.11 (Concatenation). For py = (my,...,m,) € Z" and puy = (nq,...,n,)

€ 77, define the concatenation of puy with poy as
p - fy = pafia = (My,...,my,nq,...,ng) € Z"5. (4.1.10)
Definition 4.1.12 (Translation). For (mq,...,m,) € Z°® and n € Z, define the transla-
tion of u by n (we will typeset n as boldface n for clarity) as
p+n=(my+n,...,mg+n). (4.1.11)

Definition 4.1.13 (Composition). For pq, puy € Z*, define the composition of iy with

fi2 as

py 0 pp = Hafiy € 2 (4.1.12)
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Definition 4.1.14 (Sub-partition). We say p € Z* is a sub-tuple of ' € Z*, denoted
w |, if each part of u appears in p' with more or equal number of times than it
appears in p.

We say u is a strict sub-tuple of ', denoted p b g, if p b= g/ and p # 1.

If both u, 1/ € 2 and p = 1’ (respectively, u b u'), we say that p is a generalized
sub-partition (respectively, strict generalized sub-partition) of p'.

Similarly, if both p, ' € 22 and p = 1/ (respectively, p F '), we say that p is a

sub-partition (respectively, strict sub-partition) of p'.

Remark. We will use the same symbols (“E” or “ ") to denote both (strict) sub-tuple,

generalized sub-partition or sub-partition—the only difference is in where p, ' belong.

Definition 4.1.15 (Prefix). We say that u € Z" is a prefiz of p/ € Z*, if r < s and
' = ppy for some py € Z57". We say that u is strictly a prefix of y/, if it is a prefix

and p # .

Definition 4.1.16 (Suffix). Similarly, we say that p € Z" is a suffiz of p’ € Z5, if r < s

and ¢/ = pyp for some py € Z57". p is strictly a suffix of p/, if it is a prefix and p # u'.

Notation 4.1.17 (Lexicographic ordering). For p = (mq,...,m,) € Z" and p/ =
(ny,...,ng) € Z%, we say that p is lexicographically smaller than u' (denoted by p < p)
if either of the following holds:

(i) w is strictly a prefix of y/, or

(ii) there is an 1 < ¢ < min(r, s) such that my =nq, ..., m;_y = n,_; and m; < n,.

We use the following definition from |[Cap88, Cap92, Cap93] to introduce a well-order
on &.

Definition 4.1.18 (Ordering on Z*). For u, i’ € Z*, we say that p is smaller than p’/
(denoted p < '), if one of the following holds:
(1) {(u) > 1),
(i) I(p) = U(y') and |p| > |1/],
1(n')

/

|l = [p/| and p < 4.
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Remark. The restriction of the relation (<) on & is a (reverse) well-order, in the sense
that every nonempty subset of &2 has a largest element. The empty partition @& is the
largest element in 2. Therefore, one can use induction on &. However, this is not a

well-order on 2.

Notation 4.1.19. Let u(s) (n) denote the i-th smallest partition in &7 (n) with respect

%
.to “<77.
Definition 4.1.20 (A partial order on Z*). Let u = (mq,...,my), u' = (m},...,m}) €
Z°. We will write p </, if m; <m} for all 1 <i <s. We will write p </, if p < p/

and p # .
Remark. Notice that, on Z°, p <0 p/ implies that u < p'.

The following results about tuples and partitions will be used later to straighten out

an out-of-order monomial in terms of the standard monomials defined in

Lemma 4.1.21. Forv € Z°, v X 7.

Proof. Let v = (nq,...,ny) and 7 = (nf,...,n,). If v = U then there is nothing to
prove. Assume that v # . Let k be the first index where they differ. Then we must

have ny < nj, (otherwise, it won’t be out of place). Thus the result follows. ]

Lemma 4.1.22. Let p€ 2, andv € Z°. If p < v, then u < 7.

Proof. We have y < v <7 (by [Lemma 4.1.21)). O
Lemma 4.1.23. Let p € 2, andv € Z°. If ut> v, then u = 7.

Proof. Let p = (mq,...,my), v=(ny,...,n,) and 7 = (nf,...,nl).

By the hypothesis, we have m; > --- > mg, and m; > n; for all ©+ < s with at least
one strict inequality. Let k be the first index where u and v differ. Therefore, m; = n;
for all ¢ < k and my, > ny. If v =7, then we have the desired result.

Therefore, assume that v # 7. Then we have n} = n, for all i < k, since n; > n; for
all i <k and j > k (n; = m; > my, > ny, and n; = m; > m; > n;). This shows that

k < s, since otherwise v is already in non-increasing order (i.e., v = 7).
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The above computation also shows that if n;, is out of place, then it must be
exchanged with an element of v occurring further to the right, i.e., nj, = n; > ny, for
some | > k. However, if ny, is not out of place, i.e., if nj = ny, then we have the desired
result, p > 7.

Therefore, we assume that ny, is out of place, i.e., nj, = n; > ny, for some > k. Let 1/
be the sequence obtained from v by exchanging the k-th and the [-elements. Obviously,
v/ =7, and v/ also satisfies the original hypothesis that p > 1/, since my > m; > n; and
my; > ng > ny.

If my > n; = n), then we have the result. If m;, = n; = n}, then we repeat this
argument using ¢/ in place of v. Note that the first place where p and v/ differs is now
after (greater than) k.

Thus, by finitely many application of the above argument, we arrive at the desired

conclusion. O
Lemma 4.1.24. Let p€ 2 andv € Z*. If u < v, then p <.

Proof. Notice that [(v) = [(7) and |v| = |7|. Therefore, if ;1 < v holds because of either
I(p) > U(v), or l(p) = U(v) and |p| > |v|, then p < 7.

Therefore, assume that I(u) = {(v), |u| = |v| and p < v. Then the result follows
from O

4.2 Standard Monomials

In this section, we present a standard monomial basis for the universal enveloping
algebra U = U(g), parametrized by certain partitions and generalized partitions. We
also present a few straightening lemmas that will be useful later. First, we need to
define the following elements in U.

Fix any o € Ly. Let X(n) = X(a;n) (see and E(n) = E,(n) (see
for all n € Z.

Notation 4.2.1. For u = (mq,...,m,) € Z*, we define the elements a(u), E(u), X (p) €
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U(g) by
a(p) = almy) ...a(m,), (4.2.1)
E(u) = E(my) ... E(my,), (4.2.2)
X(p) = X(my)... X(my), (4.2.3)
respectively.

Remark. Notice that a(u) = 0, unless each part m; = +1(mod 6). Also note that each

of these elements, unless zero, has degree |1|/6.

We have seen from |[Proposition 2.3.1| that the set

{a(m)| nez n=+1 (mod 6) }J{X(n)| n ez} le.d} (4.2.4)

spans g. By PBW Theorem, the universal enveloping algebra & = U(g) is the span of
the monomials in these generators.

For convenience, we recall all the commutators (Lie brackets) of the generators in
(4.2.4) in one place.

Proposition 4.2.2. We have the following commutations in g:
i) ¢ is central.
ii) Forn €7, [d,a(n)] = ga(n) and [d, X(n)] = §X(n).

(
(
(iii) For m,n € Z with m,n = £1(mod 6), [a(m), a(n)] = 28,4, c.
(iv) For m,n € Z with m = +1(mod 6), [a(m), X (n)] = X (m + n).
(

v) Form,n € Z,

w2
[X(m), X(n)] = = (W = w™™") X (m +n)

- %(—1)ma(m+n) (4.2.5)

w
+ Opntn,0 %(—1)7”7”0

The coefficient to X (m + n) simplifies to

0 ifn—m=0,3 (mod 6),

[

w

G = _on\/?: ifn—m=1,2 (mod 6), > (4.2.6)

WOT‘/g ifn—m=4,5 (mod 6).
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where w = €™ and wy = e™/°.

Proof. The first two brackets follow from the definition. For the last three see
tion 2273 O

Using these commutators (Lie brackets) of the generators, any monomial (in the
generators (4.2.4)) can be “straightened out” so as to express it as a linear combination
of monomials of the form:

a(=N)X (—p)a(N)c™d™, (4.2.7)

where A\, N € 0, n € 2 and m,n € Zy. These monomials are called the standard
monomials. And the set of standard monomials form a basis for U(g), called the
standard monomial basis. Notice that a(—\) € U(s_) and a(X) € U(s, ). We will
refer to elements of s_U(s_) (respectively, s, U (s, )) as negative (respectively, positive)
Heisenberg elements.

We will use the following filtration on U (see [LW84]) to simplify the calculations in

the straightening lemmas to be described later.

Definition 4.2.3 (s-filtration on U). For j € Z, set

uv) =0 ifj<o,

U =u(s),
and for j > 0,
Ul = Span { Ty x, EU| x; €7, at most j of the elements z,. lie outside s } ,
where s is the Heisenberg subalgebra as defined in .

We clearly have

0=UVcucuVc...cu (4.2.9)
and
u=Ju". (4.2.10)
>0

Remark. If we express an ¢ € U (5) s > 0, as a linear combination of the standard

monomials (4.2.7), then the number of X (e)s appearing in each term can be at most s.
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Now we present a few straightening lemmas in U = U(g).

Lemma 4.2.4 (Straightening out X (e)s). Let u € Z°, and o € Sym(k) be a permutation
of the indices {1,...,s}. Then in U(g), we have

X(—p) — X(—op) e, (4.2.11)

In particular,

X(—p) = X(—f) mod UL~Y. (4.2.12)

Proof. The result follows easily by multiple applications of [Proposition 4.2.2|. ]

The following is a general fact which will be used on U.

Lemma 4.2.5. Let A be any associative algebra. Let y,xq,...,xs € A. Then

S
[y, 1 -+ xg] = le ez Y milagg X (4.2.13)
=1
Proof. The result follows from the fact that bracketing by ¥ is a derivation. O

The following lemmas shows how to straighten out an out-of-order monomial involving
Heisenberg elements.
Lemma 4.2.6 (Moving a(+n)). Let n € N with n = £1(mod 6) and p € 2. If

po= (my,...,mg), define p(i~) = (mq,...,m;_q1) and p(i*t) = (Myp,...,my) (by

convention, (17) = u(s™) = @). Then, we have

X(=p)a(=n) = a(-n)X(-pn) - ZX(—M(T))X(—(W +n)X(—pu(i™)), (4.2.14)

Up)
a(m)X (~p) = X(—pa(n) + 3 X(—ui )X (~(m; —n)X(—u(i*).  (4.2.15)

i=1
Proof. The result follows from [Lemma 4.2.5| and [Proposition 4.2.2(iv]). O
Remark. (i) When we move a single negative Heisenberg generator a(—n) to the left

past X (—pu), we get a bunch of terms, for each of which exactly one part m;, 1 <1i < 1I(u),
of u gets increased by n. Thus, the resulting y's that appear in the sum of the RHS of

(4.2.14)) (note that ' could be out of order and not in 2) satisfy the following properties:

w >, p = g, 1 = p(by [Lemma 4.1.22)).
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(ii) When we move a single positive Heisenberg generator a(n) to the right past
X(—p), we get a bunch of terms, for each of which exactly one part m;, 1 <1i < (u), of
1 gets decreased by n. Thus, the resulting y's that appear in the sum of the RHS of

(4.2.15)) (note that ' could be out of order and not in 2) satisfy the following properties:
W<, p < p, @ < p(by [Lemma 4.1.23)).

Lemma 4.2.7 (Moving a(—\)). Let A € € with |\| > 0 and p € 2,(n). Then the

monomial X (—p)a(—MN) can be straightened out in the form:

X(—p)a(=A) =) ay o =N)X(—4) (4.2.16)
NEO, N EA
W EL® p'>p
IUEEEY
= by X(—1") + 3 by ma(=X)X(—4") mod UV, (4.2.17)
w'e2, Neo,
wp NEXN£2
| | =4I Al w'e2, W

W=l A=V

where ays , and by, are constants with ay , = by, = 1. Furthermore, the second

equation (4.2.17)) is obtained from the first (4.2.16)) by rearranging out of order X (—p')s
into X (—u")s using |[Lemma 4.2.4), and we may take

bA/v#” = ZCL)\/’“/, (4218)

where the sum is taken over all yi' appearing in the sum of ([4.2.16)) such that p/ = p".

The sums in (4.2.16) and (4.2.17) are finite.

Proof. The first equation (4.2.16]) follows easily from [Lemma 4.2.6{}4.2.14) by induction

on [(\). Notice that the y' that appear as a result of repeated application of (4.2.14)),
are gotten from p by increasing various of its parts by various combinations of parts of

A

We obtain the second equation (4.2.17)) from the first (4.2.16|) by straightening out
each out-of-order X (—u') occurring in the RHS of (4.2.16) into X (—x”) (i.e., by taking

p" = ') using [Lemma 4.2.4, Notice that by [Lemma 4.1.22| all z”’s that arise this way
are lexicographically bigger than u, except when p” = p/ = p. Also notice that we have
broken up the terms in (4.2.17)) into two sums depending on whether they contain any

negative Heisenberg element or not.
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The rest of the assertion are obvious. O

Lemma 4.2.8 (Moving a()\)). Let A\ € O with |A\| > 0 and p € 2,(n). Then the

monomial a(A) X (—p) can be straightened out in the form:

aN)X(—p) =D ay v X(—p)a(X) (4.2.19)
Neo,NEX
WELS W' An
IHEMEPEDY

= b X(—1") + 3 by X (= )a(N) mod UV, (4.2.20)

w'e2, Neo,
”,u”<,u )\/':>\7 )\’?ég
1=l =] Al n'eQy, w 2p

W [=lpl = AN
where ays , and by, are constants with ay , = by, = 1. Furthermore, the second

equation (4.2.20)) is obtained from the first (4.2.19) by rearranging out of order X (—u')s
into X (—u")s using |[Lemma 4.2.4), and we may take

b)\/“u// = Za)\/#/, (4221)

where the sum is taken over all ji' appearing in the sum of ([@.2.19)) such that p/ = p".

The sums in (4.2.19) and (4.2.20) are finite.

Proof. The first equation (4.2.19) follows easily from [Lemma 4.2.6{4.2.15)) by induction

on I(\). Notice that the ' that appear as a result of repeated application of ,
are gotten from p by decreasing various of its parts by various combinations of parts of
A

We obtain the second equation from the first by straightening out
each out-of-order X (—p') occurring in the RHS of into X (—p") (i.e., by taking

w' = ') using [Lemma 4.2.4. Notice that by [Lemma 4.1.23| all 1s that arise this way

are lexicographically smaller than p, except when p” = p/ = pu. Also notice that we
have broken up the terms in (4.2.20)) into two sums depending on whether they contain
any positive Heisenberg element or not.

The rest of the assertion are obvious. O
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4.3 Structure of the Standard Modules

In this section, we will analyze the structure of V in terms of the vertex operators
(or the standard monomials described in acting on the highest weight vector vy.
We present a spanning set parametrized by the partitions in & and &?. We define a
Piltration on V based on the well-order “>" on &2, and an s-filtration on V based on
the s-filtration on U. We also show the existence of a basis parametrized by partitions
in ¢ and irreducible partitions in &?. This enables us to use only the second factor
FA(q) in the graded dimension formula when comparing our spanning sets for
“tightness.” We also present a few results related to the action of various elements of I/

on V with respect the filtrations defined on V.

Recall that 1, .vy = 0 and hyv, € Cvy (See .
Definition 4.3.1 (s-filtration on V'). For s € Z~, define
Ve = yy, (4.3.1)
Clearly, V() c V) if r < s, and V = U2, V).

Lemma 4.3.2. Let A€ 0 and n € 2,.
(i) If X # @ then a(N)vg = 0.
(ii) If p contains a negative term then X (—u)vy = 0.

(iii) If p contains 0 as a part then X (—p)vy € V=1,

Proof. (i) If A € 0 with A # @, then we have a(\) € n U(n ).

(ii) Let p = (myq,...,m,) € 2 with at least one negative part. Since p is arranged
in non-increasing order, therefore m, < 0. Therefore, X (—my) € n, U(n ).

(iii) Let = (mq,...,my) € 2. Then m, < 0 (since p contains 0). If my < 0 then

X(—p)vg = 0. If my; =0, then X(—m,) = X(0), and X (0)vg € Cuy. O
Proposition 4.3.3. The set
{Oé(—)\)X(—/,L)UO ‘ NEO,ue @} (4.3.2)

is a spanning set for V.
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Proof. Since vy generates V' as a U(g)-module, therefore V' = U(g)vg. The result follows

from [Lemma 4.3.2| and the fact that the standard monomials (4.2.7)) form a basis for

U(g). Notice that c acts as a scalar multiplication on V' and dvg = 0. O

Lemma 4.3.4. V) = Span { a(-\) X (—p)vg| N € O, p€ 2, 1(u) < s}.

Proof. The assertion follows immediately from the definition of V() (]Deﬁnition 4.3.1[),

and |Proposition 4.3.3| O

Definition 4.3.5 (Filtration on V' by &2). For u € &, set

0 if u=g,

Viw = (4.3.3)
Z U(s_)X (= vy  otherwise.
W>p

Then we clearly have V() C V() if p > ', and

V=] Vi (4.3.4)
HEL

For brevity we will use the following terminologies.

Definition 4.3.6 (Reducible). A partition p € 22, or the vector X (—pu)vg is called
reducible if X (—p)vg € V(- More generally, we say that u is reducible by partitions
greater than py € 2, it X(—p)vy € V(o). We say that a partition is p is irreducible if p

is not reducible, i.e., X(—u)vg € V(-
Notation 4.3.7. Denote by
R = {,u ey ’ X(=p)vg € Vi }, (4.3.5)
the set of all reducible partitions, and
dN =2\ 7", (4.3.6)
the set of all irreducible partitions.

Definition 4.3.8 (Forbidden). A partition u € &2 is called forbidden, if any partition

having i as a sub-partition is reducible, i.e., X (—pfi;)vy € Vi), for all p, € Z.
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Remark. We will reduce the spanning set further based on the structure of V.
Later in this section we will show that for u € &2, if u is reducible then the elements
a(—=A) X (—u)vg can be removed from the spanning set for all A € 0. We will
also show that if we remove all such vectors from the spanning set, then the resulting

subset is a basis.
Lemma 4.3.9. If p € 2, then V") C Vi) for all v <(p).

Proof. We have

UMy, = Z(Ca(—)\)X(—//)vO.
ez
Wp')<r
A€o
Each ' in the above sum is larger than p (since, I(1/) < r < I(u)). Thus the result

follows. O

The following proposition plays a very important role in the exposition later (cf.

[Cap88, |Cap92, MP8T]).

Proposition 4.3.10. Let p € 2 and y' € Z*. If p <y’ then X(—p')vy € V().

Proof. Let s = I(p) < l(p) (since p/ > p). If @/ € 2\ 2, then by and
X (=i )y e VO ¢ Vi

Assume that ' € . By [Lemma 4.1.24) p < /. Therefore,
X(—ﬁ)’vo S ‘/(/»L)
By
X (=g = X(—i)vg mod VY,

Using [Lemma 4.3.9| and the fact that s < I(u), we have V=1 ¢ V- Therefore, we

have X (—u/)vg € V(.- O

We will now proceed to show that all elements of the form a(—X\)X(—u)vy, where
A€ 0 and p € P is reducible (i.e., u € #") can be removed from the spanning set

(4.3.2)). In fact, we will show that the resulting set (as described below) is a basis.



51

Notation 4.3.11. Recall Notation 4.3.71 We define
By ={a(-NX(~pvy| A€ O, peay }. (4.3.7)
But, first, we need a few auxiliary lemmas.

Proposition 4.3.12. The action of the Heisenberg subalgebra preserves the &2-filtration
onV, i.e.,

U(E)V(H) C V(#)7 (4.3.8)
for any u € &2. Furthermore, for any u € &,
51 X (—p)vy € Vi) (4.3.9)

Proof. We first show the second assertion (4.3.9). Take any n > 0. It is enough to show

that a(n)X(—u)vy € V(). Using|Lemma 4.2.6| (4.2.15)), a(n) X (—p)vy can be written as

a finite sum of vectors of the form X (—p')vy, where ' <t p. If 14/ contains a non-positive

entry then, by [Lemma 4.3.2) X (—p/)vy € V=, where s = I(11). Otherwise, i/ € 2,

(') = U(p), 1’| < |p| and therefore, u' > p. In both cases, X (—u')vy € V() (using

Lemma 4.3.9|in the first case, and [Lemma 4.1.24]in the second). This proves the result.
Now we will prove the first assertion (4.3.8). Clearly, U(s_)V(,) C V{,), by the

definition of V{,,y (Definition 4.3.5). Take any n >0, A € & and p' € & with p/ > p. It

is enough to show that a(n)a(—\)X(—u)vy € V().

Let m be the number of times n appears as a part in the partition A. Then, using

the bracket formula [Proposition 4.2.2] (i), we have

[a(n), a(—\)] = %ca(—m, (4.3.10)

where X is the partition obtained from X by deleting one occurrence of the part n, and
¢ is the central element in s acting on V as the scalar A(c)

Therefore,

a(ma(=N)X (— )y = a(=Na(m) X (~')g + T eal-X)X (=), (4:311)

The second term a(—\)X(—pu') € V{,,, since p' > p. For the first term, notice that

a(n)X(—p")vy € Viy C Vi) by (4.3.9), and therefore, a(—M)a(n) X (—p)vy € Viy-

This completes the proof. O
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We will need the following elementary lemma.

Lemma 4.3.13. Let A\ # Ay be two distinct partitions of a positive integer n. Then

there exists a part which occurs in Ay more often than it occurs in Ay.

Proof. Let m;(j) denote the number of times j occurs as a part in the partition J;,
i=1,2;1 <j <n. (Take m;(j) = 0 if j does not appear as a part in \;). Then, we
have

n= 3 m()i = Yo ma() (1.3.12)

Assume, to the contrary, that m(j) < my(j), for all 1 < j < n. By (4.3.12), we must

have my(j) = my(j) for all j. This contradicts our assumption that A; # \,. O

Lemma 4.3.14. Let A € 0.
(1) a(N)a(=A)X(=p)vy = CX(—p)vy mod V), for some constant C' # 0.

(2) If Ao # X with [Ao| = |A], then a(Ag)o(=A) X (—=p)vg € Vi),

Proof. (1) We prove this by induction on I(A). If A = &, then the statement is
vacuously true with C' = 1.
Assume that [(\) > 0. Let nq,ng,...,n, be the parts appearing in A with multiplici-

ties kq,..., ks > 0. If s > 1, then we have

a(N)a(=A)X (~p)vy = a(n)*ra(=n)™ - a(ng)* a(—ng)" X (~p)vy

(4.3.13)
= CX(—p)vy mod Vi,
for some C' # 0, by repeated application of the induction hypothesis.
Therefore, we may assume that A = (n,...,n), with n appearing k times. Let X’ be
the partition with only part n appearing k£ — 1 times. We have
a(N)a(=2)X (—p)vy = a(N)a(n)a(~N) X (~p)v (4.3.14)

= a(V)a(-Na(m) X (~u)to + ea(X)o(~X)X (~u)v,

=0+ CX(—p)vy mod V),

for some C' # 0, using (4.3.11)), (4.3.9) and the induction hypothesis.
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(2) Let n be a part in Ay which appears ky times in Ay, and &k times in A (k may
be 0), such that ky > k. Such a part exists by [Lemma 4.3.13| Let A{ be the partition

obtained from )y by deleting all occurrences of n. Similarly, let ' be the partition

obtained from A by deleting all occurrences of n, if any. Now,
a(o)a(=N)X (=p)vg = a(Mp)a(=N)a(moFa(m)fa(-n) X (—p)vy  (4.3.15)

Using part (0), a(n)*a(—n)*X (—p)vg = CX(—p)vy mod V) for some C' # 0. Using
[@3.9),

a(n)foFa(n)Fa(—n) X (—p)vy = Ca(n) o X (—p)v,

=0 mod V(). (4.3.16)

Applying [Proposition 4.3.12| (4.3.8)), we obtain
a(Ag)a(=A) X (—p)vy € V(). (4.3.17)
O

Recall INotation 4.3.7 and [Notation 4.3.111

Proposition 4.3.15. The set
By = { a(=N)X (~p)uvy ] NeO,peat}.

is a basis for V.= L(A)

Proof of [Proposition 4.3.15. Let S be the spanning set of V' as given in (4.3.2)),

§ = { a(=NX (~p)vy \ €O, pe2y. (4.3.18)

First, we show the linear independence of B,. If B, is not linearly independent then
there exists a relation of vectors in B,. Because V is graded, we may assume that all
vectors appearing in this relation are homogeneous of degree —n/6, for some n > 0. We

write this relation as

Y (=N X (~pvy =0, (4.3.19)
\eO, et
IX+l=n
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where c) ,, are constants. Let y be the least partition in .o/ A that appears in the above
relation with nonzero coefficient. Clearly, py # @, since the set { a(=X)vy| A € 0} is

linearly independent. Let ng = |po| > 0. Let
oMo = {)\ € 6‘" Capg 0} C O(n —ny). (4.3.20)

Then (4.3.19) can be expressed as

Z exa(=A)X(—po)vg =0 mod V{,, ), (4.3.21)
Aed*o

where ¢y = ¢y, # 0. If 0% = {@}, then (4.3.21)) reduces to cuX(—py)vy = 0

mod V{,,). Therefore X (—pq)vy € V{,,, contradicting our assumption that g € &/ A,
Therefore, assume that n —ng > 0.

Choose \g € O arbitrarily. We multiply a()g) to the left of (4.3.21). Using
we have

Z exa(Ag)a(=A) X (—pg)vg = en, CX (—pp)vg  mod Vi, 5, (4.3.22)
AEOH0

for some C # 0. Thus we arrive at a contradiction that X (—pug)vy € V() (or, equiva-
lently, s € ™). This completes the proof of linear independence of By.

Now it remains to prove that B, is a spanning set. This is obvious since, we obtain
B, by removing elements of S using linear relations. However, we can give an alternative
proof using induction on the well-ordered set (&, >).

It is enough to show that every vector v = a(—A\) X (—pu)vy € S can be expressed as
a linear combination of vectors in By, for any A € & and pu € &2. The base case for our
induction, p = @, is trivial, since a(—\)vy € B.

Fix a p € & and assume the result for p/ > p. If 4 € &/ there is nothing to prove.
Assume that x4 € Z*. But then v € V(- Therefore, by induction hypothesis, v is in

the span of B,. O

Assume that V = L(A) is a level 4 standard module with highest weight A, and a

highest weight vector vg. We finish this section with a few useful observations related to

the graded dimension (3.2.15)) of V|

Xala) = H(q)Fa(q). (4.3.23)
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Let X ,(n), H(n) and F) (n) be the coefficient of ¢" in X' (¢), H(¢q) and F}, (q) respectively,
for n > 0. (see [Notation 3.2.4). Let By(q) be the generating function counting the

number of elements in By of degree —n/6,

Bx(q) = > Ba(n)g". (4.3.24)

n>0

Also recall Notation 4.1.8] and [Notation 4.3.7]

Lemma 4.3.16. Let n be a positive integer. Then, we have

(1) Xa(n) = Ba(n),
(2) Fa(n) = |/ (n)].

Proof. The first equality is obvious, since By is a basis for V' by |Proposition 4.3.15]

For the second equality, observe that

By(q) = (Z ﬁ(n)q”) (Z I%A(n)!q”) =H(q)Y_ | (n)|q" (4.3.25)

n>0 n>0 n>0
Since B(q) = X (q) = H(q)F(q), the result follows by canceling out the common factor
H(q). O

Corollary 4.3.17. Let S\ be a subset of the spanning set (4.3.2)) of V.= L(A), given
by
Sh = { (=N X (=), ] NeO,pe Py}, (4.3.26)

where o/ C P\ C P. Then, for every n > 0, we have
Fa(n) < |74 (). (4.3.27)

Furthermore, if the equality holds for every n > 0, then & = ™ and Sl is a basis for
V.

Proof. This is an obvious consequence of [Lemma 4.3.16/and the fact that 7 C . O

4.4 Tools and Techniques for Working with Relations

In this section, we describe a few tools and techniques that we will be using to discover

reducible partitions from various relations among vectors in the spanning set (4.3.2)).
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These relations can be classified into two categories. The relations coming from various
generating function identities, presented in are valid for all level 4 standard
modules. For each generating function, the coefficient of z™/¢, n > 0, gives us a family of
relations among homogeneous operators on V' of degree —n/6. Applying these relations
on vy (or, on X (—pu,)vg), we obtain a family of relations for the vectors in the spanning
set. The reducible partitions that arise this way are, in fact, “forbidden” partitions, in
the sense that they cannot occur anywhere as a sub-partition in an irreducible partition.
There are, however, relations among the spanning set vectors that are not coming from
the operator identities. These relations are specific to a particular standard module of
level 4. We describe these relations in

We will first show that any partition ending with a reducible partition is also reducible.
Then, we will investigate conditions that we need on the operator identities that give
rise to “forbidden” partitions.

Even though we will be applying the tools and techniques for the level 4 standard
modules, the arguments presented here are valid for any standard module. The compu-
tations shown here are to be thought of taking place in U, the image of the universal
enveloping algebra U in End V' via the representation «f — End V.

The following result shows that if g € & is reducible, then any partition pu € &

ending with pg is also reducible.

Proposition 4.4.1. Let pg, 11 € & such that p = ppg € . If pg is reducible then
50 18 [, i.e.,

X(—/Lo)'l)o S ‘/(/_,40) — X(—/J,)/UO € ‘/(l‘) (441)
Proof. Assume that X (—pg)vg € V(). Then, we may write

X (—Ho)vg = Z W a(=N) X (—=p)vo,

\eO
WEP, 1 >pg
| [= o | =N

where ay , are constants. We apply X (—;) on both sides of the above equation.

Notice that, if I(u") < I(ug), then clearly the term

X(—m)a(-N)X(~p)ro € VIO v,
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Therefore, assume that I(1') = I(1). We need to straighten out X (—puq)a(—\) using
Lemma 4.2.7, Therefore, the term X (—puq)a(—\) X (—p')vg can be expressed as
X (=)= N X (g = 3 by yor @l =N )X (=) X (= Yoy,
NeONEX
w'e2y, p" =y

I [=lpa A=V

where s = [(p1). Notice that I(p”u') = l(pipg) = (). If N # @, then we have

]+ 1| < Jpal + I+ 1] = ] + ol = 1wl

and hence, p/ i/ > p. If N = @, then we have |p"p/| = |p| and @1’ = ppg = p. Thus,

in either case p”p/ > p. By [Proposition 4.3.10, the terms

a(=N)X (=p") X (=p')vo € Viy).

This completes the proof. ]

Remark. Notice that in the hypothesis of the above [Proposition 4.4.1] we require that

W= pipg € &, ie., pis in non-increasing order. This condition can not be relaxed by
replacing p = fifig. For example, if X(—6)vy = a(—1)X(—5)vg, then after applying

X (—1) and rearranging we get
X(—6,—1)vg = a(—=1)X (=5, —1)vg — X (=5, —2)vy mod V),

However (5,2) # (6,1).

Now, we proceed to investigate the criteria on an operator identity so that the

relation gives rise to “forbidden” partitions. We start with a few straightening lemmas.

Notation 4.4.2. Throughout this section, let T(—n) € () denote an arbitrary stan-

dard monomial of degree —n/e, i.e.,
T(—n) = a(=A) X (—p)a(Ag) € U (4.4.2)
for some A\, Ay € € and p € & such that

() <s, (4.4.3)

[l + A1l = [Xo| = n. (4.4.4)



58

Notation 4.4.3. We fix pg € Z,(n) and p, € &. Let

[t = FoFx, (4.4.5)

t=1(fi). (4.4.6)

We will now describe the action of the standard monomial 7(—n) on a vector
v = X (—p,)vyg modulo the subspace V(ﬁ). But, first, we need the following elementary

observation.
Lemma 4.4.4. Let iy, fuo, pty € 2 with p11 < po. i fy < Tofly-

Proof. We can characterize the lexicographic ordering in terms of the multiplicity of
each part as follows.

Let m,, (k) denote multiplicity of k£ as a part in u. Note that m,(k) is taken to be 0
if k does not appear in u as a part.

Then v; < 14 holds if and only if m,, (k) < m,,(kg), where
ko = max { k € Z| m,, (k) # m,, (k) } .

This is obvious, since vy, v are arranged in non-increasing order.

Now, notice that for any p € 2,
mm(k) = mu(k) + my, (k)a
for all k. Thus, the conclusion is obvious. O

Lemma 4.4.5. Recall|Notation 4.4.5 Let T'(—n) be as defined in such

that p contains a non-positive integer as a part. Then
T(—n)X (—p)vg € VD C Vi, (4.4.7)
Proof. This follows immediately from [Lemma 4.3.2 O

Lemma 4.4.6. Recall[Notation 4.4.3 Let i € P such that u > pg. Then

X (=) X (=)0 € V, (4.4.8)

1)
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Proof. The conclusion is obvious if either {(p) < I(pg), or I(p) = l(pg) and |p| < |pol-

Therefore, assume that I(p) = 1(ug), |p| = || and p > pg.

By we have fifi, = Tigt. = ji. Thefore, the result follows after

rearranging the X (e) operators using [Lemma 4.2.4 0

Lemma 4.4.7. Recall|[Notation 4.4.5 Let T(—n) be as defined in such
that \y # @. Then

T(=n) X (—p)vo € V- (4.4.9)

Proof. 1f () < l(po), then the result is obvious. Assume that [(u) = l(pg) = s. We

have,
T(—n) = a(=A)X(—p)a(rs), (4.4.10)

=71 — M)+ [Ao] < |Ag, (4.4.11)

since |[A;| > 0 by assumption. Note that |uy| = n by assumption in [Notation 4.4.3
The vector T'(—n)X (—p,)vy can be straightened out, using [Lemma 4.2.8| in the

form

T(=n)X (— )0 = 3 b (=) X (— ) X (— 4 . (4.4.12)
WeL, ' <p,
Up") =)
W 1= = Ao |

Notice that I(up') = l(uoux) = (1) and

] = ] + [0 | <+ Aol + || = |poms]. (4.4.13)

Therefore pp, > 1. The conclusion follows from [Proposition 4.3.10) O

Lemma 4.4.8. Let T(—n) = X(—p)a(Ny) be as defined in with \y = &,
Ao # &, and either l(p) < l(ug) = s or pu = pg. Recall|Notation 4.4.3 Then

T(—n) X (— )0 € Vg (4.4.14)

Proof. If I(n) < l(pg), then the result is obvious.

Assume that [(u) = I(pg) = s. Using |Lemma 4.2.8) We can express T'(—n)X (—pu,)vg

as

T(=m)X (1) = 3 by X (— ) X (—4 Yy (4.4.15)
We2,u' <,
Up")=1(p)
[ 1= | =2 |
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Since, p = g, we have pu' = popu,. By [Lemma 4.4.4) pu’ = . Since, I[(pup') = I(f1) and

|up!| = |fi|, therefore, uy’ > fi. The result follows immediately. O

Let R(—n) = 0 be a relation among homogeneous operators of degree —n/6. Assume
that R(—n) e U (5). These relations typically come from the generating function identities
presented in We will apply the relation R(—n) = 0 on a vector of the form
v = X (—py)vg, where p, € 2.

In what follows we will describe the vectors R(—n)X (—pu,)vg modulo the subspace

V(ﬁ) (Recall [Notation 4.4.3)). We think of uq as the lowest term that we want to keep

track in our calculation.

Remark. Notice that if

M1 < Ho < .. g

are lowest k partitions of & (n), then

have the same relative order in &, y(n + |p,|) (see [Lemma 4.4.4).

In general, any operator R(—n) € U®) can be expressed as a sum of standard
monomials classified into three categories:

(A) the terms having no Heisenberg element—terms of the form X (—p), p € 2(n),

W) <'s.

(B) the terms containing negative Heisenberg element(s)—terms of the form
a(=A)X (—p)a(ry). (4.4.16)

wE 2, A\ # I, Ay € O, such that |u| + |A{| — |A2] = n and I(p) < s; and
(C) the terms having no negative Heisenberg element, but having some positive

Heisenberg element(s)—terms of the form
X(-malry), (4.4.17)

wE 2, Ay #@ € 0, such that |u| — |Ag| = n and I(p) < s.
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Notation 4.4.9. Let R(—n) € U® be a homogeneous operator of degree —n/6 on V.

We will write R(—n) as

R(—n) = A(—n) + B(—n) + C(—n) mod UV, (4.4.18)
where
A(=n) => a, X(—p) (4.4.19)
HEZ,(n)

is the sum of all terms of type modulo ¢/

B(=n) = 3" by, ur, a(=A) X (—p)a(Xs) (4.4.20)
A A EQ
M £D
BELZ,(n—|A1|+]A2])

is the sum of all terms of type modulo ¢~V and

C(—n) = ZC#,A X(—p)a(N) (4.4.21)
AEO, N£D
peE2, (n+A))

is the sum of all terms of type modulo U/~

Now we will analyze which terms in R(—n) are nontrivial when applied on a vector

of the form v = X (—p.)vg modulo V) (see Notation 4.4.3).

Proposition 4.4.10. Recall|[Notation 4.4.5 and|Notation 4.4.9. We have

A(=n) X (= )vo = Y ay X (—=p) X (—p)vg
HEZP(n)
K=o

= Z%X(—m)vo mod V.
HEZ4(n)
B

(4.4.22)

Proof. We apply each term in A(—n) on v = X(—p,)vg. The result follows from

Cemma 4.4.5, [Lemma 4.4.6) and [Lemma 4.2.4 O

Proposition 4.4.11. Recall|[Notation 4.4.5 and|Notation 4.4.9. We have

B(—n) X (—p)vg € Vi (4.4.23)

Mk

Proof. The result follows immediately from O



62

Proposition 4.4.12. Recall|[Notation 4.4.5 and|[Notation 4.4.9 We have

C(—n) X (—py)vg = ZCM,AX(—,U,)O(()\)X(—M*)UO mod V. (4.4.24)
N
,U'Gys (TL+>\)
M=o
Proof. The result follows immediately from [Lemma 4.4.5| and [Lemma 4.4.8| [

Remark. We will see in that to show that a partition p is forbidden we will
need

CmX () € Vi
In what follows, we will describe which terms in C'(—n) can be ignored (or under

what conditions way may ignore C'(—n) entirely), modulo V(;»)- But, first, we need the

following notations.

Notation 4.4.13. For py € Z,(n) and k € N, let

gt =Lpe 2| i) =1uo), lul > ol 1 = 1o }

g ={ e s

il = Lol +k }-

Notation 4.4.14. Let , u,, ptg and g as defined before. Then define

CHo(—n) = e X(—p)a(X),
NEO, \£D

oMo
HEZ |

Cro(=n) = cun X (—pa(N),
AEO,, AAD
,uey:o

Below, we note a few obvious, but noteworthy facts.

(i) The set .##o is finite, and .#}° = ) for k sufficiently large.

(ii) Note that [Proposition 4.4.12| can be written as

C=n)X (=)o = (=) X (~pr)uy mod Vi,

Also note that

Cto(—n) =) C°(=n),

k>0
and C}°(—n) = 0 for k sufficiently large (follows from (f)).
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(iii) If SHo =, then C*o(—n) = 0. In this case C'(—n) can be ignored, in the sense

that C'(—n)X (—p,)vg =0 mod Vi

Assume that %0 # (). Let k be the largest integer such that .#}° # (). Then

F10 =0, for all j > k.

Lemma 4.4.15. Let k be as described above. If every p € y}fo is reducible by partitions

greater than g, then the terms in C’,’;o(—n) can be ignored, in the sense that
Ci°(—n) X (—ps)vg =0  mod Vi

Proof. Let € ). Let A € O(k), such that X(—u)a()) is a term in C,°(—n). Since

u is reducible by partitions greater than ug, we can write
X(—p)= A+ B +C" mod U, (4.4.25)
where

A =>"al, X (=), (4.4.26)
WEL, (n+k)
W= t1g

B =>"V ,1,#,)\,204(—)\’1)X(—,u’)oz()\'g), (4.4.27)
BN

N #D
W ELZ,(ntk—| A1 [+ [A3))

C'=> X (—p)a(N) (4.4.28)

NeOo, N+
1 €2, (n+k+|N|)

Now
X(=m)aN)X (—p)vg = A'a(N)X (—p)vo
+ B'a(N) X (—pu,)vg (4.4.29)

+ Ca(N) X (=, )vg-

By [Proposition 4.4.12] and hypothesis, we have

/
Aa(NX (=)o € Vg,

and by [Proposition 4.4.11] we have

B'a(N) X (=) € Vi
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A typical term in C' X (—pu,)v, is of the form
X (= a(N)a(N) X (. v, (4.4.30)

where X' € O(K), k' #0, and ¢/ € Z,(n+ k + k). But according to our hypothesis,

S0 = 0. Therefore, p' = 9. Thus,
X (= )a(N)a(N) X (—pi ) € Vi,
by as required. O

We now generalize the above lemma. Recall k is the largest integer with .#} % 0.

Lemma 4.4.16. Assume that /"o # () (Recall |Notation 4.4.13). Let k € N be the

largest such that 5’,50 #0. Let 1 < j < k. If every p € ./, i > j, is reducible by

partitions greater than p, then the terms in Cfo(—n) can be ignored, in the sense that
C;O(—H)X(—M*)vo =0 mod V(ﬁ)-

Proof. We will use backward finite induction on j. We have already proved the statement

for j = k in [Lemma 4.4.15| Assume j < k, and that the result is true for all k£ > 5/ > j.
The induction step is exactly the same as in the proof of except for

the last step, where we use the induction hypothesis.
Let pu € 5@“0. Let A € 0(j), such that X(—p)a(A) is a term in C;O(—n). Since p is

reducible by partitions greater than pg, we can write

X(—p)= A+ B +C" mod U, (4.4.31)
where
A =>"al, X (), (4.4.32)
W EL,(n+j)
W tto
B = 3ty (=X X (—i)a(¥), (1.4:33)
N N, e0
N #D
WEL (ntj—|A1+|A3])
C/ = Z C;A/)\/X(—M,)a()\/) (4434)
NeO, N+

W E€2,(n+j+|N)
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Now
X(—p)a(N)X (—p)vg = A'a(N) X (—p.)vg
+ Ba()X (—p)uy (4:4.35)

+ C'a(N) X (=i )vg.

By [Proposition 4.4.12] and hypothesis, we have

Aa(N)X (~p)vo € Vi,

and by [Proposition 4.4.11] we have

B'a(N)X (=) € Vi
A typical term in C' X (—pu,)vg is of the form
X(—M/)Q(A/)Q(A)X(—M*)Um (4436)

where N € 0(5), 7/ # 0, and p' € P, (n+j+j'). If ¢ = po then we are done. Assume
that ' € %-’fj, But then by the induction hypothesis,
X(—p)alN)a(N) X (~p)vp € Vi,

as required. O

We summarize our results below.

Proposition 4.4.17. Recall|Notation 4.4.5, |Notation 4.4.9, [Notation 4.4.15 and|Nota]

tion 4.4.14 Then we have

R(_n)X(_M*)UO = Z auX(_M)UD
HEZP(n)
M= po

+ Z CM,AX(_,U)O‘()\)X(—M*)UO mod V(ﬁ)’
AEO , N\A£D
HEZ (n+]|A|)
H=po

where a,,,c, \ are constants from the definition of R(—n), as defined in|Notation 4.4.9.

In particular, if either

(4.4.37)

(i) SHo =0, i.e., there is no u < pg with |p| > n, or
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(i) every pu € SHo (i.e., p € Py with pp < pg and |p| > n), is reducible by partitions

greater than pg,

then
C(=n) X (—p)vo € Vi) (4.4.38)
and therefore,
R(—n) X (—py)vg = ZCL“X<—M)UO mod V). (4.4.39)
HEP(n)
K=o

Proof. The first assertion follows directly from [Lemma 4.4.5] [Proposition 4.4.10} [Propo{

[sition 4.4.11| and |Proposition 4.4.12]

For the second assertion, if .o = () then the statement is obvious, since
CHo(—n) = 0.
If every p € SHo is reducible by partitions greater than pg, then
C(=m)X (~p)eo € V.

by [Lemma 4.4.16| (with j = 1). O

Remark. The above proposition shows that the only standard monomials in R(—n)
(along with the coefficients) that we need to keep track when we apply R(—n) to the
vector X (—pu,)vy modulo the subspace V(ﬁ), where u, € &2 is arbitrary, are of the form
X(—p) (n € Z4(n), p = po), and X(—p)a(A) (n € Py(n+[A]), u < pg). We will be
using this argument extensively in

Remark. Sometimes, we will create new relations by multiplying R(—n) on the left by
a suitable X (—p'). Notice that the standard monomials of type , and the terms
of type (IC|) remain of the same type when we do this multiplication. However, after
straightening out, some of the terms in X (—u')B(—n) may yield terms of the type ,

in addition to terms of the type (B]).
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Chapter 5

Generating Function Identities

We will use as the starting point for the spanning set for any level 4 standard
module. To reduce the set further, we need relations among the elements in this set.
These relations come from certain generating function identities.

In(§5.1, we define the “product” generating functions X (ay, ..., ay; 2) € U [[2579]]
for s € N, ay, -+ ,a, € L. These generating functions are intuitively thought of as the
“product” of X (aq;2),...,X(ay; z). Obviously, the product X (aq;2) -+ X (ay; 2) does
not exist, as the individual factors are doubly infinite series in 2.

In we describe the action of these product generating functions on the basic
module U. We derive a few identities by “conjugating” the generating function X (f; z)
with the exponential generating functions E*(o; z). These calculations are to be viewed
in (End U)[[z*¢]], via the representation ¢/ — End U.

In we work out the action of the “product” generating functions on the tensor
product module, U®4. We derive the identities by “conjugating” (note that this is not a
conjugation in the strict sense) these generating functions by E*(o;2). Since each of
the level 4 standard modules are sub-modules of U®4, these identities are valid for any
level 4 standard module V.

For each n € Z, the coefficient of z~"/¢ in a product generating function is a
homogeneous operator of degree 7/6 in the image of I inside End V', via the representation
U — End V. This is called the homogeneous component of degree /6 of the said product
generating function. We can express them in terms of the standard monomials
using various straightening lemmas described in as necessary. In we compute
the coefficients of monomials of the form X (—pu), p € 2, in this expression for those

product generating functions that are involved in the identities presented in
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For the first two sections, the details in more generality can be found in |[Cap88|

Cap92|. The computations in are in similar spirit as [Cap92|.

5.1 Definitions: The Product Generating Functions

All calculations in this section are done inside U(g)[[z*7¢]]. Recall from U(g)

can be thought of embedded in End S, via the isomorphism [Proposition 2.3.1]

Recall from (2.2.37)),

X(a;2) =6 o(a)E™(—a; 2) Bt (—a; 2), (5.1.1)

for a € L, where (recall from ([2.2.23))
o) = 2721 — e (] _ =2y taa) (5.1.2)

In particular, o(0) = 1, and X (0;2) =1 on U(g). For o € Lo, o(a) = wOT\/g. By abuse
of notation, we will denote o = on\/g for convenience.

For o, B € Lo, define

I,(a,B) = {pEZG‘ (VPa, B) :n}, (5.1.3a)

Li(a,8) = {p € Z \ + (vPa, ) > 0} (5.1.3b)

Notice that I(n) = I,,(a, (), in the notation of [Proposition 2.2.6| Also recall the following

1/6
polynomials in x = (%) :

Pole, B (z) =] (1 - ufpgu)%ypa’ﬂ> , (5.1.4a)
pel_(a,B)

Qolev, B(z) =[] (1 — wPx) (wref) (5.1.4b)
pel (a,B8)

as used in [Proposition 2.2.3|and (2.2.14)). Recalling that («, 5) = £1,+2 for «, 8 € Lo,

we can further simplify Py and @, as

Pyla, B](z) = H(l —w Px) H(l —w Pr)?, (5.1.5a)
pel_y(a,B) pEl_5(a,B)

Qola, B](x) = H(l —w Px) H(l —wPx)?. (5.1.5b)
p€l;(a,B) pEl(e,p)

Recall the notion of limit as defined in [Definition 2.1.41 For simplicity, we are going

to use the following convention:
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Notation 5.1.1. Let Z(zq,...,2,) € A[[ZTI/G, e zjl/ﬁ]] be any expression (where A is
any algebra over C). We will use the following notation
lim Z(zy,...,24) = ) lirln Z(21y s 2g)s
21/6,~~~ ,23/6—>z1/6

for abbreviation.

Notation 5.1.2. Throughout, we will use the abbreviation
()"
r=|—= ,
<1

z\ /6
ZL‘Z] = (]) s for ¢ < j,

or more generally,

unless otherwise mentioned.

Proposition 5.1.3. For a, 8 € Lo, there exists a Laurent polynomial P(z) = Pla, f](x)

with constant coefficients such that the limit
lim P ()X (o; 21) X (B; 22)

exists.

Proof. Using [Proposition 2.1.6|it enough to find P(z) such that

P(2)[X (e 21), X(B; 22)] = 0. (5.1.6)

From [Proposition 2.2.6, we see that each term in the expansion of [X («; z1), X (f; 29)]

contains one of the following factors: d(wPz) for p € I_i(a,8), Do(wPz) for p €
I_5(a, B), or §(wPx) for p € I_5(c, 5). Note that for , 5 € Ly, (e, 3) can only assume

the values £1, 2.

Using [Proposition 2.1.7|and (5.1.5), we see that

Po[a,ﬁ](x)é(w_p:n) =0 for pE I,l(()é,ﬁ),
(5.1.7)
Pyla, f](z) Dé(w™Px) =0 for pe I_5(a,p).

Therefore, we can take P(z) to be any multiple of Py(z) by a Laurent polynomial. [J
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Remark. Sometimes we may want P = lim P(x) # 0. This is only possible if Py[a, 5](z)

doesn’t have any factor of (1 — x), which is the case when («, ) > 0.

Remark. Also, from the above proof, it is obvious that P(x) only depends on the
angle between a and 3. We will denote the choice of P(z) by P, ) (), depending on
a, ﬂ S L2.

Definition 5.1.4. For o, 5 € Ly, and P as in |[Proposition 5.1.3] Then we define

X(Oé,ﬁ; Z) = Xp(Oé,ﬁ;Z) = hmP($)X(Oé,Z1)X(6, ZQ)‘

Remark. We will drop the subscript P, if the choice of P is not important and there is

no danger of confusion.

Remark. In view of [Proposition 5.1.3| the order of @ and 8 in X («v, f; z) does not matter.

The product generating function can be generalized for more than two factors.

Definition 5.1.5. Let «;,...,a, € Ly. Denote by
1/6
Zj)
S — —L s
“ <Zz'

Pij = P(ai,aj)(xij)?

for 1 <i<j<s. Let

and

p= ][ P

1<i<j<s

Then we define the product generating function
X(ag,...,a42)=X(aq,...,042) =lim PX(ay,21) - X(ag, 2,).
Notation 5.1.6. If a; = --- = a, = «, then denote Xp(ay,...,a,;z) by X(s)(a;z).

Remark. Notice that the product generating function X (o, ..., a,;z2) € Uue,

5.2 Identities on the Basic Module

In this section, we describe the action of the product generating functions on the basic

module, U. The generating functions X (o z), E*(a; 2), and the product generating
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functions X (ayq,...,a,; z) are thought of as generating functions with coefficients in

EndU.

Proposition 5.2.1. Let o, 8 € Ly. Then on the basic module U we have

N ,Z:<o¢,)(a) 9B) Ax(a

where

Qo
A=1
lmP

Py = By, Bl(z), Qo = Qola, B](z), and P = P, g ().

Proof. First, notice that A exists because P is a multiple of F;. Using (5.1.1) and

[Proposition 2.2.3] we have

Xl 20)X (85 20) = 7O (2 B (o 2) B (2 (1 2)

(M%)E (—;20) E™(=B; 22) BT (—a; 2 ) BT (— 135 25)

_ 6(04,6) ((a)+(g)) QO 6~ (atB,a+8)/2 (Oé + /8)

X B (—a;2))E™ (=B; 29) ET (—a; 1) ET (—B; 25)

Now multiply both sides by P, and take the limit to get

e 0@0(B)
X(a, B;2) = 6¢ (@ +5)AX( + f; 2). O

Corollary 5.2.2. Let o, € Ly. If (o, ) > 0, then X («, 8;2) = 0 on the basic module
U. In particular, X (a;2) =0 on U.

Proof. If (o, ) > 0, then @)y contains a factor of (1 — x). Therefore lim @y = 0, and
hence A = 0. O]

Remark. If o, B € Ly, with (o, 8) = —1, then a+ 8 € L.

We state the generalizations of [Proposition 5.2.1| and [Corollary 5.2.2] which follow

easily from similar arguments.

Proposition 5.2.3. Let aq,...,a, € Ly. Then on the basic module U we have
a;)o(a;)
X(Oél,..., H6 mA X(a1+"‘+@5;2),

1<’L<]<S



72

where
Qolo, ]
ol aj]

Corollary 5.2.4. Let ay,..., a5 € Ly. If (o, ) < 0 for some 1 <i < j < s, then

A’L] = hm <O‘i70‘j>'

X(aq,...,a42) =0 on the basic module U.

We need the following generating function identities on the basic module to discover
the identities on the standard modules of level 4. The following identity is to be thought

of as the result of “conjugating” X (f3; z) by the exponentials E*(a; 2).

Proposition 5.2.5. Let o, 8 € L. On the basic module U, we have

a(B)

—( . ) o) — glea)/2—(a,B)
E™ (a;2)X(5; z)E+(a,z) =6 (o —B)

X(B —a;z).

Proof. Using (5.1.1)), we have

E™(0; 2)X (8:2)Et (s 2) = 672 o(B)E™ (a3 2) B~ (— 8 2) BT (— 8 2) B (a5 2)

G $5A)/2 U(ﬁ)
- G (e=Ba=h)/2 ' O'(a _ 6)

" (6-<a—5,a—ﬁ>/za(a —B)E (a—B;2)ET (a — B; Z))

_ 6<a,a>/z—<a,/5>Lﬂ)X(ﬁ —;2),
since o(—a) = o(a). -

Notation 5.2.6. Since o(«) only depends on the length of «, we will denote, by abuse

of notation, 0 = o(a) = “V3 o any o € Ly (see (2.2.24])).
6

Corollary 5.2.7. Let a € Ly. On the basic module U, we have
(i) B (a;2)Et(a;2) = X (—a2),

(i) B~ (a;2)X(a;2)E (s 2) = E1,

(iii) B~ (o;2) X (v a; 2) Bt (a;2) = X (vF2q; 2),

where 1 is the identity operator on U.

Proof. (i) Take 8 = 0 in [Proposition 5.2.5| Notice that ¢(0) = 1, and X(0;2) =1

onU.

(ii) Take 8 = « in|Proposition 5.2.5|

(iii) Take 8 = v*'a in [Proposition 5.2.5 O
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5.3 Identities on the Level 4 Standard Modules

In this section, we will derive the generating function identities similar to[Proposition 5.2.5|

and |Corollary 5.2.7] on any level 4 standard module V. By |[Proposition 3.1.6| any level

4 standard module is contained inside the tensor product of four copies of the basic
module. Therefore, these identities can be viewed in End U®*. Conceptually, these
identities can be thought of as the result of “conjugating” (not in the strict sense) various
product generating functions X (f;,..., Bs; z) with the exponentials E*(a;z). These
computations are done in the same spirit as [Cap92].

Let U be the basic module, and U®* = U@ U @ U ®@ U be the tensor product module.
Since the components of X («; z), for o € Ly, are elements of the Lie algebra g, X («; z)

acts on U®* as a primitive element:

X(;2) =X(a;2)10101+10X(a;2)@1®1 fal

+1910X(;2)01+101®1® X(a;2), -

where X («a; 2) is viewed as an operator on U ®4 on the RHS, and as an operator on U
on the LHS.

On the other hand, the exponential generating function E*(a; z), for o € L, acts on

U®4 as a group-like element:
Ef(o;2) = B (a;2) @ EX (0 2) @ E¥ (o 2) ® EF (a3 2), (5.3.2)

where E*(a; 2) is viewed as an operator on U®* on the LHS, and as an operator on U
on the RHS.

The identities presented in this section, are obtained by “conjugating” various product
generating functions X (ay, ..., ay;2) by E¥(a;z). In the presentation below, we will
classify the results by s, i.e., by the highest number of factors in the product generating
function occurring in the identity. We will call this number as the degree of the identity.
We will present one degree 2 identity and four degree 3 identities on U®*. We start with

the degree 2 identity.

Proposition 5.3.1. Let a € Ly. Then on U®* we have

E™(0;2) XD (; 2) B (o 2) = X (i 2).
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Proof. The polynomial P in the definition of X (a;2) and X®)(—a;2) are the same,

since (o, a) = (—a, —a). By [Corollary 5.2.2] if both X («; z)s (or X (—a; 2)s) act on the

same tensorand of U®? then it yields 0. Therefore, on U®?,

X(Q)(a;z):2? (X(a;z)@X(a;z)®1®1+...> ’

total 6 similar terms
because there are (3) possible way to distribute the two X (a; z)s in 4 tensorands without
having two of them acting on the same tensorand, and we get two copies for each term

having X («; z)s acting on similar positions. Similarly,

X®(—a;z)=2P (X(—a;z)®X(—a;z)®1®1+'--> :

total 6 similar terms
By “conjugating” X®(a; z) by E*(a;z) on U®*, we get
LHS = 2P (E_(a; 2)X(a;2)EY(a;2) @ B~ (a;2) X (a; 2) BT (5 2)
R E (;2)Et(a;2) ® B~ (a; 2) ET (a3 2)
+ -+ (5 similar terms) )

=2P (1 ®1®X(—a;2) @ X(—a;z) + - -+ (5 similar terms)) ,

using [Corollary 5.2.7] This is precisely the same as the RHS. O

We present the four degree 3 identities below.

Proposition 5.3.2. Let a € Ly. Then on U®* we have
(O 2
E(a; 2)X®)(; 2)EY (a; 2) = 6P (6) X(—a;2).
Proof. Let P be the polynomial in the definition of X (3) (a; 2). Then, on U®*, we have

X(3)(a;z) =6P (X(a;z)®X(a;z)®X(a;z)®1+...l) )

total 4 similar terms
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Now “conjugating” X ®)(a; z) with E*(a;z) on U®*, we get
LHS = 6P (E_(a; 2) X (a;2)EY(a;2) @ B (a;2) X (o 2) BT (5 2)
® E (;2) X (a;2)ET (s 2) @ E (a; 2) E1 (a5 2)

+ - -+ (3 similar terms) )

2
= g) 6P (1 ®1®1®X(—a;2) +--- (3 similar terms))
— (o 2
=6P (6) X(—a;z) = RHS,
using [Corollary 5.2.7] O

Proposition 5.3.3. Let a € Ly. Then on U®* we have
E™ (a;2)X (o, a,va; 2)ET (o 2) = (gP1P2> X(—a,v0; 2).
Proof. Let Py, gy denote the polynomial so that P, [X(;2;), X(5;22)] = 0. Then we
can use Py = Py(x1)P;(x13)P;(x93), in the definition of X (a, o, vay; z), and Pr = Pj(x)
in the definition of X (—a,1?q; 2).
Since, each of the pairwise inner products of the roots among «, o, v are positive,

only terms where each of X (o;2) and X (va;z) acts on distinct tensorands of U®*

survive (by [Proposition 5.2.1)), when acting on U®*. Therefore we have

X(o,o,vas 2) = 2P, P, (X(a;z) RX(;2) @ X(va;2) @ 14 - ) ,
total 12 similar terms

and

X(—a,v?0;2) = P, (X(—a;z) XV 2)@1® 1+...) ’
total 12 similar terms

on U®4,
“Conjugating” X (o, o, va; 2) by E*(a; 2), we get
LHS = 2?12?2 (E_(a; 2)X(a;2)ET (a5 2) @ E™ (a;2) X (o 2) BT (5 2)
® B (a;2) X (va; 2)ET (o 2) @ E™ (a5 2) ET (o 2)
+ -+ (11 similar terms) )

_ (g) 2?122 (1 ®1® X(a;2) ® X(—a; 2) + - -- (11 similar terms))

- (gplpg) X(—a,v2a; z) = RHS,
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using [Corollary 5.2.7] O

Proposition 5.3.4. Let a € Ly. Then on U®* we have
E~(a; 2)X (o, va,va; 2) ET (o 2) = X (—a, Vi, V2o 2).

Proof. Using the same notation as before, let P = P (x19) P (x13) Py(223) in the definition
of both X (a, va, va; z) and X (—a, v2a, v?a; 2).

Then on U®*, we have

X(a,vo,va; z) = 2P (X(Oé;z)@)X(Voz;z)®X(l/a;z)®1+---) ,

total 12 similar terms

and
X(—a, Vo, va; 2) = 2P (IX(—a; 2) QX 2) @ X(VPos2) @1 + - .) .
total 12 similar terms
“Conjugating” X (o, va, va; z) by E*(a; 2), we get
LHS = 2P (E_(a; 2)X(a;2)EY(a;2) @ B~ (a;2) X (va; 2) BT (; 2)
® B (;2) X (va; 2)ET (a5 2) @ E (a; 2) E1 (a5 2)
+ -+ (11 similar terms) )
=2P (1 ® X (Va;2) ® X (V2a;2) @ X(—a; 2) + - (11 similar terms))
= X(—a,v?a,?a; z) = RHS,
using [Corollary 5.2.7} O

Proposition 5.3.5. Let a € Ly. Then on U®* we have
E~(o; 2)X (o, va, vt 2) BT (0 2) = X (—a, v, v 20 2).

Proof. Using the same notation as before, let P = Pj(x15)P;(z13)P_1(z3) in the

definition of both X (a, va, v~ 1a; 2) and X (—a, v2a, v2a; 2).

Let Py = Pylva,v~1a] and Qy = Qy[va, v~ 1a]. Using|Proposition 5.2.1, we have

X(va,vta;z) = %AX(a;z),

X(Pa,v%a;2) = %AX(—O[; z),
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where A = P_; 20 is a constant as defined in [Proposition 5.2.1} Therefore, both X (va; 2)

and X (v~la; z) may act on the same tensorand of U®*. The same is true for X (v2q; 2)
and X (r—2a; 2).

Thus on U®4, we have, letting B = lim P, (215) P} (z15) P_ (m23)%‘:((x23))

X(o,va,vta;2) =P (X(oz; )@ X(va;2) @ X(v s 2) @1+ - )

total 24 similar terms

+ 2B (IX(a;z)®X(a;Z)®l®1l)’

total 6 similar terms

and

X(—a,u2oz,l/_2oz;z):P(lX( o 2) @ X(VPa;2) @ X (v 20 z)@l—i—---l)

total 24 similar terms

+2B (IX(—a;z)®X(—a;z)®1®ll> :

total 6 similar terms
The result follows from “conjugating” X (a,va, v a;z) by E*(a; 2), and using [Corol

s

Remark. In the above proof, P = 0, but B # 0.

Remark. Since, we are free to multiply the polynomials P by any scalar, and since
P, Py # 0, we will assume without loss of generality that P, = P, = 1. This will make

the computation of the coefficients more convenient. Similarly, we will scale P_; in such

a way that makes B =1 in |Proposition 5.3.5}

5.4 Coefficients

In this section, we compute the coefficient of X (—pu) in various product generating
functions which are involved in the degree 2 or 3 identities presented in

The coefficient of 2~/ in X (ay,...,as2) € UP[[z7/%]] gives the homogeneous

k

component of degree §. For Ay, any B € Ly, can be expressed as v"a (where a € Ly

is our chosen fixed root). By m, B;m) = whkmX (m). Thus, the homogeneous

component of degree % consists of terms of the form X(—pu), where u € Z°, with

|| = n. Of course, the parts of u could be out of order — we need to use [Lemma 4.2.4
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to straighten out X (—p) in order to express it in terms of the standard monomials.

From |[Lemma 4.2.4) it follows that X (—p) € X(—p) + UV ie., X(—u) = X(—[)

mod U, (L € 2 is the result of rearranging p in non-ascending order).

Lemma 5.4.1. Let = (p,q) € Z5(n).
(i) The coefficient of X(—pu) in X (s 2) expressed in terms of the standard mono-
mials is

1 ifp=aq,
2 () = Ip=a (5.4.1)

2 ifp#q
(ii) The coefficient of X (—p) in X (—a;z) expressed in terms of the standard
monomials is

1 if p=gq,
e () = (5.4.2)

AP ifp £

Proof. (i) If p = q then there is only one way to get the term X (—p)X(—¢q). If p # g

then there are two terms X (—p)X(—q) and X (—q)X (—p) which corresponds to X (—pu)

after possible straightening out by The result follows from the definition
of XP(a;2).

(ii) The proof is similar to (i), keeping in mind that X (—a; —p) = (—=1)? X (a; —p).

O

Remark. The coefficient of X (—pu), p = (p,q) € 2 in X (a;2) can be easily computed
as the coefficient of 22, if p = ¢; or the coefficient of xy, if p # ¢, in the polynomial (z+)?
in two commuting variables. Similarly, the coefficient of X (—pu) in X ) (—a; 2) is the co-
efficient of 22, if p = ¢; or the coefficient of zy in the polynomial ((—1)Pz 4 (—1)4y)?. We
used this method to compute the coefficients in the Maple worksheet (see .

Definition 5.4.2. We call a function, f: 2, — C periodic with periodicity m (or,
m-periodic, for brevity), if f(u) = f(u+ m) for all u € 2, i.e., if f is invariant under

increasing/decreasing each part by m.

(2)

Corollary 5.4.3. ¢, (2)

and ¢~ are 1-periodic functions on 2.
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Proof. 1t is obvious from the formulae in ]

Notation 5.4.4. For p € 2, we denote by #u the number of distinct parts in p.

Lemma 5.4.5. For = (p,q,r) € Z3(n), let a be the most frequent part in p, b be the
next most frequent part (if any), and c be the least frequent part (if any). If p,q,r are
all distinct, we may simply take a = p, b= q and ¢ = r. If two of p,q,r are the same,
then take a to be the one that is repeated twice, and b the unique one. If p = q =r, take
a=p.

(i) The coefficient of X(—pu) in X©) (s 2) expressed in terms of the standard mono-

mials is given by

L if #p =1,
) =43 ifau—2, (5.4.3)
6 if #u=3.

(ii) The coefficient of X (—pu) in X (o, o, va; z) expressed in terms of the standard
monomials is given by
w if #u=1,

(1) = oa 4 b if 4= 2, (5.4.4)

2w 0+ w4 wT)  if #u=3.
(iii) The coefficient of X (—p) in X (o, va,va; z) expressed in terms of the standard

monomials is given by
w2 if #p =1,
3
e (1) = § w2 4 9ot if #p =2, (5.4.5)

2w b pwThTC f T if = 3.

(iv) The coefficient of X(—pu) in X (—a, v2a, v?a; 2) expressed in terms of the stan-
dard monomials is given by
wTe if #p =1,

Cé%) (1) = { w—4a=3b | 9,,~5a—2b if #p = 2, (5.4.6)

2(w—3a—2b—20 4 w—2(z—3b—20 4 w—2a—2b—3c) Zf #:U’ = 3.
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(v) The coefficient of X (—pu) in X (o, va, v™1a; 2) expressed in terms of the standard

monomials is given by

w76a =1 Zf #/.L = 17

w—6a + w—5a—b 4 w—a—5b Zf #'u — 2’

3
e (1) (5.4.7)
(w—5a—b +w—a—5b +w—5b—c

if #u = 3.

+ wfbft’)c _’_w75cfa _’_w7075a>
(vi) The coefficient of X (—pu) in X (—a,v?a,v2q;2) expressed in terms of the

standard monomials is given by

W = (=1)7" if #u =1,
w76a73b 4 w75a74b + w77a72b Zf #,U/ — 27
3
Cib)(ﬂ) = (w73a72b74c | —Ba—4b-2c (5.4.8)

4 da—8b=2¢ | ,—2a—3b—dc if #u = 3.

—2a—4b—3c —4a—2b—3c)

+w
Proof. The proof is similar to the proof of Let a, b, c be as defined above,

+w

with the following convention that b and ¢ be 0 when they are not defined (i.e., if #u =1
or 2). We note that the coefficient of X (—u) in X (v'a, v/, v¥a; 2) can be extracted as

the coefficient of 3, 22y or zyz in the polynomial
(w_mm +w Py 4 w_icz) (w_jazr +w Iy 4 w_jcz) (w‘k“x +w Ry + w_kcz)
depending on whether #pu is 1, 2 or 3, respectively. 0

Remark. Let C: 23 — C be any one of the above coefficient functions (viz., 053), 0(23),

c:(,)?;), cz(,)%), cﬁ) or cf;)). Then each term in C(p) can be expressed as a power of w. The
exponents of w are linear in a, b, ¢, of the form mya + mqb + myc. Note that the sum
m = mq +my+msg is constant for all terms and all cases (i.e., #u = 1,2 or 3). Therefore,
if we increase each part in u by 1, the exponent increases by m, giving us a factor of
w™. Thus we have,

Clu+1) = w™C(p).

The following periodicity properties follow from this observation.
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Corollary 5.4.6. Let u € 25.

(i) ng) has periodicity 1:
&P+ 1) =P ().

(ii) 0(23) has periodicity 6:

(iii) cgi) has periodicity 3:

e (i +1) = w25 ().

(iv) C:(S)) has periodicity 6:

e (4 1) = wLely) ().

(v) cﬁ) has periodicity 1:

B u+1) =P ().

(vi) cf;) has periodicity 2:

ol (1) = e ().
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Chapter 6

Forbidden Partitions

In this chapter, we discover the forbidden partitions using the relations coming from the
degree 2 and degree 3 identities in The results of this chapter are valid for
all level 4 modules. Let V' denote a level 4 standard module for g with highest weight A,
and a highest weight vector vj.

The generating function identities are of the form R(z) = 0, where R(z) € U® [[2*]]
(s = 2,3), where U is the image of ¢ in End V. Given any such identity, the homogeneous
component of degree —n/6 (i.e., the coefficient of z/¢ in R(z)), denoted R(—n), gives us

a relation among homogeneous operators of degree —n/6 on V:
R(—n) =0.

Recall the notations and results from In particular, we will rely heavily

on [Proposition 4.4.17, Recall that we call a partition p € & reducible if X (—u)vy € Vi,

(Definition 4.3.6)). [Proposition 4.4.1 shows that any partition that ends with a reducible

partitions is also reducible. By [Proposition 4.3.15] we may remove elements of the form

a(AN) X (—p)vg from the spanning set (4.3.2) if p € & is reducible, for all A € 0.

Recall the notion of “forbidden” partition from [Definition 4.3.8] We call a partition pu

forbidden, if any partition having p as a sub-partition (not just suffix) is also forbidden.

This is stronger than the result of [Proposition 4.4.1] To show that p is forbidden, we

are going to apply our relation R(—n) € U®) on a vector X (—pu,)v, for an arbitrary
Wy € P

The results presented in this chapter are valid for any level 4 standard module, since
the generating function identities (see that we are going to use are valid on
U®4,
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In the following discussion a “term” refers to a summand of R(—n) expressed as
the standard monomial a(A;)X (—u')a(Ny), for some A\, \y € O, y/ € 2, such that
n = ||+ M| = || and I(p') < s. Alternatively, a “term” may also refer to one of
the form E'(—i) X (—u')E'(j), for some i, >0, ' € 2, n= || +i—jand (1) < s,
where E'(n) = E(—a;n). (Since, E'(+i) can be expressed as a linear combination of

a(£)), with |A| = 7).

Recall from [Notation 4.4.9| that the terms in R(—n) can be classified into three

categories: type (A (having no Heisenberg element), type (having a negative

Heisenberg element) and type (having a positive Heisenberg element, but no negative

Heisenberg element). [Proposition 4.4.17|shows that only certain terms in A(—n) and

C(—n) are relevant for our calculation. The rest of the terms, therefore, can be ignored
(modulo a suitable subspace V).

In section we show that any partition containing two consecutive integers as
parts are forbidden. These are coming from the degree 2 generating function identities
in

In section we show that the first three (i.e., the least three with respect to
“<” on &) triplets of n are forbidden. In addition if n is odd, the fourth triplet is also
forbidden. These are coming from the degree 3 identities in

The results of these two sections are analogous to the results of [Cap88|, |(Cap93]
for level 2 and 3 modules. We call the partitions shown to be forbidden in these two
sections as regular forbidden partitions.

The interesting aspect of level 4 module is that there are forbidden partitions of
arbitrary length (starting from length 3) following a simple pattern. We call these
forbidden partitions as exceptional forbidden partitions. These partitions do not arise
directly from the generating function identities. The relevant operator relations are
obtained by multiplying R(—n) (coming from the degree 2 generating function identity)
by a suitable X (—pr) on the left, and/or a suitable X(—ug) on the right.

In we discuss the exceptional forbidden triplets. These are of the form

(k+4,k, k), for k odd, i.e., satisfying difference condition (see [Definition 4.1.9)) [4—,0].

The partition (5,1, 1) also satisfy the same difference condition, however, it is also the
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4-th partition of the odd integer 7, and it can be thought of a regular forbidden triplet.

In we discuss the longer exceptional forbidden partitions. These partitions

satisfy the difference condition (see [Definition 4.1.9|[3—, 2*, 3, 0], where 2* denote zero

or more occurrence of 2. Examples of such partitions include
(9,6,3,3),(11,8,6,3,3),(13,10,8,6,3,3),. .. .

Notice that if the first part is not odd then the partition ends with a regular forbidden
triplet of difference condition [3—,0] (the 4-th triplet of an odd integer). Therefore,
either way, any partition containing a sub-partition satisfying the difference condition
[3,2%,3,0] is forbidden.

In we summarize the results of this chapter in one place, to be quoted later for
convenience. We also add some observations about the “periodicity properties” of the
forbidden partitions presented in this chapter.

Recall the notations and the tools and techniques described in

6.1 Forbidden Pairs

In this section, we prove that pairs (i.e., partition into two parts) of the form (k + 1, k)
(i.e., satisfying the difference condition [1]) are forbidden. Thus, any vector of the form
a(N)X(—p)vg, A € O, u € & such that u contains two consecutive integers as parts,

can be removed from the spanning set (4.3.2). These results come from the degree 2

identity [Proposition 5.3.1}

Consider the following generating function in (End V)[[z*"/9]]

R(2) = XP(q;2) — B~ (—a; 2) XD X (—a; 2) ET (—a; 2). (6.1.1)

Then the identity [Proposition 5.3.1| can be expressed as

R (z) =o. (6.1.2)
Let R®(—n) € U®? denote the homogeneous component of R)(z) of degree —n/6. Then

RO (z) =3 R@(—n)"". (6.1.3)
nez
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Therefore, we have

R®(—n) =0 € EndV, (6.1.4)

for all n.

Recall the coefficient functions c,(f) and 01()2) from [Lemma 5.4.1 Let ¢®®: 2, — C be

the function given by

D () = (1) — &7 (), (6.1.5)

for all p € Z5. From [Lemma 5.4.1] we see that

0 ifnis even
2 Y
@ (uP () = (6.1.6)
4 if n is odd.
Let E'(n) = E(—a;n), for all n € Z. Notice that, for n > 0, E'(£n) is a linear
combination of elements of the form a(£\), A € O(n).
Also recall the notations A(—n), B(—n),C(—n) for a given R(—n) from
In this case, we have (modulo Z/(1))
AP (=n) =3~ P ()X (—p), (6.1.7a)
HEZy(n)
BO(=n) = =326, (W E' (=) X (~p) E'(j). (6.1.7b)
>0, j>0
HEZy (n—i+j)
CO(=n) = = (WX (~p)E'(j). (6.1.7¢)
7>0
HEZy(n+7)

Thus, we have
R (—n) = A®(=n) + BY(=n) + P (=n) mod U, (6.1.8)

for all n.
Let ng) (n) denote the least partition in ?5(n). Then

L) (k, k) if n =2k (k>1), 6.19)

(k+1,k) ifn=2k+1(k>1).

Note that u?) (n+2) = ,ugg) (n) +1 (see |Deﬁnition 4.1.12b.
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We take py = ,u§2) (n), in the context of as in [Notation 4.4.3| In the notation of

[Notation 4.4.13] we have

FHo = (), (6.1.10)

Proposition 6.1.1. Partitions of the form (k+1,k), i.e., partitions containing difference

condition [1] are forbidden.

Proof. Let ug = ,uSQ)(2/<: +1) = (k+ 1,k) for some k > 0. Let u, € & be arbitrary

and I = g, (as in |[Notation 4.4.3)). We want to prove that g is reducible, i.e.,

Since R(Q)(z) = 0, we have, in particular,

R®(—2k —1) = 0.

By [Proposition 4.4.17], since .70 = (), we have

0= R(-2k — 1) X (—p)vg = 4X (~Thoft)vo = 4X (—[t)vg mod V(7.

Therefore, X (—p)vg € V(ﬁ), as required. O

6.2 Regular Forbidden Triplets

In this section, we prove that the first three triplets (i.e., partitions into three parts) of
any n > 0 are forbidden. In addition, if n is odd, then the fourth triplet is also forbidden.
We will prove this in two steps. First we show that these partitions are reducible. Then

we will use this result to show that these partitions are, in fact, forbidden using the

[Proposition 4.4.17] These forbidden triplets are “regular” in the sense that they follow

directly from the the four degree 3 generating function identities [Proposition 5.3.2]

[Proposition 5.3.3| |[Proposition 5.3.4] and [Proposition 5.3.5]

Let u(3) (n) denote the i-th smallest partition of n into three parts. We list the first

i

four partitions below for n sufficiently large.



P (n) = (k k, )

pn) = (k+ 1,k k— 1)
if n =3k, k> 2,
p ()= (k+1Lk+1,k—2)

ni(n) = (k+2,k— 1,k — 1)

i (n) = (k+1,k,k)

u$ () = (k+ 1,k + 1,k — 1)
ifn=3k+1, k> 2,
pPn) = (k+2,k k- 1)

uf’)(n) =(k+2,k+1,k—-2)

uP(n) = (k+1,k+1,k)

u$ (n) = (k +2,k, k)
ifn=3k+2k>2.

u$(n) = (k+2,k+ 1,k — 1)

u (n) = (k+ 2,k + 2,k — 2)
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(6.2.1a)

(6.2.1b)

(6.2.1c)

The above pattern for first four triplets holds for n > 9. We list below the the

triplets for n < 9.

Z5(3) ={(1,1,1)}

Z3(4) ={(2,1,1)}

P5(5) = {(2,2,1),(3,1,1)}

P5(6) = {(2,2,2), (3,2,1), (4,1,1)}

P3(7) =1{(3,2,2),(3,3,1), (4,2,1),(5,1,1)}

23(8) ={(3,3,2),(4,2,2),(4,3,1),(5,2,1)}

(6.2.2a)
(6.2.2b)
(6.2.2¢)
(6.2.2d)
(6.2.2¢)

(6.2.2f)
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Consider the following generating functions in (End V)[[z*"/°]).

R¥(2) = X (a; 2), (6.2.3a)
Rgg)(z) = X(a, a,va; 2), (6.2.3b)
Rég)(z) = X(o,va,va; z) — B (—a;2) X (—a, v2a, V2o; 2) ET (—a; 2), (6.2.3c)

Rfls)(z) = X(a,va,vla;2) — E7Y(—a; 2) X (—a, Vo, v 20 2) ET (—as 2). (6.2.3d)

Using [Proposition 5.3.2| |[Proposition 5.3.3| [Proposition 5.3.4] and [Proposition 5.3.5| we

have

R (2) =0 € (End V)[[z7]), (6.2.4)

for 1 <¢ < 4. Let Rl(S)(—n) € U denote the homogeneous component of Rgg)(z) of

degree —n/e, i.e.,

RY(z) = 3 R (—n)2"". (6.2.5)
nez
Therefore, we have
R®(=n) =0, (6.2.6)

for all n.

Recall the coefficient functions cg?’), cgg), céi), c:(;z), 04(1:?1) and cg’)) from |Lemma 5.4.5

Define the following functions on 25 by

() = P (w), (6.2.7a)
() = 5 (), (6.2.7b)
e () = ) () — &5 (), (6.2.7¢)
() = ) (1) — ) (). (6.2.7d)

Remark. Observe that cf’) () = 0 if |u| is even.

By [Corollary 5.4.6L we have c(S)(u) = c§3) (1 + 6). Since for the first four triplets of

)

n, n > 9, follows the pattern (6.2.1)), therefore we have
1P (n+18) = 1 (n) + 6, (6.2.8)
and

02(3) (,u§~3)(n + 18)) = c§3) (M§3) (n)) , (6.2.9)



89

for 1 <i<4,1<j<4andn>9. Also, for uniformity, define the functions

(3) (3).
Ciy s Cop 2 Dy — C
o (6.2.10)
w— 0.
Define A§3)(—n), Bi(g)(—n) and C’i(?’)(—n) modulo U?), corresponding to Rgs)(—n) as
in by
—n) = > (WX (—p), (6.2.11a)
HEZ3(n)
~ Y W E (—) X (—m)E' (), (6.2.11b)
>0, j>0
REZg(n—i+j)
=3 (X (—w) E'(). (6.2.11c)

HEZ3(n+])

Notice that Bi(g)(—n) = Ci(g)(—n) =0 for ¢ = 1,2. Thus, we have
RZ@)(—n) = A£3)(—n) + B-(3)(—n) + C’i(?’)(—n) mod %), (6.2.12)
for all n.

Proposition 6.2.1. The smallest three triplets of any n > 0 are reducible. If n is odd,

then the fourth smallest triplet is also reducible.

Proof. We only need to prove this statement for finitely many 3 < n < 26, because of
the periodicity properties as discussed in (6.2.8). Note that &5(n) = () unless n > 3.

The basic idea is to use all four relations coming from the degree 3 identities. We
take pg = u,(f) (n), where k = 4 if n is odd and the partition exist, k = 4 if n is even and
the partition exist, or the largest k£ (for n < 5) such that the corresponding partition
exist. Let and pu, = @ in the context of

To treat all cases uniformly, we will adopt the convention that X (—,ug-s) (n)) =0if
(3)

the corresponding partition does not exist for j < 4. (e.g., 5~ does not exist for n = 3).

In that case, pg is going to be largest partition that is defined (e.g., pg = ,ug?’) for n = 3).

Since Rg?’)(—n) = 0, we have, using |Proposition 4.4.17|,

0= R(3 0 = Zcz ( (3) ) ( u§~3)(n)) vy mod V{,y, (6.2.13)

J=1



90

for 1 <4 < 4. We collect the coefficients in the matrix

) )
M(n) = : : : (6.2.14)
Py )

(the last few columns may be absent, if the corresponding partition does not exist). We

row-reduce this matrix to M'(n). The computations for a few initial n’s are shown in

the Maple worksheet attached in [Appendix A|[§A.1]

By the periodicity property (6.2.8]), we have

M(n+18) = M(n), (6.2.15)
for n > 9. However, the row-reduced matrix M’(n) has stronger periodicity:
M'(n+6) = M'(n), (6.2.16)

for n > 9. The computation shows that M’(n) contains a principal identity matrix
of rank 4 if n is odd, and of rank 3 if n is even, for n > 7, with the 1’s on the main
diagonal. For n < 6, the rank is same as the number of partitions in #3(n). Therefore,

we have the desired result. O

Remark. Notice that the first two triplets of any n > 3 follow the same patterns as
shown in (6.2.1). Only for 4§ (6) = (4,1,1) and 1 (7) = (5,1,1) fall outside these

patterns.

Proposition 6.2.2. The least three triplets of any n > 0 are forbidden. If n is odd,
then the fourth smallest triplet is also forbidden.

Thus, any partition that contains a sub-partition satisfying the difference conditions
[1]7 [07 0]7 [07 2]7 [27 0]7 [07 3]7 [3_7 0}7 [0_7 4]; (6'2'17)
or that contains (4,1,1) or (5,1,1) as a sub-partition are reducible.

Proof. The second part of the statement is just paraphrasing the first part along with

[Proposition 6.1.1} (Note that many of the first four triplets contain a forbidden pair).
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Let p, € & be arbitrary. We need to show that

J *

where 7 <4 if n is odd, j < 3 if n is even.
Fix n > 3. We take pg :,u,,(;’)(n), where k =4ifn>7isodd,or k=3 if n>T7is

even, or k is the largest integer such that ,u,(gg) (n) exists if n < 5. Recall [Notation 4.4.3

Then, it is enough to show that

X (—,ug-g) (n)u*> vy € V@), (6.2.19)

where j < 4 if n is odd, j < 3 if n is even.

Recalling [Notation 4.4.13] we have

= {u3 (n+1), )(n—i—l)} (6.2.20a)
A0 = (n+2)}, (6.2.20D)
S0 =), if k> 2. (6.2.20c)

(as long as the corresponding partition exists, and omit if it does not). Therefore, by

[Proposition 6.2.1] we can conclude that all partitions in .%o are reducible by partitions

larger than py. By |Proposition 4.4.17, we have

4 -
0= R (-n)X(~p)vg = ¢ (u§3)(n))X<—M§3)(n)u*> v mod Vi,  (6.2.21)
j=1

Now, we proceed the same way as in the proof of [Proposition 6.2.1 Notice that the

coefficient matrix M (n) is the same as in (6.2.14)). And therefore, the conclusion follows

similarly as shown in the proof of [Proposition 6.2.1] [

Remark. We will see in that any partition ending with (1,1) is reducible in
all level 4 standard modules. (We will see that in the (4,0)- and (0, 2)-modules any
partition ending with (1) is reducible, and in (2, 1)-module any partition ending with
(1,1) is forbidden). Thus the exceptions (4, 1,1) and (5,1, 1) to the difference conditions

in the statement of the above proposition can be ignored as initial conditions.
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6.3 Exceptional Forbidden Triplets

In this section, we will prove that triplets of the form (k + 4, k, k), where k € N is

odd, are forbidden, i.e., partitions containing a sub-partition satisfying the difference

condition (see [Definition 4.1.9)) [4—, 0] are reducible. We call them exceptional in the

sense that the result does not follow directly from the degree 3 identities alone, but
in conjunction with the degree 2 identity. Note that the forbidden triplet (5,1,1) also
follows the same pattern, but the result follows from the degree 3 identities directly
(§6.2), and in that sense, it is regular. Therefore, in this section, we only need to prove
the result for k > 3 odd.

We discovered these forbidden triplets experimentally by eliminating the reducible
partitions in #?(n) containing any forbidden pairs or triplets from and and

then comparing the result with F4)(n) (see [Notation 3.2.4)) using |Corollary 4.3.17}

for n > 0. Let £’ be the result of removing the partitions containing forbidden pairs

and triplets. We noticed that the first place where |2'(n)| # F(4,0)(n) was for n = 13.
In this case, we had an extra partition in #?'(13). We get an extra partition next in
Z'(19). The gap of 6 (by the periodicity properties of the forbidden pairs and triplets)
suggested that we missed a forbidden triplet. The least triplet left in &?'(13) was the
partition (7,3, 3).

The triplet (k + 4, k, k), where k > 3, is the sixth smallest triplet of n = 3k + 4. We

set g = ué3)(n) (recalling |N0tation 4.1.19I) in the settings of and in [Notation 4.4.3

Therefore, in our computation, we only keep track of the first six triplets. We list them

below for reference.
pn) = (k+2,k+1,k+1),
p(n) = (k+2,k +2,k),
u$ (n) = (k+3,k +1,k),
(6.3.1)
() = (k+3,k+2,k— 1),
pP(n) = (k+3,k+3,k — 1),

u§ (n) = (k +4,k, k).

We will also need to keep track of first four terms with positive Heisenberg elements.
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Therefore we list below the first four triplets of n + 1.
d 1) =(k+2,k+2,k+1),
P n41) = (k+3,k+1,k+1),
(6.3.2)
P n+1) = (k+3,k+2,k),
P n+1) = (k+3,k+3,k—1).

Recall the relations given by R (z) = 0, Rgg)(z) =0, Rg?’)(z) =0, Rés)(z) =0 and
Rf’)(z) =0 (see (6.1.1), (6.2.3)), and the various coefficient functions from and
(6:27).

We get a fifth relation (of degree 3) by multiplying a degree 2 relation by an

appropriate X (o) operator on the left. Let
R®)(—n) = Rs(—n) = X(~k — 3)RP(~2k — 1). (6.3.3)

Also recall the notations A(—n), B(—n),C(—n) for a given R(—n) from
Therefore, R®)(—2k — 1) can be expressed, modulo U, as

AP (—2k —1) = 20(2)(M)X(—M)a (6.3.4a)
UEDs (2k+1)
B (=2k —1) = = 3" (W) E' (=) X (—p) E'(j), (6.3.4b)
>0, 720
BEDy (2k+1—i+7)
C(—2k — 1) = = 3" P (W)X (—p)E'(j), (6.3.4c)
>0
uegggkﬂﬂ)

Therefore, we have
R (=2k —1)= A®(—2k — 1) + B@(—2k — 1) + C?(=2k — 1) mod U?. (6.3.5)

Now, let us look at the terms of X (—k — 3)A®)(—2k — 1) after rearranging the X (o)

operators using In view of [Proposition 4.4.17] we only need consider the
terms involving pu € P3(3k + 4) such that u < pg = (k + 4, k, k). Notice that

(k+3) -y 2@k+1)=(k+3,k+ 1,k =pPn) (6.3.6a)
(k+3) pP@k+1) = (k+3,k+2,k—1)=puP(n) (6.3.6b)

(k+3) pP@k+1) = (k+3,k+3,k—2)= P (n) (6.3.6¢)
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Therefore, modulo ), we have

X(—k = 3)A®D(=2k — 1) = 4X () (n)) + 4X (=" (n)) + 4% (= (n))

T (6.3.7)

keeping track of only the relevant terms (using [Lemma 5.4.1| for the coefficients).

Let us now look at the terms of X (—k — 3)B®)(—2k — 1) after rearranging the X (o)

operators by In view of [Proposition 4.4.11] and [Proposition 4.4.17, we will

only keep track of the terms that do not have any negative Heisenberg element, and

only those that involve u € &3(3k + 4) such that p < pg = (k+4,k, k). Recall the

formula in [Corollary 2.2.12] In particular, we have

X(—m)E'(—1) = E'(~1)X (—m) — 6X(—m — 1), (6.3.8)

for any m € Z.

A typical term in B®)(—2k — 1) is of the form
E'(-)X(—¢)E'(j) i>0,7>0,and p' € P52k +1—i+j), (6.3.9)
Using , we see that if ¢ > 1 then the resulting term will yield
p=(k+3+i) -t = po=(k+4kk), (6.3.10)

and hence, we may ignore these terms.

If j>0,i=11n (6.3.9)), then ' € P5(2k + j). The resulting
w=(k+4) p' = po=(k+4,kk), (6.3.11)

since j > 1, and hence, we may ignore these terms.

Therefore, the only relevant term in B®) isfori =1, j = 0 and y/ = #f)(%) = (k, k),

in (6.3.9)), which yields the term X (—pu) for

p=(k+4,k k) =1 n). (6.3.12)

Therefore, keeping only the relevant terms according to [Proposition 4.4.17], we have,

modulo U?),
X(~k = 3)B®) = 6X (—pu’ (n)) + ... (6.3.13)
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since the coefficient to E'(—1)X (—(k, k)) in B®)(=2k — 1) is —1 (by [Lemma 5.4.1).

We now analyze the terms of X (—k — 3)C(®(—2k — 1) which are relevant for the

computation in [Proposition 4.4.17] A typical term in C(Q)(—Qk — 1) is of the form

X(—=pE'(j), j>0, ue€Py2k+1+7). (6.3.14)
Therefore, the result of the multiplication is

X(—k=3)X(—pE'(j), >0, u e Py(2%k+1+]). (6.3.15)

In view of [Proposition 4.4.17] we only need to keep track of those terms of the form

(16.3.15)), such that

=(k+3)- 1 < o, (6.3.16)

where i/ € P52k + 1+ j), 7 > 0, and p is not reducible by partition larger than
fo = (k + 4, k. k).

Recalling the notation from [Notation 4.4.13] we have

Ao ={uPm+n1<i<4} (6.3.17a)
Ao ={uPm+2)1<i<3)} (6.3.17b)
A0 =P (n+3), 4§’ )(n+3)} (6.3.17¢)
1o = { P (n+1i)} fori=4,5 (6.3.17d)

=0 fori>b. (6.3.17e)

by |Proposition 6.2.2| (or from the proof of it), we see that every triplet in 5”]»“ 0 for j > 2,

are reducible by partitions larger than pg. Thus, we only need the terms involving
e Ao,

We have j = 1 in the notation of (6.3.16]). We list the first few pairs of 2k + 2.

P2k +2) ={(k+1,k+1),(k+2,k), (k+3,k—1), (k+4,k—2),...}
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Now if we add (k + 3) in these pairs and reorder (if necessary), we get

(k+3.k+1,k+1) = (n+1),
(k+3,k+2.k) =P (n+1),
(k+3,k+3,k—1) =P n+1),

(k+4,k+ 3,k —2) = pg (ignore).

We also need to keep track of the coefficients, _61(72) (/152)(2/@ + 2)), for 1 <i < 3.
From we have

-1 fori=1,
— o (1 2k + 2)) = (6.3.18)
—2 fori > 1.
Let us abbreviate,
= (n), (6.3.19a)
=¥ (n+1). (6.3.19b)

Therefore, we have (only showing the terms of interest)

X(—k—3)C?(=2k —1) 6320
= —X(—pp)E'(1) = 2X (—p3)E'(1) = 2X (—py) E'(1) + ...

We summarize the result of the above computations below.

Proposition 6.3.1. Let k > 3, and n = 3k +4. Let u; = ,u,gg)(n), and p, = M(S) (n+1).

i

Then we have a fifth relation among the homogeneous operators in UB) of degree —-n/6:
RP(—n) = X(~k — 3)RP(=2k — 1) = 0, (6.3.21)

which can be expressed as

(4 (—pa3) + 4 (1) + 4X (— ) + 6X (—pag) + ... ) (6.3.22)

— (X (ub) + 2X (i) +2X (=) . ) E'(1) =0,

only showing the terms that are relevant according to [Proposition 4.4.17.
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Remark. The coefficients in the above relation R( )( n) are invariant under increasing
k by 1 (since the coefficients for degree 2 relations are 1-periodic). The only place, so
far, we used the fact k is odd, is to show that .4 contains a partitions that is not

reducible (the fourth triplet of n + 1).

Now, we are ready to use this relation along with the other four regular relations of

degree 3.

Theorem 6.3.2. The triplets of the form (k + 4, k, k) are forbidden for k odd. Equiva-

lently, partitions containing difference condition [4—,0] are forbidden.

Proof. If k =1, (5,1,1) is the fourth triplet of 7, and is forbidden by |[Proposition 6.2.2}

Assume that k > 3 odd and set n = 3k + 4. Let p, € & be arbitrary. We set

Lo = ,uég) (n) = (k+4,k, k) and i = g, in the notation of [Notation 4.4.3] We need to

show that X (—p)vy € Vi
For abbreviation, we will use p; = ,ug-?’) (n), and pj = ,ug-?’)(n +1). Also we will use
the following abbreviations for the coefficient functions, ¢; = 653) and ¢, = cg’), for ¢ < 4.

(Note that ¢, =0 for i < 2).

Using the five degree 3 relations, we have

R (—n) X (—p.)vg = 0, (6.3.23)

()

for 1 <4 < 5. We will express the above relations modulo V(ﬁ) using |Proposition 4.4.17}

Based, on the discussion in this section, using |[Proposition 4.4.17, (6.3.23) can be

expressed as

6 4
Zcz (1) X (jpe) v Zc —u5)E'(1) X (—p)vg =0 mod Vi), (6.3.24a)
7j=1 7j=1

for 1 <i <4, and

X (@) v Zb X(—p5)E' ()X (—p.)vg =0 mod Vi, (6.3.24b)
7=1

.
-
i
Q
Q

Wherea1:a2:0,a3:a4:a5:4,a6:6,bl:0,b2:1andb3:b4:2,arethe

constants coming from Ré?))(—n) as shown in |Proposition 6.3.1l
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We can further simplify the last four terms in the above equations (6.3.24)), using the
i

four regular degree 3 relations R(g)(—n —1) =0, i <4, to reduce X (—uj), if possible.

Therefore, we add the relations

R (—n — 1)E'(1)X (—p,)vp = 0, (6.3.25)

for 1 < ¢ < 4. When expressed the above relations modulo V(;), using |Proposition 4.4.17|,

we get

()X (—5) /()X (=i )vg =0 mod Vi, (6.3.26)

j=1
for 1 <4 <4.

We collect the coefficients of the linear equations in (6.3.24]) and ([6.3.26)) modulo

V(ﬁ) in a 9 x 10 matrix:

c1(p1) cr(pg) | —ch(uy) —ci (1))

ca(p1) capg) | —ci(py) —cy (1))
0 0 4 4 4 6 0 -1 =2 -2 (6.3.27)
0 0 c1(uh) ey (1))
0 0 ca(ph) ca(psy)

Notice that if we increase k by 6, the coefficients in the corresponding matrix are exactly

the same (by |Corollary 5.4.3 and [Corollary 5.4.6]).

Let M'(k) be the reduced row-echelon form of the above matrix. Then M’(k) is, in
fact, invariant under k — k + 2 (see|§ A.1)). We present below the matrix M’(k) upto
the fifth row:

1000 2 01]000 -1

01 00 -3 01]00O0 32

0010 -1201000 O (6.3.28)
0001 32 01]000 —14

0000 O 1000 O

Notice that in the fifth row, the coefficients to all terms with positive Heisenberg elements

(the last four columns) are zero. Therefore, by [Proposition 4.4.17, we have the desired
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result

X(—)vg =0 mod Vi O

6.4 Exceptional Forbidden Partitions of Arbitrary Length
In this section, we will prove that partitions of the form

g = <k+6+2m, Ik+3+2m, ...,k+3l, k,k) e@m+4(k(m+4)+(m+3)2),
m + 1 parts

(6.4.1)

for £ odd and m > 0 are forbidden, i.e., any partition containing a sub-partition with the

difference condition (see [Definition 4.1.9) [3—, 2%, 3,0], where 2* denotes zero or more

occurrence of 2 (for pj* above 2 is repeated m times in the corresponding difference
condition), is reducible. Notice that if k£ is even then these partition contains the
(regular) forbidden triplet (k + 3, k, k) = uY(3k 4 3) (difference condition [3—,0]), and
therefore, pi* is anyway forbidden if & is even.

The proof of the result for p follows from the degree 2 identity and the results
about the exceptional forbidden triplets. For m > 0, the result follows from the degree
2 identity and the result for ;" ! Therefore, it is only natural to prove this result by
induction.

Also note that all identities we are using are coming from the degree 2 identity and

the degree 3 identities of All coefficients used in the calculation are invariant

under increasing every part by 2. (The proofs of [Proposition 6.2.1] [Proposition 6.2.2]

and show that, in the row-reduced form, we get equivalent relations if we
increase each part by 2). Therefore, it follows that if the result is true for py* then it is
true for py, 5 as well.

Therefore, it is enough to prove the result for £k = 3. We choose k = 3 instead of
k = 1 because this is the most general case. If we take k = 1, some of the relevant
partitions belong to 2\ £, and therefore can be ignored. Also we will see in
that any partition ending with (1, 1) is reducible in all level 4 standard modules because
of the initial conditions. Therefore, p!* will be reducible in any case (notice that uf"

must be the suffix, as it ends with 1).
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Let 7" be the prefix of u7* of length m + 1 obtained by omitting the last three parts
k k

of p',

w?:(k:+6+2m,lk—l—3—|-2m,...,k‘+5l)€@m+1 (k(m+1)+(m+3)2—3>.

m parts
(6.4.2)
Let p = (k + 3, k, k), so that u}* = 7"y Let
n = k(m+4) + (m+ 3)2, (6.4.3a)
n' =n—3k+3)=k(m+1)+ (m+3)? -3, (6.4.3b)
s=m+4, (6.4.3¢)
s§=s—-3=m+1. (6.4.3d)

Then, p* € Ps(n) and 7" € Py (n).
Recall the notation E'(n) = E(—a;n). Also recall R (z) from (6.1.1), A®), B®)
and C® from (6.1.7), such that

R (=) = AP (i) + B@(—i) + ¢ (=i) mod u. (6.4.4)

for all 2 € N. By |[Proposition 5.3.1} we have

R (—i)=0¢€ EndV. (6.4.5)
We will now create two relations R, ,(—n) =0 and R}, ,(-n) = 0, where,

Ry p(—n) = X (—m") X (—2k — 2)RPD(—2k — 1) e U (6.4.6)

k(=) = X (=7 )R®) (=2k — 3)X (~k) e U (6.4.7)

are homogeneous operators of degree —7/6.

Recall the tools and techniques described in[§4.4, We set 1y = " as in[Notation 4.4.3

We will now write out the terms of R, ;(—n) and R;, ;(—n) that are relevant in the

context of [Proposition 4.4.17] when applying them on X(—pu,)vg, for any p, € &

arbitrary, i.e., the terms in R, x(-n) and R}, ,(-n) of the form X(—pu) such that

= pg, or of the form X (—pu)E(j) such that u < pq.
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We will write X_, for X (—pu), for better readability. Then, using the coefficients

from [Lemma 5.4.1| and [Proposition 2.2.11] we have

Rm,kz(*n) = X(*W?)X_(k_f_g)R@)(*Qk — 1)
= X (=) X _(r12) { [4Xf(k+1,k) +4X_(prop-1) +-- ]

— B'(=1) [X_ggy + -]
— Xty + 2X gy + | E(1)

- [2X—(k+2,k:+1) +- } E,(Q)}

= X (—77") {4X—(k+27k+1,k) +4X_g2kr2k-1) T 6X_(py3pr) -
- X(=m") {Xf(k+2,k+1,k+1) + Xf(k+2,k+2,k)}
= AX (7" ) X ey 2ot 1,0) T 4AX (1) X (hr2,k42,6-1)

+ 6X (=) X (3 hp) + -
(6.4.8)

Notice, that the terms with positive Heisenberg elements are reducible by partitions

larger than p, since the partitions (k+2,k+ 1,k) and (k+ 2,k + 2,k — 1) are reducible

by partitions larger than (k + 3, k, k) (see the proof of [Proposition 6.2.1]).

Similar calculation shows that
k(1) = X (=" R (=2k — 3) X (k)
= AX(—p" ) X (et p1,k) + 6X (=) X (b2 pr25-1) (6.4.9)

+AX (—p") X (k3 k) + - -

with no significant positive Heisenberg elements (in view of [Proposition 4.4.17)).

Proposition 6.4.1 (Base case: m = 0). The partition u) = (k + 6,k + 3,k, k), for
k > 0 odd are forbidden.

Alternatively, partitions having a sub-partition satisfying the difference condition

[3—,3,0] are reducible.

Proof. As explained before, it is enough to prove for the case k = 3. Note that the

coefficients in (6.4.8) and (6.4.9)) are the same for all k. Therefore, the result is true
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under the translation g +— p+ 2. (we will be using k is odd in the later part of the
proof).

Let R = R(~21) = Ros(~21) and R’ = R/(~21) = R} 5(~21) (see (646), (6:4:1)).
Let po = p, and 1, € & be arbitrary (recall [Notation 4.4.3|in [§4.4). We will apply

[Proposition 4.4.17] Note that there are no significant terms with positive Heisenberg

elements in either R(—21) or R'(—21). We have

R = 4X_ + 4X_ + 6X_ + e =
(9,5,4,3) (9,5,5,2) (9,6,3,3) (6.4.10)
R = 4X (9543 + 06X (9552 + 4X (oe3s + - = 0
Subtracting the above equations, we get
R// = R - R/ — —2X_(975,572) + 2X—(9,6,3,3) + e = 0 (6411)

Notice that (9,5,5) is an exceptional forbidden triplet. Therefore it is reducible by

partitions larger than or equal to (9,6,4). Therefore, X_ (g5 5 9y is reducible by partition

larger than pgy. (Following the proof of [Theorem 6.3.2) we see that this reduction

doesn’t involve any significant term with positive Heisenberg element). Now, applying

[Proposition 4.4.17) we get the desired result. (Notice, that it is the reduction of (9,5, 5)

where we need the fact that k is odd.) O]

Theorem 6.4.2. Recall p3* from (6.4.1). The partitions pjl* are forbidden for m > 0
and k> 1 odd.
Alternatively, any partition having a sub-partition satisfying the difference condition

[3—,2%,3,0] (where 2* denotes zero or more occurrence of 2) are reducible.

Proof. We prove by induction on m. As induction hypothesis we assume that ,u}c’%’ can

be reduced by partition larger than itself without adding any significant term with

positive Heisenberg elements (in the context of [Proposition 4.4.17)), for all m’ < m and

k' odd.

The base case, m = 0, follows from [Proposition 6.4.1]

Assume that m > 0. We follow the computations done in the proof of
tion 6.4.1) upto (6.4.11), with R = R, x(-n), R' = R, ;(—n), py = p'. Therefore, we
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have
R’ = =2X (=" ) X_(eghr2p—1) T 2X (=1 ) X (g3 ppy - =0 (6.4.12)

Notice that

e (k+2,k+2,k—1) = pupL - (k- 1), (6.4.13)
and
(k4 3,k k) = u. (6.4.14)

Therefore, we can rewrite (6.4.12) as
= 2X (—pt ) X (= + 1) +2X (—p!) + - = 0. (6.4.15)

We can reduce the first term (since k + 2 is odd) in the above equation using induction
hypothesis without adding any significant term with positive Heisenberg elements. Notice

that if p > u?@l such that I(u) =1 (,uznﬁl) and |u| = ’u?ﬁl‘ then

o= s - (6.4.16)
and therefore,
s (k—1) > pg. (6.4.17)

Thus, ukm_g - (k — 1) is reducible by partition larger than g =

The result follows from [Proposition 4.4.17| (applied on an arbitrary p, € &). O

6.5 Summary of Forbidden Partitions for Level 4 Modules

In this section we summarize the results of this chapter and record some general
observations regarding forbidden partitions. Throughout this section, let V"= L(A) be

a level 4 standard module with highest weight A, and a highest weight vector vy,.

Notation 6.5.1. Let 204 ¢ 2 denote the set of all partitions y € £ such that p

contains a sub-partition from the following list:

(a) (4,1,1),

(b) any partition satisfying one of the following difference conditions:

(1) [1f;
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(ii) [07 0]’ [07 2]7 [270]7 [07 3]7 [3_7 0], [0_74]7 [4_,0]§
(iii) [3—,2%,3,0], where 2* denotes zero or more occurrence of 2.
Let 204 = 2\ (L4,
Remark. Z1Y is a set of partitions that are reducible for all level 4 standard modules.

We summarize the results of this chapter along with a few useful observations in the

following proposition. Recall [Notation 4.3.7] [Notation 3.2.4]

Proposition 6.5.2. (1) The set
§' ={a(-NX(~pvy| A€ O,pe 2} (6.5.1)

is a spanning set for any level 4 standard module V' with a highest weight vector vy.
(2) @ c 214) and Fy(n) < ’@(L‘ﬁ(n)’ for all n > 0.

(3) If p € & does not contain the sub-partition (4,1,1), then we have
pe#W — pt+2ec 7™, (6.5.2)
and for any p € 2,

pe 2 — y2e M) (6.5.3)

Proof. The first two assertions follow from [Corollary 4.3.17 in conjunction with

[sition 6.1.1] [Proposition 6.2.2] [Theorem 6.3.2] and [T'heorem 6.4.2]

For the third assertion, observe that all the difference conditions in [Notation 6.5.1
are invariant under p — g+ 2. Only exception, is the forbidden partition (4, 1,1) that

does not satisfy any of the difference condition listed above. O
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Chapter 7

Initial Conditions

In this chapter we will discuss the “initial conditions” for each of the three level 4
standard modules of g. These conditions states that a partition is reducible if it contains

certain forbidden suffices. Therefore, these conditions do not have the “translation”

properties ([Proposition 6.5.2(3)) that we saw in the case of forbidden partitions of

In[§7.1, §7.2 and [§ 7.3 we investigate the initial conditions for the (4,0)-, (2,1)- and

the (0, 2)-module respectively.

Recall that w = ¢™* and wy = €'/® are primitive 6-th and 12-th roots of unity

respectively. Also recall [Definition 4.3.6] [Notation 6.5.1]

See to find the details of the computer assisted computations used in

the following sections.

7.1 Initial Condition for the (4,0)-module

In this section, let A = 4hj. Let V = L(A) be the standard module of highest weight A
with a highest weight vector vy. We will show that vectors of the form a(—X\)X (—pu)vy,
where A € 0, u € & having 1 as a part, can be removed from the spanning set (6.5.1]).

Proposition 7.1.1. If p € & is a partition containing 1 as a part, then u is reducible.

Proof. Note that if 1 is a part of u, then it must occur at the end. Therefore, by

[Proposition 4.4.1} it is enough to show that X (—1)vy € V(1y).

On V, we have fivg = 0. Replacing f; in terms of the vertex operators via

[Proposition 2.3.1} we get

— jOX(—l)UO + \}ga(—l)vo =0, (7.1.1)
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or

X(—1)vy = wov/3

a(—1)vy. (7.1.2)

Thus, the result follows. O

Remark. Recall [Notation 6.5.11 We could also prove this by comparing our spanning set
(6.5.1)) against the graded dimension using |[Corollary 4.3.17, We have F(1) = 0, but

|2E(1)] = 1. (2®9(1) = {(1)}). Therefore X (—1)v, must be in V1), = V(©.

7.2 Initial Conditions for the (2,1)-Module

In this section, let A = 2h{; + h}. Let V = L(A) be the standard module of highest
weight A with a highest weight vector vy. In this section we will show that vectors of

the form a(—A)X(—p)vy, where A € O, p € & having 1, 2 or 3 twice as a part, can be
removed from the spanning set (6.5.1)).

We used Maple programs to straighten out various monomials in the proofs below.

These programs and the Maple worksheet used to carry out these computations are

presented in

Lemma 7.2.1. In the (2,1)-module V, we have X (—1)?v, € Viay-

Proof. In the (2,1)-module, we have fZv, = 0. We can write this relation in terms of

the (o) and X (e) operators using [Proposition 2.3.1} and then straighten out the terms

using the bracket formulae in [Proposition 4.2.2] This yields the following relation

woV'3 w w
X(—1)% = — 06 X(—2)vy + 7%04(—1))((—1)@0 - ﬁa(—n%o. (7.2.1)
Since the RHS belongs to V|(q 1)), this gives us the desired result. O

Remark. Alternatively, we could have used [Corollary 4.3.17] to argue that we have an

extra partition in 224 (2) (recall [Notation 6.5.1)). Therefore, one of the partitions, (2)

or (1,1) must be reducible in the (2, 1)-module. If we assume that (2) is reducible, then

by [Proposition 4.4.1} any partition ending with a 2 must also be reducible. Let &’ be

(L4)

the set of partitions in & not containing any partition ending with a 2. We get
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2 = |2'(7)| < Fi2,1)(7) = 3, contradicting |Corollary 4.3.17} Therefore, (2) cannot be

reducible, and by elimination, (1,1) must be reducible.

Lemma 7.2.2. In the (2,1)-module V, we have X (—2)?v, € Vi.2))-

Proof. In the (2,1)-module, we have fv, = 0. We rewrite this relation in terms of the

a(e) and X (e) operators using [Proposition 2.3.1, Then we apply the relation (7.2.1])

and straighten out the terms using the bracket relations in [Proposition 4.2.2 'We obtain

wO\/§
2

X(~2)X(~1)vp = —%a(—l)X(—Q)vo +

This does not give us anything new—it just shows that (2,1) is a reducible partition.

a(—1)2X(—1)v,. (7.2.2)

However, we are going to use this to simplify the next relation, fjvy, = 0. Once again
we rewrite this relation in terms of the «(e) and X (e) operators, apply the rewriting

rules ((7.2.1) and (7.2.2)), and straighten out the terms using the bracket relations in

[Proposition 4.2.2] This gives us the following relation:

X(=2)20, = —§X(—3)X(—1>v0 _ V3

X (—4)vg

18
2 )X (B — Va1 (2 (123)
wod

n %a(—l)g’X(—l)vo + %a(—1)4v0.

Thus, the desired result follows. O

Remark. Alternatively, we could use [Corollary 4.3.17 and [Proposition 4.4.1] to prove

that (2,2) is reducible. We have an extra partition in 2 (4) after removing reducible
partitions of 4 ending with (1,1). The partitions in 2214 (4) that does not end with (1, 1)
are (2,2), (3,1) and (4). If we assume that (4) is reducible, then we get a contradiction for
the partitions of n = 8. If we assume that (3,1) is reducible then we get a contradiction

for the partitions of n = 9. Therefore, by elimination, (2,2) must be reducible.

Lemma 7.2.3. In the (2,1)-module V, X(—3)*vy € V{(3,3))-

Proof. The proof is similar to that of [Lemma 7.2.2l We will use the following two

additional relations in the (2, 1)-module:

fovo =0, fvo = 0.
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From fSvy = 0, expressing it in terms of the operators a(e) and X (e), simplifying

and straightening out the terms using the bracket relations and the rewriting rules

(7.2.1), (7.2.2), (7.2.3), we get

X(=3)X(—2)vp = —X(—4) X (—1)vg + a(—1) X (=3)X (~1)v,
w3
6
woV'3

9 (6%

w w
+ Q—Oa(fl)%o + %a(fS)vo.

a(—1)X (—4)v + —Za(—1)2X (—3)v
R ' (7.2.4)

(1P X (~2)o + “0Za(~1)X (1)

From f§v, = 0, expressing it in terms of the operators a(e) and X (e), simplifying

and straightening out the terms using the bracket relations and the rewriting rules

(T21), (72.2), (7.2.3), (7-2.4), we get

X(—3)205 = 2X(=5)X (= 1)vy — OJﬂé/gX(—ﬁ)vO
~6a(—1)X ()X (~1)vg + %a(—l)X(—@vo
+ 6a(—1)2X(—3)X (—1)vy — woV3a(—1)2X (—4)v, (7.2.5)
+ wovBa(—1P X (~3)ug — w035\/§a(—1)5X(—1)v0
w3 w
— 015 a(=5)X(—1)vg — ga(—5)oz(—1)fu0.

Since the terms on the RHS of the above equation belong to V(3 3, the result follows. [

Remark. We were unable to find a proof by contradiction and elimination (as we could

for the previous two cases) based on [Proposition 4.4.1| and [Corollary 4.3.17, We could

not find any contradiction if we assumed that (6) is reducible. This is why we decided

to give a direct proof.

Proposition 7.2.4. In the (2,1)-module any partition ending with (1,1), (2,2) and
(3,3) are reducible.

Proof. By|Proposition 4.4.1] it is enough to show that (1,1), (2,2) and (3, 3) are reducible.

Therefore, the result follows from [Lemma 7.2.1} [Lemma 7.2.2] and [Lemma 7.2.3| O
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7.3 Initial Conditions for the (0,2)-Module

In this section, let A = h{ + 2h]. Let V = L(A) be the standard module of highest
weight A with a highest weight vector vy. We will show that partitions having 1 or 3 as
a part, or having 2 as a part twice are reducible. Furthermore, any partition ending

with (5,2), (7,4,2), (9,6,4,2), ... etc. are also reducible.

Lemma 7.3.1. In the (0,2)-module V, we have X (—1)v, € V),

Proof. In the (0,2)-module, we have fyvg = 0. Using [Proposition 2.3.1} we have

X(~1)vy = —%a(—l)vo. (7.3.1)
O

Lemma 7.3.2. In the (0,2)-module V, we have X (—3)vy € V((3))-

Proof. In the (0,2)-module we have fjv, = 0. Expressing this relation in terms of the

operators a(e) and X (e), simplifying and straightening out using the bracket relations

[Proposition 4.2.2f and the rewriting rule ([7.3.1]), we get

X(—=3)vg = ga(—l)X(—Q)vo + w0;/§

a(—1)%v. (7.3.2)
Thus, the result follows. O

Remark. The above two lemmas could also be argued based on the graded dimension

formula, using [Proposition 4.4.1] and [Corollary 4.3.17]

Lemma 7.3.3. In the (0,2)-module V, we have X (—2)%v, € Vi2,2))-

Proof. In the (0,2)-module V, we have f{v, = 0. Expressing this relation in terms

of the operators «(e) and X (e), simplifying and straightening out using the bracket
relations [Proposition 4.2.2f and the rewriting rules (7.3.1]) and ([7.3.2)), we get

WO\/S)X
2

(—4)vg + woV3a(—1)2X (—2)vy + ”—3a(—1)4v0. (7.3.3)

X(=2)%vg = — T

Therefore, the result follows immediately. O
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Remark. The above lemma could also be argued based on the graded dimension formula,

using [Proposition 4.4.1{ and [Corollary 4.3.17, We have an extra partition in 224 (4)

after removing partitions ending with a 1 or a 3. Therefore, one of the two partitions
(2,2) or (4) must be reducible. If we assume that (4) is reducible, then we arrive at a

contradiction for the partitions of n = 8.

The following initial conditions are consequence of the interplay of and

other reducible partitions in 204 that ends with a 3.
Lemma 7.3.4. In the (0,2)-module V', the following partitions
(5,2), (7,4,2),(9,6,4,2), (11,8,6,4,2),. .., etc..

are reducible. Notice that all these partitions satisfy the difference condition [3,2*] (here

2* denotes zero or more occurrence of 2), and end with the lowest part 2.

Proof. First, we will show that X (—5)X(—2)vg € V((5)). Using the degree 2 relation
R®(=T)vy = 0 (6.1.3)), we have

X(=4)X(=3)vg + X(=5)X(=2)vg =0 mod V(5 2)).- (7.3.4)
Applying the operator X (—4) on both sides of ([7.3.2)), we also have

X(~4)X(~3)vp = SX(=5)X(~2)vy mod V(5. (7.3.5)

DO o

Combining ([7.3.4) and (7.3.5)) gives us the desired result.

Now, we will prove the result for (7,4,2). We proceed in the same fashion as in

the proof of except this time we need to keep track of terms involving

partitions upto (7,4,2) (one additional term). See the corresponding matrix in row-

reduced form in The result shows that,
X(—(?, 3, 3))1}0 =0 mod ‘/1(77472)). (736)
However, applying X (—7)X (—3) on both sides of ([7.3.2), we get

X(—(7,3,3))vy =

N W

X(—(7,4, 2))’(10 mod ‘/((77472)). (737)

Combining ([7.3.7)) and (7.3.6)) gives us the desired result.
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Now, we will prove the general case. Let py be a partition satisfying the difference
condition [3,2*] (with at least two occurrence of 2) and ending with a 2.

We will follow similar computations as done in Recall the notations p* (6.4.1),
it (6.4.2), Ry, p (6.4.6) and R}, ;. (6.4.7). Also recall (6.4.3)).

Let p5* be the partition obtained by replacing the suffix (4,2) of ug by (3,3), where
m = I(pg) —4 > 0. Then, we have [ (u5*) = l(pg), and |p5*| = |po|. And, g is the next

smallest partition of n into s parts after us’.

Therefore, we need to keep track of an extra term in each of (6.4.8) and (6.4.9).

Therefore, we have (applying to vg)

AX (—=m3") X_(5,4,3)v0 +4X (—=73") X_(55.2)v0

+ 6X(—7T5n)X_(67373)U0 + 12X(—7T§n)X_(6’472)U0 = O mOd Vv('uo), (738)

AX (—=m3") X_(5,4,3)v0 + 6 X (—=73") X_(55.2)v0

+ 4X(—7T§n)X_(67373)UO + 12X(—7T£71)X_(67472)U0 =0 mod ‘/(NO)' (739)
Subtracting (7.3.9) from (7.3.8)), we get
— 2X(*7T§n)X_(57572)UO =+ 2X(*7T§n)X_(67373)U0 =0 mod Vv(lio)' (7310)

Notice that 7" - (5,5) = uzpjr}l, and therefore, the first term in the above equation can
be reduced by partitions larger than . Also, 77" - (6,3,3) = pj*. Following the same
argument, as in the proof of we obtain

X(—Tl'gl)X_((;’g’:;)'UO S ‘/(#0)' (7311)

However, by (7.3.2)), we have

m 3 m
X(—7T2 )X_(673’3)'U0 = 5X<_7T2 )X—(674,2)'U0 mod ‘/(:U'O)' (7312)

But 7"+ (6,4, 2) = py. Therefore, combining ((7.3.11]) and ([7.3.12)), we obtain the desired

result:

X(—ILL[))UO € ‘/(/‘«0)' O



112

Proposition 7.3.5. For the (0,2)-module, any partition ending with a 1 or 3, or ending

with the sub-partition (2,2) or one of the following sub-partitions:
(5,2),(7,4,2),(9,6,4,2), (11,8,6,4,2), ..., etc..,

(i.e., sub-partitions satisfying the difference condition [3,2*] and ending with a 2) is

reducible.

Proof. The result follows from [Lemma 7.3.1] [Lemma 7.3.2] [Lemma 7.3.3] |[Lemma 7.3.4]

and [Proposition 4.4.1] ]
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Chapter 8

Partition Identities

In this chapter, we summarize our main results and propose three new partition identities.
These results prove one inequality of the the proposed identities. We have also verified
the partition identities for partitions of n, for n < 170, and n = 180, 190 and 200. The
C program used for the verification is included in This demonstrates a

strong evidence for the validity of these partition identities.

8.1 The Main Result

Let V = L(A) be a level 4 standard module for g of highest weight A, and a highest

weight vector vy, where A = (4,0),(2,1) or (0,2). Recall |Definition 4.1.9| [Notation 3.2.4}
Notation 4.3.7l and [Notation 6.5.1l

Let 249 ¢ 2 be the set of all partitions in 24 and all partitions that end with
(1). Let 240 = g2\ g/(40),

Let 22D © 2 be the set of all partitions in 24 and all partitions that end with
(1,1), (2,2) or (3,3). Let 22D = g2\ '),

Let 202 ¢ 2 be the set of all partitions in Z%4 and all partitions that end
with (1), (3), (2,2), or that end with a sub-partition ending with a 2 and satisfying

the difference condition [3,2*], where 2* denotes zero or more occurrence of 2. Let

202) — \(@/(0,2)'

Theorem 8.1.1. Let V = L(A) be a level J standard module for g of highest weight A,
and a highest weight vector vy, where A = (4,0),(2,1) or (0,2). Then, with the notations

described above, the set

Sy = { a(=N)X (~p)vy \ Ne O, pe ot} (8.1.1)
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is a spanning set for V. Furthermore,

Fy(n) < \@A(n) , (8.1.2)

for alln > 0. The equality holds in (8.1.2)) for all n > 0 if and only if the set (8.1.1) is
a basis for V.. (The equality is verified for n < 170 and n = 180,190 and 200.)

Proof. From [Proposition 6.5.2] [Proposition 7.1.1] [Proposition 7.2.4land [Proposition 7.3.5|

we have
%lA c %A
and therefore,
ot c PN
Thus, the result follows from [Corollary 4.3.17] O

Paraphrasing the above theorem, the three (conjectured) partition identities are

presented below.

A = (4,0): The number of partitions of n > 0 with parts congruent to £2,+3, +4
modulo 14 is less than or equal to the number of partitions of n into parts greater than
1, and having no sub-partition with difference condition [1], [0, 0], [0, 2], [2,0], [0, 3],
[3—,0], [0—,4], [4—,0] or [3,2*,3,0]. The equality holds for all n > 0 if and only if the
set (8.1.1) is a basis of V' = L(4,0). Furthermore, the equality has been verified to hold
for n < 170, n = 180,190 and 200.

A = (2,1): The number of partitions of n > 0 with parts congruent to +1,+4, +6
modulo 14 is less than or equal to the number of partitions of n not ending with (1,1),
(2,2) or (3,3), and having no sub-partition with difference condition [1], [0, 0], [0, 2],
[2,0], [0,3], [3—,0], [0—,4], [4—,0] or [3,2%,3,0]. The equality holds for all n > 0 if and
only if the set is a basis of V' = L(2,1). Furthermore, the equality has been
verified to hold for n < 170, n = 180, 190 and 200.

A = (0,2): The number of partitions of n > 0 with parts congruent to +2, +5, +6
modulo 14 is less than or equal to the number of partitions of n not ending with (1),
(2,2) or (3), and not ending with a partition satisfying the difference condition [3, 2]

that ends with (2), and having no sub-partition with difference condition [1], [0, 0], [0, 2],
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[2,0], [0,3], [3—,0], [0—,4], [4—,0] or [3,2*,3,0]. The equality holds for all n > 0 if and
only if the set (8.1.1)) is a basis of V' = L(0,2). Furthermore, the equality has been
verified to hold for n < 170, n = 180, 190 and 200.
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Appendix A

Computation of the Relations

In this appendix, we present the maple programs that we used to compute the relations
and their computations.

In we present the Maple worksheet showing examples of our calculations that

were used in [Chapter 6| and [Chapter 7l The worksheet uses the codes from three other

Maple source files presented in the subsequent sections.

In we present the Maple source file containing the programs used to generate

the list of partitions of a positive integer n into k parts in the decreasing lexicographical

order (see [Notation 4.1.17). The algorithm we implemented is from [Chall].

In we present the Maple source file containing the programs used to compute
the coefficients of X (—pu) in various product generating functions, as described in
In we present the Maple source file containing various procedures used to

automate our calculations of the relations used in the Maple worksheet presented in

5 A1

A.1 Maple Worksheet for Computing Relations

In this section, we present the Maple worksheet showing examples of our calculations

that were used in [Chapter 6| and [Chapter 7| The worksheet uses the codes from three

other Maple source files presented in the subsequent sections. All three source files
(named, chat.txt, coeffs.txt and test.txt) must be saved in the same working

directory as this Maple worksheet.
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read “cha.txt :
read "coef.txt :
read “test.txt :

wi t h( Li near Al gebra):

# Exampl es of degree 3 relations.

for n from3 to 16 do
print(n);
print(truncate(listkPartitions(n,3),4));
print(deg3(n));

print("-------------e - ")
end do:
3
[[1,1,1]]
1
0
0
0
4
(2,1, 1]]
1
0
0
0
5
[[2,2,11,[3,1,1]]
10
01
00
00
6

((2,2,2],13,2,1], [4,1,1]]
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100
010
001
000

7
[[3,2,2],03,3,1], [4,2,1], [5,1,1]]

1000
0100
0010
0001

8
[[3,3,2],[4,2,2],[4,3,1],[5,2,1]]
100 -4
010 6
001 O
000 O

9
[[3,3,3],[4,3,2],[4,4,1],[5,2,2]]
1000
0100
0010
0001

10
[[4,3,3],[4,4,2],[5,3,2], [5,4, 1]]

100 -4
010 6
001 O
000 O

1
[[4,4,3],[5,3,3],[5,4,2],[5,5,1]]
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1000
0100
0010
0001

12
[[4,4,4],[5,4,3],[5,5,2], [6,3,3]]

(100 -9

5
010 )
001 -1
000 O

13
[[5,4,4],[5,5,3],[6,4,3],[6,5,2]]

1000
0100
0010
0001

14
[[5,5,4],[6,4,4],[6,5,3],[6,6,2]]

(100 0
010 -2

001

3
2
000 0

15
[[5,5,5],[6,5,4],[6,6,3],[7,4,4]]

1000
0100
0010
0001

16



# excepti
#

print("
end do:

[[6,5,5],[6,6,4],[7,5,4], [7,6,3]]

onal

100 -4
010 6
001 0
000 O

for n from1l3 to 25 by 6 do
print(n);
print(truncate(listkPartitions(n,3),6));
print(truncate(listkPartitions(n+l,3),4));
print (deg3ex(n));

[[5,4,4],[5,5,3],[6,4,3], [6,5,2],[6,6,1],[7,3,3]]
[5,5,4], [6,4,4],[6,5,3],[6,6,2]

[

[[7,6,6],[7,7,5],[8,6,5],[8,7,4],[8,83][9,5,5]]
[7,7,6],[8,6,6],[8,7,5], [8,8,4]

[

0

0

1000 2 000
0100 -3 000
0010 L 000

2
0001 3 000

2

0 10

0 1

0 01
0000 O O0O00O0
0000 O O0O0O

19

-1

(=

S N|w

[> # Comput ati on of the Matrix fromthe proof of the degree 3
triplets.

]

]
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1000 2 000
0100 -3 000
OOlO—iOOO
2
3
00012000
0 10
0 1
0 01
0000 O 0O00O0
0000 O O0O00O
25
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0w

A‘»—*

(=)

oS N|w

[[9,8,8],19,9,7],[10,8,7],[10,9, 6], [10,10,5], [11,7,71]
[[9,9,8],[10,8,8][10,9,7], [10,10,6]]

000

1000

0100

0000

0000

2

-3

0

0

0

0 -1

O =

1

S N|w

0

- @

[> # Conputation of the matrix for the initial condition
# of the (0,2)-nodul e showing that (7,4,2) is reducible.

#

n .= 13;

L :=truncate(listkPartitions(n,
for i from1l to 4 do

rfi] = mp(c||i, L);
end do:

3),

7);
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r[(5] :=[0%$7]:
L1 :=listkPartitions(7,2);
for i from1l to 7 do
for x in L1 do
if L[i] = sort([6,0p(x)], “>") then
r{sIfi] = r[5][i] + c(x);
end if;
end do:
end do:
L2 := listkPartitions(6,2);
for i froml to 7 do
for x in L2 do

if L[i] = sort([7,0p(Xx)], >") then
r{5][i] :=r[B][i] + 6*cb(x);
end if;
end do:
end do:
M:= Matrix([seq(r[i], i=1..5)]):

ReducedRowEchel onForm( M ;
n:=13

L:=1[[5,4,4],[5,531,[6,4,3],[6,5,2],[6,6,11,[7,3,31],[7,4,2]]
L1:=1[4,3],[5.21[6,11]
L2:=[[3,3],[4,21,[5, 1]

1000 2 0 2 |

0100 -3 0 -6

1
0010202 @)
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A.2 DMaple Codes to Generate Partitions

In this section, we present the source file containing the codes used to generate the list

of partitions of a positive integer n into k parts in the decreasing lexicographical order

(see [Notation 4.1.17)). The algorithm we implemented is from |[Chall|. Partitions are

represented as a non-increasing list of positive integers.

Listing A.1: cha.txt

HUEHAHHHHAHEHAH AR AR BB RS HAHAH AR BB RS HAHAHHHBS RS H AR RS HH SRS H AR RS HH RS H

File: cha.txt

Author: Debajyoti Nandi

Generating Partitions of n into k parts, based on

Sung-Huyk Cha, "Recursive algorithms for generating
partitions of an integer", 2011
Link:

http://support.csis.pace.edu/CSISWeb/docs/techReports/
techReport280.pdf

The main functions:
listkPartitions(n,k): lists the partitions of n into k
parts in ascending lexicographic order. A partition is
represented as a non-increasing list (aka, descending

composition).

Example: listkPartitions (8,3)
=> [[3,3,2],[4,2,2],[4,3,1],[5,2,1],[6,1,11]]

allPartitions(n): lists all partitions of n, in ascending
order (with respect to ">" on P). Each partition is

represented as a non-increasing list.

Example: allPartitions (5)
=> [[1,1,1,1,1],[2,1,1,1],[2,2,1],[3,1,1]1,[3,2],[4,1], (511

H O H H HF OH O H OH OHF OH OH OH OH OH OH OHF OH OHF OH OH OH OH K OH OH OH OH K OH OH OH

HAHAHBHBHHARAHAHBHBHBAHAHAHBHBH B AR A HAHBHBH B AR AR AHBHBH BB A H RSB B H S
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# The maximum number to be partitioned
N := 100;

# The 1list to hold the current partition being generated
_p := [0$_N];

# The 1list to hold the generated partitions
L := [];

# resetL(): Resets the global variable _L

_resetl := proc()
global _L := [];
end proc;
# _P(n,k,visit): - Generates partitions of n into k parts,
# and calls the function visit() each time a partition is
# generated.
#

_P := proc(n,k,visit)
if n >= k then
_R(n, k, n-k+1, 1, visit);
end if;

end proc;

_R(n,k,s,t,visit): Recursive backbone of _P(), generates
partitions of n into k parts, with the largest part s,
(t is the position index where this partitions is to be

added in _p). visit() is as above.

The following invariant is always true:
ceil(n/k) <= s <= n-k+1.

H H H OH OH OH OH H

_R := proc(n,k,s,t,visit)

global _p;

local 1i;

if k=1 then
_plt] := n;
visit (t);

return;




end if;

for i from ceil(n/k) to s do

_pltl := 1ij;

R(n-i, k-1, min(i, n-i-k+2), t+1, visit);
end do;

end proc;
_listIt(t) - The visitor function that puts the constructed

#
# partition into the 1list _L, t is the length of the current
# partition.
#
_listIt := proc(t)

global _p, _L;
L := [op(_L), _pl1..t]1];

end proc;

# listkPartitions(n,k): Returns a list of partitions of n into
# k parts. The partitions are represented as non-increasing
# lists. The partitions are arranged in ascending
# lexicographical order.
#
# Example: listkPartitions(8,3)
# => [[3,3,2]1,[4,2,2],[4,3,11,[5,2,11,[6,1,11]1]
#
listkPartitions := proc(n,k)
global _L;
local L;
_restetL ();
_P(n,k,_1listIt);
L := _L;

_resetL ();

return L;

end proc;

# allPartitions(n): lists all partitions of n, in ascending
# order (with respect to ">" on P). Each partition is

# represented as a non-increasing list.

#

# Example: allPartitions (5)

# => [[t1,1,1,1,1],[2,1,1,1],[2,2,1],[3,1,1],[3,21,[4,1]1,I[5]]

125
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#
allPartitions := proc(n)
local L := [], k;
for k from n to 1 by -1 do
L := [op(L), op(listkPartitions(n,k))];
end do;

return L;

end proc;

A.3 Maple Codes to Compute the Coefficients

Here, we present the source file containing the codes used to compute the coefficients of

X (—p) in various product generating functions, as described in

Listing A.2: coeffs.txt

HEHHBARHBAHHARHBAHBBRAH B AR HBAH B AR HBAHRH BB B AR HBAA R AR BB RH B RS HAHH RS

File: coeffs.txt

Author: Debajyoti Nandi

This file includes code for generating the coefficients
of X(-L)

a partition of n.

in various generating function identities, L is

_genCoeff (deg, Spec, L):
This procedure computes the coefficient of X(-L) in the
product generating function (of degree deg)

X(vii.a)X(v7j.a)...

H H H OHF OH O HF OH OHF OH OH OH OH OH OH OH OH OH OH OH O H OH H OH OH

deg = # of factors

Spec = [i,j...] the powers of nu (v) that appears above

L = a partition of n into deg parts.

ca(L): coefficient of X(-L) (L is a partition into two parts)
in X(a,a) [Spec=[0,01];

cb(L): coefficient of X(-L) (L is a partition into two parts)
in X(-a,-a) [Spec=[3,3]]

c(L): coefficient of X(-L) (L is a partition into two parts)
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in X(a,a) - E°-(-a)X(-a,-a)E~+(a)

cla(L): coefficient of X(-L) (L is a triplet) in
X(a,a,a) [Spec=[0,0,0]]

clb(L): O (the LHS has deg = 1 < 3)

cl1(L): same as cla

c2a(L): coefficient of X(-L) (L is a triplet) in
X(a,a,v.a) [Spec=[0,0,1]]

c2b(L): O (the LHS has deg = 2 < 3)

c2(L): same as c2a;

c3a(L): coefficient of X(-L) (L is a triplet) in
X(a,v.a,v.a) [Spec=[0,1,1]]

c3b(L): coefficient of X(-L) (L is a triplet) in
X(-a,v"2.a,v"2.a) [Spec=[3,2,2]]

c3(L): coefficient of X(-L) (L is a triplet) in
X(a,a,v.a) - E”-(-a)X(-a,v™2.a,v"2.a)E~+(-a)

c4a(L): coefficient of X(-L) (L is a triplet) in
X(a,v.a,v"(-1).a) [Spec=[0,1,-1]]

c4b(L): coefficient of X(-L) (L is a triplet) in
X(-a,v™2.a,v"(-2).a) [Spec=[3,2,-2]]

c4(L): coefficient of X(-L) (L is a triplet) in
X(a,v.a,v™(-1).a) - E°-(-a)X(-a,v™2.a,v (-2).a)E~+(-a)

H H H OH OH OHF OH OHF OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH K OH OH OH OH OH OH OH OH

HAHAHBHBHHARAHAHBH B AR AR AHBHBHBAHAHAHBH BB H AR AHRH BB BAH AR BH B R B R HH

_genCoeff (deg, Spec, L):

This procedure computes the coefficient of X(-L) in the

product generating function (of degree deg)
X(vii.a)X(v™j.a)...

H H O H H H®*

deg = # of factors




#
#
#

Spec = [i,j...] the powers of nu (v) that appears above
L = a partition of n into deg parts.
_genCoeff := proc(deg, Spec, L)

local i, x, m, M, L1, Vars, C, P;
local w := exp(2*xPi*I/6);

if deg <> nops(Spec) or deg <> nops(L) then
return FAIL;

end if;

# distinct elements of L

L1 := [op({op(L)})];

# m[x] = multiplicity of x in L
for x in L1 do
<

m[x] := nops(select(‘=‘, L, x));

end do;

# sort the list of multiplicities
M := sort([seq(m[x], x in L1)],‘>);

# sort the parts in L by multiplicities.
L1 := sort(Ll, (x,y)-> m[x]>ml[y] or (m[x]=m[y]l and x>y));

# generating the appropriate polynomial
Vars := [seq(‘x‘|li, i=1..nops(L1))];
for i from 1 to deg do

C[i] := [seq(w~(-Specl[il*x), x in L1)]1;

P[i] := ‘+‘(seq(C[i][jl=*Vars[j]l, j=1..nops(L1)));
end do;
P[0] := ‘x‘(seq(P[i], i=1..deg));

# return the appropriate coefficient

return evalc(coeftayl(P[0], Vars = [0$nops(L1)], M));

end proc;
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HERHBARHBAH B AR BABBRRAA B AR HBAA VAR HBAHR R BB B A HBA AR AR BB RA B AR RAHH RS

#

# Coefficients in the degree 2 identities:

#
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ca := L -> _genCoeff (2, [0,0], L);
cb := L -> _genCoeff (2, [3,3], L);
c := L -> evalc(ca(L)-cb(L));

HAHAHBHBHHARAHAHBH B AR AR AHBH BB A B AHAHBH BB HAHAH R BB BB AHAHBH RSB A HH
#

# Coefficients in the degree 3 identities:

#

cla := L -> _genCoeff (3, [0,0,0], L);
clb := L -> 0;

cl := cla;

c2a := L -> _genCoeff (3, [0,0,1], L);
c2b := L -> 0;

c2 := c2a;

c3a := L -> _genCoeff (3, [0,1,1], L);
c3b := L -> _genCoeff (3, [3,2,2], L);
c3 := L -> evalc(c3a(L) - c3b(L));

c4a := L -> _genCoeff (3, [0,1,-1], L);
c4b := L -> _genCoeff (3, [3,2,-2], L);
cd := L -> evalc(c4a(L) - c4b(L));

A.4 Other Codes Used in the Maple Worksheet

We present below the Maple source file containing various procedures used to automate

our calculations of the relations used in the Maple worksheet presented in

Listing A.3: test.txt

HAHAHBHBHHARAHAHBH BB AR RS BH BB B AHAHBH BB HAHAHRH BB HAH AR BH B R B R HH

File: test.txt

#

#

#

# Author: Debajyoti Nandi

#

# The programs here can be used to automate the analysis
#

of various deg 2 and 3 relations. Used in the proofs of




130

various forbidden partitiomns.

truncate(L,k): returns a truncated list from L upto k

elements

deg3(n): Uses the 4 relations of degree 3 on the least 4
partitions of n. Returns a row reducede matrix
from the coefficients. j-th column corresponds

to the the j-th least partition of n into 3 parts.

deg3ex(n): Computes the row reduced matrix in the
calculation of the exceptional triplets. Input should
be of the form n = 3k+1, n >= 13. The j-th column,
1 <= j <= 6, corresponds to the term X(-Lj),
where Lj is the j-th least partition of n into 3 parts.
The j-th column, 7 <= j <= 10, corresponds to the term
X(-Lj)E(1), where Lj is the j-th least partition of
(n+1) into k parts.

H O H H OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH

HAHAHBH BB HAHRAHHHBH BB H AR RSB H BB RS HAHAHBH BB R B RS BH B HBHAHAHBH RS R A HH

# truncate(L,k): truncates the list L up to length k
truncate := (L,k) -> if k<nops(L) then L[1..k] else L end if;

# deg3(n): presents the row-reduced form of the deg-3 relations

# upto the term corresponding to the 4th triplet of n.
#
deg3 := proc(n)

local L, i, r;
L := truncate(listkPartitions(n,3) ,4);
for i from 1 to 4 do
r[i] := map(clli, L);
end do;
return ReducedRowEchelonForm (Matrix ([seq(r[il, i=1..4)1));

end proc;

# deg3ex(n): computes the row-reduced matrix used in the

# proof of the exceptional forbidden triplets of n.
#
deg3ex := proc(n)

local L1, L2, S1, S2, S3, k, i, x, r;




# We must have: n = 3%k+4, n >= 13
if n mod 3 <> 1 or n < 13 then
return FAIL;

end if;

k := (n-4)/3;

# first 4 rows

L1 := truncate(listkPartitions(n,3), 6);
L2 := truncate(listkPartitions(n+1,3), 4);
for i from 1 to 4 do
r[i] := [op(map(clli, L1)), op(map(-cllillb,
end do;
# 5th row
S1 := listkPartitions (2xk+1, 2);
r[5] := [0$10];

for i from 1 to 6 do
for x in S1 do
if L1[i] = sort([k+3, op(x)],‘>‘) then
r[5]1[i] := r[5][i] + c(x);
end if;
end do;
end do;

S2 listkPartitions (2*xk, 2);

for i from 1 to 6 do
for x in S2 do
if L1[i] = sort([k+4, op(x)],‘>‘) then
r[5]1[i] := r[5]1[i] - (-6)*cb(x);
end if;
end do;
end do;

S3 listkPartitions (2xk+2, 2);

for i from 1 to 4 do
for x in S3 do
if L2[i] = sort([k+3, op(x)],‘>‘) then
r[5][6+i] := r[5][6+i] - cb(x);
end if;
end do;

end do;

L2))1;
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# 6th-9th rows
for i from 6 to 9 do

r[i] := [0$6, op(map(cl|l(i-5), L2))1;
end do;

#matrix

return ReducedRowEchelonForm (Matrix ([seq(r[i]l, i=1..9)1));

end proc;
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Appendix B

Computation in Noncommutative Algebra

In this appendix, we present the maple programs we used to straighten out monomials
in non-commuting variables. We have used the data structure and algorithms in
NCFPS (noncommutative formal power series) package [Zeil2] of D. Zeilberger with
minor modifications (also see [BRRZ12|). The algorithm to apply substitution rules to
straighten out an out-of-order monomial is based on the algorithm and Maple codes of
M. Russell (see [Rusl3]). His program was for finitely many substitution rules over a
finite alphabet. We modified Russel’s code to implement infinitely many rules (based on
finitely many patterns) over an infinite indexed alphabet.

In we present the Maple worksheet to verify the isomorphism in
ftion 2.3.1] In[§B.2, we present the Maple worksheet to carry out the computations used
in the proofs of various initial conditions in

The above Maple worksheets require other Maple source files for manipulating formal

polynomials in non-commuting variables and applying substitution rules. We also need
the Maple source files implementing all the substitution rules that we require for our
computations.

In we present the Maple source files to manipulate and straighten out formal
polynomials in non-commuting indexed variables. In we present our Maple source
files implementing the substitution rules that we require for our computations. In
we present our Maple source files containing miscellaneous useful procedures used in the
above mentioned Maple worksheets. All these supporting Maple source files must be

saved in the same working directory as the Maple worksheets.
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B.1 Verification of the Isomorphism

In this section, we present the worksheet to verify the isomorphism in [Proposition 2.3.1}

The worksheet requires the files npolyio.txt, npolyops.txt, npolysubs.txt from

the file A22-rules.txt from and the file misc.txt from These files

should be saved in the same directory as the worksheet.
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> read "npolyio.txt :
read " npol yops.txt:
read " npol ysubs.txt:
read ~A22-rules.txt :
read "msc.txt :

> w = exp(Pi*l/3):

WO = exp(Pi*I/6):
> hO := parsePoly(h[0]): hl := parsePoly(h[1]):
e0 := parsePoly(e[0]): el := parsePoly(e[1]):
fO := parsePoly(f[0]): f1 := parsePoly(f[1]):
> HO := evalc(rewritePol y(hO, Ri som):
HlL := evalc(rewitePol y(hl, Risom):
EO := evalc(rewitePol y(e0, Risom):
El := evalc(rewitePoly(el, Risom):
FO := evalc(rewritePol y(f0O, Ri som):
F1 := evalc(rewitePoly(fl, Risom):

| ### Checki ng: [h,-, hj] =0, 0< 1,7 <1).

> seq(seq(
writePol y(eval cPol y(rewitePoly(b(H i, H|j), Rvop))),
i=0..1), j=0..1);
0,0,0,0 (1)

| ### Checking: [h;, e;] - Aje =0, (0< i, j < 1).

> seq(seq(
writePol y(eval cPol y(rewitePol y(
addPol y(b(H i, E[[|j), sMlPoly(-A22[i,j],E[j)), Rvop))),
i=0..1), j=0..1);
0,0,0,0 @

| ### Checking: [h;, f;] + Aje;=0, (0 < 1,7 <1).

[> seq(seq(
writePol y(eval cPol y(rewitePol y(
addPol y(b(H/ i, F||j), sMlPoly(A22[i,j]1,Fl|j)), Rvop))),

i=0..1), j=0..1);
0,0,0,0 3)

=### Checki ng: [e,-, fj] - 81.jhj =0, 01,37 <1).

> seq(seq(
writePol y(eval cPol y(rewritePol y(
addPol y(b(E||i, F|]j),




sMul Pol y(-delta(i,j),H|i)), Rvop))),
i=0..1), j=0..1);

i 0,0,0,0
-A,+1
| ### Checking: (ade;) "7 e; =0, (i#]).
>Y :=E
i,j :=0,1:
writePol y(eval cPol y(rewritePol y(adpow(-A22[i,j]+1, X |i,
Rvop))) ;
i,j :=1,0:
writePol y(eval cPol y(rewritePol y(adpow(-A22[i,j]+1, X |i,
Rvop)));
Y=F
0
| 0
-A,+1
| ### Checking: (ad f;) Y fi=0, (i+]j).
>Y = F
i,j :=0,1:

writePol y(eval cPol y(rewitePol y(adpow( - A22[i,j]+1, X |i,
Rvop)));

i,j :=1,0:

writePol y(eval cPol y(rewritePol y(adpow(-A22[i,j]+1, X ]|i,
Rvop))); ,

=F
0
0

X 15),

X5,

X1j),

X 15),
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(4)

®)

(6)
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B.2 Computations for the Proofs of the Initial Conditions

In this section, we present the Maple worksheet to carry out the computations used in
the proofs of various initial conditions in The worksheet requires the files
npolyio.txt, npolyops.txt, npolysubs.txt from the files A22-rules.txt and
A22-L4-iniRules.txt from and the file misc.txt from These files should
be saved in the same directory as the worksheet.

Note that as we discover a new relation in this worksheet, we have added them to

the file A22-L4-iniRules.txt progressively.



\ 4

> read “npolyio.txt :
read " npol yops.txt :
read "~ npol ysubs. txt :
read "~ A22-rul es.txt :
read “msc.txt :
read ~A22-L4-ini Rul es.txt’:

exp(Pi*1/3):

w
WO = exp(Pi*I/6):

For the (4,0)-nodule

| # W have, fivp= 0.

>p:=f[1].v[0]: P:= parsePoly(p): isOinV(P,"40");
true

=> Q:=rewitePoly(P, R somunion Rvop);

4 1
Q:= - ’ X_ s V 1[7 \/?1 a_q, V
: oy Xl |3 (2 vl
> # Normalize
Q := sMul Poly((sqgrt(3)+l)/4, Q: witePoly(Q);

‘X-1-Vo+% (\/?+I) \/? (a_l.vo)

:The above relations shows that (1) is reducible.

For the (2,1)-nodule

| # W have, f12v0= 0.

>p = (f[1]17"2).v[0]: P := parsePoly(p): isOinV(P,"21");
true

> Q:=rewitePoly(P, R somunion Rvop);

|16 vl -8 3 ¢, vl 2
s [(ﬁﬂ)z’ o X vl |7 NEES S 22 X0 vl [3’
4 /3
(a1, a1 Vol|s [3 341 [X25 Y]

L # Nornalize
> Q := sMulPoly(-(sqrt(3)+1)"2/16,Q: witePol y(Q);

) v+t (41 V3 (a1:Xgv) — 55 T+ ((2).v)
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2.1)

2.2)

2.3)

3.)

3.2)

3.3)
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-2 (3+1) V3 (Xgew)

[The above rel ation shows that (1,1) is reducible.
We have added the above rule as 'rini2la' in A22-L4-ini Rul es. txt.

# We have, f03v0= 0.
We will add rini2la in our substitution rules to reduce the above.

>p:=(f[0]"3).v[0]: P := parsePoly(p): isOinV(P, "21");
i true (3.4
[> Q:=rewitePoly(P, R somunion Rvop union {rini?2la});
72 J2 96 V2 V3 [
Q:=||——, [a_q, a1, X4, Vl|s | - ————5, [X5, X145 V|, (3.5
[\/T-FI (@1 @4, Xy 0]} (\/?4-1)2 [X 25 X.15 Vo]
48 2
EXCaN
=> # Normalize Q
Q := sMul Poly((sqrt(3)+l)"2/(96*sqrt(6)), Q:
writePol y(Q0);
% 3 +1) V3 ((aﬁl).x_l.vo)—x_z.x_l.vo—(—l5 (V3 +1) V3 (aq.X, (36)
V)

_V‘e have added the above rule as 'rini21b' in A22-L4-ini Rul es. txt.

# W have, f04v0= 0.
We will add rini2l1lb in our substitution rules to reduce the above.

>p = (f[0]"4).v[0]: P := parsePoly(p): isOinV(P,"21");
i true (3.7)
[> Q:=rewitePoly(P, R som union Rvop
union {rini2la, rini2lb});
384 /3
Q:=|(|-——, a4, aqs a1, X945 V|| [-12, [a_q, @_q, @_q, A_q, (3.8)
l[ \/?+I [ 1 1 1 1 0] [ [ 1 1 1 1
288 /3 768
y | T— » |4_1s A_ !X_ ) y | T o X_ 1X_ ) ’
Vol] [ﬁ*—l (a1, a1, X 55 Vo] l(ﬁ%—l)z [X30 X1 Vo]
576 64 3
N R X, ’ X, y V ’ - y |a_ !X, s V 1
[(HH)Z X0 X o]} Ty [ X vl |

4T3 (TV3+1), (X, v]]
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> # Normalize
Q@ := sMul Poly(-(sqrt(3)+l)72/576, Q: witePoly(Q);

2(FHD)VF (@) Xav) + 5 (F+1)° ((d)w) -2 (3 @9
+1) V3 ((aél).x_z.vo)—g X_3.X_l.v0—(sz).v0+$ V3

+1) V3 (a_l.x_g.vo)+i‘ I(3+1)° V3 (1V3+1) (X4v)

_The above relation shows that (2,2) is reducible.
We have added the above rule as '"rini21c' in A22-L4-ini Rul es. txt.

# W have, f05v0= 0.
We will add rini2lc in our substitution rules to reduce the above.

(f[0]"5).v[0]: P := parsePoly(p): isOinV(P,"21");
true (3.10)

\%
o]
1

>Q:=rewitePoly(P, R somunion Rvop
union {rini2la, rini2lb, rini2lc});
1440 2
Q:=||-——, [a_q, a_q, a_q, a_1, X_q, V, ,—24\/7\/T, a,, (3.11)
HﬁH[lllllo][ )
1440 /2
a_qy, d_qy, d_q95 A_qs Vol||y | — > af!aflafleiv!
1A Ay lo]][ﬁﬁ[l 1 X, Vo
1920 v2 V3 960 2
_#, [a—l’ X_3, X—l’ VO] , [_\/_’ [3-1! aq, X_3,
(V3 +1) J3 +1
1920 V2 V3 1920 V2 V3
Vo]}’ L\/z_’[ 4 X1 Vol |5 #,[X%,sz,
(V3 +1) (V3 +1)
480 V2
Voll, | ———, [a_1, X_4, Volls —16\/7\/?, a_c, V,
O][ﬁﬁ[lw][ [a_s, vo]

=># Normal i ze
Q := sMul Pol y(- (sqrt(3)+)"2/(1920*sqrt(6)), Q:
writePol y(QD);
1

; 3+ V3 ((ah) Xaw) + 5 V3 +1)° ((&).v)-F (3 e

+I) V3 ((a?l).x_z.vo)+a_1.x_3.x_1.v0+% (V3 +1) V3 ((a%)

1
X 3:Vp) =X 4o X Vg =X 3.X 5.V = 5 (V3 +1I) V3 (aq-X4-v)

+ﬁ) (\/?%—I)Z (a_5-v)
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We have added the above rule as 'rini21d" in A22-L4-ini Rul es. txt.

# W have, f06v0= 0.
We will add rini21d in our substitution rules to reduce the above.

>p:=(f[0]"6).v[O]: P := parsePoly(p): isOinV(P, "21");
i true (3.13)

> Q:=rewitePoly(P, R somunion Rvop
union {rini2la, rini2lb, rini2lc});

|| 12672 V3 aq,,a+, a4, a-, a v - aq, a -
Q:= { ST41 s [ags @, ag, ay, ag, Xg, V| [-576, [ag, a;, (314)
aj,aq,ag, ajg, Yl [11;?204_‘4?, [a.1, @1, @aq, a3, X5 Yl [
_L‘:Oz, (@1, @, X35 Xq, Vo]}' l‘M’ EETCETR-EY
(V3 +1) J3+1
_ 23040 .. o X volls LSOZ a,, X,
ol [ gy 12 Ko Xl [C e (e s
X 2 Vo]}’ [1920\/?’ [a.15 @15 X g5 Vol|s [ L0850 50 [Xosy Xogs
V3 41 (V3 +1)
ol [-=2820 x4, x5 vl [32 1 V3 (13 +1), [,
o (/T +1) (X35 X3, vo]|s [32 1 +1), |
Koo wall (584, s, 2 vl |22 (vl |
1320 /3 X gr Vo]
NETTE

=> Q := sMul Poly((sqgrt(3)+l)"2/3840, Q: witePoly(Q);

-% (V3 +1) V3 ((afl).x_l.vo)—% (V3+1)° ((5).v) +3 (V3 (315
+I) V3 ((ah) Xpvo) =6 ((@0) X5 Xpv) =5 (V3

N

+I) V3 ((2%)-X3-v) +6 (aq-Xg-X_1-Vp) 12 (a_1.X.3.X 5. V)
+% (V3 +1) V3 ((a%)-Xg-vp) +2 (X5 X 1-vg) — (X25) - v

+ 1 1 (V34D V3 (V3 +1) (asXgvg) -2 (V3

120 120

+1)° (agagv) +3 (VFHD) V3 (a1:X5%) — 55 (V3

12
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+1I) V3 (X-v)

: The above rel ations shows that (3,3) is reducible.

For the (0, 2)-nodule
;# W have, f02v0= 0.

>p:=f[0].v[0]: P := parsePoly(p): is0inV(P,"02");
i true 4.2
> Q:=rewitePoly(P, R somunion Rvop);
4 J2 2
= ’ X, s V y | 5 \/7 \/?1 a_q, V| (42)
: = Xl |3 (a1, %)
> # Normalize
Q := sMul Poly(-(sqrt(3)+1)/(4*sqrt(2)), Q:
writePoly(Q);
Xav—¢ (V3+1) V3 (a1.%) 3)

[ The above rel ations shows t hat (1) is reducible.
We have added the above rule as 'rini02a" in A22-L4-ini Rul es. txt.

# We have, f13v0= 0.
We will add rini02a in our substitution rules to reduce the
above.

>p = (f[1]173).v[0]: P := parsePoly(p): isOinV(P,"02");
L true 4.9
> Q:=rewitePoly(P, Ri somunion Rvop union {rini0O2a});
36 24

Q:= \/?’ ad_q, d_q, d_q9, V y | T/— | 4. 1X_ y V| y | T ’ (45)

33 e a ol [ 2000 (a0 Xl [

[X.35 Vo]
=> # Normalize

Q := sMul Poly((sqrt(3)+1)/24, Q: witePol y(Q));

% (V3 +1) /3 ((a%l).v0)+g a1.X,.Vg—X3.Y (4.6)

[ The above rel ations shows that (3) is reducible.
W have added the above rule as 'rini02b' in A22-L4-iniRul es.txt.

# We have, f14v0= 0.
We will add rini02b in our substitution rules to reduce the
above.

>p = (f[1]74).v[0]: P := parsePoly(%: isOinV(P, "02");

A\
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true 4.7)

[> Q:=rewitePoly(P, R som union Rvop
uni on {rini02a, rini02b});

723
J3 41
36 V3 g
Far e vl

Q:=[[—27, [a.1, @, a3, a1, Yl y [asyy ag, Xopy V]

[M42, [X2s X2 Vo]]’

(V3 +1)

=># Normal i ze
Q := sMul Poly(-(sqrt(3)+l)72/120, Q: witePol y(Q);

2 (F+1) ((ah) ) +2 (T 41) V3 ((8) Xpv) =2 ()% @9)
—%) (V3 +1I) V3 (X4-v)

:The above rel aton shows that (2,2) is forbidden.
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B.3 Maple Codes for Noncommutative Polynomials

In [§B.3] we present the Maple source files to manipulate and straighten out formal
polynomials in non-commuting variables. The data structure and algorithms for various
operations on noncommutative polynomials are based on the NCFPS (noncommutative
formal power seires) package of D. Zeilberger |Zeil2, BRRZ12].
Here we list three Maple files: npolyio.txt, npolyops.txt and npolysubs.txt.
We present our Maple program to convert a noncommutative polynomial between

mathematical notation and the internal data structure (using lists, see [Zeil2]) below.

Listing B.1: npolyio.txt

HAHAHBHAHHARAHAHBHBH B AR AHAHBH AR B AR AR AHBH AR B A B A H RSB R B R BB A H RSB BH S

File: npolyio.txt

Author: Debajyoti Nandi

H O H O H OH

Input and Output of Noncommutative Polynomials

**+

This maple programs read a polynomial (assumed noncommutative)
in certain format and converts it to an intermnal data structure
representing this polynomial. The data structure used is the

same as that used in NCFPS of Zeilberger:

Link: http://www.math.rutgers.edu/~zeilberg/tokhniot/NCFPS

The purpose of this file is to make the input/output

of noncommutative polynomials easier to human beings.

H H H HF OH OH OH OH OH OH OH OH

Data Structure

**+

Monomial: A monomial is a (noncommutative) product in
indeterminates. A monomial is represented as a list.

For example, x.y.y.x -> [x,y,y,x]

Term: A term is a constant times a monomial, i.e., t=c*mnm,

H O H OH OH H H

where ¢ is a constant and m is a monomial. A term is




H O H H OH OH OH OH OH

H H H H OH H OH OH OH OH OH OH OH OH OHF OH OH OH OH OH OH OH

H H H OH OH OH OH OH

H* #®
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represented as t = [c, m].

For example, -2x.y.x -> [-2, [x,y,x]].

Polynomial: A polynomial is a sum of terms, represented as a
list of momnomials: p = [tl1l,t2,...,tn]
For example, x.y-y.x -> [[1,[x,y]], [-1,[y,x11].

Input Format

Constant terms: A constant term must be inputed as cx*Id.

Terms: If the coefficient is 1, then it can be ommited.
Otherwise, input in the form: (examples)
3¥(x.y.y.x), (y72).z, a*(x.x.y.x), 2xId etc.
Note that if a symbol is used for the constant it is assumed
to be a commutative symbol ("a" in the third example above)
A bracket must be used if more than one symbol is multiplied

in the monomial.

Polynomial: (Example)
3x(x.y.y.x) - 2%x + z.x.y + b*xId.
3*x((x72) .y.2)

This polynomial will be read and converted ot internal data
structure as:
(3, [z,y,y,x11, [-2,[x11, [1,[z,x,y]], [5,[1]1]
[[3,[x,x,y,2z]]]

OQutput Format

An intermnal representation of a noncommutative polynomial
is converted back to maple expression using ’*’ and ’.’.
For example,

(2,011, [-1,0x,y11 + [1,[y,y1]1] --> 2 - x.y + y~2.

Provides

parsePoly(f): returns the internal representation of the
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# noncommutative polynomial f (see "input format" above).

#

# writePoly(P): returns an expression using °’*’ and ’.°

# to express the internal representation of a noncommutative
# polynomial P in better-to-read format (see "output format").
#

# Disclaimer

# ==========

#

# No sanity check is done. No error message is issued if

# the input is invalid (not conforming to the "input format"

# above).

#

HEHHHARHBAH R AR B HAH B AR B AR R BB B AR HBAH R RSB B RS BB AR AR BB H B AR HBR AR ERH

### Input ###

# splitPow(p): If p is a power in an indeterminate, then it splits
# it into a sequence of factors.

# Example: x73 -> x,X,X

splitPow := proc(p)
if p:: ‘"¢ then
return seq(op(l,p), i=1..0p(2,p));
else
return p;
end if;

end proc;

# splitMono(m): Splits a monomial m, returning a list of its
# factors.

# Examples: x.x.y.x -> [x,x,y,x], Id -> []

splitMono := proc(m)
if m = Id then

return [];

elif m:: ‘. ¢ then
return map(splitPow, [op(l.., m)1);
else

return [splitPow(m)];




147

end if;

end proc;

# splitTerm(t): Splits a term into a list with the coefficient
# as the first element, and the monomial as the second.

# Examples:

# 2% (x.y) -> [2, x.y], 3*Id -> [3, Id], x.y.y -> [1, x.y 2]
splitTerm := proc(t)

if t::‘x‘ then

return [‘*‘(op(1l..mnops(t)-1, t)), op(-1,t)];
else

return [1,t];
end if;

end proc;

# splitPoly(f): Splits a polynomial f into terms
# Example: x.y.y.x + 2xx - Id -> [x.y"2.x, 2*x, -Id]

splitPoly := proc(f)
if £f::‘+¢ then
return [op(l.., £)];
else
return [f];
end if;

end proc;

# parsePoly(f): reads a polynomial in the input format, and
# returns its representation in the above data structure.
# Example:
# Xx.y.y.x + 2%x - Id -> [[1, [x,y,y,x]11, [2, [x]1], [-1, [1]]
parsePoly := proc(f)
local P := [1, T, t, L;
T := splitPoly(f);

for t in T do
L := splitTerm(t);
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if t <> 0 then
P := [op(P), [L[1], splitMono(L[2])1];
end if;

end do;

return P;

end proc;

HAHAHBHBHHAHAHAHBHBH B AR AHAHBHBH B AR A HAHBHBH B AR A H AR BH B R BB A HRH B H B H S

### Output ###

# writeMono(m): expresses a monomial using ‘.°¢

# Example: [x,y,y,x] -> x.y"2.x

writeMono := proc(m)
return ‘. ‘(op(m));
end proc;

# writeTerm(t): expresses a term as prduct of the constant and
# the monomial using ‘*°¢

# Example: [a, [x.y.y.x]] -> a * x.y"2.x

writeTerm := proc(t)
return t[1] * writeMono (t[2]);

end proc;

# writePoly(f): expresses an internal representation of a

# polynomial f in human readable format.

# Example:

# (i1, [x,y,y,x11, [2, [x]1], [-1, (111 -> x.y"2.x + 2*x - 1

writePoly proc (F)
local L := map(writeTerm, F);
return ‘+‘(op(L));

end proc;

The file below is a slight modification of Zeilberger’'s NCFPS package |Zeil2].

Listing B.2: npolyops.txt

HAEHAHHH BB HAHAH AR BH BB H AR RS BHBSHEHAHAHHH RS R AR AR BH BB RS H AR RS BH B HAHH




H H H =

H H H OH OH OH OH OH OH OH OH OH OH OH OH

+H*

H O H H OH OH O HF OH OHF OH OH OH OH OH OH OH OH OH O H OH OH OH

File: npolyops.txt

Operations on Noncommutative Polynomials

Author: Debajyoti Nandi

Inspired by Zeilberger (NCFPS)
http://www.math.rutgers.edu/~zeilberg/tokhniot/NCFPS

This is slightly modified version of Prof. D. Zeilberger’s
NCFPS package. A few extra procedures added to suit our

purpose.

The internal representation of noncommutative polynomials

is done using lists, same as in NCFPS package.

Provides

(F,G: noncommutative polynomials,

c: constnat,

m: monomial,

t: term)

simplifyPoly(F): Simplifies F by collecting terms with the
same monomial. Additionaly, the returned polynomial has
terms arranged in decreasing order of degree (number of
indeterminates in a monomial).

addPoly(F,G): Adds F and G.

subtractPoly(F,G): F-G.

sMulPoly (c,F): c*F (scalar multiplication)

multPoly(F,G): F.G (multiplication)

coeffPoly(m,F): coefficient of m in F.

149
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# subsPoly(S,F): simplifies the coeffs in F using substitution
# rules S (using the Maple builtin function "subs").

# Example:

# F := [[w™3, [x]]] (eqv. to (w™3)*x),

# S := w'6=1

# subscPoly(S,F) = [[-1,[x]]] (eqv. to -x).

#

# evalcPoly(F): simplifies the coeffs in F using evalc ().

#

# coeffPoly(m,P): Finds the coefficient of the monomial m

# in the polynomial P. Returns O if the monomial is not present.

HAHAHHHHAHAHRAHAHBH BB H AR RS HH BB R B HAHAHHH B SRR AR BH BB RS H AR RS BH B HAHH

simplifyPoly(F): simplifies F.

-—- Slight modification of "Pashet" form NCFPS package.

-- Returned polynomials has terms sorted by degree.

(these modifications ensures that the order of the monomials
is optimal for the type of substitution rules we have for
our computations. For example, the substitution rules

based on the Lie brackets reduce the number of variables

when we commute them. Thus we want to straighten out

H H H H OH OH OH OH OH

the longest monomial first.)

simplifyPoly := proc(F)
local ¢t, m, md, i, T, T1, L, M, M1, C;

# M: collection of monomials in F
M := {seq(t[2], t in F)};
for m in M do

Clm] := 0;

end do;

for t in F do
#collecting coeffs
clt[2]] := Cl[t[2]] + t[1];

end do;

# T: collection of nonzero terms
T := [];
for m in M do

if C[m] <> 0O then
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T := [op(T), [CIm]l, ml];
end if;

end do;

# Boundary case: T = []
if T = [] then
return [];

end if;

# Simplify the constants (they maybe symbolic)
for t in T do
C[t[2]] := simplify(C[t[2]]1);

end do;

# M1: collection of monomials with nonzero coeff (sorted)
M1 := [seq(t[2], t in T)I;
M1 := sort(M1);

# T1: terms in T sorted by monomials
T1 := [seq([C[m], m], m in M1)];

# Sorting by degree:

#md: max degree (md >= 0)
md := max(seq(nops(t[2]), t in T1));

# L[i]: nonzero terms of degree i
for i from 0O to md do
L[i]l := [];

end do;

for t in T1 do
Llnops(t[2])] := [op(Llnops(t[2]1)]1), t1;

end do;
# Keep this order for faster processing in our case
return [seq(op(L[i]), i=md..0, -1)1;

end proc;

HAHAHBHBRHARAHAHBH BB AR RS BH AR BB AH RSB R BB B A B RS RH BB B A B AR BH B R BRHH
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# sMulPoly(c,F): c*xF (scalar multiplication)--simplified.

# -- Same as "sMul" from NCFPS.
sMulPoly := proc(c, F)
local i;

return simplifyPoly([seq(l[c*F[i][1], F[il[2]], i=1..nops(F))1);

end proc;

HERHBARHBAH B AR BB AR B BRAA B AR HBAH B AR HBAAHBRABAAHBRA B AR BB RA B AR R BAHH RS

# multPoly(F,G): F.G (multiplication)--simplified
# -- Same as "Mul" in NCFPS.

multPoly := proc(F, G)
return simplifyPoly ([seq(seq(
[fx[11*gx[1], [op(£fx[2]), op(gx[21)1],
fx in F), gx in G)
1)

end proc;

HERHBARHBAH B AR B BAHBBRAHHARHBAH B AR HBAR R BB B AR HBA AR AR BB RA BB SR AR B RS

# addPoly(F,G): F+G (addition)--simplified.
# -- Same as "Khaber" from NCFPS

addPoly := proc(F,G)
return simplifyPoly ([op(F), op(G)1);
end proc;
HHEAHSHHBHHAH AR B S HH SR AR BB R BB R B BAAHSHH B HH B AR H S HH B HS B SR H S HH R RS HH
# subtractPoly(F,G): F-G (subtraction)--simplified.
subtractPoly := proc(F,G)
return addPoly(F, sMulPoly(-1,G));
end proc;

HAHAHBHBHHARAHAHBH B AR AR AHBHBH B A B AHAHBH BB R AR A B RH BB BAHAHBH B R B R HH

# coeffPoly(m,F): coefficient of monomial m in polynomial F.
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coeffPoly := proc(m,F)
local t, F1 := simplifyPoly (F);
for t in F1 do
if t[2] = m then
return t[1];
end if;
end do;

return O;

end proc;

HAHAHHHHAHAHRAHAHBH BB H AR RS HH BB R B HAHAHHH B SRR AR BH BB RS H AR RS BH B HAHH

# subscPoly(S,F)

: simplifies the coeffs in F using substitution

# rules S (using "subs"), and evalc().
# Example:
# F := [[w™3, [x]]] (eqv. to (w73)*x),
# S = w'6=1
# subscPoly(S,F) = [[-1,[x]]] (eqv. to -x).
subscPoly := proc(S,F)
local t, P := [];
for t in F do
P := [op(P), [evalc(subs(S, t[1])), t[2]11;
end do;

return simplifyPoly(P);

end proc;

HUHAHHHHBHAHAH AR BB RS HAH RS HHHSHBHAH RS HH RS H AR RS RS RS RS H AR RS HH RS HAHH

# evalcPoly(F):

evalcPoly

P
for t in F do
P Lop(P),

local t,

end do;

simplifies the coeffs in F using evalc().

proc (F)

[1;

[evalc (t[1]), t[2]11];

return simplifyPoly(P);

end proc;

HAHAHHH BB HAHAHAHBH BB HAH RS HHBA R HAHAH AR RS R AR RS BH BB R H AR AR BH B SRR HH
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coeffPoly(m,P): Finds the coefficient of the monomial m
in the polynomial P. Returns O if the monomial is not present.

#
#
# Example: coeffPoly([x,y]l, [[2,[x,y]], [1,[x]1]1]) = 2
#

coeffPoly := proc(m, P)
local Q;
Q := select(x->x[2]=m, P);

Q
if nops(Q) = 0 then

simplifyPoly (Q);

return O;

elif nops(Q) > 1 then
return FAIL;

end if;

return Q[1][1];

end proc;

We present the program to apply substitution rules. The algorithm and the Maple
codes are adapted from M. Russel’s |[Rus13]. We have modified his algorithm to allow
infinite number of rules (over indexed alphabet). We have added a few other procedures
to suit our purpose. We have desiged the implementation in such a way that the main
procedure subsRule () does not have to be changed, if we decide to code the substitution

rules in a different way.

Listing B.3: npolysubs.txt

HARAHBHBHHARAHAHBH B AR AR AHBH BB B AHAHBH BB B AR AHRH BB HAH RS BH B RSB R HH

# File: npolysubs.txt

#

# Rewriting Noncommutative Polynomials Using Substitution Rules
# ============================================================
#

# Author: Debajyoti Nandi

#

# This file codes rewriting noncommutative polynomials using

# substitution rules of monomials. For example, if we have

# the rule x.y.x=1, then x.x.y.x.y reduces to x.y.

#

# Rules




H O H O H O HF OH O H OH OH OH OH OH OH OH O H OHF OH OH OH OH OH OH OH

H O H H OH OH O HF OH OHF OH OH OH OH OH OH OH OH OH OH OH

Rules are of the form

Monomial --> Polynomial

Assume that R is a rule (or a patterns of similar rules)

m --> P, where m is a monomial, and P is a polynomial.

Rules are coded (implemented) as a triplet:
R := [len, find(), substt()],
where:
len: the length (or degree) of the monomial m;
find(F): finds first place matching the monomial m in the
polynomial F;
substt(m): returns the RHS P, (m assumed be the LHS of R).

Special thanks to Matthew Russels for pointing out NCFPS
package, and getting me started.

Requires: npolyio.txt.

Provides

rewritePoly (F,Rules): Rewrites the polynomial F, using
rules in the set (or list) of rules in Rules. If this
procedure terminates, then it returns a reduced polynomial
where no more matching rules in Rules applies. There is
no guarantee that this will terminate, in case there are

cyclical substitutions possible with the rules.

lenRule(R): returns the length of the monomial on the LHS
of the rule R.

findMatchRule(m,R): finds the first place in the monomial m,

where the rule R applies.

subsRule(m,R): returns the RHS (polynomial) of the rule R.
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Note monomials may be composed of indexed variables
(infinitely many indeterminates), but rules should be
described by finitely many patterns. See the file

"A22-rules.txt" for examples.

The last three procedures are used so that rewritePoly(),
does not have to be changed, if one decides to re-implement
rules. In that case, only the last three auxiliary

procedures need to be modified.

H H O H OH OH OH OH OH OH OH

HAHAHBHBRHARAHAHBH BB AR RS BHBH BB AH RSB R BB BAHABRH B R BB A B RS BH B R B R HH

# lenRule(R): degree of the monomial on the LHS of the rule R.
lenRule := R -> R[1];

# findMatchRule(m,R): finds the first place in the monomial m,
# where the rule R applies.

findMatchRule := (m,R) -> R[2](m);

# subsRule(m,R): returns the RHS of the rule (m --> P).
subsRule := (m,R) -> R[3]1(m);

HAHAHBHBHHARAH AR BH BB AR AHBHBH B A B AHAHBH BB AR A B RH BB BAB RS BH B R BRHH

rewritePoly := proc(F,Rules)
local AllDone, NotDone, found, R, pre, suf, m, G, H, t, 1i;
AllDone := []; #terms that are straightened
NotDone := simplifyPoly(F); #terms that are not yet straightened

while NotDone <> [] do

t := NotDonel[1l];
H := [];
found := false; # no matching rule found

for R in Rules while not found do
i := findMatchRule(t[2], R);
if i > O then

found := true;

pre := t[2][1..i-1];

m := t[2][i..lenRule(R)+i-1];
suf := t[2][lenRule(R)+i..];
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G := subsRule(m,R);
H := multPoly(multPoly ([[t[1],prell, G), [[1,sufll);
end if;
end do;
NotDone := simplifyPoly([op(2.., NotDone), op(H)]);
if not found then
AllDone := [op(AllDomne), tl;
end if;
end do;
AllDone := simplifyPoly(AllDone);

return simplifyPoly(AllDone);

end proc;

B.4 Substitution Rules

In this section, we present our Maple source files implementing the substitution rules that

we require for our computations. These rules are split into two files: A22-rules.txt

and A22-L4-iniRules.txt

These rules (except for the substitution rules coming from the initial conditions of

Chapter 7)) are presented in the Maple file below. The rules are divided into six sections

in the Maple file. See the documentation in the Maple file below for the description of

these rules.

Listing B.4: A22-rules.txt

HERHHARHBAR R AR BB AR BB A B AR HBRA B AR HBARHBRB B AR HBR AR AR B RA BB HBAHH RS

#
#
#

H OH H O OH OH OH H

File: A22-rules.txt

Author: Debajyoti Nandi

This files includes all rules needed for computations
in the algebra $A_2"(2)$, or in their level 4 standard

modules.

Note:

w: 6th primitive root of unity,




H H H =

=+

H OH H OH OH OHF OH OHF OH OHF OH OH OH OH OH OH OH OH OHF OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH K OH
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wO: 12 the primitive root of unity (s.t. w0O~2 = w).

In this file their values are not set.

Types of Rules

(Sec A): Rules given by the mapping of the Chevalley
generators in terms of vertex operators.

Risom = the set of rules in Sec A.

(Sec B): Bracket rules of the vertex operators.

Rvop = the set of rules in Sec B.

(Sec C): Bracket rules of the chevalley generators.

Rgen = the set of rules in Sec C.

(Sec D): Rules for all std modules, given by, positive degree
elements of A2(2) annihilates the highest weight vector
v[0] (i.e., el[i].v[0] = 0 for i=0,1).

We don’t need the corresponding rules in terms of the

vertex operators, since we will only use negative
degree operators (when applying in terms of the vertex

operators) on v[0].

(Sec E): Rules spicific to level 4 standard modules (i.e.,
h[0].v[0] = kO*v[0], h[1].v[0] = ki1*xv[0] in the
(kO ,k1)-module). Note that the conditions
(£[0]1°(k0+1)).v[0] = (£[1]1°(k1+1)).v[0] = O
follows from the action of h on v[0] and the Lie
brackets of the Chevalley generators.

-- (Sec E40): for (4,0)-module;

-- (Sec E21): for (2,1)-module;

-- (Sec E02): for (0,2)-module.

These rules are also in terms of the Chevalley generators only.

RgenV<kO0,k1>: The set of rules for the (kO,kl)-modules
in terms of the Chevalley generators. These rules
enables us to express any vector in V as a
linear combination of vectors of the form

f[n1]..f[nk].v[0]; n[1],...,n[k] = 0,1.

These rules are union of the rules in Sec C, Sec D, and




159

Sec E<kO,k1>.

Auxiliary data/functions:

-- A22: generalized Cartan Matrix for A2(2);

-- delta(i,j): delta function;

-- d6(i): 1 (if i congruent to 1,-1 mod 6), O (otherwise).
omega(i,j): (w™2/6)*(w”~(j-1i) - w™(i-3))

Note: (1) We use the rules "Risom" and "Rvop" to check the
isomorphism of $A2(2)$,in terms of the vertex operatros.
(2) We use rules "Rgen", "RgenV<kO,k1>" and "Rvop" for our

investigation of initial conditions in various level 4

H O H OH OH O H OH OH OH OH OH O H OH
|
|

standard modules.

HUHHHBEHHHERHH AR HH AR HHARHHARSE Sec: A HHH#HHHHHHBHHHARHHARHHARHHARS

# (Sec A): Rules given by the mapping of the Chevalley

# generators in terms of the vertex operators.

# rhO: h[0] --> (4*sqrt(3)/w0)*X[0] + (2/3)*c
rho := [
1, #length

proc(m) #find in m

local 1ij;

for i from 1 to nops(m) do
if m[i] = h[0] then

return i;

end if;

end do;

return O;

end proc,

#substt
m -> [[4*sqrt(3)/w0,[X[0111, [2/3,[c]]]
1;

# rh1l: h[1] --> (-2*%sqrt(3)/w0)*X[0] + (1/6)*c
rhl := [
1, #length
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proc(m) #find h[1] in m

local i;

for i from 1 to nops(m) do
if m[i] = h[1] then

return 1i;

end if;

end do;

return O;

end proc,

#substt
m -> [[-2*xsqrt(3)/w0,[X[0]]1], [1/6,[c]]]
1;

# re0: e[0] --> (-2xsqrt(2)/w0)*xX[1] + (2*sqrt(2)/sqrt(3))*al1]
re0 := [
1, #length

proc(m) #find

local i;

for i from 1 to nops(m) do
if m[i] = e[0] then

return ij;

end if;

end do;

return O;

end proc,

#substt
m -> [[-2%sqrt(2)/w0,[X[1]11]1, [2*xsqrt(2)/sqrt(3),[al1]]1]1]
1;

# rel: el[1] --> (2/w0)*X[1] + (1/sqrt(3))*al1]
rel := [
1, #length

proc(m) #find match
local i;
for i from 1 to nops(m) do
if m[i] = e[1] then

return 1i;
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end if;
end do;
return O;

end proc,

#substt
m -> [[2/w0,[X[1]1]1]1, [1/sqrt(3),[al1111]]
1;

# rf0: f£[0] --> (2xsqrt(2)/w0)*X[-1] + (2*xsqrt(2)/sqrt(3))*al[-1]
rfo := [
1, #length

proc(m) #find

local ij;

for i from 1 to nops(m) do
if m[i] = £[0] then

return i;

end if;

end do;

return O;

end proc,

#substt
m -> [[2*xsqrt(2)/w0,[X[-1]1]1]1, [2*sqrt(2)/sqrt(3),[al-1]11]]
1;

# rf1: f[1] -> (-2/w0)*X[-1] + (1/sqrt(3))*al[-1]
rf1 := [
1, #length

proc(m) #find

local 1ij;

for i from 1 to nops(m) do
if m[i] = £[1] then

return i;

end if;

end do;

return O;

end proc,
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#substt
m -> [[-2/w0,[X[-1111, [1/sqrt(3),[al-1111]
1;

Risom := {rhO,rhl,re0,rel,rf0,rfl};

HUEHHHBHHHERHH AR HH AR HHARHHARSE Sec: B #HH#HHHHHHERHHARHHARHHARHHA#HS

# (Sec B): Bracket rules of the vertex operators.

d6 := i -> if i mod 6 in {1,5} then 1 else 0 end if;

omega := (i,j) -> if j-i mod 6 in {0,3} then O
elif j-i mod 6 in {1,2} then -wO*sqrt(3)/6
else wO*sqrt(3)/6

end if;

# rcx: c.x --> x.c (x=X[*] or alx])
rcx := [

2, #length

proc(m) #find
local i;
for i from 1 to nops(m)-1 do
if m[il=c and (op(0,m[i+1])=a or op(0,m[i+1])=X) then
return i;
end if;
end do;
return O;

end proc,

#substt
m -> [[1,[m[2] ,m[1]]]]
1;

# raa: alil.alj] --> aljl.ali] + (delta(i+j,0)*i/6)*c, i>]
raa := [

2, #length

proc(m) #find

local i;
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for i from 1 to nops(m)-1 do
if op(0,m[i]l)=a and op(0,m[i+1])=a and
op(1,m[i]) > op(1,m[i+1]) then
return 1i;
end if;
end do;
return O;

end proc,

#substt
m -> simplifyPoly ([[1,[m[2],m[1]]],
[delta(op(l,m[1])+0p(1,m[2]) ,0)*xop(1,m[1])/6,[c]1]1])
1;

# raX: alil.X[j]1 --> X[j].ali]l + d6(i)*X[i+j], i>0
raX := [
2, #length

proc(m) #find
local i;
for i from 1 to nops(m)-1 do
if op(0,m[i]l)=a and op(0,m[i+1])=X and op(1,m[i])>0 then
return ij;
end if;
end do;
return O;

end proc,

#substt
m -> simplify ([[1,[m[2],m[1]]],
[d6(op(1,m[1])), [X[op(l1,m[1])+0op(1,m[2])]1]1]11)
1

# rXa: X[il.al[j] --> aljl.X[i] - d6(j)*X[i+j]l, j<O
rXa := [
2, #length

proc(m) #find
local i;
for i from 1 to nops(m)-1 do
if op(0,m[i])=X and op(0,m[i+1])=a and op(l,m[i+1])<0 then
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return i;
end if;
end do;
return O;

end proc,

#substt
m -> simplify([[1,[m[2],m[1]]1],
[-d6(op(1,m[2]1)), [X[op(1,m[1])+0op(1,m[2]1)1111)
1

# rXX: X[il.X[jl --> X[j].X[i] + omega(i,j)*X[i+j]

# -((-1)"i*d6(i+j)*w/6)*ali+j]
# + ((-1)"i*ixdelta(i+j,0)*w/36)*c, i>j
rXX := [

2, #length

proc(m) #find
local 1ij;
for i from 1 to nops(m)-1 do
if op(0,m[i])=X and op(0,m[i+1])=X and
op(1,m[i]l) > op(1,m[i+1]) then
return ij;
end if;
end do;
return O;

end proc,

#substt
m -> simplify([[1,[m[2],m[1]]],
[omega(op(1,m[1]) ,0p(1,m[2])),[X[op(1,m[1])+0p(1,m[2])]]],
[-(-1)"op(1,m[1]1)*d6(op(1,m[1])+0op(1,m[2]))*w/6,
[alop(1,m[1])+0op(1,m[2]1)]11],
[(-1)~"op(1,m[1])*0op(1,m[1])*xdelta(op(l,m[1])+op(1,m[2]),0)*
w/36, [clll)
15

Rvop := {rcx,raa,raX,rXa,rXX};

HEAHHBHHHERHH AR HHARHHARHHARSE Sec: C #HHH#AHHBHHHEHHHARHHARHHARHHARS
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# (Sec C): Bracket rules of the Chevalley generators.

# Generalized Cartan’s Matrix for A2(2)

A22 := table([(0,0)=2, (0,1)=-4, (1,0)=-1, (1,1)=2]1);

# delta function

delta := (i,j) -> if i=j then 1 else 0 end if;

# rhh: h[0].h([1] --> h[1].h[O]
rhh := [
2, #length

proc(m) #find
local i;
for i from 1 to nops(m)-1 do
if m[i..i+1] = [h[0],h[1]] then
return 1i;
end if;
end do;
return O;

end proc,

#substt
m -> [[1,[h[1],h[0]1]1]1]
1;

# rhe: h[il.e[j]l --> e[jl.h[i]l + a22[i,jl*eljl, i,j=0,1
rhe := [
2, #length

proc(m) #find
local 1i;
for i from 1 to nops(m)-1 do
if op(0,m[i]l)=h and op(0,m[i+1])=e then
return ij;
end if;
end do;
return O;

end proc,

#substt
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m -> [[1,[m[2] ,m[11]1], [A22[op(1,m[1]),0p(1,m[2])],[m[2]]1]
1;

# rhf: h[il.£[j] --> £[j1.h[i] - A22[i,jl*£[j], i,j=0,1
rhf := [
2, #length

proc(m) #find
local i;
for i from 1 to nops(m)-1 do
if op(0,m[i])=h and op(0,m[i+1])=f then
return 1i;
end if;
end do;
return O;

end proc,

#substt
m -> [[1,[m[2],m(1]11], [-A22[op(1,m[1]),0p(1,m[2])],[m[2]1]]]
1;

# ref: el[il.f[j]l --> f[jl.eli] + delta(i,j)*h[i]
ref := [
2, #length

proc(m) #find
local i;
for i from 1 to nops(m)-1 do
if op(0,m[i]l)=e and op(0,m[i+1])=f then
return 1i;
end if;
end do;
return O;

end proc,

#substt
m -> simplifyPoly ([[1,[m[2],m[1]]],
[delta(op(1,m[1]) ,0p(1,m[2]1)) ,[hlop(1,m[11)1111)
1;

Rgen := {rhh,rhe,rhf ,refl};
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HAHAHHAHAHAH R HAHAH B HAHAHES Sec: D HAH#HAHBHHAHAHBHUAHAHBHBAHAHH#S

# (Sec D): Rules for all std modules, given by, positive degree
# elements of A2(2) annihilates the highest weight vector

# v[0] (i.e., el[i]l.v[0] = O for i=0,1).

# We don’t need the corresponding rules in terms of the

# vertex operators, since we will only use negative

# degree operators (when applying in terms of the vertex

#

operators) on v[0].

# rev: e[*].v[0] --> 0
rev := [

2, #length

proc(m) #find
local ij;
for i from 1 to nops(m)-1 do
if op(0,m[i])=e and m[i+1]=v[0] then
return i;
end if;
end do;
return O;

end proc,

#substt
m -> []
1;

HEAHHBRFHBR AR BRAHARHRARAHARS Sec: E #H#H##HEHHBERHBARHBARHHARHHA#S

# (Sec E): Rules spicific to level 4 standard modules (i.e.,
# h[0].v[0] = kOxv[0], h[1].v[0] = ki1*v[0] in the

# (kO,k1)-module). Note that the conditions

# (£[0]1°(k0+1)).v[0] = (£[1]1°(k1+1)).v[0] =0

# follows from the action of h on v[0] and the Lie

#

brackets of the Chevalley generators.
### (Sec E40): for (4,0)-module;

# rhOv40: h[0].v[0] --> 4x*xv[0]
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rhOov40 := [
2, #length

proc(m) #find
local i;
for i from 1 to nops(m)-1 do
if m[i..i+1] = [h[0],v[0]] then
return 1i;
end if;
end do;
return O;

end proc,

#substt
m -> [[4,[v[0]]1]]
1;

# rhiv40: h([1].v[0] --> 0
rhiv40 := [
2, #length

proc(m) #find
local i;
for i from 1 to nops(m)-1 do
if m[i..i+1] = [h[1],v[0]] then
return i;
end if;
end do;
return O;

end proc,
#substt
m -> []
1;
RgenV40 := Rgen union {rev, rhOv40, rhilv40};

### (Sec E21): for (2,1)-module;

# rhOv21: h[0].v[0] --> 2*xv[0]
rhov21l := [
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2, #length

proc(m) #find
local i;
for i from 1 to nops(m)-1 do
if m[i..i+1] = [h[0],v[0]] then
return i;
end if;
end do;
return O;

end proc,

#substt
m -> [[2,[v[0]]]]
1;

# rhiv21: h([0].v[0] --> v[O]
rhiv21l := [
2, #length

proc(m) #find
local i;
for i from 1 to nops(m)-1 do
if m[i..i+1] = [h([1],v[0]] then
return 1i;
end if;
end do;
return O;

end proc,
#substt
m -> [[1,[v[0]]]]
1;
RgenV21 := Rgen union {rev, rhOv21l, rhiv21l};
### (Sec E02): for (0,2)-module;
# rhOv02: h([O0].v[0] --> 0O

rhOv02 := [
2, #length
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proc(m) #find
local 1i;
for i from 1 to nops(m)-1 do
if m[i..i+1] = [h[0],v[0]] then
return i;
end if;
end do;
return O;

end proc,

#substt
m -> []

1;

# rhiv02: h[1].v[0] --> 2xv[0]
rhiv02 := [
2, #length

proc(m) #find
local ij;
for i from 1 to nops(m)-1 do
if m[i..i+1] = [h[1],v[0]] then
return i;
end if;
end do;
return O;

end proc,

#substt
m -> [[2,[v[0]]]]
1;

RgenV02 := Rgen union {rev, rhOv02, rhiv02};

The following file contains the replacement rules coming from the initial conditions

(as described in the proofs of [Chapter 7)).

Listing B.5: A22-L4-iniRules.txt

HEHHBARHBAH R AR HBARBBRAA R AR HBAH B AR HBAH B BB B AR B BAA R AR BB RA B RS HAHH RS
#
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File: A22-L4-iniRules.txt
Author: Debajyoti Nandi
This file contains the replacement rules coming

from the initial conditions as described in the proofs

of Chapter 7 (Initial Conditions).

H O H H OH OH OH OH OH

HERHBARHBAH B AR BB AR B BRAA B AR HBAH B AR HBAAHBRABAAHBRA B AR BB RA B AR R BAHH RS

HAERAHAH R BB HH SRR RS A ##H For the (4,0)-module ##H#H#H#HHHH#HHFRAASHARHH
#

# rinid4Oa: Coming from f[1].v[0] = 0 in (4,0)-module.

# X[-1]1.v[0] --> (wOxsqrt(3)/6)*al[-1].v[0]

#

rini40a := [

2, #length

proc(m) #find
if m[-2..] = [X[-1]1,v[0]] then
return nops(m)-1;
end if;
return O;

end proc,

#substt

m -> [[wO*sqrt(3)/6,[al-1]1,v[0]1]1]]
1;

Hu#dnHSHHHHSHHS##4#ES For the (2,1) -module #########S##HH#S##SH##Y

#

# rini2la: Coming from (£[1]72).v[0] = 0 in (2,1)-module
# X[-11.X[-11.v[0] --> (-wOxsqrt(3)/6)*X[-2].v[0]

# + (wO*xsqrt(3)/3)xal-11.X[-11.v[0]

# + (-w/12)*xal[-1].al[-1].v[0]

#

rini2la := [

3, #length

proc(m) #find
if m[-3..] = [X[-11,X[-1]1,v[0]] then




return nops(m)-2;
end if;
return O;

end proc,

#substt
m -> [[-wOxsqrt(3)/6, [X[-2],v[0]]],
[wO/sqrt(3), [al-11,X[-11,v[011],
[-w/12, [al-1]1,al-11,v[0111]
1;

# rini21b: Coming from (£[0]73).v[0] = 0 in (2,1)-module.

# X[-2].X[-1]1.v[0] --> (-wO0/sqrt(3))*al-1].X[-2].v[0]

# + (wO*sqrt(3)/2)*al[-1].a[-1].X[-1].v[0]
#
rini2ib := [

3, #length

proc(m) #find
if m[-3..] = [X[-2],X[-1]1,v[0]] then
return nops(m)-2;
end if;
return O;

end proc,

#substt
m -> [[-w0/sqrt(3), [al-1],X[-2]1,v[0]]],
[wO*sqrt(3)/2, [al-1],al-11,X[-1]1,v[01]1]]
1;

rini2lc: Coming from (£f[0]74).v[0] = 0 in (2,1)-module.

(X[-21)"2.v[0] --> (-4/3)*X[-3].X[-1]1.v[0]
+ (-wO*sqrt(3)/18)*X[-4].v[0]

+ (-wO*sqrt (3))x(al-11"2).X[-2].v[0]
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+ (w0*4/sqrt(3))*(al-11"3).X[-1].v[0] + (w/12)x(al[-1]1"4).v[0]

#
#
#
# + (wOx2xsqrt(3)/9)*al-1].X[-3].v[0]
#
#
#

rini2ic := [
3, #length

proc(m) #find
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if m[-3..] = [X[-2],X[-2],v[0]] then
return nops(m)-2;

end if;

return O;

end proc,

#substt

m -> [[-4/3, [X[-31,X[-11,v[0111,
[-wO*sqrt (3)/18, [X[-4]1,v[0]11],
[wO*2xsqrt(3)/9, [al-11,X[-31,v[0]11],
[-wO*sqrt(3), [al-11%$2,X[-2]1,v[0]]1],
[wO*4/sqrt (3), [al-1]1$3,X[-1]1,v[0]11],
(w/12, [al[-11%$4,v([0]1]1]]

1

# rini2ld: coming from (£[0]75).v[0] = 0 in (2,1)-module.
# Re-write rule for X[-3].X[-2].v[0]
#
rini21d := [
3, #length

proc(m) #find
if m[-3..] = [X[-3],X[-2],v[0]] then
return nops (m)-2;
end if;
return O;

end proc,

#substt

m -> [[-1, [X[-4],X[-1],v([0]]1]1, [1, [al-1]1,X[-3]1,X[-11,v[0]]1],
[-wO*sqrt (3)/6, [al-11,X[-4],v[0]1]1,
[wO/sqrt(3), [al-11%2,X[-3],v[0]]1],
[-wO*sqrt (3)/2, [al-1]1$3,X[-2],v[0]]1],
[wO*sqrt(3)/2, [al-11%$4,X[-1]1,v[0]11],
(w/20, [al-11%$5,v([0]]], [w/30, [a[-5],v[0]]]]

1

# rini2le: Coming from (£[0]76).v[0] = 0 in (2,1)-module
# Replacement rule for X[-3].X[-3].v[0] -->
#

rini2le := [




3,

#length

proc(m) #find

if m[-3..] = [X[-3],X[-3],v[0]] then
return nops(m)-2;
end if;

return O;

end proc,

#substt

m -> [[2, [X[-5],X[-11,v[0]]], [-wO*sqrt(3)/6,

[-6, [al-11,X[-41,Xx[-11,v[011],
[wO*2/sqrt (3), [al-1]1,X[-51,v[0]]1],
6, [al-11$2,X[-3],X[-11,v[0]1]1],
[-wO*sqrt (3), [al-11%$2,X[-41,v[0]]1],
[wO*sqrt(3), [al-118$3,X[-3]1,v[0]]1],

[-wO*3*sqrt (3)/5, [al-11$5,X[-11,v[0]1]1],

[-wO*sqrt (3)/15, [al-5],X[-11,v[011],
[(-w/6, [al-5],al-1],v[0]]1]]
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(x[-6],v[0]]],

Hitu#H#HnHASH#H#S###S#E For the (0,2) -module ##########H#S##H#S#H##Y

#
# riniO2a: Coming from f[0].v[0] = O in (0,2)-module
# Replacement rule for X[-1].v[0] -->
#
rini02a := [
2, #length

1;

proc(m) #find

if m[-2..] = [X[-1]1,v[0]] then
return nops(m)-1;
end if;

return O;

end proc,

#substt
m -> [[-w0/sqrt(3), [al-1]1,v[0]]1]]
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# riniO2b: Coming from (£[1]73).v[0] = 0 in (0,2)-module
# Replacement rule for X[-3].v[0] -->
#
rini0O2b := [
2, #length

proc(m) #find
if m[-2..] = [X[-3],v[0]] then
return nops(m)-1;
end if;
return O;

end proc,

#substt
m -> [[3/2, [al[-1],Xx[-2],v[0]]1],
[wO*sqrt(3)/4, [al[-11$3,vI[0]11]]
1;

# riniO2c: Coming from (£f[1]74).v[0] = 0 in (0,2)-module
# Replacement rule for (X[-2]1"2).v[0] -->
rini02c := [

3, #length

proc(m) #find
if m[-3..] = [X[-2],X[-2],v[0]] then
return nops(m)-2;
end if;
return O;

end proc,

#substt

m -> [[-wO*sqrt(3)/2, [X[-41,v[011],
[wOoxsqrt(3), [al[-11%$2,X[-2]1,v[0]]],
(wx3/4, [al-11$4,v[0]1]1]]

B.5 Other Miscellaneous Maple Codes Used

In this section, we present the auxiliary Maple source file misc.txt which includes

miscellaneous procedures used in our Maple worksheets.
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Listing B.6: misc.txt

HAHAHBHBHBARAHAHBHBHBAHAHAHBH AR B AR AR AHBHBH B AR A H RSB HBH BB A H RSB B RS

#

# File: misc.txt

#

# Author: Debajyoti Nandi

#

# Miscellaneous Procedures Used Elsewhere

# =======================================

#

# In this file, we list a few procedures used in the Maple
# worksheets else where.

#

# Provides:

# =========

# b(F, G): Lie bracket of F, G (noncommutative polynomials)
#

# adpow(k, F, G): ((ad F)~"k).G

#

# i1s0inV(u, T): checks if the monomial (£[0], f[1]) acting
# v[0] is O in the std module V of type T, where

# T = "40", "21" or "02".

#

# genseq(k): generates all binary sequences of length k.

#

# genF(s): given a binary sequence s, it maps the sequence
# into the monomial in f[0] and f[1] acting on v[O].

#

HERHBARHBAH B AR BB AR B AR BARHBRB B AR HBRA B AR B AA B BB B AR B BB B AR H B R B HRH

# b(F,G): [F,G] (Lie bracket)
b := (F,G) -> subtractPoly(multPoly(F,G), multPoly(G,F));

# adpow(k,F,G): (ad F)"k.G
adpow := proc(k,F,G)
local i, H := G;
for i from 1 to k do
H := b(F,H);
end do;
return H;

end proc;
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# 1s0inV(u,T): Checks if a homogeneous vector u of negative

# degree (user’s responsibility to enforce this)

# in V (std module of type T, T="40", "21" or "02")
# by checking if e[0].v = e[1].v = 0. Here, v is

# assumed to be in terms of the Chevalley generators
# acting on the highest weight vector v[0].

#

# Requires: npolyops.txt, npolysubs.txt, A22-rules.txt
#

is0inV := proc(u,T)

local U := simplifyPoly(u), Rules := RgenV||T;

#boundary checks

if nops(U)=1 and U[1]1[2] = [v[0]] then
return false;

elif U = [] then
return true;

end if;

#recursive checks

if isOinV(rewritePoly (multPoly ([[1,[e[0]]1]],U),Rules),T) and

isO0inV(rewritePoly (multPoly ([[1,[e[1]]1]],U),Rules),T) then
return true;

end if;

return false;

end proc;

# Generates binary sequences of length k
# Example: gemnseq(3) = [[0, 0], [0, 1], [1, o1, [1, 111
#
genseq := proc (k)
if k=0 then return [[]] end if;
return [seq(seq([i,op(L)], L in genseq(k-1)), i=0..1)]1;

end proc;

Converts a binary seq [il,...,in] into f[i1]...f[in].v[0]
(as a noncommutative polynomial using list)
Example: genF([1,0]) = [[1,[£f[1],£f[0],v[0]]]]

H O H H H




genF := proc(sq)
local s, m := [];
for s in sq do
m := [op(m), f[s]];
end do;
return [[1, [op(m),v([0]1]]1]1;

end proc;
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Appendix C

Verification of the Partition Identities

In this appendix, we present the C program that we used to verify the three partition
identities presented in [Chapter 8 We have verified the results upto n < 170, and for
n = 180, 190 and 200. (Note that the computation for n = 200, may take more than 24
hours to complete).

We used Kelleher’s algorithm from [Kel06] to generate all partitions of n. We used
the accelerated ascending rule algorithm. This algorithm produces partitions as a
non-decreasing list. When a partition is generated we filter it out based on the criteria
presented in

The program is split into two files. In we present the main file (written in
C with C99 standard) verify.c implementing Kelleher’s accelerated ascending rule
algorithm to generate partitions, and our “visitor” function to check if the generated

)

partition should be counted for each of the standard AgQ -modules of level 4 (based on

the criteria presented in [Chapter 8)).

In we list the file data.h, which contains data about &?(n) (see [Notation 4.1.7))
and F)(n) (see § 3.2} [Notation 3.2.4]) for 0 < n < 200, where A = 4h§, 2h{ + h} or 2h].

These numbers were generated using power series expansion (using the Maple package

powseries) of the product side Fy(q) (Notation 3.2.4)).

C.1 File: verify.c

In this section, we present the main file (written in C with C99 standard) verify.c
implementing Kelleher’s accelerated ascending rule algorithm to generate partitions,
and our “visitor” function to check if the generated partition should be counted for each

of the standard Ag)—modules of level 4 (based on the criteria presented in .
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To compile save this file and the auxiliary file data.h from in the same working
directory. To compile and run on a GNU /Linux machine, use the following commands.
$ cc -std=c99 verify.c -o verify

$ ./verify

Listing C.1: verify.c

/**************************************************************\

File: verify.c
Author: Debajyoti Nandi

Email: nandi@math.rutgers.edu

Description:
Verifies the three partition identities (up to n <= 200).
The program implements Kelleher’s accelAscRule algorithm
to generate partitions. Once a partition is generated,
the function fltrCnt() then checks to see if the partition
is allowed in each of the three level 4 standard modules,

and counts.

Note (1):
To compile with cc and run
$ cc -std=c99 verify.c -o verify

$ ./verify

Enter the min and max of the range over which to check,

(min <= n <= max).

Note (2):
Compile with -DPRINT flag to display the "allowed"

partitions.

Warning: The above is only useful for debugging with
small values of n. Otherwise, the output will be
overwhelmingly verbose.

\**************************************************************/

#include <stdio.h>

#include <stdlib.h>




#include "data.h"

/*
*

*

*/

visitor function type to be called after a partition

has been generated.

typedef void (*Visitor) (int p[], int k, long *counts);

/ *
*
*
*
*

*

*/

Kelleher’s [Kel06] accelerated ascending rule algorithm
to generate partitions of ’n’ > 0. The visitor

function ’f’ is called once a partition is generated.
>counts’ is an array, used by ’f’ to counts the number

of "allowed" partitions in each of the three cases.

long long accelAsc(int n, Visitor f, long *counts);

/ *
*
*
*
*
*/

voi

/ *
*
*
*
*
x/

voi

/ *

Prints the partition (which is produced as a
non-decreasing sequence) in reverse order, ie,
in the non-increasing order. ’k’ is the length

of the generated partition.

d printRev(int pl[], int k);

>fltrCnt ()’ is the visitor function implementation

to check if the partitions are "allowed" or not

for each of the three cases. If a partition is allowed,
it is then counted for the appropriate module.

d fltrCnt(int p[], int k, long *counts);

Various states, used in the definition of fltrCnt() */

enum states_fltrCnt {
F40 = 1, /* reducible for (4,0)-module x*/

F21 = 2, /* reducible for (2,1)-module */

FO02 = 4, /* reducible for (0,2)-module */

FL4 = 7, /* reducible for all level 4 modules */

S03 = 8, /* entered [2*,3,0] diff condn */

S2 = 16, /* entered [2*] diff condn starting at 2 */
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0DD = 32, /* current entry is odd x/
};

int main(int argc, char *argv[]) {
int min, max;
long cnts[3];

long long count;

printf ("Starting from: ");

scanf ("%d", &min);

printf ("Ending at: ");

scanf ("%d", &max);

for (int n=min; n<=max; n++) {
printf ("Computing Partitions of n=%d...\n", n);
count = accelAsc(n, fltrCnt, cnts);
if (X[n] != count) printf ("x*x");
printf ("\tA11=%1311d\tGot=%1311d\n", X[n], count);
if (X40([n] != cnts[0]) printf ("*xx");
printf ("\tX40=%131d\tGot=%131d\n", X40[n], cnts[0]);
if (X21[n] '= cnts[1]) printf ("*x"
printf ("\tX21=%131d\tGot=%131d\n", X21[nl, cnts[1]);
if (X02[n] !'= cnts[2]) printf ("*x"
printf ("\tX02=%131d\tGot=%131d\n", X02[n], cnts[2]);
printf ("\n");

}

return O;

void printRev(int all, int k) {

int i;
printf ("[");
for (i=0; i<k; i++) {

if (i>0) {

printf (",");

}

printf ("%d", alk-i-11);
}
printf ("J\n");
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long long accelAsc(int n,

3

int k, j, 1, x, y;

int aln];

long long count=0;
counts [0] = counts[1] =

if (n == 0) {

Visitor f, long *counts) {

counts [2] = 0;

f(a, 0, counts); /* null partition */

return 1;
}
for (i=0; i<n;

alil = 0;

i++) {

}
k = 1;
y = n-1;
while (k !'= 0) {
x = alk-1] + 1;
k--;
while (2*x <= y) {
alk] = x;
y =y - x;
k++;
}
j =k + 1
while (x <= y) {
alk]l = x;
aljl = y;
f(a, k+2, counts);
count ++;
X++;
y——s
}
alk] = x + y;
y=x+y -1
f(a, k+1, counts); /*
count ++;
}
return count;

/* End of accelAsc() x*/

/* generated a partition */

generated a partition */

183




void fltrCnt(int p[], int k, long *counts) {
/ *
Partitions are represented as non-decreasing lists.
(2,5,6) <=> (6,5,2) read R to L
if currently reading the 3rd index (6), then

cur = 6
prv = 5
d =1
dl = 3
States:

0DD => Whether cur is odd or not

S03 => current diff condn is [2%,3,0]

S2 => current diff condn is [2%] starting at 2
F40 => partition is reducible for (4,0)-module
F21 => partition is reducible for (2,1)-module
FO02 => partition is reducible for (0,2)-module

FL4 => partition is reducible for all level 4 modules.

IC:
(1) => sets F40 & FO02
(3) => sets FO02
(1,1), (3,3) => sets F21
(2,2) => sets F21 & FO02
[3-,2%] starting with 2 => sets FO02

ALL:
(11,
(o,ol, fro,21, (2,01, [0,3],
[3-,01, [0-,4]1, [4-,0],
[3-,2%,3,0]

=> sets FL4 (ie, returns)

States switching:
S03:
sets when diff conds reaches [3,0],
resets when
== 3 and cur is 0DD => sets FL4

otherwise if d4d != 2.
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S02:
sets when the first entry is 2,
resets when
d == 3 (no need to check 0DD) => sets FO02

otherwise if 4 != 2.

0DD:
sets when cur is odd,

resets when cur is even.

*/

int cur; /* current part being read */

int prv; /* previous part read */

int d; /* difference = cur - prv */

int d1 = -1; /* last difference */

char s = 0; /* Bits of "s" represent different states */

for (int i=0; i<k; i++) {
cur = pl[il;
if (cur % 2)
s |= 0DD;
else
s &= ~0DD;
if (i == 0) { /* we are reading the 1st entry x*/
switch(cur) {
case 1:
s |= (F40|F02);
break;
case 2:
s |= 82;
break;
case 3:
s |= F02;
break;
default:
break;
}
} else { /* reading 2nd or further to the left */
d = cur - prv;
if ((d==1) || (d==0 && d1==0) || (d==0 && d1==2)
Il (d==2 && d1==0) || (d==0 && d1==3)
Il ((s & ODD) && d==3 && d1==0)
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|l ((s & 0ODD) && d==0 && di==4)
Il ((s & ODD) && d==4 && d1==0)
Il ((s & S03) && d==3 && (s & 0DD)))
return;
if (s & S2) {
switch (d) {
case 2:
break;
case 3:
s |= F02;
if ((s & FL4)==FL4) return;
s &= ~S2;
break;
default:
s &= ~82;

break;

}
if ((s & S03) && d != 2)
s &= ~S03;
else if (d==3 && d1==0)
s |= 803;
if ((i==1)&&(cur==prv)&&(cur==1 || cur==3)) {
s |= F21;
if ((s & FL4)==FL4) return;
} else if ((i==1)&&(cur==prv)&&(cur==2)) {
s |= (F21|F02);
if ((s & FL4)==FL4) return;
}
dl = d;
} /* End of if (i==0) */
prv = cur;
} /* End of for(i) =/
if (1 (s & F40)) {
counts [0] ++;
#ifdef PRINT
printf ("(4,0) -module: ");
printRev(p, k);
#endif
}
if (1(s & F21)) {
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counts [1]++;
#ifdef PRINT
printf ("(2,1) -module: ");
printRev(p, k);
#endif

}

if (1(s & F02)) {
counts [2] ++;
#ifdef PRINT
printf ("(0,2) -module: ");
printRev(p, k);
#endif

}

} /* End of fltrCnt() =/

C.2 File: data.h

In this section, we present the file data.h, which contains data about Z?(n) (see

Notation 4.1.7) and Fy(n) (see § 3.2} [Notation 3.2.4)) for 0 < n < 200, where A = 4h,

2h§ + hi or 2h]. These numbers were generated using power series expansion (using the

Maple package powseries) of the product side Fj(q) (Notation 3.2.4)).

Listing C.2: data.h

/**************************************************************\

File: data.h
Author: Debajyoti Nandi

Email: nandi@math.rutgers.edu

Description:
Contains the data about the graded dimensions of the level 4

standard modules for A2(2).
XMN [n] = the coefficient of gq"n in the second product
expansion (F_{\Lambda}(q)) of the graded dimension

of the (M,N)-module.

MN = 40, 21 or 02.
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X40[n] is the number of partitions of n into

parts congruent to +/-{2,3,4} modulo 14.

X21[n] is the number of partitions of n into

parts congruent to +/-{1,4,6} modulo 14.

X02[n] is the number of partitions of n into

parts congruent to +/-{2,5,6} modulo 14.

X[n] is the number of all partitions of n.

Note:
These numbers are directly computed from the expansion of
the corresponding product formula (using Maple package

"powseries").

0 <= n <= MAX-1 (MAX=201 defined below).

We checked the equality of the spanning set for n <= 170.

\**************************************************************/

#ifndef DATA_H
#define DATA_H

#define MAX 201 /* one plus the max x*/

/* Needs at least 32 bit x*/

const long X40[MAX] = {1, O, 1, 1, 2, 1, 3, 2, 4, 3, 6, 5, 9, 7,
12, 11, 17, 15, 23, 21, 31, 29, 41, 39, 55, b2, 71, 70, 93, 91,
120, 119, 154, 154, 196, 198, 250, 252, 314, 321, 395, 404, 494,
508, 615, 635, 762, 790, 943, 978, 1159, 1209, 1423, 1485, 1740,
1821, 2121, 2224, 2577, 2708, 3126, 3286, 3776, 3980, 4554, 4802,
5477, 5783, 6571, 6945, 7865, 8321, 9397, 9945, 11197, 11865,
13320, 14118, 15812, 16770, 18735, 19879, 22155, 23520, 26159,
27774, 30824, 32746, 36268, 38532, 42601, 45273, 49961, 53104,
58501, 62193, 68407, 72724, 79863, 84922, 93117, 99012, 108418,
115289, 126066, 134057, 146394, 155676, 169796, 180546, 196682,
209140, 227565, 241953, 262984, 279596, 303570, 322717, 350025,
372071, 403164, 428496, 463857, 492964, 533149, 566517, 612163,
650394, 702190, 745936, 804669, 854678, 921244, 978328, 1053701,




1118837,
1787425,
2792562,
4365758,
6702882,
10284088,
14698931,
20891688,
29535426,
41543017,
58148084}

const long X21[MAX]
21,
188,
825,

11,

122,
609,
1916,

5097,

12689,
27745, 29
57455, 62
116823, 1
213120,

381161,

669581,

1078717,
1727012,
2722651,
4266275,
6599520,
10149685,
14563118,
20774941,
29473390,
41594347,
58405745,

14, 1
146,
661,

216

568
14

const long X02[MAX] =
12,
117,

8,
70,
375,

6,
96,
375,

11,

228427,
407883,
715421,
1167172,
1840620,
2909739,
4536476,
7030829,
10769785,
15439763,
22007525,
31197471,
43994022,
61730037,

91,

1204125,
1896597,
2991505,
4626262,
7153082,

10882725,
15545230,
22081420,
31198920,
43857204,

’

5, 20,
158,
760,

2,

2,

003,

905,

639,

25422,

9, 15,
121,

463,

2344,
6148,
15121,
32766,
67368,
136034,
246893,
439521,
768846 ,
1234590,
1970107,
3097001,
4839180,
7466949,
11455329,
16404234,
23357735,
33078570,
46602870,
65332175,

466,

1278328,
2035525,
3171854,
4944619,
7573964 ,

1
-~
[

27,
204,
943,
2639,
6836,

{1,
20,

572,

11591784,
16536585,
23461150,
33110760,
46495191,

1,
29,
240,
1023,
2860,
7394,
16665,
35302,
73360,
145987,
264519,
470148,
821178,
1323598,
2098992,
3308240,
5144052,
7951648,
12151724,
17386918,
24736987,
35004574,
49279318,
69034230,

17,
154,
577,

1374785,
2159436,
3395806,
5238677,
8078710,

37,
260,

17986,
38621,
78862,

0,
26,
149,

702,

12264060,
17485229,
24792263,
34968805,
49075706,

40,
306,
1168,
3209,
8207,
19788,
41592,
85794,
158200,
285686,
506274,
881958,
1411652,
2245472,
3520000,
5484912,
8442383,
12920294,
18466449,
26245747,
37103408,
52185710,
730415961};

1,
23,

193,

712,

1459264,
2316120,
3599839,
5596211,
8552370,

3,
49, 53,

1267,
3476,
8874,

1 s
35,
189,

2,

13057354,
18592642,
26331227,
37098243,
52009892,

3,
66,
332,
1438,
3894,
9828,
21348,
45453,
92189,
169704,
305955,
541345,
941644,
1512596,
2391561,
3758301,
5828670,
8986794,
13701879,
19567341,
27788242,
39253822,
55169310,

1,
31,

242,
859,

1568262,
2456690,
3851793,
5927823,
9117990,

5, 5,
71,
386,

3, 2,
45, 41,
239,

876,

7,
86,
419,
1560,
4217,
10621,
23455,
48926,
100180,
183731,
330174,
582526,
1010713,

4,

58,
302,
1049,

189

1664337,
2633289,
4082447,
6329149,
9650628,

13811892,
19655289,
27819720,
39172364,
548859561,

10,
113,
528,

7,
93,
487,
1767,
4708,
11746,
25293,
53399,
107602,
197007,
353460,
622644,

1612653,
2557186,
39975692,
6212188,
9538617,

3, 6,
54,
299,

1072,

4,
75,




1277,
3271,
7908,
16270,
34466,
67319,
121966,
204771,
357475,
614307,
1040520,
1620192,
2535676,
3882693,
5961417,
8991718,
12764978,
18025646,
2532565621,

1310,
3398,
8284,
18218,
36366,
74032,

133332,

216726,

1548,
3920, 4081, 4685,
9379, 9833, 11103,
19173, 21416,
40275, 42510,
78257, 85916,
141065, 154005,
235748, 249522,
378409, 409874, 433884,
650257, 701730, 742769,
1101165, 1184537,
1739117, 1839800,
2681578, 2871034,
4149796, 4386347,
6298600, 6717710,
9576197, 10111869,

13576575, 14329409,

19147834, 20200078,

26870925, 28334046,

1594, 1875,

/* Needs at least 64 bit */
{1) 1,

const long long X[MAX]
56, 77, 101, 135, 176, 231, 297,
1575, 1958, 2436, 3010, 3718,
12310, 14883, 17977, 21637,

63261, 75175, 89134, 1055568,
239943, 281589, 329931, 386155,
831820, 966467, 1121505,
2323520, 2679689, 3087735,
6185689, 7089500, 8118264,
15796476, 18004327, 20506255,
34262962, 38887673, 44108109,
72533807, 82010177, 92669720,
150198136, 169229875, 190569292,
304801365, 342325709, 384276336,
607163746, 679903203, 761002156,
1064144451, 1188908248,

1844349560, 2056148051,

3163127352, 3519222692,

5371315400, 5964539504,

9035836076, 10015581680,

1934,
4887,

11654,
22557,
46989,
90846,

469493,

1253465,
19735635,
3035871,
4685500,
7096653,

10764269,
156233989,
21449166,
30051881,

4565,
26015,
124754,

1300156,
3554345,
9289091,
23338469,
49995925,
104651419,

1327710076,
2291320912,
3913864295,
6620830889,

11097645016,

2262,
5592,
13116,
25137,
49620,
99594,
162955,
271114,

800888,
1347369,
2087573,
3248420,
4951920,
7565130,

2, 3, 5, 7,
385, 490,
5604,

31185,

147273,

451276,

1505499,

4087968,

214481126,
431149389,
851376628,

2340,
5839,

26489,
54749,
1056327,
177684,
286975,
496997,
847671,

11364646,
16076195,
22624261,
31683105,

627,
6842,
37338,

526823,
1741630,

10619863,
26543660,
56634173,

118114304,

1482074143,
2552338241,
4351078600,
7346629512,
12292341831,

2723,
6656 ,
13782,
29458,
57839,

188036,
311469,
537294,
913268,
1425654,
2237838,
3434499,
5286847,
7990684,

11, 15,
792,
8349,

44583,

22,

173525,
614154,

4697205,
12132164,

241265379,
483502844,
952050665,

1002,
10143,

190

2825,
6962,
15473,

31063,
63706,

116302,

329709,
568750,
966560,

1531362,
2366892,
3672822,
5586662,
8514112,
12092472,
17083983,
24013932,
33591834};

30, 42,

1255,

53174,

204226,

715220,

2012558,
5392783,

13848650,

30167357,
64112359,
133230930,

271248950,
541946240,

1653668665,
2841940500,
4835271870,
8149040695,
13610949895,
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15065878135, 16670689208, 18440293320, 20390982757, 22540654445,
24908858009, 27517052599, 30388671978, 33549419497, 37027355200,
40853235313, 45060624582, 49686288421, 54770336324, 60356673280,
66493182097, 73232243759, 80630964769, 88751778802, 97662728555,
107438159466, 118159068427, 129913904637, 142798995930,
156919475295, 172389800255, 189334822579, 207890420102,
228204732751, 250438925115, 274768617130, 301384802048,
330495499613, 362326859895, 397125074750, 435157697830,
476715857290, 522115831195, 571701605655, 625846753120,
684957390936, 749474411781, 819876908323, 896684817527,
980462880430, 1071823774337, 1171432692373, 1280011042268,
1398341745571, 1527273599625, 1667727404093, 1820701100652,
1987276856363, 2168627105469, 2366022741845, 2580840212973,
2814570987591, 3068829878530, 3345365983698, 3646072432125,
3972999029388} ;

#endif
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[Cap88]

[Cap92]
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[Cap96]
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