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ABSTRACT OF THE DISSERTATION

A Multi-Pronged Assault on New Physics at the Large

Hadron Collider

by Michael Park

Dissertation Director: Professor Scott Thomas

With the completion of Run I at the Large Hadron Collider, the primary directive of

the high energy phenomenology community now lies in evaluating the lessons learned

in order to formulate an optimal strategy for potential discoveries in Run II. Given the

challenges to our theoretical biases presented by Run I, we argue for an approach to Run

II that makes minimal assumptions about what new physics may lie at the electroweak

scale outside of what has already been discovered. The overwhelming evidence for a

Standard Model-like Higgs boson with a mass of approximately 125 GeV is undoubtedly

of central importance for our considerations.

The first section of this dissertation focuses on developing a model independent

strategy for parameterizing theories of new physics by the possible decay topologies of

heavy new particle states. Connections between this parameterization and theories like

supersymmetry are also detailed. The second section focuses on exploring the newly

discovered Higgs sector for possible non-Standard Model-like behavior. This includes

the search for additional Higgs doublets as well signs of potential flavor violation induced

by the Higgs sector. The final section is dedicated to new methods for extracting

theoretical parameters from decay topologies that arise in a wide range of possible

theories of physics beyond the Standard Model.
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Preface

This dissertation contains a detailed summary of selected work that I completed as a

doctoral candidate, under the supervision of professor Scott Thomas, with the New

High Energy Theory Center at Rutgers University. The work presented here focuses

on the search for physics beyond the Standard Model at the Large Hadron Collider

experiment.

The timing of my graduate fellowship appointment, with respect to Run I of LHC

operation, was extremely fortuitous. Entering the research group just as soon as prepra-

tions were ramping up, I was fortunate to have been able to work on an extraordinarily

wide range of topics related to high energy collider physics, at almost every stage of

development. It is this breadth and comprehensiveness that I hope is conveyed in this

thesis, which is organized as follows: Part I describes early work on searches for heavy

new particle states in the context of supersymmetry and simplified models. Part II is

dedicated to a long-term project applying multi-lepton search strategies to various as-

pects of Higgs searches. Part III describes a number of post-discovery projects related

to the extraction theoretical parameters from data using kinetmatic variables.

Understanding that doctoral dissertations are rarely read after they are written; I

hope that this thesis stands, however silent, as an accurate reflection of how truth was

sought in this endeavor.
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Chapter 1

Introduction

At the time of the writing of this thesis, the field of particle physics stands at something

of a cross road. The Standard Model (SM) of particle physics has stood firm since the

1970’s as an extremely robust description of nearly all the interactions (with the excep-

tion of gravity) that are known to occur between the observed fundamental building

blocks of matter. The experimental consequences born from the structure of the SM are

so vast in number, and (again with a few notable exceptions) have been verified with

such veracity, that the dearth of experiments providing new insight has become the

central bottle-neck to theoretical progress in this field. While it is entirely possible that

the broader theoretical framework of quantum field theory (QFT), within which the SM

sits as a specific construction, stands equipped to potentially address every observable

phenomenon in this universe; there are clear indications that the validity of the SM itself

does not extend to all known scales. Although the SM is an elegant and fully consistent

theory, the omission of a description of gravity, an explanation for neutrino masses,

and a specification of the identity of dark matter, stand as obvious phenomenological

obstructions to viewing the SM as a candidate theory of everything that is valid up to

Planckian energies MPl. While all of these ommisions can be accounted for within the

modern paradigm of effective field theory (EFT), a great challenge still lies in finding

a broader theoretical framework to explain these phenomena.

1.1 Historical Context

Roughly speaking, the paradigm of EFT can be viewed as exactly this acquiscence to the

fact that our theoretical understanding of nature has a limited regime of validity. This

regime is commonly defined by the existence of a “cut-off distance” L: a length scale
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below which yet unknown laws of physics presumably subsume the laws we currently

understand. Because of the wave-like nature of matter, this cut-off length scale L is

associated with a corresponding “cut-off energy” scale called Λ, which is the energy at

which matter waves would have to collide in order to resolve structures of size L. This

Λ is simply given by the compton wavelength relation Λ = hc/L and represents the

energy above which our effective theories lose their validity and/or predictivity.

Despite the problems mentioned with the SM, there are empirical reasons to suspect

that the more general framework of QFT is applicable at least to some energy scale

above which the SM breaks down. It is therefore natural to interpret the SM as an EFT

with an energy range of applicability demarcated by some cutoff scale Λ, representing

the energy scale above which we expect the predictions of the SM to diverge from

nature. With the power of hindsight, a historical account of the progress in theoretical

physics over the last century through the modern lens of EFT, paints a sharp picture

of the central issue facing our field today.

The first indication of the existence of such a cut-off distance came from consider-

ations of Maxwell’s theory of electromagnetism. Recall that in Maxwell’s theory, the

electrostatic potential energy UE between an electron e− and a positron e+ separated

by a distance r, is inversely proportional to this separation distance:

UE(r) ∝ 1

r
(1.1)

With no empirical evidence for a non-zero radius of the electron (or positron), Maxwell’s

theory clearly allows for arbitrarily small separation distances, which in turn allows for

the existence of infinite energy densities as UE →∞ when r → 0. Indeed it was known

that a minimum distance of separation L = re, commonly referred to as the “classical

electron radius”, must be included as an ad-hoc input to this theory in order to prevent

such a nonsensical prediction. Demanding that the potential energy attributed to an

electron be bound by its total rest energy (given by its mass via Einstein’s equation

UE = mec
2), gives a cut-off minimum distance for re ∼ 10−15 m, or equivalently a

cut-off maximum energy scale Λ ∼ 1 GeV. Below distances of about 10−15 m, or

above energies of about 1 GeV, the Maxwellian picture produces non-sensical results,
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indicating that some new phenomena should appear upon probing this distance or

energy scale.

In fact, the new phenomena appeared far sooner than expected. When particle

colliders began probing atomic distances of about r ∼ 10−10 m (collision energies of

10 keV), all kinds of phenomena that were incompatible with Maxwell’s theory were

discovered in what eventually led to the development of quantum theory. In partic-

ular, it was found that the quantum mechanical phenomenon of vacuum polarization

(the screening of electric charge due to particle-antiparticle pair creation) modified the

form of UE in a way that removed the nonsensical behavior. We now know that at dis-

tances comparable to atomic radii, quantum-electrodynamics (QED) subsumes classical

Maxwellian electrodynamics as the new effective theory.

Shortly after the development of quantum mechanics, another cut-off energy was

encountered with the peculiar phenomenon of neutron decay. After a time of about

τn ∼ 900 s, an isolated neutron (n) was observed to disintigrate into a proton (p),

electron (e), and an anti-neutrino (ν), in a phenomenon that became known as β-decay.

The existence of this four-fermion interaction

GF√
2
νγµe pγµn (1.2)

had the troubling property that it necessitated the existence of inverse β-scattering,

and it predicted that the probability of inverse β-scattering P(νp → e+n) occuring in

high energy collisions behaved as

P(νp→ e+n) ∝ G 2
F s (1.3)

where s is the squared center-of-mass energy with which the particles collide. The

quadratic dependence of P(νp → e+n) on the center-of-mass energy meant that at

some high energy, the probability of particle collisions would exceed unity thus violating

unitarity. Since we cannot make sense of a theory that predicts probabilities greater

than unity, the cut-off energy for this theory finds an upper bound at the center of mass

energy at which unitarity is violated. For this four-fermion interaction this is around
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�νe
p

e+

→
n

�W±

νe

p

e+

n

Figure 1.1: Inverse β-scattering via exchange of a W± boson.

Λ ∼ 100 GeV.

Once again, particle collider experiments far below this energy scale revealed that

at very small distances r ∼ 10−17 m, the four-fermion interaction ceased to adequately

describe inverse β-scattering. More specifically, it was found that this interaction must

be modified to include the exchange of a new spin-1 particle. β-decay was actually the

result of a new force, mediated by the newly discovered W± boson as shown in Fig.

1.1. As expected, with the of inclusion this new particle exchange into the theory, the

probability of inverse β-scattering changes its behavior at high energies in a way that

does not violate unitarity.

The reason that the W± bosons can only be resolved at extremely small length

scales is because they can only exist and propagate for a very short time before they

decay into other particles. This is because the W± particles are massive gauge bosons,

a fact that immediately gives rise to another problem with the theory. In a manner

similar to the case of inverse β-scattering, the longitudinally polarized components of

any massive gauge boson have a probability of scattering that also grows with the

square of the collision energy

P(W+
LW

−
L →W+

LW
−
L ) ∝ α2s (1.4)

Thus the same problem exists that any theory of massive gauge bosons will violate

unitarity, predicting interaction probabilities that exceed unity at very high scatter-

ing energies. Shortly after this became apparent, Steven Weinberg famously realized

that if there existed a single spin-0 scalar particle h that interacts with the massive
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�W−L

W+
L

W−L

⊃
W+
L

�h

W−L

W+
L

W−L

W+
L

Figure 1.2: Contribution of a Higgs exchange diagram to the scattering of longitudinally
polarized W± bosons.

gauge bosons, the contribution of h to the scattering process would come with exactly

the correct properties to cancel off this unitarity violating behavior. This is shown

diagrammatically in Fig. 1.2. This spin-0 scalar h is the famed Higgs boson.

1.2 Symmetries and Scalars

The concept of symmetry has proven to be an extremely powerful organizing principle

with which to think about QFT’s in general. So powerful in fact, that a specification

of the symmetries of a theory along with a specification of the representations with

which the constituent fields transform under these symmetries, is practically sufficient

for the complete construction of any QFT. Once these symmetries and representations

have been identified, every possible operator up to dimension four Od=4 that can be

built from combinations of fields that are invariant with respect to the symmetries,

will be found in the (renormalizable) Lagrangian of the theory Ld=4, with appropriate

coefficients ai

Ld=4 ⊃
∑
i

aiOd=4,i (1.5)

In other words, any process that is not forbidden by the symmetries of the theory will be

generated by quantum corrections. One of the salient features of the EFT perspective

is that the effects of unknown physics above the scale Λ are generically parameterizable

by the coefficients of higher dimensional operators (HDO) of the form
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LHDO =
∑
d>4

∑
i

bd,i
Λd−4

Od,i (1.6)

The goal of the particle physics research program can then be viewed as a quest to

ascertain the physics of the full theory with the Lagrangian description

Lfull = Ld=4 + LHDO (1.7)

Or in other words, to measure any coefficients ai or bd,i that may be accessible to

experiment.

Scalar degrees of freedom, generically labeled φ, are (by definition) already invariant

with respect to the symmetries under which they may be called scalars. This means

that there are no non-trivial symmetry transformations that could possibly restrict the

form of the quantum corrections to the propagator of a scalar field. The fully quantum

corrected mass of any scalar field mφ will therefore contain terms proportional to the

squared masses of every particle with which it interacts.

m2
φ ⊃

all∑
i

ciM
2
i (1.8)

This might seem benign for an EFT with a limited energy range of validity, but every

time a cut-off energy has been explored experimentally, heavy new particle states have

been discovered with masses of order the cut-off scale. We therefore expect that, in the

absence of some new dynamics at the scale Λ or some delicate cancellataions between

terms in the sum of m2
φ, that the mass of any scalar degree of freedom should be on the

order of the cut-off energy m2
φ ∼ Λ2. This general principle has proven valid for every

scalar that had been found prior to 2012. Notably, the scalar mesons (bound states

of quarks and antiquarks) all have masses of order ΛQCD, the scale at which their

description as fundamental particles breaks down and their composite nature becomes

apparent. Indeed there exist many effective theories in nature with scalar degrees of

freedom in the form of composite particles. Their masses may always be computed in

the effective theory to be dependent on the masses squared of every particle up to the

cut-off energy, which is the energy scale at which their contituents supercede them as



7

the relevant degrees of freedom.

1.3 Hierarchies and the Higgs

The Standard Model of particle physics with a fundamental scalar Higgs boson has no

known cut-off energy. It can be extrapolated as a consistent description of nature all

the way up to Λ ∼ MPl, where the strength of gravity implies the existence of new

degrees of freedom. On one hand, the mass of the Higgs boson mh is responsible for

setting the scale of electroweak symmetry breaking at MEW ∼ O(102 GeV). On the

other hand, it must contain the sum of squared masses of every particle that it interacts

with up to its cut-off, which could be as large as MPl ∼ O(1020GeV).

m2
h ∼M2

EW ∼
all∑
i

ciΛ
2 , Λ2 < M2

Pl (1.9)

If Λ ∼ MEW , then this is totally sensible, and we should expect to discover some new

phenomena upon the systematic probing of energies close to MEW . However, if the

SM holds to a scale Λ >> MEW (worst case Λ ∼ MPl), then there must apparently

be extremely delicate and unnatural cancellations between the terms in the sum of

Eq. 1.9, and we have no explanation for why MEW << MPl. This is the hierarchy

problem concerning the unnatural value of m2
h. Many theoretical physicists have taken

the position that the very existence of a scalar degree of freedom in the SM stands

as a strong indication that it must be an EFT with a cut-off energy on the order of

MEW . It is a position that history has vindicated with numerous post-dictions and

the observation that no fundamental scalar has ever been known to exist in nature. It

also comes with the completely generic expectation that some new degrees of freedom

should become apparent upon the systematic experimental exploration of energies (or

distances) at that scale.

On July 4th of 2012, upon careful analysis of ∼ 10 fb−1 of particle collisions at

7 and 8 TeV center-of-mass energy, experimentalists at the Large Hadron Collider

officially announced the discovery of the Higgs boson with mh ∼ 125 GeV ∼ MEW as

expected. Since then, all of its measured properties have been found to be consistent
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with the fundamental scalar degree of freedom expected from a minimal SM Higgs

boson. To date, there has been no indication of the existence of any other new degrees

of freedom around MEW . Thus for the first time in history, the field of theoretical

particle physics finds itself with no indication from nature on how to proceed with the

march to understand the universe at smaller distances and higher energies. In every

analagous instance through history, nature has pointed towards some distance or energy

scale where some paradoxical theoretical conundrum required a resolution through the

introduction of new ideas. For the first time, we find ourselves in the position of having

to explain the absence of such a conundrum.

From a practical standpoint, this has immediate implications for how we should ap-

proach our experiments from this point on. The purpose of this dissertation is then to

describe a more modern approach to new physics searches in high energy experiments.

One that is more adaptive to this newfound climate of relative theoretical uncertainty.

The first part of this thesis will thus be dedicated to a description of broad and rela-

tively model-independent searches strategies for heavy new particle states. The value

of model independence has certainly risen from the new danger that a positive signal in

the data might go unnoticed because we didn’t know where to look. The second part

will be dedicated to the use of powerful experimental techniques to probe the Higgs

sector in ways that are both complementary and orthogonal to the avenues currently

being explored. Despite lacking a concrete characterization of what new phenomena

(if anything) to expect when Run II at the LHC commences, there is at least some

sound theoretical motivation to expect that it would involve the Higgs sector, if noth-

ing else. Finally, the last section of this thesis is dedicated to post-discovery analyses,

and techniques to extract theoretical paramters from data. The existence of potentially

very subtle new physics effects have presented the challenge of devising equally subtle

methods for extracting information from experimental observables of ever-increasing

complexity. The impotance of comprehensiveness in this modern climate of high en-

ergy particle physics suggests such a multi-pronged approach for exploring new laws of

physics at the Large Hadron Collider, at multiple stages of the discovery process.



Part I

The First Prong: Model

Independent Searches for Heavy

New States

9
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Chapter 2

Simplified Models

A new physics model may be defined by an effective Lagrangian describing the particle

content and interactions of the theory at the TeV scale. So called “simplified models”

are specifically designed to involve only a few new particles and interactions and may be

viewed as the limit of more general new physics scenarios where all but a few particles

have been integrated out. Such models can alternatively be described by a small number

of collider physics observables corresponding to specific experimental signatures, for

example particle masses, production cross-sections, and branching fractions.

Although simplified models are model dependent, they do enjoy some benefits of

model independence. In particular, the sensitivity of new-physics searches to models

with only a small number of parameters can be studied and presented simply as a

function of these parameters and in particular, over the full range of new particle

masses. Though defined within a simplified model, these topology-based limits also

apply to more general models giving rise to the same topologies.

The purpose of simplified models are three-fold

• To identify the boundaries of search sensitivity: Any critical assessment of LHC

searches needs to include a clear identification of the boundaries of sensitivity -

for example, the dependence of reconstruction and selection efficiencies on the

mass differences between a parent particle and its decay products. One- and two-

dimensional slices within a simplified model can illustrate these boundaries very

clearly. Only with this information can experimentalists and theorists identify

kinematic ranges (or entire topologies!) for which existing search strategies are

not efficient, and devise appropriate generalizations to these strategies. For the

same reasons, limits on simplified models also serve as a valuable reference for
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theorists who wish to estimate a searchs sensitivity to alternative new-physics

models in their own Monte Carlo.

• To characterize new physics signals: If new physics is observed, it will be im-

portant to fully characterize the range of particle quantum numbers, masses, and

decay topologies that it may involve. As has been discussed in [1], simplified mod-

els can offer a natural starting point for quantifying the consistency of a signal

with different kinds of physics reactions. Similar strategies have been discussed

in [2, 3].

• To derive limits on more general models: Constraints on a wide variety of models

can be deduced from limits on simplified models. Within each final state, simpli-

fied model limits can be formulated as an upper limit on the number of events in a

signal region, and a parametrized efficiency for each simplified-model topology to

populate the signal region. Limits on other models giving rise to the same topolo-

gies can be inferred by summing the effective cross-section for each topology (a

product of cross-sections and branching ratios), weighted by their experimental

efficiencies, and comparing the result to the upper bound. This procedure can

be extended to multiple signal regions if a combined likelihood is reported as a

function of the number of signal events in each signal region. These procedures

are discussed in several talks at the workshop and, for example, in [4]. We also

give an example in Section II 3. It should be emphasized that this procedure

yields weaker limits than the direct study of experimental efficiencies for a given

specific model, as the procedure uses only topologies populated by both the spe-

cific and simplified models. This procedure should therefore be regarded as an

initial check only, which can be followed by a dedicated study or RECAST-style

analysis [5] if higher precision is needed. Finally, we note that simplified models

can be simulated either as modules from widely used model frameworks (like the

MSSM) in Pythia [97] or MadGraph [93], as new models in MadGraph, or as

OSETs using Marmoset [3] or recent versions of Pythia.

Experiments at the LHC could enhance the applicability of new-physics searches
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by considering their sensitivity to these “simplified models”. Simplified models should

be defined in such a way that their topologies are representative of the wide variety of

new-physics possibilities that could be seen at the LHC. These pre-defined simplified

models should then be used in the design of new-physics searches and characterization

of their results. The hope is that the simplified models listed here will provide a

foundation for assessing the impact of existing searches, and how they can be extended

or better optimized. In addition, we expect that the simplified models here will be a

useful starting point for characterizing any evidence for new physics, in a systematic

and unbiased manner. Simplified models may be organized according to classes of

signatures. For example those involving jets, heavy-flavor (b or τ), leptons, photons,

and exotic objects such as new displaced vertices, non-standard timing, or novel jet-like

structures.

This section, adapted from [4], outlines the important elements that go into any

simplified model analysis. As an illustrative example, it focuses on gluino production

and decay as a model for hadronic jets plus missing energy signals. We will discuss

how limits can be set in a multidimensional parameter space and how the limits from

multiple topologies can be combined. The procedure outlined here is a general one and

can be applied to any of the simplified models listed in this review.

2.1 Effective Lagrangians

Consider a direct three-body gluino decay into an electroweak gaugino and two light-

flavored quarks,

g̃ → qqχ0 (2.1)

This decay mode occurs in supersymmetric models where the squarks are significantly

heavier than the gluino; it proceeds through the dimension-six operator

Lint =
λ2
i

M2
i

g̃qiqiχ
0 + h.c. (2.2)
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where i runs over the different quark flavors, λi is the Yukawa coupling for the quark-

squark-χ0 vertex, and Mi is the effective scale of the interaction. The flavor structure

of the final state is determined by the mass spectrum of the corresponding squarks,

with decays through lighter mass squarks occurring more rapidly. In this example, only

light-flavor decay modes are considered.

Direct three-body decays arise in models where the squarks are decoupled, such as

in split-supersymmetry [8], or where the soft masses of the squarks are at the TeV-scale,

but are still somewhat larger than the gluino mass. These decays dominate when

• χ0 = B and the right-handed squarks are lightest, or the W is kinematically

inaccessible

• χ0 = W and the left-handed squarks are lightest, or all squark masses are com-

parable

• χ0 = H and the heavy-flavor squarks are kinematically accessible in gluino decays,

or the B̃ and W̃ are kinematically inaccessible

In mSUGRA [9–13] and GMSB-like [14–23, 42] models, the LSP is usually bino-like

and there is no strong splitting between the left and right-handed squarks; therefore,

the direct decays usually do not dominate. In contrast, AMSB scenarios [25–28] have

a wino-like LSP and a large wino gauge-Yukawa coupling, leading to a large branching

ratio for three-body gluino decays.

A complementary simplified model corresponds to the case where the gluino goes

through a three-body decay to a chargino that subsequently decays to a gauge boson

and the LSP,

g̃ → qq′χ± → qq′(W±χ0) or g̃ → qqχ′
0 → qq(Z0χ0) (2.3)

The decay chain “gluino → heavy electroweakino → lightest electroweakino is pre-

ferred in many supersymmetric scenarios [29], including mSUGRA. A similar chain

KK-gluon→ KK-gauge boson→ KK-graviton is also present in Extra Dimensions [30–

32]. When the intermediate particle is a chargino, all events have two W± bosons in the
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final state. Alternative simplified models exist in which the intermediate state is neutral

and decays to a Z0 boson or higgs instead of a W±. When exchanging a W± for a Z0,

the mass difference is a small effect at the LHC. However, the difference between their

leptonic decay modes is quite significant. In hadronic searches, the difference between

modes is manifested in two ways: the fraction of events that are truly hadronic, and

the presence in the W mode of leptonic W ’s that are not vetoed in the searches (e.g.,

if the lepton is non-isolated or out of acceptance). These effects are unlikely to affect

the optimization of search regions, but do introduce complications in translating limits

from one simplified model to another. Answering this question requires understanding

the differences in the acceptances/efficiencies for events with Z0 final states versus W±

final states.

2.2 Simplified Model Parametrization

A simplified model is described by a minimal set of parameters that often include

the particle masses and the production cross sections. For example, the three-body

direct decay model is parametrized in terms of mg̃ , mχ0 , and σ(pp → g̃g̃ + X). The

one-step cascade decay introduces two new parameters: the mass of the intermediate

particle mχ± and the branching ratio of g decaying into χ±. However, it is much easier

to consider each simplified model with branching ratios set to 100%. Models with

multiple decay modes can be studied by taking linear combinations of results for single

decay modes, as discussed in the following section. When the efficiencies of a search for

two decay modes are very different, studies of mixed topologies may also be desirable.

Assuming a 100% branching ratio reduces the number of parameters in the one-step

cascade model to four. The choice of mχ± alters the kinematics of the theory and must

be included, despite the challenges of presenting limits in a four-dimensional space. It

is instructive to consider lower-dimensional mass slices in mχ± , which illustrate the

distinctive features of the one-step cascade and capture all the relevant corners of phase

space. An example of a useful family of chargino mass slices is

mχ± = mχ0 + r(mg̃ −mχ0) (2.4)
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The case of r = 0 is identical to the direct three-body decay. The case of r = 1

closely resembles a direct two-body gluino decay, provided the W± is boosted so that

its decay products merge together. A few intermediate values of r (e.g. 0.25, 0.5, and

0.75) cover a variety of kinematics. In hadronic searches, the limit of small r approaches

the direct three-body decay, but the precise χ±−χ0 mass difference significantly affects

the sensitivity of leptonic searches. For these, a mass slice with mg fixed near the limit

of detectability, and mχ0 and mχ± varied independently, is also relevant. To explore

the effect of on-shell decays near threshold, the alternative mass slice

mχ± ∼ mχ0 +mW± (2.5)

is useful. Threshold effects are fairly modest because the mass scales accessible at the

LHC are sufficiently above mW± , though they do become important for lighter gluino

masses. In [33], this can be seen as a sharp drop in the cross section sensitivity along

the line in Eq. 2.5.

2.3 Combining Topologies

The above discussion has focused on topologies corresponding to particle-antiparticle

pair production, with the two produced particles decaying through identical channels.

More generally, associated production topologies and ’mixed’ decay modes, where, for

instance, one gluino decays directly to the LSP (mode A) while the other decays through

a cascade (mode B). It is useful to consider what one may infer about these models

given only a search’s sensitivity to the two ’symmetric’ decay modes. We consider this

question in the context of an idealized search result with two components: an upper

limit Nmax on the expected number of signal events in a signal region of interest, and

the efficiency for each process to populate this signal region. If all efficiencies were

known, one could infer a cross-section limit σmax for models with branching ratios BA,

BB by

σmax =
Nmax

B2
AεAA + 2BABBεAB +B2

BεBB
(2.6)
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(the cross-section upper limits for the two symmetric decays are simply σmax,AA =

Nmax/εAA and similarly for the mode BB). However, we wish to consider what can

be gleaned about σmax if the efficiency εAB is unknown. Upper and lower bounds on

σmax can be obtained simply by using the fact that 0 ≤ εAB ≤ 1. The lower bound

corresponding to εAB → 0 amounts to “throwing out” the mixed events. The resulting

limit is conservative (it always under-estimates the true strength of a search result), but

can be a considerable underestimate of the actual search sensitivity, particularly when

both branching ratios are comparable or the dominant decay mode has low efficiency.

In many cases where the decay modes A and B produce similar final states, the mixed

decay modes have an efficiency comparable to those of the two symmetric modes, and

typically intermediate:

min(εAA, εBB) ≤ εAB ≤ max(εAA, εBB) (2.7)

If the εAA and εBB are comparable, then inserting these bounding values into Eq. 2.6

allows a fairly precise determination of σmax, even when branching ratios are nearly

evenly split between the two decay modes.

It is important to emphasize that Eq. 2.7 is by no means guaranteed. When expected

violations of Eq. 2.7 are large, the mixed topologies warrant careful dedicated study.

As an extreme example, if mode A is fully hadronic and mode B typically produces a

lepton, then for a one-lepton search one expects εAB � εAA, εBB. These correspond to

cases where it is clearly important to parametrize a search’s sensitivity to the mixed

decay modes directly. However, in the case of hadronic searches and the gluino decays,

Eq. 2.7 is typically true at least to a good approximation. A reasonable assessment

of whether Eq. 2.7 is likely to hold can be obtained by studying the step-by-step

efficiencies of a search for the two symmetric decay modes. If mode AA passes each

individual cut with comparable or greater efficiency than BB (or vice versa), then Eq.

2.7 is likely to hold. Even when this is not the case, the lower bound is robust in many

examples. Thus, in most cases one may draw powerful conclusions from the symmetric

decay modes alone.



17

2.4 Supersymmetry to Simplified Models

Despite tension with experiment, supersymmetry remains a well motivated framework

for thinking about new physics at the LHC. Although its application to particle physics

at the TeV scale was originally motivated by considerations of naturalness and the

hierarchy problem, the enormous size of its parameter space alone has proven it to be

extremely useful on a pragmatic level, for motivating searches that transitively cover

the space of possible experimental signatures. It can thus be viewed as an extremely

efficient “signature generator” within the context of simplified models discussed above.

The minimal supersymmetric extension of the Standard Model (MSSM) introduces

119 new parameters that can give rise to nearly any type of final state. Indeed even

within the MSSM framework, two entirely different models can give rise to very simi-

lar final state signatures. The huge volume of the signature space and the abundance

of such degeneracies suggests the need for a more streamlined approach towards ex-

perimental searches. From this perspective, it is useful to consider the experimental

signature space of the LHC as a high-dimensional Cartesian space Rn, of which a

three-dimensional projection is shown in Fig. 2.1. In this picture, one can assign any

quantifiable physical observable to an axis in this space. For illustrative purposes, on

this slice we have chosen HT : defined as the scalar sum of the pT ’s of all the hadroni-

cally interacting objects in an event, ET6 : defined as the norm of the vector sum of all

the non-interacting objects in an event, and lepton-number `#: defined as the number

of light leptons (e or µ) produced in the hard process of an event.

Figure 2.1: A three-dimensional slice of the experimental signature space.
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With this definition, one event corresponds to a point in this space, and a sample

of events associated with a given trigger corresponds to a density along a subspace.

The Standard Model is known to produce events that fill this space with a density

peaked near the origin, while models for physics beyond the Standard Model (BSM)

such as supersymmetry can easily produce models that occupy the extremities of this

space. Given the relatively simple structure of possible final state signatures from this

perspective, it would be vastly more efficient to scan over this experimental signature

space than, for example the space of couplings in supersymmetric theories. Points on

the experimental signature space can be organized into simplified models, determined

by their decay topology, thus forming a bridge between potentially large classes of BSM

models and the various searches being carried out at the LHC.

2.5 Phenomenological Structure of Gauge Mediation

One class of supersymmetric models that is particularly appealing from a predictive

phenomenological perspective, is gauge mediated supersymmetry breaking (GMSB).

The salient feature of theories with gauge mediation, is that the SUSY breaking scale

is low, which provides useful control of aspects of the phenomenology in such models.

If the supersymmetry breaking scale is relatively low, gauge interactions are likely to

play a role in transmitting supersymmetry breaking to the visible Standard Model

superpartners [41]. If gauge interactions represent the dominant couplings of squarks,

sleptons, and gauginos to the SUSY breaking sector, then it is natural to expect a

gauge-ordered spectrum for the superpartners in which the right-handed sleptons and

the bino with U(1)Y interactions are lightest, left-handed sleptons and the wino with

SU(2)L interactions are heavier, and squarks and the gluino with SU(3)c interactions

are heaviest.

A significant conceptual advancement in the simplified parameterization of BSM

physics has been the generalization of the GMSB scenario to a framework known as

General Gauge Mediation (GGM). In GGM, there is no assumed gauge ordered mass

hierarchy. The MSSM soft masses are assumed to be free at the messenger scale and are

subject only to the following conditions: (1) A gravitino LSP (2) Vanishing A-terms at
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the scale of SUSY breaking (3) Sfermion mass sum rules (4) Flavor universality. In par-

ticular, there is not necessarily a hierarchy between colored states (squarks, gluinos) and

uncolored states (wino, bino, higgsinos, sleptons). With no real theoretical constraint

on how light the color charged particles can be, GGM leaves room for the possibility

of large production cross sections from compressed spectra, resulting in high discovery

potential at early LHC runs. This is in stark contrast to the more restrictive Minimal

Gauge Mediation (MGM) scenario, where colored states are always heavier than the

uncolored states and are thus out of reach for the early LHC runs.

The MGM restriction to a single source of SUSY breaking is not generally realized

except in the simplest models. One specific scenario that fits within the classification of

GGM is Gauge Mediation with Split Messengers (GMSM) [38, 39] in which the strong

and weak messenger fields feel independent sources of SUSY breaking, and also allow

for additional requisite SUSY breaking in the Higgs sector. In this simple generalization

of MGM, the superpartner mass spectra are grouped roughly into strongly and weakly

interacting sets. Over much of the parameter space the masses of both these groups

can be comparable, yielding relatively compressed spectra with colored states not much

heavier than weakly interacting states.

The simplest version of gauge mediation with split messengers (GMSM) is defined

by the six parameters

N5 ΛL Λd M tanβ µ (2.8)

where ΛL and Λd are the SUSY breaking scales for the weak and strong messenger

chiral multiplet fields L ⊕ L and d ⊕ d, transforming as (1, 2,−1) ⊕ (1, 2,+1) and

(3, 1,+2
3) ⊕ (3, 1,−2

3) respectively under SU(3)c × SU(2)L × U(1)Y . Here the electric

charge generator is normalized as Q = T3 + 1
2Y . The gaugino masses in this version of

GMSM are given by

mλi =
αi
4π

Λλi (2.9)
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where i = 1, 2, 3 for bino, wino, and gluino, αi = g2
i /4π where gi are in GUT normal-

ization g2
1 = (5/3)g′2,

Λλ1 = N5

(
3

5
ΛL +

2

5
Λd

)
Λλ2 = N5ΛL

Λλ3 = N5Λd (2.10)

and all quantities are understood to be evaluated at the messenger scale. The squark

and slepton masses squared are given by

m2
φ = 2

3∑
i=1

Ci

(
αi
4π

)2

|Λφ,i|2 (2.11)

where C1 = 3
5

(
Y
2

)2

, C2 = 3
4(0) for SU(2)L doublets(singlets), and C3 = 4

3(0) for

SU(3)c triples(singlets), and

|Λφ,1|2 = N5

(
3

5
|ΛL|2 +

2

5
|Λd|2

)
|Λφ,2|2 = N5|ΛL|2

|Λφ,3|2 = N5|Λd|2 (2.12)

where again all quantities are understood to be defined at the messenger scale. The

superpartner SUSY breaking masses at the electroweak scale are determined by renor-

malization group evolution from the messenger scale. The masses squared for the

Higgs fields at the messenger scale are determined by consistent renormalization group

evolution up to the conditions implied by electroweak symmetry breaking, which are

determined by tanβ and µ at the electroweak scale. This allows for a parameterization

of requisite SUSY breaking contributions to the Higgs masses at the messenger scale in

addition to the gauge mediated contributions.

An important feature of gauge mediation which is captured by GMSM, is that while

superpartner spectra are generally gauge ordered (defined above) the masses need not

be directly proportional to gauge couplings squared. This allows for the possibility of
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gauge ordered but compressed superpartner spectra in which the squarks and gluinos

are only somewhat heavier than the the sleptons, bino, and wino. The existence within

the GMSM parameterization of a variable level of compression for the superpartner

spectrum, in particular squarks and gluinos that are lighter than what is implied by

the MGM restriction, has important implications for the total production cross section

and therefore the discovery potential. Much of the phenomenology of simplified models

is determined by the next-to-lightest stable particle (NLSP) in the spectrum.
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Chapter 3

Topologies with a Neutralino NLSP

One broad class of GMSM scenarios is that in which the NLSP is a neutralino [36, 37].

The GMSM parameterization of the space of these models can be interpreted in the

context of a simplified model, which can then be used to apply a very general analysis

to the final state signatures that arise here. In this scenario, the lightest neutralino will

generically decay to a gravitino plus its superpartner, which can be either a photon, a

Z boson, or a Higgs boson, depending on whether the lightest neutralino is bino-like,

wino-like, or Higgsino-like.

χ0
1 → ( γ , Z , h ) + G̃ (3.1)

This results in a large number of interesting signatures, typically involving high pT

leptons, jets, photons and missing energy. One example of such a signature is shown in

Fig. 3.1

The GMSM framework is advantageous for early LHC searches due to the fact that

there is no restriction to gauge ordered superpartner mass spectra, as is required in the

minimal case. As such there are large portions of parameter space where the masses of

strongly and weakly interacting sets are comparable, thus accomodating light colored

states and compressed spectra. Tevatron constraints on neutralino NLSP can be found

in [143]. As discussed there, the phenomenology of general neutralino NLSPs is best

understood by going to simplifying gauge eigenstate limits. The discrete possibilities

are then: bino-like, wino-like, and Higgsino-like NLSPs. Higgsino NLSPs in turn can be

classified by their decay modes, which can be dominated by Z’s (the “Z-rich” scenario),

Higgses (h-rich), or a roughly equal mix of Z and Higgs. For a wino-like NLSP, the

mass splitting between the charged and neutral states is generically small. Therefore
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Figure 3.1: One example process with a bino-like NLSP produced via cascade from
colored production. Here, two gluinos are pair produced, and each one decays through
an on (or off) shell squark to two jets and the bino. In this example, each bino decays
to a photon and a gravitino, resulting in a γγ + ET6 signature.

large swaths of the GGM parameter space fall into the category called “wino-coNLSP”,

where three-body decays to a neutral wino are kinematically disfavored or disallowed,

and the charged wino decays to a W± + G̃. Such signatures include W ’s as well as

Z’s and γ’s in the final state. This is in contrast to the situation with a Higgsino-like

NLSP, where the mass splitting between charged and neutral Higgsinos is generically

larger and only the lightest neutralino can decay directly to the G̃.

In general, a neutralino NLSP can decay to X + G̃ where X = γ, Z, h and the

different gauge eigenstates may be characterized by their branching fractions to the

different possible X’s. A bino-like NLSP will decay dominantly to photons as Br(B̃ →

γ + G̃) ∼ cos2 θW , with a subdominant component to Z’s Br(B̃ → Z + G̃) ∼ sin2 θW .

Conversely, a neutral wino-like NLSP will decay mostly to Z’s and the situation is

flipped. A Higgsino-like NLSP will decay dominantly to Z or h with a branching

fraction that depends on tanβ and sgnµ. The Z-rich scenario occurs for low values of

tanβ and sgnµ = +, the h-rich scenario occurs for low values of tanβ and sgnµ = −,

and the mixed Z/h case occurs for moderate to large values of tanβ. Although this

behavior is generic over the entire GGM parameter space, pathological situations such

as multiple SUSY-breaking sectors with Goldstini can lead to different NLSP branching
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ratios.

Given a choice of neutralino NLSP, there is still a high-dimensional parameter space

the characterizes the remaining superpartner spectrum so additional simplifying as-

sumptions are required to define a tractable parameter space. We choose here a frame-

work for benchmark spectra motivated by early LHC discovery potential. We thus focus

on compressed spectra with large production cross sections from strongly interacting

superpartners.

3.1 Bino NLSP

For bino NLSPs, since the bino has a small direct production cross-section, the dominant

production for the minimal benchmark is gluino pair production (with cross-section de-

termined by the gluino mass). GMSM inspired benchmarks are additionally dominated

by gluino-squark and squark-squark production, as well as wino pair production for the

final benchmark described above with weak production. The produced states always

cascade decay down to the bino NLSP, which then decays to either γ+ G̃ or Z+ G̃. For

m
B̃
� mZ , this happens in a 0.77 : 0.23 ratio. The final states which contain either

one photon or two leptons are: γ +X + /ET , Z(``) +X + /ET , γγ + /ET , γZ(``) + /ET ,

Z(``)Z(``) + /ET . The last has too small of a branching fraction to be useful, so we will

ignore it (however, the Higgsino NLSP will populate this final state, see below). We

also lump the hadronic and invisible decays of the Z into the inclusive “X” category.

The most recent relevant CMS published result analyzes diphoton events, due to

the enhanced Br(B̃ → γ + G̃), from the first 4.93 fb−1 of data at 7 TeV. The bino-like

NLSP is assumed to be pair produced via cascade decays from Squark/gluino strong

production modes. The lightest chargino is assumed to be heavy and decoupled. Fig.

3.2 shows the resulting upper limits on the GGM production cross section, at 95 % CL,

as well as exclusion contours for the gluino versus squark mass plane from 400 to 2000

GeV in squark and gluino mass, with the neutralino mass fixed at 375 GeV. This mass

value is chosen to represent a reasonably light NLSP, but high enough to be outside

current exclusion limits. For the bino-like scenario, the diphoton cross section limit is of
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order 0.003 - 0.01 pb at 95 % CL with a typical acceptance of 30 % for ET6 > 100 GeV,

excluding squark and gluino masses up to about 1 TeV. Fig. 3.3 shows the exclusion

contours in the plane of gluino versus neutralino mass, and we find that the diphoton

search excludes gluino production for a bino-like neutralino for gluino masses up to

about 1 TeV rather independent of the neutralino mass.

Figure 3.2: Observed upper limits at 95 % CL on the signal cross section (left) and
corresponding exclusion contours (right) in gluino-squark mass space for the diphoton
analysis for a bino-like neutralino. The shaded uncertainty bands around the expected
exclusion contours correspond to experimental uncertainties, while the NLO renormal-
ization and PDF uncertainties of the signal cross section are indicated by dotted lines
around the observed limit contour.
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Figure 3.3: Exclusion contours at 95 % CL in the plane of gluino versus neutralino
mass for the diphoton analysis for a bino-like neutralino.

3.2 Wino NLSP

Here production arises from both colored states that decay to the wino and directly

from wino pair production, so the production cross-section is controlled by both the

gluino mass and the wino mass. The wino chargino and neutralino are nearly mass

degenerate and form coNLSPs, so we have to keep track of which “-ino” the colored

states decay into. When the squarks are heavier than the gluino, as in the minimal

benchmark, each gluino decays to a charged wino with branching fraction ∼ 60% and a

neutral wino the remaining ∼ 40%. The CC case leads to W+(`ν)W−(`ν) + /ET . The

CN case leads to γ +X + /ET , W+(`ν)γ + /ET , Z(``) +X + /ET , or W (`ν)Z(``) + /ET .

The NN case leads to the same final states as bino NLSP, except now with the reversed

ratio of γ + G̃ to Z + G̃.

The most recent relevant CMS published result analyzes single photon events, due

to the reduced Br(W̃ → γ+G̃), from the first 4.93 fb−1 of data at 7 TeV. Contributions

from strong production squark/gluino cascades as well as the direct weak production

of chargino-neutralino pairs are considered. Fig. 3.4 shows the resulting upper limits

on the GGM production cross section, at 95 % CL, as well as exclusion contours for

the gluino versus squark mass plane from 400 to 2000 GeV in squark and gluino mass,

with the neutralino mass fixed at 375 GeV. This mass value is chosen to represent a
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reasonably light NLSP, but high enough to be outside current exclusion limits. The

single-photon cross section upper limit is of order 0.003-0.1 pb at 95 % CL with a typical

acceptance of 7 %, excluding squark and gluino masses up to about 800 GeV. Fig. 3.5

shows the exclusion contours in the plane of gluino versus neutralino mass

Figure 3.4: Observed upper limits at 95 % CL on the signal cross section (left) and
corresponding exclusion contours (right) in gluino-squark mass space for the single-
photon search in the wino-like scenario. The shaded uncertainty bands around the
expected exclusion contours correspond to experimental uncertainties, while the NLO
renormalization and PDF uncertainties of the signal cross section are indicated by
dotted lines around the observed limit contour.



28

Figure 3.5: Exclusion contours at 95 % CL in the plane of gluino versus neutralino
mass for the single-photon search in the wino-like scenario.

3.3 Z-rich Higgsino NLSP

Here as for the winos, the Higgsinos can be directly produced, or produced in decays of

colored states, so the overall cross-section is controlled by both the gluino and Higgsino

masses. For all the benchmarks defined here we choose parameters such that the heavier

Higgsino states always decay down to the lightest Higgsino neutralino. That is, there

is no coNLSP and just a single Higgsino NLSP. In particular, we choose to change the

gravitino mass with the Higgsino mass such that the Higgsino decay length is fixed

∼ 0.1 mm. For this decay length, the charged Higgsino always decays first to the

neutral Higgsino. The NLSP in turn can decay either to photon, Z or Higgs. For

the Z-rich case (low tanβ, µ > 0), the branching ratio to Higgs is negligible, and the

branching ratio to photon is negligible except when the NLSP is very light and the Z

decay mode is squeezed. Thus for Z-rich Higgsino NLSPs, the available final states are

Z(``) +X + /ET and Z(``)Z(``) + /ET .

The most recent relevant CMS published result analyzes 19.5 fb−1 of data at 8 TeV in

the context of the “natural Higgsino NLSP” scenario. This scenario is characterized by

light stop squarks, which provide the dominant production mechanism for the Higgsino

NLSP through the enhanced third generation Yukawa coupling. The Higgsinos then

decay to ZG̃ or hG̃, yielding a final state with hZ, ZZ, or ZZ plus ET6 . In addition
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to top-squark pair production, the natural Higgsino NLSP scenario also encompasses

direct electroweak Higgsino pair production leading the same final state of except with

less jet activity. Fig. 3.6 shows the excluded regions in the m
H̃

vs. mt̃ plane for the

various scenarios described above (Z-rich, h-rich, and mixed Z/h scenarios).

Figure 3.6: The 95 % confidence level upper limits in the top squark versus chargino
mass plane, for the natural Higgsino NLSP scenario with Br(H̃ → ZG̃) = 1.0 (top
left), Br(H̃ → hG̃) = 1.0 (top right), and Br(H̃ → hG̃) = Br(H̃ → ZG̃) = 0.5
(bottom). Both strong and electroweak production mechanisms are considered. The
region to the left and below the contours is excluded. The region above the diagonal
straight line is unphysical.
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Chapter 4

Topologies with a Slepton NLSP

Another general class of MSSM scenarios, is that in which a slepton is the next-to-

lightest superpartner (NLSP) [36, 41, 37]. In such scenarios, the slepton NLSP decays

to its partner leptons plus a gravitino

˜̀→ `+ G̃ (4.1)

Low scale gauge-mediated supersymmetry breaking naturally gives rise to superpartner

spectra with nearly degenerate right-handed sleptons playing the role of the coNLSP,

with a bino-like neutralino as the next to next to lightest superpartner (NNLSP) [34, 38,

39, 143, 44]. If the NLSP slepton is right-handed, then the only unsuppressed cascade

decays to the NLSP must proceed through the bino component of a neutralino.

B̃ → ˜̀±
R + `∓ (4.2)

Cascade decays from heavier superpartners will then always pass sequentially through

the bino, then to one of the co-NLSP sleptons emitting a lepton, and finally to the

un-observed Goldstino, emitting another lepton. Therefore, pair-production of heav-

ier superpartners gives rise to inclusive signatures that include four hard leptons and

missing transverse energy,

pp→ X + `±`∓`±`∓ + /ET (4.3)

where ` = e, µ, τ , and X represents whatever Standard Model particles are emitted in

cascade decays to B̃. An example of such a process is shown in Fig. 4.1.

If the superpartner pair production is through strong interactions, then conservation

of SU(3)c color implies that at least one jet must be emitted in each cascade decay
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Figure 4.1: One example process with a slepton-coNLSP produced via cascade from
colored production. Here, two gluinos are pair produced, and each one decays through
an NNLSP bino to a right handed slepton emitting one jet and one lepton. Each slepton
then decays to a lepton and a gravitino, resulting in a 2j + 4`+ ET6 signature.

to the neutralino, giving an inclusive SUSY signature of at least 2j + 4` + ET6 . A

right-handed selectron NLSP with a heavier bino-like neutralino is generic in gauge

ordered SUSY spectra that arise in many scenarios for supersymmetry breaking. So

the inclusive 4 leptons + missing energy SUSY signature covers a fairly wide range of

possibilities for how SUSY might be realized at the electroweak scale. This signature is

best covered by an exclusive hierarchical search for quad-leptons, tri-leptons, and same-

sign dileptons, including /ET in the latter two cases as necessitated by backgrounds. The

principal strong production channels that are relevant for early LHC searches are pairs

of gluinos and/or squarks, while weak production of charginos, neutralinos, and direct

production of sleptons should become relevant in future searches. A reach or upper

limit on σ × BR for pp → multi-leptons + /ET as a function of the gluino and the

chargino masses provides a unified summary of the sensitivity to this topology for both

strong and weak production of superpartners. These scenarios can be used to explore

the discovery potential of searches for multiple leptons in early LHC running.

Given that final states with multiple high-pT leptons are generally clean discovery

modes for new physics, it is of special interest to investigate the possibilities for produc-

ing such signatures within the context of GGM and GMSM. Multi-lepton final states
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arise most naturally in the subset of GGM and GMSM parameter spaces where the

right-handed sleptons are flavor-degenerate and at the bottom of the MSSM spectrum.

These ‘slepton coNLSPs’ decay 100% of the time to `+G̃, and so all events with MSSM

production contain at least two high-pT leptons. Depending on the details of the heav-

ier states in the spectrum, these leptons can be same sign or opposite sign, and there

can be additional energetic leptons in the event [41, 37]. In the case that a bino-like

neutralino is the next heavier superpatner above the slepton coNLSPs at least 4 leptons

arise in each event [41, 37].

For the slepton NLSP scenario there is an huge multi-dimensional parameter space

characterizing the remainder of the superpartner spectrum. Defining useable bench-

marks within tractable parameter spaces therefore requires additional simplifying as-

sumptions. The main motivation and focus here for early LHC searches is on compressed

spectra with significant production cross section from strongly interacting superpart-

ners. In the following sections, we will describe various interesting benchmark scenarios

of this type.

4.1 GMSM Inspired Benchmark Spectra

For early LHC searches it is useful to utilize simple parameter spaces that reproduce the

important features of superpartner spectra that arise from simple underlying models.

Here we formulate a benchmark of this type inspired by GMSM.

The GMSM inspired scenario described here is defined to be right handed slepton

coNLSP, a gluino and (nearly) degenerate squarks, the bino, wino, and left handed

sleptons. The wino and gluino masses given by M2 and M3 respectively may be taken

to be independent masses for a two parameter parameterization of this benchmark.

The squark soft masses are taken to be degenerate with value mq̃ related to the gluino

mass by

mq̃ = 0.8 M3 (4.4)

The left-handed slepton masses, bino, and right-handed slepton coNLSP masses are
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related to the wino mass by

m˜̀
L

= 0.8 M2

M1 = 0.5 M2

m˜̀
R

= 0.3 M2 (4.5)

All these ratios are close to those of GMSM with N = 5 messenger generations. The

squark and slepton mixings are defined to vanish. This approximates the small mixing

that is obtained in most theories of low scale gauge mediation. All other soft parameters

may be set to some large value such as 1.5 TeV. With both squarks and gluinos in the

spectrum, the dominant strong production modes at the LHC are pp → q̃q̃, q̃g̃ with a

smaller fraction of g̃g̃. The inclusion of all these states with the relations given above

gives a two-parameter space benchmark that interpolates between weak and strong

production - this feature allows a comparison between existing Tevatron bounds (which

are based on weak production) and early reach at the LHC from strong production.

4.2 Slepton-coNLSP

In the slepton NLSP scenario for SUSY, the splitting among the sleptons plays a central

role in determining the associated accelerator signatures. Low scale gauge-mediated su-

persymmetry breaking with significant left-right sparticle mixing arising at large values

of tanβ can naturally give rise to a stau slepton as the next to lightest superpartner

(NLSP) [41]. The approximate flavor universality of gauge-mediation ensures that the

a selectron and smuon are slightly heavier, and decay through both charge- preserving

and charge-changing reactions to the stau through the emission of soft lepton pairs.

ẽR → τ̃∓1 τ
±e and µ̃R → τ̃∓1 τ

±µ (4.6)

However if the mass splittings among the selectron, smuon, and lightest stau are less

than the tau mass, then the three-body decays are kinematically blocked. In this case

the decays in Eq. 4.1 of the selectron, smuon, and lightest stau to the partner lepton
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and the Goldstino can dominate if the SUSY breaking scale is not too high, and all

three sleptons act effectively as the NLSP. The unsuppressed cascade decays (Eq. 4.2)

that pass through the light sleptons in this case are then of the form

B̃ → ˜̀±
i `
∓
i

→ `±i G̃ (4.7)

where here i = e, µ, τ . So starting from superpartner pair production, the specific flavor

and charge structure of the inclusive 4 lepton + missing energy signature that arises in

the slepton coNLSP scenario is

pp→ `+i `
−
i `

+
j `
−
j +X + ET6 (4.8)

where i, j = e, µ, τ with approximately equal weight. The slepton coNLSP scenario is

generally obtained for low to moderate values of tanβ for which stau renormalization

group evolution and left-right mixing effects proportional to the tau Yukawa coupling

are small.

This signature can arise either from strong production of squarks and gluinos via cas-

cade decays, or through direct weak production of chargino-neutralino or right handed

slepton pairs. Both scenarios give rise to decay patterns that eventually lead to a bino-

like neutralino, which decays as we’ve described leading to a final state of multileptons

plus ET6 . The relative importance of strong-weak production mechanisms depends on

the values of the superpartner masses. Fig. 4.2 shows the result of the most recent

CMS multi-lepton analysis, with 19.5 fb−1 of data at 8 TeV, interpreted in the context

of the slepton coNLSP scenario. Using the benchmark mass spectrum we proposed

earlier, in addition to the requirements of no L-R fermion mixing, The 95 % CL ex-

clusion limit is presented in the gluino-chargino mass plane. In the region dominated

by strong superpartner production, the exclusion curve asymptotically approaches a

horizontal plateau, while it tends towards a vertical line in the region dominated by

weak superpartner production.

Besides the stau-NLSP scenario, we also consider the stau-NNLSP scenario in which
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mass-degenerate right-handed selectrons and smuons are coNLSPs, while the right-

handed stau is the next-to-next-to-lightest SUSY particle (NNLSP). The process pro-

ceeds via electroweak pair production of staus. The staus decay to the NLSP and a τ

lepton. The NLSPs decay to a τ lepton and gravitino. The search channels most sen-

sitive to the stau-(N)NLSP scenarios contain τh leptons, no tagged b jets, off-Z OSSF

pairs, and large ET6 . The 95 % CL exclusion limits for the stau-(N)NLSP scenario are

shown in Fig. 4.2. When the mass difference between the stau and the other sleptons

is small, the leptons are soft. This results in low signal efficiency, which causes the

exclusion contour to become nearly parallel to the diagonal for points near the diago-

nal. The difference between the expected and observed limits in the region below the

diagonal is driven by the excesses observed between the data and SM estimates in the

four-or-more lepton, OSSF1, off-Z, τh channels without b jets.

Figure 4.2: The 95 % confidence level upper limits for the slepton coNLSP model in
the gluino versus chargino mass plane. The region to the left and below the contours
is excluded.

4.3 Stau-(N)NLSP

On the other hand, if the splitting between the selectron and stau, and the smuon and

stau, are larger than the tau mass, then the three-body decays in Eq. 4.6 are kinemati-

cally allowed, and generally dominate over the decays in Eq. 4.1 to the Goldstino. With
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this type of superpartner spectra, nearly all cascade decays pass through the metastable

stau slepton, which decays to the un-observed Goldstino and tau [35]. The lightest stau

thus acts as the NLSP. The unsuppressed cascade cascade decays in Eq. 4.2 that pass

through the light sleptons in this case are then of a charge preserving form

B̃ → ˜̀±
i `
∓
i

→ τ̃±1 (τ∓`±)

→ τ±G̃ (4.9)

or a charge changing form

B̃ → ˜̀±
i `
∓
i

→ τ̃∓1 (τ±`±)

→ τ∓G̃ (4.10)

The lepton and tau emitted in intermediate three-body decays in Eq. 4.9 or Eq. 4.10

are generally very soft, as indicated by the parentheses, and likely to have rather low

acceptance and efficiency in the detector. So neglecting these soft leptons, starting

from superpartner pair production, the stau NLSP scenario gives rise to the inclusive

signature of 2 leptons + 2 taus + missing energy. The specific flavor and charge

structures of the hard leptons and taus are

pp→ `±i `
∓
j τ
±τ∓ +X + ET6

`±i `
±
j τ
±τ∓ +X + ET6

`±i `
∓
j τ
±τ± +X + ET6

`±i `
±
j τ
±τ± +X + ET6 (4.11)

where here i, j = e, µ with equal weight. The stau NLSP scenario is generally obtained

for moderate to high values of tanβ for which stau renormalization group evolution

and left-right mixing effects proportional to the tau Yukawa coupling are significant.



37

On the other hand, if the stau NLSP is mostly right-handed, then the only unsup-

pressed cascades come directly from the bino component of heaver neutralinos.

B̃ → τ̃±R τ
∓

→ τ±G̃ (4.12)

Pair production of any superpartners with cascade decays that pass through these

neutralinos then give rise to the inclusive signature of four hard taus with missing

energy,

pp→ τ±τ∓τ±τ∓ + ET6 (4.13)

It is important to note that since all the relevant cascade decays have the possibility

to flip the superpartner charges, these signatures arise in all charge and lepton flavor

combinations. This signature is best covered by a di-lepton plus one or two identified

taus plus /ET search in all flavor and charge channels. The principal strong production

channels that are relevant for early LHC are pairs of gluinos and/or squarks.

Direct weak production of charginos, neutralinos, and sleptons will become relevant

in future searches. A reach or upper limit on σ × BR for pp → ττ + /ET as a function

of the gluino and the chargino provides a unified summary of the sensitivity to this

topology for both strong and weak production of superpartners. Sensitivity to the

remaining soft leptons emitted in the cascades between the selectron or smuon and

NLSP stau may be illustrated in the above parameter plane for different fixed values

of the mass splitting between these states.
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Figure 4.3: The 95 % confidence level upper limits for stau-(N)NLSP scenarios in the
stau versus degenerate-smuon and -selectron mass plane (right). The region to the left
and below the contours is excluded.
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Chapter 5

The Minimal Standard Model Higgs at the LHC

The combined data sets at 7 and 8 TeV from Run I at the LHC, have established

beyond reasonable doubt, the existence of a Standard-Model-like Higgs boson. The

discovery and characterization of the Higgs has inarguably been among the central

aims of the physics program at the Large Hadron Collider (LHC). Its well-defined

production and decay modes have allowed for mass-dependent searches tailored to a

variety of specific channels (for a review, see [45] and references therein). Although the

bulk of the sensitivity for this discovery came from dedicated searches in the h → γγ

and h → ZZ∗ → `+`−`′+`′− resonant decay channels, the results of searches in all of

the known decay modes have been found to be consistent with a minimal Standard

Model Higgs.

The dominant production channel of the SM Higgs at hadron colliders is through

gluon-fusion (gg → h) and existing LHC Higgs searches are typically tailored towards

this channel due to both the large cross section and the resulting Higgs resonance.

However, there are also a variety of ancillary channels in which the Higgs is produced

in association with other quarks or vector bosons. These are, in order of decreasing

production rate: weak vector boson fusion (VBF), qq → qqh; Wh and Zh associ-

ated production (or Higgs-strahlung), qq → Wh,Zh; and tth associated production,

qq, gg → tth. Loosely speaking, the cross sections for weak VBF and Wh, Zh associ-

ated production are an order of magnitude smaller than that of gluon-fusion, while tth

associated production is smaller by a further order of magnitude. Di-Higgs production

through gluon-gluon fusion, gg → hh, is smaller by roughly a further order of magni-

tude. Nonetheless, they may provide interesting alternative routes to the discovery of

the Higgs.
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Whatever the mechanism of Higgs production, current search strategies are prin-

cipally governed by the decay products of the Higgs. The primary decay modes for a

light Higgs include h → bb, τ+τ−, cc, gg, WW , ZZ , γγ, and Zγ. Branching ratios to

these final states are a sensitive function of the Higgs mass, with bb, τ+τ−, and gg dom-

inating at low masses (mh ∼ 135 GeV) and WW ∗, ZZ∗ dominating at higher masses.

The colored final states bb, cc, and gg are inauspicious search modes at the LHC due

to large QCD backgrounds; more promising are the diphoton channel and the leptonic

final states of the WW , ZZ , and τ+τ− channels.

The production and decay modes of the Higgs lead to a variety of possible search

strategies at hadron colliders. At the LHC, the three main search methods with the

greatest discovery potential are h → γγ, h → ZZ → 4`, and h → WW → `ν`ν.

Although the branching ratio for γγ is small, the distinctive final state topology makes

it a crucial search channel for lighter masses. At higher masses the increased branching

fraction to WW and ZZ , combined with the cleanliness of 2` and 4` final states, make

h → `ν`ν and h → 4` particularly attractive. Significantly, both h → ZZ → 4` and

h → γγ (the so-called gold- and silver-plated channels) are resonant search modes, in

that the invariant mass of the final state reconstructs the Higgs mass. This allows

the direct determination of the Higgs mass, but at the expense of sensitivity to, e.g.,

non-resonant 4` final states. This is in contrast to the h → WW → `ν`ν channel,

in which the missing energy from the neutrinos makes reconstructing the Higgs mass

more challenging. Individually and in combination, these search channels are growing

ever closer to constraining the production of a Standard Model Higgs boson in the light

mass window, although backgrounds for these channels are large and potentially quite

subtle.

Despite the focus of existing searches on the gluon-fusion production channel, the

LHC has demonstrated considerable sensitivity to final states populated predominantly

by associated production channels of the Higgs boson. Although these have weaker

prospects for the determination of the Higgs mass based on kinematics, they often lead

to final states with particularly low Standard Model backgrounds. In particular, the

multitude of 3- and 4-lepton final states available from Higgs production in association
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withW and Z bosons or a tt pair provides a key handle on picking the Higgs signal out of

Standard Model backgrounds. Although searches in some specific alternate production

and decay channels have been proposed previously [48], recent advances in multi-lepton

searches at the LHC [91] have brought the possibility of a dedicated multi-lepton Higgs

search across multiple channels into sharp focus.

Such a multi-lepton search enjoys several advantages. Standard Model backgrounds

to multi-lepton processes are quite low, particularly in the absence of an on-shell Z

boson. Further discrimination may be obtained by looking in regions of high missing

energy or hadronic activity, away from typical Standard Model processes. Ultimately,

perhaps the greatest advantage lies in the plethora of possible multi-lepton channels;

more sensitivity to Higgs searches may be added by combining various 3` and 4` chan-

nels (as well as same-sign 2` channels), particularly those that do not reconstruct an

on-shell Z or the Higgs resonance itself.

In this chapter we pursue a simple goal: applying the existing CMS multi-lepton

search strategy to the Higgs boson in order to determine how effective a new low-

background, multi-channel analysis may be in the hunt for the Higgs. To this end, we

focus on the Higgs production and decay channels most likely to produce 3` and 4`

final states. These are dominated by Wh, Zh and tth associated production with h→

WW ,ZZ . At low masses, significant contributions may also arise from h→ τ+τ− with

both τs decaying leptonically. Additional contributions to h→ 3` and nonresonant h→

4` arise from the dominant gluon and vector boson fusion production modes, where h→

ZZ → ``ττ and the τs decay leptonically. Finally, a surprisingly significant contribution

to resonant multi-lepton final states not covered by current resonant searches arises at

low mass (particularly mh < 130 GeV) when the Higgs decays to two off-shell Z bosons,

h → ZZ → 4` . Taken together, the signal of these multi-lepton modes exceeds that

of the gold-plated resonant 4` mode. Exploring the sensitivity of existing multi-lepton

searches to these production channels may allow the development of a search tailored

channel-by-channel toward the discovery and characterization of the Higgs.

We will start by describing a prescription for interpreting current CMS multi-lepton

searches for exotica, in terms of limits for the various hypotheses of the Higgs boson
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mass. We will then show the results of this analysis using 5 fb−1 of data. Finally we will

conclude with suggestions for refinements that could be performed to further increase

the sensitivty of such an analysis.

5.1 Multi-Lepton Higgs Searches

Multi-lepton searches have been employed to good effect in the context of simplified

models since early in Run I [91], and provide a necessary complementary search strategy

for the Higgs. The total multi-lepton Higgs signal exceeds the four lepton gold-plated

resonant mode, but is spread over many channels with same-sign di-lepton, tri-lepton,

and four lepton final states. So while any individual channel alone is not significant, the

exclusive combination across multiple channels was shown to provide a sensitivity com-

petitive with other discovery level searches for the Higgs boson. While simply applying

the existing multi- lepton search strategy to a Higgs signal is not optimal out of the

box, it illustrated the considerable power of combining several low-background channels

in the same search. The sensitivity of each individual channel to Higgs production may

subsequently be improved by tailoring cuts to the corresponding dominant production

mode for that channel. Thus our analysis was, in part, intended as an exercise to de-

termine how these individual channels might best be optimized for a dedicated Higgs

search.

5.1.1 Multi-Lepton Signal Channels

The prompt irreducible Standard Model backgrounds to multi-lepton searches are small

and arise predominantly through leptonic decays of W and Z bosons. Such backgrounds

may therefore be reduced by demanding significant hadronic activity and/or missing

energy in the events. Hadronic activity can be quantified by the variable HT , defined

as the scalar sum of the transverse energies of all jets passing the preselection cuts. The

missing transverse energy (MET) is the magnitude of the vector sum of the momenta

of all particles in the event. Both HT and MET are sensitive discriminating observables

for new physics, including the Higgs.
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The background reduction ability of HT and MET may be exploited in the following

manner: Events withHT > 200 (ET6 > 50) GeV may be categorized as having “high”HT

(MET), while those with HT < 200 (ET6 < 50) GeV may be categorized as having low

HT (MET). The high HT and high MET requirements (individually or in combination)

lead to a significant reduction in Standard Model backgrounds. Backgrounds may also

be reduced using the variable ST , which is defined to be the scalar sum of MET, HT ,

and leptonic pT , but for simplicity and because of its omission in existing multi-lepton

searches [91], we will not discuss the implications of cutting on this variable here.

Further background reduction may be accomplished with a “Z veto”, in which the

invariant mass of opposite-sign same-flavor (OSSF) lepton pairs is required to lie outside

a 75 - 105 GeV window around the Z mass; we simply denote events passing the Z

veto as “no Z”. In the case of 3` events, it is also useful to differentiate between events

with no OSSF pairs (which we label “DY0”, i.e., no possible Drell-Yan pairs) and

one OSSF pair (DY1). Although the current CMS multi-lepton analysis also includes

channels with one or more hadronic τ ’s, in this analysis we will focus our attention on

` = e±, µ± only. We include leptonic τ ’s in our analysis, classifying them according to

their leptonic final state.

Production Decay
gg → h h→ 4`
VBF→ h h→ 4`
qq̄ →Wh Wh→WWW,WZZ,Wττ
qq̄ → Zh Zh→ ZWW,ZZZ,Zττ
tt̄h tt̄h→ tt̄WW, tt̄ZZ, tt̄ττ

Table 5.1: The 11 independent production and decay topologies simulated for the
Standard Model Higgs Boson with mh = 125 GeV. The Higgs boson branching ratios
are factored out of each topology. All top-quark, τ -lepton, and W - and Z bosons
branching ratios are Standard Model.

The possible decay modes of the SM Higgs leading to multi-lepton final states is

given in Table 5.1. Dividing the multi-lepton signals into 3` or 4` events, there are 20

possible combinations of HT high/low; MET high/low; Z/no Z; and DY0/DY1; these

may be aggregated to form the 11 channels used in [91], with the addition of one further

channel for SS dileptons. The collected channels are presented in Table 1. For each of
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the 3` and 4` categories, channels are presented in approximately descending order of

sensitivity, with the last such channel dominated by SM backgrounds.

5.1.2 Simulation Details

The production rates and branching ratios of the Standard Model Higgs are fixed by

SM gauge couplings and fermion masses. The cross sections for each SM Higgs boson

production channel and branching ratios for Higgs decays at each mass point were taken

from the LHC Higgs Cross Section Group [96]. The gg-fusion cross section is computed

to NNLOQCD +NNLLQCD +NLOEWK precision; the weak VBF and associated Wh, Zh

cross sections are computed to NNLOQCD + NLOEWK precision; and tth is computed

to NLOQCD precision.

For simulating signal processes, we have used MadGraph v4 [92, 93] and rescaled the

cross sections to match the NLO results described above. For the production channels

of Wh, Zh, qqh and tth, the Higgs boson was decayed in the WW ∗, ZZ∗, τ+τ− modes

using BRIDGE [95]. For the gg → h channel, the parton-level generation was done

entirely within MadGraph with four charged leptons in the final state, thus including

the effects of both Zs going off-shell, as well as the contribution from two on-shell Zs

with the Higgs boson being off-shell. For the gluon fusion channel, the Higgs width

was taken in accordance with [96]. Subsequent showering and hadronization effects

were simulated using Pythia [97]. Detector effects were simulated using PGS with

the isolation algorithm for muons and taus modified to more accurately reflect the

procedure used by the CMS collaboration. In particular, we introduce a new output

variable called trkiso for each muon or tau. The variable trkiso is defined to be the sum

pT of all tracks, ECAL, and HCAL deposits within an annulus of inner radius 0.03 and

outer radius 0.3 in ∆R surrounding a given muon or tau. Isolation requires that for

each muon or tau, trkiso/pT of the muon or tau be less than 0.15. The efficiencies of

PGS detector effects were normalized by simulating the mSUGRA benchmark studied

in [91] and comparing the signal in 3` and 4` channels. To match efficiencies with the

CMS study we applied an efficiency correction of 0.87 per lepton to our signal events.

As discussed earlier, we applied preselection and analysis cuts in accordance with those
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in [91].

5.2 Multi-Lepton Signals of the Higgs

The results of the analysis at 5 fb−1 are presented in Tables 5.2 and 5.3. Table 5.2

contains the observed and expected Standard Model background and expected signal

events for the Standard Model mh = 125 GeV Higgs boson at 5 fb−1, broken down into

the channels discussed earlier. The channels that provide the most stringent limits on

Standard Model Higgs production are marked with a (†). Which channels provide the

best limits is a sensitive balance of both signal and background.

In the 4` final states, the strongest constraints on a Standard Model Higgs arise

from the [MET high, HT low] channel and from the two [MET low, HT low] channels,

both with Z and without Z. That these latter two channels provide a constraint on

Higgs production is not surprising; here the signal is dominated by h → ZZ∗ → 4`

(where the h is produced via ggF or VBF) and the same channels are used in the

conventional gold-plated resonant h→ 4` Higgs search. However, it bears emphasizing

that this existing search is sensitive only to resonant production of the four-lepton

final state, while in fact these two channels are populated both by resonant and non-

resonant signal events. Here “resonant” is taken to mean that m4` is within ±5 GeV of

the Higgs mass. In contrast, non-resonant events receive significant contributions from,

e.g., h→ ZZ∗ → 2`2τ .

The remaining sensitive 4` channel, [MET high, HT low], is dominated by an entirely

different process, Zh associated production with h → WW ∗ . At low masses the

branching fraction h → WW ∗ drops off, but is largely compensated for by a rise in

h → τ+τ− with both τs decaying leptonically. Additional contributions to the Higgs

signal in this channel come from tth associated production with h → WW ∗ ; these

events tend to have high HT , but a significant fraction fall below the HT cut.

In the 3` final states, the most stringent limits come from [MET all, HT low, DY0];

[MET all, HT high, DY0]; and [MET high, HT low, DY1 no Z]. For both low-HT

channels the primary contribution to signal comes from associated Wh production
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Observed Expected SM Higgs
Signal

4 Leptons

†MET HIGH HT HIGH No Z 0 0.018 ± 0.005 0.03
†MET HIGH HT HIGH Z 0 0.22 ± 0.05 0.01
†MET HIGH HT LOW No Z 1 0.20 ± 0.07 0.06
†MET HIGH HT LOW Z 1 0.79 ± 0.21 0.22
†MET LOW HT HIGH No Z 0 0.006 ± 0.001 0.01
†MET LOW HT HIGH Z 1 0.83 ± 0.33 0.01
†MET LOW HT LOW No Z 1 2.6 ± 1.1 0.36
†MET LOW HT LOW Z 33 37 ± 15 1.2

3 Leptons

†MET HIGH HT HIGH DY0 2 1.5 ± 0.5 0.15
†MET HIGH HT LOW DY0 7 6.6 ± 2.3 0.67
†MET LOW HT HIGH DY0 1 1.2 ± 0.7 0.04
†MET LOW HT LOW DY0 14 11.7 ± 3.6 0.63
†MET HIGH HT HIGH DY1 No Z 8 5.0 ± 1.3 0.38
†MET HIGH HT HIGH DY1 Z 20 18.9 ± 6.4 0.19
†MET HIGH HT LOW DY1 No Z 30 27.0 ± 7.6 1.8
MET HIGH HT LOW DY1 Z 141 134 ± 50 1.6
†MET LOW HT HIGH DY1 No Z 11 4.5 ± 1.5 0.13
†MET LOW HT HIGH DY1 Z 15 19.2 ± 4.8 0.09
MET LOW HT LOW DY1 No Z 123 144 ± 36 1.8
MET LOW HT LOW DY1 Z 657 764 ± 183 4.3

Table 5.2: Observed and expected number of events in various exclusive multi-lepton
channels from the CMS multi-lepton search with 5 fb−1 of 7 TeV proton-proton collisions
[67], along with expected number of Standard Model Higgs boson signal events for mh =
125 GeV after acceptance and efficiency. HIGH and LOW for MET and HT indicate
ET6 >

< 50 GeV and HT
>
< 200 GeV respectively. DY0 ≡ `′±`∓`∓, DY1 ≡ `±`+`−, `′±`+`−,

for ` = e, µ. No Z and Z indicate |m``−mZ |>< 15 GeV for any opposite sign same flavor
pair. The channels with moderate to good sensitivity to multi-lepton Higgs boson
signals are indicated with daggers.



48

with h → WW ∗ . However, as with the 4` events, an additional contribution arises

from associated tth production with h→WW ∗ that falls below the HT cut. Likewise,

the [MET all, HT high, DY0] channel is dominated by tth with h → WW ∗ . In all

cases, the decrease in h→WW ∗ at low masses is compensated by a rise in h→ τ+τ−.

Although limits may be placed on Higgs production due to any individual channel

in the multi-lepton search, the greatest sensitivity comes from combining all channels.

Table 5.3 contains the observed and expected 95% CL limits from the CMS multi-

lepton search with 5 fb−1 of 7 TeV proton-proton collisions on the Higgs boson produc-

tion cross section times branching ratio in multiples of that for Standard Model Higgs

multi-lepton production and decay topologies listed in Table 5.1 with Standard Model

branching ratios. We differentiate between the limits set by all contributions (including

the resonant h→ 4` final states present in the existing golden channel search) and those

set by purely non-resonant contributions unique to the multi-lepton search. Notably,

the current search strategy may already limit cross sections on the order of a few times

the Standard Model value.

mh 120 GeV 125 GeV 130 GeV

Observed 5.4 4.9 3.5
Expected 4.2 3.8 2.8

Table 5.3: Observed and expected 95% CL limits from the CMS multi-lepton search
with 5 fb−1 of 7 TeV proton-proton collisions [67] on the Higgs boson production cross
section times branching ratio in multiples of that for Standard Model Higgs multi-lepton
production and decay topologies listed in Table 5.1with Standard Model branching
ratios. Limits are obtained from an exclusive combination of the observed and expected
number of events in all the multi-lepton channels presented in Table 5.2.

We emphasize that although the multi-lepton search may not appear to be as sensi-

tive to the Standard Model Higgs boson as some of the current search strategies being

pursued at ATLAS and CMS, the sensitivity shown in Table 5.3 corresponds to the cur-

rent multi-lepton search strategy without any further optimization for a Higgs search.

Sensitivity may readily be improved by further tailoring cuts, as we will discuss next.
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5.3 Towards a Dedicated Multi-Lepton Higgs Search

We have seen that the existing CMS multi-lepton search strategy has considerable sen-

sitivity to the Standard Model Higgs and its variants, with the potential to exclude

production cross sections of a few times the Standard Model value in the light mass

window without specific tailoring to the Higgs signal. However, significant improve-

ments in sensitivity may be achieved by refining the search strategy for a dedicated

Higgs multi-lepton combination.

Among the 4` channels with highest sensitivity to the Higgs, the [MET low, HT

low, Z / no Z] channels are already fairly optimized for the Higgs; they receive principal

contributions from the h → ZZ∗ → 4` golden mode as well as the h → Z∗Z∗ → 4`

mode. The same is true of the [MET high, HT low] channel dominated by Zh associated

production with h → WW ∗ . We emphasize, though, that the sensitivity of these

channels to nonresonant 4` production may give an appreciable advantage over the

conventional golden mode search.

However, it is also important to emphasize the role of tth associated production

in potential 4` signals. In particular, tth associated production with h → WW ∗ con-

tributes significantly to the 4` [MET high, HT low] channel without the presence of a

Z boson. Dividing the 4` [MET high, HT low] channel into two channels, with and

without Z, would help to reduce backgrounds for this signal. Furthermore, these final

states include two b quarks from the decays of the tops. Since the primary background

in this channel is from di-Z production where one Z is off-shell for which there are

no b quarks in the final state further discrimination may be obtained by requiring one

or two b-tags in the final state. Requiring b-tags should also increase the sensitivity

of other channels that receive a significant contribution from tth, particularly [MET

all, HT high]. While this channel is not the most sensitive of the 4` channels, further

reduction of the Standard Model background expectation perhaps by b-tags and the

addition of a Z veto may render it more useful. It should be emphasized, of course,

that requiring b-tags in channels sensitive to tth will not completely erase the Standard

Model background expectation. In addition to di-Z contributions to these channels,
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there may be considerable backgrounds from tt̄γ∗ that are not accounted for in the

current CMS search. These backgrounds would survive b-tag requirements, and should

be carefully accounted for in a dedicated search.

Similar improvement may be attained by requiring one or two b-tags in the 3` [MET

all, HT high, DY0] and [MET all, HT high, DY1] channels, which are likewise dominated

by tth. The remaining sensitive 3` channels receive signals primarily from associated

Wh production with h→WW ∗ , for which the existing cuts are adequately optimized.

Finally, we note that many of the sensitive search channels in both 3` and 4` final

states receive significant contributions from Wh, Zh, and tth associated production

with h → τ+τ− , particularly for low Higgs masses (mh ∼ 130 GeV). These decays

contribute directly to existing search channels when one or both of the τ ’s decay lep-

tonically. However, some sensitivity is lost since the τ leptonic branching fraction is

only 35%. Since it is possible to tag hadronically-decaying τ ’s with some degree of

accuracy, sensitivity to associated production may be improved by adding channels for

exclusive final states with, e.g., two leptons and one or two hadronic τ ’s.

5.4 Going Forward

In this chapter we have evaluated the possibility of augmenting existing LHC searches

for the Higgs via the combination of channels with multiple non-resonant leptons. The

total multi-lepton Higgs signal in these channels exceeds the gold-plated 4` resonant

mode, though it is spread over various 3` and 4` final states. The exclusive combination

of these channels using the existing CMS multi-lepton search strategy yields a sensi-

tivity competitive with other discovery-level searches for the Higgs boson, both for the

Standard Model Higgs and for variants with enhanced branching ratios to leptons and

gauge bosons. Refinements focused specifically on the Higgs boson signal, such as b-tags

in channels involving tth associated production, would provide even more sensitivity.

The extensive study of Standard Model backgrounds in current multi-lepton searches

suggest that an effective multi-lepton search for the Higgs could be implemented fairly

quickly.
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Although we have focused in this paper on the sensitivity of a multi-lepton search

for a single Higgs doublet, we emphasize that there may be even greater discovery

potential for an extended Higgs sector with an enhanced total multi-lepton cross section,

which study in the next chapter. The advantage of a multi-lepton search lies in its

exclusive combination of multiple leptonic final states, both resonant and nonresonant

alike. As such, it is sensitive to simultaneous contributions from more than one new

state with appreciable leptonic decays. For example, in a two-Higgs doublet model the

multi-lepton signals of the lightest neutral Higgs h are augmented by new production

and decay channels from the heavier neutral Higgs H, the pseudoscalar A, and the

charged Higgses H±. Processes such as gg → H → hh → WW ∗WW ∗ and gg →

A → Zh → ZWW ∗ contribute significantly to both 3` and 4` final states. Moreover,

in such models the cross section for specific resonant final states such as h → γγ

and h → ZZ∗ → 4` may be suppressed relative to the Standard Model expectation,

reducing the effectiveness of existing resonant searches. Should the Higgs sector prove

to be extended beyond a single electroweak doublet, a dedicated multi-lepton Higgs

search may provide the most promising avenue for discovery.
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Chapter 6

Extended Higgs Sectors at the LHC

Beyond the search for the Standard Model Higgs [59, 60], the LHC has a more general

primary objective of probing the mechanism of electroweak symmetry breaking (EWSB)

in detail. The goal, therefore extends much more broadly to include the search for

additional Higgs states that could be a window into the underlying physics of EWSB.

Two Higgs doublet models (2HDMs) offer a canonical framework for extended elec-

troweak symmetry breaking. Indeed, in many extensions of the minimal Standard

Model (SM), supersymmetric or otherwise, the Higgs sector is extended to two scalar

doublets [61]. It is therefore worthwhile to study the generic features of the 2HDM

scenario independent of the specific underlying model, purely as an effective theory for

extended EWSB. The phenomenology of 2HDMs is rich, as five physical Higgs sector

particles remain after EWSB: two neutral CP-even scalars, h, H; one neutral CP-odd

pseudoscalar, A; and two charged scalars, H+ and H−. All of these states could have

masses at or below the TeV scale, in a regime accessible to the LHC. The parameter

space of the 2HDM scenario is large enough to accommodate a wide diversity of mod-

ifications to the production and decay modes of the lightest Higgs boson, as well as

to provide non-negligible production mechanisms for the heavier Higgs states that may

decay directly to SM final states, or through cascades that yield multiple Higgs states.

Much of the study of 2HDM phenomenology to date has been devoted to the specific

setup that arises in minimal supersymmetric models [62], which occupies a restricted

subset of possible 2HDM signals. Even more general 2HDM studies [63–65] have largely

focused on the direct production and decays of scalars in SM-like channels, or on specific

cascade decays between scalars. In this work, we wish to pursue a more inclusive

objective: the sensitivity of the LHC to the sum total of production and decay modes



53

available in a given 2HDM, including both direct decays of scalars and all kinematically

available scalar cascades. Such an approach exploits the large multiplicity of signals

arising from production and decay of the various states in an extended EWSB sector.

Searches for final states involving three or more leptons are well matched to this

objective, since both direct scalar decays and scalar cascades populate multi-lepton final

states with low Standard Model backgrounds. The CMS multi-lepton search strategy

[66, 67] is particularly well-suited in this respect, since its power lies in the combination

of numerous exclusive channels. While the sensitivity to new physics in any individual

channel alone is not necessarily significant, the exclusive combination across multiple

channels can provide considerable sensitivity. This is particularly effective in the search

for extended EWSB sectors such as 2HDMs, where multi-lepton final states may arise

from many different production and decay processes that would evade detection by

searches narrowly focused on kinematics or resonantly-produced final states of specific

topologies. With a potentially sizable multiplicity of rare multi-lepton signatures, an

extended Higgs sector therefore provides an excellent case study for the sort of new

physics that could first be discovered in an exclusive multi-channel multi-lepton search

at the LHC.

Multi-lepton searches are already sensitive to Standard Model Higgs production [68],

as well as the production of a SM-like Higgs in rare decay modes of states with large

production cross sections [69]. This suggests that these studies may be particularly

amenable to searching for evidence of extended Higgs sectors. Theories with two Higgs

doublets enjoy all of the multi-lepton final states available to the Standard Model Higgs,

albeit with modified cross sections, as well as the multi-lepton final states of additional

scalars and cascade decays between scalars that often feature on-shell W and Z bosons

in the final state. These additional particles give rise to numerous new production

mechanisms for multi-lepton final states.

The goal of this paper is to perform a detailed survey of the multi-lepton signals that

arise in some representative 2HDM parameter spaces. In particular, we will consider

four different CP- and flavor-conserving 2HDM benchmark mass spectra that have

qualitatively distinct production and decay channels. For each mass spectrum, we will
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consider each of the four discrete types of 2HDM tree-level Yukawa couplings between

the Higgs doublets and the SM fermions that are guaranteed to be free of tree-level

flavor changing neutral currents (FCNCs). A study of the sensitivity to the myriad rare

production and decay processes over a grid of points in the parameter spaces defining

these sixteen representative 2HDMs using standard simulation techniques, while in

principle straightforward, is computationally prohibitive.

So instead we employ a factorized mapping procedure to go between model param-

eters and signatures [70]. In this procedure the acceptance times efficiency for each

individual production and decay topology is independently determined from monte

carlo simulation, assuming unit values for all branching ratios in the decay topology.

The production cross section and branching ratios are then calculated externally as

functions of model parameters. The total cross section times branching ratio into any

given final state at any point in parameter space is then given by a sum over the produc-

tion cross section times acceptance and efficiency for each topology times a product of

the branching ratios at that parameter space point. For the study here, we simulate the

acceptance times efficiency in 20 exclusive multi-lepton channels for 222 independent

production and decay topologies that arise in the four benchmark 2HDM spectra. For

each benchmark spectrum we combine the 20 exclusive multi-lepton channels to obtain

an overall sensitivity as a function of two-dimensional mixing angle parameter spaces

that characterize each of the four discrete types of flavor conserving 2HDMs. With this,

we identify regions of 2HDM parameter space that are excluded by the existing CMS

multi-lepton search [67], as well as those regions where future multi-lepton searches at

the LHC will have sensitivity.

Beyond requiring CP-conservation and no direct tree-level flavor violation in the

Higgs sector, we will not address constraints imposed by low energy precision flavor

measurements on the parameter space of 2HDMs (see [64] and references therein, and

[71] for a very recent analysis). In general, contributions to loop-induced flavor chang-

ing processes, such as B → Xsγ, may be reduced by destructive interference among

different loops, so that new physics outside of our low-energy effective theory can re-

lax flavor bounds on the 2HDM sector. Additionally, with the assumptions employed
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here, flavor constraints are driven by the mass of the charged Higgs, which typically

does not play a significant role in the production of multi-lepton final states. For the

benchmark spectra we consider, the charged Higgs may generally be decoupled in mass

without substantially altering the phenomenology. More generally, we emphasize that

our benchmark spectra are intended to qualitatively illustrate the relevant topologies

for producing multi-lepton final states. Various scalar masses may be raised to accom-

modate flavor physics without changing the qualitative multi-lepton signatures, though

of course particular numeric limits will be altered.

The outline of this chapter is as follows: In Section 6.1, we will briefly review

the relevant aspects of 2HDMs and define the parameter space within which we will

conduct our survey. In Section 6.2, we will give an overview of the most interesting

production and decay channels for 2HDM collider phenomenology which result in multi-

lepton final states. Additionally, we select benchmark spectra in Section 6.3 that have

a representative set of multi-lepton production and decay topologies. Section 6.4 is

devoted to summarizing the multi-lepton search strategy and the simulation methods

we use. The results of our study are displayed in Section 6.5 where we identify the

regions of parameter space that are excluded on the basis of the existing CMS multi-

lepton search with 5 fb−1 of 7 TeV proton-proton collisions [67] as well as those regions to

which future searches will have sensitivity. In Section 6.6 we suggest some refinements

to future multi-lepton searches that could enhance the sensitivity to extended Higgs

sectors.

6.1 Parameterizing the Space of Two-Higgs Doublet Models

The physically relevant parameter space specifying the most general 2HDM is large (for

a review of general 2HDMs see, for example, [63] and [64]). The goal here is not to

consider the most general theory, but rather to define a manageable parameter space in

which to characterize multi-lepton signals. The couplings of physical Higgs states that

are relevant to the production and decay topologies considered below include those of a

single Higgs boson to two fermions or two gauge bosons, couplings of two Higgs bosons

to a single gauge boson, and couplings of three Higgs bosons. Other higher multiplicity
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couplings do not appear in the simplest topologies.

For simplicity we consider CP-conserving 2HDMs that are automatically free of

tree-level flavor changing neutral currents. With these assumptions, the renormalizable

couplings of a single physical Higgs boson to pairs of fermions or gauge bosons, and

of two Higgs bosons to a gauge boson, are completely specified in terms of two mixing

angles, as detailed below. With a mild restriction to renormalizable potentials of a

certain class described below, couplings involving three Higgs bosons are specified in

terms of Higgs masses and these same mixing angles.

The absence of tree-level flavor changing neutral currents in multi-Higgs theories is

guaranteed by the Glashow-Weinberg condition [72] which postulates that all fermions

of a given gauge representation receive mass through renormalizable Yukawa couplings

to a single Higgs doublet. With this condition, tree-level couplings of neutral Higgs

bosons are diagonal in the mass basis. In the case of two Higgs doublets with Yukawa

couplings

−Vyukawa =
∑
i=1,2

(
qh̃iy

u
i ū+ qhiy

d
i d̄+ `hiy

e
i ē+ h.c.

)
(6.1)

where yu,d,ei are 3× 3 flavor matrices and h̃i ≡ iσ2hi and our conventions are such that

the two SU(2)L doublets H1 and H2 both have positive hypercharge. The Glashow-

Weinberg condition is satisfied by precisely four discrete types of 2HDMs distinguished

by the possible assignments of fermion couplings with either yF1 = 0 or yF2 = 0 for each

of F = u, d, e. This requirement can be imposed through a Z2 symmetry under which

one of the Higgs doublets is odd, and the quarks and leptons are assigned charges to

ensure that the desired terms in Eq. 6.1 survive. Under this restriction, we can always

denote the Higgs doublet that couples to the up-type quarks as Hu. Having fixed this,

we have two binary choices for whether the down-type quarks and the leptons in (6.1)

couple to Hu or Hd. Of these four possibilities, “Type I” is commonly referred to as

the fermi-phobic Higgs model in the limit of zero mixing, as all fermions couple to

one doublet and the scalar modes of the second doublet couple to vector bosons only.

“Type II” is MSSM-like, since this is the only choice of charge assignments consistent
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with a holomorphic superpotential. “Type III” is often referred to as “lepton-specific,”

since it assigns one Higgs doublet solely to leptons. Finally, “Type IV” is also known as

“flipped,” since the leptons have a “flipped” coupling relative to Type II. These possible

couplings are illustrated in Table 6.1. We will restrict ourselves to these four choices as

they exhaust all possibilities where tree-level FCNCs are automatically forbidden.

2HDM I 2HDM II 2HDM III 2HDM IV

u Hu Hu Hu Hu

d Hu Hd Hu Hd

e Hu Hd Hd Hu

Table 6.1: The four discrete types of 2HDM Hu and Hd Yukawa couplings to right-
handed quarks and leptons that satisfy the Glashow-Weinberg condition. By convention
Hu is taken to couple to right handed up-type quarks, and the assignments of the
remaining couplings are indicated.

For any of the CP-conserving 2HDMs satisfying the Glashow-Weinberg condition,

the coefficient of the couplings of a single physical Higgs boson to fermion pairs through

the Yukawa couplings in Eq. 6.1 depend on the fermion mass, the ratio of the Higgs

expectation values, conventionally defined as tanβ ≡ 〈Hu〉/〈Hd〉, and the mixing angle

α that diagonalizes the 2 × 2 neutral scalar h − H mass squared matrix. The para-

metric dependences of these couplings on α and β relative to coupling of the Standard

Model Higgs boson with a single Higgs doublet are given in Table 6.2. The parametric

dependence of the couplings of the charged scalar, H±, are the same as those of the

pseudo-scalar, A.

The renormalizable couplings of a single physical Higgs boson to two gauge bosons

are fixed by gauge invariance in terms of the mixing angles in any CP-conserving 2HDM

as

ghV V = sin(β − α)gV gHV V = cos(β − α)gV

gAV V = 0 gH±W∓Z = 0 (6.2)

where for V = W,Z the Standard Model Higgs couplings are gW = g and gZ =

g/ cos θW , where g is the SU(2)L gauge coupling and θW the weak mixing angle. The
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renormalizable couplings of two physical Higgs bosons to a single gauge boson are

likewise fixed in any CP-conserving 2HDM as

ghZA =
1

2
gZ cos(β − α) gHZA = −1

2
gZ sin(β − α)

ghW∓H± = ∓ i
2
g cos(β − α) gHW∓H± = ± i

2
g sin(β − α)

gAW∓H± =
1

2
g (6.3)

None of these couplings involve additional assumptions about the form of the full non-

renormalizable scalar potential, beyond CP conservation.

This is in contrast with (CP and flavor conserving) multi-Higgs theories for which

the tree-level couplings to Standard Model fermions and massive gauge bosons are in

general all independent. Thus the general tree-level couplings of CP-conserving 2HDMs

satisfying the Glashow-Weinberg condition are restricted to particular two-dimensional

sub-spaces of the general four-dimensional space of Higgs couplings to the Standard

Model fermions and massive gauge bosons. This is also to be contrasted with the single

Higgs theory with general non-renormalizable couplings, in which the coupling to every

Standard Model state is independent and deviations from renormalizable couplings are

parameterized by non-renormalizable operators.

The couplings between three physical Higgs bosons depends on details of the Higgs

scalar potential. Specifying these therefore requires additional assumptions to com-

pletely specify the branching ratios that appear in some of the decay topologies dis-

cussed below. The main goal here is to present multi-lepton sensitivities to 2HDMs

in relatively simple, manageable parameter spaces. A straightforward condition that

fulfills this requirement is to consider 2HDM Higgs potentials that, in additional to

being CP-conserving, are renormalizable and restricted by a (discrete) Peccei-Quinn

symmetry that forbids terms with an odd number of Hu or Hd fields. The most general

potential of this type is given by

Vscalar = m2
uH
†
uHu +m2

dH
†
dHd +

1

2
λ1(H†uHu)2 +

1

2
λ2(H†dHd)

2 + λ3(H†uHu)(H†dHd)

+ λ4(H†uHd)(H
†
dHu) +

[
1

2
λ5(H†uHd)

2 + h.c.

]
(6.4)
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y2HDM/ySM 2HDM I 2HDM II 2HDM III 2HDM IV

hV V sin(β − α) sin(β − α) sin(β − α) sin(β − α)
hQu cosα/sinβ cosα/sinβ cosα/sinβ cosα/sinβ
hQd cosα/sinβ −sinα/cosβ cosα/sinβ −sinα/cosβ
hLe cosα/sinβ −sinα/cosβ −sinα/cosβ cosα/sinβ

HV V cos(β − α) cos(β − α) cos(β − α) cos(β − α)
HQu sinα/sinβ sinα/sinβ sinα/sinβ sinα/sinβ
HQd sinα/sinβ cosα/cosβ sinα/sinβ cosα/cosβ
HLe sinα/sinβ cosα/cosβ cosα/cosβ sinα/sinβ

AV V 0 0 0 0
AQu cotβ cotβ cotβ cotβ
AQd − cotβ tanβ − cotβ tanβ
ALe − cotβ tanβ tanβ − cotβ

Table 6.2: Tree-level couplings of the neutral Higgs bosons to up- and down-type quarks,
leptons, and massive gauge bosons in the four types of 2HDM models relative to the
SM Higgs boson couplings as functions of α and β. The coefficients of the couplings of
the charged scalar H±, are the same as those of the pseudo-scalar, A

This potential has seven free parameters, which may be exchanged for the overall Higgs

expectation value, the four physical masses mh,mH ,mA, and mH± , and the two mixing

angles, α and β. So all the Higgs boson couplings in a renormalizable 2HDM with the

potential in Eq. 6.4 are, for a given mass spectrum, specified entirely in terms of the

mixing angles α and β. The couplings of three physical Higgs bosons from the potential

in Eq. 6.4 that are relevant to the production and decay topologies studied below are

gHH+H− =
1

v

(
m2
H (cosβ cotβ sinα+ sinβ tanβ cosα) + 2m2

H± cos(β − α)
)

gHAA =
1

v

(
m2
H (cosβ cotβ sinα+ sinβ tanβ cosα) + 2m2

A cos(β − α)
)

gHhh =
1

v
(m2

H + 2m2
h) cos(β − α)(sin 2α/ sin 2β) (6.5)

We emphasize that the choice of the potential given by Eq. 6.4 is illustrative to allow a

simple presentation in terms of a two-dimensional parameter space of mixing angles for

a given physical spectrum. Although there is additional parametric freedom available in

the most general CP-conserving 2HDM potential, the phenomenology is qualitatively

similar. The only important generalization in the production and decay topologies

studied below for the most general CP- and flavor-conserving 2HDMs as compared
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with the assumptions outlined here is that the partial decay widths of the CP-even

heavy Higgs boson, H, to pairs of lighter Higgs bosons become free parameters, rather

than being specified in terms of α and β through the couplings in Eq. 6.5.

6.2 Multi-lepton Signals of Two Higgs Doublet Models

The wide range of possibilities for Higgs boson mass spectrum hierarchies and branching

ratios in 2HDMs yields a diversity of production and decay channels that are relevant

for multi-lepton signatures at the LHC. Multi-lepton final states become especially im-

portant when the decay of one Higgs scalar to a pair of Higgs scalars or a Higgs scalar

and a vector boson is possible. Of course, the availability of these inter-scalar decays

comes at a price, as the decaying Higgs must be sufficiently heavy for the decay modes

to be kinematically open, so that the production cross section is reduced. Performing a

full multi-dimensional scan of the mass spectra of 2HDMs is not only computationally

untenable, but also unnecessary for our purposes; most of the salient features may be

illustrated by exploring a few benchmark scenarios in which all the relevant types of

cascade decays are realized. We will focus on four such mass spectra with various or-

derings of the scalar mass spectrum, fixing the lightest CP-even Higgs mass at 125 GeV

in each case.

The various 2HDM production and decay topologies that give rise to multi-lepton

signatures fall into two broad categories: those resulting from the direct production and

decay of an individual scalar, and those resulting from cascades involving more than

one scalar. The first category includes the resonant four-lepton signals of the Standard

Model-like Higgs h, from gluon fusion and vector boson fusion production followed

by h → ZZ∗ with Z(∗)→ ``. Other resonant and non-resonant multi-lepton signals

arise from quark–anti-quark fusion production of Wh,Zh, along with tth associated

production with t → Wb, all followed by h → WW ∗, ZZ∗, ττ with leptonic decays of

(some of the) W → `ν, Z(∗)→ `` and τ → `νν. These modes were studied in depth in

[68] to obtain multi-lepton limits on the Standard Model Higgs and simple variations.

The same modes of production and decay are available to the heavy CP-even scalar,

H, albeit with reduced production cross sections due to its larger mass and mixing
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suppression of some of its couplings.

While the branching fractions of these modes depend on the parameters of the

theory, their existence is robust and common to all benchmark spectra we consider. In

contrast, the sole multi-lepton mode involving direct production of the pseudoscalar,

A, without cascade decays through other scalars is ttA associated production followed

by t → Wb and A → ττ with leptonic decays of (some of the) W → `ν and τ → `νν.

And there are no multi-lepton signals resulting from direct production of the charged

Higgs, H±, without cascade decays through other scalars.

Scalar cascades add a variety of new multi-lepton processes, including production

and decay modes that contribute to some of the same final states that arise from a

Standard Model Higgs boson. Processes of this type include gluon fusion production of

A with A→ Zh, ZH followed by h,H →WW ∗, ZZ∗, ττ with (some of the) W → `ν,

Z(∗)→ ``, and τ → `νν. Another example of this type is gluon fusion and vector boson

fusion production of H with H → AA, hh followed by A → ττ or h → bb, WW ∗,

ZZ∗, ττ with (some of the) W → `ν, Z(∗)→ `` and τ → `νν. With only a single Higgs

doublet, direct Standard Model di-Higgs production is a very rare process, but resonant

heavy Higgs production and decay into these final states can be up to two orders of

magnitude larger in 2HDMs.

Scalar cascade decays of the heavy Higgs scalar, H, can also contribute to entirely

new multi-lepton final states that do not arise with a single Higgs doublet. These

include gluon fusion and vector boson fusion production of H with H → AA, H+H−,

ZA, WH± with A → bb, Zh, ττ , and H± → tb, τν, Wh with t → Wb followed by

h → bb, WW ∗, ZZ∗, ττ with (some of the) W → `ν, Z(∗)→ `` and τ → `νν. These

processes can give final states with up to six W and/or Z bosons. Similar processes

in this same category include gluon fusion production of A with A → ZH followed

by H → hh with h → bb,WW ∗, ZZ∗, ττ with (some of the) W → `ν, Z(∗)→ `` and

τ → `νν. These processes can give final states with up to five W and/or Z bosons.

Direct di-Higgs production of non-Standard Model-like Higgs bosons either with or

without scalar cascade decay processes can also give rise to multi-lepton final states

that do not arise with a single Higgs doublet. These include quark–anti-quark fusion
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production of Ah,AH,H±A followed by H →WW ∗, ZZ∗, ττ , AA, and H± → tb, τν,

Wh, WA with t → Wb, and A → bb, ττ , all with h,H → WW ∗, ZZ∗, ττ with (some

of the) W → `ν, Z(∗) → `` and τ → `νν. The existence of some of these processes

is sensitive to mass hierarchies in the Higgs spectrum; other production and decay

processes of this type can arise depending on mass orderings.

Additional multi-lepton final states not associated with a single Higgs doublet can

arise from production of non-Standard Model-like Higgs bosons in association with top

quarks. These include ttH, ttA, and tbH± associated production with t→Wb followed

by H → AA, and H± → Wh, WA, and A → Zh, bb, ττ , all with h,H → WW ∗,

ZZ∗, ττ with (some of the) W → `ν, Z(∗)→ `` and τ → `νν. While the production

and decay processes listed here and above do not completely exhaust all possibilities

for contributions to multi-lepton signatures in every conceivable 2HDM mass spectrum,

they do include the leading topologies for a very wide range of mass hierarchies.

6.3 Benchmark Spectra

All of the production and decay processes outlined above are represented in one or

more of the benchmark Higgs mass spectra described below. The value of the scalar

masses chosen for each benchmark spectrum are shown in Table 6.3. In the benchmark

spectra 1-3, for simplicity the pseudoscalar and the charged Higgs are taken to form

an isotriplet with degenerate masses. In spectrum 4, this simplifying assumption is

relaxed, with the pseudoscalar Higgs taken to be the lightest scalar. For all four 2HDM

spectra, the light, CP-even scalar, h, has no available decay modes beyond those of a

Standard Model Higgs boson, although the branching fractions may significantly differ

from the SM values.

The simplest benchmark spectrum is that with all the heavy non-Standard Model

like Higgs bosons decoupled. In this case the remaining Standard Model Higgs boson can

be produced in gluon fusion, vector boson fusion, and in assocation with vector bosons

and top quarks, and it can decay to h → WW ∗, ZZ∗, ττ . The leading topologies that

contribute to multi-lepton signatures from these production and decay channels are
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SM Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 4
(GeV) (GeV) (GeV) (GeV) (GeV)

h 125 125 125 125 125
H − 300 140 500 200
A − 500 250 230 80
H± − 500 250 230 250

Table 6.3: Higgs boson masses in the SM Benchmark and our four 2HDM Benchmark
Spectra.

given in Table 6.4. These topologies are associated to the Standard Model-like Higgs

boson in all 2HDMs. The important additional production and decay channels that

contribute to multi-lepton signatures (beyond those of the Standard Model-like Higgs

boson) in each of our four 2HDM benchmark spectra are as follows:

Benchmark spectrum 1: The heavy neutral Higgs, H, is produced mainly through

gluon fusion and vector boson fusion, and can decay through the same channels as a

heavy Standard Model Higgs, plus the new kinematically allowed decay H → hh.

The pseudoscalar, A, is produced mainly through gluon fusion and can decay by

A → Zh,ZH. The charged Higgs, H±, does not play an important role in this spec-

trum. The complete list of topologies that contribute to multi-lepton signatures from

these production and decay channels, along with those from the Standard Model-like

Higgs boson, are given in Table 6.5.

Benchmark spectrum 2: This spectrum is qualitatively similar to the first, but

with H → hh no longer kinematically allowed. Production of the Heavy Higgs, H,

can proceed through gluon fusion, vector boson fusion, and in association with vector

bosons and top quarks, with decays to Standard Model channels. Production of the

pseudoscalar, A, through gluon fusion production and in association with top quarks

with A → Zh, ZH, ττ is much greater than in spectrum 1 due to the lower A mass.

The charged Higgs, H±, can also be produced in association with a top quark, and

can decay by H± → Wh. The complete list of topologies that contribute to multi-

lepton signatures from these production and decay channels, along with those from the

Standard Model-like Higgs boson, are given in Table 6.6.
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Benchmark spectrum 3: This spectrum is the most rich in the multiplicity of

multi-lepton final states, as the decay channels H → hh, AA, H+H−, AZ are all

kinematically open, in addition to the Standard Model decay channels. The heavy

Higgs, H, can be produced in gluon fusion and vector boson fusion. The pseudoscalar,

A, is produced in gluon fusion, as well as from decays f the H, with decays A→ Zh, ττ .

The charged Higgs, H±, can be produced in association with a top quark, or from decay

of H with decays H± → τν, Wh. This spectrum includes topologies with sequential

cascade decays through up to three Higgs scalars. The complete list of topologies that

contribute to multi-lepton signatures from all these production and decay channels,

along with those from the Standard Model-like Higgs boson, are given in Table 6.7.

Benchmark spectrum 4: This spectrum breaks the degeneracy between the pseu-

doscalar, A, and the charged Higgs, H±, in order to highlight the role of a light pseu-

doscalar. Quark–anti-quark fusion production of A with the scalar Higgses, H,h or

charged Higgs, H±, is significant, with decays A→ bb, ττ and H± → τν, Wh, WA as

well as H → AA, in addition to the Standard Model decay channels. The later decay

yields a topology with three pseudoscalar Higgses in the final state. The pseudoscalar,

A, as well as H and H±, can also be produced in association with top quarks. The

heavy Higgs, H, can also be produced in gluon fusion and vector boson fusion. The

very small partial width for the decay h→ AA∗ in this spectrum will be ignored. The

complete list of topologies that contribute to multi-lepton signatures from all these

production and decay channels, along with those from the Standard Model-like Higgs

boson, are given in Table 6.8.

All 233 production and decay topologies listed in Tables 6.4 - 6.8 were individually

simulated in our studies of multi-lepton signatures of the Standard Model Higgs and

our four 2HDM spectra benchmarks. Certain channels for the 2HDM benchmarks were

omitted for the sake of conciseness. In general, channels were omitted if the produc-

tion cross section times fixed Standard Model branching ratios to multi-lepton final

states was much less than 1 fb even in the most promising regions of parameter space.

For nominal simplicity, for the 2HDM benchmarks, we omitted associated production

channels for h with h→ ZZ∗, having found in [68] that with the integrated luminosity
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considered here, these channels did not contribute significantly to even low-background

search channels. However, with significantly more integrated luminosity these channels

would begin to contribute to the sensitivity.

Production Decay
gg → h h→ 4`
VBF→ h h→ 4`
qq̄ →Wh Wh→WWW,WZZ,Wττ
qq̄ → Zh Zh→ ZWW,ZZZ,Zττ
tt̄h tt̄h→ tt̄WW, tt̄ZZ, tt̄ττ

Table 6.4: The 11 independent production and decay topologies simulated for the
Standard Model Higgs Boson with mh = 125 GeV. The Higgs boson branching ratios
are factored out of each topology. All top-quark, τ -lepton, and W - and Z bosons
branching ratios are Standard Model.

Production Decay
gg → h h→ 4`
VBF→ h h→ 4`
gg → H H → 4`

H → hh→ 4W,WWττ, 4τ, ZZbb̄, ZZWW, 4Z,ZZττ
VBF→ H H → 4`

H → hh→ 4W,WWττ, 4τ, ZZbb̄, ZZWW, 4Z,ZZττ
gg → A A→ Zh→ ZWW,Zττ, ZZZ

A→ ZH → ZWW,Zττ, ZZZ
A→ ZH → Zhh→ ZWWWW,ZWWττ, Zττττ, ZZZbb̄, ZZZWW, 5Z,ZZZττ

qq̄ →Wh Wh→WWW,Wττ
qq̄ → Zh Zh→ ZWW,Zττ
tt̄h tt̄h→ tt̄WW, tt̄ττ

Table 6.5: The 37 independent production and decay topologies simulated for the 2HDM
Benchmark Spectrum 1 with mh = 125 GeV, mH = 300 GeV, mA = mH± = 500 GeV.
All Higgs boson branching ratios are factored out of each topology. All top-quark,
b-quark, τ -lepton, and W - and Z-boson branching ratios are Standard Model.

6.4 Search Strategy and Simulation Tools

In principle, it might be possible to design a multi-lepton search with sensitivity specifi-

cally tailored to certain features of the signatures that arise from some of the production

and decay topologies of 2HDMs. However, designing such a dedicated search would re-

quire a detailed understanding of backgrounds in many channels that is well beyond the
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Production Decay
gg → h h→ 4`
VBF→ h h→ 4`
gg → H H → 4`
VBF→ H H → 4`
gg → A A→ Zh→ ZWW,Zττ, ZZZ

A→ ZH → ZWW,Zττ, ZZZ
qq̄ →Wh Wh→WWW,Wττ
qq̄ → Zh Zh→ ZWW,Zττ
qq̄ →WH WH →WWW,Wττ
qq̄ → ZH ZH → ZWW,Zττ
tt̄h tt̄h→ tt̄WW, tt̄ττ
tt̄H tt̄H → tt̄WW, tt̄ττ
tt̄A tt̄A→ tt̄ττ

tt̄A→ tt̄Zh→ tt̄ZWW, tt̄Zττ, tt̄Zbb̄, tt̄ZZZ
tt̄A→ tt̄ZH → tt̄ZWW, tt̄Zττ, tt̄Zbb̄, tt̄ZZZ

tbH± tbH± → tbWh→ tbWWW, tbWττ, tbWZZ

Table 6.6: The 34 independent production and decay topologies simulated for the 2HDM
Benchmark Spectrum 2 with mh = 125 GeV, mH = 140 GeV, mA = mH± = 250 GeV.
All Higgs boson branching ratios are factored out of each topology. All top-quark,
b-quark, τ -lepton, and W - and Z-boson branching ratios are Standard Model.

scope of a theory-level study. Instead, as done previously in a study of the multi-lepton

signatures of the Standard Model Higgs boson [68], we will adopt the selection cuts

and background estimates of an existing CMS multi-lepton analysis [66, 67] to demon-

strate the efficacy of a 2HDM multi-lepton search. In the conclusions, we will comment

briefly on how a focussed search could be further optimized to maximize sensitivity to

multi-lepton final states arising from an extended scalar sector.

Although the CMS analysis includes hadronically decaying τ -leptons, for simplicity

of simulation, we will consider only strictly leptonic ` = e, µ final states (of course,

still including leptonic τ decays). Additionally, we treat all hadronic taus as having

failed selection criteria, thus being identified as jets. Because of this, some events

(mainly those involving 4τ final states) will be categorized differently than in the CMS

analysis. For instance, an event with three e/µ and one hadronic τ that the CMS

analysis would have included in a 4` (with 1τ) bin, will instead be included in a 3` bin

in our analysis, potentially with higher HT due to the additional energy of the hadronic

τ -lepton. While this is a deviation from the exact procedure of the CMS analysis, it

goes in the conservative direction, as the 4` with 1τ bins have significantly smaller
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Production Decay
gg → h h→ 4`
VBF→ h h→ 4`
gg → H H → 4`

H → hh→ 4W,WWττ, 4τ, ZZbb̄, ZZWW, 4Z,ZZττ
H → AA→ 4τ
H → AA→ ττZh→ ττZWW, ττZττ, ττZbb̄, ττZZZ
H → AA→ ZhZh→ ZZWWWW,ZZWWττ, ZZWWbb̄, ZZττbb̄, ZZττττ
H → AA→ ZhZh→ ZZbb̄bb̄, ZZZZbb̄, ZZZZττ, ZZZZWW, 6Z
H → H+H− →WhWh→WWWWWW,WWWWττ,WWWWbb̄,WWττττ
H → H+H− →WhWh→WWττbb̄,WWZZbb̄,WWWWZZ,WWZZZZ,WWZZττ
H → H+H− → τνWh→ τνWWW, τνWττ, τνWZZ
H → H+H− → tbWh→ tbWWW, tbWττ, tbWZZ
H → ZA→ Zττ
H → ZA→ ZZh→ ZZττ, ZZWW,ZZbb̄, ZZZZ
H →WH± →WWh→WWττ,WWWW,WWZZ

VBF→ H H → 4`
H → hh→ 4W,WWττ, 4τ, ZZbb̄, ZZWW, 4Z,ZZττ
H → AA→ 4τ
H → AA→ ττZh→ ττZWW, ττZττ, ττZbb̄, ττZZZ
H → AA→ ZhZh→ ZZWWWW,ZZWWττ, ZZWWbb̄, ZZττbb̄, ZZττττ
H → AA→ ZhZh→ ZZbb̄bb̄, ZZZZbb̄, ZZZZττ, ZZZZWW, 6Z
H → H+H− →WhWh→WWWWWW,WWWWττ,WWWWbb̄,WWττττ
H → H+H− →WhWh→WWττbb̄,WWZZbb̄,WWWWZZ,WWZZZZ,WWZZττ
H → H+H− → τνWh→ τνWWW, τνWττ, τνWZZ
H → H+H− → tbWh→ tbWWW, tbWττ, tbWZZ
H → ZA→ Zττ
H → ZA→ ZZh→ ZZττ, ZZWW,ZZbb̄, ZZZZ
H →WH± →WWh→WWττ,WWWW,WWZZ

gg → A A→ Zh→ ZWW,Zττ, ZZZ
qq̄ →Wh Wh→WWW,Wττ
qq̄ → Zh Zh→ ZWW,Zττ
tt̄h tt̄h→ tt̄WW, tt̄ττ
tt̄A tt̄A→ tt̄ττ

tt̄A→ tt̄Zh→ tt̄ZWW, tt̄Zττ, tt̄Zbb̄, tt̄ZZZ
tbH± tbH → tbWh→ tbWWW, tbWττ, tbWZZ

Table 6.7: The 111 independent production and decay topologies simulated for the
2HDM Benchmark Spectrum 3 with mh = 125 GeV, mH = 500 GeV, mA = mH± = 230
GeV. All Higgs boson branching ratios are factored out of each topology. All top-quark,
b-quark, τ -lepton, and W - and Z-boson branching ratios are Standard Model.
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Production Decay
gg → h h→ 4`
VBF→ h h→ 4`
gg → H H → 4`

H → AA→ 4τ
VBF→ H H → 4`

H → AA→ 4τ
qq̄ →Wh Wh→WWW,Wττ
qq̄ → Zh Zh→ ZWW,Zττ
tt̄h tt̄h→ tt̄WW, tt̄ττ
tt̄H tt̄H → tt̄WW, tt̄ττ

tt̄H → tt̄AA→ tt̄ττττ, tt̄ττbb
tt̄A tt̄A→ tt̄ττ
tbH± tbH± → tbWh→ tbWWW, tbWττ, tbWZZ

tbH± → tbWA→ tbWττ
qq̄ → H±A H±A→Whbb̄→WWWbb̄,Wττbb̄,WZZbb̄

H±A→Whττ →WWWττ,Wττττ,Wbb̄ττ,WZZττ
H±A→ τνττ, tb̄ττ
H±A→WAA→Wττττ,Wττbb̄

qq̄ → Ah Ah→ ττWW, ττττ, ττZZ
qq̄ → AH AH → ττWW, ττττ, ττZZ

AH → AAA→ 6τ, ττττbb̄

Table 6.8: The 40 independent production and decay topologies simulated for the
2HDM Benchmark Spectrum 4 with mh = 125 GeV, mH = 200 GeV, mA = 80 GeV,
mH± = 250 GeV.All Higgs boson branching ratios are factored out of each topology.
All top-quark, b-quark, τ -lepton, and W - and Z-boson branching ratios are Standard
Model.
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backgrounds than the 3` with 0τ bins. Thus, if we could implement a satisfactory

modeling of hadronic τ identification in our study, we would expect our bounds to

become stronger in regions of parameter space where 4τ final states are driving the

limits. For other final states such as H → hh → 4W , the impact of this effect on our

signal is at the few percent level or less.

6.4.1 Signal Channels

The prompt irreducible Standard Model backgrounds to multi-lepton searches are small

and arise predominantly through leptonic decays of W and Z bosons. Such backgrounds

may therefore be reduced by demanding significant hadronic activity and/or missing

energy in the events. Hadronic activity can be quantified by the variable HT , defined

as the scalar sum of the transverse energies of all jets passing the preselection cuts. The

missing transverse energy (MET) is the magnitude of the vector sum of the momenta

of all particles in the event. In order to make use of HT and MET, the CMS analysis of

[8, 9] divides events with HT > 200 (MET > 50) GeV into a high HT (MET) category,

and those with HT < 200 (MET < 50) GeV into a low HT (MET) category. The high

HT and high MET requirements (individually or in combination) lead to a significant

reduction in Standard Model backgrounds.

Another useful observable in reducing backgrounds is the presence of Z candidates,

specifically the existence of an opposite-sign same-flavor (OSSF) lepton pair with an

invariant mass between 75−105 GeV. Events are thus further subdivided, and assigned

a No Z channel if no such pair exists. It is also useful to characterize events according

to whether they may contain off-shell γ/Z∗ candidates, given by the number of OSSF

lepton pairs. Thus, for instance, three-lepton events are assigned to the DY0 (no

possible Drell-Yan pairs) or DY1 category (one OSSF pair). The full combination of 3

and 4 lepton events results in 20 possible categories of HT high/low; MET high/low;

Z/no Z; and DY0/DY1.

The 20 channels were presented already in Table 5.2. For each of the 3` and 4`

categories, channels are listed from top to bottom in approximately descending order of

backgrounds, or equivalently ascending order of sensitivity, with the last such channel
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at the bottom dominated by Standard Model backgrounds. Events are entered in the

table exclusive-hierarchically from the top to the bottom. This ensures that each event

appears only once in the table, and in the lowest possible background channel consistent

with its characteristics. Although the backgrounds in the individual channels vary over

a wide range, all 20 channels are used to compute sensitivity limits.

6.4.2 Simulation

For simulating signal processes, we have used MadGraph v4 [92, 93]. In order to

simulate a general 2HDM in MadGraph, we treat the 2HDM as a simplified model using

a modified version of the 2HDM4TC model file [75]. Cascade decays were performed in

BRIDGE [95]. Subsequent showering and hadronization effects were simulated using

Pythia [97]. Detector effects and object reconstruction was simulated using PGS [78]

with the isolation algorithm for muons and taus modified to more accurately reflect the

procedure used by the CMS collaboration. In particular, we introduce a new output

variable called trkiso for each muon [98]. The variable trkiso is defined to be the

sum pT of all tracks, ECAL, and HCAL deposits within an annulus of inner radius 0.03

and outer radius 0.3 in ∆R surrounding a given muon. Isolation requires that for each

muon, I=trkiso/pT of the muon be less than 0.15. The efficiencies of PGS detector

effects were normalized by simulating the mSUGRA benchmark studied in [66] and

comparing the signal in 3` and 4` channels. To match efficiencies with the CMS study,

we applied a lepton ID efficiency correction of 0.87 per lepton to our signal events. As

discussed earlier, we applied preselection and analysis cuts in accordance with those in

[66].

In order to assess the multi-lepton signatures of the 2HDMs studied here we employ

a factorized mapping procedure [70] to go between model parameters and signatures.

In this procedure the acceptance times efficiency is independently determined in each

of the 20 exclusive multi-lepton channels by monte carlo simulation of each individual

production and decay topology in each of the four 2HDM mass spectra as well as for

the individual topologies of the Standard Model Higgs boson. The cross section times

branching ratio times acceptance and efficiency in any of the 20 exclusive channels at
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any point in parameter space in a given mass spectrum is then given by a sum over

the production cross section times acceptance and efficiency for each topology of that

spectrum, times a product of the branching ratios that appear in each topology

σ ·Br·A(pp→ f) =
∑
t

σ(pp→ t)A(pp→ t→ f)
∏
a

Bra(t→ f) (6.6)

where f is a given exclusive final state channel, t labels the topology, and a the branch-

ing ratios of the decays in the t-th topology. Dependence on the parameter space

characterized by α and β enters only through the production cross sections and decay

branching ratios. The factorized terms in Eq. 6.6 are determined as follows:

• Acceptance times Efficiency: For each individual production and decay topol-

ogy listed in Tables 6.4 - 6.8, the acceptance times detector efficiency into each

of the 20 exclusive multi-lepton channels listed in Table 5.2 was simulated with

the monte carlo tools described above. The acceptance times efficiency of each

topology was calculated assuming unit branching ratios for all Higgs boson decays

but with Standard Model values for decays of W and Z bosons, and top quarks

and τ -leptons. A total of 50,000 events were simulated for each topology to ensure

good statistical coverage of all the exclusive multi-lepton channels.

• Cross Sections: For the case of the Standard Model Higgs boson, the NLO

production cross sections for gluon fusion, vector boson fusion, and production

in association with a vector boson or top quarks are taken from the LHC Higgs

Cross Section Group [80]. For the 2HDM spectra the ratio of LO production

partial widths in each production channel for h and H relative to a Standard

Model Higgs boson of the same mass are calculated analytically from the couplings

presented in Section 6.1 as functions of the mixing parameters α and β. The NLO

Standard Model Higgs production cross sections in each production channel are

then rescaled by these factors to obtain an estimate for the NLO cross sections;

for instance the α, β dependent cross section for gluon fusion production of H is

taken to be
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σNLO(gg → H)|α,β = σNLO(gg → hSM)
ΓLO(H → gg)

∣∣
α,β

ΓLO(hSM → gg)
(6.7)

The same procedure of normalizing to Standard Model Higgs boson NLO cross

sections through the α and β dependent ratios of LO production partial widths

is used for production of A by gluon fusion or in association with top quarks.

This is expected to be a good approximation since the fractional size of NLO

corrections in these cases should not be strongly dependent on the parity of the

Higgs scalar. For the modes that involve production of two Higgs bosons, or

of the charged Higgs in association with a top quark, the LO cross sections are

calculated using Madgraph v4 with a conservative K-factor of K = 1.2 applied.

These cross sections are calculated for a single canonical value of α and β and

then rescaled analytically using the couplings in Section 6.1 to obtain the cross

sections at general values.

• Higgs Bosons Branching Ratios: For the case of the Standard Model Higgs

boson, the NLO partial decay widths and branching ratios are taken from the

LHC Higgs Cross Section Group [80]. For the 2HDM spectra the ratio of LO

partial decay widths for h relative to a Standard Model Higgs boson of the same

mass are calculated analytically as functions of the mixing parameters α and β

using the couplings presented in Section 6.1. The NLO Standard Model Higgs

boson partial decay widths are then rescaled by these factors to obtain estimates

for the NLO partial widths; for instance the α, β dependent partial width for the

light scalar h to bb̄ is taken to be

ΓNLO(h→ bb̄)|α,β = ΓNLO(hSM → bb̄)
ΓLO(h→ bb̄)

∣∣
α,β

ΓLO(hSM → bb̄)
(6.8)

The same procedure of normalizing to Standard Model Higgs boson NLO partial

decay widths through the ratio of LO decay widths is used for the H and A de-

cay modes listed in Table 6.9that are in common with the h decay modes. This

estimate is used since, just as for a production cross section, the fractional size of

NLO corrections to decay widths in these cases should not be strongly dependent



73

on the parity of the Higgs scalar. For the remainder of the H and A decay modes

listed in Table 6.9 that are kinematically open in a given spectrum, as well as the

H± decay modes given in the Table that are open, the LO decay widths are calcu-

lated analytically [81] as a function of α and β using the couplings in Section 6.1.

Except for the charged Higgs decays to quarks, none of thesedecay modes involve

strongly interacting particles, so LO widths should be a good approximation in

this case. The partial widths for all the open decay modes of each Higgs scalar

in Table 6.9 are then used to calculate the α and β dependent total widths and

branching ratios in each mass spectrum.

Higgs Boson Decay Modes

h bb, cc, ττ,WW ∗, ZZ∗, gg, γγ, Zγ

H tt, bb, cc, ττ,WW (∗), ZZ(∗), hh,AA,H+H−, ZA,WH±, gg, γγ, Zγ
A tt, bb, cc, ττ, Zh, ZH, gg, γγ, Zγ
H± tb, ts, cs, τν,WA,Wh,WH

Table 6.9: Decay modes of the Higgs boson scalars used in branching ratio calculations.
Partial widths of the kinematically open decay modes are calculated in each benchmark
spectrum as a function of the mixing parameters α and β to determine the total width
and individual branching ratios.

Using this factorized mapping procedure, each of the 20 exclusive multi-lepton chan-

nels for a given benchmark spectrum over the entire α, β plane in all four 2HDM types is

covered by a single set of monte carlo samples for the production and decay topologies.

In some cases, particularly in Spectrum 3, the total widths of some scalars (par-

ticularly H) increase drastically in certain regions of parameter space, typically due

to enhanced scalar couplings. Our simulation and normalization techniques, however,

treat all particles in the narrow width approximation and assume the validity of per-

turbation theory in the scalar couplings. In the regions of parameter space where scalar

widths grow large, one expects higher-order effects to modify the limits; in this respect

the limits we find in high-width regions should be viewed as rough estimates subject to

potentially large corrections beyond the scope of our approach.



74

6.5 Results

In this section, we present the results of the analysis outlined above using the CMS

multi-lepton search based on 5 fb−1 of 7 TeV proton-proton collisions at the LHC [67].

We first consider the sensitivity of the CMS multi-lepton search to a Standard Model

Higgs boson near 125 GeV before presenting limits in the full 2HDM parameter space

for our four benchmark spectra.

For each benchmark, we briefly discuss the major processes that contribute to multi-

lepton final states, including direct production and decay of individual scalars as well

as cascades among scalars. We also illustrate many of the partial widths and σ · Br’s

for key scalar cascades, which helps to capture the qualitative shape of the multi-lepton

limits in the space of (sinα, tanβ). In many cases, the signals of Type I and Type III

2HDM (and separately Type II and Type IV 2HDM) are often similar, up to final states

involving τ -leptons. These similarities arise because in each case the quark couplings are

identical for the pairs of 2HDM types, so in particular the scaling of the h→ bb̄ partial

widths that often govern the total width (as well as the htt̄ couplings that governs the

gluon fusion production rate) are identical. The only substantial distinction arises in

standard channels with τ final states, since the lepton couplings differ among these

pairs of 2HDM types.

In each case, we show the regions of parameter space excluded by the 5 fb−1 CMS

multi-lepton search. In regions not yet excluded, we show the 95% CL limits on the

production cross section times branching ratio in multiples of the theory cross section

times branching ratio for the benchmark spectrum and 2HDM type. To compute our

95% CL limits, we used a Bayesian likelihood function assuming poisson distributions

for each of the 20 channels with a flat prior for the signal. We treated the magnitude

of the backgrounds in each exclusive channel as nuisance parameters with distributions

given by a truncated positive definite Gaussian distribution with width equal to the

background uncertainty. The number of signal events in each exclusive channel for a

given α and β was obtained from the cross section times branching times acceptance and

efficiency in each channel times the integrated luminosity. For simplicity, we assumed
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there was no error on the signal. To generate the expected limits, a large number of

background-only pseudo-experiments were used in place of data.

For comparison, we also show regions where the heavy, CP-even scalar, H, is cur-

rently excluded by standard Higgs searches at 7 TeV [59] at roughly the same luminosity

of the multi-lepton search. For Spectra 1, 3, and 4 we use the combined CMS Higgs

limit at 5 fb−1 of 7 TeV collisions, which is driven by ZZ and WW final states. For

Spectrum 2, where mH = 140 GeV, we use the WW → 2`2ν CMS Higgs limit at 5

fb−1 of 7 TeV collisions, which dominates the exclusion limit at this mass. We also

consider direct limits on the pseudoscalar A and the charged Higgses H±, but these

do not impact the parameter space explored here. For the pseudoscalar, the best cur-

rent CMS limits come from MSSM Higgs searches for bb̄A associated production with

A→ ττ [82]. For a Type II 2HDM, the current exclusion is relevant only for tanβ > 10,

and in all other 2HDM types the σ · Br for bb̄A associated production with A → ττ

is smaller than in the Type II case. Searches for di-tau resonances [83] do not lead to

meaningful limits. Finally, searches for charged Higgses such as [84] are sensitive only

to H± production in decays of the top quark, which are not relevant for the benchmark

spectra considered here.

6.5.1 Spectrum 1

Now let us turn to the multi-lepton signals and limits of our 2HDM benchmark spectra.

The multi-lepton limits on the first benchmark spectrum for all four types of 2HDM

are shown in Figure 6.1. Limits in this and the following figures were obtained from an

exclusive combination of the observed and expected number of events in all the multi-

lepton channels presented in Table 5.2 on an evenly-spaced grid in −1 ≤ sinα ≤ 0

and 1 ≤ tanβ ≤ 10 with spacing ∆(sinα) = 0.1 and ∆(tanβ) = 1; contours were

determined by numerical interpolation between these points.

In addition to the Standard Model-like production and decays of scalars to SM final

states, the first benchmark spectrum also features the inter-scalar decays H → hh,

A → Zh, and A → ZH. The partial widths for these three inter-scalar decays (which

are independent of the 2HDM type) and the σ · Br for the dominant processes gg →
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H → hh, gg → A→ Zh, and gg → A→ ZH (which depend weakly on the 2HDM type;

here, we display those of a Type I 2HDM) are shown in Figure 6.2; their parametric

behavior as a function of sinα and tanβ helps to explain many of the detailed features

of the exclusion limits in Figure 6.1.

The partial width, Γ(H → hh), has a complicated dependence on α, β, but is

greatest when tanβ is large and sinα ' −0.85. This process only contributes signif-

icantly to multi-lepton limits in 2HDM types for which the multi-lepton decays of h

are unsuppressed in the same region where Br(H → hh) is large. The partial width,

Γ(A → Zh) ∝ cos2(β − α), is largest away from the alignment limit, while the partial

width, Γ(A→ ZH) ∝ sin2(β − α), is largest in the alignment limit. In both cases, the

multi-lepton limits are strongest for 2HDM types where the multi-lepton decays of h

and H are significant when Br(A→ Zh) and Br(A→ ZH) are respectively large.

On the production side, the dominant production cross section for H, σ(gg → H),

is largest at small tanβ and sinα → −1, while the dominant cross section for A,

σ(gg → A), is independent of sinα (since the pseudoscalar couplings to fermions, and

hence gluons, depend only on tanβ) and increases as tanβ → 0. These production

cross sections and scalar partial widths are largely independent of the 2HDM type; the

gluon fusion rates for Type II and Type IV 2HDM increase slightly at large tanβ due

to the sizable bottom quark coupling.

The threefold combination of production rates, inter-scalar decay widths, and multi-

lepton widths of scalars determines the shape of limits in the plane of sinα and tanβ.

These vary among different 2HDM types, though similarities between Type I & III and

between Type II & IV make it worthwhile to discuss these two sets together.

Types I & III

In the Type I 2HDM, the multi-lepton signals of the SM-like Higgs, h, generally decrease

as we move away from the alignment limit (in large part because the coupling to vectors

is suppressed, reducing both the V h associated production rate and the branching

ratios, Br(h→ V V ∗); for an extended discussion, see [85]), but are not a strong function

of sinα and tanβ; only near sinα→ −1 are the σ ·Br for the conventional multi-lepton
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Figure 6.1: Multi-lepton limits from the CMS multi-lepton search with 5 fb−1 of 7 TeV
proton-proton collisions [67] for the production and decay topologies of Benchmark
Spectrum 1 given in Table 6.5, for Type I (top left), Type II (top right), Type III (bot-
tom left), and Type IV (bottom right) couplings as a function of sinα and tanβ. Limits
were obtained from an exclusive combination of the observed and expected number of
events in all the multi-lepton channels presented in Table 5.2. The solid and dashed
lines correspond to the observed and expected 95% CL limits on the production cross
section times branching ratio in multiples of the theory cross section times branching
ratio for the benchmark spectrum and 2HDM type. The blue shaded regions denote
excluded parameter space. The solid red line denotes the alignment limit sin(β−α) = 1.
he gray shaded region corresponds to areas of parameter space where vector decays of
the heavy CP-even Higgs, H → V V , are excluded at 95% CL by the SM Higgs searches
at 7 TeV [59].
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Figure 6.2: 2HDM Benchmark Spectrum 1 partial widths Γ(H → hh), Γ(A → Zh),
and Γ(A→ ZH) in units of GeV, and cross section times branching ratios σ ·Br(gg →
H → hh), σ · Br(gg → A → Zh), and σ · Br(gg → A → ZH) in units of pb, all for
Type I couplings. These partial widths and σ ·Brs are qualitatively similar for the other
types of 2HDM couplings; the production cross sections σ(gg → H,A) are moderately
enhanced at large tanβ for Type II and Type IV 2HDM due to the contribution from
bottom loops.



79

channels of h significantly diminished. However, the SM-like multi-lepton signals of h

are typically never enhanced as we move away from the alignment limit (the exception

being a mild enhancement of VBF and V h associated production with h → V V ∗

at small tanβ and sinα → −1; see [85] for more detail). In the region where the

multi-lepton signals of h are diminished, the conventional multi-lepton signals of H

are correspondingly enhanced since the HV V coupling is complementary to the hV V

coupling. While for mH = 300 GeV, the production cross section for H is somewhat

smaller than that of h, it nonetheless contributes significantly to multi-lepton limits

near sinα → −1 through primarily SM-like production and decay modes. Note that

the direct decays of the pseudoscalar A never result in more than two leptons, so the

pseudoscalar contributes to the multi-lepton signal only through scalar cascades and

tt̄A associated production.

In addition to the conventional SM-like production and decay modes of h and H, we

must also consider the various production channels involving inter-scalar decays. The

σ · Br(gg → H → hh) is largest at large tanβ and sinα ∼ −0.8 where gHhh is largest.

The parametric behavior of this σ · Br, along with the fact that the multi-lepton final

states of h in a Type I 2HDM are only mildly suppressed when σ ·Br(gg → H → hh) is

significant, largely explains the strengthening of the multi-lepton limit around sinα ∼

−0.85.

For the pseudoscalar, σ · Br(gg → A → Zh) is large away from the alignment

limit, but decreases at large tanβ due to the falling gluon fusion rate for A. Similarly,

σ ·Br(gg → A→ ZH) is large only at low tanβ, since the branching ratio for A→ ZH

is large along the alignment line but the gluon fusion rate for A again decreases at

large tanβ. Thus, both σ ·Br(gg → A→ Zh) and σ ·Br(gg → A→ ZH) contribute to

limit-setting at small tanβ, essentially independent of sinα, while σ ·Br(gg → A→ Zh)

also contributes at larger tanβ for sinα . −0.5.

All three scalar decays contribute to setting the strongest limits at small tanβ

(relatively insensitive to sinα), while σ ·Br(gg → H → hh) predominantly explains the

limits at large tanβ around sinα ∼ −0.85. The additional contributions from scalar

cascades are exemplified in Figure 6.3, which illustrates the HT and MET distributions
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Figure 6.3: The 2HDM signal transverse hadronic energy distribution (left) and missing
transverse energy distribution (right) after acceptance and efficiency for 7 TeV proton-
proton collisions arising from the production and decay topologies of Benchmark Spec-
trum 1 given in Table 6.5 with mh = 125 GeV, mH = 300 GeV, mH± = mA = 500
GeV, for Type I 2HDM couplings with sinα = −0.9 and tanβ = 1.0. Signal events
correspond to those falling in the exclusive three- or four-lepton channels labelled with
a dagger in Table 5.2 that have moderate to good sensitivity. The colors indicate the
initial type of Higgs boson produced. For each color, the lighter shade corresponds to
three-lepton channels, while the darker shade corresponds to four-lepton channels. The
bin size is 40 GeV for HT and 10 GeV for ET6 , and in both cases the highest bin includes
overflow.
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for the sum of multi-lepton events at the point (sinα = −0.9, tanβ = 1.0), distinguished

by the initial scalar produced in each multi-lepton event.

The multi-lepton signals in the Type III, or “lepton-specific,” model are similar to

those of the Type I model, since the couplings of the Higgs scalars to quarks and vectors

are identical for these 2HDM types. The exception is a significant improvement in the

limits around −0.9 . sinα . −0.6 relative to the Type I 2HDM. Here, the branching

ratio, Br(h → ττ), is substantially increased over the SM rate and contributes both

through SM-like associated production of h and production of H → hh with one or both

h decaying to ττ . Indeed, processes such as V h associated production with h → ττ

are as much as ten times larger than the SM rate, with σ · Br(Wh → Wττ) as large

as several hundred fb. Scalar cascades involving τs are even more important, with

σ · Br(gg → H → hh → 4τ) as large as several pb. The enhancement of Γ(h → ττ)

renders this the 2HDM type most amenable to detection by the multi-lepton search,

and, in fact, a large region of parameter space is already excluded by the CMS multi-

lepton search with 5 fb−1. While some of this region is already excluded by conventional

searches for h→ ττ , there exist regions not constrained by current searches where the

dominant multi-lepton limit comes from scalar cascades.

Types II & IV

A very important difference in the phenomenology of the Type II & IV 2HDM compared

to the preceding description of the Type I & III phenomenology is that the down-type

quarks now couple to Hd rather than Hu, thus the partial width of h → bb̄ has an

entirely different parametric dependence. Since this decay mode dominates in the SM-

like alignment limit, its variation sharply affects the Br’s of all other decay modes

as well. For instance, the multi-lepton signals of the SM-like Higgs h change rapidly

as we move away from the alignment limit, decreasing sharply with increasing tanβ

above the sin(β − α) = 1 line due to the rapidly increasing partial width, Γ(h → bb̄),

and rising rapidly below sin(β − α) = 1 as Γ(h → bb̄) drops. Thus at large tanβ

above the alignment line, the multi-lepton signals of h diminish rapidly, weakening

the limit both from SM-like production of h and from new associated production,



82

such as H → hh. The only exception are multi-lepton signals involving h → ττ ,

since Γ(h → ττ)/Γ(h → bb̄) is fixed in a Type II 2HDM. On the other hand, below

the alignment line there is an overall enhancement of multi-lepton decays involving

h→ V V ∗ since the partial width Γ(h→ bb̄) drops, leading to an increase in the purely

SM-like multi-lepton production and decay modes of h. As sinα→ −1, the direct multi-

lepton decays of H somewhat compensate for the loss of h signals, but there is a wide

region of large tanβ and moderate sinα where neither h nor H decays significantly

to multi-lepton final states; this is clearly displayed by the weak limits in the range

−0.9 . sinα . −0.2.

Scalar cascade decays do not significantly help to constrain a Type II 2HDM. While

the σ · Br(gg → H → hh) is parametrically similar to the Type I 2HDM, in a Type II

2HDM the SM-like Higgs h decays predominantly to bb̄ in this region, so this channel

does not contribute substantially to multi-lepton limits (except for the rare hh→ 4τ).

Likewise, the contributions from σ·Br(gg → A→ Zh) at large tanβ lead to multi-lepton

signals only through h→ ττ .

At low tanβ, the direct multi-lepton decays of h are still significant, as are the

added contributions from H → hh,A→ Zh, and A→ ZH. The multi-lepton limits on

the first benchmark spectrum for a Type II 2HDM are strongest at low tanβ, where

h decays and inter-scalar decays to multi-lepton final states are enhanced; limits at

sinα → −1 come predominantly from direct decays of H, while those at sinα → 0

come from direct decays of h. The contributions of the pseudoscalar in this limit are

exemplified by Figure 6.4, which illustrates the HT and MET distributions for the sum

of multi-lepton events at the point (sinα = −0.3, tanβ = 1.0), for which there is a large

contribution from A→ Zh,ZH.

The multi-lepton signals in the Type IV, or “flipped,” model are similar to that of

the Type II model, since the couplings of the Higgs scalars to quarks and vectors are

identical for these 2HDM types. The notable exception are the reduced limits in the

region of moderate sinα and large tanβ. This reduction in sensitivity is due to the fact

that in a Type IV 2HDM the partial width, Γ(h→ ττ), no longer scales with Γ(h→ bb̄),

and so in the region where Γ(h→ bb̄) is particularly large there are no longer meaningful
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Figure 6.4: The 2HDM signal transverse hadronic energy distribution (left) and missing
transverse energy distribution (right) after acceptance and efficiency for 7 TeV proton-
proton collisions arising from the production and decay topologies of Benchmark Spec-
trum 1 given in Table 6.5 with mh = 125 GeV, mH = 300 GeV, mH± = mA = 500
GeV, for Type II 2HDM couplings with sinα = −0.3 and tanβ = 1.0. Signal events
correspond to those falling in the exclusive three- or four-lepton channels labelled with
a dagger in Table 5.2 that have moderate to good sensitivity. The colors indicate the
initial type of Higgs boson produced. For each color, the lighter shade corresponds to
three-lepton channels, while the darker shade corresponds to four-lepton channels. The
bin size is 40 GeV for HT and 10 GeV for ET6 , and in both cases the highest bin includes
overflow.
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contributions to multi-lepton limits from h→ ττ with leptonically decaying τ -leptons.

In particular, this removes possible multi-lepton signals from associated production of

h in this region, both through SM associated production and scalar cascades.

6.5.2 Spectrum 2

The multi-lepton limits on the second benchmark spectrum are shown in Figure 6.5.

Much like the first benchmark spectrum, this spectrum includes the scalar decays A→

Zh and A → ZH, albeit with greater cross sections since mA = 250 GeV in this

spectrum. However, the decay H → hh is now kinematically forbidden. Since the

parametric behavior of the relevant partial widths and σ · Br’s is the same as in the

first benchmark up to overall rescalings, we do not show them explicitly, but emphasize

that the cross sections for production of A and H are substantially larger compared to

the first benchmark since both A and H are lighter in this case.

Types I & III

The multi-lepton limits for Type I 2HDM are similar to those of the Type I model

for Spectrum 1, albeit without the contributions from H → hh. Particularly, the

stronger limits around sinα ∼ −0.85 in Spectrum 1 are absent here, but otherwise the

parametric contributions are similar. The limits for this spectrum are stronger at small

tanβ because the now lighter A has a larger production cross section, σ(gg → A), than

in Spectrum 1. Similarly, the limits are stronger as sinα → −1 since here the direct

production and multi-lepton decays of H dominate the limit, and the production cross

section for H is effectively SM-like in this region since mH = 140 GeV.

Likewise, the multi-lepton limits for Type III 2HDM are similar to those of the Type

III model for Spectrum 1, although they again lack the contributions from H → hh,

meaning that there is no significant 4τ contribution with this spectrum.

Types II & IV

Unsurprisingly, the limits for Type II & Type IV 2HDM are similar to the analogous

limits in Spectrum 1, although somewhat stronger due to the enhanced production
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Figure 6.5: Multi-lepton limits from the CMS multi-lepton search with 5 fb−1 of 7 TeV
proton-proton collisions [67] for the production and decay topologies of Benchmark
Spectrum 2 given in Table 6.5, for Type I (top left), Type II (top right), Type III (bot-
tom left), and Type IV (bottom right) couplings as a function of sinα and tanβ. Limits
were obtained from an exclusive combination of the observed and expected number of
events in all the multi-lepton channels presented in Table 5.2. The solid and dashed
lines correspond to the observed and expected 95% CL limits on the production cross
section times branching ratio in multiples of the theory cross section times branching
ratio for the benchmark spectrum and 2HDM type. The blue shaded regions denote
excluded parameter space. The solid red line denotes the alignment limit sin(β−α) = 1.
The gray shaded region corresponds to areas of parameter space where vector decays
of the heavy CP-even Higgs, H → WW ∗, are excluded at 95% CL by the SM Higgs
searches at 7 TeV [59].
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cross sections for A and H. Note that there is no significant weakening of the limit

at large tanβ and moderate sinα compared to Spectrum 1, despite the disappearance

of the decay H → hh. This exemplifies the fact that in Type II and Type IV 2HDM,

the multi-lepton decays of h are suppressed in this range, so the presence or absence of

H → hh does not significantly alter the limit.

6.5.3 Spectrum 3

The multi-lepton limits on the third benchmark spectrum for all four types of 2HDM are

shown in Figure 6.6. The third benchmark spectrum enjoys a plethora of inter-scalar

cascade decays. In particular, the important inter-scalar decays include H → hh,

H → AA, H → H+H−, H → ZA, H± → W±h, and A → Zh. The fact that

H → H+H−, AA,ZA and both H± → W±h and A → Zh are open allows for the

possibility of multi-step cascades involving three Higgs scalars. Also note that the

range of possible decays of H means that the overlap of large Γ(H → hh) with multi-

lepton decays of h is not as important to limit-setting as it was in Spectrum 1, since,

e.g., H → AA,ZA with A→ ττ may be important even when the multi-lepton decays

of h are small. However, since H is relatively heavy in this benchmark (mH = 500

GeV), the direct multi-lepton decays of H are less important to limit-setting relative

to other benchmarks due to the lower production cross section. The partial widths

and σ · Br for those processes unique to Spectrum 3 are shown in Figure 6.7 (the

parametric dependence of H → hh and A→ Zh were already shown in Figure 6.2 and

the dependence of H± →W±h will be shown in Figure 6.11 when we discuss Spectrum

4).

The partial widths Γ(H → AA) and Γ(H → H+H−) are complicated functions

of α and β, but grow as tanβ increases and sinα goes to zero. The partial widths,

Γ(H → ZA) and Γ(H → H±W∓), scale simply as sin2(β − α), and so is largest in

the alignment limit, while the partial widths, Γ(A → hZ) and Γ(H± → W±h), scale

as cos2(β − α) and is largest away from the alignment limit. Note in Figure 6.7 the

partial widths, Γ(H → AA) and Γ(H → H+H−), grow quite large with increasing

tanβ, such that the total width of H exceeds its mass for tanβ & 5 and sinα & −0.8.
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Figure 6.6: Multi-lepton limits from the CMS multi-lepton search with 5 fb−1 of 7 TeV
proton-proton collisions [67] for the production and decay topologies of Benchmark
Spectrum 3 given in Table 6.5, for Type I (top left), Type II (top right), Type III (bot-
tom left), and Type IV (bottom right) couplings as a function of sinα and tanβ. Limits
were obtained from an exclusive combination of the observed and expected number of
events in all the multi-lepton channels presented in Table 5.2. The solid and dashed
lines correspond to the observed and expected 95% CL limits on the production cross
section times branching ratio in multiples of the theory cross section times branching
ratio for the benchmark spectrum and 2HDM type. The blue shaded regions denote
excluded parameter space. The solid red line denotes the alignment limit sin(β−α) = 1.
The gray shaded region corresponds to areas of parameter space where vector decays
of the heavy CP-even Higgs, H → V V ∗, are excluded at 95% CL by the SM Higgs
searches at 7 TeV [59].In all cases, for tanβ & 5 and sinα & −0.8 the total width of H
grows comparable to its mass and the precise exclusion limit in this region is subject
to large theoretical uncertainties, these regions are highlighted in light red.
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Figure 6.7: 2HDM Benchmark Spectrum 3 partial widths Γ(H → AA), Γ(H →
H+H−), and Γ(H → ZA) in units of GeV, and cross section times branching ratios
σ · Br(gg → H → AA), σ · Br(gg → H → H+H−), and σ · Br(gg → H → ZA) in units
of pb, all for Type I couplings. These partial widths and σ ·Brs are qualitatively similar
for the other types of 2HDM; the production cross section σ(gg → H) is moderately
enhanced at large tanβ for Type II and Type IV 2HDM due to the contribution from
bottom loops.
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In this regime, both the perturbative expansion in scalar couplings and the narrow

width approximation break down, and the precise exclusion limit should be treated

with caution.

On the production end, as noted earlier the dominant production mode for H,

σ(gg → H), is largest at small tanβ and sinα → −1. The combination of this depen-

dence and the partial widths implies that σ ·Br(gg → H → AA) and σ ·Br(gg → H →

H+H−) are largest at moderate sinα, peaking around sinα ∼ −0.8 and increasing

mildly with tanβ; both contribute over a somewhat wider range than gg → H → hh.

In contrast, σ · Br(gg → H → ZA) is largest at low tanβ and sinα→ −1.

Types I & III

The signals of the Type I 2HDM for the third benchmark spectrum are similar to those

of the first benchmark spectrum, to the extent that they are largely governed by the

multi-lepton final states of h combined with the scalar decays of H and A. However,

in contrast to Spectrum 1, here the direct multi-lepton decays of H are less significant

in limit-setting since the production cross section for mH = 500 GeV is considerably

smaller. Thus, the limits at large tanβ and sinα→ −1 coming from direct multi-lepton

decays of H are noticeably weaker in this case. On the other hand, scalar decays of

H contribute meaningfully over a wide range in sinα since σ · Br(gg → H → AA)

and σ · Br(gg → H → H+H−) change slowly as a function of sinα compared to

σ · Br(gg → H → hh).

In the case of processes involving H → AA, the multi-lepton limits are dominated

by the decays A→ Zh rather than A→ ττ . This is because in a Type I model the Aττ

coupling decreases with increasing tanβ, so that the branching ratio Br(A → ττ) is

not large in the same region as σ ·Br(gg → H → AA). In contrast, the branching ratio

Br(A → Zh) is large precisely when Br(H → AA) is large, hence H → AA → ZhZh

contributes substantially to the limit at large tanβ and −0.9 . sinα . −0.4, with

σ · Br(gg → H → AA→ ZhZh) growing as large as ∼ 120 fb in the region of study.

For processes involving H → H+H−, the multi-lepton limits always require at least

one charged Higgs to decay via H± → W±h, since the other decay modes such as e.g.
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H+ → tb̄, τ+ν give at most one lepton. In a Type I model, Br(H± → W±h) is sizable

when Br(H → H+H−) is large, so H → H+H− → W+hW−h is important at large

tanβ in the range −0.9 . sinα . −0.5. Processes involving H → H+H− with one

decay to tb̄ and τν are also important at moderate tanβ.

As in previous cases, gg → A→ Zh is important at small tanβ, as is gg → H → ZA

with both A → ττ and A → Zh. Various exemplary features of the third benchmark

spectrum with Type I 2HDM couplings are shown in Figure 6.8, which illustrates the

HT and MET distributions for the sum of multi-lepton events at the point (sinα =

−0.9, tanβ = 1.0), distinguished by the initial scalar produced in each multi-lepton

event.

The Type III 2HDM shares many of the qualitative features of the Type I 2HDM,

albeit with additional contributions to multi-lepton signals coming from the fact that

the partial widths Γ(h → ττ) and Γ(A → ττ) grow with tanβ. So, in addition to

the significant signals discussed earlier, both H → hh → 4τ and H → AA → 4τ

are important in the Type III 2HDM, particularly at moderate sinα and large tanβ

where Br(H → hh,AA) are large and so too are Br(h,A→ ττ). Taken together, these

contributions are still not as great as in Spectrum 1 due to the reduced production

cross section for H, but nonetheless lead to large regions already excluded using the 5

fb−1 data.

Types II & IV

As in previous cases, the multi-lepton final states of h decrease rapidly above the align-

ment limit, with the sole exception of h → ττ . Here, the reduced contribution from

direct multi-lepton decays of H is particularly noticeable, with a substantial weakening

of the limit as sinα→ −1.

Much as in Spectrum 1 Type II, processes involving H → hh contribute little to the

limit, since h has suppressed multi-lepton final states when Br(H → hh) is large. The

decay, H → AA, is somewhat more important, but, as with the Type III model, the

contribution to multi-leptons comes primarily from A → ττ as opposed to A → Zh,

especially at large tanβ. The Aττ coupling grows with tanβ in a Type II 2HDM, but,
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Figure 6.8: The 2HDM signal transverse hadronic energy distribution (left) and missing
transverse energy distribution (right) after acceptance and efficiency for 7 TeV proton-
proton collisions arising from the production and decay topologies of Benchmark Spec-
trum 3 given in Table 6.7 with mh = 125 GeV, mH = 500 GeV, mH± = mA = 230
GeV,for Type I 2HDM couplings with sinα = −0.9 and tanβ = 1.0. Signal events
correspond to those falling in the exclusive three- or four-lepton channels labelled with
a dagger in Table 5.2 that have moderate to good sensitivity. The colors indicate the
initial type of Higgs boson produced. For each color, the lighter shade corresponds to
three-lepton channels, while the darker shade corresponds to four-lepton channels. The
bin size is 40 GeV for HT and 10 GeV for ET6 , and in both cases the highest bin includes
overflow.
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as before, A → bb̄, with the same parametric scaling, still dominates the total width

of A. Similarly, H± decays primarily to tb and τν at large tanβ, so H± → W±h is

suppressed in this range and processes involving H → H+H− do not contribute much

to the multi-lepton limits.

The processes gg → A → Zh and gg → H → Z(A → Zh) are important at small

tanβ; here the multi-lepton decays of h are enhanced below the alignment line, so that

these processes contribute significantly to the limit through the direct multi-lepton

decays of h. The contributions of the pseudoscalar are exemplified by Figure 6.9, which

illustrates the HT and MET distributions for the sum of multi-lepton events at the

point (sinα = −0.2, tanβ = 1.0), for which there is a large contribution from A→ Zh.

The Type IV 2HDM recapitulates many of the features of the Type II 2HDM,

albeit without significant contributions from h → ττ or A → ττ at large tanβ. This

eliminates contributions from, e.g., H → hh → 4τ and H → AA → 4τ , so that the

multi-lepton limits are particularly weak at moderate sinα and large tanβ. As before,

the multi-lepton decays of h are important below the alignment line, and accumulate

extra contributions from gg → A→ Zh and gg → H → Z(A→ Zh) at low tanβ.

6.5.4 Spectrum 4

The multi-lepton limits on the first benchmark spectrum for all four types of 2HDM

are shown in Figure 6.10. The fourth benchmark spectrum highlights the signals of a

light pseudoscalar, both through decays of other scalars and through direct production

in association with those scalars. Kinematically available inter-scalar decays include

H → AA, H± → W±h, and H± → W±A, while interesting associated production

processes unique to this benchmark include qq̄ → H±A, qq̄ → Ah, and qq̄ → AH

through off-shell W and Z bosons. The partial widths and σ · Brs for several of these

processes are shown in Figure 6.11.

The partial width Γ(H± →W±h) scales as cos2(β−α) and hence grows away from

the alignment limit. In contrast, Γ(H± → W±A) is entirely independent of the angles

α, β. On the production side, σ(qq̄ → Ah) ∝ cos2(β−α) grows away from the alignment

limit, while σ(qq̄ → AH) ∝ sin2(β−α) grows as we approach the alignment limit. The
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Figure 6.9: The 2HDM signal transverse hadronic energy distribution (left) and missing
transverse energy distribution (right) after acceptance and efficiency for 7 TeV proton-
proton collisions arising from the production and decay topologies of Benchmark Spec-
trum 3 given in Table 6.7 with mh = 125 GeV, mH = 500 GeV, mH± = mA = 230
GeV, for Type II 2HDM couplings with sinα = −0.2 and tanβ = 1.0. Signal events
correspond to those falling in the exclusive three- or four-lepton channels labelled with
a dagger in Table 5.2 that have moderate to good sensitivity. The colors indicate the
initial type of Higgs boson produced. For each color, the lighter shade corresponds to
three-lepton channels, while the darker shade corresponds to four-lepton channels. The
bin size is 40 GeV for HT and 10 GeV for ET6 , and in both cases the highest bin includes
overflow.
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Figure 6.10: Multi-lepton limits from the CMS multi-lepton search with 5 fb−1 of 7
TeV proton-proton collisions [67] for the production and decay topologies of Bench-
mark Spectrum 4 given in Table 6.5, for Type I (top left), Type II (top right), Type
III (bottom left), and Type IV (bottom right) couplings as a function of sinα and
tanβ. Limits were obtained from an exclusive combination of the observed and ex-
pected number of events in all the multi-lepton channels presented in Table 5.2. The
solid and dashed lines correspond to the observed and expected 95% CL limits on the
production cross section times branching ratio in multiples of the theory cross section
times branching ratio for the benchmark spectrum and 2HDM type. The blue shaded
regions denote excluded parameter space. The solid red line denotes the alignment
limit sin(β − α) = 1. The gray shaded region corresponds to areas of parameter space
where vector decays of the heavy CP-even Higgs, H → V V ∗, are excluded at 95% CL
by the SM Higgs searches at 7 TeV [59].
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Figure 6.11: 2HDM Benchmark Spectrum 4 partial width Γ(H± → W±h) in units
of GeV, and cross section times branching ratios σ · Br(qq̄ → A(H± → Wh)) and
σ · Br(qq̄ → A(H± → WA)) in units of pb for Type I couplings. he partial width
Γ(H± →W±A) is independent of α and β and is not shown explicitly.
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production cross section σ(qq̄ → H±A) is likewise independent of α, β since it scales as

the square of the H±W∓A coupling. However, the partial widths of H± decays to SM

states do depend on α and β, so the σ · Br(qq̄ → A(H± → W±A)) ultimately varies

with sinα and tanβ due to the changing total width. As is apparent in Figure 6.11, the

cross section for these processes is quite low, on the order of a few tens of femtobarns

before further branching fractions are applied, so their inclusion is essentially for the

sake of completeness; they contribute very little to the total multi-lepton limit.

Consequently, most qualitative features of this benchmark spectrum may be under-

stood simply by the combination of the direct multi-lepton decays of H and h as well

as the cascade decay H → AA with A→ ττ, which in this spectrum is the only source

of multi-lepton signals from processes involving the pseudoscalar.

Types I & III

In a Type I 2HDM, the limit is largely governed by the direct multi-lepton decays of h

and H. In particular, the multi-lepton decays of h are SM-like around the alignment

limit and decrease slowly away from this limit. As sinα→ −1, the multi-lepton signals

of H become important and somewhat compensate for the vanishing signals of h. The

branching ratio H → AA is large at moderate sinα and large tanβ, but Br(A → ττ)

does not grow exceptionally large in this regime, so the contribution to multi-lepton

limits from H → AA is not great.

In the Type III 2HDM, the multi-lepton signals are much as in the Type I 2HDM

with the exception of those involving h → ττ and A → ττ . Thus, the process gg →

H → AA → 4τ contributes significantly in this 2HDM type. Unsurprisingly, in the

region excluded by 5 fb−1 data, σ · Br(gg → H → AA → 4τ) is large, & 500 fb, with

the current exclusion contour tracking the contours of Γ(H → AA).

Types II & IV

In Type II, the multi-lepton signals of h from decays to vectors decrease rapidly above

the alignment limit and increase rapidly below it, again supplemented by the multi-

lepton signals of H as sinα → −1. The multi-lepton signals of associated production
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with h→ ττ are somewhat important at large tanβ, but are not significantly enhanced

over the SM rate since h → bb̄ grows equally quickly and controls the total width.

Similarly, although the Aττ coupling grows with tanβ, so too does the coupling Abb̄,

so H → AA→ 4τ is not particularly important here.

For Type IV 2HDM the limits are much as in the Type II 2HDM, albeit with the

loss of multi-lepton signals coming from h→ ττ and A→ ττ at large tanβ, leading to

the weakest overall limits among 2HDM types.

6.6 Towards a Dedicated Multi-Lepton 2HDM Search

In the wake of the discovery of a Standard Model-like Higgs, exploring and bounding

extensions of the EWSB sector takes on paramount importance. Models with two

Higgs doublets are among the simplest and best motivated such extensions to the Higgs

sector. In this work, we have examined the reach of multi-lepton searches for probing

the collective leptonic signatures resulting from the additional Higgs bosons in 2HDMs.

In a study of 20 exclusive multi-lepton channels in four benchmark spectra with four

discrete types of fermion couplings across 222 production and decay topologies, using

a factorized mapping procedure [70] we determined regions of 2HDM parameter space

probed by data from a recent CMS multi-lepton search [67] with 5 fb−1 of 7 TeV proton-

proton collisions. These results provide new limits in some regions of 2HDM parameter

space that have not been covered by other types of direct experimental investigations.

Increased luminosity and production rates with 8 TeV proton-proton collisions and

beyond will extend the 2HDM limits and discovery potential of multi-lepton searches.

Although the CMS multi-lepton searches [66, 67] in their current incarnation are

extremely powerful tools for probing new physics, with appropriate modifications the

searches could be tailored in order to enhance sensitivity to 2HDM signals. Subdi-

viding all exclusive multi-lepton channels by zero, one, or two or more b-tagged jets

in an event should significantly increase sensitivity to 2HDM final states with bot-

tom quarks. Although many of 3- and 4- lepton events coming from production and
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decays of scalars in 2HDM populate the exclusive channels with relatively high back-

grounds, most of the irreducible prompt background does not contain additional b-jets.

For those backgrounds that do, very rarely, b-jets will provide isolated leptons, so

two b-tags will substantially reduce major backgrounds (with the notable exception of

tt̄ plus a prompt fake lepton and tt̄V ), while leaving many 2HDM signal processes,

such as H → hh → ZZbb, tt̄A → tt̄Zh, tt̄A → tt̄ττ , H → A(A → Zh) → ττZbb,

H → H+H−→ tbWh, H → ZA → ZZh → ZZbb̄, and, of course, tt̄h, relatively

unaffected.

Final states with multiple τ -leptons are among the most promising for discovery

or exclusion of various 2HDM. In our study, we have focused solely on leptonically-

decaying τs, since final states with hadronic τs will often have larger backgrounds.

However, ignoring hadronic τs reduces sensitivity to, in particular, four-τ final states

with low σ · Br. A further partitioning of the 4`, 2τ bins in a study optimized for

four-τ signals may yield lower backgrounds in DY0 bins, e.g. τ+
h τ

+
h e
−µ−, allowing for

improved limits. As much of the energy in these events are going into leptons, defining

signal regions either with harder pT cuts on leptons or with a cut on
∑
pT,` could serve

to significantly deplete the high SM backgrounds in some bins while leaving the signal

largely unfazed. We have also restricted our focus to three- and four-lepton final states.

Some additional sensitivity may be gained by adding exclusive channels with same-sign

di-leptons subdivided by various combinations of ET6 and HT . These channels would

capture other decay modes of some of the production and decay topologies studied

here, as well as bring in additional topologies that do not yield three or more leptons.

Multiple Higgs bosons can also give rise to rare five- or more lepton signatures; adding

channels to separate out these signatures would also increase sensitivity, particularly at

high luminosity.

Finally, with a known Higgs mass, one can capitalize on partial or full kinematic

constraints of its decays to help to isolate Higgs particles arising via new sources of asso-

ciated production. Such kinematic tagging can serve to further reduce SM backgrounds.

One example of this would be forward jet tagging to highlight VBF signals. Another

would be channel specific lepton kinematics focussed at specific decay topologies. One
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of the simplest and most effective ways to utilize kinematic tagging to enhance sensitiv-

ity to certain multi-lepton signatures that include a SM-like Higgs boson would be to

subdivide the DY2 four- or more lepton channels into an On Higgs category in which

the invariant mass of the four leptons fall within a small window centered on the Higgs

boson mass. Signals that include at least one SM-like Higgs boson that decays directly

to four leptons fall in this sub-channel. The backgrounds in this special On Higgs sub-

channel are very limited, thereby increasing sensitivity to such Higgs boson signals.

Utilizing partial (rather than full) kinematic tagging could also increase sensitivity to

other decay topologies that fall in other channels.

While we have focused on 2HDMs, other extensions of the Higgs sector can lead

to the production of new heavy, Higgs-like scalar resonances with decay topologies

similar to those studied in this work. Such new, Higgs-like particles generally lead to

intermediate states composed of the heaviest SM particles, including t, h, Z, W , b and

τ , whose final states contain multi-lepton signatures. If there exists an extended Higgs

sector, multi-lepton searches optimized for the leptonic final states of Higgs scalars may

prove an effective route for discovering new physics beyond the Standard Model.
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Chapter 7

Rare Flavor Processes involving Higgs

The existence of a Standard Model-like Higgs boson has been firmly established at the

Large Hadron Collider (LHC) with an experimentally fortuitous value of mass at 125

GeV. This mass is fortuitous because of fact that at 125 GeV, an unusually large the

number of channels for the Higgs decay are allowed by the kinematics and the couplings.

One opportunity that automatically presents itself upon the discovery of any new

particle, is the opportunity to explore deviations in flavor observables coming from

processes involving this new particle. The Higgs is no exception to this. In fact we’ve

already seen that multi-lepton signatures originating from Standard Model production

and decay of the Higgs boson itself provide considerable sensitivity [86] to searches for

new physics, and in conjunction with additional leptons they could provide powerful

probes of non-Standard Model processes that include a Higgs.

One class of non-Standard Model processes of interest are those in which the Higgs

boson appears only rarely in association with other particles. In this case, observation

of a new physics process requires a large production cross section, making it fruitful to

consider Standard Model processes with large production cross section. The production

of top-anti-top quark pairs is particularly attractive in this respect, with a cross section

of 100’s of pb at the LHC. This suggests looking for Higgs bosons in the decay products

of the top quark, such as would arise through the rare neutral flavor-changing transition

to a charm quark, t → ch. Although this decay is not forbidden by any symmetry,

the Standard Model contribution to the branching ratio suffers from GIM suppression

and second-third generation mixing, suppressing it to the order of Br(t → ch) =

10−13 − 10−15 [87–89]. Thus a positive observation of the process t → ch well above

the Standard Model rate would be a convincing indication of new physics beyond the
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Standard Model.

Pair production of top-anti-top followed by the rare decay t → ch gives rise to

multi-lepton final states with up to five leptons. The leading processes involve leptonic

charged- current decay of one of the top quarks, t → Wb with W → `ν, and flavor-

changing decay of the other top quark, t→ ch with leptonic final state decay modes of

the Higgs boson. These include h → WW → `ν`ν , and h → ττ with leptonic decay

of the tau-leptons, τ → `X, as well as h → ZZ∗ → jj``, νν``, ````. Hadronic decay of

one of the top quarks, t → Wb with W → jj, and flavor-changing decay of the other

top quark, t→ ch with h→ ZZ → ```` also contributes. Such multi-lepton final states

have relatively low Standard Model backgrounds, making them promising targets for a

multi-lepton search. To investigate the utility of searching for t → ch in this way, we

make use of the results of a multi-lepton search conducted by the CMS collaboration

with 5 fb−1 of data collected from 7 TeV pp collisions [90] to estimate a limit on the

branching ratio Br(t → ch). The power of this search lies in the combination of

numerous exclusive channels. While any individual channel alone is not necessarily

significant, the exclusive combination across multiple channels is found to provide an

interesting sensitivity to Br(t→ ch) at the percent- level. To our knowledge this is the

first use of the Higgs boson as a probe for new physics in existing data.

The neutral flavor-changing decay of a top quark to the Higgs boson and charm

quark, t → ch, is of interest because it provides a direct probe of flavor violating

couplings to the Higgs sector for the quark that is most strongly coupled to that sector.

Previous probes of flavor violating couplings to the Higgs sector for the lighter quarks

have been only indirect. It is also of general interest because up-type quark flavor

violation is less well constrained than that for down-type quarks. Given that this

process has not been investigated experimentally at any level previously, the percent-

level bound on Br(t→ ch) obtained here begins to open up an interesting new window

into flavor violating physics. First we present an effective operator analysis of the rare

decay t→ ch and give the relation between the branching ratio and new physics scale

of the leading operator that contributes to this process. Then we review multi-channel

multi-lepton searches and compare the results of a CMS search with our simulation of
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top quark pair production and decay, including t → ch, to obtain the first limits on

Br(t → ch) for a Standard Model-like Higgs boson. We also suggest improvements

that could increase the intrinsic sensitivity of future dedicated multi-lepton searches for

t → ch. We then conclude by discussing the wider applicability of this result couched

in terms of a cross section times branching limit on new physics that yields final states

with a W -boson in association with a Higgs boson. It should be noted that, although

throughout we refer to the flavor-violating decay of the top quark to a Higgs boson

as t → ch, since the identity of the charm quark is not integral to the analysis, the

discussion and results apply more generally to the decay t→ Xh with inclusive X final

states.

7.1 Effective Operator Description of t→ ch

New physics contributions to the flavor-violating top quark decay t → ch may be

encoded in an effective field theory description of the operators that can contribute to

this process. For the field content of the minimal Standard Model, the leading coupling

of the Higgs boson to up-type quarks is through the renormalizable dimension-four

Yukawa coupling

λijQiHuj + h.c. (7.1)

where the quark fields are two component complex Weyl Fermions. The most relevant

sub-leading interactions coupling the Higgs to up-type quarks come from dimension-six

operators. Up to operator relations at this order, these may written in terms of a single

non-renormalizable operator

ξij
M2

H†HQiHuj + h.c. (7.2)

At this order in an effective field theory expansion, both the Yukawa coupling in Eq.

7.1 and dimension-six operator in Eq. 7.2 contribute to the up-quark mass matrix and

effective coupling to the physical Higgs boson
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mijuiuj + λhijuiuj + h.c. (7.3)

where the up-quark mass matrix is given by

mij =
v√
2

[
λij +

v

2M2
ξij

]
≡ v√

2
λmij (7.4)

and where H0 = 1√
2
(v + h) and λmij is the mass effective Yukawa coupling. The Higgs

effective Yukawa coupling, λh , of the physical Higgs boson to up-quarks is given at this

order in the effective field theory description by the derivative of the mass matrix with

respect to the Higgs expectation value

λhij =
∂mij

∂v
=

1√
2

[
λmij +

v2

M2
ξij

]
(7.5)

Since the mass effective Yukawa is by definition diagonal in the mass basis, flavor-

violating interactions come only from the second term in parentheses in Eq. 7.5. Mis-

alignment between the mass and Higgs effective Yukawa couplings, λmij and λhij , vanishes

in the M →∞ limit.

The partial decay width of the top quark to a Higgs boson and massless charm

quark from the effective Higgs interaction in Eq. 7.3 with flavor violating couplings in

Eq. 7.5 is given by

Γ(t→ ch) =
(|ξtc|2|ξ2

ct|)mt

128πG2
FM

4

(
1−

m2
h

m2
t

)2

(7.6)

where G−1
F =

√
2v2 . For comparison, the partial decay width of the top quark to the

W -boson and massless b-quark through the minimal charged current interaction is

Γ(t→Wb)
G2
Fm

3
t |Vtb|2

8π
√

2

(
1−

m2
W

m2
t

)2(
1 +

2m2
W

m2
t

)
(7.7)

Assuming Br(t → Wb) is close to unity, the leading order branching ratio for t → ch

is then given by

Br(t→ ch) ' |ξtc|2 + |ξct|2

8
√

2G3
Fm

2
tM

4|Vtb|2
(1−m2

h/m
2
t )

2

(1−m2
W /m

2
t )

2(1 + 2m2
W /m

2
t )

(7.8)
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For Higgs boson and top quark masses of mh = 125 GeV and mt = 173.5 GeV respec-

tively, the numerical value of the branching ratio in terms of the dimension-six operator

scale and flavor-violating Higgs effective Yukawa coupling are

Br(t→ ch) ' 1504 GeV4 |ξtc|2 + |ξct|2

M4
' 0.29(|λhtc|2 + |λhct|2) (7.9)

7.2 A Multi-Lepton Search for t→ ch

Multilepton searches at hadron colliders provide great sensitivity to new physics pro-

cesses. In this work we follow and use the results of the multi-lepton search strategies

adopted by the CMS collaboration [90, 91]. The sensitivity to new physics arises from di-

viding three-or more lepton final states into a large number of exclusive search channels

based on lepton flavor and charge combinations, hadronic activity, missing transverse

energy, and the kinematic properties of the leptons in an event. We first review the

details of this search strategy before applying it to obtain a bound on Br(t→ ch).

7.2.1 Multi-Lepton Signal Channels

Standard Model backgrounds to multi-lepton searches for new physics are small and

may be further reduced by imposing cuts on hadronic activity or missing energy. In

this case hadronic activity is characterized by the variable HT , the scalar sum of the

transverse jet energies for all jets passing the preselection cuts. The missing transverse

energy, MET, is given by the magnitude of the vector sum of the momenta of all

reconstructed objects. Both HT and MET are sensitive discriminating observables for

new physics in a given lepton flavor and charge channel.

The CMS multilepton search [90] exploits the background discrimination of HT and

MET in the following way: Events with HT > 200 (MET > 50) GeV are assigned

HIGH HT (MET), while those with HT < 200 (MET < 50) GeV are assigned LOW

HT (MET). The high HT and high MET requirements (individually or in combination)

lead to a significant reduction in Standard Model backgrounds.

Further background reduction may be accomplished with a Z-boson veto, in which



105

the invariant mass of opposite-sign same-flavor (OSSF) lepton pairs is required to lie

outside a 75 - 105 GeV window around the Z mass; we simply denote events passing the

Z veto as No Z. In the case of 3` events, it is also useful to differentiate between events

with no OSSF pairs, which we denote DY0 to indicate no possible Drell-Yan pairs, and

one OSSF pair which we denote DY1. Although the CMS multi-lepton analysis [90, 91]

also includes channels with one or more objects consistent with hadronically decaying

τ -leptons, in this analysis we will focus our attention on ` = e, µ only. We do implicitly

include leptonically decaying τ -leptons in our analysis, which for all practical purposes

in the detector are simply e- or µ-leptons.

The 3` or 4` channels may be divided into 20 possible combinations ofHT HIGH/LOW;

MET HIGH/LOW; Z/No Z; and DY0/DY1. Again the 20 channels have already been

presented in Table 5.2. For each of the 3` and 4` categories, channels are listed from top

to bottom in approximately descending order of backgrounds, or equivalently ascending

order of sensitivity, with the last such channel at the bottom dominated by Standard

Model backgrounds. However, all channels contribute to the limit.

7.2.2 Simulation Details

We closely follow the CMS multilepton analysis [90], applying the same cuts to our

signal sample and making use of the CMS background estimates and observations with

5 fb−1 of 7 TeV pp collision data. For our signal, we simulate tt production events with

one side decaying through conventional charged current interaction via t→Wb and the

other side decaying via t→ ch. For definiteness we take mh = 125 GeV with Standard

Model branching ratios. For simulating signal processes, we have used MadGraph v4

[92, 93] and rescaled the tt production cross section to the NLO value σ(pp→ tt) = 165

pb at 7 TeV [94]. The Higgs boson was decayed inclusively using BRIDGE [95]. The

branching ratios and total width for Higgs decay in BRIDGE were taken from the LHC

Higgs Cross Section Group [96]. Subsequent showering and hadronization effects were

simulated using Pythia [97]. Detector effects were simulated using PGS [98] with the

isolation algorithm for muons modified to more accurately reflect the procedure used

by the CMS collaboration. In particular, we introduce a trkiso variable for each muon
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[99]. The variable trkiso is defined to be the sum pT of all tracks, ECAL, and HCAL

deposits within an annulus of inner radius 0.03 and outer radius 0.3 in R surrounding a

given muon. Isolation requires that for each muon, trkiso/pT µ is less than 0.15. The

efficiencies of PGS detector effects were normalized by simulating the TeV3 mSUGRA

benchmark studied in [91] and comparing the signal in 3` and 4` channels. To match

efficiencies with the CMS study we applied an efficiency correction of 0.87 per lepton

to our signal events [86]. We applied preselection and analysis cuts in accordance with

those used in the CMS analysis [90]. A total of 500,000 events were simulated to give

good statistical coverage of all the relevant multi-lepton channels.

7.2.3 Results

The multi-lepton final states coming from t → ch in tt pair production arise mainly

from charged current decay of one top quark, t → Wb with W → `ν , and flavor-

violating decay of the other top quark, t → ch, with h decaying to final states with

two or more leptons. The most relevant Higgs final states are those with two leptons

that arise from h → WW ∗ → `ν`ν and h → ττ with leptonic decays of the τ -leptons,

τ → `X, as well as h → ZZ∗ → jjll, νν``. All of these decay modes give three-

lepton final states. Although the total branching ratio of the Higgs to two leptons is

comparable for h→WW ∗ and h→ ZZ∗ , leptons coming from Z and/or Z∗ decays are

less significant because they fall into higher-background DY1 channels with either Z or

No Z. In contrast, pairs of leptons coming from WW ∗ decay are uncorrelated in flavor

and fall into lower-background DY0 channels, in addition to the higher-background

DY1 channels. There are additionally four- and five-lepton final states from charged

current decay of one top quark, t → Wb with W → jj or `ν respectively, and flavor-

violating decay of the other top quark, t → ch, with h → ZZ → ````. The small

total branching ratio for these final states makes them less significant than the three-

lepton final states in obtaining a bound from the 5 fb−1 of integrated luminosity in

the CMS search [90]. However, in the future with more integrated luminosity, these

channels should contribute more significantly to the sensitivity for t → ch. The signal

contributions to each of the exclusive multi-lepton channels are shown in Table 1. Events
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are entered in the table exclusive-hierarchically from the top to the bottom. In this

way each event appears only once in the table, and in the lowest possible background

channel consistent with its characteristics. The strongest limit-setting channels for

t → ch are those with three leptons. The best limits come from [MET HIGH, HT

LOW, DY1 No Z], which alone constrains Br(t → ch) < 3.7%, and [MET HIGH,

HT LOW, DY0], which constrains Br(t → ch) < 4.2%. In each case the lack of a

reconstructed Z or OSSF lepton pair reflects the contributions from h → WW ∗ and

h→ ττ , while the MET comes predominantly from neutrinos emitted in the W and τ

-lepton decays. Significant limits also come from the channel [MET HIGH, HT HIGH,

DY1 No Z], which constrains Br(t → ch) < 6.5%; and [MET LOW, HT LOW, DY0],

which constrains Br(t → ch) < 7.9%; these likewise reflect dominant contributions

from the Higgs decays h→WW ∗ and h→ ττ . All other channels give constraints on

the branching ratio that are weaker than 10% in an individual channel.

Although limits may be placed on the signal from any individual channel in the

multi- lepton search, the greatest sensitivity comes from combining all exclusive chan-

nels. Com- bining all multilepton channels, we find that the 5 fb−1 multi-lepton CMS

results [90] yield an observed limit of Br(t → ch) < 2.7%, with an expected limit

Br(t → ch) < 1.7%. This corresponds to a bound on the scale of the dimension-six

effective operator (Eq. 7.2) of M2/
√
|ξtc|2 + |ξct|2 > (370 GeV)2 or equivalently on

the flavor-violating Higgs Yukawa couplings (Eq. 7.5) of |λhtc|2 + |λhtc|2 < 0.31. This

limit represents a combined Bayesian 95% CL limit computed using the observed event

counts, background estimates, and systematic errors listed in Table 7.1.

An upper limit on the branching ratio Br(t→ ch) can also be expressed in terms of a

limit on the cross section times branching ratio σ Br(pp→ tt→Wbhc). This is related

to the cross section and branching ratio individually by σ Br(pp → tt → Wbhc) =

σ(pp→ tt · 2 Br(t→ hc) where the factor of two accounts for combinatorics of the top

quark decay. With this, our estimate for the observed upper limit of Br(t→ ch) < 2.7%

corresponds to σ Br(pp → tt → Wbhc) < 8.9 pb for 7 TeV pp collisions. While this

limit is specific to the acceptance and efficiency associated to top-anti-top production

and decay, it does give a rough indication of the cross section times branching limit
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that would be obtained from the results of the CMS multi-lepton search [90] for other

new physics processes pp→WhX with similar kinematics.

The sensitivity of future dedicated multi-lepton searches for flavor-changing top

quark decay t → ch could be improved in a number of ways. The most straightfor-

ward improve- ment would be to include the CMS exclusive multi-lepton channels that

contain τ -leptons. For simplicity these were neglected in this study. These channels

have higher backgrounds, but would contribute a bit to the overall sensitivity. Another

improvement would be to sub-divide the exclusive multi-lepton channels according to

whether there are tagged b- quarks in an event. The t → ch signal has both a b-

and c-quark in the final state, and so would fall primarily in the b-tagged channels.

Although there is background from tt production with fully-leptonic decay and a fake

lepton in these channels, other Standard Model backgrounds from, e.g. W Z pro-

duction with fully leptonic decay, would be reduced in these channels. Yet another

possibility would be to incorporate exclusive same-sign di- lepton channels, again with

b-quark tagging sub-division [99]. Although the backgrounds in these channels are by

definition larger than those of three- or more-lepton channels, this would bring in other

relevant final states of the tt signal such as charged current decay of one top quark,

t → Wb with W → `ν, and flavor-violating decay of the other top quark, t → ch with

h → WW ∗ → `νjj. Since the Higgs boson is neutral, the charges of the two leptons

from these decays are uncorrelated and same-sign half the time. Finally, further signal

specific sub-divisions of channels could be utilized based on partial kinematic tagging

information of the top quark and/or Higgs boson to isolate regions of phase space that

are populated only by the signal.

We emphasize that in respect to possible improvements focused at the t → ch

signal, the current work represents a proof of principle illustrating the power of the

CMS exclusive channel multi-lepton search strategy [90, 91] that may be extended for

certain new physics signals by a targeted refinement of the search channels.



109

Observed Expected Signal

4 Leptons

MET HIGH HT HIGH No Z 0 0.018 ± 0.005 0.02
MET HIGH HT HIGH Z 0 0.22 ± 0.05 0.0
MET HIGH HT LOW No Z 1 0.20 ± 0.07 0.11
MET HIGH HT LOW Z 1 0.79 ± 0.21 0.04
MET LOW HT HIGH No Z 0 0.006 ± 0.001 0.0
MET LOW HT HIGH Z 1 0.83 ± 0.33 0.04
MET LOW HT LOW No Z 1 2.6 ± 1.1 0.08
MET LOW HT LOW Z 33 37 ± 15 0.15

3 Leptons

MET HIGH HT HIGH DY0 2 1.5 ± 0.5 0.48
MET HIGH HT LOW DY0 7 6.6 ± 2.3 2.1
MET LOW HT HIGH DY0 1 1.2 ± 0.7 0.26
MET LOW HT LOW DY0 14 11.7 ± 3.6 1.68
MET HIGH HT HIGH DY1 No Z 8 5.0 ± 1.3 1.54
MET HIGH HT HIGH DY1 Z 20 18.9 ± 6.4 0.41
MET HIGH HT LOW DY1 No Z 30 27.0 ± 7.6 5.8
MET HIGH HT LOW DY1 Z 141 134 ± 50 2.0
MET LOW HT HIGH DY1 No Z 11 4.5 ± 1.5 0.80
MET LOW HT HIGH DY1 Z 15 19.2 ± 4.8 0.72
MET LOW HT LOW DY1 No Z 123 144 ± 36 3.1
MET LOW HT LOW DY1 Z 657 764 ± 183 2.4

Table 7.1: Observed number of events, expected number of background events, and
expected number of t → ch signal events with Br(t → ch) = 1 % in various CMS
multi-lepton channels after acceptance and efficiency for 5 fb−1 of 7 TeV proton-proton
collisions. HIGH and LOW for MET and HT indicate ET6 >

< 50 GeV and HT >
< 200 GeV

respectively. DY0 ≡ `′±`∓`∓, DY1 ≡ `±`+`−, `′±`+`−, for ` = e, µ. No Z and Z
indicate |m`` −mZ |>< 15 GeV for any opposite sign same flavor pair.
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7.3 Going Forward

The discovery of a Standard Model-like Higgs opens the door to a plethora of new

searches that employ Higgs decay products to probe new physics processes that involve

Higgs boson associated production or decay. In this paper we have studied one of the

simplest such processes, the rare flavor-violating top quark decay to a Higgs boson and

charm quark, t→ ch. Using the results of the CMS multi-lepton search with 5 fb−1 of 7

TeV pp collision data [90], we obtain the estimated upper bounds of Br(t→ ch) < 2.7%

and σ Br(pp→ tt→Wbhc) < 8.9 pb for a 125 GeV Standard Model Higgs boson with

Standard Model branching ratios. Future multi-lepton searches at the LHC optimized

for this signal, including τ -lepton channels, exclusive same-sign di-lepton channels, sub-

division of channels based on b-quark tagging, and with increasing integrated luminosity,

should be able improve the sensitivity to t→ ch considerably.

The results presented here should be more widely applicable to a range of new

physics processes that yield final states with a W -boson in association with a Higgs

boson. For processes with kinematics that are similar to top-anti-top production and

decay, our estimated bound from the CMS multi-lepton search [90] corresponds very

roughly to σ Br(pp → WhX) <∼ 9 pb. Just one example of many such new physics

processes that are of interest is production of supersymmetric wino- or Higgsino like

chargino and neutralino, either directly or from cascade decays, with decay of the

chargino to a W -boson and lighter neutralino or the Goldstino, and decay of the

neutralino to a Higgs boson and a lighter neutralino or the Goldstino, pp → X →

χ±χ0
iY → W±hχ0

jχ
0
jY . In many scenarios the branching ratios Br(χ± → W±χ0

j )

and Br(χ0
i → hχ0

j )can approach unity [100]. While the upper limit on the cross sec-

tion times branching ratio obtained above does not quite bound direct electroweak

chargino-neutralino production with these decays, it would provide bounds on certain

scenarios with strong superpartner production where the chargino and neutralino are

emitted in cascade decays. The future improvements to exclusive channel multi-lepton

searches mentioned above would improve the sensitivity also to these supersymmetric
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processes with associated Higgs bosons. In particular, direct chargino-neutralino pro-

duction would yield final states without b-quarks, and so would appear as signal in

the b-quark anti-tagged subdivision of exclusive same sign di-lepton and multi-lepton

channels. The Higgs boson will provide a new calibration for experimental physics at

high energy colliders. Higgs boson leptonic decay modes are but one of many possible

applications of Higgs decays to the search for new physics.

The results of a multi-lepton search conducted by the CMS collaboration with 5 fb−1

of data collected from 7 TeV pp collisions are used to place the first bound on the rare

flavor-changing decay of the top quark to a Higgs boson and charm quark. Combining

results from a number of exclusive three- and four-lepton search channels yields an

estimated upper limit of Br(t → ch) < 2.7% for a Higgs boson mass of 125 GeV.

The sensitivity of future dedicated searches for t → ch could be improved by adding

exclusive same sign di-lepton channels, as well as by sub-dividing channels based on

b-quark tagging and partial kinematic top quark and Higgs boson tagging. This bound

may be interpreted more widely within a range of new physics processes that yield final

states with a W -boson in association with a Higgs boson. For such processes with

kinematics that are similar to topanti-top production and decay, the estimated limit on

cross section times branching ratio corresponds to roughly σ Br(pp→WhX) < 9 pb.
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Chapter 8

Particle Masses from Cascade Decays

Much of the new physics program at the Large Hadron Collider (LHC) involves the

search for new heavy particles states through their decay signatures involving known

Standard Model particles. Identification of these new particles necessarily involves

measuring their properties such as their masses, spins, and quantum numbers. Par-

ticle masses for example, can be directly measured via the construction of kinematic

observables such as a mass peak resonance if all of the decay products are observable

through the detector. However, reconstructing particle masses is much more challeng-

ing in channels that include missing transverse energy (MET), which can arise if one

of more of the decay products is neutral under the electromagnetic and strong nuclear

forces, and hence unobservable through the detector. In this case there is not enough

kinematic data to compute the invariant mass or infer the center of mass frame of the

new produced particle.

One interesting class of decay topologies that arises in a wide range of models for

physics beyond the Standard Model is the sequential on-shell cascade decay. This topol-

ogy involves the production of some heavy new particle state, followed by a sequence of

two-body on-shell decays of one new particle state to one lighter new particle and one

visible Standard Model particle. This sequence can terminate after n such two-body

decays when a stable new particle is produced that may be unobserved and appear as

MET. Sequential decays of this type are generic in extensions of the Standard Model,

such as supersymmetry or same spin partner theories, that involve a sector of new par-

ticle states which carry a conserved quantum number for a symmetry under which the

Standard Model particles are invariant.
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Figure 8.1: A sequential on-shell cascade decay with visible Standard Model particles
A, B, and C. Particle 4 is assumed to be non-interacting.

The sequential on-shell cascade decay can be characterized by the number of two-

body decays n that exist as subprocesses. In this chapter, we demonstrate that for

n = 3 (Fig. 8.1), the invariant mass correlations from observable Standard Model

particles A,B, and C alone are enough to extract the masses of all the new particle

states (we defer the generalization of n > 3 to later work). This is possible despite the

loss of kinematic data because of the dependence of the invariant decay distribution

in phase space on the new particle masses m1,m2,m3, and m4. In fact, this phase

space distribution reveals a sharp kinematic boundary when mapped into a general-

ized three-dimensional Dalitz space spanned by invariants for the nearest and next-to-

nearest branches m2
AB,m

2
BC ,m

2
AC . Furthermore, the density of the decay distribution

generically becomes singular everywhere on the boundary because of the Jacobian for

this mapping. We thus propose a next to nearest on-shell mass extraction technique

(NNOMET) in which the new particle masses m1,m2,m3,m4 are measured through a

fit of entire decay distribution in Eq. 8.6 in the three-dimensional Dalitz space to an

analytic likelihood function computed from the kinematic structure of this topology.

Of course there currently exist numerous methods in the literature for extracting

particle masses from missing energy signatures. Many such methods are based on the

construction of clever variables such as mT2 [116] and other quantities related to trans-

verse mass [102, 118, 104]. Other techniques rely on kinematic features of invariant

mass distributions in one [115, 124, 107, 108] or two [109, 110] dimensions, or on the

total shapes of invariant mass distributions [111–113]. All techniques have their own

relative advantages and weaknesses, and NNOMET is no exception to this rule. The
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main drawback of the NNOMET procedure described here is that it requires at least

three sequential on-shell decays to observable Standard Model particles, and is not ap-

plicable to cascade decays with only one or two observable branches. In addition, in the

limit that any two of the new particle states along the decay chain become degenerate,

the three-dimensional decay distribution Eq. 8.6 effectively becomes one-dimensional.

In this case only a single function of the four paraticle masses can generically be deter-

mined. Despite this, the advantages of NNOMET are numerous:

• No measurement of the MET vector is required. MET is by definition the least

well measured of all reconstructed objects and will become increasingly less reli-

able in the high pile-up environment of the LHC Run II

• Since this technique relies only on the measurement of invariants, to leading order

it is insensitive to initial state radiation

• The NNOMET procedure is easily adapted to handle combinatoric confusion com-

ing from the possible misidentification of identical particles on different branches.

• It makes use of all correlations between invariants in the full three-dimensional

phase space. This is in contrast to existing methods that rely on kinematic fea-

tures in lower dimensional projections that wash out the strongest correlations,

and effectively use only a small fraction of the data over a limited region of the

available phase space

The remainder of this chapter will be organized as follows. In Section 8.1, we give a

general discussion of the phase space for sequential on-shell cascade decays with n = 3,

focusing attention on the Dalitz parameterization in three dimensions. The dominant

kinematic features of the phase space distribution are described in Section 8.2, with

attention focused on the dependence of these kinematic features on particle masses.

Section 8.3 describes the map between the Dalitz parameters and the physical particle

masses as well as a discussion on how to handle the issue of combinatoric ambiguity. In

Section 8.4, we describe the NNOMET procedure for extracting particle masses from

the invariant correlations in the Dalitz space distribution of these decay toplogies. A
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simple example from an early CMS supersymmetry benchmark is presented in Section

8.5 as a proof of concept with background estimates. We then conclude with general

remarks.

8.1 The Phase Space of Sequential On-Shell Cascade Decays

The phase space configuration of the on-shell cascade decay consisting of three sequen-

tial two-body decays, as shown in Fig. 8.1, is completely fixed by the specification of

three decay angles (θ
(2)
AB, θ

(2)
BC , φ

(3)
AB,BC). Here θ

(2)
AB is the angle between ~pA and ~pB in the

rest frame of particle 2, θ
(3)
BC is the angle between ~pB and ~pC in the rest frame of particle

3, and φ
(3)
AB,BC is the angle between the decay plane spanned by particles (~pA, ~pB) and

the decay plane spanned by particles (~pB, ~pC) in the rest frame of particle 3. The ranges

for the polar and azimuthal angles are −1 ≤ cos θ ≤ 1 and 0 ≤ cosφ < 2π.

A more experimentally favorable Lorentz invariant basis for this decay topology is

the set of independent invariant mass squared pairings formed from the four-momenta

of the visible Standard Model final state particles (m2
AB,m

2
BC ,m

2
AC) where for example

m2
AB ≡ (pA+pB)2. The techniques developed below for extracting particle masses thus

rely on correlations among these invariants, which span a generalized Dalitz space. In

this paper we will restrict our analysis to situations in which mA = mB = mC = 0.

This not only simplifies the equations tremendously, but is also a practical assumption

since most of the stable Standard Model particles that could conceivably be labeled by

A, B and C are leptons or quarks that may be treated as effectively massless in the

relativistic regime. It should be noted however, that all techniques to be described here

may easily be generalized to account for the finite masses of these particles.

In the case of three visible final state particles, there are three independent pairings

of invariant masses squared so the decay distribution covers a three-dimensional gener-

alized Dalitz space. In the limit of massless final state particles A,B, and C, they can

be calculated in terms of the three independent angles that characterize the kinematics

of this decay topology

m2
AB =

m2 max
AB

2

(
1− cos θ

(2)
AB

)
(8.1)
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m2
BC =

m2 max
BC

2

(
1− cos θ

(3)
BC

)
(8.2)

m2
AC =

1

4

[
m2 max
AC

(
1 + cos θ

(2)
AB

)(
1− cos θ

(3)
BC

)
+m2 max

AC0

(
1− cos θ

(2)
AB

)(
1 + cos θ

(3)
BC

)

− 2 cosφ
(3)
AB,BC

√
m2 max
AC m2 max

AC0

(
1− cos2 θ

(2)
AB

)(
1− cos2 θ

(3)
BC

)]
(8.3)

The extrema of the Dalitz variables are calculable in terms of the new particle state

masses

m2 max
AB =

(m2
1 −m2

2)(m2
2 −m2

3)

m2
2

m2 max
BC =

(m2
2 −m2

3)(m2
3 −m2

4)

m2
3

m2 max
AC =

(m2
1 −m2

2)(m2
3 −m2

4)

m2
3

m2 max
AC0

≡ m2 max
AC |mBC=0 =

(m2
1 −m2

2)(m2
3 −m2

4)

m2
2

(8.4)

where m2 max
AC0

is the maximum value for m2
AC in the limit where mBC = 0. Notice that

a measurement of just these four extrema would alone be enough to fully reconstruct

the full set of new particle masses. A fit to the full three-dimensional decay distribu-

tion based on invariant mass correlations is essentially a fit to these four parameters.

However some of them (m2 max
AC0

in particular) occupy very sparse and narrow regions

of phase space and are often difficult or impossible to practically extract from lower

dimensional projections, which tend to obscure the kinematic features that characterize

them. Utilizing the full three-dimensional correlations is thus crucial for extracting the

new particle state masses.

The invariant decay distribution in this three-dimensional generalized Dalitz space

is determined by the matrix element squared for the four-body decay of particle 1, in

addition to the Jacobian factors that arise when moving from the angular basis to the

generalized Dalitz space. These Jacobian factors are:

JAB =
m2 max
AB

2

∣∣∣∣∣∂ cos θ
(2)
AB

∂ m2
AB

∣∣∣∣∣ = 1

JBC =
m2 max
BC

2

∣∣∣∣∣∂ cos θ
(3)
BC

∂ m2
BC

∣∣∣∣∣ = 1
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JAC(m2
AB,m

2
BC ,m

2
AC) =

m2 max
AC

2π

∣∣∣∣∣∣∂ φ
(3)
AB,BC

∂ m2
AC

∣∣∣∣∣∣
=

i

2π
λ−

1
2

[
m2
AC

m2 max
AC

,
m2
BC

m2 max
BC

(
1−

m2
AB

m2 max
AB

)
,
m2

3

m2
2

m2
AB

m2 max
AB

(
1−

m2
BC

m2 max
BC

)]
(8.5)

where in the equation for JAC(m2
AB,m

2
BC ,m

2
AC) we have made use of the Källen (trian-

gle) function λ(a, b, c) ≡ a2 +b2 +c2−2ab−2bc−2ac. Therefore, without specifying the

matrix element for this process, we can express the invariant decay distribution in the

three-dimensional generalized Dalitz space in terms of the angular decay distribution

d3Γ1→A B C 4

dm2
AB dm2

BC dm2
AC

=
8π JAC(m2

AB,m
2
BC ,m

2
AC)

m2 max
AB m2 max

BC m2 max
AC

d3Γ1→A B C 4

dcos θ
(2)
AB dcos θ

(3)
BC dφ

(3)
AB,BC

(8.6)

where JAC(m2
AB,m

2
BC ,m

2
AC) is defined in Eq. 8.5. The dependence of this distribution

on the Dalitz invariants and hence on the masses of the new particle states is what

allows these masses to be measured. In important examples such as supersymmetry, the

angular decay distribution is even flat d3Γ1→A B C 4/dcos θ
(2)
AB dcos θ

(3)
BC dφ

(3)
AB,BC = 1.

Therefore the invariant decay distribution is given entirely by Eq. 8.6 and all particle

masses can be extracted from a fit to just one Jacobian factor.

8.2 Kinematic Features of Cascade Decays in Dalitz Space

The phase space distribution of cascade decays in the three-dimensional generalized

Dalitz space reveals several striking kinematic features, owing to kinematic correlations

between invariants, that facilitate the extraction of particle masses. These correlations

take a contribution from the matrix element squared for the process and from the

mapping between the angular basis and the Dalitz basis. The latter contribution is

summarized in Eqs. 8.1 - 8.3, which taken together give the relation:

m2
AC = m2 max

AC

m2
BC

m2 max
BC

(
1−

m2
AB

m2 max
AB

)
+m2 max

AC0

m2
AB

m2 max
AB

(
1−

m2
BC

m2 max
BC

)

−2 cosφ
(3)
AB,BC

√
m2 max
AC m2 max

AC0

m2
AB

m2 max
AB

m2
BC

m2 max
BC

(
1−

m2
AB

m2 max
AB

)(
1−

m2
BC

m2 max
BC

)
(8.7)
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For a discussion of these kinematic features, it will prove convenient both notationally

and conceptually, to define dimensionless invariant mass quantities

x =
m2
AB

m2 max
AB

; y =
m2
BC

m2 max
BC

; z =
m2
AC

m2 max
AC

R =
m2

3

m2
2

(8.8)

Non-dimensionalizing Eq. 8.7 we have

z = y(1− x) +Rx(1− y)− 2 cosφ
√
Rxy(1− x)(1− y) (8.9)

where we have dropped the labels on the azimuthal angle φ whose definition is unam-

biguous. The invariant decay distribution for sequential three-branch cascade decays in

our dimensionless Dalitz space is completely determined by Eq. 8.9. The most salient

feature of this distribution is the existence of a kinematic boundary in Dalitz space

corresponding to the maximum and minimum values of cosφ respectively

0 ≤ x ≤ 1

0 ≤ y ≤ 1

z− ≤ z ≤ z+ (8.10)

with z± being the obvious function of the four new particle masses

z± = y(1− x) +Rx(1− y)± 2
√
Rxy(1− x)(1− y) (8.11)

Such a structure implies that in the dimensionless Dalitz space (x, y, z) , all of the

events are restricted to lie within the interior of some closed region. The shape of the

boundary of this region is determined by the analytic Eq. 8.11 and closely resembles a

pillow, as illustrated in Fig. 8.2

Recall that φ was defined to be the angle between the A − B and B − C decay

planes in rest frame of particle 3. Thus the two-dimensional boundary of the allowed

kinematic region corresponding to cosφ = ±1 corresponds to the condition that the

three-momenta of all three branch particles ~pA, ~pB, and ~pC , are co-planar in the 3

rest frame. Also implicit in these equations are additional boundary conditions, which
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Figure 8.2: The surface of the “pillow” shaped region, which is the kinematic boundary
for sequential, on-shell, cascade decays in three dimensional Dalitz space.

reduce Eq. 8.11 to one-dimensional relations at certain kinematic limits of the variables

x and y giving us the four edges of the pillow. In the rest frame of 2, when ~pA is parallel

to ~pB, Eq. 8.11 reduces to z± = y corresponding to the boundary at x = 0. When ~pA

becomes anti-parallel to ~pB, Eq. 8.11 reduces to z± = R(1 − y) corresponding to the

boundary at x = 1. Similar kinematic limits can be found in the rest frame of 3. Here

when ~pB is parallel to ~pC , Eq. 8.11 reduces to z± = Rx corresponding to the boundary

at y = 0. Finally when ~pB becomes anti-parallel to ~pC , Eq. 8.11 reduces to z± = 1− x

corresponding to the boundary at y = 1.

In addition to the strict boundaries of the pillow, there are other distinctive features

about this space that correspond to specific and special kinematic configurations of the

branch particles. For example, the point x = z = y = 0 is a generic solution to

the distribution Eq. 8.9 and corresponds to the configuration where all of the branch

particles A, B and C are all parallel and pointing in the same direction. Since by

assumption, these particles are all massless, this condition is frame-independent. The

point x = y = 1, z = 0 is another generic solution and corresponds to the configuration
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where particles A and C are parallel (pointing in the same direction) while particle B

is anti-parallel (pointing in the opposite direction) to particles A and C. The “highest

point” on the pillow is given by the solution x = 0, y = 1, z = 1. This corresponds to

the configuration where particles A and B are parallel while particle C is anti-parallel

to particles A and B. Finally there is the intermediate point whose solution is x = 1,

y = 0, z = R. This corresponds to the configuration where particles B and C are

parallel while particle A is anti-parallel to particles B and C. Note that all of these

kinematic features are derived from Eq. 8.9 and hence depend on masses only. In

particular, these are all independent of the matrix elements of any specific processes.

The second important feature of the distribution equation are the singularities of the

invariant decay distribution at the boundaries of the pillow. In terms of dimensionless

quantities, the Dalitz space decay distribution is simply

d3Γ1→A B C 4

dx dy dz
=

4i

λ1/2[z, y(1− x), x(1− y)]

d3Γ1→A B C 4

dcos θ
(2)
AB dcos θ

(3)
BC dφ

(3)
AB,BC

(8.12)

These singularities are a direct consequence of the form of Eq. 8.9, and arise from the

Jacobian associated with the map from angular parameters to Dalitz parameters. In

particular, the Jacobian associated with the map φ → z, which goes like the inverse

square root of the Källen function. For fixed values of x and y, the singularity is thus

of O(z − z±)−
1
2 as illustrated in Fig. 8.3.

The Jacobian peak is only apparent in the full three-dimensional Dalitz space, and

is not visible in simple one- or two-dimensional projections considered previously [115,

124, 107–113]. What this means practically is that a distribution of events plotted in

this three-dimensional Dalitz space will not only be restricted to the interior of the

pillow region, but will pile up along the boundaries of the pillow in a singular fashion

unless the matrix element squared |M(1→ A B C 4)|2 ∼ O(z − z±)n with n ≥ 1. The

pile-up of events at the pillow boundary is well illustrated by the following scatter plot

of a finite width two-dimensional cross section of the pillow in Fig. 8.4.
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Figure 8.3: Fixing one point in the (mAB, mBC), the Jacobian for the invariant decay
distribution from the angle basis to the Dalitz basis is singular near the kinematic
boundary.

Figure 8.4: A cross section of the signal event distribution in the (mBC ,mAC) plane.
The singular nature of the Jacobian from the angle basis to the Dalitz basis clearly
results in a divergence in the density of eventsnear the kinematic boundary.
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8.3 From Three Dimensional Dalitz Parameters to Particle Masses

The interpretation of the mass measurement from a fit to the space of Dalitz parameters

essentially amounts to a mapping from Dalitz space to the space of particle masses. The

metric on these two spaces is related as

dmi =
∂mi

∂m2 max
IJ

dm2 max
IJ (8.13)

where i ∈ {1, 2, 3, 4} and (IJ) ∈ {(AB), (BC), (AC), (AC0)}. The Jacobian for the

transformation ∂mi/∂m
2 max
IJ is thus in general a 4 × 4 matrix. For simplicity we

restrict attention to the two-dimensional subspace

∂mi

∂m2 max
IJ

=

 ∂m2/∂m
2 max
AC ∂m2/∂m

2 max
AC0

∂m3/∂m
2 max
AC ∂m3/∂m

2 max
AC0

 (8.14)

which describes the map from (m2 max
AC ,m2 max

AC0
) → (m2,m3). This Jacobian can be

computed easily from the inversion of the equations for the maxima of the Dalitz pa-

rameters:

m2
1 =

m2 max
AC m2 max

AB m2 max
BC

(m2 max
AC −m2 max

AC0
)2

+
m2 max
AC m2 max

AB

m2 max
AC −m2 max

AC0

m2
2 =

m2 max
AC m2 max

AB m2 max
BC

(m2 max
AC −m2 max

AC0
)2

m2
3 =

m2 max
AC0

m2 max
AB m2 max

BC

(m2 max
AC −m2 max

AC0
)2

m2
4 =

m2 max
AC0

m2 max
AB m2 max

BC

(m2 max
AC −m2 max

AC0
)2
−

m2 max
AC0

m2 max
BC

m2 max
AC −m2 max

AC0

(8.15)

We thus have a natural interpretation of the likelihood contours in Dalitz space to the

likelihood contours for the particle masses.

The Jacobian may be diagonalized by a bi-orthogonal transformation, and so may

always be brought to the form

∂mi

∂m2 max
IJ

= O(ϑ)

 ξ1 0

0 ξ2

 O−1(ϕ) (8.16)

where O is an orthogonal rotation matrix and |ξ1| > |ξ2|. Written in this form, the

action of the Jacobian in transforming on a small closed region around some point in the



124

(m2 max
AC ,m2 max

AC0
) space to the (m2,m3) space is first a rotation, followed by a squashing,

followed by another rotation. So for example in the limit that the likelihood contours

form circular regions in the (m2 max
AC ,m2 max

AC0
) plane, the rotation O−1(ϕ) has no effect,

and the remaining squashing and rotation gives a rotated ellipse in the (m2,m3) plane.

Here ϑ is the rotation angle of the ellipse in the (m2,m3) plane with respect to the m3

direction in the counter clockwise direction, and is given in terms of R ≡ m2
3/m

2
2 as:

ϑ =
1

2
tan−1

(
4
√
R(1 +R)2

(R− 1)3

)
(8.17)

The degree of squashing of the Jacobian transformation Eq. 8.16 may be parame-

terized by an eccentricity parameter

ε =
ξ1

ξ2
=

√
R (1 +R) tanϑ− 2R

(1 +R) tanϑ+ 2
√
R

(8.18)

where |ε| ≥ 1. Although the expression in Eq. 8.17 for the eccentricity looks rather

innocuous, it is a very rapidly rising function of R. For R → 0, the rotation vanishes

as ϑ ∼ R1/2 and the eccentricity diverges as ε ∼ R−1/2. For R → 1, the rotation

approaches ϑ → π/4 and the eccentricity again diverges, this time as ε ∼ (1 − R)−2.

The eccentricity achieves a minimum value of approximately ε>∼6.507 at R ' 0.0672.

This extreme behavior for ϑ and ε has strong implications for the accuracy with which

particle masses may be inferred from invariant correlations in principle. The large

eccentricity ε that exists in large parts of parameter space means that only a particular

linear combination of m2 and m3 can be measured with very high accuracy and the

particular value of the rotation angle ϑ determines which linear combination.

8.3.1 Combinatoric Confusion Clarity

Combinatoric confusion is a problem that arises when two or more of the final state

particles in a given signature are experimentally indistinguishable on an event by event

basis. If one is searching for features in the distribution of events containing such

a signature, then it is impossible to tell a priori whether or not an unambiguously

correct choice has been made for particle identification. Combinatoric confusion is thus

an irreducible source of background that one must understand and account for when
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searching for specific kinematic signals. This is particularly simple within the framework

of the NNOMET procedure because the invariant differential decay distribution for any

misidentified pair of particles is easily calculable. For example, if the Standard Model

particles B and C are indistinguishable on an event-by event basis, the correlation

for the incorrect assignment may be given simply by Eq. 8.9 with an exchange of

m2
AB ↔ m2

AC . In terms of dimensionless coordinates this amounts to the replacements

x→ (m2 max
AC /m2 max

AB ) z and z → (m2 max
AB /m2 max

AC ) x

x =
m2 max
AC

m2 max
AB

y

(
1−

m2 max
AC

m2 max
AB

z

)
+
m2 max
AC m2 max

AC0

m4 max
AB

z(1− y)

+ 2 cosφ

√
m4 max
AC m2 max

AC0

m6 max
AB

yz

(
1−

m2 max
AC

m2 max
AB

z

)
(1− y) (8.19)

The distribution of events in Dalitz space with the incorrect particle assignment has the

same kinematic features for the distribution with the correct assignment since it is lit-

erally just a reflection across the B/C axis in momentum space. Thus the combinatoric

confusion which typically obscures the signal as a background in most analyses, can

be anticipated and treated as though it were part of the signal using these techniques.

The complete structure under consideration is thus given by the superposition of the

signal and combinatoric pillows and is illustrated in Dalitz space in Fig. 8.5.

8.4 Extracting Masses from the Dalitz Distribution

Because of the dependence of the functional form of the kinematic boundary in Eq. 8.11

in the three-dimensional Dalitz space on the new particle invariant massesm1,m2,m3,m4,

a fit to the boundary alone could in principle yield all four masses. However, in or-

der make maximal use of all possible invariant mass correlations within the cascade

decay (Fig. 8.1) we suggest here a next to nearest on-shell mass extraction technique

(NNOMET) in which the entire decay distribution in Eq. 8.6 in the three-dimensional

Dalitz space is fit to a given hypothesis for the new particle spins, with a likelihood

function used to extract the four new particle masses. This amounts essentially to a

simple invariant matrix element technique for the process in Fig. 8.1 where the matrix

element or decay probability distribution Eq. 8.6 depends only on masses.
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Figure 8.5: The kinematic boundary for signal events in the three dimensional Dalitz
space, overlaid with the kinematic boundary given the combinatoric confusion from the
incorrect identification of particles B and C. The kinematic distribution of both the
correct and incorrect assignments are predictable in the NNOMET framework.
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For simplicity, we will restrict our attention forward to the isotropic case where the

functional dependence on particle masses is determined completely by the Jacobian,

however the generalization is straightforward. Isotopic decays of the type are generic

in supersymmetric theories, where the decays of new particle states alternate between

spin 0 and spin 1/2, summing over spin states results in isotropic decays at each step

of the decay. Thus the angular distributions of θ
(2)
AB and θ

(3)
BC are flat in their respective

rest frames and the correlations between the invariant masses are encoded entirely in

the Jacobian functions. Restricting our attention to this limit, the functional depen-

dence of the invariant decay distribution on the masses of the new particle states is

given entirely by the maximum values of the Dalitz parameters, of which there are four

Eq. 8.4. We emphasize here that this technique makes full use of the correlations in

three-dimensional Dalitz space and thus implicitly subsumes any method that utilizes

the kinematic features of one or two-dimensional projections without the discrete am-

biquities associated with projections. This fact is compounded by the strong Jacobian

peak in three-dimensions that is completely obscured in lower-dimensional projections

and is robust enough to survive the degradation due to experimental resolution.

In the isotropic limit, we thus define the normalized probability distribution function

for the signal

Ps (m2
AB,m

2
BC ,m

2
AC |m2 max

AB ,m2 max
BC ,m2 max

AC ,m2 max
AC0

)

=
JAC(m2

AB,m
2
BC ,m

2
AC)∫

dm2
AB dm2

BC dm2
AC JAC(m2

AB,m
2
BC ,m

2
AC)

with JAC(m2
AB,m

2
BC ,m

2
AC) again given by Eq. 8.5. We may similarly define the

normalized probability distribution function for the combinatoric confusion

Pc (m2
AB,m

2
BC ,m

2
AC |m2 max

AB ,m2 max
BC ,m2 max

AC ,m2 max
AC0

) = Ps(m
2
AB ↔ m2

AC) (8.20)

In practice, accounting for the background in the signal region of the Dalitz space

requires a parameterized model from which the functional form for the background

probability distribution function Pb (m2
AB,m

2
BC ,m

2
AC) in terms of Dalitz parameters
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may be extracted. For a signal to background ratio given by ε, we may thus write the

total probability distribution function with which to fit to data as

Ptot (m2
AB,m

2
BC ,m

2
AC |m2 max

AB ,m2 max
BC ,m2 max

AC ,m2 max
AC0

)

= εPs (m2
AB,m

2
BC ,m

2
AC |m2 max

AB ,m2 max
BC ,m2 max

AC ,m2 max
AC0

)

+εPc (m2
AB,m

2
BC ,m

2
AC |m2 max

AB ,m2 max
BC ,m2 max

AC ,m2 max
AC0

)

+(1− 2 ε)Pb (m2
AB,m

2
BC ,m

2
AC) (8.21)

Once the maxima of the Dalitz parameters are extracted from this fit, the Jacobian

function defined in Eq. 8.16 may be used to measure the particle masses.

8.5 NNOMET Masses: A Supersymmetric Example

For a proof of principle, we use a mass spectrum and cross section roughly corresponding

to the CMS collaboration early supersymmetry benchmark LM1 [114], which contains

the process

q̃ → χ̃0
2 + q

→ ˜̀+ `1 (8.22)

→ χ̃0
1 + `2

and a mass spectrum given in Table 8.1. In this toy analysis, we employ our own event

generator called COSET Monte Carlo in order to simulate the kinematics of two-body

sequential on-shell cascade decays. COSET MC is a barebones simulator that generates

four-vectors with two-body on-shell kinematics. The decay angles at each step of the

decay are determined via random number generator determined by the functional form

of the angular distributions that are characteristic of a particle with the appropriate

spin. Each pair of four-vectors are then Lorentz boosted back to the lab frame along

the directions of their progenitors. For particles identified as quarks, the entire four-

vector is multiplied by a random number generated by a Gaussian centered at unity

with a variance of 0.1 to simulate jet resolution effects. Approximately 20,000 LM1-like

signal events are generated corresponding to about 1 fb−1 of data, with jet resolution
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q̃ χ̃0
2

˜̀ χ̃0
1 m2 max

q `1
m2 max
q `2

m2 max
q `2 0 m2 max

`1 `2

Mass (GeV) 552 178 118 97 3912 2982 1972 762

Table 8.1: LM1 benchmark sparticle masses and mass parameters determining the
three-dimensional Dalitz distribution of the q̃ → χ̃0

2 → ˜̀→ χ̃0
1 cascade transition.

applied to the first branch of the decay chain representing the quark that has decayed

from the squark. The Dalitz triplet values for (m2 max
q `1

,m2 max
`1`2

,m2 max
q `2

) are the output.

The Standard Model background for this process is dominated by tt production. Using

tt samples produced in Pythia6 at 14 TeV, we fit the distribution of the tt events in

the same three-dimensional Dalitz space to a falling exponential. We then generate a

generic background sample to this fit using a random number algorithm to output the

same Dalitz triplet data for the background. The LM1 signal and tt background event

distribution in dimensionful Dalitz space is shown in Fig. 8.6

0
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Figure 8.6: A scatter plot of signal events with the combinatoric confusion in three
dimensional Dalitz space. Signal events were generated using COSET Monte Carlo
with a mass spectrum following the CMS SUSY LM1 benchmark.
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To illustrate the proof of principle for the NNOMET technique, we will also restrict

attention here to the two dimensional subspace of the ∂mi/∂m
2 max
IJ detailed in Section

(2.2). This two dimensional fit to the (m2 max
AC ,m2 max

AC0
) is not only conceptually simpler,

but also reflects the practical fact that the equations for the nearest branch invariant

Jacobians m2 max
AB and m2 max

BC project onto one-dimensional distributions with distinct

kinematic “edges” that can easily be read off from invariant mass distributions. Indeed

measurements of the parameters m2 max
AB and m2 max

BC are discussed extensively in the

existing literature [115, 124, 107–110]. In contrast, the extrema m2 max
AC and m2 max

AC0
of

the next-to-nearest branch Dalitz parameters contain no such sharp kinematic features

in their lower dimensional projections and are significantly more difficult to discern as

a result. Determining m2 max
AC0

is particularly difficult without the NNOMET methods

as it is by definition the end point of some distribution restricted to a narrow kinematic

regime in which statistics are low. It is on the extraction of these parameters that the

NNOMET procedure has its unique advantage. Thus since the nearest branch Dalitz

invariants m2 max
q `1

, m2 max
`1`2

may be easily determined in this example, we input the

correct values for these. We then scan over the next-to-nearest branch Dalitz invariants

m2 max
q `2

, m2 max
q `20

, each from 0.9 to 1.1 times their correct values in steps of 0.02 times

the correct values using the probability distribution function Eq. 8.21. The likelihood

contours in dimensionful (m2 max
q `2

, m2 max
q `20

) are shown in Fig. 8.7.

At the benchmark point we consider, R ' 0.44. Even though this is not a particu-

larly degenerate spectrum, the rotation angle for R = 0.44 is very close to its limiting

value ϑ ' 0.994(π/4) and the eccentricity is large ε ' 26.5. The 1σ contour in the

(mχ0
2
,m˜̀) mass plane is shown in Fig. 8.8 and we can see the rotation angle and large

eccentricity reflected in the precise measurement of only a specific linear combination

of masses mχ0
2

and m˜̀.

The sensitivity here is obviously optimistic given the lack of realistic cuts and proper

simulation of detector effects and uncertainties. This over-simplified study is meant only

to demonstrate a proof of concept for the techniques described and a more detailed

study must be done to make quantitative statements about the sensitivity to mass

measurement in the much more unforgiving environment that will be present during
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Figure 8.7: Likelihood contours of the NNOMET fit in the (m2 max
AC , m2 max

AC0
) plane.
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Figure 8.8: The 1σ likelihood contour was estimated from the likelihood fit in Fig. 8.7
and mapped onto the (m2,m3) plane. The rotation angle ϑ ≈ 0.78 and eccentricity
ε ≈ 26.5 restricts a percent level mass measurement to a specific linear combinations of
masses given by ϑ.



132

Run II of LHC operation.

8.6 Going Forward

Despite a lack of any conclusive excess in events with large amounts of missing energy

in Run I of LHC operation, the sequential on-shell cascade decay with missing energy

remains a generic signature topology of new physics to look for in Run II. The NNOMET

procedure outlined in this analysis seems to be a powerful tool for identifying such

signatures and extracting important theoretical parameters for new physics in the event

that such signatures are observed in LHC data. The lack of a reliance on measurements

of missing energy, which are notoriously subject to error especially in the large pile-up

environment expected in Run II, is one of the many virtues of this analysis. Importantly

the NNOMET procedure conceptually subsumes many of the techniques currently used

to infer particle masses from LHC kinematic observables. In particular, techniques

that make use of features in one or two dimensional distributions of invariant masses,

where we have shown that many of the strongest correlations between invariants are

completely obscured in such lower dimensional projections.

Although we have made the assumption of massless final particle states in this anal-

ysis, the generalization to massive particle final states is straightforward. In particular,

obvious improvements can be made by taking finite masses of jets into account within

the framework of the NNOMET procedure. With jet mass corrections, and matrix ele-

ment and phase space improvements for finite width and final state radiation effects, the

NNOMET procedure for extracting particle masses would approach, but not exceed,

the level of sophistication and complexity of matrix element techniques currently em-

ployed to extract the top quark mass at the Tevatron in the semi-leptonic channel. And

since NNOMET employs an invariant sub-process matrix element and phase space, it

would be much less computationally demanding than current top quark matrix element

techniques that require marginalization over the entire phase space of initial parton

distribution functions, initial state radiation, and individual neutrino four-vectors.

The wide range of independent techniques that have been suggested to measure
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particle masses at the LHC provides a well founded hope that no matter what new

particles are discovered, their masses will ultimately be measured. It only remains to

see precisely how well.
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Chapter 9

Particle Masses from Displaced Tracks

Much of the research program at the Large Hadron Collider (LHC) is currently being

dedicated to the search for specific proposed extensions of the Standard Model (SM)

beyond the weak scale. Although a model independent approach to new physics searches

should primarily involve searching for deviations from SM predictions of any kind,

a specific discovery cannot be claimed without more detailed information about the

processes that occur subsequent to the initial particle collisions. Therefore obtaining

precise measurements of theoretical parameters, such as the mass spectrum of new

particle states, is an endeavor of particular importance.

In this paper, we propose techniques for measuring particle masses from several

different signatures containing missing transverse momentum. We assume that some

heavy new particle states are pair produced and then participate in sequential two-

body cascade decays that produce visible SM particles, until some effectively stable

and non-interacting new particle is reached at the bottom of the decay chain. This

is the canonical and well-studied dual cascade decay chain signature, well known for

being the canonical signature of R-parity conserving supersymmetry (SUSY) models.

None of the kinematic techniques discussed in this paper will rely on the fact that the

cascade decay chains be supersymmetric in nature, thus all of these techniques may

be applied generally to any BSM model that contains this topology as a signature.

However, due to the familiarity with supersymmetric terminology, we will generically

refer to the Lightest meta-Stable Particle as the LSP and the Next-to-Lightest meta-

Stable Particle as the NLSP. Our analysis will focus on a subset of these scenarios

in which the last step of the cascade decay involves some long-lived new particle state

that travels a finite distance before decaying in flight This will result in a signature of
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displaced vertices or displaced tracks in the detector.

The techniques to be described here are model independent which is fortunate since

missing transverse momentum is a fairly generic feature of models for physics beyond

the SM. This is because general phenomenological considerations often motivate new

discrete symmetries, resulting in the presence of effectively non-interacting stable par-

ticle states. In the case of SUSY for example, R-parity is often invoked to exclude

dangerous operators that can result in phenomenologically inconsistent effects like pro-

ton decay. In the case of extra dimensional models, it is the conservation of momentum

along the extra dimension that will result in the pair production of Kaluza-Klein (KK)

states and subsequently guarantee the stability of the lightest KK mode. One can even

invoke cosmological arguments like the WIMP Miracle calculations to argue that miss-

ing energy signatures might be a generic phenomenologically desirable feature of models

for new physics at the weak scale. The presence of metastable new particle states is also

fairly common and can arise in supersymmetric models with low scale SUSY breaking

or scenarios where R-parity conservation is only approximate. In this paper, we address

the question of whether or not it is possible, under any circumstances, to recover all of

the kinematic information lost through missing energy on an event-by-event basis.

If all of the final state particles from a given collision are visible through the detector,

then the measurement of on-shell particle masses can easily be performed through the

straightforward reconstruction of a mass resonance peak. However, if one or more of the

final state particles are effectively stable and non-interacting, then the situation is much

more challenging. In particular, particle masses cannot be calculated directly on a mass

peak resonance since crucial kinematic quantities cannot be measured. In response

to this issue, many general techniques have been developed for performing indirect

measurements of particle masses through cleverly constructed kinematic variables [115–

120]. In particular, the author in [123] introduces a very generic method for constructing

such variables via phase space singularity structures. Many studies have also been

performed based on kinematics specific to the canonical cascade decay chain [124–128,

130–139]. In general, novel kinematic structures that characterize an event can often be

used to reconstruct lost information. For example, [121, 122] also discuss a long-lived
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NLSP, and the use of timing information to perform such reconstructions. For different

topologies of the decay chain, [139] provides a comprehensive review. The drawback

to most of these methods is the fact that most of the kinematic variables that can be

constructed to provide an indirect mass measurement, require a very large number of

events for telling features to become practically visible in statistical distributions. These

methods would therefore be difficult to utilize during early discovery level searches.

First, using our assumptions we will show that one can write down an expression

for the 3-momenta of each LSP as a function of the direction of the 3-momenta of each

NLSP. This unit vector can then be written in terms of the locations of the secondary

vertices. We will then follow with a description of some novel methods for reconstructing

particle masses using this information. Examples of explicit mass reconstruction will be

performed using Monte Carlo parton-level data, highlighting the effectiveness of these

methods in some of the diverse topologies that can occur within the cascade. Finally

we will conclude with a discussion of how this relates to current SUSY searches being

performed at the LHC. We argue then, that the optimal strategy for searching under

the lamp post during these early uns will be to search for signatures with two displaced

vertices (or two displaced tracks in situations where the exact location of the secondary

vertices can not be measured).

9.1 Kinematics of Displaced Vertices

9.1.1 Counting the Unknowns

Let us denote the stable LSP particles by X1 and Y1, their mother NLSP particles as

X2 and Y2 and the final visible SM particles as a1 and b1. Fig. 9.1 shows a diagram of a

typical event. Since we assume that the 4-momenta of the two LSPs are not measurable,

each event yields 8 unknown quantities. The transverse missing momentum is given

by the vector sum of the LSP 3-momenta projected onto the transv erse plane. Since

this plane is 2-dimensional, a missing transverse momentum measurement eliminates 2

degrees of freedom bringing the number of unknowns down to 6. In order to construct

constraint equations with which to solve for these unknowns, we follow the work of
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Figure 9.1: A generic dual cascade decay with long-lived meta-stable NLSP’s. Long-
lived particles are denoted by a double line.

[140–142] and assume some symmetry between the two sides of the decay chains. For

example, if we assume that mX2 = mY2 then we can use the fact that (pµX1
+ pµa1)2 =

(pµY1 + pµb1)2 as a constraint with which to eliminate one of the unknown momentum

components.

Let k denote the number of such equations we can construct. Since all of the

unknown quantities involve components of the LSP 4-momenta, k can be viewed as

the number of masses starting from the bottom of one decay chain but excluding the

LSP, that we assume to be equal to the masses on the opposite side of the decay

chain. Utilizing these constraints, the number of unknowns can be reduced to 6 − k.

It is important to keep in mind however, that such an exact relationship between the

masses of these particles only holds in the very narrow width limit. In general, the

true kinematically reconstructed masses will lie on the distribution of some mass peak

resonance and the equality of the asses will only be approximately true. This will

affect both the accuracy of the mass measurement as well as potentially the existence

of solutions to the constraint equations. We will return to a more detailed discussion

of this in the body of the paper.

If we assume that we have access to m events with the same topology then we can use

the equality of masses across events to further constrain the problem as done in [140–

142]. For the first event we counted 6−k unknowns. Each additional event contributes

another 6− k unknowns but if we enforce the equality of masses across different events

then we should subtract off another factor of k. Thus each additional event contributes

6 − 2k. For m events, the total number of unknowns is 6 − k + (m − 1)(6 − 2k) =
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6m − 2km + k. The condition which must be satisfied in order to properly constrain

the problem is thus clearly 6m− 2km+ k ≤ 0.

Given our assumptions that the NLSP is the only particle in the spectrum with a

finite and measurable decay length, an accurate measurement of the locations of the

displaced vertices can be used to provide additional constraints. Here we assume that

all of the decays occur on a microscopic length scale before the NLSPs travel a finite

macroscopic distance and decay to a pair of invisible LSPs and a pair of visible SM

particles. This implies that the direction of the NLSP 3-momentum is equal to the unit

vector pointing in the direction of the secondary vertex. The NLSP unit 3-momentum

contains two degrees of freedom, thus an accurate measurement of two displaced vertices

will allow us to subtract off another 4m nknowns. In some situations, it will not be

possible to measure the locations of the displaced vertices and only the trajectories of

the displaced tracks will be visible. In these situations, the locations of the secondary

vertices can be constrained to lie on the trajectories of the displaced tracks and can be

parameterized by one number thus removing 2m unknown quantities.

9.1.2 Parameterizing the Unknowns

In this section we propose a parameterization of the unknown quantities that makes the

utility of displaced vertices and displaced tracks maximally transparent. More specifi-

cally, we will show that it will be possible to write down an expression for the 3-momenta

of each LSP that depends only the location of the displaced vertices. Throughout this

analysis let us assume that the 4-momenta of the visible Standard Model particles a1

and b1 can be measured accurately. Let us restrict our attention to one side of the

decay chain and denote the 4-momenta for particle X1, X2 and a1 as in Eq. 9.1

pX1 =

 EX1

|~pX1 |p̂X1

 ; pX2 =

 EX2

|~pX2 |p̂X2

 ; pai =

 Eai

|~pai |p̂ai

 (9.1)

To isolate the unknown quantities, it is useful to decompose the 3-momenta of particles

a1 and X1 in terms of their components parallel and orthogonal to the momentum of

particle X2 as in Fig. 9.2. For notational convenience, let us define the projection
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symbol as in Eq. 9.2

Figure 9.2: A decomposition of the final decay products into their components parallel
and orthogonal to particle X2. Note that the component of ~pX1 orthogonal to the
direction of the NLSP, is equal in magnitude and opposite in direction to the component
of ~pa1 orthogonal to the direction of the NLSP.

Pij ≡ ~pi · p̂j (9.2)

This denotes the projection of the 3-momentum of particle i along the direction of

the 3-momentum of a different particle j. In this basis and with this notation we

can decompose ~pa1 into its component parallel ~p
‖
a1 = Pa1X2

p̂X2 and orthogonal ~p⊥a1 =

~pa1 − Pa1X2
p̂X2 to particle X2. Conservation of momentum allows us to immediately

write down the orthogonal component of the 3-momentum of particle X1 as ~p⊥X1
=

−~p⊥a1 = Pa1X2
p̂X2−~pa1 . The magnitude of the component of the 3-momentum of particle

X1 along the direction of X2 remains unknown. In this paper we will denote it as

c1 ≡ PX1
X2

so the parallel component can be expressed as ~p
‖
X1

= c1p̂X2 . Since the other

side of the decay chain is subject to identical kinematic considerations, the 3-vector of

each LSP is given by
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~pX1 = (Pa1X2
+ c1)p̂X2 − ~pa1 and ~pY1 = (Pb1Y2 + c2)p̂Y2 − ~pb1 (9.3)

Let α = 1, 2 be indices parameterizing a basis in the two-dimensional transverse

plane. The experimentally measured missing transverse momentum ~/p
T

α
contains two

degrees of freedom and is restricted to the transverse plane. Since by assumption, the

missing transverse momentum in this scenario is taken from the vector sum of the 3-

momenta of the two LSPs, it can be calculated as the sum of contributions from each

LSP as in Eq. 9.4

~/p
T

α
= ~pX1

α + ~pY1α = (Pa1X2
+ c1)p̂X2

α + (Pb1Y2 + c2)p̂Y2α − ~pa1α − ~pb1α (9.4)

These two equations can then be used to solve for c1 and c2 as in Eq. 9.5

c1 =
(pa1α + pb1α + /pα)pY2β ε

αβ

pX2
α pY2β ε

αβ
− Pa1X2

c2 =
(pa1α + pb1α + /pα)pX2

β εαβ

pY2α p
X2
β εαβ

− Pb1Y2 (9.5)

Here εαβ is the totally antisymmetric 2 × 2 tensor. The key result here is that an

accurate measurement of the missing transverse momentum will allow us to write down

the 3-momentum of each LSP as a function of the direction of the NLSP 3-momenta

by plugging Eq. 9.5 into Eq. 9.3. The result is summarized by Eq. 9.6

~pX1 → ~pX1(p̂X2 , p̂Y2)

~pY1 → ~pY1(p̂X2 , p̂Y2) (9.6)

Let us denote the location of the two secondary vertices by 3-vectors in the Cartesian

coordinates of the lab frame ~rX and ~rY . Here the subscripts X and Y correspond to

the location of the decays of particles X2 and Y2. Note that given our assumptions

|~rX | = dX simply the distance traveled by particle X2 before decaying while |~rY | = dY

is the distance traveled by particle Y2 before decaying, assuming all other decays are

prompt. Now recall our initial assumption that the decay length of particles X2 and Y2
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are the only decay lengths that are measurably large. Then subsequent to the initial

collision, a cascade will occur on some microscopic length scale before the NLSPs travel

a finite macroscopic distance and decay to a pair of invisible LSPs and a pair of visible

SM particles. This implies that the direction of the NLSP 3-momentum is equal to the

unit vector pointing in the direction of the secondary vertex. The exact relationship

is p̂X2 = ~rX/|~rX |. Therefore in actuality we have derived an expression for the LSP

3-momenta that depends only on the location of the secondary vertices as in Eq. 9.7

~pX1 → ~pX1(~rX , ~rY )

~pY1 → ~pY1(~rX , ~rY ) (9.7)

In some situations, the displaced vertices may not be directly measurable and only the

trajectories of the displaced tracks may be extracted. However, it may be inferred that

the displaced vertices must lie somewhere along the path of the displaced tracks. We

may thus parameterize the location of the displaced vertices according to their location

along the beam axis. Let zX and zY denote the location along the z-axis of ~rX and ~rY

respectively and let us set the location of the primary vertex to be z = 0. Indeed if we

denote the location of particle a1’s collision with the tracker by ~r0 = (x0, y0, z0), then

an exact functional form for ~rX(zX) is given by Eq. 9.8.

~rX(zX) =


x0 + (Pa2x̂ /P

a1
ẑ )(zX − z0)

y0 + (Pa2ŷ /P
a1
ẑ )(zX − z0)

zX

 (9.8)

This will allow us to derive an expression for the LSP 3-momenta that depends only on

the location of the secondary vertices along the beam axis as in Eq. 9.9

~pX1 → ~pX1(zX , zY )

~pY1 → ~pY1(zX , zY ) (9.9)

From this parameterization we can explicitly see the dependence of the 3-momentum

of each missing particle on the locations of the displaced vertices or the trajectories of
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the displaced tracks. Now that it is clear how such measurements can be used to reduce

the number of unknowns and further constrain the kinematics of this decay topology,

we move on to some practical examples.

9.2 Monte Carlo Simulations for Displaced Tracks

Here we give some details about how to prepare the MC information and how we derive

the weighting factor. We first took the lhe file from a fixed SUSY spectrum, where

the 4-momenta of gravitino, slepton and lepton are accessible. The information of

the beginning and ending points of displaced tracks are missing. We take the proper

decay length of slepton to be half of detector radius and impose the location of 2nd

vertex according to the exponential decay distribution. With all those information,

we can calculate the beginning and ending points of displaced tracks for each event.

Since displaced tracks are assumed to be measurable in experiments, but 4-momenta

of gravitino and slepton are not, we would use the track information and forget the

momenta information for the later analysis. Also, the transverse missing energy is

assumed to be only coming from two gravitinos, thus it can be calculatedwhen we

prepare the MC information. One needs to be very careful on what information is

accessible and what is not. We summarize the accessible information as following: the

location of primary vertex, the beginning and ending points of the two displaced tracks

for each event, the 4-momenta of each displaced track, and transverse missing energy.

Except for those, all other information will be treated as inaccessible.

After we finish the preparation of MC information, we proceed to scan in the possible

locations of 2nd vertex along one of the displaced tracks. The scanning we do is taking

a constant step along the track. The calculation of weighting factor for each scanning

point is a little tricky, because part of the information of exponential decay has already

been included in the distribution of displaced tracks. Thus the uniform step of scanning

along each tracks in many events is not giving us a uniform distribution of points in

space. To gain the correct weighting factor, one has to first include a weighting factor of

each displaced track. This factor is described more precisely in the following Appendix,

then an exponential decay factor can be applied. Thus the weighting factor for each



143

point takes the form in Eq. 9.10

9.2.1 Weight Functions

Here we give a detailed discussion on how to extract a rough estimate of the decay

length from the observation of a few displaced tracks. This can be done by looking

at the distribution of perpendicular distances from the primary vertex to the point of

closest approach for all displaced tracks d⊥. Suppose X2 travels a distance l before

decaying, as in Fig. 9.3. Let θ be the angle between PS and CS. Then we have

Figure 9.3: The kinematics of a displaced track. Here d is distance of closest approach
between the primary vertex and the displaced track, C is the point of closest approach,
l is the distance between the primary vertex and the hypothetical point of decay on the
displaced track and l0 is the characteristic decay length of the NLSP.

d⊥ = l sin θ

Let l0 be the characteristic decay length of particle X2. Since the measured de-

cay distance for an event l must an exponentially decaying distribution, the properly

normalized probability distribution is:

∂P (l, θ, φ)

∂l
|θ,φ =

1

l0
e−l/l0f(θ, φ)

Also, we know that the decay of particle X2 is isotropic in its rest frame. Since the

mass of X2 is O(100 GeV), the boost from lab frame to the rest frame of X2 is not

large. We can thus approximate the anglular distribution in lab frame to be isotropic:
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∂2P (l, θ, φ)

∂(cos θ)∂φ
|l =

1

4π
g(l)

Since we l, θ and φ are independent variables, we have:

∂3P (l, θ, φ)

∂l∂(cos θ)∂φ
=

1

4πl0
e−l/l0

From the relation between d⊥ and (l, θ), we have

∂d⊥
∂(cos θ)

|l = −l2
√

1−
d2
⊥
l2

Finally, we get

dP

d(d⊥)
=

∫ ∞
d⊥

dl

2l0

e−l/l0

l
√
l2 − d2

⊥

(9.10)

Though this integral is not easy to solve, one can cut the integral at very large values

and get the distribution numerically. Thus, with just a couple of displaced tracks from

a few events, one can extract the rough value of the decay length of X2.

9.3 Examples with a Massless LSP

From the counting arguments given in the introduction, we found that for m events and

k constraint equations, the total number of unknown quantities was equal to 6−2km+k.

In principle, the problem is simply a matter of solving for enough constraint equations to

obtain a unique solution for all unknown quantities. In practice however, the contraint

equations are highly nonlinear and generically contain multiple solutions. As a result,

a confident mass measurement should really involve the analysis of a number of events

greater than the minimum required to properly constrain the problem. We will now

explore a few specific examples. For concreteness, we will start with an analysis of

selected benchmark points for multi-lepton searches inspired by scenarios with general

gauge mediated SUSY breaking (GMSB). In such scenarios, where the scale of SUSY

breaking is sufficiently low, the LSP is an effectively massless gravitino. With the mass
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Figure 9.4: The special case of a dual cascade decay where the Standard Model particles
a1 and b1 decay promptly. In this situation, the decay products of particles a1 and b1
can be traced back to their displaced secondary vertices.

of the LSP set to zero, 2m unknowns are removed from the problem resulting in a total

number given by Eq. 9.11

Number of Unknowns for Massless LSP Scenario = 4m− 2km+ k (9.11)

9.3.1 Measurable Displaced Vertices

If a1 and b1 each decay promptly to two or more visible particles, it will be possible to

experimentally trace back the track of each decay product and reconstruct the position

of the secondary vertex. The momenta pa1 and pb1 can then be computed through

the sum of 4-momenta of their respective decay products, assuming none of them con-

tribute to the missing transverse momentum. The situation is depicted in Fig. 9.4. In

this case we can directly measure the quantities p̂X2 = ~rX/|~rX | and p̂Y2 = ~rY /|~rY | and

thus completely solve for the 3-momenta of particles X1 and Y1. Since these particles

are massless by assumption, a measurement of the 3-momenta is equivalent to a mea-

surement of the full 4-momenta. Therefore in situations where the LSP is massless,

a simple measurement of the locations of the displaced vertices already recovers all of

the information lost through missing energy. In terms of the unknowns we see that

substituting one event m = 1 into Eq. 9.11 gives us 4− k. A measurement of the dis-

placed vertices removes exactly 4 unknowns, which means that the condition for total

kinematic recovery is already met for k = 0. This example is thus trivial and will not

be discussed further.
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Figure 9.5: If particles a1 and b1 are stable, then they will manifest as displaced tracks.
In this situation, at least two on-shell decays are required on each leg in order to fully
reconstruct the masses of all the particles.

9.3.2 Measurable Displaced Tracks

If a1 and b1 are stable and hit the detector, then pa1 and pb1 can be directly measured.

In this scenario, the exact location of the secondary vertex cannot be measured but one

can constrain their location to a point along the displaced tracks of particles a1 and

b1. Parameterizing the 3-momentum ~pX1 by zX and ~pY1 by zY removes 2m unknown

quantities from Eq. 9.11 bringing the requirement for total kinematic recovery down

to 2m− 2km+ k ≤ 0. Acheiving this with m = 1 event requires that k ≥ 2 so we will

use the fact that mX3 = mY3 and mX2 = mY2 in order to measure the particle masses.

Our canonical example for this scenario, depicted in Fig. 9.5, comes from GMSB. Here

we consider the case where two partons collide resulting in the pair production of two

right-handed squarks. Each squark decays to Bino-like neutralinos X3 and Y3, emitting

jets in the process. Each neutralino then decays to right-handed sleptons X2 and Y2,

emitting leptons a2 and b2 in the process. Finally the right-handed sleptons decay to

the LSP gravitinos X1 and Y1, emitting additional leptons a1 and b1 in the process.

The relevant part of the spectrum is summarized in the following table:

Particle Symbol Mass

Bino B̃ 199.30 GeV

Right-handed Slepton l̃R 107.44 GeV

Gravitino G̃ 0 GeV

Another point to keep in mind is that the further up we go in the decay chain, the

higher the chance for combinatoric confusion among the visible particles, labeled in
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this example by a1, a2, b1, and b2. In general it may not always be possible to identify

the correct particle with its correct position within a given decay chain. If this is the

case then all possibilities should be considered which will result in a larger multiplicty

of solutions. A slightly larger data sample may then be required in order to make

a definitive mass measurement by finding a common value for the masses. Since the

visible SM particles are leptons, we will treat them as effectively massless. The relevant

formulae are then given in Eq. 9.12 with the expressions for c1 and c2 given by Eq. 9.5.

m2
X3

= 2(Ea1 + Ea2)
√
c2

1 − (Pa1X2
)2 + ~p2

a1 − 2(c1 + Pa1X2
)(Pa1X2

+ Pa2X2
) + 2~p2

a1 + 2Ea1Ea2

m2
Y3 = 2(Eb1 + Eb2)

√
c2

2 − (Pb1Y2)2 + ~p2
b1
− 2(c2 + Pb1Y2)(Pb1Y2 + Pb2Y2) + 2~p2

b1 + 2Eb1Eb2

m2
X2

= 2Ea1

√
c2

1 + ~p2
a1 − (Pa1X2

)2 − 2(Pa1X2
+ c1)Pa1X2

+ 2~p2
a1

m2
Y2 = 2Eb1

√
c2

2 + ~p2
b1
− (Pb1Y2)2 − 2(Pb1Y2 + c2)Pb1Y2 + 2~p2

b1 (9.12)

In practice, we are using two equations to solve for two unknowns mX2(zX , zY ) =

mY2(zX , zY ) and mX3(zX , zY ) = mY3(zX , zY ). The calculation of unknown particle

masses mX2 and mX3 in this scenario is presented here in the table with incorrect and

correct solutions separated by columns:

Event correct (Higgino,Slepton) wrong (Gravitino,Slepton)

1 (201.77, 108.221) (467.428, 289.917)

2 (199.207, 107.231) (191.439, 92.8328)

3 (204.876, 110.958) Null

4 (200.149, 109.002) (405.112, 346.093)

5 (199.768, 107.928) (209., 122.639),(490.134, 254.298)

Using O(few) events we see that the correct solutions can be separated from the incor-

rect solutions by their sheer multiplicity.

9.3.3 Can We Do Better?

It may be argued that the equality of masses following from the condition k = 2 is

too specific. Indeed if there was a way to measure the particle mass spectrum without
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Figure 9.6: With only one on-shell decay on each leg, and no measurable displaced
vertices, it is still possible to reconstruct all particle masses with O(few) events.

demanding mX3 = mY3 , these techniques would gain a lot in generality and become

useful in a far wider range of possible new physics scenarios. Thus a natural next step

would be to see if it would be possible, under any circumstances, to measure particle

masses under the condition k = 1 as depicted in Fig. 9.6. As demonstrated in the

previous section, in scenarios with a massless LSP where the trajectories of the displaced

tracks are known, the requirement for total kinematic recovery is 2m − 2km + k ≤ 0.

Solving for k in terms of m gives the expression k ≥ 2m/(2m− 1). Clearly as m→∞,

k → 1 asymptotically but the condition k = 1 cannot be satisfied for any value of m.

Naively this implies that it would not be possible to measure the particle masses given

this assumption. Here we present a technique that defies this apparent restriction and

demonstrate a particle mass measurement technique using only the condition k = 1.

For situations in which the number of unknown quantities is larger than the num-

ber of constraint equations available, there exists a novel and unorthodox method of

extracting particle masses using a relatively small number of events. The idea behind

this method utilizes the fact that even in situations where the number of constraints

is not large enough to specify a unique solution to all of the unknown quantities, it

may be large enough to reduce the space of solutions down to a lower dimensional sub-

space where the solution may be inferred. Our toy model is taken again from a GMSB

scenario. The process under consideration starts with the direct pair production of

right-handed sleptons labeled here by X2 and Y2. The sleptons then decay to LSP

gravitinos X1 and Y1, emitting a leptons a1 and b1 in the process. The relevant part of

the mass spectrum is summarized in the following table:
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Particle Symbol Mass

Right-handed Slepton l̃R 107.44 GeV

Gravitino G̃ 0 GeV

The central challenge associated with this example is that there are two unknown quan-

tities zX and zY but only one mass constraint equation mX2(zX , zY ) = mY2(zX , zY ),

which means that a unique solution cannot be obtained. However, this constraint al-

lows us to express zX as a function of zY , which we may then use to write down an

expression for the mass of a particle in terms of one variable mX2(zX). With this

one-to-one map from zX to mX2 , the space of possible solutions has been reduced to

a one-dimensional subspace (i.e. a line) and the true value of mX2 must exist as an

element of this subspace.

Recall that all of the unknown quantities could be parameterized by the direction

of the NLSPs p̂X2 and p̂Y2 . Recall further that the direction of an NLSP is given by

the location of its secondary vertex p̂X2 = ~rX/|~rX |, which is restricted to lie somewhere

along the trajectory of the associated displaced track. Recall finally, that a secondary

vertex can thus be parameterized by its location along the beam axis ~rX → ~rX(zX). The

powerful observation here is the fact that as the hypothesized location of the displaced

vertex along the beam axis approaches infinity (zX → ∞), the direction of the NLSP

will asymptotically approach some fixed unit vector (p̂X2 → p̂const). This means that as

zX →∞, the corresponding value of mX2(zX) will asymptotically approach some fixed

number. In other words for the function mX2(zX), the domain zX ∈ (−∞,∞) maps to

a closed finite range for mX2 , and the correct value of mX2 will always be contained in

this range. If we plot the elements of this range in a histogram over a small number

of events, the histogram will peak around the correct solution since it is an element of

every set and should thus have the highest multiplicity across events.

In principle, the correct values for zX and zY can take on any arbitrary value. Since

the decay distance of particles has the form of an exponentially decaying function, hy-

potheses for the location of the displaced vertex that are closer to the primary vertex

should carry more weight than ones that are farther away. In order to attenuate con-

tributions from unlikely vertex locations and increase the efficiency of our analysis, we
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scan the trajectory of the displaced track and assign a weight to each point accordingly.

The weighting function is given by Eq. 9.13

f [l] =
e−l/l0

g(d⊥)
(9.13)

Here l is the distance between the point on the displaced track and the primary vertex

and l0 is the characteristic decay length of the NLSP. A more detailed discussion of this

can be found in Appendix A. Note that we need as input only the rough order of this

decay length which can be derived by looking at the distribution of displaced tracks as

described in the Appendix B. The result of this weighted histogram is shown in Fig.

9.7. As we can see, this histogram quickly peaks at the value of the correct slepton

mass of 107 GeV.

Figure 9.7: Results of the likelihood fit. The red curve indicates an exam ple with 15
events. The blue curve indicates an example with 30 events. The green curve indicates
and example with 60 events

9.4 Examples with a Massive LSP

Recall again from the introduction, that for m events and k constraint equations, the

general scenario with a massive LSP resulted in a counting of unknown quantities given

by Eq. 9.14. In this section we will study such examples, that typically arise in the

supersymmetric context when SUSY is broken at the Planck scale via gravity-mediation.

The techniques described in this section will all be a straightforward demonstration of

matching constraint equations with unknowns.
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Number of Unknowns for Massive LSP Scenario = 6m− 2km+ k (9.14)

9.4.1 Measurable Displaced Vertices

Just as it was with the massless LSP, the requirement for measurable displaced vertices

is that the final visible SM particles a1 and b1 must each decay promptly to two or

more visible particles as depicted in Fig. 9.4. The measurement of displaced vertices

will again provide us with a complete measurement of the LSP 3-momenta ~pa1 and ~pb1 .

The difference is that now the mass of the LSP remains an unknown quantity in the

LSP 4-momenta.

In terms of our counting exercise, the measurement of displaced vertices subtracts

4m unknown quantities from Eq. 9.14 bringing the total number of unknowns down to

2m− 2km+ k. If we are interested in solving for all masses on an event-by-even t basis

(m = 1), the minimum number of constraint equations clearly implies k = 2. With

the LSPs now massive we may take our two constraint equations to be mX2 = mY2

and mX1 = mY1 . Substituting the second expresion into the first reduces the problem

to solving one equation for one unknown mX2(mX1) = mY2(mX1). Expressions for the

masses are given by Eq. 9.15 with solutions for c1 and c2 given by Eq. 9.5.

m2
X2

= m2
X1

+ 2Ea1

√
m2
X1

+ c2
1 + ~p2

a1 − (Pa1X2
)2 − 2(Pa1X2

+ c1)Pa1X2
+ 2~p2

a1

m2
Y2 = m2

Y1 + 2Eb1

√
m2
Y1

+ c2
2 + ~p2

b1
− (Pb1Y2)2 − 2(Pb1Y2 + c2)Pb1Y2 + 2~p2

b1 (9.15)

Here we assume that particles a1 and b1 are massive, as per our next example where

we study a more general GMSB scenario with massive SM particles and a massive

gravitino. The process under consideration will be one in which two partons collide

to pair produce two right-handed squarks. The squarks then decay to Higgsino-like

neutralinos, labeled by X2 and Y2, emitting jets in the process. The neutralinos then

decay to Z bosons, corresponding to particles a1 and b1, as well as a pair of massive

gravitinos X1 and Y1
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. We select events in which each Z boson decays promptly to two leptons so that

the intersection of the lepton tracks gives the location of the displaced vertex. Because

of the extreme precision with which the detectors can track leptons, this should be

the scenario in which secondary vertices may be located with the highest degree of

precision. The spectrum for our toy model is given by the following table:

Particle Symbol Mass

Higgsino H̃ 196.27 GeV

Gravitino G̃ 50 GeV

Although the constraint equation mX2 = mY2 is highly non-linear and may have multi-

ple solutions, it can be solved relatively easily using numerical techniques. Unforunately,

the existence of multiple solutions may necessitate a larger data sample in order to per-

form a confident mass measurement. Once the equation has been solved, a numerical

value for mX1 can be extracted and used to solve for the exact value of mY1 . Here

we show a table of the solutions from 5 events with correct and erroneous solution s

separated by columns:

Event correct (Gravitino,Slepton) wrong (Gravitino,Slepton)

1 (50, 196.274) Null

2 (50, 196.274) Null

3 (50, 196.274) (120.173, 286.545)

4 (50, 196.274) (24144.9, 24349.4)

5 (50, 196.274) Null

Here we see that in this case, gravitino and slepton masses are determined precisely.

Though some events evidently contain multiple solutions, the unphysical solutions are

sufficiently dispersed about the parameter space so as not to cause confusion in the

presence of multiple events when a unique common value can easily be determined by

eye.
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9.4.2 Measurable Displaced Tracks

The situation is more challenging if particles a1 and b1 are stable as in Fig. 9.5. If this

is the case, then displaced vertices will not be measurable and only the trajectories of

the displaced tracks may be observed. This will allow us to subtract only 2m from Eq.

9.14, reducing the condition for total kinematic recovery to 4m− 2km+ k ≤ 0. Solving

for k in terms of m gives k = 4m/(2m− 1) so as m→∞ we see that k → 2. Thus the

minimum number of constraint equations we can demand is k = 3, which can be solved

using m = 2 events. The constraints mX1 = mY1 and mX2 = mY2 were combined in Eq.

9.15, so the one additional constraint we require for k = 3 is the condition mX3 = mY3 .

The equations for these masses are given in Eq. 9.16

m2
X3

= m2
X1

+ 2(Eai + Eaj )
√
m2
X1

+ c2
1 − (PaiX2

)2 + ~p2
ai

−2(c1 + PaiX2
)(PaiX2

+ PajX2
) + 2~p2

ai + 2EaiEaj

m2
Y3 = m2

Y1 + 2(Ebi + Ebj )
√
m2
Y1

+ c2
2 − (PbiY2)2 + ~p2

bi

−2(c2 + PbiY2)(PbiY2 + PbjY2) + 2~p2
bi

+ 2EbiEbj (9.16)

These equations are again calculated assuming massive a1 and b1 as per our example,

though the assumption of massless particles a2 and b2 is still taken for simplicity. It

should be noted however, that all equations generalize easily to arbitrary massive SM

particles. From the above equations we see that it is possible to construct expressions

for mX2 , mY2 , mX3 , andmY3 in terms of three unknown quantities zX , zY , andmX1 . For

each event we have two constraint equations mX1 = mY1 and mX2 = mY2 with which to

solve them. First notice that since the LSP 4-momenta can be calculated in terms of zX ,

zY , and mX1 , we can explicitly express mX2 and mX3 in terms of these variables. This

means that we can apply a change of variables and parameterize the three unknown

quantities instead as mX1 , mX2 , and mX3 . The fact that there are two constraint

equations means that the solution for each event is a curve in parameter space, which

in this case is just R3 with axes labeled (mX1 ,mX2 ,mX3). Since the trajectories of the

displaced tracks are unique for each event, curves generated by different events will be
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unique but will always traverse the correct answer. Thus in principle, the correct value

for the masses will exist at the intersection of the curves, which is clearly equivalent to

the condition of matching particle masses from different events.

Put another way, every hypothesis for the value of mX1 is equivalent to a hypothesis

for the values of zX and zY . It is thus also equivalent to a hypothesis for the values of

mX2 and mX3 . By considering a range of hypotheses for mX1 over a few events, the

correct values of mX2 and mX3 will be the unique intersection of all hypotheses. A

demonstration of this scenario has been performed with the following mass spectrum

(the Bino and Slepton masses are the same as before but the Gravitino mass is now set

to 50 GeV):

Particle Symbol Mass

Bino B̃ 199.30 GeV

Right-handed Slepton l̃R 107.44 GeV

Gravitino G̃ 50 GeV

As explained, the parameter space for this scenario is R3 with axes labeled (mB̃,ml̃,mG̃).

Analyzing three events, we scan values of the gravitino mass from 0 to 100 GeV. As

expected, this scan produces a curve in parameter space for each event with the correct

answer lying at the intersection of the curves as shown in Fig. 9.8. For reasons given

earlier, in practice we do not expect an exact intersection, but rather a localized region

in parameter space where the density of such lines achieves a maximum. The optimal

method of mass extraction should then involve searching for the slice in the mG̃ plane

where the density of solutions for mB̃ and ml̃ achieves a maximum. To this end we

compute a probability sum on each slice of equal mG̃ using the Gaussian distribution

in Eq. 9.17 as our probability distribution function with σ = 10 GeV.

F [mB̃,mB̃,0,ml̃,ml̃,0] =
1

(2πσ2)2
exp(−

(mB̃ −mB̃,0)2 + (ml̃ −ml̃,0)2

2σ2
) (9.17)

Slices of equalmG̃ give a plane parameterized bymB̃ andml̃. The function in Eq. 9.17 is

defined at each point on this plane (mB̃,0, ml̃,0) and the sum over i takes a contribution
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Figure 9.8: With three unknowns (m
B̃

,ml̃,mG̃
) and two equations, the solutions are

curves in three dimensional Euclidean space. The intersection of solutions should occur
at the correct value of the masses as can be seen in this plot using 3 events as an
example.

from each data point (mB̃,i, ml̃,i), which is just given by the intersection of each line

with the equal mG̃ slice. Therefore, Eq. 9.17 should be maximixed at the point in

the plane with the highest density of solutions. Furthermore, the maximum height in

each plane should achieve its largest absolute magnitude on the slice corresponding to

the correct value of mG̃, since it is on this plane that the highest density of solutions

resides. Using a sample of 25 events, the probability sum on the correct mG̃ slice is

depicted in Fig. 9.9 and we can observe a clear maximum at the correct solution for

mB̃ and ml̃. The maximum height for each mG̃ is then plotted as a function of the mG̃

in Fig. 9.10. As expected, the largest absolute magnitude for the probability sum is

acheived at the correct value of mG̃ = 50 GeV.

9.4.3 Can We Do Better

As we saw in the previous section, as the number of events m → ∞, the minimum

number of constraint equations needed k → 2. Thus naively it would seem impossible

to solve for all particle masses using the condition k = 2, with a topology given in Fig.
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Figure 9.9: The probability sum on the m
G̃

= 50 GeV slice. We see that it peaks at
the correct value of m

B̃
and ml̃

Figure 9.10: A plot of the absolute height of the probability sum as a function of m
G̃

.
We see that it peaks at the correct value.
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9.6. Previously we saw that it was still possible to measure the masses in situations

where the unknown quantities outnumbered the constraints, using a very small number

of events, by employing the trick of section 4.3. It is thus sensible to ask the question of

whether or not it would be possible to perform an analagous measurement on cascade

decays with a massive LSP. The spectrum used for this example was as follows:

Particle Symbol Mass

Right-handed Slepton l̃R 107.44 GeV

Gravitino G̃ 50 GeV

As usual, with a massive LSP we have 4 unknowns which we may take to be zX ,

zY , mX1 , and mY1 . Since we are assuming k = 2, the available kinematic equations

can only remove two unknowns. In analogy with the massless LSP scenario, we choose

to eliminate the two LSP masses and can derive an expression for the mass of the

NLSP mX2 → mX2(zX , zY ) We now scan all possible values for mG̃ and play the same

trick that was used in the previous section, but in one higher dimension. The result is

depicted in Fig. 9.11. Unfortunately, this probability-double-sum produces a ridge-like

structure rather than a peak at the correct solution. This result implies that these

techniques cannot be used to extract a unique solution for mG̃ when it is non-zero, and

can only be used to provide a relation between two mass parameters.

9.5 Going Forward

In this paper we studied scenarios in which heavy new particle states were pair produced

and cascaded down to some non-interacting stable particle states generating visible SM

particles along the way. Here we assumed the decay length of the last decay was

measurable, which resulted in a signature of displaced vertices or tracks. We finally

assumed that the LSPs were the only particles that contributed to the transverse missing

momentum. Given these assumptions, we described a number of novel techniques for

extracting the spectrum of the intermediary particles in the cascade decay that were

effective even in the low statistics limit. They would therefore be useful for very early

discovery level searches at the LHC.
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Figure 9.11: The probability double sum for the massive LSP case where unknowns
outnumber constraints. The ridge-like structure suggests that no unique solutions exists
for the correct value of m

G̃
using this technique
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It should obvious by now that although this procedure is completely model inde-

pendent, it was inspired by the phenomenology of supersymmetric models. For any

supersymmetric theory on which these methods may be applied, the following condi-

tions must hold:

1. R-parity is preserved, so that the superpartners are pair produced

2. Each of the superpartners decays to gravitino through cascade chain before it

reaches to detector

3. Decays to the NLSP occur promptly so that it can effectively be traced back to

the primary vertex

4. All transverse missing transverse momentum is contributed by the two gravitinos

from the two sides of cascade decay chain

5. The decay of NLSP to LSP happens at a finite distance so that the detectors have

enough resolution to isolate the secondary vertices

The first four assumptions are very generic for SUSY models though the fifth as-

sumption is rather specific. Despite this fact it can be generically realized in many

models, providing us with additional handles on the kinematics of these events. In our

paper, we focus on the scenario in which the final step of decay happens at a reasonable

finite distance but before the NLSP hits the detector. In scenarios with gauge-mediated

SUSY breaking, the decay length of the NLSP is directly related to NLSP mass and the

SUSY breaking scale via the relation (cτ)NLSP ∼ (
√
F )4/m5

X2
. Since all of the tech-

niques presented in this paper also provide a direct measurement of the decay length of

the NLSP, if SUSY is realized in nature they could also be used to extract a very early

measurement of the SUSY-breaking scale.

Recently there has been a lot of talk about optimizing search strategies for very

early discovery level analyses at the LHC. A central theme in these discussions has

been the idea of searching under the lamp post. The principle behind this theme is

that at the very early stages of a new physics search, especially when data is sparse
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and statistics are low, it may be a better strategy to search for that which is easiest to

see rather than that which you think is most likely to be true. If new physics manifests

itself through the presence of missing energy and dual displaced tracks, with O(few)

events these techniques provide the possibility of

1. Providing convincing evidence for the existence of dual cascade decay topologies

2. Measuring the masses of all new particle states participating in the cascade decay

3. Constructing accurate distributions illuminating the spin-structure of the particles

4. Calculating the SUSY breaking scale if nature is supersymmetric

Clearly the methods described in this paper allow for a very large return from a

very small investment. In particular, they allow one to extract an enormous amount

of information from signatures that would otherwise be left to very late post-discovery

analyses to elucidate completely. As such, they present an extremely bright lamp post

under which to search inthe coming months.
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Chapter 10

Testing Discrete Symmetries of the Higgs Sector

With the discovery of the Higgs now confirmed beyond reasonable doubt, attention to

the exploration of this sector has now turned to measuring the properties of the Higgs

with ever increasing precision as more data is collected. Indeed there have been a num-

ber of analyses conducted since the discovery in Run I dedicated to the measurement

of couplings through branching ratios and spin-properties through kinematic variables.

But another orthogonal avenue of exploration exists in testing the known symmetries

of the Higgs sector. In this chapter, we discuss the possibility of detecting violations

of discrete time-reversal symmetry T, equivalent to charge conjugation-parity symmtry

(CP) by the CPT invariance theorem, through an analysis of the kinematics of Higgs

decays. The minimal Higgs boson of the Standard Model is known to conserve T, so

any evidence implying violations of T in Higgs processes would potentially serve as an

important window into new physics in the electroweak symmetry breaking sector.

The experimentally observed Higgs mass of mϕ ∼ 125 GeV is fortuitous from an

experimental stand point, as it presents a large number of Higgs decay channels with

which to search for signs of new physics. In particular, the so called “gold-plated”

channel Fig. 10.1 has several unique advantages. Although it suffers from an extremely

low σ × Br, electrons and muons are by far the most accurately measured objects

experimentally. Thus kinematic variables constructed from this four-lepton final state

offer a degree of precision that far exceeds the potential of one constructed from any

other final state decay. Furthermore, because it is a resonant channel, obtaining a

sample with extremely high signal purity is completely straightforward. Below the

scale of electroweak symmetry breaking, the Standard Model contribution to the process

ϕ→ ZZ∗ arises from the tree level operator OSM
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Figure 10.1: The so-called “gold-plated channel”, which involves a resonantly produced
Higgs boson decaying as ϕ→ ZZ∗ → `+`−`′+`′−

OSM = M2
Z

ϕ

v
ZµZ

µ (10.1)

In this chapter, we consider the possibility that physics beyond the Standard Model

could give significant contributions to the couplings of higher dimensional operators.

Up to dimension-six, there are exactly two operators that could give contributions to

the Higgs-gauge-gauge coupling present in gold-plated channel decays. Labeling them

by their transformation properties under parity, there is one scalar operator OS and

one pseudo-scalar operator OPS

OS =
M2
Z SZZ
4πv2

ϕ

v
ZµνZ

µν (10.2)

OPS =
M2
Z S̃ZZ
4πv2

ϕ

v
ZµνZ̃

µν (10.3)

The possibility of contributions to ϕ → ZZ∗ from the pseudo-scalar operator OPS is

particularly interesting because of the fact that this operator is odd under T. Thus a

measurable enhancement could potentially lead to observable violations of parity and

time-reversal symmetry through interference effects parameterized by the strength of

the coupling S̃ZZ . Here we consider the possibility that the observed Standard Model

process ϕ → ZZ∗ → `+`−`′+`′− might be under the receipt of contribution through a

small but measurable component of pseudo-scalar decays via the dimension-five effective

operator OPS . We introduce a kinematic variable specially tailored to expose the effects

of the cross-term between the Standard Model and the leading T-violating interaction
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in an effective operator expansion. This observable, which is constructed from the

four final-state particle momenta, is sensitive to violations of time-reversal through an

asymmetry in its distribution. We will thus explore the potential for measuring such

effects at the Large Hadron Collider.

10.1 Four-Body Kinematics

10.1.1 The T-Odd Observable

The gold-plated channel under analysis refers to the 4-body decay ϕ → ZZ∗ →

`+`−`′+`′−. In order to restrict our analysis to final states that preserve all of kine-

matic information from the Higgs-gauge-gauge coupling, we assume here that ` = e, µ

since prompt τ decays involve at least one ντ . To a good approximation we may thus

take each of the final state leptons to be massless. With this restriction, a complete

kinematic description is given by the 3-momenta of the 4 final-state particles, leaving

3 × 4 − 1 = 11 degrees of freedom, where we subtract one due to the arbitrary overall

azimuth. If we assume that the Higgs boson as well as one Z boson is always on shell,

then the two mass-shell conditions leave only 9 independent kinematic degrees of free-

dom. One of these may be taken to be the plane angle φ, which is the signed angle in

the center-of-mass frame of the system between the plane spanned by ~p`+ , ~p`− and the

plane spanned by ~p`′+ , ~p`′− as shown in Fig. 10.2. It is well known that the plane angle,

defined in this way for a four-body final state, is odd under T. Indeed this variable has

been used to measure the CP properties of the Kaon system some years ago.

A more systematic analysis demonstrates that the unique time reversal violating

observable for a four-body final state is proportional to the Lorentz invariant product

of the four final state lepton 4-momenta constracted with the completely anti-symmetric

ε tensor:

τ`+`−`′+`′− ≡
εµνρσ p

µ
`+
pν`−p

ρ
`′+p

σ
`′−

m4
`+`−`′+`′−

(10.4)

where m4
`+`−`′+`′− = [(p`++p`−+p`′++p`′−)2]2, p2

X = pX ·pX and ε0123 = +1. Since this

quantity is odd under time reversal, violations of this symmetry should manifest as an
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Figure 10.2: The kinematic configuration for a four-body final state decay.

asymmetry in the distribution of this variable across many events. One can see that

this variable τ`+`−`′+`′− is equivalent to the plane angle φ in the center-of-mass frame

of the total system by writing

sinφ = ( ~N`+`− × ~N`′+`′−) · ~n`+`−

where we have defined the unit vector along any three-momentum vector ~pX to be

~nX ≡ ~pX/|~pX |. Here ~N`+`− is the unit vector normal to the plane spanned by ~p`+ , ~p`−

as in Fig. 10.2. This can be written in a Lorentz invariant way by defining a relativistic

generalization of the cross product that reduces to the ordinary three-dimensional cross

product in the center-of-mass frame

Qµ
`+`− = εµνρσ p

ν
`+ pρ

`− n
σ
`+`−`′+`′− −−−→c.o.m.

~p`+ × ~p`−

where we have also generalized the unit three-vector ~nX to a normalized four-vector

nµX ≡ pµX/
√
p2
X . With this we can define a four-vector that reduces to ~N`+`− in the

center-of-mass frame

Nµ
`+`− ≡

Qµ
`+`−√
Q2
`+`−

−−−→
c.o.m.

~N`+`−

We thus have a compact Lorentz invariant expression for sinφ

sinφ = εµνρσ N
µ
`+`−N

ν
`′+`′−n

ρ
`+`−n

σ
`+`−`′+`′−
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This expression for sinφ can be expanded and rewritten purely in terms of the T-odd

variable τ`+`−`′+`′− and invariant mass combinations of the final state leptons parame-

terized by the generic kinematic functions λ(x2, y2, z2) ≡ [x2 − (y − z)2][x2 − (y + z)2]

and ξ(w2, x2, y2, z2) ≡ w2(x2 − z2)(y2 − z2). As usual the Källen triangle function

λ(x2, y2, z2) can be interpreted as the squared three momentum of a particle with mass

y coming from the two-body decay at rest of a particle with mass x to a particle

with mass y and a particle with mass z. By momentum conservation, λ(x2, y2, z2)

is invariant with respect to an interchange of y ↔ z. The function ξ can be inter-

preted as the form for the magnitude of our relativistically generalized cross product√
Q2
`+`− = ξ(m2

`+`− ,m
2
`+`′+`′− ,m

2
`−`′+`′− ,m

2
`′+`′−). We are thus left with the simple

expression

sinφ = −1

2

λ1/2(m2
`+`−`′+`′− ,m

2
`+`− ,m

2
`′+`′−) m4

`+`−`′+`′−τ`+`−`′+`′−

ξ1/2(m2
`+`− ,m

2
`+`′+`′− ,m

2
`−`′+`′− ,m

2
`′+`′−) ξ1/2(m2

`′+`′− ,m
2
`′+`+`− ,m

2
`′−`+`− ,m

2
`+`−)

10.1.2 Matrix Elements

Any observable effect of the contribution to the diboson decay ϕ→ Z Z∗ from additional

operators can be understood through the dependence of the invariant decay distribution

on the matrix element |Mtot|2 for this process. In particular, if S̃ZZ is non-zero, then

Mtot will receive an additive contribution from the pseudo-scalar matrix elementMPS

resulting in the full squared matrix element

|Mtot|2 = |MSM +MPS |2 = |MSM |2 + |MPS |2 +MSMM∗PS + h.c. (10.5)

The observable effects of time-reversal violation will require an irreducible contribution

from two operators that transform differently under T. Therefore we expect violations

of this symmetry to arise only from the interference terms MSMM∗PS + h.c.. The

kinematic observable we propose to measure violations of T depends only on the dis-

tribution of the gauge bosons polarizations, which we infer from the decay plane of

their lepton pair daughters. Importantly it is independent of the denominators of the

gauge boson propagators. Thus for both notational and conceptual simplicity, we will
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henceforth restrict our attention to the matrix element numerators that depend only

on the projection operators Pµν(M2
Z , p

σ
Z)

Pµν(M2
Z , pZ) = gµν −

pµZp
ν
Z

M2
Z

rather than considering the full gauge boson propagators. With this simplification, com-

puting the contribution to the matrix element numerators from the Standard Model

and pseudo-scalar operators OSM and OPS is straightfoward. Taking the lepton as-

signments pµZ = pµ
`+

+ pµ
`− and pµZ∗ = pµ

`′+ + pµ
`′− , we have

MSM =
2M2

Z

v
gµν P

µα(M2
Z , p

σ
Z) P νβ(M2

Z∗ , p
σ
Z∗) M`+`−

α M`′+`′−
β

MPS =
M2
Z S̃ZZ
πv3

εµνρσ p
µ
Z P να(M2

Z , pZ) pρZ∗ P
σβ(M2

Z∗ , pZ∗) M`+`−
α M`′+`′−

β

Since g2
V g2

A ∼ 0.001*** is numerically small, we can ignore the subleading terms

proportional to this quantity and obtain simple expressions for each piece of the total

squared matrix element:

1

4

∑
spins

|MSM |2 =
8M4

Z

v2
(g2
V + g2

A)2 (m2
`+`′+m

2
`−`′− +m2

`+`′−m
2
`−`′+)

1

4

∑
spins

|MPS |2

=
S̃ZZM

4
Z

π2v6
(g2
V + g2

A)2

(
λ(m2

`+`−m
2
`′+`′− ,m

2
`+`′+m

2
`−`′− ,m

2
`+`′−m

2
`−`′+)

+ 4m2
`+`−ξ(m

2
`′+`′− ,m

2
`′+`+`− ,m

2
`′−`+`− ,m

2
`+`−)

+4m2
`′+`′−ξ(m

2
`+`− ,m

2
`+`′+`′− ,m

2
`−`′+`′− ,m

2
`′+`′−)−2m4

`+`−m
4
`′+`′−

)

1

4

∑
spins

MSMM∗PS + h.c.
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=
8S̃ZZM

4
Z

πv5
τ`+`−`′+`′−m

4
`+`−`′+`′−(g2

V + g2
A)2(m2

`+`′+ +m2
`−`′− −m

2
`+`′− −m

2
`−`′+)

(10.6)

Since the first two terms in the total squared matrix element are positive definite, and

since the cross term is proportional to τ`+`−`′+`′− , we expect a deficit of events when

τ`+`−`′+`′− is negative and a surplus when τ`+`−`′+`′− is positive. The fact that τ`+`−`′+`′−

is T-odd therefore implies that the distribution of τ`+`−`′+`′− will be asymmetric in the

presence of T violation, and symmetric when T is conserved. The zeroth moment of

this asymmetry can be quantified in the obvious way by defining the following measure

Aτ ≡
N+ −N−
N+ +N−

N± =

∫ ±∞
0

dτ
dN(ϕ→ `+`−`′+`′−)

dτ
(10.7)

This naive expectation however, fails due to the non-positive-definiteness of the

associated kinematic factor in the cross term

µ̃`+`−`′+`′− ≡
m2
`+`′+−m

2
`+`′−−m

2
`−`′+ +m2

`−`′−

m2
`+`−`′+`′−

(10.8)

and instead we find that the asymmetry described above is well correlated with µ̃`+`−`′+`′−

as demonstrated in a plot of τ`+`−`′+`′− vs. µ̃`+`−`′+`′− in Fig. 10.3.

We briefly consider several ways to fold the kinematic factor µ̃`+`−`′+`′− into the

T-odd variable τ`+`−`′+`′− to produce an observable that displays the full asymmetry

due to time-reversal violation. The most straightforward way is to compute the product

of the two variables,

T̃`+`−`′+`′− ≡ τ`+`−`′+`′− µ̃`+`−`′+`′−

AT̃ ≡
N+ −N−
N+ +N−

N± =

∫ ±∞
0

dT̃ dN(ϕ→ `+`−`′+`′−)

dT̃
(10.9)

which has the conceptual advantage of being proportional to the entire matrix element

cross-term
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Figure 10.3: The distribution of 10,000 events in the τ`+`−`′+`′− vs. µ̃`+`−`′+`′− plane.
An unrealistically large value of the coupling strength S̃ZZ ∼ 250 is chosen here for
illustrative purposes.

1

4

∑
spins

MSMM∗PS + h.c. =
16S̃ZZM

4
Z

πv5
m6
`+`−`′+`′−(g2

V + g2
A)2 T̃`+`−`′+`′− (10.10)

Since the zeroth moment of the asymmetry in this new variable AT̃ is independent of

the details of its distribution, already it displays the maximum possible asymmetry that

can arise from T-violation at this order. However, it is possible to define higher moments

of the asymmetry weighted by the relative distance of points in the distribution from

the origin. For example, the first moment of the asymmetry is

A(1)

T̃
=
〈T̃`+`−`′+`′−〉
〈T̃ 2
`+`−`′+`′−〉1/2

〈T̃ n`+`−`′+`′−〉 =

∫ +∞

−∞
dT̃ T̃ n dP(ϕ→ `+`−`′+`′−)

dT̃
(10.11)

One can therefore consider alternative variables that take the sign of µ̃`+`−`′+`′− into

account such as

τ−
`+`−`′+`′− ≡ τ`+`−`′+`′−sgn(µ̃`+`−`′+`′−) A(1)

τ− =
〈τ−
`+`−`′+`′−〉
〈τ−2
`+`−`′+`′−〉1/2
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µ̃−
`+`−`′+`′− ≡ µ̃`+`−`′+`′−sgn(τ`+`−`′+`′−) A(1)

µ̃− =
〈µ̃−
`+`−`′+`′−〉

〈µ̃−2
`+`−`′+`′−〉1/2

Although all of these variables are equivalent from the perspective of the zeroth moment

of asymmetry, they are distinct in their distributions about the origin as in Fig. 10.4 and

may have relative advantages from the perspective of higher moments in the asymmetry.

Figure 10.4: Asymmetry variables

10.2 Simulation and Validation

Events are simulated using the full MadGraph4/MadEvent pipeline. Since the generic

Higgs effective theory (HEFT) model is not equipped to handle the full range of effects

and parameterizations we consider, appropriate modifications are made at each step

and the validation procedure is described here. Matrix elements are constructed from

modified HELAS subroutines with phase space distributions from MadEvent, showering

is simulated with Pythia6 out of the box, and detector simulations are implemented

with a modified version of PGS4.

We start with the HEFT model in MadGraph4 with the vector-vector-scalar inter-

action corresponding to OSM and fix the Higgs mass at a value of 126 GeV. MadGraph4

does not come with a HELAS subroutine capable of simulating the pseudoscalar effective
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operator OPS out of the box, so modified HELAS subroutines are imported from [93].

A new vector-vector-scalar interaction is added to the model file interactions.dat

corresponding to OPS , pointing at the modified HELAS subroutines, and events are

generated with the full interference effects. The MadEvent file matrix.f, responsible

for constructing the full matrix element from HELAS subroutines, is then modified by

hand with the addition of a new coupling that conforms to our parameterization of

the coupling strength Eq. 10.3. Events are generated with different fixed values of the

variable S̃ZZ , with log10 S̃ZZ ranging from 0 to 2 in steps of 0.5.

In order to validate the magnitude of the asymmetry AT̃ with our analytical expec-

tations, we created a new HELAS subroutine to calculate the effective matrix element

corresponding to the full squared matrix element

Meff (ϕ→ e+e−µ+µ−) =
√
|Mtot|2 '

√
|MSM |2 +MSMM∗PS +M∗SMMPS

We restrict the final state of this validation to e+e−µ+µ− to avoid subtle interference

effects and we have ignored here the contribution from |MPS |2 which is subleading

for small values of S̃ZZ . We input our analytical calculation of the matrix element

components in Eq. 10.6 into this subroutine and generate events using MadEvent to fill

the phase space. The value of the asymmetry using this effective HELAS subroutine

closely matches the asymmetry using the full MadGraph4/MadEvent pipeline for events

with a e+e−µ+µ− final state over a wide range of values for the coupling S̃ZZ . The

agreement even diverges for larger values of S̃ZZ where the contribution from |MPS |2

becomes important as expected. This highly non-trivial test offers great confidence that

the MadGraph4/MadEvent pipeline is correctly simulating T-violation for the complete

matrix element over the full range of final states.

The detector simulation in this study is a version of PGS4 that has also been mod-

ified to more accurately reflect the isolation procedure for muons utilized by the CMS

collaboration. The isolation procedure for electrons in PGS4 is inextricably tied to the

simulation of photon showering, and can thus not be modified without a more detailed

understanding of the photon shower and isolation, which is beyond the scope of this
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paper. Muon candidates with transverse momentum pT,µ are identified from an un-

modified PGS simulation of muon chamber hits. We then follow CMS by defining a

variable Tiso,µ to parameterize the degree of isolation for a muon candidate

Tiso,µ =
∑

0.03≤∆Ri,µ≤0.4

|pT,tracks|i ×Θ(|pT,tracks|i − 0.5 GeV)

Here ∆Ri,µ is defined to be the distance in η − φ space between an object i and the

muon candidate and Θ(x) is just the usual Heaviside step function. Muons in this

analysis are identified with those muon candidates that satisfy Tiso,µ/pT,µ < 0.15, in

accordance with the CMS procedure.

10.3 Results

Events are generated with a final state restricted to e+e−µ+µ−, e+e−e+e−, and µ+µ−µ+µ−.

For simplicity, we do not consider electrons and muons coming from τ decays or recon-

structed hadronically decaying τ ’s. Such events would likely make small contributions

to the asymmetry measurement since they all contain some missing energy in their final

states, thus neglecting some of the kinematic degrees of freedom containing information

about the violation of T. This simplification is therefore likely to push our estimate

of the asymmetry slightly to the conservative side, though a quantitative statement

is beyond the scope of this study. A different number of events is generated for dif-

ferent values of S̃ZZ , so that the error in AT̃ from Poisson statistics σ(AT̃ ) satisfies

σ(AT̃ ) < 1
3A

exp

T̃
. Here Aexp

T̃
is the expected value of the asymmetry from a simple linear

fit Aexp
T̃

= 0.001× S̃ZZ . Since σ(AT̃ ) '
√

2/N , this gives N >∼ (2/S̃ZZ)× 107. Events

with log10 S̃ZZ < 0 clearly require a computationally infeasible number of events in

order to achieve statistical significance and are thus not considered here.

For the analysis and construction of the variable τ̃`+`−`′+`′− , a set of reasonable

cuts are applied that are different in nature from those used by a typical ϕ → ZZ∗

search, since the measurement of T is not a discovery level analysis. We simply select all

events with four leptons in the Higgs mass window |m4` − 126| < 10 GeV and a flavor

pattern e+e−µ+µ−, e+e−e+e−, or µ+µ−µ+µ−, with each lepton satisfying pT > 10
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GeV and |η| < 2.5. This simple set of cuts should be enough to guarantee a sufficiently

pure signal sample due to the extremely low Standard Model background for events

with four leptons inside the Higgs mass window. For events with a flavor pattern

e+e−µ+µ−, the variable τ̃`+`−`′+`′− can be constructed without ambiguity. For events

with a flavor pattern e+e−e+e− or µ+µ−µ+µ−, there is a discrete binary ambiguity for

which opposite sign leptons to assign as daughters of the same Z boson. Note that

since τ̃`+`−`′+`′− is proportional to an εµνρσ contraction of the four lepton momenta, it

is invariant with respect to the exchange of Z ↔ Z∗. Thus once the discrete binary

ambiguity is resolved, τ̃`+`−`′+`′− can then be constructed unambiguously. We resolve

this ambiguity by assuming that most events contain one on-shell and one off-shell Z

boson, so the correct assignment should contain one pair of leptons with an invariant

mass within the Z mass window |m`+`− −mZ | < 15 GeV and one pair of leptons with

an invariant mass below this Z mass window m`′+`′− < mZ−15 GeV. We thus consider

each of the two ambiguous lepton assignments and if only one assignment satisfies

this criteria, then this assignment is assumed to be the correct one and τ̃`+`−`′+`′−

is constructed accordingly. If both or neither of the two lepton assignments satisfies

this criteria, then the assignment that contains the largest invariant mass lepton pair

mmax
`+`− is simply taken to be the correct assignment, and the leptons that make up this

maximum invariant mass pair are associated with each other. This asymmetry as a

function of the coupling S̃ZZ is shown in Fig. 10.5.

10.4 Fermion Electric Dipole Moments

The analysis proposed here would be complementary and orthogonal to existing low

energy precision measurements of the electric dipole moment (EDM) of the electron de.

The electron EDM, which corresponds to an asymmetric charge distribution along the

direction of the electron spin (~S), arises from the dimension-five Lagrangian electric

dipole operator

de
~S

|S|
· ~E = −de

2
ēσµνe F̃µν
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Figure 10.5: Zeroth moment asymmetry

where σµν = i
2 [γµ, γν ] = i

2(γµγν − γνγµ) and F̃µν = 1
2ε
µνρσFρσand ε0123 = +1. This

charge distribution is odd with respect to T due to the spin-dependence and is predicted

in the Standard Model to be |de| <∼ 10−38 e cm. However, it has long been known that

the existence of new particles and interactions that are asymmetric under T could lead

to potentially measurable contributions to de. In particular, [145] demonstrated that

the pseudo-scalar operators Eq. 10.12, of the same type considered in this analysis,

could produce a contribution to de through the 1-loop diagram in Fig. 10.6.

e2S̃AA
16π

ϕ

v
FµνF̃

µν egZ S̃AZ
8π

ϕ

v
FµνZ̃

µν (10.12)

Thus an explicit bound on |de| would translate to a bound on the couplings S̃AA and

S̃AZ . The explicit calculation at 1-loop yields

de
e

=
α

32π2

me

v2

[
S̃AA f(µ2/m2

h)− 1− 4 sin2 θW

2 cos2 θW sin2 θW
S̃AZ g(µ2/m2

h, µ
2/m2

Z)

]
(10.13)

where f(x) = ln(1 + x) and g(x, y) = [ln(1 + x) − (x/y) ln(1 + y)]/(1 − x/y), and for

reference (α/32π2)(me/v
2) ' 4 × 10−26 cm. Recently, the ACME collaboration [148]

used spin precession measurements on a pulse of ThO molecules from a cryogenic buffer
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Figure 10.6: Contribution to the electric dipole moment of the electron from the 1-loop
Barr Zee diagram.

gas beam source, to produce the most stringent bound yet on |de| <∼ 9 × 10−29 e cm.

This was an order of magnitude improvement on the previous bound |de| <∼ 1 × 10−27

e cm, from nuclear magnetic resonant measurements of YbF molecules [146, 147].

Despite this exceedingly stringent bound on S̃AA and S̃AZ , to date there exists no

bound whatsoever on the coupling S̃ZZ , which is the subject of this analysis. Further-

more, there is no model-independent theoretical restriction on the value of S̃ZZ that

can be derived based on the EDM bound. Because these are all electroweak couplings

on the same class of operators, the doctrine of naturalness may imply that these three

couplings (S̃AA, S̃AZ , S̃ZZ) should be at least within an order of magnitude of each

other. However, currently there exist at least some strong reasons to cast suspicion on

our understanding of naturalness, especially as it pertains to the Higgs sector. Thus

motivating this first ever measurement of the coupling for the effective operator S̃ZZ .
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